]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/workqueue.c
softirq: Reorder trace_softirqs_on to prevent lockdep splat
[mirror_ubuntu-bionic-kernel.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52
53 #include "workqueue_internal.h"
54
55 enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: pool->attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144 /* struct worker is defined in workqueue_internal.h */
145
146 struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
157
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle; /* L: currently idle ones */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker *manager; /* L: purely informational */
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
173 struct completion *detach_completion; /* all workers detached */
174
175 struct ida worker_ida; /* worker IDs for task name */
176
177 struct workqueue_attrs *attrs; /* I: worker attributes */
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
180
181 /*
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
185 */
186 atomic_t nr_running ____cacheline_aligned_in_smp;
187
188 /*
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
193 } ____cacheline_aligned_in_smp;
194
195 /*
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
200 */
201 struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209 int nr_active; /* L: nr of active works */
210 int max_active; /* L: max active works */
211 struct list_head delayed_works; /* L: delayed works */
212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
213 struct list_head mayday_node; /* MD: node on wq->maydays */
214
215 /*
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
220 */
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224
225 /*
226 * Structure used to wait for workqueue flush.
227 */
228 struct wq_flusher {
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
231 struct completion done; /* flush completion */
232 };
233
234 struct wq_device;
235
236 /*
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
239 */
240 struct workqueue_struct {
241 struct list_head pwqs; /* WR: all pwqs of this wq */
242 struct list_head list; /* PR: list of all workqueues */
243
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
251
252 struct list_head maydays; /* MD: pwqs requesting rescue */
253 struct worker *rescuer; /* I: rescue worker */
254
255 int nr_drainers; /* WQ: drain in progress */
256 int saved_max_active; /* WQ: saved pwq max_active */
257
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260
261 #ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304
305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
306 static bool workqueue_freezing; /* PL: have wqs started freezing? */
307
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313
314 /*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328
329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
330
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360
361 #define assert_rcu_or_pool_mutex() \
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
365
366 #define assert_rcu_or_wq_mutex(wq) \
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
370
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376
377 #define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 (pool)++)
381
382 /**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
385 * @pi: integer used for iteration
386 *
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
394 #define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 else
398
399 /**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
402 * @pool: worker_pool to iterate workers of
403 *
404 * This must be called with @pool->attach_mutex.
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
409 #define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 else
413
414 /**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
418 *
419 * This must be called either with wq->mutex held or sched RCU read locked.
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426 #define for_each_pwq(pwq, wq) \
427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 else
430
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433 static struct debug_obj_descr work_debug_descr;
434
435 static void *work_debug_hint(void *addr)
436 {
437 return ((struct work_struct *) addr)->func;
438 }
439
440 static bool work_is_static_object(void *addr)
441 {
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446
447 /*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return true;
478 default:
479 return false;
480 }
481 }
482
483 static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .is_static_object = work_is_static_object,
487 .fixup_init = work_fixup_init,
488 .fixup_free = work_fixup_free,
489 };
490
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 debug_object_activate(work, &work_debug_descr);
494 }
495
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 debug_object_deactivate(work, &work_debug_descr);
499 }
500
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527
528 /**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 int ret;
538
539 lockdep_assert_held(&wq_pool_mutex);
540
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
543 if (ret >= 0) {
544 pool->id = ret;
545 return 0;
546 }
547 return ret;
548 }
549
550 /**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
559 *
560 * Return: The unbound pool_workqueue for @node.
561 */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564 {
565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578
579 static unsigned int work_color_to_flags(int color)
580 {
581 return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583
584 static int get_work_color(struct work_struct *work)
585 {
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589
590 static int work_next_color(int color)
591 {
592 return (color + 1) % WORK_NR_COLORS;
593 }
594
595 /*
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
598 * is cleared and the high bits contain OFFQ flags and pool ID.
599 *
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
604 *
605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606 * corresponding to a work. Pool is available once the work has been
607 * queued anywhere after initialization until it is sync canceled. pwq is
608 * available only while the work item is queued.
609 *
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
614 */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
617 {
618 WARN_ON_ONCE(!work_pending(work));
619 atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 unsigned long extra_flags)
624 {
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631 {
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634 }
635
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
638 {
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
676 }
677
678 static void clear_work_data(struct work_struct *work)
679 {
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
692 }
693
694 /**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
708 */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712 int pool_id;
713
714 assert_rcu_or_pool_mutex();
715
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
722 return NULL;
723
724 return idr_find(&worker_pool_idr, pool_id);
725 }
726
727 /**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
731 * Return: The worker_pool ID @work was last associated with.
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 unsigned long data = atomic_long_read(&work->data);
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741
742 return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 unsigned long pool_id = get_work_pool_id(work);
748
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 unsigned long data = atomic_long_read(&work->data);
756
757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759
760 /*
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
763 * they're being called with pool->lock held.
764 */
765
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 return !atomic_read(&pool->nr_running);
769 }
770
771 /*
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
776 * function will always return %true for unbound pools as long as the
777 * worklist isn't empty.
778 */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783
784 /* Can I start working? Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 return pool->nr_idle;
788 }
789
790 /* Do I need to keep working? Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
795 }
796
797 /* Do we need a new worker? Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 return need_more_worker(pool) && !may_start_working(pool);
801 }
802
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812
813 /*
814 * Wake up functions.
815 */
816
817 /* Return the first idle worker. Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 if (unlikely(list_empty(&pool->idle_list)))
821 return NULL;
822
823 return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825
826 /**
827 * wake_up_worker - wake up an idle worker
828 * @pool: worker pool to wake worker from
829 *
830 * Wake up the first idle worker of @pool.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock).
834 */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 struct worker *worker = first_idle_worker(pool);
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841 }
842
843 /**
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 struct worker *worker = kthread_data(task);
857
858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 WARN_ON_ONCE(worker->pool->cpu != cpu);
860 atomic_inc(&worker->pool->nr_running);
861 }
862 }
863
864 /**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
875 * Return:
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 struct worker_pool *pool;
882
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
888 if (worker->flags & WORKER_NOT_RUNNING)
889 return NULL;
890
891 pool = worker->pool;
892
893 /* this can only happen on the local cpu */
894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 return NULL;
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
905 * manipulating idle_list, so dereferencing idle_list without pool
906 * lock is safe.
907 */
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
910 to_wakeup = first_idle_worker(pool);
911 return to_wakeup ? to_wakeup->task : NULL;
912 }
913
914 /**
915 * worker_set_flags - set worker flags and adjust nr_running accordingly
916 * @worker: self
917 * @flags: flags to set
918 *
919 * Set @flags in @worker->flags and adjust nr_running accordingly.
920 *
921 * CONTEXT:
922 * spin_lock_irq(pool->lock)
923 */
924 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
925 {
926 struct worker_pool *pool = worker->pool;
927
928 WARN_ON_ONCE(worker->task != current);
929
930 /* If transitioning into NOT_RUNNING, adjust nr_running. */
931 if ((flags & WORKER_NOT_RUNNING) &&
932 !(worker->flags & WORKER_NOT_RUNNING)) {
933 atomic_dec(&pool->nr_running);
934 }
935
936 worker->flags |= flags;
937 }
938
939 /**
940 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to clear
943 *
944 * Clear @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * spin_lock_irq(pool->lock)
948 */
949 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952 unsigned int oflags = worker->flags;
953
954 WARN_ON_ONCE(worker->task != current);
955
956 worker->flags &= ~flags;
957
958 /*
959 * If transitioning out of NOT_RUNNING, increment nr_running. Note
960 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
961 * of multiple flags, not a single flag.
962 */
963 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
964 if (!(worker->flags & WORKER_NOT_RUNNING))
965 atomic_inc(&pool->nr_running);
966 }
967
968 /**
969 * find_worker_executing_work - find worker which is executing a work
970 * @pool: pool of interest
971 * @work: work to find worker for
972 *
973 * Find a worker which is executing @work on @pool by searching
974 * @pool->busy_hash which is keyed by the address of @work. For a worker
975 * to match, its current execution should match the address of @work and
976 * its work function. This is to avoid unwanted dependency between
977 * unrelated work executions through a work item being recycled while still
978 * being executed.
979 *
980 * This is a bit tricky. A work item may be freed once its execution
981 * starts and nothing prevents the freed area from being recycled for
982 * another work item. If the same work item address ends up being reused
983 * before the original execution finishes, workqueue will identify the
984 * recycled work item as currently executing and make it wait until the
985 * current execution finishes, introducing an unwanted dependency.
986 *
987 * This function checks the work item address and work function to avoid
988 * false positives. Note that this isn't complete as one may construct a
989 * work function which can introduce dependency onto itself through a
990 * recycled work item. Well, if somebody wants to shoot oneself in the
991 * foot that badly, there's only so much we can do, and if such deadlock
992 * actually occurs, it should be easy to locate the culprit work function.
993 *
994 * CONTEXT:
995 * spin_lock_irq(pool->lock).
996 *
997 * Return:
998 * Pointer to worker which is executing @work if found, %NULL
999 * otherwise.
1000 */
1001 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1002 struct work_struct *work)
1003 {
1004 struct worker *worker;
1005
1006 hash_for_each_possible(pool->busy_hash, worker, hentry,
1007 (unsigned long)work)
1008 if (worker->current_work == work &&
1009 worker->current_func == work->func)
1010 return worker;
1011
1012 return NULL;
1013 }
1014
1015 /**
1016 * move_linked_works - move linked works to a list
1017 * @work: start of series of works to be scheduled
1018 * @head: target list to append @work to
1019 * @nextp: out parameter for nested worklist walking
1020 *
1021 * Schedule linked works starting from @work to @head. Work series to
1022 * be scheduled starts at @work and includes any consecutive work with
1023 * WORK_STRUCT_LINKED set in its predecessor.
1024 *
1025 * If @nextp is not NULL, it's updated to point to the next work of
1026 * the last scheduled work. This allows move_linked_works() to be
1027 * nested inside outer list_for_each_entry_safe().
1028 *
1029 * CONTEXT:
1030 * spin_lock_irq(pool->lock).
1031 */
1032 static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 struct work_struct **nextp)
1034 {
1035 struct work_struct *n;
1036
1037 /*
1038 * Linked worklist will always end before the end of the list,
1039 * use NULL for list head.
1040 */
1041 list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 list_move_tail(&work->entry, head);
1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 break;
1045 }
1046
1047 /*
1048 * If we're already inside safe list traversal and have moved
1049 * multiple works to the scheduled queue, the next position
1050 * needs to be updated.
1051 */
1052 if (nextp)
1053 *nextp = n;
1054 }
1055
1056 /**
1057 * get_pwq - get an extra reference on the specified pool_workqueue
1058 * @pwq: pool_workqueue to get
1059 *
1060 * Obtain an extra reference on @pwq. The caller should guarantee that
1061 * @pwq has positive refcnt and be holding the matching pool->lock.
1062 */
1063 static void get_pwq(struct pool_workqueue *pwq)
1064 {
1065 lockdep_assert_held(&pwq->pool->lock);
1066 WARN_ON_ONCE(pwq->refcnt <= 0);
1067 pwq->refcnt++;
1068 }
1069
1070 /**
1071 * put_pwq - put a pool_workqueue reference
1072 * @pwq: pool_workqueue to put
1073 *
1074 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1075 * destruction. The caller should be holding the matching pool->lock.
1076 */
1077 static void put_pwq(struct pool_workqueue *pwq)
1078 {
1079 lockdep_assert_held(&pwq->pool->lock);
1080 if (likely(--pwq->refcnt))
1081 return;
1082 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1083 return;
1084 /*
1085 * @pwq can't be released under pool->lock, bounce to
1086 * pwq_unbound_release_workfn(). This never recurses on the same
1087 * pool->lock as this path is taken only for unbound workqueues and
1088 * the release work item is scheduled on a per-cpu workqueue. To
1089 * avoid lockdep warning, unbound pool->locks are given lockdep
1090 * subclass of 1 in get_unbound_pool().
1091 */
1092 schedule_work(&pwq->unbound_release_work);
1093 }
1094
1095 /**
1096 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1097 * @pwq: pool_workqueue to put (can be %NULL)
1098 *
1099 * put_pwq() with locking. This function also allows %NULL @pwq.
1100 */
1101 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1102 {
1103 if (pwq) {
1104 /*
1105 * As both pwqs and pools are sched-RCU protected, the
1106 * following lock operations are safe.
1107 */
1108 spin_lock_irq(&pwq->pool->lock);
1109 put_pwq(pwq);
1110 spin_unlock_irq(&pwq->pool->lock);
1111 }
1112 }
1113
1114 static void pwq_activate_delayed_work(struct work_struct *work)
1115 {
1116 struct pool_workqueue *pwq = get_work_pwq(work);
1117
1118 trace_workqueue_activate_work(work);
1119 if (list_empty(&pwq->pool->worklist))
1120 pwq->pool->watchdog_ts = jiffies;
1121 move_linked_works(work, &pwq->pool->worklist, NULL);
1122 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1123 pwq->nr_active++;
1124 }
1125
1126 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1127 {
1128 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1129 struct work_struct, entry);
1130
1131 pwq_activate_delayed_work(work);
1132 }
1133
1134 /**
1135 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1136 * @pwq: pwq of interest
1137 * @color: color of work which left the queue
1138 *
1139 * A work either has completed or is removed from pending queue,
1140 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141 *
1142 * CONTEXT:
1143 * spin_lock_irq(pool->lock).
1144 */
1145 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1146 {
1147 /* uncolored work items don't participate in flushing or nr_active */
1148 if (color == WORK_NO_COLOR)
1149 goto out_put;
1150
1151 pwq->nr_in_flight[color]--;
1152
1153 pwq->nr_active--;
1154 if (!list_empty(&pwq->delayed_works)) {
1155 /* one down, submit a delayed one */
1156 if (pwq->nr_active < pwq->max_active)
1157 pwq_activate_first_delayed(pwq);
1158 }
1159
1160 /* is flush in progress and are we at the flushing tip? */
1161 if (likely(pwq->flush_color != color))
1162 goto out_put;
1163
1164 /* are there still in-flight works? */
1165 if (pwq->nr_in_flight[color])
1166 goto out_put;
1167
1168 /* this pwq is done, clear flush_color */
1169 pwq->flush_color = -1;
1170
1171 /*
1172 * If this was the last pwq, wake up the first flusher. It
1173 * will handle the rest.
1174 */
1175 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1176 complete(&pwq->wq->first_flusher->done);
1177 out_put:
1178 put_pwq(pwq);
1179 }
1180
1181 /**
1182 * try_to_grab_pending - steal work item from worklist and disable irq
1183 * @work: work item to steal
1184 * @is_dwork: @work is a delayed_work
1185 * @flags: place to store irq state
1186 *
1187 * Try to grab PENDING bit of @work. This function can handle @work in any
1188 * stable state - idle, on timer or on worklist.
1189 *
1190 * Return:
1191 * 1 if @work was pending and we successfully stole PENDING
1192 * 0 if @work was idle and we claimed PENDING
1193 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1194 * -ENOENT if someone else is canceling @work, this state may persist
1195 * for arbitrarily long
1196 *
1197 * Note:
1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1199 * interrupted while holding PENDING and @work off queue, irq must be
1200 * disabled on entry. This, combined with delayed_work->timer being
1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1202 *
1203 * On successful return, >= 0, irq is disabled and the caller is
1204 * responsible for releasing it using local_irq_restore(*@flags).
1205 *
1206 * This function is safe to call from any context including IRQ handler.
1207 */
1208 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 unsigned long *flags)
1210 {
1211 struct worker_pool *pool;
1212 struct pool_workqueue *pwq;
1213
1214 local_irq_save(*flags);
1215
1216 /* try to steal the timer if it exists */
1217 if (is_dwork) {
1218 struct delayed_work *dwork = to_delayed_work(work);
1219
1220 /*
1221 * dwork->timer is irqsafe. If del_timer() fails, it's
1222 * guaranteed that the timer is not queued anywhere and not
1223 * running on the local CPU.
1224 */
1225 if (likely(del_timer(&dwork->timer)))
1226 return 1;
1227 }
1228
1229 /* try to claim PENDING the normal way */
1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 return 0;
1232
1233 /*
1234 * The queueing is in progress, or it is already queued. Try to
1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 */
1237 pool = get_work_pool(work);
1238 if (!pool)
1239 goto fail;
1240
1241 spin_lock(&pool->lock);
1242 /*
1243 * work->data is guaranteed to point to pwq only while the work
1244 * item is queued on pwq->wq, and both updating work->data to point
1245 * to pwq on queueing and to pool on dequeueing are done under
1246 * pwq->pool->lock. This in turn guarantees that, if work->data
1247 * points to pwq which is associated with a locked pool, the work
1248 * item is currently queued on that pool.
1249 */
1250 pwq = get_work_pwq(work);
1251 if (pwq && pwq->pool == pool) {
1252 debug_work_deactivate(work);
1253
1254 /*
1255 * A delayed work item cannot be grabbed directly because
1256 * it might have linked NO_COLOR work items which, if left
1257 * on the delayed_list, will confuse pwq->nr_active
1258 * management later on and cause stall. Make sure the work
1259 * item is activated before grabbing.
1260 */
1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1262 pwq_activate_delayed_work(work);
1263
1264 list_del_init(&work->entry);
1265 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1266
1267 /* work->data points to pwq iff queued, point to pool */
1268 set_work_pool_and_keep_pending(work, pool->id);
1269
1270 spin_unlock(&pool->lock);
1271 return 1;
1272 }
1273 spin_unlock(&pool->lock);
1274 fail:
1275 local_irq_restore(*flags);
1276 if (work_is_canceling(work))
1277 return -ENOENT;
1278 cpu_relax();
1279 return -EAGAIN;
1280 }
1281
1282 /**
1283 * insert_work - insert a work into a pool
1284 * @pwq: pwq @work belongs to
1285 * @work: work to insert
1286 * @head: insertion point
1287 * @extra_flags: extra WORK_STRUCT_* flags to set
1288 *
1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1290 * work_struct flags.
1291 *
1292 * CONTEXT:
1293 * spin_lock_irq(pool->lock).
1294 */
1295 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 struct list_head *head, unsigned int extra_flags)
1297 {
1298 struct worker_pool *pool = pwq->pool;
1299
1300 /* we own @work, set data and link */
1301 set_work_pwq(work, pwq, extra_flags);
1302 list_add_tail(&work->entry, head);
1303 get_pwq(pwq);
1304
1305 /*
1306 * Ensure either wq_worker_sleeping() sees the above
1307 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 * around lazily while there are works to be processed.
1309 */
1310 smp_mb();
1311
1312 if (__need_more_worker(pool))
1313 wake_up_worker(pool);
1314 }
1315
1316 /*
1317 * Test whether @work is being queued from another work executing on the
1318 * same workqueue.
1319 */
1320 static bool is_chained_work(struct workqueue_struct *wq)
1321 {
1322 struct worker *worker;
1323
1324 worker = current_wq_worker();
1325 /*
1326 * Return %true iff I'm a worker execuing a work item on @wq. If
1327 * I'm @worker, it's safe to dereference it without locking.
1328 */
1329 return worker && worker->current_pwq->wq == wq;
1330 }
1331
1332 /*
1333 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1334 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1335 * avoid perturbing sensitive tasks.
1336 */
1337 static int wq_select_unbound_cpu(int cpu)
1338 {
1339 static bool printed_dbg_warning;
1340 int new_cpu;
1341
1342 if (likely(!wq_debug_force_rr_cpu)) {
1343 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1344 return cpu;
1345 } else if (!printed_dbg_warning) {
1346 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1347 printed_dbg_warning = true;
1348 }
1349
1350 if (cpumask_empty(wq_unbound_cpumask))
1351 return cpu;
1352
1353 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1354 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids)) {
1356 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1357 if (unlikely(new_cpu >= nr_cpu_ids))
1358 return cpu;
1359 }
1360 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1361
1362 return new_cpu;
1363 }
1364
1365 static void __queue_work(int cpu, struct workqueue_struct *wq,
1366 struct work_struct *work)
1367 {
1368 struct pool_workqueue *pwq;
1369 struct worker_pool *last_pool;
1370 struct list_head *worklist;
1371 unsigned int work_flags;
1372 unsigned int req_cpu = cpu;
1373
1374 /*
1375 * While a work item is PENDING && off queue, a task trying to
1376 * steal the PENDING will busy-loop waiting for it to either get
1377 * queued or lose PENDING. Grabbing PENDING and queueing should
1378 * happen with IRQ disabled.
1379 */
1380 lockdep_assert_irqs_disabled();
1381
1382 debug_work_activate(work);
1383
1384 /* if draining, only works from the same workqueue are allowed */
1385 if (unlikely(wq->flags & __WQ_DRAINING) &&
1386 WARN_ON_ONCE(!is_chained_work(wq)))
1387 return;
1388 retry:
1389 if (req_cpu == WORK_CPU_UNBOUND)
1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391
1392 /* pwq which will be used unless @work is executing elsewhere */
1393 if (!(wq->flags & WQ_UNBOUND))
1394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1395 else
1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397
1398 /*
1399 * If @work was previously on a different pool, it might still be
1400 * running there, in which case the work needs to be queued on that
1401 * pool to guarantee non-reentrancy.
1402 */
1403 last_pool = get_work_pool(work);
1404 if (last_pool && last_pool != pwq->pool) {
1405 struct worker *worker;
1406
1407 spin_lock(&last_pool->lock);
1408
1409 worker = find_worker_executing_work(last_pool, work);
1410
1411 if (worker && worker->current_pwq->wq == wq) {
1412 pwq = worker->current_pwq;
1413 } else {
1414 /* meh... not running there, queue here */
1415 spin_unlock(&last_pool->lock);
1416 spin_lock(&pwq->pool->lock);
1417 }
1418 } else {
1419 spin_lock(&pwq->pool->lock);
1420 }
1421
1422 /*
1423 * pwq is determined and locked. For unbound pools, we could have
1424 * raced with pwq release and it could already be dead. If its
1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1426 * without another pwq replacing it in the numa_pwq_tbl or while
1427 * work items are executing on it, so the retrying is guaranteed to
1428 * make forward-progress.
1429 */
1430 if (unlikely(!pwq->refcnt)) {
1431 if (wq->flags & WQ_UNBOUND) {
1432 spin_unlock(&pwq->pool->lock);
1433 cpu_relax();
1434 goto retry;
1435 }
1436 /* oops */
1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 wq->name, cpu);
1439 }
1440
1441 /* pwq determined, queue */
1442 trace_workqueue_queue_work(req_cpu, pwq, work);
1443
1444 if (WARN_ON(!list_empty(&work->entry))) {
1445 spin_unlock(&pwq->pool->lock);
1446 return;
1447 }
1448
1449 pwq->nr_in_flight[pwq->work_color]++;
1450 work_flags = work_color_to_flags(pwq->work_color);
1451
1452 if (likely(pwq->nr_active < pwq->max_active)) {
1453 trace_workqueue_activate_work(work);
1454 pwq->nr_active++;
1455 worklist = &pwq->pool->worklist;
1456 if (list_empty(worklist))
1457 pwq->pool->watchdog_ts = jiffies;
1458 } else {
1459 work_flags |= WORK_STRUCT_DELAYED;
1460 worklist = &pwq->delayed_works;
1461 }
1462
1463 insert_work(pwq, work, worklist, work_flags);
1464
1465 spin_unlock(&pwq->pool->lock);
1466 }
1467
1468 /**
1469 * queue_work_on - queue work on specific cpu
1470 * @cpu: CPU number to execute work on
1471 * @wq: workqueue to use
1472 * @work: work to queue
1473 *
1474 * We queue the work to a specific CPU, the caller must ensure it
1475 * can't go away.
1476 *
1477 * Return: %false if @work was already on a queue, %true otherwise.
1478 */
1479 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 struct work_struct *work)
1481 {
1482 bool ret = false;
1483 unsigned long flags;
1484
1485 local_irq_save(flags);
1486
1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1488 __queue_work(cpu, wq, work);
1489 ret = true;
1490 }
1491
1492 local_irq_restore(flags);
1493 return ret;
1494 }
1495 EXPORT_SYMBOL(queue_work_on);
1496
1497 void delayed_work_timer_fn(struct timer_list *t)
1498 {
1499 struct delayed_work *dwork = from_timer(dwork, t, timer);
1500
1501 /* should have been called from irqsafe timer with irq already off */
1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1503 }
1504 EXPORT_SYMBOL(delayed_work_timer_fn);
1505
1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 struct delayed_work *dwork, unsigned long delay)
1508 {
1509 struct timer_list *timer = &dwork->timer;
1510 struct work_struct *work = &dwork->work;
1511
1512 WARN_ON_ONCE(!wq);
1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1514 WARN_ON_ONCE(timer_pending(timer));
1515 WARN_ON_ONCE(!list_empty(&work->entry));
1516
1517 /*
1518 * If @delay is 0, queue @dwork->work immediately. This is for
1519 * both optimization and correctness. The earliest @timer can
1520 * expire is on the closest next tick and delayed_work users depend
1521 * on that there's no such delay when @delay is 0.
1522 */
1523 if (!delay) {
1524 __queue_work(cpu, wq, &dwork->work);
1525 return;
1526 }
1527
1528 dwork->wq = wq;
1529 dwork->cpu = cpu;
1530 timer->expires = jiffies + delay;
1531
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1536 }
1537
1538 /**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise. If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
1551 {
1552 struct work_struct *work = &dwork->work;
1553 bool ret = false;
1554 unsigned long flags;
1555
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
1558
1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 __queue_delayed_work(cpu, wq, dwork, delay);
1561 ret = true;
1562 }
1563
1564 local_irq_restore(flags);
1565 return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569 /**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 unsigned long flags;
1591 int ret;
1592
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
1596
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
1600 }
1601
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
1603 return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607 /**
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1610 *
1611 * @worker is entering idle state. Update stats and idle timer if
1612 * necessary.
1613 *
1614 * LOCKING:
1615 * spin_lock_irq(pool->lock).
1616 */
1617 static void worker_enter_idle(struct worker *worker)
1618 {
1619 struct worker_pool *pool = worker->pool;
1620
1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 (worker->hentry.next || worker->hentry.pprev)))
1624 return;
1625
1626 /* can't use worker_set_flags(), also called from create_worker() */
1627 worker->flags |= WORKER_IDLE;
1628 pool->nr_idle++;
1629 worker->last_active = jiffies;
1630
1631 /* idle_list is LIFO */
1632 list_add(&worker->entry, &pool->idle_list);
1633
1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636
1637 /*
1638 * Sanity check nr_running. Because unbind_workers() releases
1639 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 * nr_running, the warning may trigger spuriously. Check iff
1641 * unbind is not in progress.
1642 */
1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644 pool->nr_workers == pool->nr_idle &&
1645 atomic_read(&pool->nr_running));
1646 }
1647
1648 /**
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1651 *
1652 * @worker is leaving idle state. Update stats.
1653 *
1654 * LOCKING:
1655 * spin_lock_irq(pool->lock).
1656 */
1657 static void worker_leave_idle(struct worker *worker)
1658 {
1659 struct worker_pool *pool = worker->pool;
1660
1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 return;
1663 worker_clr_flags(worker, WORKER_IDLE);
1664 pool->nr_idle--;
1665 list_del_init(&worker->entry);
1666 }
1667
1668 static struct worker *alloc_worker(int node)
1669 {
1670 struct worker *worker;
1671
1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673 if (worker) {
1674 INIT_LIST_HEAD(&worker->entry);
1675 INIT_LIST_HEAD(&worker->scheduled);
1676 INIT_LIST_HEAD(&worker->node);
1677 /* on creation a worker is in !idle && prep state */
1678 worker->flags = WORKER_PREP;
1679 }
1680 return worker;
1681 }
1682
1683 /**
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1687 *
1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1691 */
1692 static void worker_attach_to_pool(struct worker *worker,
1693 struct worker_pool *pool)
1694 {
1695 mutex_lock(&pool->attach_mutex);
1696
1697 /*
1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 * online CPUs. It'll be re-applied when any of the CPUs come up.
1700 */
1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702
1703 /*
1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 * stable across this function. See the comments above the
1706 * flag definition for details.
1707 */
1708 if (pool->flags & POOL_DISASSOCIATED)
1709 worker->flags |= WORKER_UNBOUND;
1710
1711 list_add_tail(&worker->node, &pool->workers);
1712
1713 mutex_unlock(&pool->attach_mutex);
1714 }
1715
1716 /**
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1720 *
1721 * Undo the attaching which had been done in worker_attach_to_pool(). The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
1724 */
1725 static void worker_detach_from_pool(struct worker *worker,
1726 struct worker_pool *pool)
1727 {
1728 struct completion *detach_completion = NULL;
1729
1730 mutex_lock(&pool->attach_mutex);
1731 list_del(&worker->node);
1732 if (list_empty(&pool->workers))
1733 detach_completion = pool->detach_completion;
1734 mutex_unlock(&pool->attach_mutex);
1735
1736 /* clear leftover flags without pool->lock after it is detached */
1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738
1739 if (detach_completion)
1740 complete(detach_completion);
1741 }
1742
1743 /**
1744 * create_worker - create a new workqueue worker
1745 * @pool: pool the new worker will belong to
1746 *
1747 * Create and start a new worker which is attached to @pool.
1748 *
1749 * CONTEXT:
1750 * Might sleep. Does GFP_KERNEL allocations.
1751 *
1752 * Return:
1753 * Pointer to the newly created worker.
1754 */
1755 static struct worker *create_worker(struct worker_pool *pool)
1756 {
1757 struct worker *worker = NULL;
1758 int id = -1;
1759 char id_buf[16];
1760
1761 /* ID is needed to determine kthread name */
1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 if (id < 0)
1764 goto fail;
1765
1766 worker = alloc_worker(pool->node);
1767 if (!worker)
1768 goto fail;
1769
1770 worker->pool = pool;
1771 worker->id = id;
1772
1773 if (pool->cpu >= 0)
1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 pool->attrs->nice < 0 ? "H" : "");
1776 else
1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778
1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780 "kworker/%s", id_buf);
1781 if (IS_ERR(worker->task))
1782 goto fail;
1783
1784 set_user_nice(worker->task, pool->attrs->nice);
1785 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786
1787 /* successful, attach the worker to the pool */
1788 worker_attach_to_pool(worker, pool);
1789
1790 /* start the newly created worker */
1791 spin_lock_irq(&pool->lock);
1792 worker->pool->nr_workers++;
1793 worker_enter_idle(worker);
1794 wake_up_process(worker->task);
1795 spin_unlock_irq(&pool->lock);
1796
1797 return worker;
1798
1799 fail:
1800 if (id >= 0)
1801 ida_simple_remove(&pool->worker_ida, id);
1802 kfree(worker);
1803 return NULL;
1804 }
1805
1806 /**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1809 *
1810 * Destroy @worker and adjust @pool stats accordingly. The worker should
1811 * be idle.
1812 *
1813 * CONTEXT:
1814 * spin_lock_irq(pool->lock).
1815 */
1816 static void destroy_worker(struct worker *worker)
1817 {
1818 struct worker_pool *pool = worker->pool;
1819
1820 lockdep_assert_held(&pool->lock);
1821
1822 /* sanity check frenzy */
1823 if (WARN_ON(worker->current_work) ||
1824 WARN_ON(!list_empty(&worker->scheduled)) ||
1825 WARN_ON(!(worker->flags & WORKER_IDLE)))
1826 return;
1827
1828 pool->nr_workers--;
1829 pool->nr_idle--;
1830
1831 list_del_init(&worker->entry);
1832 worker->flags |= WORKER_DIE;
1833 wake_up_process(worker->task);
1834 }
1835
1836 static void idle_worker_timeout(struct timer_list *t)
1837 {
1838 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1839
1840 spin_lock_irq(&pool->lock);
1841
1842 while (too_many_workers(pool)) {
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850 if (time_before(jiffies, expires)) {
1851 mod_timer(&pool->idle_timer, expires);
1852 break;
1853 }
1854
1855 destroy_worker(worker);
1856 }
1857
1858 spin_unlock_irq(&pool->lock);
1859 }
1860
1861 static void send_mayday(struct work_struct *work)
1862 {
1863 struct pool_workqueue *pwq = get_work_pwq(work);
1864 struct workqueue_struct *wq = pwq->wq;
1865
1866 lockdep_assert_held(&wq_mayday_lock);
1867
1868 if (!wq->rescuer)
1869 return;
1870
1871 /* mayday mayday mayday */
1872 if (list_empty(&pwq->mayday_node)) {
1873 /*
1874 * If @pwq is for an unbound wq, its base ref may be put at
1875 * any time due to an attribute change. Pin @pwq until the
1876 * rescuer is done with it.
1877 */
1878 get_pwq(pwq);
1879 list_add_tail(&pwq->mayday_node, &wq->maydays);
1880 wake_up_process(wq->rescuer->task);
1881 }
1882 }
1883
1884 static void pool_mayday_timeout(struct timer_list *t)
1885 {
1886 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1887 struct work_struct *work;
1888
1889 spin_lock_irq(&pool->lock);
1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1891
1892 if (need_to_create_worker(pool)) {
1893 /*
1894 * We've been trying to create a new worker but
1895 * haven't been successful. We might be hitting an
1896 * allocation deadlock. Send distress signals to
1897 * rescuers.
1898 */
1899 list_for_each_entry(work, &pool->worklist, entry)
1900 send_mayday(work);
1901 }
1902
1903 spin_unlock(&wq_mayday_lock);
1904 spin_unlock_irq(&pool->lock);
1905
1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907 }
1908
1909 /**
1910 * maybe_create_worker - create a new worker if necessary
1911 * @pool: pool to create a new worker for
1912 *
1913 * Create a new worker for @pool if necessary. @pool is guaranteed to
1914 * have at least one idle worker on return from this function. If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916 * sent to all rescuers with works scheduled on @pool to resolve
1917 * possible allocation deadlock.
1918 *
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
1921 *
1922 * LOCKING:
1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
1924 * multiple times. Does GFP_KERNEL allocations. Called only from
1925 * manager.
1926 */
1927 static void maybe_create_worker(struct worker_pool *pool)
1928 __releases(&pool->lock)
1929 __acquires(&pool->lock)
1930 {
1931 restart:
1932 spin_unlock_irq(&pool->lock);
1933
1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936
1937 while (true) {
1938 if (create_worker(pool) || !need_to_create_worker(pool))
1939 break;
1940
1941 schedule_timeout_interruptible(CREATE_COOLDOWN);
1942
1943 if (!need_to_create_worker(pool))
1944 break;
1945 }
1946
1947 del_timer_sync(&pool->mayday_timer);
1948 spin_lock_irq(&pool->lock);
1949 /*
1950 * This is necessary even after a new worker was just successfully
1951 * created as @pool->lock was dropped and the new worker might have
1952 * already become busy.
1953 */
1954 if (need_to_create_worker(pool))
1955 goto restart;
1956 }
1957
1958 /**
1959 * manage_workers - manage worker pool
1960 * @worker: self
1961 *
1962 * Assume the manager role and manage the worker pool @worker belongs
1963 * to. At any given time, there can be only zero or one manager per
1964 * pool. The exclusion is handled automatically by this function.
1965 *
1966 * The caller can safely start processing works on false return. On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
1969 *
1970 * CONTEXT:
1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
1972 * multiple times. Does GFP_KERNEL allocations.
1973 *
1974 * Return:
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
1979 */
1980 static bool manage_workers(struct worker *worker)
1981 {
1982 struct worker_pool *pool = worker->pool;
1983
1984 if (pool->flags & POOL_MANAGER_ACTIVE)
1985 return false;
1986
1987 pool->flags |= POOL_MANAGER_ACTIVE;
1988 pool->manager = worker;
1989
1990 maybe_create_worker(pool);
1991
1992 pool->manager = NULL;
1993 pool->flags &= ~POOL_MANAGER_ACTIVE;
1994 wake_up(&wq_manager_wait);
1995 return true;
1996 }
1997
1998 /**
1999 * process_one_work - process single work
2000 * @worker: self
2001 * @work: work to process
2002 *
2003 * Process @work. This function contains all the logics necessary to
2004 * process a single work including synchronization against and
2005 * interaction with other workers on the same cpu, queueing and
2006 * flushing. As long as context requirement is met, any worker can
2007 * call this function to process a work.
2008 *
2009 * CONTEXT:
2010 * spin_lock_irq(pool->lock) which is released and regrabbed.
2011 */
2012 static void process_one_work(struct worker *worker, struct work_struct *work)
2013 __releases(&pool->lock)
2014 __acquires(&pool->lock)
2015 {
2016 struct pool_workqueue *pwq = get_work_pwq(work);
2017 struct worker_pool *pool = worker->pool;
2018 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2019 int work_color;
2020 struct worker *collision;
2021 #ifdef CONFIG_LOCKDEP
2022 /*
2023 * It is permissible to free the struct work_struct from
2024 * inside the function that is called from it, this we need to
2025 * take into account for lockdep too. To avoid bogus "held
2026 * lock freed" warnings as well as problems when looking into
2027 * work->lockdep_map, make a copy and use that here.
2028 */
2029 struct lockdep_map lockdep_map;
2030
2031 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2032 #endif
2033 /* ensure we're on the correct CPU */
2034 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2035 raw_smp_processor_id() != pool->cpu);
2036
2037 /*
2038 * A single work shouldn't be executed concurrently by
2039 * multiple workers on a single cpu. Check whether anyone is
2040 * already processing the work. If so, defer the work to the
2041 * currently executing one.
2042 */
2043 collision = find_worker_executing_work(pool, work);
2044 if (unlikely(collision)) {
2045 move_linked_works(work, &collision->scheduled, NULL);
2046 return;
2047 }
2048
2049 /* claim and dequeue */
2050 debug_work_deactivate(work);
2051 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2052 worker->current_work = work;
2053 worker->current_func = work->func;
2054 worker->current_pwq = pwq;
2055 work_color = get_work_color(work);
2056
2057 list_del_init(&work->entry);
2058
2059 /*
2060 * CPU intensive works don't participate in concurrency management.
2061 * They're the scheduler's responsibility. This takes @worker out
2062 * of concurrency management and the next code block will chain
2063 * execution of the pending work items.
2064 */
2065 if (unlikely(cpu_intensive))
2066 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2067
2068 /*
2069 * Wake up another worker if necessary. The condition is always
2070 * false for normal per-cpu workers since nr_running would always
2071 * be >= 1 at this point. This is used to chain execution of the
2072 * pending work items for WORKER_NOT_RUNNING workers such as the
2073 * UNBOUND and CPU_INTENSIVE ones.
2074 */
2075 if (need_more_worker(pool))
2076 wake_up_worker(pool);
2077
2078 /*
2079 * Record the last pool and clear PENDING which should be the last
2080 * update to @work. Also, do this inside @pool->lock so that
2081 * PENDING and queued state changes happen together while IRQ is
2082 * disabled.
2083 */
2084 set_work_pool_and_clear_pending(work, pool->id);
2085
2086 spin_unlock_irq(&pool->lock);
2087
2088 lock_map_acquire(&pwq->wq->lockdep_map);
2089 lock_map_acquire(&lockdep_map);
2090 /*
2091 * Strictly speaking we should mark the invariant state without holding
2092 * any locks, that is, before these two lock_map_acquire()'s.
2093 *
2094 * However, that would result in:
2095 *
2096 * A(W1)
2097 * WFC(C)
2098 * A(W1)
2099 * C(C)
2100 *
2101 * Which would create W1->C->W1 dependencies, even though there is no
2102 * actual deadlock possible. There are two solutions, using a
2103 * read-recursive acquire on the work(queue) 'locks', but this will then
2104 * hit the lockdep limitation on recursive locks, or simply discard
2105 * these locks.
2106 *
2107 * AFAICT there is no possible deadlock scenario between the
2108 * flush_work() and complete() primitives (except for single-threaded
2109 * workqueues), so hiding them isn't a problem.
2110 */
2111 lockdep_invariant_state(true);
2112 trace_workqueue_execute_start(work);
2113 worker->current_func(work);
2114 /*
2115 * While we must be careful to not use "work" after this, the trace
2116 * point will only record its address.
2117 */
2118 trace_workqueue_execute_end(work);
2119 lock_map_release(&lockdep_map);
2120 lock_map_release(&pwq->wq->lockdep_map);
2121
2122 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2123 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2124 " last function: %pf\n",
2125 current->comm, preempt_count(), task_pid_nr(current),
2126 worker->current_func);
2127 debug_show_held_locks(current);
2128 dump_stack();
2129 }
2130
2131 /*
2132 * The following prevents a kworker from hogging CPU on !PREEMPT
2133 * kernels, where a requeueing work item waiting for something to
2134 * happen could deadlock with stop_machine as such work item could
2135 * indefinitely requeue itself while all other CPUs are trapped in
2136 * stop_machine. At the same time, report a quiescent RCU state so
2137 * the same condition doesn't freeze RCU.
2138 */
2139 cond_resched_rcu_qs();
2140
2141 spin_lock_irq(&pool->lock);
2142
2143 /* clear cpu intensive status */
2144 if (unlikely(cpu_intensive))
2145 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2146
2147 /* we're done with it, release */
2148 hash_del(&worker->hentry);
2149 worker->current_work = NULL;
2150 worker->current_func = NULL;
2151 worker->current_pwq = NULL;
2152 worker->desc_valid = false;
2153 pwq_dec_nr_in_flight(pwq, work_color);
2154 }
2155
2156 /**
2157 * process_scheduled_works - process scheduled works
2158 * @worker: self
2159 *
2160 * Process all scheduled works. Please note that the scheduled list
2161 * may change while processing a work, so this function repeatedly
2162 * fetches a work from the top and executes it.
2163 *
2164 * CONTEXT:
2165 * spin_lock_irq(pool->lock) which may be released and regrabbed
2166 * multiple times.
2167 */
2168 static void process_scheduled_works(struct worker *worker)
2169 {
2170 while (!list_empty(&worker->scheduled)) {
2171 struct work_struct *work = list_first_entry(&worker->scheduled,
2172 struct work_struct, entry);
2173 process_one_work(worker, work);
2174 }
2175 }
2176
2177 /**
2178 * worker_thread - the worker thread function
2179 * @__worker: self
2180 *
2181 * The worker thread function. All workers belong to a worker_pool -
2182 * either a per-cpu one or dynamic unbound one. These workers process all
2183 * work items regardless of their specific target workqueue. The only
2184 * exception is work items which belong to workqueues with a rescuer which
2185 * will be explained in rescuer_thread().
2186 *
2187 * Return: 0
2188 */
2189 static int worker_thread(void *__worker)
2190 {
2191 struct worker *worker = __worker;
2192 struct worker_pool *pool = worker->pool;
2193
2194 /* tell the scheduler that this is a workqueue worker */
2195 worker->task->flags |= PF_WQ_WORKER;
2196 woke_up:
2197 spin_lock_irq(&pool->lock);
2198
2199 /* am I supposed to die? */
2200 if (unlikely(worker->flags & WORKER_DIE)) {
2201 spin_unlock_irq(&pool->lock);
2202 WARN_ON_ONCE(!list_empty(&worker->entry));
2203 worker->task->flags &= ~PF_WQ_WORKER;
2204
2205 set_task_comm(worker->task, "kworker/dying");
2206 ida_simple_remove(&pool->worker_ida, worker->id);
2207 worker_detach_from_pool(worker, pool);
2208 kfree(worker);
2209 return 0;
2210 }
2211
2212 worker_leave_idle(worker);
2213 recheck:
2214 /* no more worker necessary? */
2215 if (!need_more_worker(pool))
2216 goto sleep;
2217
2218 /* do we need to manage? */
2219 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2220 goto recheck;
2221
2222 /*
2223 * ->scheduled list can only be filled while a worker is
2224 * preparing to process a work or actually processing it.
2225 * Make sure nobody diddled with it while I was sleeping.
2226 */
2227 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2228
2229 /*
2230 * Finish PREP stage. We're guaranteed to have at least one idle
2231 * worker or that someone else has already assumed the manager
2232 * role. This is where @worker starts participating in concurrency
2233 * management if applicable and concurrency management is restored
2234 * after being rebound. See rebind_workers() for details.
2235 */
2236 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2237
2238 do {
2239 struct work_struct *work =
2240 list_first_entry(&pool->worklist,
2241 struct work_struct, entry);
2242
2243 pool->watchdog_ts = jiffies;
2244
2245 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 /* optimization path, not strictly necessary */
2247 process_one_work(worker, work);
2248 if (unlikely(!list_empty(&worker->scheduled)))
2249 process_scheduled_works(worker);
2250 } else {
2251 move_linked_works(work, &worker->scheduled, NULL);
2252 process_scheduled_works(worker);
2253 }
2254 } while (keep_working(pool));
2255
2256 worker_set_flags(worker, WORKER_PREP);
2257 sleep:
2258 /*
2259 * pool->lock is held and there's no work to process and no need to
2260 * manage, sleep. Workers are woken up only while holding
2261 * pool->lock or from local cpu, so setting the current state
2262 * before releasing pool->lock is enough to prevent losing any
2263 * event.
2264 */
2265 worker_enter_idle(worker);
2266 __set_current_state(TASK_IDLE);
2267 spin_unlock_irq(&pool->lock);
2268 schedule();
2269 goto woke_up;
2270 }
2271
2272 /**
2273 * rescuer_thread - the rescuer thread function
2274 * @__rescuer: self
2275 *
2276 * Workqueue rescuer thread function. There's one rescuer for each
2277 * workqueue which has WQ_MEM_RECLAIM set.
2278 *
2279 * Regular work processing on a pool may block trying to create a new
2280 * worker which uses GFP_KERNEL allocation which has slight chance of
2281 * developing into deadlock if some works currently on the same queue
2282 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2283 * the problem rescuer solves.
2284 *
2285 * When such condition is possible, the pool summons rescuers of all
2286 * workqueues which have works queued on the pool and let them process
2287 * those works so that forward progress can be guaranteed.
2288 *
2289 * This should happen rarely.
2290 *
2291 * Return: 0
2292 */
2293 static int rescuer_thread(void *__rescuer)
2294 {
2295 struct worker *rescuer = __rescuer;
2296 struct workqueue_struct *wq = rescuer->rescue_wq;
2297 struct list_head *scheduled = &rescuer->scheduled;
2298 bool should_stop;
2299
2300 set_user_nice(current, RESCUER_NICE_LEVEL);
2301
2302 /*
2303 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2304 * doesn't participate in concurrency management.
2305 */
2306 rescuer->task->flags |= PF_WQ_WORKER;
2307 repeat:
2308 set_current_state(TASK_IDLE);
2309
2310 /*
2311 * By the time the rescuer is requested to stop, the workqueue
2312 * shouldn't have any work pending, but @wq->maydays may still have
2313 * pwq(s) queued. This can happen by non-rescuer workers consuming
2314 * all the work items before the rescuer got to them. Go through
2315 * @wq->maydays processing before acting on should_stop so that the
2316 * list is always empty on exit.
2317 */
2318 should_stop = kthread_should_stop();
2319
2320 /* see whether any pwq is asking for help */
2321 spin_lock_irq(&wq_mayday_lock);
2322
2323 while (!list_empty(&wq->maydays)) {
2324 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2325 struct pool_workqueue, mayday_node);
2326 struct worker_pool *pool = pwq->pool;
2327 struct work_struct *work, *n;
2328 bool first = true;
2329
2330 __set_current_state(TASK_RUNNING);
2331 list_del_init(&pwq->mayday_node);
2332
2333 spin_unlock_irq(&wq_mayday_lock);
2334
2335 worker_attach_to_pool(rescuer, pool);
2336
2337 spin_lock_irq(&pool->lock);
2338 rescuer->pool = pool;
2339
2340 /*
2341 * Slurp in all works issued via this workqueue and
2342 * process'em.
2343 */
2344 WARN_ON_ONCE(!list_empty(scheduled));
2345 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2346 if (get_work_pwq(work) == pwq) {
2347 if (first)
2348 pool->watchdog_ts = jiffies;
2349 move_linked_works(work, scheduled, &n);
2350 }
2351 first = false;
2352 }
2353
2354 if (!list_empty(scheduled)) {
2355 process_scheduled_works(rescuer);
2356
2357 /*
2358 * The above execution of rescued work items could
2359 * have created more to rescue through
2360 * pwq_activate_first_delayed() or chained
2361 * queueing. Let's put @pwq back on mayday list so
2362 * that such back-to-back work items, which may be
2363 * being used to relieve memory pressure, don't
2364 * incur MAYDAY_INTERVAL delay inbetween.
2365 */
2366 if (need_to_create_worker(pool)) {
2367 spin_lock(&wq_mayday_lock);
2368 get_pwq(pwq);
2369 list_move_tail(&pwq->mayday_node, &wq->maydays);
2370 spin_unlock(&wq_mayday_lock);
2371 }
2372 }
2373
2374 /*
2375 * Put the reference grabbed by send_mayday(). @pool won't
2376 * go away while we're still attached to it.
2377 */
2378 put_pwq(pwq);
2379
2380 /*
2381 * Leave this pool. If need_more_worker() is %true, notify a
2382 * regular worker; otherwise, we end up with 0 concurrency
2383 * and stalling the execution.
2384 */
2385 if (need_more_worker(pool))
2386 wake_up_worker(pool);
2387
2388 rescuer->pool = NULL;
2389 spin_unlock_irq(&pool->lock);
2390
2391 worker_detach_from_pool(rescuer, pool);
2392
2393 spin_lock_irq(&wq_mayday_lock);
2394 }
2395
2396 spin_unlock_irq(&wq_mayday_lock);
2397
2398 if (should_stop) {
2399 __set_current_state(TASK_RUNNING);
2400 rescuer->task->flags &= ~PF_WQ_WORKER;
2401 return 0;
2402 }
2403
2404 /* rescuers should never participate in concurrency management */
2405 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2406 schedule();
2407 goto repeat;
2408 }
2409
2410 /**
2411 * check_flush_dependency - check for flush dependency sanity
2412 * @target_wq: workqueue being flushed
2413 * @target_work: work item being flushed (NULL for workqueue flushes)
2414 *
2415 * %current is trying to flush the whole @target_wq or @target_work on it.
2416 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2417 * reclaiming memory or running on a workqueue which doesn't have
2418 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2419 * a deadlock.
2420 */
2421 static void check_flush_dependency(struct workqueue_struct *target_wq,
2422 struct work_struct *target_work)
2423 {
2424 work_func_t target_func = target_work ? target_work->func : NULL;
2425 struct worker *worker;
2426
2427 if (target_wq->flags & WQ_MEM_RECLAIM)
2428 return;
2429
2430 worker = current_wq_worker();
2431
2432 WARN_ONCE(current->flags & PF_MEMALLOC,
2433 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2434 current->pid, current->comm, target_wq->name, target_func);
2435 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2436 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2437 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2438 worker->current_pwq->wq->name, worker->current_func,
2439 target_wq->name, target_func);
2440 }
2441
2442 struct wq_barrier {
2443 struct work_struct work;
2444 struct completion done;
2445 struct task_struct *task; /* purely informational */
2446 };
2447
2448 static void wq_barrier_func(struct work_struct *work)
2449 {
2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 complete(&barr->done);
2452 }
2453
2454 /**
2455 * insert_wq_barrier - insert a barrier work
2456 * @pwq: pwq to insert barrier into
2457 * @barr: wq_barrier to insert
2458 * @target: target work to attach @barr to
2459 * @worker: worker currently executing @target, NULL if @target is not executing
2460 *
2461 * @barr is linked to @target such that @barr is completed only after
2462 * @target finishes execution. Please note that the ordering
2463 * guarantee is observed only with respect to @target and on the local
2464 * cpu.
2465 *
2466 * Currently, a queued barrier can't be canceled. This is because
2467 * try_to_grab_pending() can't determine whether the work to be
2468 * grabbed is at the head of the queue and thus can't clear LINKED
2469 * flag of the previous work while there must be a valid next work
2470 * after a work with LINKED flag set.
2471 *
2472 * Note that when @worker is non-NULL, @target may be modified
2473 * underneath us, so we can't reliably determine pwq from @target.
2474 *
2475 * CONTEXT:
2476 * spin_lock_irq(pool->lock).
2477 */
2478 static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 struct wq_barrier *barr,
2480 struct work_struct *target, struct worker *worker)
2481 {
2482 struct list_head *head;
2483 unsigned int linked = 0;
2484
2485 /*
2486 * debugobject calls are safe here even with pool->lock locked
2487 * as we know for sure that this will not trigger any of the
2488 * checks and call back into the fixup functions where we
2489 * might deadlock.
2490 */
2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493
2494 init_completion_map(&barr->done, &target->lockdep_map);
2495
2496 barr->task = current;
2497
2498 /*
2499 * If @target is currently being executed, schedule the
2500 * barrier to the worker; otherwise, put it after @target.
2501 */
2502 if (worker)
2503 head = worker->scheduled.next;
2504 else {
2505 unsigned long *bits = work_data_bits(target);
2506
2507 head = target->entry.next;
2508 /* there can already be other linked works, inherit and set */
2509 linked = *bits & WORK_STRUCT_LINKED;
2510 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2511 }
2512
2513 debug_work_activate(&barr->work);
2514 insert_work(pwq, &barr->work, head,
2515 work_color_to_flags(WORK_NO_COLOR) | linked);
2516 }
2517
2518 /**
2519 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2520 * @wq: workqueue being flushed
2521 * @flush_color: new flush color, < 0 for no-op
2522 * @work_color: new work color, < 0 for no-op
2523 *
2524 * Prepare pwqs for workqueue flushing.
2525 *
2526 * If @flush_color is non-negative, flush_color on all pwqs should be
2527 * -1. If no pwq has in-flight commands at the specified color, all
2528 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2529 * has in flight commands, its pwq->flush_color is set to
2530 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2531 * wakeup logic is armed and %true is returned.
2532 *
2533 * The caller should have initialized @wq->first_flusher prior to
2534 * calling this function with non-negative @flush_color. If
2535 * @flush_color is negative, no flush color update is done and %false
2536 * is returned.
2537 *
2538 * If @work_color is non-negative, all pwqs should have the same
2539 * work_color which is previous to @work_color and all will be
2540 * advanced to @work_color.
2541 *
2542 * CONTEXT:
2543 * mutex_lock(wq->mutex).
2544 *
2545 * Return:
2546 * %true if @flush_color >= 0 and there's something to flush. %false
2547 * otherwise.
2548 */
2549 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2550 int flush_color, int work_color)
2551 {
2552 bool wait = false;
2553 struct pool_workqueue *pwq;
2554
2555 if (flush_color >= 0) {
2556 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2557 atomic_set(&wq->nr_pwqs_to_flush, 1);
2558 }
2559
2560 for_each_pwq(pwq, wq) {
2561 struct worker_pool *pool = pwq->pool;
2562
2563 spin_lock_irq(&pool->lock);
2564
2565 if (flush_color >= 0) {
2566 WARN_ON_ONCE(pwq->flush_color != -1);
2567
2568 if (pwq->nr_in_flight[flush_color]) {
2569 pwq->flush_color = flush_color;
2570 atomic_inc(&wq->nr_pwqs_to_flush);
2571 wait = true;
2572 }
2573 }
2574
2575 if (work_color >= 0) {
2576 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2577 pwq->work_color = work_color;
2578 }
2579
2580 spin_unlock_irq(&pool->lock);
2581 }
2582
2583 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2584 complete(&wq->first_flusher->done);
2585
2586 return wait;
2587 }
2588
2589 /**
2590 * flush_workqueue - ensure that any scheduled work has run to completion.
2591 * @wq: workqueue to flush
2592 *
2593 * This function sleeps until all work items which were queued on entry
2594 * have finished execution, but it is not livelocked by new incoming ones.
2595 */
2596 void flush_workqueue(struct workqueue_struct *wq)
2597 {
2598 struct wq_flusher this_flusher = {
2599 .list = LIST_HEAD_INIT(this_flusher.list),
2600 .flush_color = -1,
2601 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2602 };
2603 int next_color;
2604
2605 if (WARN_ON(!wq_online))
2606 return;
2607
2608 mutex_lock(&wq->mutex);
2609
2610 /*
2611 * Start-to-wait phase
2612 */
2613 next_color = work_next_color(wq->work_color);
2614
2615 if (next_color != wq->flush_color) {
2616 /*
2617 * Color space is not full. The current work_color
2618 * becomes our flush_color and work_color is advanced
2619 * by one.
2620 */
2621 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2622 this_flusher.flush_color = wq->work_color;
2623 wq->work_color = next_color;
2624
2625 if (!wq->first_flusher) {
2626 /* no flush in progress, become the first flusher */
2627 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2628
2629 wq->first_flusher = &this_flusher;
2630
2631 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2632 wq->work_color)) {
2633 /* nothing to flush, done */
2634 wq->flush_color = next_color;
2635 wq->first_flusher = NULL;
2636 goto out_unlock;
2637 }
2638 } else {
2639 /* wait in queue */
2640 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2641 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2642 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2643 }
2644 } else {
2645 /*
2646 * Oops, color space is full, wait on overflow queue.
2647 * The next flush completion will assign us
2648 * flush_color and transfer to flusher_queue.
2649 */
2650 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2651 }
2652
2653 check_flush_dependency(wq, NULL);
2654
2655 mutex_unlock(&wq->mutex);
2656
2657 wait_for_completion(&this_flusher.done);
2658
2659 /*
2660 * Wake-up-and-cascade phase
2661 *
2662 * First flushers are responsible for cascading flushes and
2663 * handling overflow. Non-first flushers can simply return.
2664 */
2665 if (wq->first_flusher != &this_flusher)
2666 return;
2667
2668 mutex_lock(&wq->mutex);
2669
2670 /* we might have raced, check again with mutex held */
2671 if (wq->first_flusher != &this_flusher)
2672 goto out_unlock;
2673
2674 wq->first_flusher = NULL;
2675
2676 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2678
2679 while (true) {
2680 struct wq_flusher *next, *tmp;
2681
2682 /* complete all the flushers sharing the current flush color */
2683 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2684 if (next->flush_color != wq->flush_color)
2685 break;
2686 list_del_init(&next->list);
2687 complete(&next->done);
2688 }
2689
2690 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2691 wq->flush_color != work_next_color(wq->work_color));
2692
2693 /* this flush_color is finished, advance by one */
2694 wq->flush_color = work_next_color(wq->flush_color);
2695
2696 /* one color has been freed, handle overflow queue */
2697 if (!list_empty(&wq->flusher_overflow)) {
2698 /*
2699 * Assign the same color to all overflowed
2700 * flushers, advance work_color and append to
2701 * flusher_queue. This is the start-to-wait
2702 * phase for these overflowed flushers.
2703 */
2704 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2705 tmp->flush_color = wq->work_color;
2706
2707 wq->work_color = work_next_color(wq->work_color);
2708
2709 list_splice_tail_init(&wq->flusher_overflow,
2710 &wq->flusher_queue);
2711 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2712 }
2713
2714 if (list_empty(&wq->flusher_queue)) {
2715 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2716 break;
2717 }
2718
2719 /*
2720 * Need to flush more colors. Make the next flusher
2721 * the new first flusher and arm pwqs.
2722 */
2723 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2724 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2725
2726 list_del_init(&next->list);
2727 wq->first_flusher = next;
2728
2729 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2730 break;
2731
2732 /*
2733 * Meh... this color is already done, clear first
2734 * flusher and repeat cascading.
2735 */
2736 wq->first_flusher = NULL;
2737 }
2738
2739 out_unlock:
2740 mutex_unlock(&wq->mutex);
2741 }
2742 EXPORT_SYMBOL(flush_workqueue);
2743
2744 /**
2745 * drain_workqueue - drain a workqueue
2746 * @wq: workqueue to drain
2747 *
2748 * Wait until the workqueue becomes empty. While draining is in progress,
2749 * only chain queueing is allowed. IOW, only currently pending or running
2750 * work items on @wq can queue further work items on it. @wq is flushed
2751 * repeatedly until it becomes empty. The number of flushing is determined
2752 * by the depth of chaining and should be relatively short. Whine if it
2753 * takes too long.
2754 */
2755 void drain_workqueue(struct workqueue_struct *wq)
2756 {
2757 unsigned int flush_cnt = 0;
2758 struct pool_workqueue *pwq;
2759
2760 /*
2761 * __queue_work() needs to test whether there are drainers, is much
2762 * hotter than drain_workqueue() and already looks at @wq->flags.
2763 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2764 */
2765 mutex_lock(&wq->mutex);
2766 if (!wq->nr_drainers++)
2767 wq->flags |= __WQ_DRAINING;
2768 mutex_unlock(&wq->mutex);
2769 reflush:
2770 flush_workqueue(wq);
2771
2772 mutex_lock(&wq->mutex);
2773
2774 for_each_pwq(pwq, wq) {
2775 bool drained;
2776
2777 spin_lock_irq(&pwq->pool->lock);
2778 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2779 spin_unlock_irq(&pwq->pool->lock);
2780
2781 if (drained)
2782 continue;
2783
2784 if (++flush_cnt == 10 ||
2785 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2786 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2787 wq->name, flush_cnt);
2788
2789 mutex_unlock(&wq->mutex);
2790 goto reflush;
2791 }
2792
2793 if (!--wq->nr_drainers)
2794 wq->flags &= ~__WQ_DRAINING;
2795 mutex_unlock(&wq->mutex);
2796 }
2797 EXPORT_SYMBOL_GPL(drain_workqueue);
2798
2799 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2800 {
2801 struct worker *worker = NULL;
2802 struct worker_pool *pool;
2803 struct pool_workqueue *pwq;
2804
2805 might_sleep();
2806
2807 local_irq_disable();
2808 pool = get_work_pool(work);
2809 if (!pool) {
2810 local_irq_enable();
2811 return false;
2812 }
2813
2814 spin_lock(&pool->lock);
2815 /* see the comment in try_to_grab_pending() with the same code */
2816 pwq = get_work_pwq(work);
2817 if (pwq) {
2818 if (unlikely(pwq->pool != pool))
2819 goto already_gone;
2820 } else {
2821 worker = find_worker_executing_work(pool, work);
2822 if (!worker)
2823 goto already_gone;
2824 pwq = worker->current_pwq;
2825 }
2826
2827 check_flush_dependency(pwq->wq, work);
2828
2829 insert_wq_barrier(pwq, barr, work, worker);
2830 spin_unlock_irq(&pool->lock);
2831
2832 /*
2833 * Force a lock recursion deadlock when using flush_work() inside a
2834 * single-threaded or rescuer equipped workqueue.
2835 *
2836 * For single threaded workqueues the deadlock happens when the work
2837 * is after the work issuing the flush_work(). For rescuer equipped
2838 * workqueues the deadlock happens when the rescuer stalls, blocking
2839 * forward progress.
2840 */
2841 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2842 lock_map_acquire(&pwq->wq->lockdep_map);
2843 lock_map_release(&pwq->wq->lockdep_map);
2844 }
2845
2846 return true;
2847 already_gone:
2848 spin_unlock_irq(&pool->lock);
2849 return false;
2850 }
2851
2852 /**
2853 * flush_work - wait for a work to finish executing the last queueing instance
2854 * @work: the work to flush
2855 *
2856 * Wait until @work has finished execution. @work is guaranteed to be idle
2857 * on return if it hasn't been requeued since flush started.
2858 *
2859 * Return:
2860 * %true if flush_work() waited for the work to finish execution,
2861 * %false if it was already idle.
2862 */
2863 bool flush_work(struct work_struct *work)
2864 {
2865 struct wq_barrier barr;
2866
2867 if (WARN_ON(!wq_online))
2868 return false;
2869
2870 if (start_flush_work(work, &barr)) {
2871 wait_for_completion(&barr.done);
2872 destroy_work_on_stack(&barr.work);
2873 return true;
2874 } else {
2875 return false;
2876 }
2877 }
2878 EXPORT_SYMBOL_GPL(flush_work);
2879
2880 struct cwt_wait {
2881 wait_queue_entry_t wait;
2882 struct work_struct *work;
2883 };
2884
2885 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2886 {
2887 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2888
2889 if (cwait->work != key)
2890 return 0;
2891 return autoremove_wake_function(wait, mode, sync, key);
2892 }
2893
2894 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2895 {
2896 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2897 unsigned long flags;
2898 int ret;
2899
2900 do {
2901 ret = try_to_grab_pending(work, is_dwork, &flags);
2902 /*
2903 * If someone else is already canceling, wait for it to
2904 * finish. flush_work() doesn't work for PREEMPT_NONE
2905 * because we may get scheduled between @work's completion
2906 * and the other canceling task resuming and clearing
2907 * CANCELING - flush_work() will return false immediately
2908 * as @work is no longer busy, try_to_grab_pending() will
2909 * return -ENOENT as @work is still being canceled and the
2910 * other canceling task won't be able to clear CANCELING as
2911 * we're hogging the CPU.
2912 *
2913 * Let's wait for completion using a waitqueue. As this
2914 * may lead to the thundering herd problem, use a custom
2915 * wake function which matches @work along with exclusive
2916 * wait and wakeup.
2917 */
2918 if (unlikely(ret == -ENOENT)) {
2919 struct cwt_wait cwait;
2920
2921 init_wait(&cwait.wait);
2922 cwait.wait.func = cwt_wakefn;
2923 cwait.work = work;
2924
2925 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2926 TASK_UNINTERRUPTIBLE);
2927 if (work_is_canceling(work))
2928 schedule();
2929 finish_wait(&cancel_waitq, &cwait.wait);
2930 }
2931 } while (unlikely(ret < 0));
2932
2933 /* tell other tasks trying to grab @work to back off */
2934 mark_work_canceling(work);
2935 local_irq_restore(flags);
2936
2937 /*
2938 * This allows canceling during early boot. We know that @work
2939 * isn't executing.
2940 */
2941 if (wq_online)
2942 flush_work(work);
2943
2944 clear_work_data(work);
2945
2946 /*
2947 * Paired with prepare_to_wait() above so that either
2948 * waitqueue_active() is visible here or !work_is_canceling() is
2949 * visible there.
2950 */
2951 smp_mb();
2952 if (waitqueue_active(&cancel_waitq))
2953 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2954
2955 return ret;
2956 }
2957
2958 /**
2959 * cancel_work_sync - cancel a work and wait for it to finish
2960 * @work: the work to cancel
2961 *
2962 * Cancel @work and wait for its execution to finish. This function
2963 * can be used even if the work re-queues itself or migrates to
2964 * another workqueue. On return from this function, @work is
2965 * guaranteed to be not pending or executing on any CPU.
2966 *
2967 * cancel_work_sync(&delayed_work->work) must not be used for
2968 * delayed_work's. Use cancel_delayed_work_sync() instead.
2969 *
2970 * The caller must ensure that the workqueue on which @work was last
2971 * queued can't be destroyed before this function returns.
2972 *
2973 * Return:
2974 * %true if @work was pending, %false otherwise.
2975 */
2976 bool cancel_work_sync(struct work_struct *work)
2977 {
2978 return __cancel_work_timer(work, false);
2979 }
2980 EXPORT_SYMBOL_GPL(cancel_work_sync);
2981
2982 /**
2983 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2984 * @dwork: the delayed work to flush
2985 *
2986 * Delayed timer is cancelled and the pending work is queued for
2987 * immediate execution. Like flush_work(), this function only
2988 * considers the last queueing instance of @dwork.
2989 *
2990 * Return:
2991 * %true if flush_work() waited for the work to finish execution,
2992 * %false if it was already idle.
2993 */
2994 bool flush_delayed_work(struct delayed_work *dwork)
2995 {
2996 local_irq_disable();
2997 if (del_timer_sync(&dwork->timer))
2998 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2999 local_irq_enable();
3000 return flush_work(&dwork->work);
3001 }
3002 EXPORT_SYMBOL(flush_delayed_work);
3003
3004 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3005 {
3006 unsigned long flags;
3007 int ret;
3008
3009 do {
3010 ret = try_to_grab_pending(work, is_dwork, &flags);
3011 } while (unlikely(ret == -EAGAIN));
3012
3013 if (unlikely(ret < 0))
3014 return false;
3015
3016 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3017 local_irq_restore(flags);
3018 return ret;
3019 }
3020
3021 /*
3022 * See cancel_delayed_work()
3023 */
3024 bool cancel_work(struct work_struct *work)
3025 {
3026 return __cancel_work(work, false);
3027 }
3028
3029 /**
3030 * cancel_delayed_work - cancel a delayed work
3031 * @dwork: delayed_work to cancel
3032 *
3033 * Kill off a pending delayed_work.
3034 *
3035 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3036 * pending.
3037 *
3038 * Note:
3039 * The work callback function may still be running on return, unless
3040 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3041 * use cancel_delayed_work_sync() to wait on it.
3042 *
3043 * This function is safe to call from any context including IRQ handler.
3044 */
3045 bool cancel_delayed_work(struct delayed_work *dwork)
3046 {
3047 return __cancel_work(&dwork->work, true);
3048 }
3049 EXPORT_SYMBOL(cancel_delayed_work);
3050
3051 /**
3052 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3053 * @dwork: the delayed work cancel
3054 *
3055 * This is cancel_work_sync() for delayed works.
3056 *
3057 * Return:
3058 * %true if @dwork was pending, %false otherwise.
3059 */
3060 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3061 {
3062 return __cancel_work_timer(&dwork->work, true);
3063 }
3064 EXPORT_SYMBOL(cancel_delayed_work_sync);
3065
3066 /**
3067 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3068 * @func: the function to call
3069 *
3070 * schedule_on_each_cpu() executes @func on each online CPU using the
3071 * system workqueue and blocks until all CPUs have completed.
3072 * schedule_on_each_cpu() is very slow.
3073 *
3074 * Return:
3075 * 0 on success, -errno on failure.
3076 */
3077 int schedule_on_each_cpu(work_func_t func)
3078 {
3079 int cpu;
3080 struct work_struct __percpu *works;
3081
3082 works = alloc_percpu(struct work_struct);
3083 if (!works)
3084 return -ENOMEM;
3085
3086 get_online_cpus();
3087
3088 for_each_online_cpu(cpu) {
3089 struct work_struct *work = per_cpu_ptr(works, cpu);
3090
3091 INIT_WORK(work, func);
3092 schedule_work_on(cpu, work);
3093 }
3094
3095 for_each_online_cpu(cpu)
3096 flush_work(per_cpu_ptr(works, cpu));
3097
3098 put_online_cpus();
3099 free_percpu(works);
3100 return 0;
3101 }
3102
3103 /**
3104 * execute_in_process_context - reliably execute the routine with user context
3105 * @fn: the function to execute
3106 * @ew: guaranteed storage for the execute work structure (must
3107 * be available when the work executes)
3108 *
3109 * Executes the function immediately if process context is available,
3110 * otherwise schedules the function for delayed execution.
3111 *
3112 * Return: 0 - function was executed
3113 * 1 - function was scheduled for execution
3114 */
3115 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3116 {
3117 if (!in_interrupt()) {
3118 fn(&ew->work);
3119 return 0;
3120 }
3121
3122 INIT_WORK(&ew->work, fn);
3123 schedule_work(&ew->work);
3124
3125 return 1;
3126 }
3127 EXPORT_SYMBOL_GPL(execute_in_process_context);
3128
3129 /**
3130 * free_workqueue_attrs - free a workqueue_attrs
3131 * @attrs: workqueue_attrs to free
3132 *
3133 * Undo alloc_workqueue_attrs().
3134 */
3135 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3136 {
3137 if (attrs) {
3138 free_cpumask_var(attrs->cpumask);
3139 kfree(attrs);
3140 }
3141 }
3142
3143 /**
3144 * alloc_workqueue_attrs - allocate a workqueue_attrs
3145 * @gfp_mask: allocation mask to use
3146 *
3147 * Allocate a new workqueue_attrs, initialize with default settings and
3148 * return it.
3149 *
3150 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3151 */
3152 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3153 {
3154 struct workqueue_attrs *attrs;
3155
3156 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3157 if (!attrs)
3158 goto fail;
3159 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3160 goto fail;
3161
3162 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3163 return attrs;
3164 fail:
3165 free_workqueue_attrs(attrs);
3166 return NULL;
3167 }
3168
3169 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3170 const struct workqueue_attrs *from)
3171 {
3172 to->nice = from->nice;
3173 cpumask_copy(to->cpumask, from->cpumask);
3174 /*
3175 * Unlike hash and equality test, this function doesn't ignore
3176 * ->no_numa as it is used for both pool and wq attrs. Instead,
3177 * get_unbound_pool() explicitly clears ->no_numa after copying.
3178 */
3179 to->no_numa = from->no_numa;
3180 }
3181
3182 /* hash value of the content of @attr */
3183 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3184 {
3185 u32 hash = 0;
3186
3187 hash = jhash_1word(attrs->nice, hash);
3188 hash = jhash(cpumask_bits(attrs->cpumask),
3189 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3190 return hash;
3191 }
3192
3193 /* content equality test */
3194 static bool wqattrs_equal(const struct workqueue_attrs *a,
3195 const struct workqueue_attrs *b)
3196 {
3197 if (a->nice != b->nice)
3198 return false;
3199 if (!cpumask_equal(a->cpumask, b->cpumask))
3200 return false;
3201 return true;
3202 }
3203
3204 /**
3205 * init_worker_pool - initialize a newly zalloc'd worker_pool
3206 * @pool: worker_pool to initialize
3207 *
3208 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3209 *
3210 * Return: 0 on success, -errno on failure. Even on failure, all fields
3211 * inside @pool proper are initialized and put_unbound_pool() can be called
3212 * on @pool safely to release it.
3213 */
3214 static int init_worker_pool(struct worker_pool *pool)
3215 {
3216 spin_lock_init(&pool->lock);
3217 pool->id = -1;
3218 pool->cpu = -1;
3219 pool->node = NUMA_NO_NODE;
3220 pool->flags |= POOL_DISASSOCIATED;
3221 pool->watchdog_ts = jiffies;
3222 INIT_LIST_HEAD(&pool->worklist);
3223 INIT_LIST_HEAD(&pool->idle_list);
3224 hash_init(pool->busy_hash);
3225
3226 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3227
3228 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3229
3230 mutex_init(&pool->attach_mutex);
3231 INIT_LIST_HEAD(&pool->workers);
3232
3233 ida_init(&pool->worker_ida);
3234 INIT_HLIST_NODE(&pool->hash_node);
3235 pool->refcnt = 1;
3236
3237 /* shouldn't fail above this point */
3238 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3239 if (!pool->attrs)
3240 return -ENOMEM;
3241 return 0;
3242 }
3243
3244 static void rcu_free_wq(struct rcu_head *rcu)
3245 {
3246 struct workqueue_struct *wq =
3247 container_of(rcu, struct workqueue_struct, rcu);
3248
3249 if (!(wq->flags & WQ_UNBOUND))
3250 free_percpu(wq->cpu_pwqs);
3251 else
3252 free_workqueue_attrs(wq->unbound_attrs);
3253
3254 kfree(wq->rescuer);
3255 kfree(wq);
3256 }
3257
3258 static void rcu_free_pool(struct rcu_head *rcu)
3259 {
3260 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3261
3262 ida_destroy(&pool->worker_ida);
3263 free_workqueue_attrs(pool->attrs);
3264 kfree(pool);
3265 }
3266
3267 /**
3268 * put_unbound_pool - put a worker_pool
3269 * @pool: worker_pool to put
3270 *
3271 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3272 * safe manner. get_unbound_pool() calls this function on its failure path
3273 * and this function should be able to release pools which went through,
3274 * successfully or not, init_worker_pool().
3275 *
3276 * Should be called with wq_pool_mutex held.
3277 */
3278 static void put_unbound_pool(struct worker_pool *pool)
3279 {
3280 DECLARE_COMPLETION_ONSTACK(detach_completion);
3281 struct worker *worker;
3282
3283 lockdep_assert_held(&wq_pool_mutex);
3284
3285 if (--pool->refcnt)
3286 return;
3287
3288 /* sanity checks */
3289 if (WARN_ON(!(pool->cpu < 0)) ||
3290 WARN_ON(!list_empty(&pool->worklist)))
3291 return;
3292
3293 /* release id and unhash */
3294 if (pool->id >= 0)
3295 idr_remove(&worker_pool_idr, pool->id);
3296 hash_del(&pool->hash_node);
3297
3298 /*
3299 * Become the manager and destroy all workers. This prevents
3300 * @pool's workers from blocking on attach_mutex. We're the last
3301 * manager and @pool gets freed with the flag set.
3302 */
3303 spin_lock_irq(&pool->lock);
3304 wait_event_lock_irq(wq_manager_wait,
3305 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3306 pool->flags |= POOL_MANAGER_ACTIVE;
3307
3308 while ((worker = first_idle_worker(pool)))
3309 destroy_worker(worker);
3310 WARN_ON(pool->nr_workers || pool->nr_idle);
3311 spin_unlock_irq(&pool->lock);
3312
3313 mutex_lock(&pool->attach_mutex);
3314 if (!list_empty(&pool->workers))
3315 pool->detach_completion = &detach_completion;
3316 mutex_unlock(&pool->attach_mutex);
3317
3318 if (pool->detach_completion)
3319 wait_for_completion(pool->detach_completion);
3320
3321 /* shut down the timers */
3322 del_timer_sync(&pool->idle_timer);
3323 del_timer_sync(&pool->mayday_timer);
3324
3325 /* sched-RCU protected to allow dereferences from get_work_pool() */
3326 call_rcu_sched(&pool->rcu, rcu_free_pool);
3327 }
3328
3329 /**
3330 * get_unbound_pool - get a worker_pool with the specified attributes
3331 * @attrs: the attributes of the worker_pool to get
3332 *
3333 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3334 * reference count and return it. If there already is a matching
3335 * worker_pool, it will be used; otherwise, this function attempts to
3336 * create a new one.
3337 *
3338 * Should be called with wq_pool_mutex held.
3339 *
3340 * Return: On success, a worker_pool with the same attributes as @attrs.
3341 * On failure, %NULL.
3342 */
3343 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3344 {
3345 u32 hash = wqattrs_hash(attrs);
3346 struct worker_pool *pool;
3347 int node;
3348 int target_node = NUMA_NO_NODE;
3349
3350 lockdep_assert_held(&wq_pool_mutex);
3351
3352 /* do we already have a matching pool? */
3353 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3354 if (wqattrs_equal(pool->attrs, attrs)) {
3355 pool->refcnt++;
3356 return pool;
3357 }
3358 }
3359
3360 /* if cpumask is contained inside a NUMA node, we belong to that node */
3361 if (wq_numa_enabled) {
3362 for_each_node(node) {
3363 if (cpumask_subset(attrs->cpumask,
3364 wq_numa_possible_cpumask[node])) {
3365 target_node = node;
3366 break;
3367 }
3368 }
3369 }
3370
3371 /* nope, create a new one */
3372 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3373 if (!pool || init_worker_pool(pool) < 0)
3374 goto fail;
3375
3376 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3377 copy_workqueue_attrs(pool->attrs, attrs);
3378 pool->node = target_node;
3379
3380 /*
3381 * no_numa isn't a worker_pool attribute, always clear it. See
3382 * 'struct workqueue_attrs' comments for detail.
3383 */
3384 pool->attrs->no_numa = false;
3385
3386 if (worker_pool_assign_id(pool) < 0)
3387 goto fail;
3388
3389 /* create and start the initial worker */
3390 if (wq_online && !create_worker(pool))
3391 goto fail;
3392
3393 /* install */
3394 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3395
3396 return pool;
3397 fail:
3398 if (pool)
3399 put_unbound_pool(pool);
3400 return NULL;
3401 }
3402
3403 static void rcu_free_pwq(struct rcu_head *rcu)
3404 {
3405 kmem_cache_free(pwq_cache,
3406 container_of(rcu, struct pool_workqueue, rcu));
3407 }
3408
3409 /*
3410 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3411 * and needs to be destroyed.
3412 */
3413 static void pwq_unbound_release_workfn(struct work_struct *work)
3414 {
3415 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3416 unbound_release_work);
3417 struct workqueue_struct *wq = pwq->wq;
3418 struct worker_pool *pool = pwq->pool;
3419 bool is_last;
3420
3421 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3422 return;
3423
3424 mutex_lock(&wq->mutex);
3425 list_del_rcu(&pwq->pwqs_node);
3426 is_last = list_empty(&wq->pwqs);
3427 mutex_unlock(&wq->mutex);
3428
3429 mutex_lock(&wq_pool_mutex);
3430 put_unbound_pool(pool);
3431 mutex_unlock(&wq_pool_mutex);
3432
3433 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3434
3435 /*
3436 * If we're the last pwq going away, @wq is already dead and no one
3437 * is gonna access it anymore. Schedule RCU free.
3438 */
3439 if (is_last)
3440 call_rcu_sched(&wq->rcu, rcu_free_wq);
3441 }
3442
3443 /**
3444 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3445 * @pwq: target pool_workqueue
3446 *
3447 * If @pwq isn't freezing, set @pwq->max_active to the associated
3448 * workqueue's saved_max_active and activate delayed work items
3449 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3450 */
3451 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3452 {
3453 struct workqueue_struct *wq = pwq->wq;
3454 bool freezable = wq->flags & WQ_FREEZABLE;
3455 unsigned long flags;
3456
3457 /* for @wq->saved_max_active */
3458 lockdep_assert_held(&wq->mutex);
3459
3460 /* fast exit for non-freezable wqs */
3461 if (!freezable && pwq->max_active == wq->saved_max_active)
3462 return;
3463
3464 /* this function can be called during early boot w/ irq disabled */
3465 spin_lock_irqsave(&pwq->pool->lock, flags);
3466
3467 /*
3468 * During [un]freezing, the caller is responsible for ensuring that
3469 * this function is called at least once after @workqueue_freezing
3470 * is updated and visible.
3471 */
3472 if (!freezable || !workqueue_freezing) {
3473 pwq->max_active = wq->saved_max_active;
3474
3475 while (!list_empty(&pwq->delayed_works) &&
3476 pwq->nr_active < pwq->max_active)
3477 pwq_activate_first_delayed(pwq);
3478
3479 /*
3480 * Need to kick a worker after thawed or an unbound wq's
3481 * max_active is bumped. It's a slow path. Do it always.
3482 */
3483 wake_up_worker(pwq->pool);
3484 } else {
3485 pwq->max_active = 0;
3486 }
3487
3488 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3489 }
3490
3491 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3492 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3493 struct worker_pool *pool)
3494 {
3495 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3496
3497 memset(pwq, 0, sizeof(*pwq));
3498
3499 pwq->pool = pool;
3500 pwq->wq = wq;
3501 pwq->flush_color = -1;
3502 pwq->refcnt = 1;
3503 INIT_LIST_HEAD(&pwq->delayed_works);
3504 INIT_LIST_HEAD(&pwq->pwqs_node);
3505 INIT_LIST_HEAD(&pwq->mayday_node);
3506 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3507 }
3508
3509 /* sync @pwq with the current state of its associated wq and link it */
3510 static void link_pwq(struct pool_workqueue *pwq)
3511 {
3512 struct workqueue_struct *wq = pwq->wq;
3513
3514 lockdep_assert_held(&wq->mutex);
3515
3516 /* may be called multiple times, ignore if already linked */
3517 if (!list_empty(&pwq->pwqs_node))
3518 return;
3519
3520 /* set the matching work_color */
3521 pwq->work_color = wq->work_color;
3522
3523 /* sync max_active to the current setting */
3524 pwq_adjust_max_active(pwq);
3525
3526 /* link in @pwq */
3527 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3528 }
3529
3530 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3531 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3532 const struct workqueue_attrs *attrs)
3533 {
3534 struct worker_pool *pool;
3535 struct pool_workqueue *pwq;
3536
3537 lockdep_assert_held(&wq_pool_mutex);
3538
3539 pool = get_unbound_pool(attrs);
3540 if (!pool)
3541 return NULL;
3542
3543 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3544 if (!pwq) {
3545 put_unbound_pool(pool);
3546 return NULL;
3547 }
3548
3549 init_pwq(pwq, wq, pool);
3550 return pwq;
3551 }
3552
3553 /**
3554 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3555 * @attrs: the wq_attrs of the default pwq of the target workqueue
3556 * @node: the target NUMA node
3557 * @cpu_going_down: if >= 0, the CPU to consider as offline
3558 * @cpumask: outarg, the resulting cpumask
3559 *
3560 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3561 * @cpu_going_down is >= 0, that cpu is considered offline during
3562 * calculation. The result is stored in @cpumask.
3563 *
3564 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3565 * enabled and @node has online CPUs requested by @attrs, the returned
3566 * cpumask is the intersection of the possible CPUs of @node and
3567 * @attrs->cpumask.
3568 *
3569 * The caller is responsible for ensuring that the cpumask of @node stays
3570 * stable.
3571 *
3572 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3573 * %false if equal.
3574 */
3575 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3576 int cpu_going_down, cpumask_t *cpumask)
3577 {
3578 if (!wq_numa_enabled || attrs->no_numa)
3579 goto use_dfl;
3580
3581 /* does @node have any online CPUs @attrs wants? */
3582 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3583 if (cpu_going_down >= 0)
3584 cpumask_clear_cpu(cpu_going_down, cpumask);
3585
3586 if (cpumask_empty(cpumask))
3587 goto use_dfl;
3588
3589 /* yeap, return possible CPUs in @node that @attrs wants */
3590 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3591
3592 if (cpumask_empty(cpumask)) {
3593 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3594 "possible intersect\n");
3595 return false;
3596 }
3597
3598 return !cpumask_equal(cpumask, attrs->cpumask);
3599
3600 use_dfl:
3601 cpumask_copy(cpumask, attrs->cpumask);
3602 return false;
3603 }
3604
3605 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3606 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3607 int node,
3608 struct pool_workqueue *pwq)
3609 {
3610 struct pool_workqueue *old_pwq;
3611
3612 lockdep_assert_held(&wq_pool_mutex);
3613 lockdep_assert_held(&wq->mutex);
3614
3615 /* link_pwq() can handle duplicate calls */
3616 link_pwq(pwq);
3617
3618 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3619 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3620 return old_pwq;
3621 }
3622
3623 /* context to store the prepared attrs & pwqs before applying */
3624 struct apply_wqattrs_ctx {
3625 struct workqueue_struct *wq; /* target workqueue */
3626 struct workqueue_attrs *attrs; /* attrs to apply */
3627 struct list_head list; /* queued for batching commit */
3628 struct pool_workqueue *dfl_pwq;
3629 struct pool_workqueue *pwq_tbl[];
3630 };
3631
3632 /* free the resources after success or abort */
3633 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3634 {
3635 if (ctx) {
3636 int node;
3637
3638 for_each_node(node)
3639 put_pwq_unlocked(ctx->pwq_tbl[node]);
3640 put_pwq_unlocked(ctx->dfl_pwq);
3641
3642 free_workqueue_attrs(ctx->attrs);
3643
3644 kfree(ctx);
3645 }
3646 }
3647
3648 /* allocate the attrs and pwqs for later installation */
3649 static struct apply_wqattrs_ctx *
3650 apply_wqattrs_prepare(struct workqueue_struct *wq,
3651 const struct workqueue_attrs *attrs)
3652 {
3653 struct apply_wqattrs_ctx *ctx;
3654 struct workqueue_attrs *new_attrs, *tmp_attrs;
3655 int node;
3656
3657 lockdep_assert_held(&wq_pool_mutex);
3658
3659 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3660 GFP_KERNEL);
3661
3662 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3663 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3664 if (!ctx || !new_attrs || !tmp_attrs)
3665 goto out_free;
3666
3667 /*
3668 * Calculate the attrs of the default pwq.
3669 * If the user configured cpumask doesn't overlap with the
3670 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3671 */
3672 copy_workqueue_attrs(new_attrs, attrs);
3673 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3674 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3675 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3676
3677 /*
3678 * We may create multiple pwqs with differing cpumasks. Make a
3679 * copy of @new_attrs which will be modified and used to obtain
3680 * pools.
3681 */
3682 copy_workqueue_attrs(tmp_attrs, new_attrs);
3683
3684 /*
3685 * If something goes wrong during CPU up/down, we'll fall back to
3686 * the default pwq covering whole @attrs->cpumask. Always create
3687 * it even if we don't use it immediately.
3688 */
3689 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3690 if (!ctx->dfl_pwq)
3691 goto out_free;
3692
3693 for_each_node(node) {
3694 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3695 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3696 if (!ctx->pwq_tbl[node])
3697 goto out_free;
3698 } else {
3699 ctx->dfl_pwq->refcnt++;
3700 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3701 }
3702 }
3703
3704 /* save the user configured attrs and sanitize it. */
3705 copy_workqueue_attrs(new_attrs, attrs);
3706 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3707 ctx->attrs = new_attrs;
3708
3709 ctx->wq = wq;
3710 free_workqueue_attrs(tmp_attrs);
3711 return ctx;
3712
3713 out_free:
3714 free_workqueue_attrs(tmp_attrs);
3715 free_workqueue_attrs(new_attrs);
3716 apply_wqattrs_cleanup(ctx);
3717 return NULL;
3718 }
3719
3720 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3721 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3722 {
3723 int node;
3724
3725 /* all pwqs have been created successfully, let's install'em */
3726 mutex_lock(&ctx->wq->mutex);
3727
3728 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3729
3730 /* save the previous pwq and install the new one */
3731 for_each_node(node)
3732 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3733 ctx->pwq_tbl[node]);
3734
3735 /* @dfl_pwq might not have been used, ensure it's linked */
3736 link_pwq(ctx->dfl_pwq);
3737 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3738
3739 mutex_unlock(&ctx->wq->mutex);
3740 }
3741
3742 static void apply_wqattrs_lock(void)
3743 {
3744 /* CPUs should stay stable across pwq creations and installations */
3745 get_online_cpus();
3746 mutex_lock(&wq_pool_mutex);
3747 }
3748
3749 static void apply_wqattrs_unlock(void)
3750 {
3751 mutex_unlock(&wq_pool_mutex);
3752 put_online_cpus();
3753 }
3754
3755 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3756 const struct workqueue_attrs *attrs)
3757 {
3758 struct apply_wqattrs_ctx *ctx;
3759
3760 /* only unbound workqueues can change attributes */
3761 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3762 return -EINVAL;
3763
3764 /* creating multiple pwqs breaks ordering guarantee */
3765 if (!list_empty(&wq->pwqs)) {
3766 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3767 return -EINVAL;
3768
3769 wq->flags &= ~__WQ_ORDERED;
3770 }
3771
3772 ctx = apply_wqattrs_prepare(wq, attrs);
3773 if (!ctx)
3774 return -ENOMEM;
3775
3776 /* the ctx has been prepared successfully, let's commit it */
3777 apply_wqattrs_commit(ctx);
3778 apply_wqattrs_cleanup(ctx);
3779
3780 return 0;
3781 }
3782
3783 /**
3784 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3785 * @wq: the target workqueue
3786 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3787 *
3788 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3789 * machines, this function maps a separate pwq to each NUMA node with
3790 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3791 * NUMA node it was issued on. Older pwqs are released as in-flight work
3792 * items finish. Note that a work item which repeatedly requeues itself
3793 * back-to-back will stay on its current pwq.
3794 *
3795 * Performs GFP_KERNEL allocations.
3796 *
3797 * Return: 0 on success and -errno on failure.
3798 */
3799 int apply_workqueue_attrs(struct workqueue_struct *wq,
3800 const struct workqueue_attrs *attrs)
3801 {
3802 int ret;
3803
3804 apply_wqattrs_lock();
3805 ret = apply_workqueue_attrs_locked(wq, attrs);
3806 apply_wqattrs_unlock();
3807
3808 return ret;
3809 }
3810
3811 /**
3812 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3813 * @wq: the target workqueue
3814 * @cpu: the CPU coming up or going down
3815 * @online: whether @cpu is coming up or going down
3816 *
3817 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3818 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3819 * @wq accordingly.
3820 *
3821 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3822 * falls back to @wq->dfl_pwq which may not be optimal but is always
3823 * correct.
3824 *
3825 * Note that when the last allowed CPU of a NUMA node goes offline for a
3826 * workqueue with a cpumask spanning multiple nodes, the workers which were
3827 * already executing the work items for the workqueue will lose their CPU
3828 * affinity and may execute on any CPU. This is similar to how per-cpu
3829 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3830 * affinity, it's the user's responsibility to flush the work item from
3831 * CPU_DOWN_PREPARE.
3832 */
3833 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3834 bool online)
3835 {
3836 int node = cpu_to_node(cpu);
3837 int cpu_off = online ? -1 : cpu;
3838 struct pool_workqueue *old_pwq = NULL, *pwq;
3839 struct workqueue_attrs *target_attrs;
3840 cpumask_t *cpumask;
3841
3842 lockdep_assert_held(&wq_pool_mutex);
3843
3844 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3845 wq->unbound_attrs->no_numa)
3846 return;
3847
3848 /*
3849 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3850 * Let's use a preallocated one. The following buf is protected by
3851 * CPU hotplug exclusion.
3852 */
3853 target_attrs = wq_update_unbound_numa_attrs_buf;
3854 cpumask = target_attrs->cpumask;
3855
3856 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3857 pwq = unbound_pwq_by_node(wq, node);
3858
3859 /*
3860 * Let's determine what needs to be done. If the target cpumask is
3861 * different from the default pwq's, we need to compare it to @pwq's
3862 * and create a new one if they don't match. If the target cpumask
3863 * equals the default pwq's, the default pwq should be used.
3864 */
3865 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3866 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3867 return;
3868 } else {
3869 goto use_dfl_pwq;
3870 }
3871
3872 /* create a new pwq */
3873 pwq = alloc_unbound_pwq(wq, target_attrs);
3874 if (!pwq) {
3875 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3876 wq->name);
3877 goto use_dfl_pwq;
3878 }
3879
3880 /* Install the new pwq. */
3881 mutex_lock(&wq->mutex);
3882 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3883 goto out_unlock;
3884
3885 use_dfl_pwq:
3886 mutex_lock(&wq->mutex);
3887 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3888 get_pwq(wq->dfl_pwq);
3889 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3890 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3891 out_unlock:
3892 mutex_unlock(&wq->mutex);
3893 put_pwq_unlocked(old_pwq);
3894 }
3895
3896 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3897 {
3898 bool highpri = wq->flags & WQ_HIGHPRI;
3899 int cpu, ret;
3900
3901 if (!(wq->flags & WQ_UNBOUND)) {
3902 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3903 if (!wq->cpu_pwqs)
3904 return -ENOMEM;
3905
3906 for_each_possible_cpu(cpu) {
3907 struct pool_workqueue *pwq =
3908 per_cpu_ptr(wq->cpu_pwqs, cpu);
3909 struct worker_pool *cpu_pools =
3910 per_cpu(cpu_worker_pools, cpu);
3911
3912 init_pwq(pwq, wq, &cpu_pools[highpri]);
3913
3914 mutex_lock(&wq->mutex);
3915 link_pwq(pwq);
3916 mutex_unlock(&wq->mutex);
3917 }
3918 return 0;
3919 } else if (wq->flags & __WQ_ORDERED) {
3920 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3921 /* there should only be single pwq for ordering guarantee */
3922 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3923 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3924 "ordering guarantee broken for workqueue %s\n", wq->name);
3925 return ret;
3926 } else {
3927 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3928 }
3929 }
3930
3931 static int wq_clamp_max_active(int max_active, unsigned int flags,
3932 const char *name)
3933 {
3934 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3935
3936 if (max_active < 1 || max_active > lim)
3937 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3938 max_active, name, 1, lim);
3939
3940 return clamp_val(max_active, 1, lim);
3941 }
3942
3943 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3944 unsigned int flags,
3945 int max_active,
3946 struct lock_class_key *key,
3947 const char *lock_name, ...)
3948 {
3949 size_t tbl_size = 0;
3950 va_list args;
3951 struct workqueue_struct *wq;
3952 struct pool_workqueue *pwq;
3953
3954 /*
3955 * Unbound && max_active == 1 used to imply ordered, which is no
3956 * longer the case on NUMA machines due to per-node pools. While
3957 * alloc_ordered_workqueue() is the right way to create an ordered
3958 * workqueue, keep the previous behavior to avoid subtle breakages
3959 * on NUMA.
3960 */
3961 if ((flags & WQ_UNBOUND) && max_active == 1)
3962 flags |= __WQ_ORDERED;
3963
3964 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3965 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3966 flags |= WQ_UNBOUND;
3967
3968 /* allocate wq and format name */
3969 if (flags & WQ_UNBOUND)
3970 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3971
3972 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3973 if (!wq)
3974 return NULL;
3975
3976 if (flags & WQ_UNBOUND) {
3977 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3978 if (!wq->unbound_attrs)
3979 goto err_free_wq;
3980 }
3981
3982 va_start(args, lock_name);
3983 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3984 va_end(args);
3985
3986 max_active = max_active ?: WQ_DFL_ACTIVE;
3987 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3988
3989 /* init wq */
3990 wq->flags = flags;
3991 wq->saved_max_active = max_active;
3992 mutex_init(&wq->mutex);
3993 atomic_set(&wq->nr_pwqs_to_flush, 0);
3994 INIT_LIST_HEAD(&wq->pwqs);
3995 INIT_LIST_HEAD(&wq->flusher_queue);
3996 INIT_LIST_HEAD(&wq->flusher_overflow);
3997 INIT_LIST_HEAD(&wq->maydays);
3998
3999 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4000 INIT_LIST_HEAD(&wq->list);
4001
4002 if (alloc_and_link_pwqs(wq) < 0)
4003 goto err_free_wq;
4004
4005 /*
4006 * Workqueues which may be used during memory reclaim should
4007 * have a rescuer to guarantee forward progress.
4008 */
4009 if (flags & WQ_MEM_RECLAIM) {
4010 struct worker *rescuer;
4011
4012 rescuer = alloc_worker(NUMA_NO_NODE);
4013 if (!rescuer)
4014 goto err_destroy;
4015
4016 rescuer->rescue_wq = wq;
4017 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4018 wq->name);
4019 if (IS_ERR(rescuer->task)) {
4020 kfree(rescuer);
4021 goto err_destroy;
4022 }
4023
4024 wq->rescuer = rescuer;
4025 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4026 wake_up_process(rescuer->task);
4027 }
4028
4029 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4030 goto err_destroy;
4031
4032 /*
4033 * wq_pool_mutex protects global freeze state and workqueues list.
4034 * Grab it, adjust max_active and add the new @wq to workqueues
4035 * list.
4036 */
4037 mutex_lock(&wq_pool_mutex);
4038
4039 mutex_lock(&wq->mutex);
4040 for_each_pwq(pwq, wq)
4041 pwq_adjust_max_active(pwq);
4042 mutex_unlock(&wq->mutex);
4043
4044 list_add_tail_rcu(&wq->list, &workqueues);
4045
4046 mutex_unlock(&wq_pool_mutex);
4047
4048 return wq;
4049
4050 err_free_wq:
4051 free_workqueue_attrs(wq->unbound_attrs);
4052 kfree(wq);
4053 return NULL;
4054 err_destroy:
4055 destroy_workqueue(wq);
4056 return NULL;
4057 }
4058 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4059
4060 /**
4061 * destroy_workqueue - safely terminate a workqueue
4062 * @wq: target workqueue
4063 *
4064 * Safely destroy a workqueue. All work currently pending will be done first.
4065 */
4066 void destroy_workqueue(struct workqueue_struct *wq)
4067 {
4068 struct pool_workqueue *pwq;
4069 int node;
4070
4071 /* drain it before proceeding with destruction */
4072 drain_workqueue(wq);
4073
4074 /* sanity checks */
4075 mutex_lock(&wq->mutex);
4076 for_each_pwq(pwq, wq) {
4077 int i;
4078
4079 for (i = 0; i < WORK_NR_COLORS; i++) {
4080 if (WARN_ON(pwq->nr_in_flight[i])) {
4081 mutex_unlock(&wq->mutex);
4082 show_workqueue_state();
4083 return;
4084 }
4085 }
4086
4087 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4088 WARN_ON(pwq->nr_active) ||
4089 WARN_ON(!list_empty(&pwq->delayed_works))) {
4090 mutex_unlock(&wq->mutex);
4091 show_workqueue_state();
4092 return;
4093 }
4094 }
4095 mutex_unlock(&wq->mutex);
4096
4097 /*
4098 * wq list is used to freeze wq, remove from list after
4099 * flushing is complete in case freeze races us.
4100 */
4101 mutex_lock(&wq_pool_mutex);
4102 list_del_rcu(&wq->list);
4103 mutex_unlock(&wq_pool_mutex);
4104
4105 workqueue_sysfs_unregister(wq);
4106
4107 if (wq->rescuer)
4108 kthread_stop(wq->rescuer->task);
4109
4110 if (!(wq->flags & WQ_UNBOUND)) {
4111 /*
4112 * The base ref is never dropped on per-cpu pwqs. Directly
4113 * schedule RCU free.
4114 */
4115 call_rcu_sched(&wq->rcu, rcu_free_wq);
4116 } else {
4117 /*
4118 * We're the sole accessor of @wq at this point. Directly
4119 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4120 * @wq will be freed when the last pwq is released.
4121 */
4122 for_each_node(node) {
4123 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4124 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4125 put_pwq_unlocked(pwq);
4126 }
4127
4128 /*
4129 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4130 * put. Don't access it afterwards.
4131 */
4132 pwq = wq->dfl_pwq;
4133 wq->dfl_pwq = NULL;
4134 put_pwq_unlocked(pwq);
4135 }
4136 }
4137 EXPORT_SYMBOL_GPL(destroy_workqueue);
4138
4139 /**
4140 * workqueue_set_max_active - adjust max_active of a workqueue
4141 * @wq: target workqueue
4142 * @max_active: new max_active value.
4143 *
4144 * Set max_active of @wq to @max_active.
4145 *
4146 * CONTEXT:
4147 * Don't call from IRQ context.
4148 */
4149 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4150 {
4151 struct pool_workqueue *pwq;
4152
4153 /* disallow meddling with max_active for ordered workqueues */
4154 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4155 return;
4156
4157 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4158
4159 mutex_lock(&wq->mutex);
4160
4161 wq->flags &= ~__WQ_ORDERED;
4162 wq->saved_max_active = max_active;
4163
4164 for_each_pwq(pwq, wq)
4165 pwq_adjust_max_active(pwq);
4166
4167 mutex_unlock(&wq->mutex);
4168 }
4169 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4170
4171 /**
4172 * current_work - retrieve %current task's work struct
4173 *
4174 * Determine if %current task is a workqueue worker and what it's working on.
4175 * Useful to find out the context that the %current task is running in.
4176 *
4177 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4178 */
4179 struct work_struct *current_work(void)
4180 {
4181 struct worker *worker = current_wq_worker();
4182
4183 return worker ? worker->current_work : NULL;
4184 }
4185 EXPORT_SYMBOL(current_work);
4186
4187 /**
4188 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4189 *
4190 * Determine whether %current is a workqueue rescuer. Can be used from
4191 * work functions to determine whether it's being run off the rescuer task.
4192 *
4193 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4194 */
4195 bool current_is_workqueue_rescuer(void)
4196 {
4197 struct worker *worker = current_wq_worker();
4198
4199 return worker && worker->rescue_wq;
4200 }
4201
4202 /**
4203 * workqueue_congested - test whether a workqueue is congested
4204 * @cpu: CPU in question
4205 * @wq: target workqueue
4206 *
4207 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4208 * no synchronization around this function and the test result is
4209 * unreliable and only useful as advisory hints or for debugging.
4210 *
4211 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4212 * Note that both per-cpu and unbound workqueues may be associated with
4213 * multiple pool_workqueues which have separate congested states. A
4214 * workqueue being congested on one CPU doesn't mean the workqueue is also
4215 * contested on other CPUs / NUMA nodes.
4216 *
4217 * Return:
4218 * %true if congested, %false otherwise.
4219 */
4220 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4221 {
4222 struct pool_workqueue *pwq;
4223 bool ret;
4224
4225 rcu_read_lock_sched();
4226
4227 if (cpu == WORK_CPU_UNBOUND)
4228 cpu = smp_processor_id();
4229
4230 if (!(wq->flags & WQ_UNBOUND))
4231 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4232 else
4233 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4234
4235 ret = !list_empty(&pwq->delayed_works);
4236 rcu_read_unlock_sched();
4237
4238 return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(workqueue_congested);
4241
4242 /**
4243 * work_busy - test whether a work is currently pending or running
4244 * @work: the work to be tested
4245 *
4246 * Test whether @work is currently pending or running. There is no
4247 * synchronization around this function and the test result is
4248 * unreliable and only useful as advisory hints or for debugging.
4249 *
4250 * Return:
4251 * OR'd bitmask of WORK_BUSY_* bits.
4252 */
4253 unsigned int work_busy(struct work_struct *work)
4254 {
4255 struct worker_pool *pool;
4256 unsigned long flags;
4257 unsigned int ret = 0;
4258
4259 if (work_pending(work))
4260 ret |= WORK_BUSY_PENDING;
4261
4262 local_irq_save(flags);
4263 pool = get_work_pool(work);
4264 if (pool) {
4265 spin_lock(&pool->lock);
4266 if (find_worker_executing_work(pool, work))
4267 ret |= WORK_BUSY_RUNNING;
4268 spin_unlock(&pool->lock);
4269 }
4270 local_irq_restore(flags);
4271
4272 return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(work_busy);
4275
4276 /**
4277 * set_worker_desc - set description for the current work item
4278 * @fmt: printf-style format string
4279 * @...: arguments for the format string
4280 *
4281 * This function can be called by a running work function to describe what
4282 * the work item is about. If the worker task gets dumped, this
4283 * information will be printed out together to help debugging. The
4284 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4285 */
4286 void set_worker_desc(const char *fmt, ...)
4287 {
4288 struct worker *worker = current_wq_worker();
4289 va_list args;
4290
4291 if (worker) {
4292 va_start(args, fmt);
4293 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4294 va_end(args);
4295 worker->desc_valid = true;
4296 }
4297 }
4298
4299 /**
4300 * print_worker_info - print out worker information and description
4301 * @log_lvl: the log level to use when printing
4302 * @task: target task
4303 *
4304 * If @task is a worker and currently executing a work item, print out the
4305 * name of the workqueue being serviced and worker description set with
4306 * set_worker_desc() by the currently executing work item.
4307 *
4308 * This function can be safely called on any task as long as the
4309 * task_struct itself is accessible. While safe, this function isn't
4310 * synchronized and may print out mixups or garbages of limited length.
4311 */
4312 void print_worker_info(const char *log_lvl, struct task_struct *task)
4313 {
4314 work_func_t *fn = NULL;
4315 char name[WQ_NAME_LEN] = { };
4316 char desc[WORKER_DESC_LEN] = { };
4317 struct pool_workqueue *pwq = NULL;
4318 struct workqueue_struct *wq = NULL;
4319 bool desc_valid = false;
4320 struct worker *worker;
4321
4322 if (!(task->flags & PF_WQ_WORKER))
4323 return;
4324
4325 /*
4326 * This function is called without any synchronization and @task
4327 * could be in any state. Be careful with dereferences.
4328 */
4329 worker = kthread_probe_data(task);
4330
4331 /*
4332 * Carefully copy the associated workqueue's workfn and name. Keep
4333 * the original last '\0' in case the original contains garbage.
4334 */
4335 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4336 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4337 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4338 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4339
4340 /* copy worker description */
4341 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4342 if (desc_valid)
4343 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4344
4345 if (fn || name[0] || desc[0]) {
4346 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4347 if (desc[0])
4348 pr_cont(" (%s)", desc);
4349 pr_cont("\n");
4350 }
4351 }
4352
4353 static void pr_cont_pool_info(struct worker_pool *pool)
4354 {
4355 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4356 if (pool->node != NUMA_NO_NODE)
4357 pr_cont(" node=%d", pool->node);
4358 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4359 }
4360
4361 static void pr_cont_work(bool comma, struct work_struct *work)
4362 {
4363 if (work->func == wq_barrier_func) {
4364 struct wq_barrier *barr;
4365
4366 barr = container_of(work, struct wq_barrier, work);
4367
4368 pr_cont("%s BAR(%d)", comma ? "," : "",
4369 task_pid_nr(barr->task));
4370 } else {
4371 pr_cont("%s %pf", comma ? "," : "", work->func);
4372 }
4373 }
4374
4375 static void show_pwq(struct pool_workqueue *pwq)
4376 {
4377 struct worker_pool *pool = pwq->pool;
4378 struct work_struct *work;
4379 struct worker *worker;
4380 bool has_in_flight = false, has_pending = false;
4381 int bkt;
4382
4383 pr_info(" pwq %d:", pool->id);
4384 pr_cont_pool_info(pool);
4385
4386 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4387 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4388
4389 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4390 if (worker->current_pwq == pwq) {
4391 has_in_flight = true;
4392 break;
4393 }
4394 }
4395 if (has_in_flight) {
4396 bool comma = false;
4397
4398 pr_info(" in-flight:");
4399 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4400 if (worker->current_pwq != pwq)
4401 continue;
4402
4403 pr_cont("%s %d%s:%pf", comma ? "," : "",
4404 task_pid_nr(worker->task),
4405 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4406 worker->current_func);
4407 list_for_each_entry(work, &worker->scheduled, entry)
4408 pr_cont_work(false, work);
4409 comma = true;
4410 }
4411 pr_cont("\n");
4412 }
4413
4414 list_for_each_entry(work, &pool->worklist, entry) {
4415 if (get_work_pwq(work) == pwq) {
4416 has_pending = true;
4417 break;
4418 }
4419 }
4420 if (has_pending) {
4421 bool comma = false;
4422
4423 pr_info(" pending:");
4424 list_for_each_entry(work, &pool->worklist, entry) {
4425 if (get_work_pwq(work) != pwq)
4426 continue;
4427
4428 pr_cont_work(comma, work);
4429 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4430 }
4431 pr_cont("\n");
4432 }
4433
4434 if (!list_empty(&pwq->delayed_works)) {
4435 bool comma = false;
4436
4437 pr_info(" delayed:");
4438 list_for_each_entry(work, &pwq->delayed_works, entry) {
4439 pr_cont_work(comma, work);
4440 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4441 }
4442 pr_cont("\n");
4443 }
4444 }
4445
4446 /**
4447 * show_workqueue_state - dump workqueue state
4448 *
4449 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4450 * all busy workqueues and pools.
4451 */
4452 void show_workqueue_state(void)
4453 {
4454 struct workqueue_struct *wq;
4455 struct worker_pool *pool;
4456 unsigned long flags;
4457 int pi;
4458
4459 rcu_read_lock_sched();
4460
4461 pr_info("Showing busy workqueues and worker pools:\n");
4462
4463 list_for_each_entry_rcu(wq, &workqueues, list) {
4464 struct pool_workqueue *pwq;
4465 bool idle = true;
4466
4467 for_each_pwq(pwq, wq) {
4468 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4469 idle = false;
4470 break;
4471 }
4472 }
4473 if (idle)
4474 continue;
4475
4476 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4477
4478 for_each_pwq(pwq, wq) {
4479 spin_lock_irqsave(&pwq->pool->lock, flags);
4480 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4481 show_pwq(pwq);
4482 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4483 /*
4484 * We could be printing a lot from atomic context, e.g.
4485 * sysrq-t -> show_workqueue_state(). Avoid triggering
4486 * hard lockup.
4487 */
4488 touch_nmi_watchdog();
4489 }
4490 }
4491
4492 for_each_pool(pool, pi) {
4493 struct worker *worker;
4494 bool first = true;
4495
4496 spin_lock_irqsave(&pool->lock, flags);
4497 if (pool->nr_workers == pool->nr_idle)
4498 goto next_pool;
4499
4500 pr_info("pool %d:", pool->id);
4501 pr_cont_pool_info(pool);
4502 pr_cont(" hung=%us workers=%d",
4503 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4504 pool->nr_workers);
4505 if (pool->manager)
4506 pr_cont(" manager: %d",
4507 task_pid_nr(pool->manager->task));
4508 list_for_each_entry(worker, &pool->idle_list, entry) {
4509 pr_cont(" %s%d", first ? "idle: " : "",
4510 task_pid_nr(worker->task));
4511 first = false;
4512 }
4513 pr_cont("\n");
4514 next_pool:
4515 spin_unlock_irqrestore(&pool->lock, flags);
4516 /*
4517 * We could be printing a lot from atomic context, e.g.
4518 * sysrq-t -> show_workqueue_state(). Avoid triggering
4519 * hard lockup.
4520 */
4521 touch_nmi_watchdog();
4522 }
4523
4524 rcu_read_unlock_sched();
4525 }
4526
4527 /*
4528 * CPU hotplug.
4529 *
4530 * There are two challenges in supporting CPU hotplug. Firstly, there
4531 * are a lot of assumptions on strong associations among work, pwq and
4532 * pool which make migrating pending and scheduled works very
4533 * difficult to implement without impacting hot paths. Secondly,
4534 * worker pools serve mix of short, long and very long running works making
4535 * blocked draining impractical.
4536 *
4537 * This is solved by allowing the pools to be disassociated from the CPU
4538 * running as an unbound one and allowing it to be reattached later if the
4539 * cpu comes back online.
4540 */
4541
4542 static void unbind_workers(int cpu)
4543 {
4544 struct worker_pool *pool;
4545 struct worker *worker;
4546
4547 for_each_cpu_worker_pool(pool, cpu) {
4548 mutex_lock(&pool->attach_mutex);
4549 spin_lock_irq(&pool->lock);
4550
4551 /*
4552 * We've blocked all attach/detach operations. Make all workers
4553 * unbound and set DISASSOCIATED. Before this, all workers
4554 * except for the ones which are still executing works from
4555 * before the last CPU down must be on the cpu. After
4556 * this, they may become diasporas.
4557 */
4558 for_each_pool_worker(worker, pool)
4559 worker->flags |= WORKER_UNBOUND;
4560
4561 pool->flags |= POOL_DISASSOCIATED;
4562
4563 spin_unlock_irq(&pool->lock);
4564 mutex_unlock(&pool->attach_mutex);
4565
4566 /*
4567 * Call schedule() so that we cross rq->lock and thus can
4568 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4569 * This is necessary as scheduler callbacks may be invoked
4570 * from other cpus.
4571 */
4572 schedule();
4573
4574 /*
4575 * Sched callbacks are disabled now. Zap nr_running.
4576 * After this, nr_running stays zero and need_more_worker()
4577 * and keep_working() are always true as long as the
4578 * worklist is not empty. This pool now behaves as an
4579 * unbound (in terms of concurrency management) pool which
4580 * are served by workers tied to the pool.
4581 */
4582 atomic_set(&pool->nr_running, 0);
4583
4584 /*
4585 * With concurrency management just turned off, a busy
4586 * worker blocking could lead to lengthy stalls. Kick off
4587 * unbound chain execution of currently pending work items.
4588 */
4589 spin_lock_irq(&pool->lock);
4590 wake_up_worker(pool);
4591 spin_unlock_irq(&pool->lock);
4592 }
4593 }
4594
4595 /**
4596 * rebind_workers - rebind all workers of a pool to the associated CPU
4597 * @pool: pool of interest
4598 *
4599 * @pool->cpu is coming online. Rebind all workers to the CPU.
4600 */
4601 static void rebind_workers(struct worker_pool *pool)
4602 {
4603 struct worker *worker;
4604
4605 lockdep_assert_held(&pool->attach_mutex);
4606
4607 /*
4608 * Restore CPU affinity of all workers. As all idle workers should
4609 * be on the run-queue of the associated CPU before any local
4610 * wake-ups for concurrency management happen, restore CPU affinity
4611 * of all workers first and then clear UNBOUND. As we're called
4612 * from CPU_ONLINE, the following shouldn't fail.
4613 */
4614 for_each_pool_worker(worker, pool)
4615 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4616 pool->attrs->cpumask) < 0);
4617
4618 spin_lock_irq(&pool->lock);
4619
4620 pool->flags &= ~POOL_DISASSOCIATED;
4621
4622 for_each_pool_worker(worker, pool) {
4623 unsigned int worker_flags = worker->flags;
4624
4625 /*
4626 * A bound idle worker should actually be on the runqueue
4627 * of the associated CPU for local wake-ups targeting it to
4628 * work. Kick all idle workers so that they migrate to the
4629 * associated CPU. Doing this in the same loop as
4630 * replacing UNBOUND with REBOUND is safe as no worker will
4631 * be bound before @pool->lock is released.
4632 */
4633 if (worker_flags & WORKER_IDLE)
4634 wake_up_process(worker->task);
4635
4636 /*
4637 * We want to clear UNBOUND but can't directly call
4638 * worker_clr_flags() or adjust nr_running. Atomically
4639 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4640 * @worker will clear REBOUND using worker_clr_flags() when
4641 * it initiates the next execution cycle thus restoring
4642 * concurrency management. Note that when or whether
4643 * @worker clears REBOUND doesn't affect correctness.
4644 *
4645 * WRITE_ONCE() is necessary because @worker->flags may be
4646 * tested without holding any lock in
4647 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4648 * fail incorrectly leading to premature concurrency
4649 * management operations.
4650 */
4651 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4652 worker_flags |= WORKER_REBOUND;
4653 worker_flags &= ~WORKER_UNBOUND;
4654 WRITE_ONCE(worker->flags, worker_flags);
4655 }
4656
4657 spin_unlock_irq(&pool->lock);
4658 }
4659
4660 /**
4661 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4662 * @pool: unbound pool of interest
4663 * @cpu: the CPU which is coming up
4664 *
4665 * An unbound pool may end up with a cpumask which doesn't have any online
4666 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4667 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4668 * online CPU before, cpus_allowed of all its workers should be restored.
4669 */
4670 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4671 {
4672 static cpumask_t cpumask;
4673 struct worker *worker;
4674
4675 lockdep_assert_held(&pool->attach_mutex);
4676
4677 /* is @cpu allowed for @pool? */
4678 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4679 return;
4680
4681 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4682
4683 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4684 for_each_pool_worker(worker, pool)
4685 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4686 }
4687
4688 int workqueue_prepare_cpu(unsigned int cpu)
4689 {
4690 struct worker_pool *pool;
4691
4692 for_each_cpu_worker_pool(pool, cpu) {
4693 if (pool->nr_workers)
4694 continue;
4695 if (!create_worker(pool))
4696 return -ENOMEM;
4697 }
4698 return 0;
4699 }
4700
4701 int workqueue_online_cpu(unsigned int cpu)
4702 {
4703 struct worker_pool *pool;
4704 struct workqueue_struct *wq;
4705 int pi;
4706
4707 mutex_lock(&wq_pool_mutex);
4708
4709 for_each_pool(pool, pi) {
4710 mutex_lock(&pool->attach_mutex);
4711
4712 if (pool->cpu == cpu)
4713 rebind_workers(pool);
4714 else if (pool->cpu < 0)
4715 restore_unbound_workers_cpumask(pool, cpu);
4716
4717 mutex_unlock(&pool->attach_mutex);
4718 }
4719
4720 /* update NUMA affinity of unbound workqueues */
4721 list_for_each_entry(wq, &workqueues, list)
4722 wq_update_unbound_numa(wq, cpu, true);
4723
4724 mutex_unlock(&wq_pool_mutex);
4725 return 0;
4726 }
4727
4728 int workqueue_offline_cpu(unsigned int cpu)
4729 {
4730 struct workqueue_struct *wq;
4731
4732 /* unbinding per-cpu workers should happen on the local CPU */
4733 if (WARN_ON(cpu != smp_processor_id()))
4734 return -1;
4735
4736 unbind_workers(cpu);
4737
4738 /* update NUMA affinity of unbound workqueues */
4739 mutex_lock(&wq_pool_mutex);
4740 list_for_each_entry(wq, &workqueues, list)
4741 wq_update_unbound_numa(wq, cpu, false);
4742 mutex_unlock(&wq_pool_mutex);
4743
4744 return 0;
4745 }
4746
4747 #ifdef CONFIG_SMP
4748
4749 struct work_for_cpu {
4750 struct work_struct work;
4751 long (*fn)(void *);
4752 void *arg;
4753 long ret;
4754 };
4755
4756 static void work_for_cpu_fn(struct work_struct *work)
4757 {
4758 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4759
4760 wfc->ret = wfc->fn(wfc->arg);
4761 }
4762
4763 /**
4764 * work_on_cpu - run a function in thread context on a particular cpu
4765 * @cpu: the cpu to run on
4766 * @fn: the function to run
4767 * @arg: the function arg
4768 *
4769 * It is up to the caller to ensure that the cpu doesn't go offline.
4770 * The caller must not hold any locks which would prevent @fn from completing.
4771 *
4772 * Return: The value @fn returns.
4773 */
4774 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4775 {
4776 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4777
4778 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4779 schedule_work_on(cpu, &wfc.work);
4780 flush_work(&wfc.work);
4781 destroy_work_on_stack(&wfc.work);
4782 return wfc.ret;
4783 }
4784 EXPORT_SYMBOL_GPL(work_on_cpu);
4785
4786 /**
4787 * work_on_cpu_safe - run a function in thread context on a particular cpu
4788 * @cpu: the cpu to run on
4789 * @fn: the function to run
4790 * @arg: the function argument
4791 *
4792 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4793 * any locks which would prevent @fn from completing.
4794 *
4795 * Return: The value @fn returns.
4796 */
4797 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4798 {
4799 long ret = -ENODEV;
4800
4801 get_online_cpus();
4802 if (cpu_online(cpu))
4803 ret = work_on_cpu(cpu, fn, arg);
4804 put_online_cpus();
4805 return ret;
4806 }
4807 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4808 #endif /* CONFIG_SMP */
4809
4810 #ifdef CONFIG_FREEZER
4811
4812 /**
4813 * freeze_workqueues_begin - begin freezing workqueues
4814 *
4815 * Start freezing workqueues. After this function returns, all freezable
4816 * workqueues will queue new works to their delayed_works list instead of
4817 * pool->worklist.
4818 *
4819 * CONTEXT:
4820 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4821 */
4822 void freeze_workqueues_begin(void)
4823 {
4824 struct workqueue_struct *wq;
4825 struct pool_workqueue *pwq;
4826
4827 mutex_lock(&wq_pool_mutex);
4828
4829 WARN_ON_ONCE(workqueue_freezing);
4830 workqueue_freezing = true;
4831
4832 list_for_each_entry(wq, &workqueues, list) {
4833 mutex_lock(&wq->mutex);
4834 for_each_pwq(pwq, wq)
4835 pwq_adjust_max_active(pwq);
4836 mutex_unlock(&wq->mutex);
4837 }
4838
4839 mutex_unlock(&wq_pool_mutex);
4840 }
4841
4842 /**
4843 * freeze_workqueues_busy - are freezable workqueues still busy?
4844 *
4845 * Check whether freezing is complete. This function must be called
4846 * between freeze_workqueues_begin() and thaw_workqueues().
4847 *
4848 * CONTEXT:
4849 * Grabs and releases wq_pool_mutex.
4850 *
4851 * Return:
4852 * %true if some freezable workqueues are still busy. %false if freezing
4853 * is complete.
4854 */
4855 bool freeze_workqueues_busy(void)
4856 {
4857 bool busy = false;
4858 struct workqueue_struct *wq;
4859 struct pool_workqueue *pwq;
4860
4861 mutex_lock(&wq_pool_mutex);
4862
4863 WARN_ON_ONCE(!workqueue_freezing);
4864
4865 list_for_each_entry(wq, &workqueues, list) {
4866 if (!(wq->flags & WQ_FREEZABLE))
4867 continue;
4868 /*
4869 * nr_active is monotonically decreasing. It's safe
4870 * to peek without lock.
4871 */
4872 rcu_read_lock_sched();
4873 for_each_pwq(pwq, wq) {
4874 WARN_ON_ONCE(pwq->nr_active < 0);
4875 if (pwq->nr_active) {
4876 busy = true;
4877 rcu_read_unlock_sched();
4878 goto out_unlock;
4879 }
4880 }
4881 rcu_read_unlock_sched();
4882 }
4883 out_unlock:
4884 mutex_unlock(&wq_pool_mutex);
4885 return busy;
4886 }
4887
4888 /**
4889 * thaw_workqueues - thaw workqueues
4890 *
4891 * Thaw workqueues. Normal queueing is restored and all collected
4892 * frozen works are transferred to their respective pool worklists.
4893 *
4894 * CONTEXT:
4895 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4896 */
4897 void thaw_workqueues(void)
4898 {
4899 struct workqueue_struct *wq;
4900 struct pool_workqueue *pwq;
4901
4902 mutex_lock(&wq_pool_mutex);
4903
4904 if (!workqueue_freezing)
4905 goto out_unlock;
4906
4907 workqueue_freezing = false;
4908
4909 /* restore max_active and repopulate worklist */
4910 list_for_each_entry(wq, &workqueues, list) {
4911 mutex_lock(&wq->mutex);
4912 for_each_pwq(pwq, wq)
4913 pwq_adjust_max_active(pwq);
4914 mutex_unlock(&wq->mutex);
4915 }
4916
4917 out_unlock:
4918 mutex_unlock(&wq_pool_mutex);
4919 }
4920 #endif /* CONFIG_FREEZER */
4921
4922 static int workqueue_apply_unbound_cpumask(void)
4923 {
4924 LIST_HEAD(ctxs);
4925 int ret = 0;
4926 struct workqueue_struct *wq;
4927 struct apply_wqattrs_ctx *ctx, *n;
4928
4929 lockdep_assert_held(&wq_pool_mutex);
4930
4931 list_for_each_entry(wq, &workqueues, list) {
4932 if (!(wq->flags & WQ_UNBOUND))
4933 continue;
4934 /* creating multiple pwqs breaks ordering guarantee */
4935 if (wq->flags & __WQ_ORDERED)
4936 continue;
4937
4938 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4939 if (!ctx) {
4940 ret = -ENOMEM;
4941 break;
4942 }
4943
4944 list_add_tail(&ctx->list, &ctxs);
4945 }
4946
4947 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4948 if (!ret)
4949 apply_wqattrs_commit(ctx);
4950 apply_wqattrs_cleanup(ctx);
4951 }
4952
4953 return ret;
4954 }
4955
4956 /**
4957 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4958 * @cpumask: the cpumask to set
4959 *
4960 * The low-level workqueues cpumask is a global cpumask that limits
4961 * the affinity of all unbound workqueues. This function check the @cpumask
4962 * and apply it to all unbound workqueues and updates all pwqs of them.
4963 *
4964 * Retun: 0 - Success
4965 * -EINVAL - Invalid @cpumask
4966 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4967 */
4968 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4969 {
4970 int ret = -EINVAL;
4971 cpumask_var_t saved_cpumask;
4972
4973 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4974 return -ENOMEM;
4975
4976 /*
4977 * Not excluding isolated cpus on purpose.
4978 * If the user wishes to include them, we allow that.
4979 */
4980 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4981 if (!cpumask_empty(cpumask)) {
4982 apply_wqattrs_lock();
4983
4984 /* save the old wq_unbound_cpumask. */
4985 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4986
4987 /* update wq_unbound_cpumask at first and apply it to wqs. */
4988 cpumask_copy(wq_unbound_cpumask, cpumask);
4989 ret = workqueue_apply_unbound_cpumask();
4990
4991 /* restore the wq_unbound_cpumask when failed. */
4992 if (ret < 0)
4993 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4994
4995 apply_wqattrs_unlock();
4996 }
4997
4998 free_cpumask_var(saved_cpumask);
4999 return ret;
5000 }
5001
5002 #ifdef CONFIG_SYSFS
5003 /*
5004 * Workqueues with WQ_SYSFS flag set is visible to userland via
5005 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5006 * following attributes.
5007 *
5008 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5009 * max_active RW int : maximum number of in-flight work items
5010 *
5011 * Unbound workqueues have the following extra attributes.
5012 *
5013 * pool_ids RO int : the associated pool IDs for each node
5014 * nice RW int : nice value of the workers
5015 * cpumask RW mask : bitmask of allowed CPUs for the workers
5016 * numa RW bool : whether enable NUMA affinity
5017 */
5018 struct wq_device {
5019 struct workqueue_struct *wq;
5020 struct device dev;
5021 };
5022
5023 static struct workqueue_struct *dev_to_wq(struct device *dev)
5024 {
5025 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5026
5027 return wq_dev->wq;
5028 }
5029
5030 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5031 char *buf)
5032 {
5033 struct workqueue_struct *wq = dev_to_wq(dev);
5034
5035 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5036 }
5037 static DEVICE_ATTR_RO(per_cpu);
5038
5039 static ssize_t max_active_show(struct device *dev,
5040 struct device_attribute *attr, char *buf)
5041 {
5042 struct workqueue_struct *wq = dev_to_wq(dev);
5043
5044 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5045 }
5046
5047 static ssize_t max_active_store(struct device *dev,
5048 struct device_attribute *attr, const char *buf,
5049 size_t count)
5050 {
5051 struct workqueue_struct *wq = dev_to_wq(dev);
5052 int val;
5053
5054 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5055 return -EINVAL;
5056
5057 workqueue_set_max_active(wq, val);
5058 return count;
5059 }
5060 static DEVICE_ATTR_RW(max_active);
5061
5062 static struct attribute *wq_sysfs_attrs[] = {
5063 &dev_attr_per_cpu.attr,
5064 &dev_attr_max_active.attr,
5065 NULL,
5066 };
5067 ATTRIBUTE_GROUPS(wq_sysfs);
5068
5069 static ssize_t wq_pool_ids_show(struct device *dev,
5070 struct device_attribute *attr, char *buf)
5071 {
5072 struct workqueue_struct *wq = dev_to_wq(dev);
5073 const char *delim = "";
5074 int node, written = 0;
5075
5076 rcu_read_lock_sched();
5077 for_each_node(node) {
5078 written += scnprintf(buf + written, PAGE_SIZE - written,
5079 "%s%d:%d", delim, node,
5080 unbound_pwq_by_node(wq, node)->pool->id);
5081 delim = " ";
5082 }
5083 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5084 rcu_read_unlock_sched();
5085
5086 return written;
5087 }
5088
5089 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5090 char *buf)
5091 {
5092 struct workqueue_struct *wq = dev_to_wq(dev);
5093 int written;
5094
5095 mutex_lock(&wq->mutex);
5096 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5097 mutex_unlock(&wq->mutex);
5098
5099 return written;
5100 }
5101
5102 /* prepare workqueue_attrs for sysfs store operations */
5103 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5104 {
5105 struct workqueue_attrs *attrs;
5106
5107 lockdep_assert_held(&wq_pool_mutex);
5108
5109 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5110 if (!attrs)
5111 return NULL;
5112
5113 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5114 return attrs;
5115 }
5116
5117 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5118 const char *buf, size_t count)
5119 {
5120 struct workqueue_struct *wq = dev_to_wq(dev);
5121 struct workqueue_attrs *attrs;
5122 int ret = -ENOMEM;
5123
5124 apply_wqattrs_lock();
5125
5126 attrs = wq_sysfs_prep_attrs(wq);
5127 if (!attrs)
5128 goto out_unlock;
5129
5130 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5131 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5132 ret = apply_workqueue_attrs_locked(wq, attrs);
5133 else
5134 ret = -EINVAL;
5135
5136 out_unlock:
5137 apply_wqattrs_unlock();
5138 free_workqueue_attrs(attrs);
5139 return ret ?: count;
5140 }
5141
5142 static ssize_t wq_cpumask_show(struct device *dev,
5143 struct device_attribute *attr, char *buf)
5144 {
5145 struct workqueue_struct *wq = dev_to_wq(dev);
5146 int written;
5147
5148 mutex_lock(&wq->mutex);
5149 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5150 cpumask_pr_args(wq->unbound_attrs->cpumask));
5151 mutex_unlock(&wq->mutex);
5152 return written;
5153 }
5154
5155 static ssize_t wq_cpumask_store(struct device *dev,
5156 struct device_attribute *attr,
5157 const char *buf, size_t count)
5158 {
5159 struct workqueue_struct *wq = dev_to_wq(dev);
5160 struct workqueue_attrs *attrs;
5161 int ret = -ENOMEM;
5162
5163 apply_wqattrs_lock();
5164
5165 attrs = wq_sysfs_prep_attrs(wq);
5166 if (!attrs)
5167 goto out_unlock;
5168
5169 ret = cpumask_parse(buf, attrs->cpumask);
5170 if (!ret)
5171 ret = apply_workqueue_attrs_locked(wq, attrs);
5172
5173 out_unlock:
5174 apply_wqattrs_unlock();
5175 free_workqueue_attrs(attrs);
5176 return ret ?: count;
5177 }
5178
5179 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5180 char *buf)
5181 {
5182 struct workqueue_struct *wq = dev_to_wq(dev);
5183 int written;
5184
5185 mutex_lock(&wq->mutex);
5186 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5187 !wq->unbound_attrs->no_numa);
5188 mutex_unlock(&wq->mutex);
5189
5190 return written;
5191 }
5192
5193 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5194 const char *buf, size_t count)
5195 {
5196 struct workqueue_struct *wq = dev_to_wq(dev);
5197 struct workqueue_attrs *attrs;
5198 int v, ret = -ENOMEM;
5199
5200 apply_wqattrs_lock();
5201
5202 attrs = wq_sysfs_prep_attrs(wq);
5203 if (!attrs)
5204 goto out_unlock;
5205
5206 ret = -EINVAL;
5207 if (sscanf(buf, "%d", &v) == 1) {
5208 attrs->no_numa = !v;
5209 ret = apply_workqueue_attrs_locked(wq, attrs);
5210 }
5211
5212 out_unlock:
5213 apply_wqattrs_unlock();
5214 free_workqueue_attrs(attrs);
5215 return ret ?: count;
5216 }
5217
5218 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5219 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5220 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5221 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5222 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5223 __ATTR_NULL,
5224 };
5225
5226 static struct bus_type wq_subsys = {
5227 .name = "workqueue",
5228 .dev_groups = wq_sysfs_groups,
5229 };
5230
5231 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5232 struct device_attribute *attr, char *buf)
5233 {
5234 int written;
5235
5236 mutex_lock(&wq_pool_mutex);
5237 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5238 cpumask_pr_args(wq_unbound_cpumask));
5239 mutex_unlock(&wq_pool_mutex);
5240
5241 return written;
5242 }
5243
5244 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5245 struct device_attribute *attr, const char *buf, size_t count)
5246 {
5247 cpumask_var_t cpumask;
5248 int ret;
5249
5250 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5251 return -ENOMEM;
5252
5253 ret = cpumask_parse(buf, cpumask);
5254 if (!ret)
5255 ret = workqueue_set_unbound_cpumask(cpumask);
5256
5257 free_cpumask_var(cpumask);
5258 return ret ? ret : count;
5259 }
5260
5261 static struct device_attribute wq_sysfs_cpumask_attr =
5262 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5263 wq_unbound_cpumask_store);
5264
5265 static int __init wq_sysfs_init(void)
5266 {
5267 int err;
5268
5269 err = subsys_virtual_register(&wq_subsys, NULL);
5270 if (err)
5271 return err;
5272
5273 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5274 }
5275 core_initcall(wq_sysfs_init);
5276
5277 static void wq_device_release(struct device *dev)
5278 {
5279 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5280
5281 kfree(wq_dev);
5282 }
5283
5284 /**
5285 * workqueue_sysfs_register - make a workqueue visible in sysfs
5286 * @wq: the workqueue to register
5287 *
5288 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5289 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5290 * which is the preferred method.
5291 *
5292 * Workqueue user should use this function directly iff it wants to apply
5293 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5294 * apply_workqueue_attrs() may race against userland updating the
5295 * attributes.
5296 *
5297 * Return: 0 on success, -errno on failure.
5298 */
5299 int workqueue_sysfs_register(struct workqueue_struct *wq)
5300 {
5301 struct wq_device *wq_dev;
5302 int ret;
5303
5304 /*
5305 * Adjusting max_active or creating new pwqs by applying
5306 * attributes breaks ordering guarantee. Disallow exposing ordered
5307 * workqueues.
5308 */
5309 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5310 return -EINVAL;
5311
5312 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5313 if (!wq_dev)
5314 return -ENOMEM;
5315
5316 wq_dev->wq = wq;
5317 wq_dev->dev.bus = &wq_subsys;
5318 wq_dev->dev.release = wq_device_release;
5319 dev_set_name(&wq_dev->dev, "%s", wq->name);
5320
5321 /*
5322 * unbound_attrs are created separately. Suppress uevent until
5323 * everything is ready.
5324 */
5325 dev_set_uevent_suppress(&wq_dev->dev, true);
5326
5327 ret = device_register(&wq_dev->dev);
5328 if (ret) {
5329 put_device(&wq_dev->dev);
5330 wq->wq_dev = NULL;
5331 return ret;
5332 }
5333
5334 if (wq->flags & WQ_UNBOUND) {
5335 struct device_attribute *attr;
5336
5337 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5338 ret = device_create_file(&wq_dev->dev, attr);
5339 if (ret) {
5340 device_unregister(&wq_dev->dev);
5341 wq->wq_dev = NULL;
5342 return ret;
5343 }
5344 }
5345 }
5346
5347 dev_set_uevent_suppress(&wq_dev->dev, false);
5348 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5349 return 0;
5350 }
5351
5352 /**
5353 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5354 * @wq: the workqueue to unregister
5355 *
5356 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5357 */
5358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5359 {
5360 struct wq_device *wq_dev = wq->wq_dev;
5361
5362 if (!wq->wq_dev)
5363 return;
5364
5365 wq->wq_dev = NULL;
5366 device_unregister(&wq_dev->dev);
5367 }
5368 #else /* CONFIG_SYSFS */
5369 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5370 #endif /* CONFIG_SYSFS */
5371
5372 /*
5373 * Workqueue watchdog.
5374 *
5375 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5376 * flush dependency, a concurrency managed work item which stays RUNNING
5377 * indefinitely. Workqueue stalls can be very difficult to debug as the
5378 * usual warning mechanisms don't trigger and internal workqueue state is
5379 * largely opaque.
5380 *
5381 * Workqueue watchdog monitors all worker pools periodically and dumps
5382 * state if some pools failed to make forward progress for a while where
5383 * forward progress is defined as the first item on ->worklist changing.
5384 *
5385 * This mechanism is controlled through the kernel parameter
5386 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5387 * corresponding sysfs parameter file.
5388 */
5389 #ifdef CONFIG_WQ_WATCHDOG
5390
5391 static unsigned long wq_watchdog_thresh = 30;
5392 static struct timer_list wq_watchdog_timer;
5393
5394 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5395 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5396
5397 static void wq_watchdog_reset_touched(void)
5398 {
5399 int cpu;
5400
5401 wq_watchdog_touched = jiffies;
5402 for_each_possible_cpu(cpu)
5403 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5404 }
5405
5406 static void wq_watchdog_timer_fn(struct timer_list *unused)
5407 {
5408 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5409 bool lockup_detected = false;
5410 struct worker_pool *pool;
5411 int pi;
5412
5413 if (!thresh)
5414 return;
5415
5416 rcu_read_lock();
5417
5418 for_each_pool(pool, pi) {
5419 unsigned long pool_ts, touched, ts;
5420
5421 if (list_empty(&pool->worklist))
5422 continue;
5423
5424 /* get the latest of pool and touched timestamps */
5425 pool_ts = READ_ONCE(pool->watchdog_ts);
5426 touched = READ_ONCE(wq_watchdog_touched);
5427
5428 if (time_after(pool_ts, touched))
5429 ts = pool_ts;
5430 else
5431 ts = touched;
5432
5433 if (pool->cpu >= 0) {
5434 unsigned long cpu_touched =
5435 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5436 pool->cpu));
5437 if (time_after(cpu_touched, ts))
5438 ts = cpu_touched;
5439 }
5440
5441 /* did we stall? */
5442 if (time_after(jiffies, ts + thresh)) {
5443 lockup_detected = true;
5444 pr_emerg("BUG: workqueue lockup - pool");
5445 pr_cont_pool_info(pool);
5446 pr_cont(" stuck for %us!\n",
5447 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5448 }
5449 }
5450
5451 rcu_read_unlock();
5452
5453 if (lockup_detected)
5454 show_workqueue_state();
5455
5456 wq_watchdog_reset_touched();
5457 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5458 }
5459
5460 void wq_watchdog_touch(int cpu)
5461 {
5462 if (cpu >= 0)
5463 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5464 else
5465 wq_watchdog_touched = jiffies;
5466 }
5467
5468 static void wq_watchdog_set_thresh(unsigned long thresh)
5469 {
5470 wq_watchdog_thresh = 0;
5471 del_timer_sync(&wq_watchdog_timer);
5472
5473 if (thresh) {
5474 wq_watchdog_thresh = thresh;
5475 wq_watchdog_reset_touched();
5476 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5477 }
5478 }
5479
5480 static int wq_watchdog_param_set_thresh(const char *val,
5481 const struct kernel_param *kp)
5482 {
5483 unsigned long thresh;
5484 int ret;
5485
5486 ret = kstrtoul(val, 0, &thresh);
5487 if (ret)
5488 return ret;
5489
5490 if (system_wq)
5491 wq_watchdog_set_thresh(thresh);
5492 else
5493 wq_watchdog_thresh = thresh;
5494
5495 return 0;
5496 }
5497
5498 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5499 .set = wq_watchdog_param_set_thresh,
5500 .get = param_get_ulong,
5501 };
5502
5503 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5504 0644);
5505
5506 static void wq_watchdog_init(void)
5507 {
5508 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5509 wq_watchdog_set_thresh(wq_watchdog_thresh);
5510 }
5511
5512 #else /* CONFIG_WQ_WATCHDOG */
5513
5514 static inline void wq_watchdog_init(void) { }
5515
5516 #endif /* CONFIG_WQ_WATCHDOG */
5517
5518 static void __init wq_numa_init(void)
5519 {
5520 cpumask_var_t *tbl;
5521 int node, cpu;
5522
5523 if (num_possible_nodes() <= 1)
5524 return;
5525
5526 if (wq_disable_numa) {
5527 pr_info("workqueue: NUMA affinity support disabled\n");
5528 return;
5529 }
5530
5531 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5532 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5533
5534 /*
5535 * We want masks of possible CPUs of each node which isn't readily
5536 * available. Build one from cpu_to_node() which should have been
5537 * fully initialized by now.
5538 */
5539 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5540 BUG_ON(!tbl);
5541
5542 for_each_node(node)
5543 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5544 node_online(node) ? node : NUMA_NO_NODE));
5545
5546 for_each_possible_cpu(cpu) {
5547 node = cpu_to_node(cpu);
5548 if (WARN_ON(node == NUMA_NO_NODE)) {
5549 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5550 /* happens iff arch is bonkers, let's just proceed */
5551 return;
5552 }
5553 cpumask_set_cpu(cpu, tbl[node]);
5554 }
5555
5556 wq_numa_possible_cpumask = tbl;
5557 wq_numa_enabled = true;
5558 }
5559
5560 /**
5561 * workqueue_init_early - early init for workqueue subsystem
5562 *
5563 * This is the first half of two-staged workqueue subsystem initialization
5564 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5565 * idr are up. It sets up all the data structures and system workqueues
5566 * and allows early boot code to create workqueues and queue/cancel work
5567 * items. Actual work item execution starts only after kthreads can be
5568 * created and scheduled right before early initcalls.
5569 */
5570 int __init workqueue_init_early(void)
5571 {
5572 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5573 int i, cpu;
5574
5575 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5576
5577 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5578 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
5579
5580 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5581
5582 /* initialize CPU pools */
5583 for_each_possible_cpu(cpu) {
5584 struct worker_pool *pool;
5585
5586 i = 0;
5587 for_each_cpu_worker_pool(pool, cpu) {
5588 BUG_ON(init_worker_pool(pool));
5589 pool->cpu = cpu;
5590 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5591 pool->attrs->nice = std_nice[i++];
5592 pool->node = cpu_to_node(cpu);
5593
5594 /* alloc pool ID */
5595 mutex_lock(&wq_pool_mutex);
5596 BUG_ON(worker_pool_assign_id(pool));
5597 mutex_unlock(&wq_pool_mutex);
5598 }
5599 }
5600
5601 /* create default unbound and ordered wq attrs */
5602 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5603 struct workqueue_attrs *attrs;
5604
5605 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5606 attrs->nice = std_nice[i];
5607 unbound_std_wq_attrs[i] = attrs;
5608
5609 /*
5610 * An ordered wq should have only one pwq as ordering is
5611 * guaranteed by max_active which is enforced by pwqs.
5612 * Turn off NUMA so that dfl_pwq is used for all nodes.
5613 */
5614 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5615 attrs->nice = std_nice[i];
5616 attrs->no_numa = true;
5617 ordered_wq_attrs[i] = attrs;
5618 }
5619
5620 system_wq = alloc_workqueue("events", 0, 0);
5621 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5622 system_long_wq = alloc_workqueue("events_long", 0, 0);
5623 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5624 WQ_UNBOUND_MAX_ACTIVE);
5625 system_freezable_wq = alloc_workqueue("events_freezable",
5626 WQ_FREEZABLE, 0);
5627 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5628 WQ_POWER_EFFICIENT, 0);
5629 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5630 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5631 0);
5632 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5633 !system_unbound_wq || !system_freezable_wq ||
5634 !system_power_efficient_wq ||
5635 !system_freezable_power_efficient_wq);
5636
5637 return 0;
5638 }
5639
5640 /**
5641 * workqueue_init - bring workqueue subsystem fully online
5642 *
5643 * This is the latter half of two-staged workqueue subsystem initialization
5644 * and invoked as soon as kthreads can be created and scheduled.
5645 * Workqueues have been created and work items queued on them, but there
5646 * are no kworkers executing the work items yet. Populate the worker pools
5647 * with the initial workers and enable future kworker creations.
5648 */
5649 int __init workqueue_init(void)
5650 {
5651 struct workqueue_struct *wq;
5652 struct worker_pool *pool;
5653 int cpu, bkt;
5654
5655 /*
5656 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5657 * CPU to node mapping may not be available that early on some
5658 * archs such as power and arm64. As per-cpu pools created
5659 * previously could be missing node hint and unbound pools NUMA
5660 * affinity, fix them up.
5661 */
5662 wq_numa_init();
5663
5664 mutex_lock(&wq_pool_mutex);
5665
5666 for_each_possible_cpu(cpu) {
5667 for_each_cpu_worker_pool(pool, cpu) {
5668 pool->node = cpu_to_node(cpu);
5669 }
5670 }
5671
5672 list_for_each_entry(wq, &workqueues, list)
5673 wq_update_unbound_numa(wq, smp_processor_id(), true);
5674
5675 mutex_unlock(&wq_pool_mutex);
5676
5677 /* create the initial workers */
5678 for_each_online_cpu(cpu) {
5679 for_each_cpu_worker_pool(pool, cpu) {
5680 pool->flags &= ~POOL_DISASSOCIATED;
5681 BUG_ON(!create_worker(pool));
5682 }
5683 }
5684
5685 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5686 BUG_ON(!create_worker(pool));
5687
5688 wq_online = true;
5689 wq_watchdog_init();
5690
5691 return 0;
5692 }