]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/time/hrtimer.c
cf8e4df808cffe043350220a47b7730f7ea123b4
[mirror_ubuntu-bionic-kernel.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55
56 #include <linux/uaccess.h>
57
58 #include <trace/events/timer.h>
59
60 #include "tick-internal.h"
61
62 /*
63 * The timer bases:
64 *
65 * There are more clockids than hrtimer bases. Thus, we index
66 * into the timer bases by the hrtimer_base_type enum. When trying
67 * to reach a base using a clockid, hrtimer_clockid_to_base()
68 * is used to convert from clockid to the proper hrtimer_base_type.
69 */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
74 .clock_base =
75 {
76 {
77 .index = HRTIMER_BASE_MONOTONIC,
78 .clockid = CLOCK_MONOTONIC,
79 .get_time = &ktime_get,
80 },
81 {
82 .index = HRTIMER_BASE_REALTIME,
83 .clockid = CLOCK_REALTIME,
84 .get_time = &ktime_get_real,
85 },
86 {
87 .index = HRTIMER_BASE_BOOTTIME,
88 .clockid = CLOCK_BOOTTIME,
89 .get_time = &ktime_get_boottime,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 },
96 }
97 };
98
99 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 /* Make sure we catch unsupported clockids */
101 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
102
103 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
104 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
105 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
106 [CLOCK_TAI] = HRTIMER_BASE_TAI,
107 };
108
109 /*
110 * Functions and macros which are different for UP/SMP systems are kept in a
111 * single place
112 */
113 #ifdef CONFIG_SMP
114
115 /*
116 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117 * such that hrtimer_callback_running() can unconditionally dereference
118 * timer->base->cpu_base
119 */
120 static struct hrtimer_cpu_base migration_cpu_base = {
121 .seq = SEQCNT_ZERO(migration_cpu_base),
122 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
123 };
124
125 #define migration_base migration_cpu_base.clock_base[0]
126
127 /*
128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129 * means that all timers which are tied to this base via timer->base are
130 * locked, and the base itself is locked too.
131 *
132 * So __run_timers/migrate_timers can safely modify all timers which could
133 * be found on the lists/queues.
134 *
135 * When the timer's base is locked, and the timer removed from list, it is
136 * possible to set timer->base = &migration_base and drop the lock: the timer
137 * remains locked.
138 */
139 static
140 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 unsigned long *flags)
142 {
143 struct hrtimer_clock_base *base;
144
145 for (;;) {
146 base = timer->base;
147 if (likely(base != &migration_base)) {
148 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 if (likely(base == timer->base))
150 return base;
151 /* The timer has migrated to another CPU: */
152 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 }
154 cpu_relax();
155 }
156 }
157
158 /*
159 * With HIGHRES=y we do not migrate the timer when it is expiring
160 * before the next event on the target cpu because we cannot reprogram
161 * the target cpu hardware and we would cause it to fire late.
162 *
163 * Called with cpu_base->lock of target cpu held.
164 */
165 static int
166 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 {
168 #ifdef CONFIG_HIGH_RES_TIMERS
169 ktime_t expires;
170
171 if (!new_base->cpu_base->hres_active)
172 return 0;
173
174 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
175 return expires <= new_base->cpu_base->expires_next;
176 #else
177 return 0;
178 #endif
179 }
180
181 #ifdef CONFIG_NO_HZ_COMMON
182 static inline
183 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
184 int pinned)
185 {
186 if (pinned || !base->migration_enabled)
187 return base;
188 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 }
190 #else
191 static inline
192 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
193 int pinned)
194 {
195 return base;
196 }
197 #endif
198
199 /*
200 * We switch the timer base to a power-optimized selected CPU target,
201 * if:
202 * - NO_HZ_COMMON is enabled
203 * - timer migration is enabled
204 * - the timer callback is not running
205 * - the timer is not the first expiring timer on the new target
206 *
207 * If one of the above requirements is not fulfilled we move the timer
208 * to the current CPU or leave it on the previously assigned CPU if
209 * the timer callback is currently running.
210 */
211 static inline struct hrtimer_clock_base *
212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
213 int pinned)
214 {
215 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216 struct hrtimer_clock_base *new_base;
217 int basenum = base->index;
218
219 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
220 new_cpu_base = get_target_base(this_cpu_base, pinned);
221 again:
222 new_base = &new_cpu_base->clock_base[basenum];
223
224 if (base != new_base) {
225 /*
226 * We are trying to move timer to new_base.
227 * However we can't change timer's base while it is running,
228 * so we keep it on the same CPU. No hassle vs. reprogramming
229 * the event source in the high resolution case. The softirq
230 * code will take care of this when the timer function has
231 * completed. There is no conflict as we hold the lock until
232 * the timer is enqueued.
233 */
234 if (unlikely(hrtimer_callback_running(timer)))
235 return base;
236
237 /* See the comment in lock_hrtimer_base() */
238 timer->base = &migration_base;
239 raw_spin_unlock(&base->cpu_base->lock);
240 raw_spin_lock(&new_base->cpu_base->lock);
241
242 if (new_cpu_base != this_cpu_base &&
243 hrtimer_check_target(timer, new_base)) {
244 raw_spin_unlock(&new_base->cpu_base->lock);
245 raw_spin_lock(&base->cpu_base->lock);
246 new_cpu_base = this_cpu_base;
247 timer->base = base;
248 goto again;
249 }
250 timer->base = new_base;
251 } else {
252 if (new_cpu_base != this_cpu_base &&
253 hrtimer_check_target(timer, new_base)) {
254 new_cpu_base = this_cpu_base;
255 goto again;
256 }
257 }
258 return new_base;
259 }
260
261 #else /* CONFIG_SMP */
262
263 static inline struct hrtimer_clock_base *
264 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 {
266 struct hrtimer_clock_base *base = timer->base;
267
268 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269
270 return base;
271 }
272
273 # define switch_hrtimer_base(t, b, p) (b)
274
275 #endif /* !CONFIG_SMP */
276
277 /*
278 * Functions for the union type storage format of ktime_t which are
279 * too large for inlining:
280 */
281 #if BITS_PER_LONG < 64
282 /*
283 * Divide a ktime value by a nanosecond value
284 */
285 s64 __ktime_divns(const ktime_t kt, s64 div)
286 {
287 int sft = 0;
288 s64 dclc;
289 u64 tmp;
290
291 dclc = ktime_to_ns(kt);
292 tmp = dclc < 0 ? -dclc : dclc;
293
294 /* Make sure the divisor is less than 2^32: */
295 while (div >> 32) {
296 sft++;
297 div >>= 1;
298 }
299 tmp >>= sft;
300 do_div(tmp, (unsigned long) div);
301 return dclc < 0 ? -tmp : tmp;
302 }
303 EXPORT_SYMBOL_GPL(__ktime_divns);
304 #endif /* BITS_PER_LONG >= 64 */
305
306 /*
307 * Add two ktime values and do a safety check for overflow:
308 */
309 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 {
311 ktime_t res = ktime_add_unsafe(lhs, rhs);
312
313 /*
314 * We use KTIME_SEC_MAX here, the maximum timeout which we can
315 * return to user space in a timespec:
316 */
317 if (res < 0 || res < lhs || res < rhs)
318 res = ktime_set(KTIME_SEC_MAX, 0);
319
320 return res;
321 }
322
323 EXPORT_SYMBOL_GPL(ktime_add_safe);
324
325 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326
327 static struct debug_obj_descr hrtimer_debug_descr;
328
329 static void *hrtimer_debug_hint(void *addr)
330 {
331 return ((struct hrtimer *) addr)->function;
332 }
333
334 /*
335 * fixup_init is called when:
336 * - an active object is initialized
337 */
338 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 {
340 struct hrtimer *timer = addr;
341
342 switch (state) {
343 case ODEBUG_STATE_ACTIVE:
344 hrtimer_cancel(timer);
345 debug_object_init(timer, &hrtimer_debug_descr);
346 return true;
347 default:
348 return false;
349 }
350 }
351
352 /*
353 * fixup_activate is called when:
354 * - an active object is activated
355 * - an unknown non-static object is activated
356 */
357 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 {
359 switch (state) {
360 case ODEBUG_STATE_ACTIVE:
361 WARN_ON(1);
362
363 default:
364 return false;
365 }
366 }
367
368 /*
369 * fixup_free is called when:
370 * - an active object is freed
371 */
372 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 struct hrtimer *timer = addr;
375
376 switch (state) {
377 case ODEBUG_STATE_ACTIVE:
378 hrtimer_cancel(timer);
379 debug_object_free(timer, &hrtimer_debug_descr);
380 return true;
381 default:
382 return false;
383 }
384 }
385
386 static struct debug_obj_descr hrtimer_debug_descr = {
387 .name = "hrtimer",
388 .debug_hint = hrtimer_debug_hint,
389 .fixup_init = hrtimer_fixup_init,
390 .fixup_activate = hrtimer_fixup_activate,
391 .fixup_free = hrtimer_fixup_free,
392 };
393
394 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 {
396 debug_object_init(timer, &hrtimer_debug_descr);
397 }
398
399 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 {
401 debug_object_activate(timer, &hrtimer_debug_descr);
402 }
403
404 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 {
406 debug_object_deactivate(timer, &hrtimer_debug_descr);
407 }
408
409 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 {
411 debug_object_free(timer, &hrtimer_debug_descr);
412 }
413
414 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
415 enum hrtimer_mode mode);
416
417 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
418 enum hrtimer_mode mode)
419 {
420 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
421 __hrtimer_init(timer, clock_id, mode);
422 }
423 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424
425 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 {
427 debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430
431 #else
432 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
434 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
435 #endif
436
437 static inline void
438 debug_init(struct hrtimer *timer, clockid_t clockid,
439 enum hrtimer_mode mode)
440 {
441 debug_hrtimer_init(timer);
442 trace_hrtimer_init(timer, clockid, mode);
443 }
444
445 static inline void debug_activate(struct hrtimer *timer)
446 {
447 debug_hrtimer_activate(timer);
448 trace_hrtimer_start(timer);
449 }
450
451 static inline void debug_deactivate(struct hrtimer *timer)
452 {
453 debug_hrtimer_deactivate(timer);
454 trace_hrtimer_cancel(timer);
455 }
456
457 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
458 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
459 struct hrtimer *timer)
460 {
461 #ifdef CONFIG_HIGH_RES_TIMERS
462 cpu_base->next_timer = timer;
463 #endif
464 }
465
466 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 {
468 struct hrtimer_clock_base *base = cpu_base->clock_base;
469 unsigned int active = cpu_base->active_bases;
470 ktime_t expires, expires_next = KTIME_MAX;
471
472 hrtimer_update_next_timer(cpu_base, NULL);
473 for (; active; base++, active >>= 1) {
474 struct timerqueue_node *next;
475 struct hrtimer *timer;
476
477 if (!(active & 0x01))
478 continue;
479
480 next = timerqueue_getnext(&base->active);
481 timer = container_of(next, struct hrtimer, node);
482 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
483 if (expires < expires_next) {
484 expires_next = expires;
485 hrtimer_update_next_timer(cpu_base, timer);
486 }
487 }
488 /*
489 * clock_was_set() might have changed base->offset of any of
490 * the clock bases so the result might be negative. Fix it up
491 * to prevent a false positive in clockevents_program_event().
492 */
493 if (expires_next < 0)
494 expires_next = 0;
495 return expires_next;
496 }
497 #endif
498
499 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
500 {
501 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
502 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
503 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
504
505 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
506 offs_real, offs_boot, offs_tai);
507 }
508
509 /* High resolution timer related functions */
510 #ifdef CONFIG_HIGH_RES_TIMERS
511
512 /*
513 * High resolution timer enabled ?
514 */
515 static bool hrtimer_hres_enabled __read_mostly = true;
516 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
517 EXPORT_SYMBOL_GPL(hrtimer_resolution);
518
519 /*
520 * Enable / Disable high resolution mode
521 */
522 static int __init setup_hrtimer_hres(char *str)
523 {
524 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
525 }
526
527 __setup("highres=", setup_hrtimer_hres);
528
529 /*
530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 return hrtimer_hres_enabled;
535 }
536
537 /*
538 * Is the high resolution mode active ?
539 */
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 {
542 return cpu_base->hres_active;
543 }
544
545 static inline int hrtimer_hres_active(void)
546 {
547 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 }
549
550 /*
551 * Reprogram the event source with checking both queues for the
552 * next event
553 * Called with interrupts disabled and base->lock held
554 */
555 static void
556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 {
558 ktime_t expires_next;
559
560 if (!cpu_base->hres_active)
561 return;
562
563 expires_next = __hrtimer_get_next_event(cpu_base);
564
565 if (skip_equal && expires_next == cpu_base->expires_next)
566 return;
567
568 cpu_base->expires_next = expires_next;
569
570 /*
571 * If a hang was detected in the last timer interrupt then we
572 * leave the hang delay active in the hardware. We want the
573 * system to make progress. That also prevents the following
574 * scenario:
575 * T1 expires 50ms from now
576 * T2 expires 5s from now
577 *
578 * T1 is removed, so this code is called and would reprogram
579 * the hardware to 5s from now. Any hrtimer_start after that
580 * will not reprogram the hardware due to hang_detected being
581 * set. So we'd effectivly block all timers until the T2 event
582 * fires.
583 */
584 if (cpu_base->hang_detected)
585 return;
586
587 tick_program_event(cpu_base->expires_next, 1);
588 }
589
590 /*
591 * When a timer is enqueued and expires earlier than the already enqueued
592 * timers, we have to check, whether it expires earlier than the timer for
593 * which the clock event device was armed.
594 *
595 * Called with interrupts disabled and base->cpu_base.lock held
596 */
597 static void hrtimer_reprogram(struct hrtimer *timer,
598 struct hrtimer_clock_base *base)
599 {
600 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602
603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604
605 /*
606 * If the timer is not on the current cpu, we cannot reprogram
607 * the other cpus clock event device.
608 */
609 if (base->cpu_base != cpu_base)
610 return;
611
612 /*
613 * If the hrtimer interrupt is running, then it will
614 * reevaluate the clock bases and reprogram the clock event
615 * device. The callbacks are always executed in hard interrupt
616 * context so we don't need an extra check for a running
617 * callback.
618 */
619 if (cpu_base->in_hrtirq)
620 return;
621
622 /*
623 * CLOCK_REALTIME timer might be requested with an absolute
624 * expiry time which is less than base->offset. Set it to 0.
625 */
626 if (expires < 0)
627 expires = 0;
628
629 if (expires >= cpu_base->expires_next)
630 return;
631
632 /* Update the pointer to the next expiring timer */
633 cpu_base->next_timer = timer;
634
635 /*
636 * If a hang was detected in the last timer interrupt then we
637 * do not schedule a timer which is earlier than the expiry
638 * which we enforced in the hang detection. We want the system
639 * to make progress.
640 */
641 if (cpu_base->hang_detected)
642 return;
643
644 /*
645 * Program the timer hardware. We enforce the expiry for
646 * events which are already in the past.
647 */
648 cpu_base->expires_next = expires;
649 tick_program_event(expires, 1);
650 }
651
652 /*
653 * Initialize the high resolution related parts of cpu_base
654 */
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 {
657 base->expires_next = KTIME_MAX;
658 base->hang_detected = 0;
659 base->hres_active = 0;
660 base->next_timer = NULL;
661 }
662
663 /*
664 * Retrigger next event is called after clock was set
665 *
666 * Called with interrupts disabled via on_each_cpu()
667 */
668 static void retrigger_next_event(void *arg)
669 {
670 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
671
672 if (!base->hres_active)
673 return;
674
675 raw_spin_lock(&base->lock);
676 hrtimer_update_base(base);
677 hrtimer_force_reprogram(base, 0);
678 raw_spin_unlock(&base->lock);
679 }
680
681 /*
682 * Switch to high resolution mode
683 */
684 static void hrtimer_switch_to_hres(void)
685 {
686 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
687
688 if (tick_init_highres()) {
689 printk(KERN_WARNING "Could not switch to high resolution "
690 "mode on CPU %d\n", base->cpu);
691 return;
692 }
693 base->hres_active = 1;
694 hrtimer_resolution = HIGH_RES_NSEC;
695
696 tick_setup_sched_timer();
697 /* "Retrigger" the interrupt to get things going */
698 retrigger_next_event(NULL);
699 }
700
701 static void clock_was_set_work(struct work_struct *work)
702 {
703 clock_was_set();
704 }
705
706 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
707
708 /*
709 * Called from timekeeping and resume code to reprogram the hrtimer
710 * interrupt device on all cpus.
711 */
712 void clock_was_set_delayed(void)
713 {
714 schedule_work(&hrtimer_work);
715 }
716
717 #else
718
719 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
720 static inline int hrtimer_hres_active(void) { return 0; }
721 static inline int hrtimer_is_hres_enabled(void) { return 0; }
722 static inline void hrtimer_switch_to_hres(void) { }
723 static inline void
724 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
725 static inline int hrtimer_reprogram(struct hrtimer *timer,
726 struct hrtimer_clock_base *base)
727 {
728 return 0;
729 }
730 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
731 static inline void retrigger_next_event(void *arg) { }
732
733 #endif /* CONFIG_HIGH_RES_TIMERS */
734
735 /*
736 * Clock realtime was set
737 *
738 * Change the offset of the realtime clock vs. the monotonic
739 * clock.
740 *
741 * We might have to reprogram the high resolution timer interrupt. On
742 * SMP we call the architecture specific code to retrigger _all_ high
743 * resolution timer interrupts. On UP we just disable interrupts and
744 * call the high resolution interrupt code.
745 */
746 void clock_was_set(void)
747 {
748 #ifdef CONFIG_HIGH_RES_TIMERS
749 /* Retrigger the CPU local events everywhere */
750 on_each_cpu(retrigger_next_event, NULL, 1);
751 #endif
752 timerfd_clock_was_set();
753 }
754
755 /*
756 * During resume we might have to reprogram the high resolution timer
757 * interrupt on all online CPUs. However, all other CPUs will be
758 * stopped with IRQs interrupts disabled so the clock_was_set() call
759 * must be deferred.
760 */
761 void hrtimers_resume(void)
762 {
763 lockdep_assert_irqs_disabled();
764 /* Retrigger on the local CPU */
765 retrigger_next_event(NULL);
766 /* And schedule a retrigger for all others */
767 clock_was_set_delayed();
768 }
769
770 /*
771 * Counterpart to lock_hrtimer_base above:
772 */
773 static inline
774 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
775 {
776 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
777 }
778
779 /**
780 * hrtimer_forward - forward the timer expiry
781 * @timer: hrtimer to forward
782 * @now: forward past this time
783 * @interval: the interval to forward
784 *
785 * Forward the timer expiry so it will expire in the future.
786 * Returns the number of overruns.
787 *
788 * Can be safely called from the callback function of @timer. If
789 * called from other contexts @timer must neither be enqueued nor
790 * running the callback and the caller needs to take care of
791 * serialization.
792 *
793 * Note: This only updates the timer expiry value and does not requeue
794 * the timer.
795 */
796 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
797 {
798 u64 orun = 1;
799 ktime_t delta;
800
801 delta = ktime_sub(now, hrtimer_get_expires(timer));
802
803 if (delta < 0)
804 return 0;
805
806 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
807 return 0;
808
809 if (interval < hrtimer_resolution)
810 interval = hrtimer_resolution;
811
812 if (unlikely(delta >= interval)) {
813 s64 incr = ktime_to_ns(interval);
814
815 orun = ktime_divns(delta, incr);
816 hrtimer_add_expires_ns(timer, incr * orun);
817 if (hrtimer_get_expires_tv64(timer) > now)
818 return orun;
819 /*
820 * This (and the ktime_add() below) is the
821 * correction for exact:
822 */
823 orun++;
824 }
825 hrtimer_add_expires(timer, interval);
826
827 return orun;
828 }
829 EXPORT_SYMBOL_GPL(hrtimer_forward);
830
831 /*
832 * enqueue_hrtimer - internal function to (re)start a timer
833 *
834 * The timer is inserted in expiry order. Insertion into the
835 * red black tree is O(log(n)). Must hold the base lock.
836 *
837 * Returns 1 when the new timer is the leftmost timer in the tree.
838 */
839 static int enqueue_hrtimer(struct hrtimer *timer,
840 struct hrtimer_clock_base *base)
841 {
842 debug_activate(timer);
843
844 base->cpu_base->active_bases |= 1 << base->index;
845
846 timer->state = HRTIMER_STATE_ENQUEUED;
847
848 return timerqueue_add(&base->active, &timer->node);
849 }
850
851 /*
852 * __remove_hrtimer - internal function to remove a timer
853 *
854 * Caller must hold the base lock.
855 *
856 * High resolution timer mode reprograms the clock event device when the
857 * timer is the one which expires next. The caller can disable this by setting
858 * reprogram to zero. This is useful, when the context does a reprogramming
859 * anyway (e.g. timer interrupt)
860 */
861 static void __remove_hrtimer(struct hrtimer *timer,
862 struct hrtimer_clock_base *base,
863 u8 newstate, int reprogram)
864 {
865 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
866 u8 state = timer->state;
867
868 timer->state = newstate;
869 if (!(state & HRTIMER_STATE_ENQUEUED))
870 return;
871
872 if (!timerqueue_del(&base->active, &timer->node))
873 cpu_base->active_bases &= ~(1 << base->index);
874
875 #ifdef CONFIG_HIGH_RES_TIMERS
876 /*
877 * Note: If reprogram is false we do not update
878 * cpu_base->next_timer. This happens when we remove the first
879 * timer on a remote cpu. No harm as we never dereference
880 * cpu_base->next_timer. So the worst thing what can happen is
881 * an superflous call to hrtimer_force_reprogram() on the
882 * remote cpu later on if the same timer gets enqueued again.
883 */
884 if (reprogram && timer == cpu_base->next_timer)
885 hrtimer_force_reprogram(cpu_base, 1);
886 #endif
887 }
888
889 /*
890 * remove hrtimer, called with base lock held
891 */
892 static inline int
893 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
894 {
895 if (hrtimer_is_queued(timer)) {
896 u8 state = timer->state;
897 int reprogram;
898
899 /*
900 * Remove the timer and force reprogramming when high
901 * resolution mode is active and the timer is on the current
902 * CPU. If we remove a timer on another CPU, reprogramming is
903 * skipped. The interrupt event on this CPU is fired and
904 * reprogramming happens in the interrupt handler. This is a
905 * rare case and less expensive than a smp call.
906 */
907 debug_deactivate(timer);
908 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
909
910 if (!restart)
911 state = HRTIMER_STATE_INACTIVE;
912
913 __remove_hrtimer(timer, base, state, reprogram);
914 return 1;
915 }
916 return 0;
917 }
918
919 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
920 const enum hrtimer_mode mode)
921 {
922 #ifdef CONFIG_TIME_LOW_RES
923 /*
924 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
925 * granular time values. For relative timers we add hrtimer_resolution
926 * (i.e. one jiffie) to prevent short timeouts.
927 */
928 timer->is_rel = mode & HRTIMER_MODE_REL;
929 if (timer->is_rel)
930 tim = ktime_add_safe(tim, hrtimer_resolution);
931 #endif
932 return tim;
933 }
934
935 /**
936 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
937 * @timer: the timer to be added
938 * @tim: expiry time
939 * @delta_ns: "slack" range for the timer
940 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
941 * relative (HRTIMER_MODE_REL)
942 */
943 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
944 u64 delta_ns, const enum hrtimer_mode mode)
945 {
946 struct hrtimer_clock_base *base, *new_base;
947 unsigned long flags;
948 int leftmost;
949
950 base = lock_hrtimer_base(timer, &flags);
951
952 /* Remove an active timer from the queue: */
953 remove_hrtimer(timer, base, true);
954
955 if (mode & HRTIMER_MODE_REL)
956 tim = ktime_add_safe(tim, base->get_time());
957
958 tim = hrtimer_update_lowres(timer, tim, mode);
959
960 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
961
962 /* Switch the timer base, if necessary: */
963 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
964
965 leftmost = enqueue_hrtimer(timer, new_base);
966 if (!leftmost)
967 goto unlock;
968
969 if (!hrtimer_is_hres_active(timer)) {
970 /*
971 * Kick to reschedule the next tick to handle the new timer
972 * on dynticks target.
973 */
974 if (new_base->cpu_base->nohz_active)
975 wake_up_nohz_cpu(new_base->cpu_base->cpu);
976 } else {
977 hrtimer_reprogram(timer, new_base);
978 }
979 unlock:
980 unlock_hrtimer_base(timer, &flags);
981 }
982 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
983
984 /**
985 * hrtimer_try_to_cancel - try to deactivate a timer
986 * @timer: hrtimer to stop
987 *
988 * Returns:
989 * 0 when the timer was not active
990 * 1 when the timer was active
991 * -1 when the timer is currently executing the callback function and
992 * cannot be stopped
993 */
994 int hrtimer_try_to_cancel(struct hrtimer *timer)
995 {
996 struct hrtimer_clock_base *base;
997 unsigned long flags;
998 int ret = -1;
999
1000 /*
1001 * Check lockless first. If the timer is not active (neither
1002 * enqueued nor running the callback, nothing to do here. The
1003 * base lock does not serialize against a concurrent enqueue,
1004 * so we can avoid taking it.
1005 */
1006 if (!hrtimer_active(timer))
1007 return 0;
1008
1009 base = lock_hrtimer_base(timer, &flags);
1010
1011 if (!hrtimer_callback_running(timer))
1012 ret = remove_hrtimer(timer, base, false);
1013
1014 unlock_hrtimer_base(timer, &flags);
1015
1016 return ret;
1017
1018 }
1019 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1020
1021 /**
1022 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1023 * @timer: the timer to be cancelled
1024 *
1025 * Returns:
1026 * 0 when the timer was not active
1027 * 1 when the timer was active
1028 */
1029 int hrtimer_cancel(struct hrtimer *timer)
1030 {
1031 for (;;) {
1032 int ret = hrtimer_try_to_cancel(timer);
1033
1034 if (ret >= 0)
1035 return ret;
1036 cpu_relax();
1037 }
1038 }
1039 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1040
1041 /**
1042 * hrtimer_get_remaining - get remaining time for the timer
1043 * @timer: the timer to read
1044 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1045 */
1046 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1047 {
1048 unsigned long flags;
1049 ktime_t rem;
1050
1051 lock_hrtimer_base(timer, &flags);
1052 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1053 rem = hrtimer_expires_remaining_adjusted(timer);
1054 else
1055 rem = hrtimer_expires_remaining(timer);
1056 unlock_hrtimer_base(timer, &flags);
1057
1058 return rem;
1059 }
1060 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1061
1062 #ifdef CONFIG_NO_HZ_COMMON
1063 /**
1064 * hrtimer_get_next_event - get the time until next expiry event
1065 *
1066 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1067 */
1068 u64 hrtimer_get_next_event(void)
1069 {
1070 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1071 u64 expires = KTIME_MAX;
1072 unsigned long flags;
1073
1074 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1075
1076 if (!__hrtimer_hres_active(cpu_base))
1077 expires = __hrtimer_get_next_event(cpu_base);
1078
1079 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1080
1081 return expires;
1082 }
1083 #endif
1084
1085 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1086 {
1087 if (likely(clock_id < MAX_CLOCKS)) {
1088 int base = hrtimer_clock_to_base_table[clock_id];
1089
1090 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1091 return base;
1092 }
1093 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1094 return HRTIMER_BASE_MONOTONIC;
1095 }
1096
1097 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1098 enum hrtimer_mode mode)
1099 {
1100 struct hrtimer_cpu_base *cpu_base;
1101 int base;
1102
1103 memset(timer, 0, sizeof(struct hrtimer));
1104
1105 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1106
1107 /*
1108 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1109 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1110 * ensure POSIX compliance.
1111 */
1112 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1113 clock_id = CLOCK_MONOTONIC;
1114
1115 base = hrtimer_clockid_to_base(clock_id);
1116 timer->base = &cpu_base->clock_base[base];
1117 timerqueue_init(&timer->node);
1118 }
1119
1120 /**
1121 * hrtimer_init - initialize a timer to the given clock
1122 * @timer: the timer to be initialized
1123 * @clock_id: the clock to be used
1124 * @mode: timer mode abs/rel
1125 */
1126 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1127 enum hrtimer_mode mode)
1128 {
1129 debug_init(timer, clock_id, mode);
1130 __hrtimer_init(timer, clock_id, mode);
1131 }
1132 EXPORT_SYMBOL_GPL(hrtimer_init);
1133
1134 /*
1135 * A timer is active, when it is enqueued into the rbtree or the
1136 * callback function is running or it's in the state of being migrated
1137 * to another cpu.
1138 *
1139 * It is important for this function to not return a false negative.
1140 */
1141 bool hrtimer_active(const struct hrtimer *timer)
1142 {
1143 struct hrtimer_cpu_base *cpu_base;
1144 unsigned int seq;
1145
1146 do {
1147 cpu_base = READ_ONCE(timer->base->cpu_base);
1148 seq = raw_read_seqcount_begin(&cpu_base->seq);
1149
1150 if (timer->state != HRTIMER_STATE_INACTIVE ||
1151 cpu_base->running == timer)
1152 return true;
1153
1154 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1155 cpu_base != READ_ONCE(timer->base->cpu_base));
1156
1157 return false;
1158 }
1159 EXPORT_SYMBOL_GPL(hrtimer_active);
1160
1161 /*
1162 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1163 * distinct sections:
1164 *
1165 * - queued: the timer is queued
1166 * - callback: the timer is being ran
1167 * - post: the timer is inactive or (re)queued
1168 *
1169 * On the read side we ensure we observe timer->state and cpu_base->running
1170 * from the same section, if anything changed while we looked at it, we retry.
1171 * This includes timer->base changing because sequence numbers alone are
1172 * insufficient for that.
1173 *
1174 * The sequence numbers are required because otherwise we could still observe
1175 * a false negative if the read side got smeared over multiple consequtive
1176 * __run_hrtimer() invocations.
1177 */
1178
1179 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1180 struct hrtimer_clock_base *base,
1181 struct hrtimer *timer, ktime_t *now)
1182 {
1183 enum hrtimer_restart (*fn)(struct hrtimer *);
1184 int restart;
1185
1186 lockdep_assert_held(&cpu_base->lock);
1187
1188 debug_deactivate(timer);
1189 cpu_base->running = timer;
1190
1191 /*
1192 * Separate the ->running assignment from the ->state assignment.
1193 *
1194 * As with a regular write barrier, this ensures the read side in
1195 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1196 * timer->state == INACTIVE.
1197 */
1198 raw_write_seqcount_barrier(&cpu_base->seq);
1199
1200 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1201 fn = timer->function;
1202
1203 /*
1204 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1205 * timer is restarted with a period then it becomes an absolute
1206 * timer. If its not restarted it does not matter.
1207 */
1208 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1209 timer->is_rel = false;
1210
1211 /*
1212 * Because we run timers from hardirq context, there is no chance
1213 * they get migrated to another cpu, therefore its safe to unlock
1214 * the timer base.
1215 */
1216 raw_spin_unlock(&cpu_base->lock);
1217 trace_hrtimer_expire_entry(timer, now);
1218 restart = fn(timer);
1219 trace_hrtimer_expire_exit(timer);
1220 raw_spin_lock(&cpu_base->lock);
1221
1222 /*
1223 * Note: We clear the running state after enqueue_hrtimer and
1224 * we do not reprogram the event hardware. Happens either in
1225 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 *
1227 * Note: Because we dropped the cpu_base->lock above,
1228 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1229 * for us already.
1230 */
1231 if (restart != HRTIMER_NORESTART &&
1232 !(timer->state & HRTIMER_STATE_ENQUEUED))
1233 enqueue_hrtimer(timer, base);
1234
1235 /*
1236 * Separate the ->running assignment from the ->state assignment.
1237 *
1238 * As with a regular write barrier, this ensures the read side in
1239 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1240 * timer->state == INACTIVE.
1241 */
1242 raw_write_seqcount_barrier(&cpu_base->seq);
1243
1244 WARN_ON_ONCE(cpu_base->running != timer);
1245 cpu_base->running = NULL;
1246 }
1247
1248 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1249 {
1250 struct hrtimer_clock_base *base = cpu_base->clock_base;
1251 unsigned int active = cpu_base->active_bases;
1252
1253 for (; active; base++, active >>= 1) {
1254 struct timerqueue_node *node;
1255 ktime_t basenow;
1256
1257 if (!(active & 0x01))
1258 continue;
1259
1260 basenow = ktime_add(now, base->offset);
1261
1262 while ((node = timerqueue_getnext(&base->active))) {
1263 struct hrtimer *timer;
1264
1265 timer = container_of(node, struct hrtimer, node);
1266
1267 /*
1268 * The immediate goal for using the softexpires is
1269 * minimizing wakeups, not running timers at the
1270 * earliest interrupt after their soft expiration.
1271 * This allows us to avoid using a Priority Search
1272 * Tree, which can answer a stabbing querry for
1273 * overlapping intervals and instead use the simple
1274 * BST we already have.
1275 * We don't add extra wakeups by delaying timers that
1276 * are right-of a not yet expired timer, because that
1277 * timer will have to trigger a wakeup anyway.
1278 */
1279 if (basenow < hrtimer_get_softexpires_tv64(timer))
1280 break;
1281
1282 __run_hrtimer(cpu_base, base, timer, &basenow);
1283 }
1284 }
1285 }
1286
1287 #ifdef CONFIG_HIGH_RES_TIMERS
1288
1289 /*
1290 * High resolution timer interrupt
1291 * Called with interrupts disabled
1292 */
1293 void hrtimer_interrupt(struct clock_event_device *dev)
1294 {
1295 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1296 ktime_t expires_next, now, entry_time, delta;
1297 int retries = 0;
1298
1299 BUG_ON(!cpu_base->hres_active);
1300 cpu_base->nr_events++;
1301 dev->next_event = KTIME_MAX;
1302
1303 raw_spin_lock(&cpu_base->lock);
1304 entry_time = now = hrtimer_update_base(cpu_base);
1305 retry:
1306 cpu_base->in_hrtirq = 1;
1307 /*
1308 * We set expires_next to KTIME_MAX here with cpu_base->lock
1309 * held to prevent that a timer is enqueued in our queue via
1310 * the migration code. This does not affect enqueueing of
1311 * timers which run their callback and need to be requeued on
1312 * this CPU.
1313 */
1314 cpu_base->expires_next = KTIME_MAX;
1315
1316 __hrtimer_run_queues(cpu_base, now);
1317
1318 /* Reevaluate the clock bases for the next expiry */
1319 expires_next = __hrtimer_get_next_event(cpu_base);
1320 /*
1321 * Store the new expiry value so the migration code can verify
1322 * against it.
1323 */
1324 cpu_base->expires_next = expires_next;
1325 cpu_base->in_hrtirq = 0;
1326 raw_spin_unlock(&cpu_base->lock);
1327
1328 /* Reprogramming necessary ? */
1329 if (!tick_program_event(expires_next, 0)) {
1330 cpu_base->hang_detected = 0;
1331 return;
1332 }
1333
1334 /*
1335 * The next timer was already expired due to:
1336 * - tracing
1337 * - long lasting callbacks
1338 * - being scheduled away when running in a VM
1339 *
1340 * We need to prevent that we loop forever in the hrtimer
1341 * interrupt routine. We give it 3 attempts to avoid
1342 * overreacting on some spurious event.
1343 *
1344 * Acquire base lock for updating the offsets and retrieving
1345 * the current time.
1346 */
1347 raw_spin_lock(&cpu_base->lock);
1348 now = hrtimer_update_base(cpu_base);
1349 cpu_base->nr_retries++;
1350 if (++retries < 3)
1351 goto retry;
1352 /*
1353 * Give the system a chance to do something else than looping
1354 * here. We stored the entry time, so we know exactly how long
1355 * we spent here. We schedule the next event this amount of
1356 * time away.
1357 */
1358 cpu_base->nr_hangs++;
1359 cpu_base->hang_detected = 1;
1360 raw_spin_unlock(&cpu_base->lock);
1361 delta = ktime_sub(now, entry_time);
1362 if ((unsigned int)delta > cpu_base->max_hang_time)
1363 cpu_base->max_hang_time = (unsigned int) delta;
1364 /*
1365 * Limit it to a sensible value as we enforce a longer
1366 * delay. Give the CPU at least 100ms to catch up.
1367 */
1368 if (delta > 100 * NSEC_PER_MSEC)
1369 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1370 else
1371 expires_next = ktime_add(now, delta);
1372 tick_program_event(expires_next, 1);
1373 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1374 ktime_to_ns(delta));
1375 }
1376
1377 /* called with interrupts disabled */
1378 static inline void __hrtimer_peek_ahead_timers(void)
1379 {
1380 struct tick_device *td;
1381
1382 if (!hrtimer_hres_active())
1383 return;
1384
1385 td = this_cpu_ptr(&tick_cpu_device);
1386 if (td && td->evtdev)
1387 hrtimer_interrupt(td->evtdev);
1388 }
1389
1390 #else /* CONFIG_HIGH_RES_TIMERS */
1391
1392 static inline void __hrtimer_peek_ahead_timers(void) { }
1393
1394 #endif /* !CONFIG_HIGH_RES_TIMERS */
1395
1396 /*
1397 * Called from run_local_timers in hardirq context every jiffy
1398 */
1399 void hrtimer_run_queues(void)
1400 {
1401 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1402 ktime_t now;
1403
1404 if (__hrtimer_hres_active(cpu_base))
1405 return;
1406
1407 /*
1408 * This _is_ ugly: We have to check periodically, whether we
1409 * can switch to highres and / or nohz mode. The clocksource
1410 * switch happens with xtime_lock held. Notification from
1411 * there only sets the check bit in the tick_oneshot code,
1412 * otherwise we might deadlock vs. xtime_lock.
1413 */
1414 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1415 hrtimer_switch_to_hres();
1416 return;
1417 }
1418
1419 raw_spin_lock(&cpu_base->lock);
1420 now = hrtimer_update_base(cpu_base);
1421 __hrtimer_run_queues(cpu_base, now);
1422 raw_spin_unlock(&cpu_base->lock);
1423 }
1424
1425 /*
1426 * Sleep related functions:
1427 */
1428 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1429 {
1430 struct hrtimer_sleeper *t =
1431 container_of(timer, struct hrtimer_sleeper, timer);
1432 struct task_struct *task = t->task;
1433
1434 t->task = NULL;
1435 if (task)
1436 wake_up_process(task);
1437
1438 return HRTIMER_NORESTART;
1439 }
1440
1441 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1442 {
1443 sl->timer.function = hrtimer_wakeup;
1444 sl->task = task;
1445 }
1446 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1447
1448 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1449 {
1450 switch(restart->nanosleep.type) {
1451 #ifdef CONFIG_COMPAT
1452 case TT_COMPAT:
1453 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1454 return -EFAULT;
1455 break;
1456 #endif
1457 case TT_NATIVE:
1458 if (put_timespec64(ts, restart->nanosleep.rmtp))
1459 return -EFAULT;
1460 break;
1461 default:
1462 BUG();
1463 }
1464 return -ERESTART_RESTARTBLOCK;
1465 }
1466
1467 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1468 {
1469 struct restart_block *restart;
1470
1471 hrtimer_init_sleeper(t, current);
1472
1473 do {
1474 set_current_state(TASK_INTERRUPTIBLE);
1475 hrtimer_start_expires(&t->timer, mode);
1476
1477 if (likely(t->task))
1478 freezable_schedule();
1479
1480 hrtimer_cancel(&t->timer);
1481 mode = HRTIMER_MODE_ABS;
1482
1483 } while (t->task && !signal_pending(current));
1484
1485 __set_current_state(TASK_RUNNING);
1486
1487 if (!t->task)
1488 return 0;
1489
1490 restart = &current->restart_block;
1491 if (restart->nanosleep.type != TT_NONE) {
1492 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1493 struct timespec64 rmt;
1494
1495 if (rem <= 0)
1496 return 0;
1497 rmt = ktime_to_timespec64(rem);
1498
1499 return nanosleep_copyout(restart, &rmt);
1500 }
1501 return -ERESTART_RESTARTBLOCK;
1502 }
1503
1504 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1505 {
1506 struct hrtimer_sleeper t;
1507 int ret;
1508
1509 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1510 HRTIMER_MODE_ABS);
1511 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1512
1513 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1514 destroy_hrtimer_on_stack(&t.timer);
1515 return ret;
1516 }
1517
1518 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1519 const enum hrtimer_mode mode, const clockid_t clockid)
1520 {
1521 struct restart_block *restart;
1522 struct hrtimer_sleeper t;
1523 int ret = 0;
1524 u64 slack;
1525
1526 slack = current->timer_slack_ns;
1527 if (dl_task(current) || rt_task(current))
1528 slack = 0;
1529
1530 hrtimer_init_on_stack(&t.timer, clockid, mode);
1531 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1532 ret = do_nanosleep(&t, mode);
1533 if (ret != -ERESTART_RESTARTBLOCK)
1534 goto out;
1535
1536 /* Absolute timers do not update the rmtp value and restart: */
1537 if (mode == HRTIMER_MODE_ABS) {
1538 ret = -ERESTARTNOHAND;
1539 goto out;
1540 }
1541
1542 restart = &current->restart_block;
1543 restart->fn = hrtimer_nanosleep_restart;
1544 restart->nanosleep.clockid = t.timer.base->clockid;
1545 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1546 out:
1547 destroy_hrtimer_on_stack(&t.timer);
1548 return ret;
1549 }
1550
1551 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1552 struct timespec __user *, rmtp)
1553 {
1554 struct timespec64 tu;
1555
1556 if (get_timespec64(&tu, rqtp))
1557 return -EFAULT;
1558
1559 if (!timespec64_valid(&tu))
1560 return -EINVAL;
1561
1562 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1563 current->restart_block.nanosleep.rmtp = rmtp;
1564 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1565 }
1566
1567 #ifdef CONFIG_COMPAT
1568
1569 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1570 struct compat_timespec __user *, rmtp)
1571 {
1572 struct timespec64 tu;
1573
1574 if (compat_get_timespec64(&tu, rqtp))
1575 return -EFAULT;
1576
1577 if (!timespec64_valid(&tu))
1578 return -EINVAL;
1579
1580 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1581 current->restart_block.nanosleep.compat_rmtp = rmtp;
1582 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1583 }
1584 #endif
1585
1586 /*
1587 * Functions related to boot-time initialization:
1588 */
1589 int hrtimers_prepare_cpu(unsigned int cpu)
1590 {
1591 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1592 int i;
1593
1594 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1595 cpu_base->clock_base[i].cpu_base = cpu_base;
1596 timerqueue_init_head(&cpu_base->clock_base[i].active);
1597 }
1598
1599 cpu_base->active_bases = 0;
1600 cpu_base->cpu = cpu;
1601 hrtimer_init_hres(cpu_base);
1602 return 0;
1603 }
1604
1605 #ifdef CONFIG_HOTPLUG_CPU
1606
1607 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1608 struct hrtimer_clock_base *new_base)
1609 {
1610 struct hrtimer *timer;
1611 struct timerqueue_node *node;
1612
1613 while ((node = timerqueue_getnext(&old_base->active))) {
1614 timer = container_of(node, struct hrtimer, node);
1615 BUG_ON(hrtimer_callback_running(timer));
1616 debug_deactivate(timer);
1617
1618 /*
1619 * Mark it as ENQUEUED not INACTIVE otherwise the
1620 * timer could be seen as !active and just vanish away
1621 * under us on another CPU
1622 */
1623 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1624 timer->base = new_base;
1625 /*
1626 * Enqueue the timers on the new cpu. This does not
1627 * reprogram the event device in case the timer
1628 * expires before the earliest on this CPU, but we run
1629 * hrtimer_interrupt after we migrated everything to
1630 * sort out already expired timers and reprogram the
1631 * event device.
1632 */
1633 enqueue_hrtimer(timer, new_base);
1634 }
1635 }
1636
1637 int hrtimers_dead_cpu(unsigned int scpu)
1638 {
1639 struct hrtimer_cpu_base *old_base, *new_base;
1640 int i;
1641
1642 BUG_ON(cpu_online(scpu));
1643 tick_cancel_sched_timer(scpu);
1644
1645 local_irq_disable();
1646 old_base = &per_cpu(hrtimer_bases, scpu);
1647 new_base = this_cpu_ptr(&hrtimer_bases);
1648 /*
1649 * The caller is globally serialized and nobody else
1650 * takes two locks at once, deadlock is not possible.
1651 */
1652 raw_spin_lock(&new_base->lock);
1653 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1654
1655 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1656 migrate_hrtimer_list(&old_base->clock_base[i],
1657 &new_base->clock_base[i]);
1658 }
1659
1660 raw_spin_unlock(&old_base->lock);
1661 raw_spin_unlock(&new_base->lock);
1662
1663 /* Check, if we got expired work to do */
1664 __hrtimer_peek_ahead_timers();
1665 local_irq_enable();
1666 return 0;
1667 }
1668
1669 #endif /* CONFIG_HOTPLUG_CPU */
1670
1671 void __init hrtimers_init(void)
1672 {
1673 hrtimers_prepare_cpu(smp_processor_id());
1674 }
1675
1676 /**
1677 * schedule_hrtimeout_range_clock - sleep until timeout
1678 * @expires: timeout value (ktime_t)
1679 * @delta: slack in expires timeout (ktime_t)
1680 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1681 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1682 */
1683 int __sched
1684 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1685 const enum hrtimer_mode mode, int clock)
1686 {
1687 struct hrtimer_sleeper t;
1688
1689 /*
1690 * Optimize when a zero timeout value is given. It does not
1691 * matter whether this is an absolute or a relative time.
1692 */
1693 if (expires && *expires == 0) {
1694 __set_current_state(TASK_RUNNING);
1695 return 0;
1696 }
1697
1698 /*
1699 * A NULL parameter means "infinite"
1700 */
1701 if (!expires) {
1702 schedule();
1703 return -EINTR;
1704 }
1705
1706 hrtimer_init_on_stack(&t.timer, clock, mode);
1707 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1708
1709 hrtimer_init_sleeper(&t, current);
1710
1711 hrtimer_start_expires(&t.timer, mode);
1712
1713 if (likely(t.task))
1714 schedule();
1715
1716 hrtimer_cancel(&t.timer);
1717 destroy_hrtimer_on_stack(&t.timer);
1718
1719 __set_current_state(TASK_RUNNING);
1720
1721 return !t.task ? 0 : -EINTR;
1722 }
1723
1724 /**
1725 * schedule_hrtimeout_range - sleep until timeout
1726 * @expires: timeout value (ktime_t)
1727 * @delta: slack in expires timeout (ktime_t)
1728 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1729 *
1730 * Make the current task sleep until the given expiry time has
1731 * elapsed. The routine will return immediately unless
1732 * the current task state has been set (see set_current_state()).
1733 *
1734 * The @delta argument gives the kernel the freedom to schedule the
1735 * actual wakeup to a time that is both power and performance friendly.
1736 * The kernel give the normal best effort behavior for "@expires+@delta",
1737 * but may decide to fire the timer earlier, but no earlier than @expires.
1738 *
1739 * You can set the task state as follows -
1740 *
1741 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1742 * pass before the routine returns unless the current task is explicitly
1743 * woken up, (e.g. by wake_up_process()).
1744 *
1745 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1746 * delivered to the current task or the current task is explicitly woken
1747 * up.
1748 *
1749 * The current task state is guaranteed to be TASK_RUNNING when this
1750 * routine returns.
1751 *
1752 * Returns 0 when the timer has expired. If the task was woken before the
1753 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1754 * by an explicit wakeup, it returns -EINTR.
1755 */
1756 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1757 const enum hrtimer_mode mode)
1758 {
1759 return schedule_hrtimeout_range_clock(expires, delta, mode,
1760 CLOCK_MONOTONIC);
1761 }
1762 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1763
1764 /**
1765 * schedule_hrtimeout - sleep until timeout
1766 * @expires: timeout value (ktime_t)
1767 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1768 *
1769 * Make the current task sleep until the given expiry time has
1770 * elapsed. The routine will return immediately unless
1771 * the current task state has been set (see set_current_state()).
1772 *
1773 * You can set the task state as follows -
1774 *
1775 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1776 * pass before the routine returns unless the current task is explicitly
1777 * woken up, (e.g. by wake_up_process()).
1778 *
1779 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1780 * delivered to the current task or the current task is explicitly woken
1781 * up.
1782 *
1783 * The current task state is guaranteed to be TASK_RUNNING when this
1784 * routine returns.
1785 *
1786 * Returns 0 when the timer has expired. If the task was woken before the
1787 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1788 * by an explicit wakeup, it returns -EINTR.
1789 */
1790 int __sched schedule_hrtimeout(ktime_t *expires,
1791 const enum hrtimer_mode mode)
1792 {
1793 return schedule_hrtimeout_range(expires, 0, mode);
1794 }
1795 EXPORT_SYMBOL_GPL(schedule_hrtimeout);