]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
dde6298f6b221e136fc579a37adc80310f97a8f6
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51
52 #include "workqueue_internal.h"
53
54 enum {
55 /*
56 * worker_pool flags
57 *
58 * A bound pool is either associated or disassociated with its CPU.
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 * be executing on any CPU. The pool behaves as an unbound one.
66 *
67 * Note that DISASSOCIATED should be flipped only while holding
68 * attach_mutex to avoid changing binding state while
69 * worker_attach_to_pool() is in progress.
70 */
71 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
73
74 /* worker flags */
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
77 WORKER_PREP = 1 << 3, /* preparing to run works */
78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
81
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
84
85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
86
87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
89
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
101 * all cpus. Give MIN_NICE.
102 */
103 RESCUER_NICE_LEVEL = MIN_NICE,
104 HIGHPRI_NICE_LEVEL = MIN_NICE,
105
106 WQ_NAME_LEN = 24,
107 };
108
109 /*
110 * Structure fields follow one of the following exclusion rules.
111 *
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
114 *
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
118 * L: pool->lock protected. Access with pool->lock held.
119 *
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
124 *
125 * A: pool->attach_mutex protected.
126 *
127 * PL: wq_pool_mutex protected.
128 *
129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
130 *
131 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 *
133 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
134 * sched-RCU for reads.
135 *
136 * WQ: wq->mutex protected.
137 *
138 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
139 *
140 * MD: wq_mayday_lock protected.
141 */
142
143 /* struct worker is defined in workqueue_internal.h */
144
145 struct worker_pool {
146 spinlock_t lock; /* the pool lock */
147 int cpu; /* I: the associated cpu */
148 int node; /* I: the associated node ID */
149 int id; /* I: pool ID */
150 unsigned int flags; /* X: flags */
151
152 unsigned long watchdog_ts; /* L: watchdog timestamp */
153
154 struct list_head worklist; /* L: list of pending works */
155 int nr_workers; /* L: total number of workers */
156
157 /* nr_idle includes the ones off idle_list for rebinding */
158 int nr_idle; /* L: currently idle ones */
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
164 /* a workers is either on busy_hash or idle_list, or the manager */
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
168 /* see manage_workers() for details on the two manager mutexes */
169 struct worker *manager; /* L: purely informational */
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head delayed_works; /* L: delayed works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* I: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_online; /* can kworkers be created yet? */
294
295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
302 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303
304 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
305 static bool workqueue_freezing; /* PL: have wqs started freezing? */
306
307 /* PL: allowable cpus for unbound wqs and work items */
308 static cpumask_var_t wq_unbound_cpumask;
309
310 /* CPU where unbound work was last round robin scheduled from this CPU */
311 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
312
313 /*
314 * Local execution of unbound work items is no longer guaranteed. The
315 * following always forces round-robin CPU selection on unbound work items
316 * to uncover usages which depend on it.
317 */
318 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
319 static bool wq_debug_force_rr_cpu = true;
320 #else
321 static bool wq_debug_force_rr_cpu = false;
322 #endif
323 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324
325 /* the per-cpu worker pools */
326 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327
328 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
329
330 /* PL: hash of all unbound pools keyed by pool->attrs */
331 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332
333 /* I: attributes used when instantiating standard unbound pools on demand */
334 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335
336 /* I: attributes used when instantiating ordered pools on demand */
337 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338
339 struct workqueue_struct *system_wq __read_mostly;
340 EXPORT_SYMBOL(system_wq);
341 struct workqueue_struct *system_highpri_wq __read_mostly;
342 EXPORT_SYMBOL_GPL(system_highpri_wq);
343 struct workqueue_struct *system_long_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_long_wq);
345 struct workqueue_struct *system_unbound_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_unbound_wq);
347 struct workqueue_struct *system_freezable_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_freezable_wq);
349 struct workqueue_struct *system_power_efficient_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
351 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353
354 static int worker_thread(void *__worker);
355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356
357 #define CREATE_TRACE_POINTS
358 #include <trace/events/workqueue.h>
359
360 #define assert_rcu_or_pool_mutex() \
361 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
362 !lockdep_is_held(&wq_pool_mutex), \
363 "sched RCU or wq_pool_mutex should be held")
364
365 #define assert_rcu_or_wq_mutex(wq) \
366 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
367 !lockdep_is_held(&wq->mutex), \
368 "sched RCU or wq->mutex should be held")
369
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
371 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
372 !lockdep_is_held(&wq->mutex) && \
373 !lockdep_is_held(&wq_pool_mutex), \
374 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375
376 #define for_each_cpu_worker_pool(pool, cpu) \
377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 (pool)++)
380
381 /**
382 * for_each_pool - iterate through all worker_pools in the system
383 * @pool: iteration cursor
384 * @pi: integer used for iteration
385 *
386 * This must be called either with wq_pool_mutex held or sched RCU read
387 * locked. If the pool needs to be used beyond the locking in effect, the
388 * caller is responsible for guaranteeing that the pool stays online.
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
392 */
393 #define for_each_pool(pool, pi) \
394 idr_for_each_entry(&worker_pool_idr, pool, pi) \
395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
396 else
397
398 /**
399 * for_each_pool_worker - iterate through all workers of a worker_pool
400 * @worker: iteration cursor
401 * @pool: worker_pool to iterate workers of
402 *
403 * This must be called with @pool->attach_mutex.
404 *
405 * The if/else clause exists only for the lockdep assertion and can be
406 * ignored.
407 */
408 #define for_each_pool_worker(worker, pool) \
409 list_for_each_entry((worker), &(pool)->workers, node) \
410 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 else
412
413 /**
414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415 * @pwq: iteration cursor
416 * @wq: the target workqueue
417 *
418 * This must be called either with wq->mutex held or sched RCU read locked.
419 * If the pwq needs to be used beyond the locking in effect, the caller is
420 * responsible for guaranteeing that the pwq stays online.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pwq(pwq, wq) \
426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
427 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
428 else
429
430 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431
432 static struct debug_obj_descr work_debug_descr;
433
434 static void *work_debug_hint(void *addr)
435 {
436 return ((struct work_struct *) addr)->func;
437 }
438
439 static bool work_is_static_object(void *addr)
440 {
441 struct work_struct *work = addr;
442
443 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
444 }
445
446 /*
447 * fixup_init is called when:
448 * - an active object is initialized
449 */
450 static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 {
452 struct work_struct *work = addr;
453
454 switch (state) {
455 case ODEBUG_STATE_ACTIVE:
456 cancel_work_sync(work);
457 debug_object_init(work, &work_debug_descr);
458 return true;
459 default:
460 return false;
461 }
462 }
463
464 /*
465 * fixup_free is called when:
466 * - an active object is freed
467 */
468 static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 struct work_struct *work = addr;
471
472 switch (state) {
473 case ODEBUG_STATE_ACTIVE:
474 cancel_work_sync(work);
475 debug_object_free(work, &work_debug_descr);
476 return true;
477 default:
478 return false;
479 }
480 }
481
482 static struct debug_obj_descr work_debug_descr = {
483 .name = "work_struct",
484 .debug_hint = work_debug_hint,
485 .is_static_object = work_is_static_object,
486 .fixup_init = work_fixup_init,
487 .fixup_free = work_fixup_free,
488 };
489
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 debug_object_activate(work, &work_debug_descr);
493 }
494
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 debug_object_deactivate(work, &work_debug_descr);
498 }
499
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 if (onstack)
503 debug_object_init_on_stack(work, &work_debug_descr);
504 else
505 debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514
515 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 {
517 destroy_timer_on_stack(&work->timer);
518 debug_object_free(&work->work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521
522 #else
523 static inline void debug_work_activate(struct work_struct *work) { }
524 static inline void debug_work_deactivate(struct work_struct *work) { }
525 #endif
526
527 /**
528 * worker_pool_assign_id - allocate ID and assing it to @pool
529 * @pool: the pool pointer of interest
530 *
531 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532 * successfully, -errno on failure.
533 */
534 static int worker_pool_assign_id(struct worker_pool *pool)
535 {
536 int ret;
537
538 lockdep_assert_held(&wq_pool_mutex);
539
540 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 GFP_KERNEL);
542 if (ret >= 0) {
543 pool->id = ret;
544 return 0;
545 }
546 return ret;
547 }
548
549 /**
550 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551 * @wq: the target workqueue
552 * @node: the node ID
553 *
554 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
555 * read locked.
556 * If the pwq needs to be used beyond the locking in effect, the caller is
557 * responsible for guaranteeing that the pwq stays online.
558 *
559 * Return: The unbound pool_workqueue for @node.
560 */
561 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
562 int node)
563 {
564 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565
566 /*
567 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
568 * delayed item is pending. The plan is to keep CPU -> NODE
569 * mapping valid and stable across CPU on/offlines. Once that
570 * happens, this workaround can be removed.
571 */
572 if (unlikely(node == NUMA_NO_NODE))
573 return wq->dfl_pwq;
574
575 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
576 }
577
578 static unsigned int work_color_to_flags(int color)
579 {
580 return color << WORK_STRUCT_COLOR_SHIFT;
581 }
582
583 static int get_work_color(struct work_struct *work)
584 {
585 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
586 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
587 }
588
589 static int work_next_color(int color)
590 {
591 return (color + 1) % WORK_NR_COLORS;
592 }
593
594 /*
595 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
596 * contain the pointer to the queued pwq. Once execution starts, the flag
597 * is cleared and the high bits contain OFFQ flags and pool ID.
598 *
599 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
600 * and clear_work_data() can be used to set the pwq, pool or clear
601 * work->data. These functions should only be called while the work is
602 * owned - ie. while the PENDING bit is set.
603 *
604 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
605 * corresponding to a work. Pool is available once the work has been
606 * queued anywhere after initialization until it is sync canceled. pwq is
607 * available only while the work item is queued.
608 *
609 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
610 * canceled. While being canceled, a work item may have its PENDING set
611 * but stay off timer and worklist for arbitrarily long and nobody should
612 * try to steal the PENDING bit.
613 */
614 static inline void set_work_data(struct work_struct *work, unsigned long data,
615 unsigned long flags)
616 {
617 WARN_ON_ONCE(!work_pending(work));
618 atomic_long_set(&work->data, data | flags | work_static(work));
619 }
620
621 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
622 unsigned long extra_flags)
623 {
624 set_work_data(work, (unsigned long)pwq,
625 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 }
627
628 static void set_work_pool_and_keep_pending(struct work_struct *work,
629 int pool_id)
630 {
631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
632 WORK_STRUCT_PENDING);
633 }
634
635 static void set_work_pool_and_clear_pending(struct work_struct *work,
636 int pool_id)
637 {
638 /*
639 * The following wmb is paired with the implied mb in
640 * test_and_set_bit(PENDING) and ensures all updates to @work made
641 * here are visible to and precede any updates by the next PENDING
642 * owner.
643 */
644 smp_wmb();
645 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 /*
647 * The following mb guarantees that previous clear of a PENDING bit
648 * will not be reordered with any speculative LOADS or STORES from
649 * work->current_func, which is executed afterwards. This possible
650 * reordering can lead to a missed execution on attempt to qeueue
651 * the same @work. E.g. consider this case:
652 *
653 * CPU#0 CPU#1
654 * ---------------------------- --------------------------------
655 *
656 * 1 STORE event_indicated
657 * 2 queue_work_on() {
658 * 3 test_and_set_bit(PENDING)
659 * 4 } set_..._and_clear_pending() {
660 * 5 set_work_data() # clear bit
661 * 6 smp_mb()
662 * 7 work->current_func() {
663 * 8 LOAD event_indicated
664 * }
665 *
666 * Without an explicit full barrier speculative LOAD on line 8 can
667 * be executed before CPU#0 does STORE on line 1. If that happens,
668 * CPU#0 observes the PENDING bit is still set and new execution of
669 * a @work is not queued in a hope, that CPU#1 will eventually
670 * finish the queued @work. Meanwhile CPU#1 does not see
671 * event_indicated is set, because speculative LOAD was executed
672 * before actual STORE.
673 */
674 smp_mb();
675 }
676
677 static void clear_work_data(struct work_struct *work)
678 {
679 smp_wmb(); /* see set_work_pool_and_clear_pending() */
680 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
681 }
682
683 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684 {
685 unsigned long data = atomic_long_read(&work->data);
686
687 if (data & WORK_STRUCT_PWQ)
688 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
689 else
690 return NULL;
691 }
692
693 /**
694 * get_work_pool - return the worker_pool a given work was associated with
695 * @work: the work item of interest
696 *
697 * Pools are created and destroyed under wq_pool_mutex, and allows read
698 * access under sched-RCU read lock. As such, this function should be
699 * called under wq_pool_mutex or with preemption disabled.
700 *
701 * All fields of the returned pool are accessible as long as the above
702 * mentioned locking is in effect. If the returned pool needs to be used
703 * beyond the critical section, the caller is responsible for ensuring the
704 * returned pool is and stays online.
705 *
706 * Return: The worker_pool @work was last associated with. %NULL if none.
707 */
708 static struct worker_pool *get_work_pool(struct work_struct *work)
709 {
710 unsigned long data = atomic_long_read(&work->data);
711 int pool_id;
712
713 assert_rcu_or_pool_mutex();
714
715 if (data & WORK_STRUCT_PWQ)
716 return ((struct pool_workqueue *)
717 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718
719 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
720 if (pool_id == WORK_OFFQ_POOL_NONE)
721 return NULL;
722
723 return idr_find(&worker_pool_idr, pool_id);
724 }
725
726 /**
727 * get_work_pool_id - return the worker pool ID a given work is associated with
728 * @work: the work item of interest
729 *
730 * Return: The worker_pool ID @work was last associated with.
731 * %WORK_OFFQ_POOL_NONE if none.
732 */
733 static int get_work_pool_id(struct work_struct *work)
734 {
735 unsigned long data = atomic_long_read(&work->data);
736
737 if (data & WORK_STRUCT_PWQ)
738 return ((struct pool_workqueue *)
739 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740
741 return data >> WORK_OFFQ_POOL_SHIFT;
742 }
743
744 static void mark_work_canceling(struct work_struct *work)
745 {
746 unsigned long pool_id = get_work_pool_id(work);
747
748 pool_id <<= WORK_OFFQ_POOL_SHIFT;
749 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 }
751
752 static bool work_is_canceling(struct work_struct *work)
753 {
754 unsigned long data = atomic_long_read(&work->data);
755
756 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
757 }
758
759 /*
760 * Policy functions. These define the policies on how the global worker
761 * pools are managed. Unless noted otherwise, these functions assume that
762 * they're being called with pool->lock held.
763 */
764
765 static bool __need_more_worker(struct worker_pool *pool)
766 {
767 return !atomic_read(&pool->nr_running);
768 }
769
770 /*
771 * Need to wake up a worker? Called from anything but currently
772 * running workers.
773 *
774 * Note that, because unbound workers never contribute to nr_running, this
775 * function will always return %true for unbound pools as long as the
776 * worklist isn't empty.
777 */
778 static bool need_more_worker(struct worker_pool *pool)
779 {
780 return !list_empty(&pool->worklist) && __need_more_worker(pool);
781 }
782
783 /* Can I start working? Called from busy but !running workers. */
784 static bool may_start_working(struct worker_pool *pool)
785 {
786 return pool->nr_idle;
787 }
788
789 /* Do I need to keep working? Called from currently running workers. */
790 static bool keep_working(struct worker_pool *pool)
791 {
792 return !list_empty(&pool->worklist) &&
793 atomic_read(&pool->nr_running) <= 1;
794 }
795
796 /* Do we need a new worker? Called from manager. */
797 static bool need_to_create_worker(struct worker_pool *pool)
798 {
799 return need_more_worker(pool) && !may_start_working(pool);
800 }
801
802 /* Do we have too many workers and should some go away? */
803 static bool too_many_workers(struct worker_pool *pool)
804 {
805 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
806 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
807 int nr_busy = pool->nr_workers - nr_idle;
808
809 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
810 }
811
812 /*
813 * Wake up functions.
814 */
815
816 /* Return the first idle worker. Safe with preemption disabled */
817 static struct worker *first_idle_worker(struct worker_pool *pool)
818 {
819 if (unlikely(list_empty(&pool->idle_list)))
820 return NULL;
821
822 return list_first_entry(&pool->idle_list, struct worker, entry);
823 }
824
825 /**
826 * wake_up_worker - wake up an idle worker
827 * @pool: worker pool to wake worker from
828 *
829 * Wake up the first idle worker of @pool.
830 *
831 * CONTEXT:
832 * spin_lock_irq(pool->lock).
833 */
834 static void wake_up_worker(struct worker_pool *pool)
835 {
836 struct worker *worker = first_idle_worker(pool);
837
838 if (likely(worker))
839 wake_up_process(worker->task);
840 }
841
842 /**
843 * wq_worker_waking_up - a worker is waking up
844 * @task: task waking up
845 * @cpu: CPU @task is waking up to
846 *
847 * This function is called during try_to_wake_up() when a worker is
848 * being awoken.
849 *
850 * CONTEXT:
851 * spin_lock_irq(rq->lock)
852 */
853 void wq_worker_waking_up(struct task_struct *task, int cpu)
854 {
855 struct worker *worker = kthread_data(task);
856
857 if (!(worker->flags & WORKER_NOT_RUNNING)) {
858 WARN_ON_ONCE(worker->pool->cpu != cpu);
859 atomic_inc(&worker->pool->nr_running);
860 }
861 }
862
863 /**
864 * wq_worker_sleeping - a worker is going to sleep
865 * @task: task going to sleep
866 *
867 * This function is called during schedule() when a busy worker is
868 * going to sleep. Worker on the same cpu can be woken up by
869 * returning pointer to its task.
870 *
871 * CONTEXT:
872 * spin_lock_irq(rq->lock)
873 *
874 * Return:
875 * Worker task on @cpu to wake up, %NULL if none.
876 */
877 struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 {
879 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
880 struct worker_pool *pool;
881
882 /*
883 * Rescuers, which may not have all the fields set up like normal
884 * workers, also reach here, let's not access anything before
885 * checking NOT_RUNNING.
886 */
887 if (worker->flags & WORKER_NOT_RUNNING)
888 return NULL;
889
890 pool = worker->pool;
891
892 /* this can only happen on the local cpu */
893 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
894 return NULL;
895
896 /*
897 * The counterpart of the following dec_and_test, implied mb,
898 * worklist not empty test sequence is in insert_work().
899 * Please read comment there.
900 *
901 * NOT_RUNNING is clear. This means that we're bound to and
902 * running on the local cpu w/ rq lock held and preemption
903 * disabled, which in turn means that none else could be
904 * manipulating idle_list, so dereferencing idle_list without pool
905 * lock is safe.
906 */
907 if (atomic_dec_and_test(&pool->nr_running) &&
908 !list_empty(&pool->worklist))
909 to_wakeup = first_idle_worker(pool);
910 return to_wakeup ? to_wakeup->task : NULL;
911 }
912
913 /**
914 * worker_set_flags - set worker flags and adjust nr_running accordingly
915 * @worker: self
916 * @flags: flags to set
917 *
918 * Set @flags in @worker->flags and adjust nr_running accordingly.
919 *
920 * CONTEXT:
921 * spin_lock_irq(pool->lock)
922 */
923 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924 {
925 struct worker_pool *pool = worker->pool;
926
927 WARN_ON_ONCE(worker->task != current);
928
929 /* If transitioning into NOT_RUNNING, adjust nr_running. */
930 if ((flags & WORKER_NOT_RUNNING) &&
931 !(worker->flags & WORKER_NOT_RUNNING)) {
932 atomic_dec(&pool->nr_running);
933 }
934
935 worker->flags |= flags;
936 }
937
938 /**
939 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940 * @worker: self
941 * @flags: flags to clear
942 *
943 * Clear @flags in @worker->flags and adjust nr_running accordingly.
944 *
945 * CONTEXT:
946 * spin_lock_irq(pool->lock)
947 */
948 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949 {
950 struct worker_pool *pool = worker->pool;
951 unsigned int oflags = worker->flags;
952
953 WARN_ON_ONCE(worker->task != current);
954
955 worker->flags &= ~flags;
956
957 /*
958 * If transitioning out of NOT_RUNNING, increment nr_running. Note
959 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
960 * of multiple flags, not a single flag.
961 */
962 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
963 if (!(worker->flags & WORKER_NOT_RUNNING))
964 atomic_inc(&pool->nr_running);
965 }
966
967 /**
968 * find_worker_executing_work - find worker which is executing a work
969 * @pool: pool of interest
970 * @work: work to find worker for
971 *
972 * Find a worker which is executing @work on @pool by searching
973 * @pool->busy_hash which is keyed by the address of @work. For a worker
974 * to match, its current execution should match the address of @work and
975 * its work function. This is to avoid unwanted dependency between
976 * unrelated work executions through a work item being recycled while still
977 * being executed.
978 *
979 * This is a bit tricky. A work item may be freed once its execution
980 * starts and nothing prevents the freed area from being recycled for
981 * another work item. If the same work item address ends up being reused
982 * before the original execution finishes, workqueue will identify the
983 * recycled work item as currently executing and make it wait until the
984 * current execution finishes, introducing an unwanted dependency.
985 *
986 * This function checks the work item address and work function to avoid
987 * false positives. Note that this isn't complete as one may construct a
988 * work function which can introduce dependency onto itself through a
989 * recycled work item. Well, if somebody wants to shoot oneself in the
990 * foot that badly, there's only so much we can do, and if such deadlock
991 * actually occurs, it should be easy to locate the culprit work function.
992 *
993 * CONTEXT:
994 * spin_lock_irq(pool->lock).
995 *
996 * Return:
997 * Pointer to worker which is executing @work if found, %NULL
998 * otherwise.
999 */
1000 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1001 struct work_struct *work)
1002 {
1003 struct worker *worker;
1004
1005 hash_for_each_possible(pool->busy_hash, worker, hentry,
1006 (unsigned long)work)
1007 if (worker->current_work == work &&
1008 worker->current_func == work->func)
1009 return worker;
1010
1011 return NULL;
1012 }
1013
1014 /**
1015 * move_linked_works - move linked works to a list
1016 * @work: start of series of works to be scheduled
1017 * @head: target list to append @work to
1018 * @nextp: out parameter for nested worklist walking
1019 *
1020 * Schedule linked works starting from @work to @head. Work series to
1021 * be scheduled starts at @work and includes any consecutive work with
1022 * WORK_STRUCT_LINKED set in its predecessor.
1023 *
1024 * If @nextp is not NULL, it's updated to point to the next work of
1025 * the last scheduled work. This allows move_linked_works() to be
1026 * nested inside outer list_for_each_entry_safe().
1027 *
1028 * CONTEXT:
1029 * spin_lock_irq(pool->lock).
1030 */
1031 static void move_linked_works(struct work_struct *work, struct list_head *head,
1032 struct work_struct **nextp)
1033 {
1034 struct work_struct *n;
1035
1036 /*
1037 * Linked worklist will always end before the end of the list,
1038 * use NULL for list head.
1039 */
1040 list_for_each_entry_safe_from(work, n, NULL, entry) {
1041 list_move_tail(&work->entry, head);
1042 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1043 break;
1044 }
1045
1046 /*
1047 * If we're already inside safe list traversal and have moved
1048 * multiple works to the scheduled queue, the next position
1049 * needs to be updated.
1050 */
1051 if (nextp)
1052 *nextp = n;
1053 }
1054
1055 /**
1056 * get_pwq - get an extra reference on the specified pool_workqueue
1057 * @pwq: pool_workqueue to get
1058 *
1059 * Obtain an extra reference on @pwq. The caller should guarantee that
1060 * @pwq has positive refcnt and be holding the matching pool->lock.
1061 */
1062 static void get_pwq(struct pool_workqueue *pwq)
1063 {
1064 lockdep_assert_held(&pwq->pool->lock);
1065 WARN_ON_ONCE(pwq->refcnt <= 0);
1066 pwq->refcnt++;
1067 }
1068
1069 /**
1070 * put_pwq - put a pool_workqueue reference
1071 * @pwq: pool_workqueue to put
1072 *
1073 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1074 * destruction. The caller should be holding the matching pool->lock.
1075 */
1076 static void put_pwq(struct pool_workqueue *pwq)
1077 {
1078 lockdep_assert_held(&pwq->pool->lock);
1079 if (likely(--pwq->refcnt))
1080 return;
1081 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1082 return;
1083 /*
1084 * @pwq can't be released under pool->lock, bounce to
1085 * pwq_unbound_release_workfn(). This never recurses on the same
1086 * pool->lock as this path is taken only for unbound workqueues and
1087 * the release work item is scheduled on a per-cpu workqueue. To
1088 * avoid lockdep warning, unbound pool->locks are given lockdep
1089 * subclass of 1 in get_unbound_pool().
1090 */
1091 schedule_work(&pwq->unbound_release_work);
1092 }
1093
1094 /**
1095 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1096 * @pwq: pool_workqueue to put (can be %NULL)
1097 *
1098 * put_pwq() with locking. This function also allows %NULL @pwq.
1099 */
1100 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101 {
1102 if (pwq) {
1103 /*
1104 * As both pwqs and pools are sched-RCU protected, the
1105 * following lock operations are safe.
1106 */
1107 spin_lock_irq(&pwq->pool->lock);
1108 put_pwq(pwq);
1109 spin_unlock_irq(&pwq->pool->lock);
1110 }
1111 }
1112
1113 static void pwq_activate_delayed_work(struct work_struct *work)
1114 {
1115 struct pool_workqueue *pwq = get_work_pwq(work);
1116
1117 trace_workqueue_activate_work(work);
1118 if (list_empty(&pwq->pool->worklist))
1119 pwq->pool->watchdog_ts = jiffies;
1120 move_linked_works(work, &pwq->pool->worklist, NULL);
1121 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1122 pwq->nr_active++;
1123 }
1124
1125 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126 {
1127 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1128 struct work_struct, entry);
1129
1130 pwq_activate_delayed_work(work);
1131 }
1132
1133 /**
1134 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1135 * @pwq: pwq of interest
1136 * @color: color of work which left the queue
1137 *
1138 * A work either has completed or is removed from pending queue,
1139 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140 *
1141 * CONTEXT:
1142 * spin_lock_irq(pool->lock).
1143 */
1144 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145 {
1146 /* uncolored work items don't participate in flushing or nr_active */
1147 if (color == WORK_NO_COLOR)
1148 goto out_put;
1149
1150 pwq->nr_in_flight[color]--;
1151
1152 pwq->nr_active--;
1153 if (!list_empty(&pwq->delayed_works)) {
1154 /* one down, submit a delayed one */
1155 if (pwq->nr_active < pwq->max_active)
1156 pwq_activate_first_delayed(pwq);
1157 }
1158
1159 /* is flush in progress and are we at the flushing tip? */
1160 if (likely(pwq->flush_color != color))
1161 goto out_put;
1162
1163 /* are there still in-flight works? */
1164 if (pwq->nr_in_flight[color])
1165 goto out_put;
1166
1167 /* this pwq is done, clear flush_color */
1168 pwq->flush_color = -1;
1169
1170 /*
1171 * If this was the last pwq, wake up the first flusher. It
1172 * will handle the rest.
1173 */
1174 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1175 complete(&pwq->wq->first_flusher->done);
1176 out_put:
1177 put_pwq(pwq);
1178 }
1179
1180 /**
1181 * try_to_grab_pending - steal work item from worklist and disable irq
1182 * @work: work item to steal
1183 * @is_dwork: @work is a delayed_work
1184 * @flags: place to store irq state
1185 *
1186 * Try to grab PENDING bit of @work. This function can handle @work in any
1187 * stable state - idle, on timer or on worklist.
1188 *
1189 * Return:
1190 * 1 if @work was pending and we successfully stole PENDING
1191 * 0 if @work was idle and we claimed PENDING
1192 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1193 * -ENOENT if someone else is canceling @work, this state may persist
1194 * for arbitrarily long
1195 *
1196 * Note:
1197 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1198 * interrupted while holding PENDING and @work off queue, irq must be
1199 * disabled on entry. This, combined with delayed_work->timer being
1200 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201 *
1202 * On successful return, >= 0, irq is disabled and the caller is
1203 * responsible for releasing it using local_irq_restore(*@flags).
1204 *
1205 * This function is safe to call from any context including IRQ handler.
1206 */
1207 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1208 unsigned long *flags)
1209 {
1210 struct worker_pool *pool;
1211 struct pool_workqueue *pwq;
1212
1213 local_irq_save(*flags);
1214
1215 /* try to steal the timer if it exists */
1216 if (is_dwork) {
1217 struct delayed_work *dwork = to_delayed_work(work);
1218
1219 /*
1220 * dwork->timer is irqsafe. If del_timer() fails, it's
1221 * guaranteed that the timer is not queued anywhere and not
1222 * running on the local CPU.
1223 */
1224 if (likely(del_timer(&dwork->timer)))
1225 return 1;
1226 }
1227
1228 /* try to claim PENDING the normal way */
1229 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1230 return 0;
1231
1232 /*
1233 * The queueing is in progress, or it is already queued. Try to
1234 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 */
1236 pool = get_work_pool(work);
1237 if (!pool)
1238 goto fail;
1239
1240 spin_lock(&pool->lock);
1241 /*
1242 * work->data is guaranteed to point to pwq only while the work
1243 * item is queued on pwq->wq, and both updating work->data to point
1244 * to pwq on queueing and to pool on dequeueing are done under
1245 * pwq->pool->lock. This in turn guarantees that, if work->data
1246 * points to pwq which is associated with a locked pool, the work
1247 * item is currently queued on that pool.
1248 */
1249 pwq = get_work_pwq(work);
1250 if (pwq && pwq->pool == pool) {
1251 debug_work_deactivate(work);
1252
1253 /*
1254 * A delayed work item cannot be grabbed directly because
1255 * it might have linked NO_COLOR work items which, if left
1256 * on the delayed_list, will confuse pwq->nr_active
1257 * management later on and cause stall. Make sure the work
1258 * item is activated before grabbing.
1259 */
1260 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1261 pwq_activate_delayed_work(work);
1262
1263 list_del_init(&work->entry);
1264 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265
1266 /* work->data points to pwq iff queued, point to pool */
1267 set_work_pool_and_keep_pending(work, pool->id);
1268
1269 spin_unlock(&pool->lock);
1270 return 1;
1271 }
1272 spin_unlock(&pool->lock);
1273 fail:
1274 local_irq_restore(*flags);
1275 if (work_is_canceling(work))
1276 return -ENOENT;
1277 cpu_relax();
1278 return -EAGAIN;
1279 }
1280
1281 /**
1282 * insert_work - insert a work into a pool
1283 * @pwq: pwq @work belongs to
1284 * @work: work to insert
1285 * @head: insertion point
1286 * @extra_flags: extra WORK_STRUCT_* flags to set
1287 *
1288 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1289 * work_struct flags.
1290 *
1291 * CONTEXT:
1292 * spin_lock_irq(pool->lock).
1293 */
1294 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1295 struct list_head *head, unsigned int extra_flags)
1296 {
1297 struct worker_pool *pool = pwq->pool;
1298
1299 /* we own @work, set data and link */
1300 set_work_pwq(work, pwq, extra_flags);
1301 list_add_tail(&work->entry, head);
1302 get_pwq(pwq);
1303
1304 /*
1305 * Ensure either wq_worker_sleeping() sees the above
1306 * list_add_tail() or we see zero nr_running to avoid workers lying
1307 * around lazily while there are works to be processed.
1308 */
1309 smp_mb();
1310
1311 if (__need_more_worker(pool))
1312 wake_up_worker(pool);
1313 }
1314
1315 /*
1316 * Test whether @work is being queued from another work executing on the
1317 * same workqueue.
1318 */
1319 static bool is_chained_work(struct workqueue_struct *wq)
1320 {
1321 struct worker *worker;
1322
1323 worker = current_wq_worker();
1324 /*
1325 * Return %true iff I'm a worker execuing a work item on @wq. If
1326 * I'm @worker, it's safe to dereference it without locking.
1327 */
1328 return worker && worker->current_pwq->wq == wq;
1329 }
1330
1331 /*
1332 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1333 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1334 * avoid perturbing sensitive tasks.
1335 */
1336 static int wq_select_unbound_cpu(int cpu)
1337 {
1338 static bool printed_dbg_warning;
1339 int new_cpu;
1340
1341 if (likely(!wq_debug_force_rr_cpu)) {
1342 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1343 return cpu;
1344 } else if (!printed_dbg_warning) {
1345 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1346 printed_dbg_warning = true;
1347 }
1348
1349 if (cpumask_empty(wq_unbound_cpumask))
1350 return cpu;
1351
1352 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1353 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1354 if (unlikely(new_cpu >= nr_cpu_ids)) {
1355 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1356 if (unlikely(new_cpu >= nr_cpu_ids))
1357 return cpu;
1358 }
1359 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1360
1361 return new_cpu;
1362 }
1363
1364 static void __queue_work(int cpu, struct workqueue_struct *wq,
1365 struct work_struct *work)
1366 {
1367 struct pool_workqueue *pwq;
1368 struct worker_pool *last_pool;
1369 struct list_head *worklist;
1370 unsigned int work_flags;
1371 unsigned int req_cpu = cpu;
1372
1373 /*
1374 * While a work item is PENDING && off queue, a task trying to
1375 * steal the PENDING will busy-loop waiting for it to either get
1376 * queued or lose PENDING. Grabbing PENDING and queueing should
1377 * happen with IRQ disabled.
1378 */
1379 lockdep_assert_irqs_disabled();
1380
1381 debug_work_activate(work);
1382
1383 /* if draining, only works from the same workqueue are allowed */
1384 if (unlikely(wq->flags & __WQ_DRAINING) &&
1385 WARN_ON_ONCE(!is_chained_work(wq)))
1386 return;
1387 retry:
1388 if (req_cpu == WORK_CPU_UNBOUND)
1389 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1390
1391 /* pwq which will be used unless @work is executing elsewhere */
1392 if (!(wq->flags & WQ_UNBOUND))
1393 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1394 else
1395 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1396
1397 /*
1398 * If @work was previously on a different pool, it might still be
1399 * running there, in which case the work needs to be queued on that
1400 * pool to guarantee non-reentrancy.
1401 */
1402 last_pool = get_work_pool(work);
1403 if (last_pool && last_pool != pwq->pool) {
1404 struct worker *worker;
1405
1406 spin_lock(&last_pool->lock);
1407
1408 worker = find_worker_executing_work(last_pool, work);
1409
1410 if (worker && worker->current_pwq->wq == wq) {
1411 pwq = worker->current_pwq;
1412 } else {
1413 /* meh... not running there, queue here */
1414 spin_unlock(&last_pool->lock);
1415 spin_lock(&pwq->pool->lock);
1416 }
1417 } else {
1418 spin_lock(&pwq->pool->lock);
1419 }
1420
1421 /*
1422 * pwq is determined and locked. For unbound pools, we could have
1423 * raced with pwq release and it could already be dead. If its
1424 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1425 * without another pwq replacing it in the numa_pwq_tbl or while
1426 * work items are executing on it, so the retrying is guaranteed to
1427 * make forward-progress.
1428 */
1429 if (unlikely(!pwq->refcnt)) {
1430 if (wq->flags & WQ_UNBOUND) {
1431 spin_unlock(&pwq->pool->lock);
1432 cpu_relax();
1433 goto retry;
1434 }
1435 /* oops */
1436 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1437 wq->name, cpu);
1438 }
1439
1440 /* pwq determined, queue */
1441 trace_workqueue_queue_work(req_cpu, pwq, work);
1442
1443 if (WARN_ON(!list_empty(&work->entry))) {
1444 spin_unlock(&pwq->pool->lock);
1445 return;
1446 }
1447
1448 pwq->nr_in_flight[pwq->work_color]++;
1449 work_flags = work_color_to_flags(pwq->work_color);
1450
1451 if (likely(pwq->nr_active < pwq->max_active)) {
1452 trace_workqueue_activate_work(work);
1453 pwq->nr_active++;
1454 worklist = &pwq->pool->worklist;
1455 if (list_empty(worklist))
1456 pwq->pool->watchdog_ts = jiffies;
1457 } else {
1458 work_flags |= WORK_STRUCT_DELAYED;
1459 worklist = &pwq->delayed_works;
1460 }
1461
1462 insert_work(pwq, work, worklist, work_flags);
1463
1464 spin_unlock(&pwq->pool->lock);
1465 }
1466
1467 /**
1468 * queue_work_on - queue work on specific cpu
1469 * @cpu: CPU number to execute work on
1470 * @wq: workqueue to use
1471 * @work: work to queue
1472 *
1473 * We queue the work to a specific CPU, the caller must ensure it
1474 * can't go away.
1475 *
1476 * Return: %false if @work was already on a queue, %true otherwise.
1477 */
1478 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1479 struct work_struct *work)
1480 {
1481 bool ret = false;
1482 unsigned long flags;
1483
1484 local_irq_save(flags);
1485
1486 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1487 __queue_work(cpu, wq, work);
1488 ret = true;
1489 }
1490
1491 local_irq_restore(flags);
1492 return ret;
1493 }
1494 EXPORT_SYMBOL(queue_work_on);
1495
1496 void delayed_work_timer_fn(struct timer_list *t)
1497 {
1498 struct delayed_work *dwork = from_timer(dwork, t, timer);
1499
1500 /* should have been called from irqsafe timer with irq already off */
1501 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1502 }
1503 EXPORT_SYMBOL(delayed_work_timer_fn);
1504
1505 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1506 struct delayed_work *dwork, unsigned long delay)
1507 {
1508 struct timer_list *timer = &dwork->timer;
1509 struct work_struct *work = &dwork->work;
1510
1511 WARN_ON_ONCE(!wq);
1512 WARN_ON_ONCE(timer->function != (TIMER_FUNC_TYPE)delayed_work_timer_fn);
1513 WARN_ON_ONCE(timer_pending(timer));
1514 WARN_ON_ONCE(!list_empty(&work->entry));
1515
1516 /*
1517 * If @delay is 0, queue @dwork->work immediately. This is for
1518 * both optimization and correctness. The earliest @timer can
1519 * expire is on the closest next tick and delayed_work users depend
1520 * on that there's no such delay when @delay is 0.
1521 */
1522 if (!delay) {
1523 __queue_work(cpu, wq, &dwork->work);
1524 return;
1525 }
1526
1527 dwork->wq = wq;
1528 dwork->cpu = cpu;
1529 timer->expires = jiffies + delay;
1530
1531 if (unlikely(cpu != WORK_CPU_UNBOUND))
1532 add_timer_on(timer, cpu);
1533 else
1534 add_timer(timer);
1535 }
1536
1537 /**
1538 * queue_delayed_work_on - queue work on specific CPU after delay
1539 * @cpu: CPU number to execute work on
1540 * @wq: workqueue to use
1541 * @dwork: work to queue
1542 * @delay: number of jiffies to wait before queueing
1543 *
1544 * Return: %false if @work was already on a queue, %true otherwise. If
1545 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1546 * execution.
1547 */
1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1549 struct delayed_work *dwork, unsigned long delay)
1550 {
1551 struct work_struct *work = &dwork->work;
1552 bool ret = false;
1553 unsigned long flags;
1554
1555 /* read the comment in __queue_work() */
1556 local_irq_save(flags);
1557
1558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1559 __queue_delayed_work(cpu, wq, dwork, delay);
1560 ret = true;
1561 }
1562
1563 local_irq_restore(flags);
1564 return ret;
1565 }
1566 EXPORT_SYMBOL(queue_delayed_work_on);
1567
1568 /**
1569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1570 * @cpu: CPU number to execute work on
1571 * @wq: workqueue to use
1572 * @dwork: work to queue
1573 * @delay: number of jiffies to wait before queueing
1574 *
1575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1576 * modify @dwork's timer so that it expires after @delay. If @delay is
1577 * zero, @work is guaranteed to be scheduled immediately regardless of its
1578 * current state.
1579 *
1580 * Return: %false if @dwork was idle and queued, %true if @dwork was
1581 * pending and its timer was modified.
1582 *
1583 * This function is safe to call from any context including IRQ handler.
1584 * See try_to_grab_pending() for details.
1585 */
1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1587 struct delayed_work *dwork, unsigned long delay)
1588 {
1589 unsigned long flags;
1590 int ret;
1591
1592 do {
1593 ret = try_to_grab_pending(&dwork->work, true, &flags);
1594 } while (unlikely(ret == -EAGAIN));
1595
1596 if (likely(ret >= 0)) {
1597 __queue_delayed_work(cpu, wq, dwork, delay);
1598 local_irq_restore(flags);
1599 }
1600
1601 /* -ENOENT from try_to_grab_pending() becomes %true */
1602 return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1605
1606 /**
1607 * worker_enter_idle - enter idle state
1608 * @worker: worker which is entering idle state
1609 *
1610 * @worker is entering idle state. Update stats and idle timer if
1611 * necessary.
1612 *
1613 * LOCKING:
1614 * spin_lock_irq(pool->lock).
1615 */
1616 static void worker_enter_idle(struct worker *worker)
1617 {
1618 struct worker_pool *pool = worker->pool;
1619
1620 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1621 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1622 (worker->hentry.next || worker->hentry.pprev)))
1623 return;
1624
1625 /* can't use worker_set_flags(), also called from create_worker() */
1626 worker->flags |= WORKER_IDLE;
1627 pool->nr_idle++;
1628 worker->last_active = jiffies;
1629
1630 /* idle_list is LIFO */
1631 list_add(&worker->entry, &pool->idle_list);
1632
1633 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1634 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1635
1636 /*
1637 * Sanity check nr_running. Because wq_unbind_fn() releases
1638 * pool->lock between setting %WORKER_UNBOUND and zapping
1639 * nr_running, the warning may trigger spuriously. Check iff
1640 * unbind is not in progress.
1641 */
1642 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1643 pool->nr_workers == pool->nr_idle &&
1644 atomic_read(&pool->nr_running));
1645 }
1646
1647 /**
1648 * worker_leave_idle - leave idle state
1649 * @worker: worker which is leaving idle state
1650 *
1651 * @worker is leaving idle state. Update stats.
1652 *
1653 * LOCKING:
1654 * spin_lock_irq(pool->lock).
1655 */
1656 static void worker_leave_idle(struct worker *worker)
1657 {
1658 struct worker_pool *pool = worker->pool;
1659
1660 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1661 return;
1662 worker_clr_flags(worker, WORKER_IDLE);
1663 pool->nr_idle--;
1664 list_del_init(&worker->entry);
1665 }
1666
1667 static struct worker *alloc_worker(int node)
1668 {
1669 struct worker *worker;
1670
1671 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1672 if (worker) {
1673 INIT_LIST_HEAD(&worker->entry);
1674 INIT_LIST_HEAD(&worker->scheduled);
1675 INIT_LIST_HEAD(&worker->node);
1676 /* on creation a worker is in !idle && prep state */
1677 worker->flags = WORKER_PREP;
1678 }
1679 return worker;
1680 }
1681
1682 /**
1683 * worker_attach_to_pool() - attach a worker to a pool
1684 * @worker: worker to be attached
1685 * @pool: the target pool
1686 *
1687 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1688 * cpu-binding of @worker are kept coordinated with the pool across
1689 * cpu-[un]hotplugs.
1690 */
1691 static void worker_attach_to_pool(struct worker *worker,
1692 struct worker_pool *pool)
1693 {
1694 mutex_lock(&pool->attach_mutex);
1695
1696 /*
1697 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1698 * online CPUs. It'll be re-applied when any of the CPUs come up.
1699 */
1700 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1701
1702 /*
1703 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1704 * stable across this function. See the comments above the
1705 * flag definition for details.
1706 */
1707 if (pool->flags & POOL_DISASSOCIATED)
1708 worker->flags |= WORKER_UNBOUND;
1709
1710 list_add_tail(&worker->node, &pool->workers);
1711
1712 mutex_unlock(&pool->attach_mutex);
1713 }
1714
1715 /**
1716 * worker_detach_from_pool() - detach a worker from its pool
1717 * @worker: worker which is attached to its pool
1718 * @pool: the pool @worker is attached to
1719 *
1720 * Undo the attaching which had been done in worker_attach_to_pool(). The
1721 * caller worker shouldn't access to the pool after detached except it has
1722 * other reference to the pool.
1723 */
1724 static void worker_detach_from_pool(struct worker *worker,
1725 struct worker_pool *pool)
1726 {
1727 struct completion *detach_completion = NULL;
1728
1729 mutex_lock(&pool->attach_mutex);
1730 list_del(&worker->node);
1731 if (list_empty(&pool->workers))
1732 detach_completion = pool->detach_completion;
1733 mutex_unlock(&pool->attach_mutex);
1734
1735 /* clear leftover flags without pool->lock after it is detached */
1736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1737
1738 if (detach_completion)
1739 complete(detach_completion);
1740 }
1741
1742 /**
1743 * create_worker - create a new workqueue worker
1744 * @pool: pool the new worker will belong to
1745 *
1746 * Create and start a new worker which is attached to @pool.
1747 *
1748 * CONTEXT:
1749 * Might sleep. Does GFP_KERNEL allocations.
1750 *
1751 * Return:
1752 * Pointer to the newly created worker.
1753 */
1754 static struct worker *create_worker(struct worker_pool *pool)
1755 {
1756 struct worker *worker = NULL;
1757 int id = -1;
1758 char id_buf[16];
1759
1760 /* ID is needed to determine kthread name */
1761 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1762 if (id < 0)
1763 goto fail;
1764
1765 worker = alloc_worker(pool->node);
1766 if (!worker)
1767 goto fail;
1768
1769 worker->pool = pool;
1770 worker->id = id;
1771
1772 if (pool->cpu >= 0)
1773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1774 pool->attrs->nice < 0 ? "H" : "");
1775 else
1776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1777
1778 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1779 "kworker/%s", id_buf);
1780 if (IS_ERR(worker->task))
1781 goto fail;
1782
1783 set_user_nice(worker->task, pool->attrs->nice);
1784 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1785
1786 /* successful, attach the worker to the pool */
1787 worker_attach_to_pool(worker, pool);
1788
1789 /* start the newly created worker */
1790 spin_lock_irq(&pool->lock);
1791 worker->pool->nr_workers++;
1792 worker_enter_idle(worker);
1793 wake_up_process(worker->task);
1794 spin_unlock_irq(&pool->lock);
1795
1796 return worker;
1797
1798 fail:
1799 if (id >= 0)
1800 ida_simple_remove(&pool->worker_ida, id);
1801 kfree(worker);
1802 return NULL;
1803 }
1804
1805 /**
1806 * destroy_worker - destroy a workqueue worker
1807 * @worker: worker to be destroyed
1808 *
1809 * Destroy @worker and adjust @pool stats accordingly. The worker should
1810 * be idle.
1811 *
1812 * CONTEXT:
1813 * spin_lock_irq(pool->lock).
1814 */
1815 static void destroy_worker(struct worker *worker)
1816 {
1817 struct worker_pool *pool = worker->pool;
1818
1819 lockdep_assert_held(&pool->lock);
1820
1821 /* sanity check frenzy */
1822 if (WARN_ON(worker->current_work) ||
1823 WARN_ON(!list_empty(&worker->scheduled)) ||
1824 WARN_ON(!(worker->flags & WORKER_IDLE)))
1825 return;
1826
1827 pool->nr_workers--;
1828 pool->nr_idle--;
1829
1830 list_del_init(&worker->entry);
1831 worker->flags |= WORKER_DIE;
1832 wake_up_process(worker->task);
1833 }
1834
1835 static void idle_worker_timeout(struct timer_list *t)
1836 {
1837 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1838
1839 spin_lock_irq(&pool->lock);
1840
1841 while (too_many_workers(pool)) {
1842 struct worker *worker;
1843 unsigned long expires;
1844
1845 /* idle_list is kept in LIFO order, check the last one */
1846 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848
1849 if (time_before(jiffies, expires)) {
1850 mod_timer(&pool->idle_timer, expires);
1851 break;
1852 }
1853
1854 destroy_worker(worker);
1855 }
1856
1857 spin_unlock_irq(&pool->lock);
1858 }
1859
1860 static void send_mayday(struct work_struct *work)
1861 {
1862 struct pool_workqueue *pwq = get_work_pwq(work);
1863 struct workqueue_struct *wq = pwq->wq;
1864
1865 lockdep_assert_held(&wq_mayday_lock);
1866
1867 if (!wq->rescuer)
1868 return;
1869
1870 /* mayday mayday mayday */
1871 if (list_empty(&pwq->mayday_node)) {
1872 /*
1873 * If @pwq is for an unbound wq, its base ref may be put at
1874 * any time due to an attribute change. Pin @pwq until the
1875 * rescuer is done with it.
1876 */
1877 get_pwq(pwq);
1878 list_add_tail(&pwq->mayday_node, &wq->maydays);
1879 wake_up_process(wq->rescuer->task);
1880 }
1881 }
1882
1883 static void pool_mayday_timeout(struct timer_list *t)
1884 {
1885 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1886 struct work_struct *work;
1887
1888 spin_lock_irq(&pool->lock);
1889 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1890
1891 if (need_to_create_worker(pool)) {
1892 /*
1893 * We've been trying to create a new worker but
1894 * haven't been successful. We might be hitting an
1895 * allocation deadlock. Send distress signals to
1896 * rescuers.
1897 */
1898 list_for_each_entry(work, &pool->worklist, entry)
1899 send_mayday(work);
1900 }
1901
1902 spin_unlock(&wq_mayday_lock);
1903 spin_unlock_irq(&pool->lock);
1904
1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1906 }
1907
1908 /**
1909 * maybe_create_worker - create a new worker if necessary
1910 * @pool: pool to create a new worker for
1911 *
1912 * Create a new worker for @pool if necessary. @pool is guaranteed to
1913 * have at least one idle worker on return from this function. If
1914 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1915 * sent to all rescuers with works scheduled on @pool to resolve
1916 * possible allocation deadlock.
1917 *
1918 * On return, need_to_create_worker() is guaranteed to be %false and
1919 * may_start_working() %true.
1920 *
1921 * LOCKING:
1922 * spin_lock_irq(pool->lock) which may be released and regrabbed
1923 * multiple times. Does GFP_KERNEL allocations. Called only from
1924 * manager.
1925 */
1926 static void maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 restart:
1931 spin_unlock_irq(&pool->lock);
1932
1933 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1934 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1935
1936 while (true) {
1937 if (create_worker(pool) || !need_to_create_worker(pool))
1938 break;
1939
1940 schedule_timeout_interruptible(CREATE_COOLDOWN);
1941
1942 if (!need_to_create_worker(pool))
1943 break;
1944 }
1945
1946 del_timer_sync(&pool->mayday_timer);
1947 spin_lock_irq(&pool->lock);
1948 /*
1949 * This is necessary even after a new worker was just successfully
1950 * created as @pool->lock was dropped and the new worker might have
1951 * already become busy.
1952 */
1953 if (need_to_create_worker(pool))
1954 goto restart;
1955 }
1956
1957 /**
1958 * manage_workers - manage worker pool
1959 * @worker: self
1960 *
1961 * Assume the manager role and manage the worker pool @worker belongs
1962 * to. At any given time, there can be only zero or one manager per
1963 * pool. The exclusion is handled automatically by this function.
1964 *
1965 * The caller can safely start processing works on false return. On
1966 * true return, it's guaranteed that need_to_create_worker() is false
1967 * and may_start_working() is true.
1968 *
1969 * CONTEXT:
1970 * spin_lock_irq(pool->lock) which may be released and regrabbed
1971 * multiple times. Does GFP_KERNEL allocations.
1972 *
1973 * Return:
1974 * %false if the pool doesn't need management and the caller can safely
1975 * start processing works, %true if management function was performed and
1976 * the conditions that the caller verified before calling the function may
1977 * no longer be true.
1978 */
1979 static bool manage_workers(struct worker *worker)
1980 {
1981 struct worker_pool *pool = worker->pool;
1982
1983 if (pool->flags & POOL_MANAGER_ACTIVE)
1984 return false;
1985
1986 pool->flags |= POOL_MANAGER_ACTIVE;
1987 pool->manager = worker;
1988
1989 maybe_create_worker(pool);
1990
1991 pool->manager = NULL;
1992 pool->flags &= ~POOL_MANAGER_ACTIVE;
1993 wake_up(&wq_manager_wait);
1994 return true;
1995 }
1996
1997 /**
1998 * process_one_work - process single work
1999 * @worker: self
2000 * @work: work to process
2001 *
2002 * Process @work. This function contains all the logics necessary to
2003 * process a single work including synchronization against and
2004 * interaction with other workers on the same cpu, queueing and
2005 * flushing. As long as context requirement is met, any worker can
2006 * call this function to process a work.
2007 *
2008 * CONTEXT:
2009 * spin_lock_irq(pool->lock) which is released and regrabbed.
2010 */
2011 static void process_one_work(struct worker *worker, struct work_struct *work)
2012 __releases(&pool->lock)
2013 __acquires(&pool->lock)
2014 {
2015 struct pool_workqueue *pwq = get_work_pwq(work);
2016 struct worker_pool *pool = worker->pool;
2017 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2018 int work_color;
2019 struct worker *collision;
2020 #ifdef CONFIG_LOCKDEP
2021 /*
2022 * It is permissible to free the struct work_struct from
2023 * inside the function that is called from it, this we need to
2024 * take into account for lockdep too. To avoid bogus "held
2025 * lock freed" warnings as well as problems when looking into
2026 * work->lockdep_map, make a copy and use that here.
2027 */
2028 struct lockdep_map lockdep_map;
2029
2030 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2031 #endif
2032 /* ensure we're on the correct CPU */
2033 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2034 raw_smp_processor_id() != pool->cpu);
2035
2036 /*
2037 * A single work shouldn't be executed concurrently by
2038 * multiple workers on a single cpu. Check whether anyone is
2039 * already processing the work. If so, defer the work to the
2040 * currently executing one.
2041 */
2042 collision = find_worker_executing_work(pool, work);
2043 if (unlikely(collision)) {
2044 move_linked_works(work, &collision->scheduled, NULL);
2045 return;
2046 }
2047
2048 /* claim and dequeue */
2049 debug_work_deactivate(work);
2050 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2051 worker->current_work = work;
2052 worker->current_func = work->func;
2053 worker->current_pwq = pwq;
2054 work_color = get_work_color(work);
2055
2056 list_del_init(&work->entry);
2057
2058 /*
2059 * CPU intensive works don't participate in concurrency management.
2060 * They're the scheduler's responsibility. This takes @worker out
2061 * of concurrency management and the next code block will chain
2062 * execution of the pending work items.
2063 */
2064 if (unlikely(cpu_intensive))
2065 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2066
2067 /*
2068 * Wake up another worker if necessary. The condition is always
2069 * false for normal per-cpu workers since nr_running would always
2070 * be >= 1 at this point. This is used to chain execution of the
2071 * pending work items for WORKER_NOT_RUNNING workers such as the
2072 * UNBOUND and CPU_INTENSIVE ones.
2073 */
2074 if (need_more_worker(pool))
2075 wake_up_worker(pool);
2076
2077 /*
2078 * Record the last pool and clear PENDING which should be the last
2079 * update to @work. Also, do this inside @pool->lock so that
2080 * PENDING and queued state changes happen together while IRQ is
2081 * disabled.
2082 */
2083 set_work_pool_and_clear_pending(work, pool->id);
2084
2085 spin_unlock_irq(&pool->lock);
2086
2087 lock_map_acquire(&pwq->wq->lockdep_map);
2088 lock_map_acquire(&lockdep_map);
2089 /*
2090 * Strictly speaking we should mark the invariant state without holding
2091 * any locks, that is, before these two lock_map_acquire()'s.
2092 *
2093 * However, that would result in:
2094 *
2095 * A(W1)
2096 * WFC(C)
2097 * A(W1)
2098 * C(C)
2099 *
2100 * Which would create W1->C->W1 dependencies, even though there is no
2101 * actual deadlock possible. There are two solutions, using a
2102 * read-recursive acquire on the work(queue) 'locks', but this will then
2103 * hit the lockdep limitation on recursive locks, or simply discard
2104 * these locks.
2105 *
2106 * AFAICT there is no possible deadlock scenario between the
2107 * flush_work() and complete() primitives (except for single-threaded
2108 * workqueues), so hiding them isn't a problem.
2109 */
2110 lockdep_invariant_state(true);
2111 trace_workqueue_execute_start(work);
2112 worker->current_func(work);
2113 /*
2114 * While we must be careful to not use "work" after this, the trace
2115 * point will only record its address.
2116 */
2117 trace_workqueue_execute_end(work);
2118 lock_map_release(&lockdep_map);
2119 lock_map_release(&pwq->wq->lockdep_map);
2120
2121 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2122 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2123 " last function: %pf\n",
2124 current->comm, preempt_count(), task_pid_nr(current),
2125 worker->current_func);
2126 debug_show_held_locks(current);
2127 dump_stack();
2128 }
2129
2130 /*
2131 * The following prevents a kworker from hogging CPU on !PREEMPT
2132 * kernels, where a requeueing work item waiting for something to
2133 * happen could deadlock with stop_machine as such work item could
2134 * indefinitely requeue itself while all other CPUs are trapped in
2135 * stop_machine. At the same time, report a quiescent RCU state so
2136 * the same condition doesn't freeze RCU.
2137 */
2138 cond_resched_rcu_qs();
2139
2140 spin_lock_irq(&pool->lock);
2141
2142 /* clear cpu intensive status */
2143 if (unlikely(cpu_intensive))
2144 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2145
2146 /* we're done with it, release */
2147 hash_del(&worker->hentry);
2148 worker->current_work = NULL;
2149 worker->current_func = NULL;
2150 worker->current_pwq = NULL;
2151 worker->desc_valid = false;
2152 pwq_dec_nr_in_flight(pwq, work_color);
2153 }
2154
2155 /**
2156 * process_scheduled_works - process scheduled works
2157 * @worker: self
2158 *
2159 * Process all scheduled works. Please note that the scheduled list
2160 * may change while processing a work, so this function repeatedly
2161 * fetches a work from the top and executes it.
2162 *
2163 * CONTEXT:
2164 * spin_lock_irq(pool->lock) which may be released and regrabbed
2165 * multiple times.
2166 */
2167 static void process_scheduled_works(struct worker *worker)
2168 {
2169 while (!list_empty(&worker->scheduled)) {
2170 struct work_struct *work = list_first_entry(&worker->scheduled,
2171 struct work_struct, entry);
2172 process_one_work(worker, work);
2173 }
2174 }
2175
2176 /**
2177 * worker_thread - the worker thread function
2178 * @__worker: self
2179 *
2180 * The worker thread function. All workers belong to a worker_pool -
2181 * either a per-cpu one or dynamic unbound one. These workers process all
2182 * work items regardless of their specific target workqueue. The only
2183 * exception is work items which belong to workqueues with a rescuer which
2184 * will be explained in rescuer_thread().
2185 *
2186 * Return: 0
2187 */
2188 static int worker_thread(void *__worker)
2189 {
2190 struct worker *worker = __worker;
2191 struct worker_pool *pool = worker->pool;
2192
2193 /* tell the scheduler that this is a workqueue worker */
2194 worker->task->flags |= PF_WQ_WORKER;
2195 woke_up:
2196 spin_lock_irq(&pool->lock);
2197
2198 /* am I supposed to die? */
2199 if (unlikely(worker->flags & WORKER_DIE)) {
2200 spin_unlock_irq(&pool->lock);
2201 WARN_ON_ONCE(!list_empty(&worker->entry));
2202 worker->task->flags &= ~PF_WQ_WORKER;
2203
2204 set_task_comm(worker->task, "kworker/dying");
2205 ida_simple_remove(&pool->worker_ida, worker->id);
2206 worker_detach_from_pool(worker, pool);
2207 kfree(worker);
2208 return 0;
2209 }
2210
2211 worker_leave_idle(worker);
2212 recheck:
2213 /* no more worker necessary? */
2214 if (!need_more_worker(pool))
2215 goto sleep;
2216
2217 /* do we need to manage? */
2218 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2219 goto recheck;
2220
2221 /*
2222 * ->scheduled list can only be filled while a worker is
2223 * preparing to process a work or actually processing it.
2224 * Make sure nobody diddled with it while I was sleeping.
2225 */
2226 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2227
2228 /*
2229 * Finish PREP stage. We're guaranteed to have at least one idle
2230 * worker or that someone else has already assumed the manager
2231 * role. This is where @worker starts participating in concurrency
2232 * management if applicable and concurrency management is restored
2233 * after being rebound. See rebind_workers() for details.
2234 */
2235 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2236
2237 do {
2238 struct work_struct *work =
2239 list_first_entry(&pool->worklist,
2240 struct work_struct, entry);
2241
2242 pool->watchdog_ts = jiffies;
2243
2244 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2245 /* optimization path, not strictly necessary */
2246 process_one_work(worker, work);
2247 if (unlikely(!list_empty(&worker->scheduled)))
2248 process_scheduled_works(worker);
2249 } else {
2250 move_linked_works(work, &worker->scheduled, NULL);
2251 process_scheduled_works(worker);
2252 }
2253 } while (keep_working(pool));
2254
2255 worker_set_flags(worker, WORKER_PREP);
2256 sleep:
2257 /*
2258 * pool->lock is held and there's no work to process and no need to
2259 * manage, sleep. Workers are woken up only while holding
2260 * pool->lock or from local cpu, so setting the current state
2261 * before releasing pool->lock is enough to prevent losing any
2262 * event.
2263 */
2264 worker_enter_idle(worker);
2265 __set_current_state(TASK_IDLE);
2266 spin_unlock_irq(&pool->lock);
2267 schedule();
2268 goto woke_up;
2269 }
2270
2271 /**
2272 * rescuer_thread - the rescuer thread function
2273 * @__rescuer: self
2274 *
2275 * Workqueue rescuer thread function. There's one rescuer for each
2276 * workqueue which has WQ_MEM_RECLAIM set.
2277 *
2278 * Regular work processing on a pool may block trying to create a new
2279 * worker which uses GFP_KERNEL allocation which has slight chance of
2280 * developing into deadlock if some works currently on the same queue
2281 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2282 * the problem rescuer solves.
2283 *
2284 * When such condition is possible, the pool summons rescuers of all
2285 * workqueues which have works queued on the pool and let them process
2286 * those works so that forward progress can be guaranteed.
2287 *
2288 * This should happen rarely.
2289 *
2290 * Return: 0
2291 */
2292 static int rescuer_thread(void *__rescuer)
2293 {
2294 struct worker *rescuer = __rescuer;
2295 struct workqueue_struct *wq = rescuer->rescue_wq;
2296 struct list_head *scheduled = &rescuer->scheduled;
2297 bool should_stop;
2298
2299 set_user_nice(current, RESCUER_NICE_LEVEL);
2300
2301 /*
2302 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2303 * doesn't participate in concurrency management.
2304 */
2305 rescuer->task->flags |= PF_WQ_WORKER;
2306 repeat:
2307 set_current_state(TASK_IDLE);
2308
2309 /*
2310 * By the time the rescuer is requested to stop, the workqueue
2311 * shouldn't have any work pending, but @wq->maydays may still have
2312 * pwq(s) queued. This can happen by non-rescuer workers consuming
2313 * all the work items before the rescuer got to them. Go through
2314 * @wq->maydays processing before acting on should_stop so that the
2315 * list is always empty on exit.
2316 */
2317 should_stop = kthread_should_stop();
2318
2319 /* see whether any pwq is asking for help */
2320 spin_lock_irq(&wq_mayday_lock);
2321
2322 while (!list_empty(&wq->maydays)) {
2323 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2324 struct pool_workqueue, mayday_node);
2325 struct worker_pool *pool = pwq->pool;
2326 struct work_struct *work, *n;
2327 bool first = true;
2328
2329 __set_current_state(TASK_RUNNING);
2330 list_del_init(&pwq->mayday_node);
2331
2332 spin_unlock_irq(&wq_mayday_lock);
2333
2334 worker_attach_to_pool(rescuer, pool);
2335
2336 spin_lock_irq(&pool->lock);
2337 rescuer->pool = pool;
2338
2339 /*
2340 * Slurp in all works issued via this workqueue and
2341 * process'em.
2342 */
2343 WARN_ON_ONCE(!list_empty(scheduled));
2344 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2345 if (get_work_pwq(work) == pwq) {
2346 if (first)
2347 pool->watchdog_ts = jiffies;
2348 move_linked_works(work, scheduled, &n);
2349 }
2350 first = false;
2351 }
2352
2353 if (!list_empty(scheduled)) {
2354 process_scheduled_works(rescuer);
2355
2356 /*
2357 * The above execution of rescued work items could
2358 * have created more to rescue through
2359 * pwq_activate_first_delayed() or chained
2360 * queueing. Let's put @pwq back on mayday list so
2361 * that such back-to-back work items, which may be
2362 * being used to relieve memory pressure, don't
2363 * incur MAYDAY_INTERVAL delay inbetween.
2364 */
2365 if (need_to_create_worker(pool)) {
2366 spin_lock(&wq_mayday_lock);
2367 get_pwq(pwq);
2368 list_move_tail(&pwq->mayday_node, &wq->maydays);
2369 spin_unlock(&wq_mayday_lock);
2370 }
2371 }
2372
2373 /*
2374 * Put the reference grabbed by send_mayday(). @pool won't
2375 * go away while we're still attached to it.
2376 */
2377 put_pwq(pwq);
2378
2379 /*
2380 * Leave this pool. If need_more_worker() is %true, notify a
2381 * regular worker; otherwise, we end up with 0 concurrency
2382 * and stalling the execution.
2383 */
2384 if (need_more_worker(pool))
2385 wake_up_worker(pool);
2386
2387 rescuer->pool = NULL;
2388 spin_unlock_irq(&pool->lock);
2389
2390 worker_detach_from_pool(rescuer, pool);
2391
2392 spin_lock_irq(&wq_mayday_lock);
2393 }
2394
2395 spin_unlock_irq(&wq_mayday_lock);
2396
2397 if (should_stop) {
2398 __set_current_state(TASK_RUNNING);
2399 rescuer->task->flags &= ~PF_WQ_WORKER;
2400 return 0;
2401 }
2402
2403 /* rescuers should never participate in concurrency management */
2404 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2405 schedule();
2406 goto repeat;
2407 }
2408
2409 /**
2410 * check_flush_dependency - check for flush dependency sanity
2411 * @target_wq: workqueue being flushed
2412 * @target_work: work item being flushed (NULL for workqueue flushes)
2413 *
2414 * %current is trying to flush the whole @target_wq or @target_work on it.
2415 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2416 * reclaiming memory or running on a workqueue which doesn't have
2417 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2418 * a deadlock.
2419 */
2420 static void check_flush_dependency(struct workqueue_struct *target_wq,
2421 struct work_struct *target_work)
2422 {
2423 work_func_t target_func = target_work ? target_work->func : NULL;
2424 struct worker *worker;
2425
2426 if (target_wq->flags & WQ_MEM_RECLAIM)
2427 return;
2428
2429 worker = current_wq_worker();
2430
2431 WARN_ONCE(current->flags & PF_MEMALLOC,
2432 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2433 current->pid, current->comm, target_wq->name, target_func);
2434 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2435 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2436 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2437 worker->current_pwq->wq->name, worker->current_func,
2438 target_wq->name, target_func);
2439 }
2440
2441 struct wq_barrier {
2442 struct work_struct work;
2443 struct completion done;
2444 struct task_struct *task; /* purely informational */
2445 };
2446
2447 static void wq_barrier_func(struct work_struct *work)
2448 {
2449 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2450 complete(&barr->done);
2451 }
2452
2453 /**
2454 * insert_wq_barrier - insert a barrier work
2455 * @pwq: pwq to insert barrier into
2456 * @barr: wq_barrier to insert
2457 * @target: target work to attach @barr to
2458 * @worker: worker currently executing @target, NULL if @target is not executing
2459 *
2460 * @barr is linked to @target such that @barr is completed only after
2461 * @target finishes execution. Please note that the ordering
2462 * guarantee is observed only with respect to @target and on the local
2463 * cpu.
2464 *
2465 * Currently, a queued barrier can't be canceled. This is because
2466 * try_to_grab_pending() can't determine whether the work to be
2467 * grabbed is at the head of the queue and thus can't clear LINKED
2468 * flag of the previous work while there must be a valid next work
2469 * after a work with LINKED flag set.
2470 *
2471 * Note that when @worker is non-NULL, @target may be modified
2472 * underneath us, so we can't reliably determine pwq from @target.
2473 *
2474 * CONTEXT:
2475 * spin_lock_irq(pool->lock).
2476 */
2477 static void insert_wq_barrier(struct pool_workqueue *pwq,
2478 struct wq_barrier *barr,
2479 struct work_struct *target, struct worker *worker)
2480 {
2481 struct list_head *head;
2482 unsigned int linked = 0;
2483
2484 /*
2485 * debugobject calls are safe here even with pool->lock locked
2486 * as we know for sure that this will not trigger any of the
2487 * checks and call back into the fixup functions where we
2488 * might deadlock.
2489 */
2490 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2491 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2492
2493 init_completion_map(&barr->done, &target->lockdep_map);
2494
2495 barr->task = current;
2496
2497 /*
2498 * If @target is currently being executed, schedule the
2499 * barrier to the worker; otherwise, put it after @target.
2500 */
2501 if (worker)
2502 head = worker->scheduled.next;
2503 else {
2504 unsigned long *bits = work_data_bits(target);
2505
2506 head = target->entry.next;
2507 /* there can already be other linked works, inherit and set */
2508 linked = *bits & WORK_STRUCT_LINKED;
2509 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2510 }
2511
2512 debug_work_activate(&barr->work);
2513 insert_work(pwq, &barr->work, head,
2514 work_color_to_flags(WORK_NO_COLOR) | linked);
2515 }
2516
2517 /**
2518 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2519 * @wq: workqueue being flushed
2520 * @flush_color: new flush color, < 0 for no-op
2521 * @work_color: new work color, < 0 for no-op
2522 *
2523 * Prepare pwqs for workqueue flushing.
2524 *
2525 * If @flush_color is non-negative, flush_color on all pwqs should be
2526 * -1. If no pwq has in-flight commands at the specified color, all
2527 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2528 * has in flight commands, its pwq->flush_color is set to
2529 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2530 * wakeup logic is armed and %true is returned.
2531 *
2532 * The caller should have initialized @wq->first_flusher prior to
2533 * calling this function with non-negative @flush_color. If
2534 * @flush_color is negative, no flush color update is done and %false
2535 * is returned.
2536 *
2537 * If @work_color is non-negative, all pwqs should have the same
2538 * work_color which is previous to @work_color and all will be
2539 * advanced to @work_color.
2540 *
2541 * CONTEXT:
2542 * mutex_lock(wq->mutex).
2543 *
2544 * Return:
2545 * %true if @flush_color >= 0 and there's something to flush. %false
2546 * otherwise.
2547 */
2548 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2549 int flush_color, int work_color)
2550 {
2551 bool wait = false;
2552 struct pool_workqueue *pwq;
2553
2554 if (flush_color >= 0) {
2555 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2556 atomic_set(&wq->nr_pwqs_to_flush, 1);
2557 }
2558
2559 for_each_pwq(pwq, wq) {
2560 struct worker_pool *pool = pwq->pool;
2561
2562 spin_lock_irq(&pool->lock);
2563
2564 if (flush_color >= 0) {
2565 WARN_ON_ONCE(pwq->flush_color != -1);
2566
2567 if (pwq->nr_in_flight[flush_color]) {
2568 pwq->flush_color = flush_color;
2569 atomic_inc(&wq->nr_pwqs_to_flush);
2570 wait = true;
2571 }
2572 }
2573
2574 if (work_color >= 0) {
2575 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2576 pwq->work_color = work_color;
2577 }
2578
2579 spin_unlock_irq(&pool->lock);
2580 }
2581
2582 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2583 complete(&wq->first_flusher->done);
2584
2585 return wait;
2586 }
2587
2588 /**
2589 * flush_workqueue - ensure that any scheduled work has run to completion.
2590 * @wq: workqueue to flush
2591 *
2592 * This function sleeps until all work items which were queued on entry
2593 * have finished execution, but it is not livelocked by new incoming ones.
2594 */
2595 void flush_workqueue(struct workqueue_struct *wq)
2596 {
2597 struct wq_flusher this_flusher = {
2598 .list = LIST_HEAD_INIT(this_flusher.list),
2599 .flush_color = -1,
2600 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2601 };
2602 int next_color;
2603
2604 if (WARN_ON(!wq_online))
2605 return;
2606
2607 mutex_lock(&wq->mutex);
2608
2609 /*
2610 * Start-to-wait phase
2611 */
2612 next_color = work_next_color(wq->work_color);
2613
2614 if (next_color != wq->flush_color) {
2615 /*
2616 * Color space is not full. The current work_color
2617 * becomes our flush_color and work_color is advanced
2618 * by one.
2619 */
2620 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2621 this_flusher.flush_color = wq->work_color;
2622 wq->work_color = next_color;
2623
2624 if (!wq->first_flusher) {
2625 /* no flush in progress, become the first flusher */
2626 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2627
2628 wq->first_flusher = &this_flusher;
2629
2630 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2631 wq->work_color)) {
2632 /* nothing to flush, done */
2633 wq->flush_color = next_color;
2634 wq->first_flusher = NULL;
2635 goto out_unlock;
2636 }
2637 } else {
2638 /* wait in queue */
2639 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2640 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2641 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2642 }
2643 } else {
2644 /*
2645 * Oops, color space is full, wait on overflow queue.
2646 * The next flush completion will assign us
2647 * flush_color and transfer to flusher_queue.
2648 */
2649 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2650 }
2651
2652 check_flush_dependency(wq, NULL);
2653
2654 mutex_unlock(&wq->mutex);
2655
2656 wait_for_completion(&this_flusher.done);
2657
2658 /*
2659 * Wake-up-and-cascade phase
2660 *
2661 * First flushers are responsible for cascading flushes and
2662 * handling overflow. Non-first flushers can simply return.
2663 */
2664 if (wq->first_flusher != &this_flusher)
2665 return;
2666
2667 mutex_lock(&wq->mutex);
2668
2669 /* we might have raced, check again with mutex held */
2670 if (wq->first_flusher != &this_flusher)
2671 goto out_unlock;
2672
2673 wq->first_flusher = NULL;
2674
2675 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2676 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2677
2678 while (true) {
2679 struct wq_flusher *next, *tmp;
2680
2681 /* complete all the flushers sharing the current flush color */
2682 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2683 if (next->flush_color != wq->flush_color)
2684 break;
2685 list_del_init(&next->list);
2686 complete(&next->done);
2687 }
2688
2689 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2690 wq->flush_color != work_next_color(wq->work_color));
2691
2692 /* this flush_color is finished, advance by one */
2693 wq->flush_color = work_next_color(wq->flush_color);
2694
2695 /* one color has been freed, handle overflow queue */
2696 if (!list_empty(&wq->flusher_overflow)) {
2697 /*
2698 * Assign the same color to all overflowed
2699 * flushers, advance work_color and append to
2700 * flusher_queue. This is the start-to-wait
2701 * phase for these overflowed flushers.
2702 */
2703 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2704 tmp->flush_color = wq->work_color;
2705
2706 wq->work_color = work_next_color(wq->work_color);
2707
2708 list_splice_tail_init(&wq->flusher_overflow,
2709 &wq->flusher_queue);
2710 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2711 }
2712
2713 if (list_empty(&wq->flusher_queue)) {
2714 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2715 break;
2716 }
2717
2718 /*
2719 * Need to flush more colors. Make the next flusher
2720 * the new first flusher and arm pwqs.
2721 */
2722 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2723 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2724
2725 list_del_init(&next->list);
2726 wq->first_flusher = next;
2727
2728 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2729 break;
2730
2731 /*
2732 * Meh... this color is already done, clear first
2733 * flusher and repeat cascading.
2734 */
2735 wq->first_flusher = NULL;
2736 }
2737
2738 out_unlock:
2739 mutex_unlock(&wq->mutex);
2740 }
2741 EXPORT_SYMBOL(flush_workqueue);
2742
2743 /**
2744 * drain_workqueue - drain a workqueue
2745 * @wq: workqueue to drain
2746 *
2747 * Wait until the workqueue becomes empty. While draining is in progress,
2748 * only chain queueing is allowed. IOW, only currently pending or running
2749 * work items on @wq can queue further work items on it. @wq is flushed
2750 * repeatedly until it becomes empty. The number of flushing is determined
2751 * by the depth of chaining and should be relatively short. Whine if it
2752 * takes too long.
2753 */
2754 void drain_workqueue(struct workqueue_struct *wq)
2755 {
2756 unsigned int flush_cnt = 0;
2757 struct pool_workqueue *pwq;
2758
2759 /*
2760 * __queue_work() needs to test whether there are drainers, is much
2761 * hotter than drain_workqueue() and already looks at @wq->flags.
2762 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2763 */
2764 mutex_lock(&wq->mutex);
2765 if (!wq->nr_drainers++)
2766 wq->flags |= __WQ_DRAINING;
2767 mutex_unlock(&wq->mutex);
2768 reflush:
2769 flush_workqueue(wq);
2770
2771 mutex_lock(&wq->mutex);
2772
2773 for_each_pwq(pwq, wq) {
2774 bool drained;
2775
2776 spin_lock_irq(&pwq->pool->lock);
2777 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2778 spin_unlock_irq(&pwq->pool->lock);
2779
2780 if (drained)
2781 continue;
2782
2783 if (++flush_cnt == 10 ||
2784 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2785 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2786 wq->name, flush_cnt);
2787
2788 mutex_unlock(&wq->mutex);
2789 goto reflush;
2790 }
2791
2792 if (!--wq->nr_drainers)
2793 wq->flags &= ~__WQ_DRAINING;
2794 mutex_unlock(&wq->mutex);
2795 }
2796 EXPORT_SYMBOL_GPL(drain_workqueue);
2797
2798 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2799 {
2800 struct worker *worker = NULL;
2801 struct worker_pool *pool;
2802 struct pool_workqueue *pwq;
2803
2804 might_sleep();
2805
2806 local_irq_disable();
2807 pool = get_work_pool(work);
2808 if (!pool) {
2809 local_irq_enable();
2810 return false;
2811 }
2812
2813 spin_lock(&pool->lock);
2814 /* see the comment in try_to_grab_pending() with the same code */
2815 pwq = get_work_pwq(work);
2816 if (pwq) {
2817 if (unlikely(pwq->pool != pool))
2818 goto already_gone;
2819 } else {
2820 worker = find_worker_executing_work(pool, work);
2821 if (!worker)
2822 goto already_gone;
2823 pwq = worker->current_pwq;
2824 }
2825
2826 check_flush_dependency(pwq->wq, work);
2827
2828 insert_wq_barrier(pwq, barr, work, worker);
2829 spin_unlock_irq(&pool->lock);
2830
2831 /*
2832 * Force a lock recursion deadlock when using flush_work() inside a
2833 * single-threaded or rescuer equipped workqueue.
2834 *
2835 * For single threaded workqueues the deadlock happens when the work
2836 * is after the work issuing the flush_work(). For rescuer equipped
2837 * workqueues the deadlock happens when the rescuer stalls, blocking
2838 * forward progress.
2839 */
2840 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2841 lock_map_acquire(&pwq->wq->lockdep_map);
2842 lock_map_release(&pwq->wq->lockdep_map);
2843 }
2844
2845 return true;
2846 already_gone:
2847 spin_unlock_irq(&pool->lock);
2848 return false;
2849 }
2850
2851 /**
2852 * flush_work - wait for a work to finish executing the last queueing instance
2853 * @work: the work to flush
2854 *
2855 * Wait until @work has finished execution. @work is guaranteed to be idle
2856 * on return if it hasn't been requeued since flush started.
2857 *
2858 * Return:
2859 * %true if flush_work() waited for the work to finish execution,
2860 * %false if it was already idle.
2861 */
2862 bool flush_work(struct work_struct *work)
2863 {
2864 struct wq_barrier barr;
2865
2866 if (WARN_ON(!wq_online))
2867 return false;
2868
2869 if (start_flush_work(work, &barr)) {
2870 wait_for_completion(&barr.done);
2871 destroy_work_on_stack(&barr.work);
2872 return true;
2873 } else {
2874 return false;
2875 }
2876 }
2877 EXPORT_SYMBOL_GPL(flush_work);
2878
2879 struct cwt_wait {
2880 wait_queue_entry_t wait;
2881 struct work_struct *work;
2882 };
2883
2884 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2885 {
2886 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2887
2888 if (cwait->work != key)
2889 return 0;
2890 return autoremove_wake_function(wait, mode, sync, key);
2891 }
2892
2893 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2894 {
2895 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2896 unsigned long flags;
2897 int ret;
2898
2899 do {
2900 ret = try_to_grab_pending(work, is_dwork, &flags);
2901 /*
2902 * If someone else is already canceling, wait for it to
2903 * finish. flush_work() doesn't work for PREEMPT_NONE
2904 * because we may get scheduled between @work's completion
2905 * and the other canceling task resuming and clearing
2906 * CANCELING - flush_work() will return false immediately
2907 * as @work is no longer busy, try_to_grab_pending() will
2908 * return -ENOENT as @work is still being canceled and the
2909 * other canceling task won't be able to clear CANCELING as
2910 * we're hogging the CPU.
2911 *
2912 * Let's wait for completion using a waitqueue. As this
2913 * may lead to the thundering herd problem, use a custom
2914 * wake function which matches @work along with exclusive
2915 * wait and wakeup.
2916 */
2917 if (unlikely(ret == -ENOENT)) {
2918 struct cwt_wait cwait;
2919
2920 init_wait(&cwait.wait);
2921 cwait.wait.func = cwt_wakefn;
2922 cwait.work = work;
2923
2924 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2925 TASK_UNINTERRUPTIBLE);
2926 if (work_is_canceling(work))
2927 schedule();
2928 finish_wait(&cancel_waitq, &cwait.wait);
2929 }
2930 } while (unlikely(ret < 0));
2931
2932 /* tell other tasks trying to grab @work to back off */
2933 mark_work_canceling(work);
2934 local_irq_restore(flags);
2935
2936 /*
2937 * This allows canceling during early boot. We know that @work
2938 * isn't executing.
2939 */
2940 if (wq_online)
2941 flush_work(work);
2942
2943 clear_work_data(work);
2944
2945 /*
2946 * Paired with prepare_to_wait() above so that either
2947 * waitqueue_active() is visible here or !work_is_canceling() is
2948 * visible there.
2949 */
2950 smp_mb();
2951 if (waitqueue_active(&cancel_waitq))
2952 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953
2954 return ret;
2955 }
2956
2957 /**
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
2960 *
2961 * Cancel @work and wait for its execution to finish. This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue. On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
2965 *
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's. Use cancel_delayed_work_sync() instead.
2968 *
2969 * The caller must ensure that the workqueue on which @work was last
2970 * queued can't be destroyed before this function returns.
2971 *
2972 * Return:
2973 * %true if @work was pending, %false otherwise.
2974 */
2975 bool cancel_work_sync(struct work_struct *work)
2976 {
2977 return __cancel_work_timer(work, false);
2978 }
2979 EXPORT_SYMBOL_GPL(cancel_work_sync);
2980
2981 /**
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
2984 *
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution. Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
2988 *
2989 * Return:
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
2992 */
2993 bool flush_delayed_work(struct delayed_work *dwork)
2994 {
2995 local_irq_disable();
2996 if (del_timer_sync(&dwork->timer))
2997 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2998 local_irq_enable();
2999 return flush_work(&dwork->work);
3000 }
3001 EXPORT_SYMBOL(flush_delayed_work);
3002
3003 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3004 {
3005 unsigned long flags;
3006 int ret;
3007
3008 do {
3009 ret = try_to_grab_pending(work, is_dwork, &flags);
3010 } while (unlikely(ret == -EAGAIN));
3011
3012 if (unlikely(ret < 0))
3013 return false;
3014
3015 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3016 local_irq_restore(flags);
3017 return ret;
3018 }
3019
3020 /*
3021 * See cancel_delayed_work()
3022 */
3023 bool cancel_work(struct work_struct *work)
3024 {
3025 return __cancel_work(work, false);
3026 }
3027
3028 /**
3029 * cancel_delayed_work - cancel a delayed work
3030 * @dwork: delayed_work to cancel
3031 *
3032 * Kill off a pending delayed_work.
3033 *
3034 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3035 * pending.
3036 *
3037 * Note:
3038 * The work callback function may still be running on return, unless
3039 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3040 * use cancel_delayed_work_sync() to wait on it.
3041 *
3042 * This function is safe to call from any context including IRQ handler.
3043 */
3044 bool cancel_delayed_work(struct delayed_work *dwork)
3045 {
3046 return __cancel_work(&dwork->work, true);
3047 }
3048 EXPORT_SYMBOL(cancel_delayed_work);
3049
3050 /**
3051 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3052 * @dwork: the delayed work cancel
3053 *
3054 * This is cancel_work_sync() for delayed works.
3055 *
3056 * Return:
3057 * %true if @dwork was pending, %false otherwise.
3058 */
3059 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3060 {
3061 return __cancel_work_timer(&dwork->work, true);
3062 }
3063 EXPORT_SYMBOL(cancel_delayed_work_sync);
3064
3065 /**
3066 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3067 * @func: the function to call
3068 *
3069 * schedule_on_each_cpu() executes @func on each online CPU using the
3070 * system workqueue and blocks until all CPUs have completed.
3071 * schedule_on_each_cpu() is very slow.
3072 *
3073 * Return:
3074 * 0 on success, -errno on failure.
3075 */
3076 int schedule_on_each_cpu(work_func_t func)
3077 {
3078 int cpu;
3079 struct work_struct __percpu *works;
3080
3081 works = alloc_percpu(struct work_struct);
3082 if (!works)
3083 return -ENOMEM;
3084
3085 get_online_cpus();
3086
3087 for_each_online_cpu(cpu) {
3088 struct work_struct *work = per_cpu_ptr(works, cpu);
3089
3090 INIT_WORK(work, func);
3091 schedule_work_on(cpu, work);
3092 }
3093
3094 for_each_online_cpu(cpu)
3095 flush_work(per_cpu_ptr(works, cpu));
3096
3097 put_online_cpus();
3098 free_percpu(works);
3099 return 0;
3100 }
3101
3102 /**
3103 * execute_in_process_context - reliably execute the routine with user context
3104 * @fn: the function to execute
3105 * @ew: guaranteed storage for the execute work structure (must
3106 * be available when the work executes)
3107 *
3108 * Executes the function immediately if process context is available,
3109 * otherwise schedules the function for delayed execution.
3110 *
3111 * Return: 0 - function was executed
3112 * 1 - function was scheduled for execution
3113 */
3114 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3115 {
3116 if (!in_interrupt()) {
3117 fn(&ew->work);
3118 return 0;
3119 }
3120
3121 INIT_WORK(&ew->work, fn);
3122 schedule_work(&ew->work);
3123
3124 return 1;
3125 }
3126 EXPORT_SYMBOL_GPL(execute_in_process_context);
3127
3128 /**
3129 * free_workqueue_attrs - free a workqueue_attrs
3130 * @attrs: workqueue_attrs to free
3131 *
3132 * Undo alloc_workqueue_attrs().
3133 */
3134 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3135 {
3136 if (attrs) {
3137 free_cpumask_var(attrs->cpumask);
3138 kfree(attrs);
3139 }
3140 }
3141
3142 /**
3143 * alloc_workqueue_attrs - allocate a workqueue_attrs
3144 * @gfp_mask: allocation mask to use
3145 *
3146 * Allocate a new workqueue_attrs, initialize with default settings and
3147 * return it.
3148 *
3149 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3150 */
3151 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3152 {
3153 struct workqueue_attrs *attrs;
3154
3155 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3156 if (!attrs)
3157 goto fail;
3158 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3159 goto fail;
3160
3161 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3162 return attrs;
3163 fail:
3164 free_workqueue_attrs(attrs);
3165 return NULL;
3166 }
3167
3168 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3169 const struct workqueue_attrs *from)
3170 {
3171 to->nice = from->nice;
3172 cpumask_copy(to->cpumask, from->cpumask);
3173 /*
3174 * Unlike hash and equality test, this function doesn't ignore
3175 * ->no_numa as it is used for both pool and wq attrs. Instead,
3176 * get_unbound_pool() explicitly clears ->no_numa after copying.
3177 */
3178 to->no_numa = from->no_numa;
3179 }
3180
3181 /* hash value of the content of @attr */
3182 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3183 {
3184 u32 hash = 0;
3185
3186 hash = jhash_1word(attrs->nice, hash);
3187 hash = jhash(cpumask_bits(attrs->cpumask),
3188 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3189 return hash;
3190 }
3191
3192 /* content equality test */
3193 static bool wqattrs_equal(const struct workqueue_attrs *a,
3194 const struct workqueue_attrs *b)
3195 {
3196 if (a->nice != b->nice)
3197 return false;
3198 if (!cpumask_equal(a->cpumask, b->cpumask))
3199 return false;
3200 return true;
3201 }
3202
3203 /**
3204 * init_worker_pool - initialize a newly zalloc'd worker_pool
3205 * @pool: worker_pool to initialize
3206 *
3207 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3208 *
3209 * Return: 0 on success, -errno on failure. Even on failure, all fields
3210 * inside @pool proper are initialized and put_unbound_pool() can be called
3211 * on @pool safely to release it.
3212 */
3213 static int init_worker_pool(struct worker_pool *pool)
3214 {
3215 spin_lock_init(&pool->lock);
3216 pool->id = -1;
3217 pool->cpu = -1;
3218 pool->node = NUMA_NO_NODE;
3219 pool->flags |= POOL_DISASSOCIATED;
3220 pool->watchdog_ts = jiffies;
3221 INIT_LIST_HEAD(&pool->worklist);
3222 INIT_LIST_HEAD(&pool->idle_list);
3223 hash_init(pool->busy_hash);
3224
3225 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3226
3227 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3228
3229 mutex_init(&pool->attach_mutex);
3230 INIT_LIST_HEAD(&pool->workers);
3231
3232 ida_init(&pool->worker_ida);
3233 INIT_HLIST_NODE(&pool->hash_node);
3234 pool->refcnt = 1;
3235
3236 /* shouldn't fail above this point */
3237 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3238 if (!pool->attrs)
3239 return -ENOMEM;
3240 return 0;
3241 }
3242
3243 static void rcu_free_wq(struct rcu_head *rcu)
3244 {
3245 struct workqueue_struct *wq =
3246 container_of(rcu, struct workqueue_struct, rcu);
3247
3248 if (!(wq->flags & WQ_UNBOUND))
3249 free_percpu(wq->cpu_pwqs);
3250 else
3251 free_workqueue_attrs(wq->unbound_attrs);
3252
3253 kfree(wq->rescuer);
3254 kfree(wq);
3255 }
3256
3257 static void rcu_free_pool(struct rcu_head *rcu)
3258 {
3259 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3260
3261 ida_destroy(&pool->worker_ida);
3262 free_workqueue_attrs(pool->attrs);
3263 kfree(pool);
3264 }
3265
3266 /**
3267 * put_unbound_pool - put a worker_pool
3268 * @pool: worker_pool to put
3269 *
3270 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3271 * safe manner. get_unbound_pool() calls this function on its failure path
3272 * and this function should be able to release pools which went through,
3273 * successfully or not, init_worker_pool().
3274 *
3275 * Should be called with wq_pool_mutex held.
3276 */
3277 static void put_unbound_pool(struct worker_pool *pool)
3278 {
3279 DECLARE_COMPLETION_ONSTACK(detach_completion);
3280 struct worker *worker;
3281
3282 lockdep_assert_held(&wq_pool_mutex);
3283
3284 if (--pool->refcnt)
3285 return;
3286
3287 /* sanity checks */
3288 if (WARN_ON(!(pool->cpu < 0)) ||
3289 WARN_ON(!list_empty(&pool->worklist)))
3290 return;
3291
3292 /* release id and unhash */
3293 if (pool->id >= 0)
3294 idr_remove(&worker_pool_idr, pool->id);
3295 hash_del(&pool->hash_node);
3296
3297 /*
3298 * Become the manager and destroy all workers. This prevents
3299 * @pool's workers from blocking on attach_mutex. We're the last
3300 * manager and @pool gets freed with the flag set.
3301 */
3302 spin_lock_irq(&pool->lock);
3303 wait_event_lock_irq(wq_manager_wait,
3304 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3305 pool->flags |= POOL_MANAGER_ACTIVE;
3306
3307 while ((worker = first_idle_worker(pool)))
3308 destroy_worker(worker);
3309 WARN_ON(pool->nr_workers || pool->nr_idle);
3310 spin_unlock_irq(&pool->lock);
3311
3312 mutex_lock(&pool->attach_mutex);
3313 if (!list_empty(&pool->workers))
3314 pool->detach_completion = &detach_completion;
3315 mutex_unlock(&pool->attach_mutex);
3316
3317 if (pool->detach_completion)
3318 wait_for_completion(pool->detach_completion);
3319
3320 /* shut down the timers */
3321 del_timer_sync(&pool->idle_timer);
3322 del_timer_sync(&pool->mayday_timer);
3323
3324 /* sched-RCU protected to allow dereferences from get_work_pool() */
3325 call_rcu_sched(&pool->rcu, rcu_free_pool);
3326 }
3327
3328 /**
3329 * get_unbound_pool - get a worker_pool with the specified attributes
3330 * @attrs: the attributes of the worker_pool to get
3331 *
3332 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3333 * reference count and return it. If there already is a matching
3334 * worker_pool, it will be used; otherwise, this function attempts to
3335 * create a new one.
3336 *
3337 * Should be called with wq_pool_mutex held.
3338 *
3339 * Return: On success, a worker_pool with the same attributes as @attrs.
3340 * On failure, %NULL.
3341 */
3342 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3343 {
3344 u32 hash = wqattrs_hash(attrs);
3345 struct worker_pool *pool;
3346 int node;
3347 int target_node = NUMA_NO_NODE;
3348
3349 lockdep_assert_held(&wq_pool_mutex);
3350
3351 /* do we already have a matching pool? */
3352 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3353 if (wqattrs_equal(pool->attrs, attrs)) {
3354 pool->refcnt++;
3355 return pool;
3356 }
3357 }
3358
3359 /* if cpumask is contained inside a NUMA node, we belong to that node */
3360 if (wq_numa_enabled) {
3361 for_each_node(node) {
3362 if (cpumask_subset(attrs->cpumask,
3363 wq_numa_possible_cpumask[node])) {
3364 target_node = node;
3365 break;
3366 }
3367 }
3368 }
3369
3370 /* nope, create a new one */
3371 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3372 if (!pool || init_worker_pool(pool) < 0)
3373 goto fail;
3374
3375 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3376 copy_workqueue_attrs(pool->attrs, attrs);
3377 pool->node = target_node;
3378
3379 /*
3380 * no_numa isn't a worker_pool attribute, always clear it. See
3381 * 'struct workqueue_attrs' comments for detail.
3382 */
3383 pool->attrs->no_numa = false;
3384
3385 if (worker_pool_assign_id(pool) < 0)
3386 goto fail;
3387
3388 /* create and start the initial worker */
3389 if (wq_online && !create_worker(pool))
3390 goto fail;
3391
3392 /* install */
3393 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3394
3395 return pool;
3396 fail:
3397 if (pool)
3398 put_unbound_pool(pool);
3399 return NULL;
3400 }
3401
3402 static void rcu_free_pwq(struct rcu_head *rcu)
3403 {
3404 kmem_cache_free(pwq_cache,
3405 container_of(rcu, struct pool_workqueue, rcu));
3406 }
3407
3408 /*
3409 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3410 * and needs to be destroyed.
3411 */
3412 static void pwq_unbound_release_workfn(struct work_struct *work)
3413 {
3414 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3415 unbound_release_work);
3416 struct workqueue_struct *wq = pwq->wq;
3417 struct worker_pool *pool = pwq->pool;
3418 bool is_last;
3419
3420 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3421 return;
3422
3423 mutex_lock(&wq->mutex);
3424 list_del_rcu(&pwq->pwqs_node);
3425 is_last = list_empty(&wq->pwqs);
3426 mutex_unlock(&wq->mutex);
3427
3428 mutex_lock(&wq_pool_mutex);
3429 put_unbound_pool(pool);
3430 mutex_unlock(&wq_pool_mutex);
3431
3432 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3433
3434 /*
3435 * If we're the last pwq going away, @wq is already dead and no one
3436 * is gonna access it anymore. Schedule RCU free.
3437 */
3438 if (is_last)
3439 call_rcu_sched(&wq->rcu, rcu_free_wq);
3440 }
3441
3442 /**
3443 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3444 * @pwq: target pool_workqueue
3445 *
3446 * If @pwq isn't freezing, set @pwq->max_active to the associated
3447 * workqueue's saved_max_active and activate delayed work items
3448 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3449 */
3450 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3451 {
3452 struct workqueue_struct *wq = pwq->wq;
3453 bool freezable = wq->flags & WQ_FREEZABLE;
3454 unsigned long flags;
3455
3456 /* for @wq->saved_max_active */
3457 lockdep_assert_held(&wq->mutex);
3458
3459 /* fast exit for non-freezable wqs */
3460 if (!freezable && pwq->max_active == wq->saved_max_active)
3461 return;
3462
3463 /* this function can be called during early boot w/ irq disabled */
3464 spin_lock_irqsave(&pwq->pool->lock, flags);
3465
3466 /*
3467 * During [un]freezing, the caller is responsible for ensuring that
3468 * this function is called at least once after @workqueue_freezing
3469 * is updated and visible.
3470 */
3471 if (!freezable || !workqueue_freezing) {
3472 pwq->max_active = wq->saved_max_active;
3473
3474 while (!list_empty(&pwq->delayed_works) &&
3475 pwq->nr_active < pwq->max_active)
3476 pwq_activate_first_delayed(pwq);
3477
3478 /*
3479 * Need to kick a worker after thawed or an unbound wq's
3480 * max_active is bumped. It's a slow path. Do it always.
3481 */
3482 wake_up_worker(pwq->pool);
3483 } else {
3484 pwq->max_active = 0;
3485 }
3486
3487 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3488 }
3489
3490 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3491 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3492 struct worker_pool *pool)
3493 {
3494 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3495
3496 memset(pwq, 0, sizeof(*pwq));
3497
3498 pwq->pool = pool;
3499 pwq->wq = wq;
3500 pwq->flush_color = -1;
3501 pwq->refcnt = 1;
3502 INIT_LIST_HEAD(&pwq->delayed_works);
3503 INIT_LIST_HEAD(&pwq->pwqs_node);
3504 INIT_LIST_HEAD(&pwq->mayday_node);
3505 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3506 }
3507
3508 /* sync @pwq with the current state of its associated wq and link it */
3509 static void link_pwq(struct pool_workqueue *pwq)
3510 {
3511 struct workqueue_struct *wq = pwq->wq;
3512
3513 lockdep_assert_held(&wq->mutex);
3514
3515 /* may be called multiple times, ignore if already linked */
3516 if (!list_empty(&pwq->pwqs_node))
3517 return;
3518
3519 /* set the matching work_color */
3520 pwq->work_color = wq->work_color;
3521
3522 /* sync max_active to the current setting */
3523 pwq_adjust_max_active(pwq);
3524
3525 /* link in @pwq */
3526 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3527 }
3528
3529 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3530 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3531 const struct workqueue_attrs *attrs)
3532 {
3533 struct worker_pool *pool;
3534 struct pool_workqueue *pwq;
3535
3536 lockdep_assert_held(&wq_pool_mutex);
3537
3538 pool = get_unbound_pool(attrs);
3539 if (!pool)
3540 return NULL;
3541
3542 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3543 if (!pwq) {
3544 put_unbound_pool(pool);
3545 return NULL;
3546 }
3547
3548 init_pwq(pwq, wq, pool);
3549 return pwq;
3550 }
3551
3552 /**
3553 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3554 * @attrs: the wq_attrs of the default pwq of the target workqueue
3555 * @node: the target NUMA node
3556 * @cpu_going_down: if >= 0, the CPU to consider as offline
3557 * @cpumask: outarg, the resulting cpumask
3558 *
3559 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3560 * @cpu_going_down is >= 0, that cpu is considered offline during
3561 * calculation. The result is stored in @cpumask.
3562 *
3563 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3564 * enabled and @node has online CPUs requested by @attrs, the returned
3565 * cpumask is the intersection of the possible CPUs of @node and
3566 * @attrs->cpumask.
3567 *
3568 * The caller is responsible for ensuring that the cpumask of @node stays
3569 * stable.
3570 *
3571 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3572 * %false if equal.
3573 */
3574 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3575 int cpu_going_down, cpumask_t *cpumask)
3576 {
3577 if (!wq_numa_enabled || attrs->no_numa)
3578 goto use_dfl;
3579
3580 /* does @node have any online CPUs @attrs wants? */
3581 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3582 if (cpu_going_down >= 0)
3583 cpumask_clear_cpu(cpu_going_down, cpumask);
3584
3585 if (cpumask_empty(cpumask))
3586 goto use_dfl;
3587
3588 /* yeap, return possible CPUs in @node that @attrs wants */
3589 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3590
3591 if (cpumask_empty(cpumask)) {
3592 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3593 "possible intersect\n");
3594 return false;
3595 }
3596
3597 return !cpumask_equal(cpumask, attrs->cpumask);
3598
3599 use_dfl:
3600 cpumask_copy(cpumask, attrs->cpumask);
3601 return false;
3602 }
3603
3604 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3605 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3606 int node,
3607 struct pool_workqueue *pwq)
3608 {
3609 struct pool_workqueue *old_pwq;
3610
3611 lockdep_assert_held(&wq_pool_mutex);
3612 lockdep_assert_held(&wq->mutex);
3613
3614 /* link_pwq() can handle duplicate calls */
3615 link_pwq(pwq);
3616
3617 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3618 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3619 return old_pwq;
3620 }
3621
3622 /* context to store the prepared attrs & pwqs before applying */
3623 struct apply_wqattrs_ctx {
3624 struct workqueue_struct *wq; /* target workqueue */
3625 struct workqueue_attrs *attrs; /* attrs to apply */
3626 struct list_head list; /* queued for batching commit */
3627 struct pool_workqueue *dfl_pwq;
3628 struct pool_workqueue *pwq_tbl[];
3629 };
3630
3631 /* free the resources after success or abort */
3632 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3633 {
3634 if (ctx) {
3635 int node;
3636
3637 for_each_node(node)
3638 put_pwq_unlocked(ctx->pwq_tbl[node]);
3639 put_pwq_unlocked(ctx->dfl_pwq);
3640
3641 free_workqueue_attrs(ctx->attrs);
3642
3643 kfree(ctx);
3644 }
3645 }
3646
3647 /* allocate the attrs and pwqs for later installation */
3648 static struct apply_wqattrs_ctx *
3649 apply_wqattrs_prepare(struct workqueue_struct *wq,
3650 const struct workqueue_attrs *attrs)
3651 {
3652 struct apply_wqattrs_ctx *ctx;
3653 struct workqueue_attrs *new_attrs, *tmp_attrs;
3654 int node;
3655
3656 lockdep_assert_held(&wq_pool_mutex);
3657
3658 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3659 GFP_KERNEL);
3660
3661 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3662 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3663 if (!ctx || !new_attrs || !tmp_attrs)
3664 goto out_free;
3665
3666 /*
3667 * Calculate the attrs of the default pwq.
3668 * If the user configured cpumask doesn't overlap with the
3669 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3670 */
3671 copy_workqueue_attrs(new_attrs, attrs);
3672 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3673 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3674 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3675
3676 /*
3677 * We may create multiple pwqs with differing cpumasks. Make a
3678 * copy of @new_attrs which will be modified and used to obtain
3679 * pools.
3680 */
3681 copy_workqueue_attrs(tmp_attrs, new_attrs);
3682
3683 /*
3684 * If something goes wrong during CPU up/down, we'll fall back to
3685 * the default pwq covering whole @attrs->cpumask. Always create
3686 * it even if we don't use it immediately.
3687 */
3688 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3689 if (!ctx->dfl_pwq)
3690 goto out_free;
3691
3692 for_each_node(node) {
3693 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3694 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3695 if (!ctx->pwq_tbl[node])
3696 goto out_free;
3697 } else {
3698 ctx->dfl_pwq->refcnt++;
3699 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3700 }
3701 }
3702
3703 /* save the user configured attrs and sanitize it. */
3704 copy_workqueue_attrs(new_attrs, attrs);
3705 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3706 ctx->attrs = new_attrs;
3707
3708 ctx->wq = wq;
3709 free_workqueue_attrs(tmp_attrs);
3710 return ctx;
3711
3712 out_free:
3713 free_workqueue_attrs(tmp_attrs);
3714 free_workqueue_attrs(new_attrs);
3715 apply_wqattrs_cleanup(ctx);
3716 return NULL;
3717 }
3718
3719 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3720 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3721 {
3722 int node;
3723
3724 /* all pwqs have been created successfully, let's install'em */
3725 mutex_lock(&ctx->wq->mutex);
3726
3727 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3728
3729 /* save the previous pwq and install the new one */
3730 for_each_node(node)
3731 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3732 ctx->pwq_tbl[node]);
3733
3734 /* @dfl_pwq might not have been used, ensure it's linked */
3735 link_pwq(ctx->dfl_pwq);
3736 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3737
3738 mutex_unlock(&ctx->wq->mutex);
3739 }
3740
3741 static void apply_wqattrs_lock(void)
3742 {
3743 /* CPUs should stay stable across pwq creations and installations */
3744 get_online_cpus();
3745 mutex_lock(&wq_pool_mutex);
3746 }
3747
3748 static void apply_wqattrs_unlock(void)
3749 {
3750 mutex_unlock(&wq_pool_mutex);
3751 put_online_cpus();
3752 }
3753
3754 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3755 const struct workqueue_attrs *attrs)
3756 {
3757 struct apply_wqattrs_ctx *ctx;
3758
3759 /* only unbound workqueues can change attributes */
3760 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3761 return -EINVAL;
3762
3763 /* creating multiple pwqs breaks ordering guarantee */
3764 if (!list_empty(&wq->pwqs)) {
3765 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3766 return -EINVAL;
3767
3768 wq->flags &= ~__WQ_ORDERED;
3769 }
3770
3771 ctx = apply_wqattrs_prepare(wq, attrs);
3772 if (!ctx)
3773 return -ENOMEM;
3774
3775 /* the ctx has been prepared successfully, let's commit it */
3776 apply_wqattrs_commit(ctx);
3777 apply_wqattrs_cleanup(ctx);
3778
3779 return 0;
3780 }
3781
3782 /**
3783 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3784 * @wq: the target workqueue
3785 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3786 *
3787 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3788 * machines, this function maps a separate pwq to each NUMA node with
3789 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3790 * NUMA node it was issued on. Older pwqs are released as in-flight work
3791 * items finish. Note that a work item which repeatedly requeues itself
3792 * back-to-back will stay on its current pwq.
3793 *
3794 * Performs GFP_KERNEL allocations.
3795 *
3796 * Return: 0 on success and -errno on failure.
3797 */
3798 int apply_workqueue_attrs(struct workqueue_struct *wq,
3799 const struct workqueue_attrs *attrs)
3800 {
3801 int ret;
3802
3803 apply_wqattrs_lock();
3804 ret = apply_workqueue_attrs_locked(wq, attrs);
3805 apply_wqattrs_unlock();
3806
3807 return ret;
3808 }
3809
3810 /**
3811 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3812 * @wq: the target workqueue
3813 * @cpu: the CPU coming up or going down
3814 * @online: whether @cpu is coming up or going down
3815 *
3816 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3817 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3818 * @wq accordingly.
3819 *
3820 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3821 * falls back to @wq->dfl_pwq which may not be optimal but is always
3822 * correct.
3823 *
3824 * Note that when the last allowed CPU of a NUMA node goes offline for a
3825 * workqueue with a cpumask spanning multiple nodes, the workers which were
3826 * already executing the work items for the workqueue will lose their CPU
3827 * affinity and may execute on any CPU. This is similar to how per-cpu
3828 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3829 * affinity, it's the user's responsibility to flush the work item from
3830 * CPU_DOWN_PREPARE.
3831 */
3832 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3833 bool online)
3834 {
3835 int node = cpu_to_node(cpu);
3836 int cpu_off = online ? -1 : cpu;
3837 struct pool_workqueue *old_pwq = NULL, *pwq;
3838 struct workqueue_attrs *target_attrs;
3839 cpumask_t *cpumask;
3840
3841 lockdep_assert_held(&wq_pool_mutex);
3842
3843 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3844 wq->unbound_attrs->no_numa)
3845 return;
3846
3847 /*
3848 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3849 * Let's use a preallocated one. The following buf is protected by
3850 * CPU hotplug exclusion.
3851 */
3852 target_attrs = wq_update_unbound_numa_attrs_buf;
3853 cpumask = target_attrs->cpumask;
3854
3855 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3856 pwq = unbound_pwq_by_node(wq, node);
3857
3858 /*
3859 * Let's determine what needs to be done. If the target cpumask is
3860 * different from the default pwq's, we need to compare it to @pwq's
3861 * and create a new one if they don't match. If the target cpumask
3862 * equals the default pwq's, the default pwq should be used.
3863 */
3864 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3865 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3866 return;
3867 } else {
3868 goto use_dfl_pwq;
3869 }
3870
3871 /* create a new pwq */
3872 pwq = alloc_unbound_pwq(wq, target_attrs);
3873 if (!pwq) {
3874 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3875 wq->name);
3876 goto use_dfl_pwq;
3877 }
3878
3879 /* Install the new pwq. */
3880 mutex_lock(&wq->mutex);
3881 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3882 goto out_unlock;
3883
3884 use_dfl_pwq:
3885 mutex_lock(&wq->mutex);
3886 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3887 get_pwq(wq->dfl_pwq);
3888 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3889 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3890 out_unlock:
3891 mutex_unlock(&wq->mutex);
3892 put_pwq_unlocked(old_pwq);
3893 }
3894
3895 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3896 {
3897 bool highpri = wq->flags & WQ_HIGHPRI;
3898 int cpu, ret;
3899
3900 if (!(wq->flags & WQ_UNBOUND)) {
3901 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3902 if (!wq->cpu_pwqs)
3903 return -ENOMEM;
3904
3905 for_each_possible_cpu(cpu) {
3906 struct pool_workqueue *pwq =
3907 per_cpu_ptr(wq->cpu_pwqs, cpu);
3908 struct worker_pool *cpu_pools =
3909 per_cpu(cpu_worker_pools, cpu);
3910
3911 init_pwq(pwq, wq, &cpu_pools[highpri]);
3912
3913 mutex_lock(&wq->mutex);
3914 link_pwq(pwq);
3915 mutex_unlock(&wq->mutex);
3916 }
3917 return 0;
3918 } else if (wq->flags & __WQ_ORDERED) {
3919 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3920 /* there should only be single pwq for ordering guarantee */
3921 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3922 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3923 "ordering guarantee broken for workqueue %s\n", wq->name);
3924 return ret;
3925 } else {
3926 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3927 }
3928 }
3929
3930 static int wq_clamp_max_active(int max_active, unsigned int flags,
3931 const char *name)
3932 {
3933 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3934
3935 if (max_active < 1 || max_active > lim)
3936 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3937 max_active, name, 1, lim);
3938
3939 return clamp_val(max_active, 1, lim);
3940 }
3941
3942 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3943 unsigned int flags,
3944 int max_active,
3945 struct lock_class_key *key,
3946 const char *lock_name, ...)
3947 {
3948 size_t tbl_size = 0;
3949 va_list args;
3950 struct workqueue_struct *wq;
3951 struct pool_workqueue *pwq;
3952
3953 /*
3954 * Unbound && max_active == 1 used to imply ordered, which is no
3955 * longer the case on NUMA machines due to per-node pools. While
3956 * alloc_ordered_workqueue() is the right way to create an ordered
3957 * workqueue, keep the previous behavior to avoid subtle breakages
3958 * on NUMA.
3959 */
3960 if ((flags & WQ_UNBOUND) && max_active == 1)
3961 flags |= __WQ_ORDERED;
3962
3963 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3964 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3965 flags |= WQ_UNBOUND;
3966
3967 /* allocate wq and format name */
3968 if (flags & WQ_UNBOUND)
3969 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3970
3971 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3972 if (!wq)
3973 return NULL;
3974
3975 if (flags & WQ_UNBOUND) {
3976 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3977 if (!wq->unbound_attrs)
3978 goto err_free_wq;
3979 }
3980
3981 va_start(args, lock_name);
3982 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3983 va_end(args);
3984
3985 max_active = max_active ?: WQ_DFL_ACTIVE;
3986 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3987
3988 /* init wq */
3989 wq->flags = flags;
3990 wq->saved_max_active = max_active;
3991 mutex_init(&wq->mutex);
3992 atomic_set(&wq->nr_pwqs_to_flush, 0);
3993 INIT_LIST_HEAD(&wq->pwqs);
3994 INIT_LIST_HEAD(&wq->flusher_queue);
3995 INIT_LIST_HEAD(&wq->flusher_overflow);
3996 INIT_LIST_HEAD(&wq->maydays);
3997
3998 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3999 INIT_LIST_HEAD(&wq->list);
4000
4001 if (alloc_and_link_pwqs(wq) < 0)
4002 goto err_free_wq;
4003
4004 /*
4005 * Workqueues which may be used during memory reclaim should
4006 * have a rescuer to guarantee forward progress.
4007 */
4008 if (flags & WQ_MEM_RECLAIM) {
4009 struct worker *rescuer;
4010
4011 rescuer = alloc_worker(NUMA_NO_NODE);
4012 if (!rescuer)
4013 goto err_destroy;
4014
4015 rescuer->rescue_wq = wq;
4016 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4017 wq->name);
4018 if (IS_ERR(rescuer->task)) {
4019 kfree(rescuer);
4020 goto err_destroy;
4021 }
4022
4023 wq->rescuer = rescuer;
4024 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4025 wake_up_process(rescuer->task);
4026 }
4027
4028 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4029 goto err_destroy;
4030
4031 /*
4032 * wq_pool_mutex protects global freeze state and workqueues list.
4033 * Grab it, adjust max_active and add the new @wq to workqueues
4034 * list.
4035 */
4036 mutex_lock(&wq_pool_mutex);
4037
4038 mutex_lock(&wq->mutex);
4039 for_each_pwq(pwq, wq)
4040 pwq_adjust_max_active(pwq);
4041 mutex_unlock(&wq->mutex);
4042
4043 list_add_tail_rcu(&wq->list, &workqueues);
4044
4045 mutex_unlock(&wq_pool_mutex);
4046
4047 return wq;
4048
4049 err_free_wq:
4050 free_workqueue_attrs(wq->unbound_attrs);
4051 kfree(wq);
4052 return NULL;
4053 err_destroy:
4054 destroy_workqueue(wq);
4055 return NULL;
4056 }
4057 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4058
4059 /**
4060 * destroy_workqueue - safely terminate a workqueue
4061 * @wq: target workqueue
4062 *
4063 * Safely destroy a workqueue. All work currently pending will be done first.
4064 */
4065 void destroy_workqueue(struct workqueue_struct *wq)
4066 {
4067 struct pool_workqueue *pwq;
4068 int node;
4069
4070 /* drain it before proceeding with destruction */
4071 drain_workqueue(wq);
4072
4073 /* sanity checks */
4074 mutex_lock(&wq->mutex);
4075 for_each_pwq(pwq, wq) {
4076 int i;
4077
4078 for (i = 0; i < WORK_NR_COLORS; i++) {
4079 if (WARN_ON(pwq->nr_in_flight[i])) {
4080 mutex_unlock(&wq->mutex);
4081 show_workqueue_state();
4082 return;
4083 }
4084 }
4085
4086 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4087 WARN_ON(pwq->nr_active) ||
4088 WARN_ON(!list_empty(&pwq->delayed_works))) {
4089 mutex_unlock(&wq->mutex);
4090 show_workqueue_state();
4091 return;
4092 }
4093 }
4094 mutex_unlock(&wq->mutex);
4095
4096 /*
4097 * wq list is used to freeze wq, remove from list after
4098 * flushing is complete in case freeze races us.
4099 */
4100 mutex_lock(&wq_pool_mutex);
4101 list_del_rcu(&wq->list);
4102 mutex_unlock(&wq_pool_mutex);
4103
4104 workqueue_sysfs_unregister(wq);
4105
4106 if (wq->rescuer)
4107 kthread_stop(wq->rescuer->task);
4108
4109 if (!(wq->flags & WQ_UNBOUND)) {
4110 /*
4111 * The base ref is never dropped on per-cpu pwqs. Directly
4112 * schedule RCU free.
4113 */
4114 call_rcu_sched(&wq->rcu, rcu_free_wq);
4115 } else {
4116 /*
4117 * We're the sole accessor of @wq at this point. Directly
4118 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4119 * @wq will be freed when the last pwq is released.
4120 */
4121 for_each_node(node) {
4122 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4123 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4124 put_pwq_unlocked(pwq);
4125 }
4126
4127 /*
4128 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4129 * put. Don't access it afterwards.
4130 */
4131 pwq = wq->dfl_pwq;
4132 wq->dfl_pwq = NULL;
4133 put_pwq_unlocked(pwq);
4134 }
4135 }
4136 EXPORT_SYMBOL_GPL(destroy_workqueue);
4137
4138 /**
4139 * workqueue_set_max_active - adjust max_active of a workqueue
4140 * @wq: target workqueue
4141 * @max_active: new max_active value.
4142 *
4143 * Set max_active of @wq to @max_active.
4144 *
4145 * CONTEXT:
4146 * Don't call from IRQ context.
4147 */
4148 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4149 {
4150 struct pool_workqueue *pwq;
4151
4152 /* disallow meddling with max_active for ordered workqueues */
4153 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4154 return;
4155
4156 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4157
4158 mutex_lock(&wq->mutex);
4159
4160 wq->flags &= ~__WQ_ORDERED;
4161 wq->saved_max_active = max_active;
4162
4163 for_each_pwq(pwq, wq)
4164 pwq_adjust_max_active(pwq);
4165
4166 mutex_unlock(&wq->mutex);
4167 }
4168 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4169
4170 /**
4171 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4172 *
4173 * Determine whether %current is a workqueue rescuer. Can be used from
4174 * work functions to determine whether it's being run off the rescuer task.
4175 *
4176 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4177 */
4178 bool current_is_workqueue_rescuer(void)
4179 {
4180 struct worker *worker = current_wq_worker();
4181
4182 return worker && worker->rescue_wq;
4183 }
4184
4185 /**
4186 * workqueue_congested - test whether a workqueue is congested
4187 * @cpu: CPU in question
4188 * @wq: target workqueue
4189 *
4190 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4191 * no synchronization around this function and the test result is
4192 * unreliable and only useful as advisory hints or for debugging.
4193 *
4194 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4195 * Note that both per-cpu and unbound workqueues may be associated with
4196 * multiple pool_workqueues which have separate congested states. A
4197 * workqueue being congested on one CPU doesn't mean the workqueue is also
4198 * contested on other CPUs / NUMA nodes.
4199 *
4200 * Return:
4201 * %true if congested, %false otherwise.
4202 */
4203 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4204 {
4205 struct pool_workqueue *pwq;
4206 bool ret;
4207
4208 rcu_read_lock_sched();
4209
4210 if (cpu == WORK_CPU_UNBOUND)
4211 cpu = smp_processor_id();
4212
4213 if (!(wq->flags & WQ_UNBOUND))
4214 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4215 else
4216 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4217
4218 ret = !list_empty(&pwq->delayed_works);
4219 rcu_read_unlock_sched();
4220
4221 return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(workqueue_congested);
4224
4225 /**
4226 * work_busy - test whether a work is currently pending or running
4227 * @work: the work to be tested
4228 *
4229 * Test whether @work is currently pending or running. There is no
4230 * synchronization around this function and the test result is
4231 * unreliable and only useful as advisory hints or for debugging.
4232 *
4233 * Return:
4234 * OR'd bitmask of WORK_BUSY_* bits.
4235 */
4236 unsigned int work_busy(struct work_struct *work)
4237 {
4238 struct worker_pool *pool;
4239 unsigned long flags;
4240 unsigned int ret = 0;
4241
4242 if (work_pending(work))
4243 ret |= WORK_BUSY_PENDING;
4244
4245 local_irq_save(flags);
4246 pool = get_work_pool(work);
4247 if (pool) {
4248 spin_lock(&pool->lock);
4249 if (find_worker_executing_work(pool, work))
4250 ret |= WORK_BUSY_RUNNING;
4251 spin_unlock(&pool->lock);
4252 }
4253 local_irq_restore(flags);
4254
4255 return ret;
4256 }
4257 EXPORT_SYMBOL_GPL(work_busy);
4258
4259 /**
4260 * set_worker_desc - set description for the current work item
4261 * @fmt: printf-style format string
4262 * @...: arguments for the format string
4263 *
4264 * This function can be called by a running work function to describe what
4265 * the work item is about. If the worker task gets dumped, this
4266 * information will be printed out together to help debugging. The
4267 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4268 */
4269 void set_worker_desc(const char *fmt, ...)
4270 {
4271 struct worker *worker = current_wq_worker();
4272 va_list args;
4273
4274 if (worker) {
4275 va_start(args, fmt);
4276 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4277 va_end(args);
4278 worker->desc_valid = true;
4279 }
4280 }
4281
4282 /**
4283 * print_worker_info - print out worker information and description
4284 * @log_lvl: the log level to use when printing
4285 * @task: target task
4286 *
4287 * If @task is a worker and currently executing a work item, print out the
4288 * name of the workqueue being serviced and worker description set with
4289 * set_worker_desc() by the currently executing work item.
4290 *
4291 * This function can be safely called on any task as long as the
4292 * task_struct itself is accessible. While safe, this function isn't
4293 * synchronized and may print out mixups or garbages of limited length.
4294 */
4295 void print_worker_info(const char *log_lvl, struct task_struct *task)
4296 {
4297 work_func_t *fn = NULL;
4298 char name[WQ_NAME_LEN] = { };
4299 char desc[WORKER_DESC_LEN] = { };
4300 struct pool_workqueue *pwq = NULL;
4301 struct workqueue_struct *wq = NULL;
4302 bool desc_valid = false;
4303 struct worker *worker;
4304
4305 if (!(task->flags & PF_WQ_WORKER))
4306 return;
4307
4308 /*
4309 * This function is called without any synchronization and @task
4310 * could be in any state. Be careful with dereferences.
4311 */
4312 worker = kthread_probe_data(task);
4313
4314 /*
4315 * Carefully copy the associated workqueue's workfn and name. Keep
4316 * the original last '\0' in case the original contains garbage.
4317 */
4318 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4319 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4320 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4321 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4322
4323 /* copy worker description */
4324 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4325 if (desc_valid)
4326 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4327
4328 if (fn || name[0] || desc[0]) {
4329 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4330 if (desc[0])
4331 pr_cont(" (%s)", desc);
4332 pr_cont("\n");
4333 }
4334 }
4335
4336 static void pr_cont_pool_info(struct worker_pool *pool)
4337 {
4338 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4339 if (pool->node != NUMA_NO_NODE)
4340 pr_cont(" node=%d", pool->node);
4341 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4342 }
4343
4344 static void pr_cont_work(bool comma, struct work_struct *work)
4345 {
4346 if (work->func == wq_barrier_func) {
4347 struct wq_barrier *barr;
4348
4349 barr = container_of(work, struct wq_barrier, work);
4350
4351 pr_cont("%s BAR(%d)", comma ? "," : "",
4352 task_pid_nr(barr->task));
4353 } else {
4354 pr_cont("%s %pf", comma ? "," : "", work->func);
4355 }
4356 }
4357
4358 static void show_pwq(struct pool_workqueue *pwq)
4359 {
4360 struct worker_pool *pool = pwq->pool;
4361 struct work_struct *work;
4362 struct worker *worker;
4363 bool has_in_flight = false, has_pending = false;
4364 int bkt;
4365
4366 pr_info(" pwq %d:", pool->id);
4367 pr_cont_pool_info(pool);
4368
4369 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4370 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4371
4372 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4373 if (worker->current_pwq == pwq) {
4374 has_in_flight = true;
4375 break;
4376 }
4377 }
4378 if (has_in_flight) {
4379 bool comma = false;
4380
4381 pr_info(" in-flight:");
4382 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4383 if (worker->current_pwq != pwq)
4384 continue;
4385
4386 pr_cont("%s %d%s:%pf", comma ? "," : "",
4387 task_pid_nr(worker->task),
4388 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4389 worker->current_func);
4390 list_for_each_entry(work, &worker->scheduled, entry)
4391 pr_cont_work(false, work);
4392 comma = true;
4393 }
4394 pr_cont("\n");
4395 }
4396
4397 list_for_each_entry(work, &pool->worklist, entry) {
4398 if (get_work_pwq(work) == pwq) {
4399 has_pending = true;
4400 break;
4401 }
4402 }
4403 if (has_pending) {
4404 bool comma = false;
4405
4406 pr_info(" pending:");
4407 list_for_each_entry(work, &pool->worklist, entry) {
4408 if (get_work_pwq(work) != pwq)
4409 continue;
4410
4411 pr_cont_work(comma, work);
4412 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4413 }
4414 pr_cont("\n");
4415 }
4416
4417 if (!list_empty(&pwq->delayed_works)) {
4418 bool comma = false;
4419
4420 pr_info(" delayed:");
4421 list_for_each_entry(work, &pwq->delayed_works, entry) {
4422 pr_cont_work(comma, work);
4423 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4424 }
4425 pr_cont("\n");
4426 }
4427 }
4428
4429 /**
4430 * show_workqueue_state - dump workqueue state
4431 *
4432 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4433 * all busy workqueues and pools.
4434 */
4435 void show_workqueue_state(void)
4436 {
4437 struct workqueue_struct *wq;
4438 struct worker_pool *pool;
4439 unsigned long flags;
4440 int pi;
4441
4442 rcu_read_lock_sched();
4443
4444 pr_info("Showing busy workqueues and worker pools:\n");
4445
4446 list_for_each_entry_rcu(wq, &workqueues, list) {
4447 struct pool_workqueue *pwq;
4448 bool idle = true;
4449
4450 for_each_pwq(pwq, wq) {
4451 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4452 idle = false;
4453 break;
4454 }
4455 }
4456 if (idle)
4457 continue;
4458
4459 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4460
4461 for_each_pwq(pwq, wq) {
4462 spin_lock_irqsave(&pwq->pool->lock, flags);
4463 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4464 show_pwq(pwq);
4465 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4466 }
4467 }
4468
4469 for_each_pool(pool, pi) {
4470 struct worker *worker;
4471 bool first = true;
4472
4473 spin_lock_irqsave(&pool->lock, flags);
4474 if (pool->nr_workers == pool->nr_idle)
4475 goto next_pool;
4476
4477 pr_info("pool %d:", pool->id);
4478 pr_cont_pool_info(pool);
4479 pr_cont(" hung=%us workers=%d",
4480 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4481 pool->nr_workers);
4482 if (pool->manager)
4483 pr_cont(" manager: %d",
4484 task_pid_nr(pool->manager->task));
4485 list_for_each_entry(worker, &pool->idle_list, entry) {
4486 pr_cont(" %s%d", first ? "idle: " : "",
4487 task_pid_nr(worker->task));
4488 first = false;
4489 }
4490 pr_cont("\n");
4491 next_pool:
4492 spin_unlock_irqrestore(&pool->lock, flags);
4493 }
4494
4495 rcu_read_unlock_sched();
4496 }
4497
4498 /*
4499 * CPU hotplug.
4500 *
4501 * There are two challenges in supporting CPU hotplug. Firstly, there
4502 * are a lot of assumptions on strong associations among work, pwq and
4503 * pool which make migrating pending and scheduled works very
4504 * difficult to implement without impacting hot paths. Secondly,
4505 * worker pools serve mix of short, long and very long running works making
4506 * blocked draining impractical.
4507 *
4508 * This is solved by allowing the pools to be disassociated from the CPU
4509 * running as an unbound one and allowing it to be reattached later if the
4510 * cpu comes back online.
4511 */
4512
4513 static void wq_unbind_fn(struct work_struct *work)
4514 {
4515 int cpu = smp_processor_id();
4516 struct worker_pool *pool;
4517 struct worker *worker;
4518
4519 for_each_cpu_worker_pool(pool, cpu) {
4520 mutex_lock(&pool->attach_mutex);
4521 spin_lock_irq(&pool->lock);
4522
4523 /*
4524 * We've blocked all attach/detach operations. Make all workers
4525 * unbound and set DISASSOCIATED. Before this, all workers
4526 * except for the ones which are still executing works from
4527 * before the last CPU down must be on the cpu. After
4528 * this, they may become diasporas.
4529 */
4530 for_each_pool_worker(worker, pool)
4531 worker->flags |= WORKER_UNBOUND;
4532
4533 pool->flags |= POOL_DISASSOCIATED;
4534
4535 spin_unlock_irq(&pool->lock);
4536 mutex_unlock(&pool->attach_mutex);
4537
4538 /*
4539 * Call schedule() so that we cross rq->lock and thus can
4540 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4541 * This is necessary as scheduler callbacks may be invoked
4542 * from other cpus.
4543 */
4544 schedule();
4545
4546 /*
4547 * Sched callbacks are disabled now. Zap nr_running.
4548 * After this, nr_running stays zero and need_more_worker()
4549 * and keep_working() are always true as long as the
4550 * worklist is not empty. This pool now behaves as an
4551 * unbound (in terms of concurrency management) pool which
4552 * are served by workers tied to the pool.
4553 */
4554 atomic_set(&pool->nr_running, 0);
4555
4556 /*
4557 * With concurrency management just turned off, a busy
4558 * worker blocking could lead to lengthy stalls. Kick off
4559 * unbound chain execution of currently pending work items.
4560 */
4561 spin_lock_irq(&pool->lock);
4562 wake_up_worker(pool);
4563 spin_unlock_irq(&pool->lock);
4564 }
4565 }
4566
4567 /**
4568 * rebind_workers - rebind all workers of a pool to the associated CPU
4569 * @pool: pool of interest
4570 *
4571 * @pool->cpu is coming online. Rebind all workers to the CPU.
4572 */
4573 static void rebind_workers(struct worker_pool *pool)
4574 {
4575 struct worker *worker;
4576
4577 lockdep_assert_held(&pool->attach_mutex);
4578
4579 /*
4580 * Restore CPU affinity of all workers. As all idle workers should
4581 * be on the run-queue of the associated CPU before any local
4582 * wake-ups for concurrency management happen, restore CPU affinity
4583 * of all workers first and then clear UNBOUND. As we're called
4584 * from CPU_ONLINE, the following shouldn't fail.
4585 */
4586 for_each_pool_worker(worker, pool)
4587 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4588 pool->attrs->cpumask) < 0);
4589
4590 spin_lock_irq(&pool->lock);
4591
4592 /*
4593 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4594 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4595 * being reworked and this can go away in time.
4596 */
4597 if (!(pool->flags & POOL_DISASSOCIATED)) {
4598 spin_unlock_irq(&pool->lock);
4599 return;
4600 }
4601
4602 pool->flags &= ~POOL_DISASSOCIATED;
4603
4604 for_each_pool_worker(worker, pool) {
4605 unsigned int worker_flags = worker->flags;
4606
4607 /*
4608 * A bound idle worker should actually be on the runqueue
4609 * of the associated CPU for local wake-ups targeting it to
4610 * work. Kick all idle workers so that they migrate to the
4611 * associated CPU. Doing this in the same loop as
4612 * replacing UNBOUND with REBOUND is safe as no worker will
4613 * be bound before @pool->lock is released.
4614 */
4615 if (worker_flags & WORKER_IDLE)
4616 wake_up_process(worker->task);
4617
4618 /*
4619 * We want to clear UNBOUND but can't directly call
4620 * worker_clr_flags() or adjust nr_running. Atomically
4621 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4622 * @worker will clear REBOUND using worker_clr_flags() when
4623 * it initiates the next execution cycle thus restoring
4624 * concurrency management. Note that when or whether
4625 * @worker clears REBOUND doesn't affect correctness.
4626 *
4627 * WRITE_ONCE() is necessary because @worker->flags may be
4628 * tested without holding any lock in
4629 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4630 * fail incorrectly leading to premature concurrency
4631 * management operations.
4632 */
4633 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4634 worker_flags |= WORKER_REBOUND;
4635 worker_flags &= ~WORKER_UNBOUND;
4636 WRITE_ONCE(worker->flags, worker_flags);
4637 }
4638
4639 spin_unlock_irq(&pool->lock);
4640 }
4641
4642 /**
4643 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4644 * @pool: unbound pool of interest
4645 * @cpu: the CPU which is coming up
4646 *
4647 * An unbound pool may end up with a cpumask which doesn't have any online
4648 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4649 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4650 * online CPU before, cpus_allowed of all its workers should be restored.
4651 */
4652 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4653 {
4654 static cpumask_t cpumask;
4655 struct worker *worker;
4656
4657 lockdep_assert_held(&pool->attach_mutex);
4658
4659 /* is @cpu allowed for @pool? */
4660 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4661 return;
4662
4663 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4664
4665 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4666 for_each_pool_worker(worker, pool)
4667 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4668 }
4669
4670 int workqueue_prepare_cpu(unsigned int cpu)
4671 {
4672 struct worker_pool *pool;
4673
4674 for_each_cpu_worker_pool(pool, cpu) {
4675 if (pool->nr_workers)
4676 continue;
4677 if (!create_worker(pool))
4678 return -ENOMEM;
4679 }
4680 return 0;
4681 }
4682
4683 int workqueue_online_cpu(unsigned int cpu)
4684 {
4685 struct worker_pool *pool;
4686 struct workqueue_struct *wq;
4687 int pi;
4688
4689 mutex_lock(&wq_pool_mutex);
4690
4691 for_each_pool(pool, pi) {
4692 mutex_lock(&pool->attach_mutex);
4693
4694 if (pool->cpu == cpu)
4695 rebind_workers(pool);
4696 else if (pool->cpu < 0)
4697 restore_unbound_workers_cpumask(pool, cpu);
4698
4699 mutex_unlock(&pool->attach_mutex);
4700 }
4701
4702 /* update NUMA affinity of unbound workqueues */
4703 list_for_each_entry(wq, &workqueues, list)
4704 wq_update_unbound_numa(wq, cpu, true);
4705
4706 mutex_unlock(&wq_pool_mutex);
4707 return 0;
4708 }
4709
4710 int workqueue_offline_cpu(unsigned int cpu)
4711 {
4712 struct work_struct unbind_work;
4713 struct workqueue_struct *wq;
4714
4715 /* unbinding per-cpu workers should happen on the local CPU */
4716 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4717 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4718
4719 /* update NUMA affinity of unbound workqueues */
4720 mutex_lock(&wq_pool_mutex);
4721 list_for_each_entry(wq, &workqueues, list)
4722 wq_update_unbound_numa(wq, cpu, false);
4723 mutex_unlock(&wq_pool_mutex);
4724
4725 /* wait for per-cpu unbinding to finish */
4726 flush_work(&unbind_work);
4727 destroy_work_on_stack(&unbind_work);
4728 return 0;
4729 }
4730
4731 #ifdef CONFIG_SMP
4732
4733 struct work_for_cpu {
4734 struct work_struct work;
4735 long (*fn)(void *);
4736 void *arg;
4737 long ret;
4738 };
4739
4740 static void work_for_cpu_fn(struct work_struct *work)
4741 {
4742 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4743
4744 wfc->ret = wfc->fn(wfc->arg);
4745 }
4746
4747 /**
4748 * work_on_cpu - run a function in thread context on a particular cpu
4749 * @cpu: the cpu to run on
4750 * @fn: the function to run
4751 * @arg: the function arg
4752 *
4753 * It is up to the caller to ensure that the cpu doesn't go offline.
4754 * The caller must not hold any locks which would prevent @fn from completing.
4755 *
4756 * Return: The value @fn returns.
4757 */
4758 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4759 {
4760 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4761
4762 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4763 schedule_work_on(cpu, &wfc.work);
4764 flush_work(&wfc.work);
4765 destroy_work_on_stack(&wfc.work);
4766 return wfc.ret;
4767 }
4768 EXPORT_SYMBOL_GPL(work_on_cpu);
4769
4770 /**
4771 * work_on_cpu_safe - run a function in thread context on a particular cpu
4772 * @cpu: the cpu to run on
4773 * @fn: the function to run
4774 * @arg: the function argument
4775 *
4776 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4777 * any locks which would prevent @fn from completing.
4778 *
4779 * Return: The value @fn returns.
4780 */
4781 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4782 {
4783 long ret = -ENODEV;
4784
4785 get_online_cpus();
4786 if (cpu_online(cpu))
4787 ret = work_on_cpu(cpu, fn, arg);
4788 put_online_cpus();
4789 return ret;
4790 }
4791 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4792 #endif /* CONFIG_SMP */
4793
4794 #ifdef CONFIG_FREEZER
4795
4796 /**
4797 * freeze_workqueues_begin - begin freezing workqueues
4798 *
4799 * Start freezing workqueues. After this function returns, all freezable
4800 * workqueues will queue new works to their delayed_works list instead of
4801 * pool->worklist.
4802 *
4803 * CONTEXT:
4804 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4805 */
4806 void freeze_workqueues_begin(void)
4807 {
4808 struct workqueue_struct *wq;
4809 struct pool_workqueue *pwq;
4810
4811 mutex_lock(&wq_pool_mutex);
4812
4813 WARN_ON_ONCE(workqueue_freezing);
4814 workqueue_freezing = true;
4815
4816 list_for_each_entry(wq, &workqueues, list) {
4817 mutex_lock(&wq->mutex);
4818 for_each_pwq(pwq, wq)
4819 pwq_adjust_max_active(pwq);
4820 mutex_unlock(&wq->mutex);
4821 }
4822
4823 mutex_unlock(&wq_pool_mutex);
4824 }
4825
4826 /**
4827 * freeze_workqueues_busy - are freezable workqueues still busy?
4828 *
4829 * Check whether freezing is complete. This function must be called
4830 * between freeze_workqueues_begin() and thaw_workqueues().
4831 *
4832 * CONTEXT:
4833 * Grabs and releases wq_pool_mutex.
4834 *
4835 * Return:
4836 * %true if some freezable workqueues are still busy. %false if freezing
4837 * is complete.
4838 */
4839 bool freeze_workqueues_busy(void)
4840 {
4841 bool busy = false;
4842 struct workqueue_struct *wq;
4843 struct pool_workqueue *pwq;
4844
4845 mutex_lock(&wq_pool_mutex);
4846
4847 WARN_ON_ONCE(!workqueue_freezing);
4848
4849 list_for_each_entry(wq, &workqueues, list) {
4850 if (!(wq->flags & WQ_FREEZABLE))
4851 continue;
4852 /*
4853 * nr_active is monotonically decreasing. It's safe
4854 * to peek without lock.
4855 */
4856 rcu_read_lock_sched();
4857 for_each_pwq(pwq, wq) {
4858 WARN_ON_ONCE(pwq->nr_active < 0);
4859 if (pwq->nr_active) {
4860 busy = true;
4861 rcu_read_unlock_sched();
4862 goto out_unlock;
4863 }
4864 }
4865 rcu_read_unlock_sched();
4866 }
4867 out_unlock:
4868 mutex_unlock(&wq_pool_mutex);
4869 return busy;
4870 }
4871
4872 /**
4873 * thaw_workqueues - thaw workqueues
4874 *
4875 * Thaw workqueues. Normal queueing is restored and all collected
4876 * frozen works are transferred to their respective pool worklists.
4877 *
4878 * CONTEXT:
4879 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4880 */
4881 void thaw_workqueues(void)
4882 {
4883 struct workqueue_struct *wq;
4884 struct pool_workqueue *pwq;
4885
4886 mutex_lock(&wq_pool_mutex);
4887
4888 if (!workqueue_freezing)
4889 goto out_unlock;
4890
4891 workqueue_freezing = false;
4892
4893 /* restore max_active and repopulate worklist */
4894 list_for_each_entry(wq, &workqueues, list) {
4895 mutex_lock(&wq->mutex);
4896 for_each_pwq(pwq, wq)
4897 pwq_adjust_max_active(pwq);
4898 mutex_unlock(&wq->mutex);
4899 }
4900
4901 out_unlock:
4902 mutex_unlock(&wq_pool_mutex);
4903 }
4904 #endif /* CONFIG_FREEZER */
4905
4906 static int workqueue_apply_unbound_cpumask(void)
4907 {
4908 LIST_HEAD(ctxs);
4909 int ret = 0;
4910 struct workqueue_struct *wq;
4911 struct apply_wqattrs_ctx *ctx, *n;
4912
4913 lockdep_assert_held(&wq_pool_mutex);
4914
4915 list_for_each_entry(wq, &workqueues, list) {
4916 if (!(wq->flags & WQ_UNBOUND))
4917 continue;
4918 /* creating multiple pwqs breaks ordering guarantee */
4919 if (wq->flags & __WQ_ORDERED)
4920 continue;
4921
4922 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4923 if (!ctx) {
4924 ret = -ENOMEM;
4925 break;
4926 }
4927
4928 list_add_tail(&ctx->list, &ctxs);
4929 }
4930
4931 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4932 if (!ret)
4933 apply_wqattrs_commit(ctx);
4934 apply_wqattrs_cleanup(ctx);
4935 }
4936
4937 return ret;
4938 }
4939
4940 /**
4941 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4942 * @cpumask: the cpumask to set
4943 *
4944 * The low-level workqueues cpumask is a global cpumask that limits
4945 * the affinity of all unbound workqueues. This function check the @cpumask
4946 * and apply it to all unbound workqueues and updates all pwqs of them.
4947 *
4948 * Retun: 0 - Success
4949 * -EINVAL - Invalid @cpumask
4950 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4951 */
4952 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4953 {
4954 int ret = -EINVAL;
4955 cpumask_var_t saved_cpumask;
4956
4957 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4958 return -ENOMEM;
4959
4960 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4961 if (!cpumask_empty(cpumask)) {
4962 apply_wqattrs_lock();
4963
4964 /* save the old wq_unbound_cpumask. */
4965 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4966
4967 /* update wq_unbound_cpumask at first and apply it to wqs. */
4968 cpumask_copy(wq_unbound_cpumask, cpumask);
4969 ret = workqueue_apply_unbound_cpumask();
4970
4971 /* restore the wq_unbound_cpumask when failed. */
4972 if (ret < 0)
4973 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4974
4975 apply_wqattrs_unlock();
4976 }
4977
4978 free_cpumask_var(saved_cpumask);
4979 return ret;
4980 }
4981
4982 #ifdef CONFIG_SYSFS
4983 /*
4984 * Workqueues with WQ_SYSFS flag set is visible to userland via
4985 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4986 * following attributes.
4987 *
4988 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4989 * max_active RW int : maximum number of in-flight work items
4990 *
4991 * Unbound workqueues have the following extra attributes.
4992 *
4993 * pool_ids RO int : the associated pool IDs for each node
4994 * nice RW int : nice value of the workers
4995 * cpumask RW mask : bitmask of allowed CPUs for the workers
4996 * numa RW bool : whether enable NUMA affinity
4997 */
4998 struct wq_device {
4999 struct workqueue_struct *wq;
5000 struct device dev;
5001 };
5002
5003 static struct workqueue_struct *dev_to_wq(struct device *dev)
5004 {
5005 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5006
5007 return wq_dev->wq;
5008 }
5009
5010 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5011 char *buf)
5012 {
5013 struct workqueue_struct *wq = dev_to_wq(dev);
5014
5015 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5016 }
5017 static DEVICE_ATTR_RO(per_cpu);
5018
5019 static ssize_t max_active_show(struct device *dev,
5020 struct device_attribute *attr, char *buf)
5021 {
5022 struct workqueue_struct *wq = dev_to_wq(dev);
5023
5024 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5025 }
5026
5027 static ssize_t max_active_store(struct device *dev,
5028 struct device_attribute *attr, const char *buf,
5029 size_t count)
5030 {
5031 struct workqueue_struct *wq = dev_to_wq(dev);
5032 int val;
5033
5034 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5035 return -EINVAL;
5036
5037 workqueue_set_max_active(wq, val);
5038 return count;
5039 }
5040 static DEVICE_ATTR_RW(max_active);
5041
5042 static struct attribute *wq_sysfs_attrs[] = {
5043 &dev_attr_per_cpu.attr,
5044 &dev_attr_max_active.attr,
5045 NULL,
5046 };
5047 ATTRIBUTE_GROUPS(wq_sysfs);
5048
5049 static ssize_t wq_pool_ids_show(struct device *dev,
5050 struct device_attribute *attr, char *buf)
5051 {
5052 struct workqueue_struct *wq = dev_to_wq(dev);
5053 const char *delim = "";
5054 int node, written = 0;
5055
5056 rcu_read_lock_sched();
5057 for_each_node(node) {
5058 written += scnprintf(buf + written, PAGE_SIZE - written,
5059 "%s%d:%d", delim, node,
5060 unbound_pwq_by_node(wq, node)->pool->id);
5061 delim = " ";
5062 }
5063 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5064 rcu_read_unlock_sched();
5065
5066 return written;
5067 }
5068
5069 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5070 char *buf)
5071 {
5072 struct workqueue_struct *wq = dev_to_wq(dev);
5073 int written;
5074
5075 mutex_lock(&wq->mutex);
5076 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5077 mutex_unlock(&wq->mutex);
5078
5079 return written;
5080 }
5081
5082 /* prepare workqueue_attrs for sysfs store operations */
5083 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5084 {
5085 struct workqueue_attrs *attrs;
5086
5087 lockdep_assert_held(&wq_pool_mutex);
5088
5089 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5090 if (!attrs)
5091 return NULL;
5092
5093 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5094 return attrs;
5095 }
5096
5097 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5098 const char *buf, size_t count)
5099 {
5100 struct workqueue_struct *wq = dev_to_wq(dev);
5101 struct workqueue_attrs *attrs;
5102 int ret = -ENOMEM;
5103
5104 apply_wqattrs_lock();
5105
5106 attrs = wq_sysfs_prep_attrs(wq);
5107 if (!attrs)
5108 goto out_unlock;
5109
5110 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5111 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5112 ret = apply_workqueue_attrs_locked(wq, attrs);
5113 else
5114 ret = -EINVAL;
5115
5116 out_unlock:
5117 apply_wqattrs_unlock();
5118 free_workqueue_attrs(attrs);
5119 return ret ?: count;
5120 }
5121
5122 static ssize_t wq_cpumask_show(struct device *dev,
5123 struct device_attribute *attr, char *buf)
5124 {
5125 struct workqueue_struct *wq = dev_to_wq(dev);
5126 int written;
5127
5128 mutex_lock(&wq->mutex);
5129 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5130 cpumask_pr_args(wq->unbound_attrs->cpumask));
5131 mutex_unlock(&wq->mutex);
5132 return written;
5133 }
5134
5135 static ssize_t wq_cpumask_store(struct device *dev,
5136 struct device_attribute *attr,
5137 const char *buf, size_t count)
5138 {
5139 struct workqueue_struct *wq = dev_to_wq(dev);
5140 struct workqueue_attrs *attrs;
5141 int ret = -ENOMEM;
5142
5143 apply_wqattrs_lock();
5144
5145 attrs = wq_sysfs_prep_attrs(wq);
5146 if (!attrs)
5147 goto out_unlock;
5148
5149 ret = cpumask_parse(buf, attrs->cpumask);
5150 if (!ret)
5151 ret = apply_workqueue_attrs_locked(wq, attrs);
5152
5153 out_unlock:
5154 apply_wqattrs_unlock();
5155 free_workqueue_attrs(attrs);
5156 return ret ?: count;
5157 }
5158
5159 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5160 char *buf)
5161 {
5162 struct workqueue_struct *wq = dev_to_wq(dev);
5163 int written;
5164
5165 mutex_lock(&wq->mutex);
5166 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5167 !wq->unbound_attrs->no_numa);
5168 mutex_unlock(&wq->mutex);
5169
5170 return written;
5171 }
5172
5173 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5174 const char *buf, size_t count)
5175 {
5176 struct workqueue_struct *wq = dev_to_wq(dev);
5177 struct workqueue_attrs *attrs;
5178 int v, ret = -ENOMEM;
5179
5180 apply_wqattrs_lock();
5181
5182 attrs = wq_sysfs_prep_attrs(wq);
5183 if (!attrs)
5184 goto out_unlock;
5185
5186 ret = -EINVAL;
5187 if (sscanf(buf, "%d", &v) == 1) {
5188 attrs->no_numa = !v;
5189 ret = apply_workqueue_attrs_locked(wq, attrs);
5190 }
5191
5192 out_unlock:
5193 apply_wqattrs_unlock();
5194 free_workqueue_attrs(attrs);
5195 return ret ?: count;
5196 }
5197
5198 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5199 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5200 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5201 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5202 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5203 __ATTR_NULL,
5204 };
5205
5206 static struct bus_type wq_subsys = {
5207 .name = "workqueue",
5208 .dev_groups = wq_sysfs_groups,
5209 };
5210
5211 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5212 struct device_attribute *attr, char *buf)
5213 {
5214 int written;
5215
5216 mutex_lock(&wq_pool_mutex);
5217 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5218 cpumask_pr_args(wq_unbound_cpumask));
5219 mutex_unlock(&wq_pool_mutex);
5220
5221 return written;
5222 }
5223
5224 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5225 struct device_attribute *attr, const char *buf, size_t count)
5226 {
5227 cpumask_var_t cpumask;
5228 int ret;
5229
5230 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5231 return -ENOMEM;
5232
5233 ret = cpumask_parse(buf, cpumask);
5234 if (!ret)
5235 ret = workqueue_set_unbound_cpumask(cpumask);
5236
5237 free_cpumask_var(cpumask);
5238 return ret ? ret : count;
5239 }
5240
5241 static struct device_attribute wq_sysfs_cpumask_attr =
5242 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5243 wq_unbound_cpumask_store);
5244
5245 static int __init wq_sysfs_init(void)
5246 {
5247 int err;
5248
5249 err = subsys_virtual_register(&wq_subsys, NULL);
5250 if (err)
5251 return err;
5252
5253 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5254 }
5255 core_initcall(wq_sysfs_init);
5256
5257 static void wq_device_release(struct device *dev)
5258 {
5259 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5260
5261 kfree(wq_dev);
5262 }
5263
5264 /**
5265 * workqueue_sysfs_register - make a workqueue visible in sysfs
5266 * @wq: the workqueue to register
5267 *
5268 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5269 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5270 * which is the preferred method.
5271 *
5272 * Workqueue user should use this function directly iff it wants to apply
5273 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5274 * apply_workqueue_attrs() may race against userland updating the
5275 * attributes.
5276 *
5277 * Return: 0 on success, -errno on failure.
5278 */
5279 int workqueue_sysfs_register(struct workqueue_struct *wq)
5280 {
5281 struct wq_device *wq_dev;
5282 int ret;
5283
5284 /*
5285 * Adjusting max_active or creating new pwqs by applying
5286 * attributes breaks ordering guarantee. Disallow exposing ordered
5287 * workqueues.
5288 */
5289 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5290 return -EINVAL;
5291
5292 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5293 if (!wq_dev)
5294 return -ENOMEM;
5295
5296 wq_dev->wq = wq;
5297 wq_dev->dev.bus = &wq_subsys;
5298 wq_dev->dev.release = wq_device_release;
5299 dev_set_name(&wq_dev->dev, "%s", wq->name);
5300
5301 /*
5302 * unbound_attrs are created separately. Suppress uevent until
5303 * everything is ready.
5304 */
5305 dev_set_uevent_suppress(&wq_dev->dev, true);
5306
5307 ret = device_register(&wq_dev->dev);
5308 if (ret) {
5309 kfree(wq_dev);
5310 wq->wq_dev = NULL;
5311 return ret;
5312 }
5313
5314 if (wq->flags & WQ_UNBOUND) {
5315 struct device_attribute *attr;
5316
5317 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5318 ret = device_create_file(&wq_dev->dev, attr);
5319 if (ret) {
5320 device_unregister(&wq_dev->dev);
5321 wq->wq_dev = NULL;
5322 return ret;
5323 }
5324 }
5325 }
5326
5327 dev_set_uevent_suppress(&wq_dev->dev, false);
5328 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5329 return 0;
5330 }
5331
5332 /**
5333 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5334 * @wq: the workqueue to unregister
5335 *
5336 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5337 */
5338 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5339 {
5340 struct wq_device *wq_dev = wq->wq_dev;
5341
5342 if (!wq->wq_dev)
5343 return;
5344
5345 wq->wq_dev = NULL;
5346 device_unregister(&wq_dev->dev);
5347 }
5348 #else /* CONFIG_SYSFS */
5349 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5350 #endif /* CONFIG_SYSFS */
5351
5352 /*
5353 * Workqueue watchdog.
5354 *
5355 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5356 * flush dependency, a concurrency managed work item which stays RUNNING
5357 * indefinitely. Workqueue stalls can be very difficult to debug as the
5358 * usual warning mechanisms don't trigger and internal workqueue state is
5359 * largely opaque.
5360 *
5361 * Workqueue watchdog monitors all worker pools periodically and dumps
5362 * state if some pools failed to make forward progress for a while where
5363 * forward progress is defined as the first item on ->worklist changing.
5364 *
5365 * This mechanism is controlled through the kernel parameter
5366 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5367 * corresponding sysfs parameter file.
5368 */
5369 #ifdef CONFIG_WQ_WATCHDOG
5370
5371 static unsigned long wq_watchdog_thresh = 30;
5372 static struct timer_list wq_watchdog_timer;
5373
5374 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5375 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5376
5377 static void wq_watchdog_reset_touched(void)
5378 {
5379 int cpu;
5380
5381 wq_watchdog_touched = jiffies;
5382 for_each_possible_cpu(cpu)
5383 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5384 }
5385
5386 static void wq_watchdog_timer_fn(struct timer_list *unused)
5387 {
5388 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5389 bool lockup_detected = false;
5390 struct worker_pool *pool;
5391 int pi;
5392
5393 if (!thresh)
5394 return;
5395
5396 rcu_read_lock();
5397
5398 for_each_pool(pool, pi) {
5399 unsigned long pool_ts, touched, ts;
5400
5401 if (list_empty(&pool->worklist))
5402 continue;
5403
5404 /* get the latest of pool and touched timestamps */
5405 pool_ts = READ_ONCE(pool->watchdog_ts);
5406 touched = READ_ONCE(wq_watchdog_touched);
5407
5408 if (time_after(pool_ts, touched))
5409 ts = pool_ts;
5410 else
5411 ts = touched;
5412
5413 if (pool->cpu >= 0) {
5414 unsigned long cpu_touched =
5415 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5416 pool->cpu));
5417 if (time_after(cpu_touched, ts))
5418 ts = cpu_touched;
5419 }
5420
5421 /* did we stall? */
5422 if (time_after(jiffies, ts + thresh)) {
5423 lockup_detected = true;
5424 pr_emerg("BUG: workqueue lockup - pool");
5425 pr_cont_pool_info(pool);
5426 pr_cont(" stuck for %us!\n",
5427 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5428 }
5429 }
5430
5431 rcu_read_unlock();
5432
5433 if (lockup_detected)
5434 show_workqueue_state();
5435
5436 wq_watchdog_reset_touched();
5437 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5438 }
5439
5440 void wq_watchdog_touch(int cpu)
5441 {
5442 if (cpu >= 0)
5443 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5444 else
5445 wq_watchdog_touched = jiffies;
5446 }
5447
5448 static void wq_watchdog_set_thresh(unsigned long thresh)
5449 {
5450 wq_watchdog_thresh = 0;
5451 del_timer_sync(&wq_watchdog_timer);
5452
5453 if (thresh) {
5454 wq_watchdog_thresh = thresh;
5455 wq_watchdog_reset_touched();
5456 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5457 }
5458 }
5459
5460 static int wq_watchdog_param_set_thresh(const char *val,
5461 const struct kernel_param *kp)
5462 {
5463 unsigned long thresh;
5464 int ret;
5465
5466 ret = kstrtoul(val, 0, &thresh);
5467 if (ret)
5468 return ret;
5469
5470 if (system_wq)
5471 wq_watchdog_set_thresh(thresh);
5472 else
5473 wq_watchdog_thresh = thresh;
5474
5475 return 0;
5476 }
5477
5478 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5479 .set = wq_watchdog_param_set_thresh,
5480 .get = param_get_ulong,
5481 };
5482
5483 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5484 0644);
5485
5486 static void wq_watchdog_init(void)
5487 {
5488 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5489 wq_watchdog_set_thresh(wq_watchdog_thresh);
5490 }
5491
5492 #else /* CONFIG_WQ_WATCHDOG */
5493
5494 static inline void wq_watchdog_init(void) { }
5495
5496 #endif /* CONFIG_WQ_WATCHDOG */
5497
5498 static void __init wq_numa_init(void)
5499 {
5500 cpumask_var_t *tbl;
5501 int node, cpu;
5502
5503 if (num_possible_nodes() <= 1)
5504 return;
5505
5506 if (wq_disable_numa) {
5507 pr_info("workqueue: NUMA affinity support disabled\n");
5508 return;
5509 }
5510
5511 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5512 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5513
5514 /*
5515 * We want masks of possible CPUs of each node which isn't readily
5516 * available. Build one from cpu_to_node() which should have been
5517 * fully initialized by now.
5518 */
5519 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5520 BUG_ON(!tbl);
5521
5522 for_each_node(node)
5523 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5524 node_online(node) ? node : NUMA_NO_NODE));
5525
5526 for_each_possible_cpu(cpu) {
5527 node = cpu_to_node(cpu);
5528 if (WARN_ON(node == NUMA_NO_NODE)) {
5529 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5530 /* happens iff arch is bonkers, let's just proceed */
5531 return;
5532 }
5533 cpumask_set_cpu(cpu, tbl[node]);
5534 }
5535
5536 wq_numa_possible_cpumask = tbl;
5537 wq_numa_enabled = true;
5538 }
5539
5540 /**
5541 * workqueue_init_early - early init for workqueue subsystem
5542 *
5543 * This is the first half of two-staged workqueue subsystem initialization
5544 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5545 * idr are up. It sets up all the data structures and system workqueues
5546 * and allows early boot code to create workqueues and queue/cancel work
5547 * items. Actual work item execution starts only after kthreads can be
5548 * created and scheduled right before early initcalls.
5549 */
5550 int __init workqueue_init_early(void)
5551 {
5552 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5553 int i, cpu;
5554
5555 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5556
5557 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5558 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5559
5560 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5561
5562 /* initialize CPU pools */
5563 for_each_possible_cpu(cpu) {
5564 struct worker_pool *pool;
5565
5566 i = 0;
5567 for_each_cpu_worker_pool(pool, cpu) {
5568 BUG_ON(init_worker_pool(pool));
5569 pool->cpu = cpu;
5570 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5571 pool->attrs->nice = std_nice[i++];
5572 pool->node = cpu_to_node(cpu);
5573
5574 /* alloc pool ID */
5575 mutex_lock(&wq_pool_mutex);
5576 BUG_ON(worker_pool_assign_id(pool));
5577 mutex_unlock(&wq_pool_mutex);
5578 }
5579 }
5580
5581 /* create default unbound and ordered wq attrs */
5582 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5583 struct workqueue_attrs *attrs;
5584
5585 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5586 attrs->nice = std_nice[i];
5587 unbound_std_wq_attrs[i] = attrs;
5588
5589 /*
5590 * An ordered wq should have only one pwq as ordering is
5591 * guaranteed by max_active which is enforced by pwqs.
5592 * Turn off NUMA so that dfl_pwq is used for all nodes.
5593 */
5594 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5595 attrs->nice = std_nice[i];
5596 attrs->no_numa = true;
5597 ordered_wq_attrs[i] = attrs;
5598 }
5599
5600 system_wq = alloc_workqueue("events", 0, 0);
5601 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5602 system_long_wq = alloc_workqueue("events_long", 0, 0);
5603 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5604 WQ_UNBOUND_MAX_ACTIVE);
5605 system_freezable_wq = alloc_workqueue("events_freezable",
5606 WQ_FREEZABLE, 0);
5607 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5608 WQ_POWER_EFFICIENT, 0);
5609 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5610 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5611 0);
5612 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5613 !system_unbound_wq || !system_freezable_wq ||
5614 !system_power_efficient_wq ||
5615 !system_freezable_power_efficient_wq);
5616
5617 return 0;
5618 }
5619
5620 /**
5621 * workqueue_init - bring workqueue subsystem fully online
5622 *
5623 * This is the latter half of two-staged workqueue subsystem initialization
5624 * and invoked as soon as kthreads can be created and scheduled.
5625 * Workqueues have been created and work items queued on them, but there
5626 * are no kworkers executing the work items yet. Populate the worker pools
5627 * with the initial workers and enable future kworker creations.
5628 */
5629 int __init workqueue_init(void)
5630 {
5631 struct workqueue_struct *wq;
5632 struct worker_pool *pool;
5633 int cpu, bkt;
5634
5635 /*
5636 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5637 * CPU to node mapping may not be available that early on some
5638 * archs such as power and arm64. As per-cpu pools created
5639 * previously could be missing node hint and unbound pools NUMA
5640 * affinity, fix them up.
5641 */
5642 wq_numa_init();
5643
5644 mutex_lock(&wq_pool_mutex);
5645
5646 for_each_possible_cpu(cpu) {
5647 for_each_cpu_worker_pool(pool, cpu) {
5648 pool->node = cpu_to_node(cpu);
5649 }
5650 }
5651
5652 list_for_each_entry(wq, &workqueues, list)
5653 wq_update_unbound_numa(wq, smp_processor_id(), true);
5654
5655 mutex_unlock(&wq_pool_mutex);
5656
5657 /* create the initial workers */
5658 for_each_online_cpu(cpu) {
5659 for_each_cpu_worker_pool(pool, cpu) {
5660 pool->flags &= ~POOL_DISASSOCIATED;
5661 BUG_ON(!create_worker(pool));
5662 }
5663 }
5664
5665 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5666 BUG_ON(!create_worker(pool));
5667
5668 wq_online = true;
5669 wq_watchdog_init();
5670
5671 return 0;
5672 }