]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/bitmap.c
lib/genalloc.c: use vzalloc_node() to allocate the bitmap
[mirror_ubuntu-bionic-kernel.git] / lib / bitmap.c
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/string.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/page.h>
21
22 /**
23 * DOC: bitmap introduction
24 *
25 * bitmaps provide an array of bits, implemented using an an
26 * array of unsigned longs. The number of valid bits in a
27 * given bitmap does _not_ need to be an exact multiple of
28 * BITS_PER_LONG.
29 *
30 * The possible unused bits in the last, partially used word
31 * of a bitmap are 'don't care'. The implementation makes
32 * no particular effort to keep them zero. It ensures that
33 * their value will not affect the results of any operation.
34 * The bitmap operations that return Boolean (bitmap_empty,
35 * for example) or scalar (bitmap_weight, for example) results
36 * carefully filter out these unused bits from impacting their
37 * results.
38 *
39 * These operations actually hold to a slightly stronger rule:
40 * if you don't input any bitmaps to these ops that have some
41 * unused bits set, then they won't output any set unused bits
42 * in output bitmaps.
43 *
44 * The byte ordering of bitmaps is more natural on little
45 * endian architectures. See the big-endian headers
46 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
47 * for the best explanations of this ordering.
48 */
49
50 int __bitmap_equal(const unsigned long *bitmap1,
51 const unsigned long *bitmap2, unsigned int bits)
52 {
53 unsigned int k, lim = bits/BITS_PER_LONG;
54 for (k = 0; k < lim; ++k)
55 if (bitmap1[k] != bitmap2[k])
56 return 0;
57
58 if (bits % BITS_PER_LONG)
59 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
60 return 0;
61
62 return 1;
63 }
64 EXPORT_SYMBOL(__bitmap_equal);
65
66 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
67 {
68 unsigned int k, lim = bits/BITS_PER_LONG;
69 for (k = 0; k < lim; ++k)
70 dst[k] = ~src[k];
71
72 if (bits % BITS_PER_LONG)
73 dst[k] = ~src[k];
74 }
75 EXPORT_SYMBOL(__bitmap_complement);
76
77 /**
78 * __bitmap_shift_right - logical right shift of the bits in a bitmap
79 * @dst : destination bitmap
80 * @src : source bitmap
81 * @shift : shift by this many bits
82 * @nbits : bitmap size, in bits
83 *
84 * Shifting right (dividing) means moving bits in the MS -> LS bit
85 * direction. Zeros are fed into the vacated MS positions and the
86 * LS bits shifted off the bottom are lost.
87 */
88 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
89 unsigned shift, unsigned nbits)
90 {
91 unsigned k, lim = BITS_TO_LONGS(nbits);
92 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
93 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
94 for (k = 0; off + k < lim; ++k) {
95 unsigned long upper, lower;
96
97 /*
98 * If shift is not word aligned, take lower rem bits of
99 * word above and make them the top rem bits of result.
100 */
101 if (!rem || off + k + 1 >= lim)
102 upper = 0;
103 else {
104 upper = src[off + k + 1];
105 if (off + k + 1 == lim - 1)
106 upper &= mask;
107 upper <<= (BITS_PER_LONG - rem);
108 }
109 lower = src[off + k];
110 if (off + k == lim - 1)
111 lower &= mask;
112 lower >>= rem;
113 dst[k] = lower | upper;
114 }
115 if (off)
116 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
117 }
118 EXPORT_SYMBOL(__bitmap_shift_right);
119
120
121 /**
122 * __bitmap_shift_left - logical left shift of the bits in a bitmap
123 * @dst : destination bitmap
124 * @src : source bitmap
125 * @shift : shift by this many bits
126 * @nbits : bitmap size, in bits
127 *
128 * Shifting left (multiplying) means moving bits in the LS -> MS
129 * direction. Zeros are fed into the vacated LS bit positions
130 * and those MS bits shifted off the top are lost.
131 */
132
133 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
134 unsigned int shift, unsigned int nbits)
135 {
136 int k;
137 unsigned int lim = BITS_TO_LONGS(nbits);
138 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
139 for (k = lim - off - 1; k >= 0; --k) {
140 unsigned long upper, lower;
141
142 /*
143 * If shift is not word aligned, take upper rem bits of
144 * word below and make them the bottom rem bits of result.
145 */
146 if (rem && k > 0)
147 lower = src[k - 1] >> (BITS_PER_LONG - rem);
148 else
149 lower = 0;
150 upper = src[k] << rem;
151 dst[k + off] = lower | upper;
152 }
153 if (off)
154 memset(dst, 0, off*sizeof(unsigned long));
155 }
156 EXPORT_SYMBOL(__bitmap_shift_left);
157
158 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
159 const unsigned long *bitmap2, unsigned int bits)
160 {
161 unsigned int k;
162 unsigned int lim = bits/BITS_PER_LONG;
163 unsigned long result = 0;
164
165 for (k = 0; k < lim; k++)
166 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
167 if (bits % BITS_PER_LONG)
168 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
169 BITMAP_LAST_WORD_MASK(bits));
170 return result != 0;
171 }
172 EXPORT_SYMBOL(__bitmap_and);
173
174 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
175 const unsigned long *bitmap2, unsigned int bits)
176 {
177 unsigned int k;
178 unsigned int nr = BITS_TO_LONGS(bits);
179
180 for (k = 0; k < nr; k++)
181 dst[k] = bitmap1[k] | bitmap2[k];
182 }
183 EXPORT_SYMBOL(__bitmap_or);
184
185 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
186 const unsigned long *bitmap2, unsigned int bits)
187 {
188 unsigned int k;
189 unsigned int nr = BITS_TO_LONGS(bits);
190
191 for (k = 0; k < nr; k++)
192 dst[k] = bitmap1[k] ^ bitmap2[k];
193 }
194 EXPORT_SYMBOL(__bitmap_xor);
195
196 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
197 const unsigned long *bitmap2, unsigned int bits)
198 {
199 unsigned int k;
200 unsigned int lim = bits/BITS_PER_LONG;
201 unsigned long result = 0;
202
203 for (k = 0; k < lim; k++)
204 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
205 if (bits % BITS_PER_LONG)
206 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
207 BITMAP_LAST_WORD_MASK(bits));
208 return result != 0;
209 }
210 EXPORT_SYMBOL(__bitmap_andnot);
211
212 int __bitmap_intersects(const unsigned long *bitmap1,
213 const unsigned long *bitmap2, unsigned int bits)
214 {
215 unsigned int k, lim = bits/BITS_PER_LONG;
216 for (k = 0; k < lim; ++k)
217 if (bitmap1[k] & bitmap2[k])
218 return 1;
219
220 if (bits % BITS_PER_LONG)
221 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
222 return 1;
223 return 0;
224 }
225 EXPORT_SYMBOL(__bitmap_intersects);
226
227 int __bitmap_subset(const unsigned long *bitmap1,
228 const unsigned long *bitmap2, unsigned int bits)
229 {
230 unsigned int k, lim = bits/BITS_PER_LONG;
231 for (k = 0; k < lim; ++k)
232 if (bitmap1[k] & ~bitmap2[k])
233 return 0;
234
235 if (bits % BITS_PER_LONG)
236 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
237 return 0;
238 return 1;
239 }
240 EXPORT_SYMBOL(__bitmap_subset);
241
242 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
243 {
244 unsigned int k, lim = bits/BITS_PER_LONG;
245 int w = 0;
246
247 for (k = 0; k < lim; k++)
248 w += hweight_long(bitmap[k]);
249
250 if (bits % BITS_PER_LONG)
251 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
252
253 return w;
254 }
255 EXPORT_SYMBOL(__bitmap_weight);
256
257 void __bitmap_set(unsigned long *map, unsigned int start, int len)
258 {
259 unsigned long *p = map + BIT_WORD(start);
260 const unsigned int size = start + len;
261 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
262 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
263
264 while (len - bits_to_set >= 0) {
265 *p |= mask_to_set;
266 len -= bits_to_set;
267 bits_to_set = BITS_PER_LONG;
268 mask_to_set = ~0UL;
269 p++;
270 }
271 if (len) {
272 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
273 *p |= mask_to_set;
274 }
275 }
276 EXPORT_SYMBOL(__bitmap_set);
277
278 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
279 {
280 unsigned long *p = map + BIT_WORD(start);
281 const unsigned int size = start + len;
282 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
283 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
284
285 while (len - bits_to_clear >= 0) {
286 *p &= ~mask_to_clear;
287 len -= bits_to_clear;
288 bits_to_clear = BITS_PER_LONG;
289 mask_to_clear = ~0UL;
290 p++;
291 }
292 if (len) {
293 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
294 *p &= ~mask_to_clear;
295 }
296 }
297 EXPORT_SYMBOL(__bitmap_clear);
298
299 /**
300 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
301 * @map: The address to base the search on
302 * @size: The bitmap size in bits
303 * @start: The bitnumber to start searching at
304 * @nr: The number of zeroed bits we're looking for
305 * @align_mask: Alignment mask for zero area
306 * @align_offset: Alignment offset for zero area.
307 *
308 * The @align_mask should be one less than a power of 2; the effect is that
309 * the bit offset of all zero areas this function finds plus @align_offset
310 * is multiple of that power of 2.
311 */
312 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
313 unsigned long size,
314 unsigned long start,
315 unsigned int nr,
316 unsigned long align_mask,
317 unsigned long align_offset)
318 {
319 unsigned long index, end, i;
320 again:
321 index = find_next_zero_bit(map, size, start);
322
323 /* Align allocation */
324 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
325
326 end = index + nr;
327 if (end > size)
328 return end;
329 i = find_next_bit(map, end, index);
330 if (i < end) {
331 start = i + 1;
332 goto again;
333 }
334 return index;
335 }
336 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
337
338 /*
339 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
340 * second version by Paul Jackson, third by Joe Korty.
341 */
342
343 #define CHUNKSZ 32
344 #define nbits_to_hold_value(val) fls(val)
345 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
346
347 /**
348 * __bitmap_parse - convert an ASCII hex string into a bitmap.
349 * @buf: pointer to buffer containing string.
350 * @buflen: buffer size in bytes. If string is smaller than this
351 * then it must be terminated with a \0.
352 * @is_user: location of buffer, 0 indicates kernel space
353 * @maskp: pointer to bitmap array that will contain result.
354 * @nmaskbits: size of bitmap, in bits.
355 *
356 * Commas group hex digits into chunks. Each chunk defines exactly 32
357 * bits of the resultant bitmask. No chunk may specify a value larger
358 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
359 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
360 * characters and for grouping errors such as "1,,5", ",44", "," and "".
361 * Leading and trailing whitespace accepted, but not embedded whitespace.
362 */
363 int __bitmap_parse(const char *buf, unsigned int buflen,
364 int is_user, unsigned long *maskp,
365 int nmaskbits)
366 {
367 int c, old_c, totaldigits, ndigits, nchunks, nbits;
368 u32 chunk;
369 const char __user __force *ubuf = (const char __user __force *)buf;
370
371 bitmap_zero(maskp, nmaskbits);
372
373 nchunks = nbits = totaldigits = c = 0;
374 do {
375 chunk = 0;
376 ndigits = totaldigits;
377
378 /* Get the next chunk of the bitmap */
379 while (buflen) {
380 old_c = c;
381 if (is_user) {
382 if (__get_user(c, ubuf++))
383 return -EFAULT;
384 }
385 else
386 c = *buf++;
387 buflen--;
388 if (isspace(c))
389 continue;
390
391 /*
392 * If the last character was a space and the current
393 * character isn't '\0', we've got embedded whitespace.
394 * This is a no-no, so throw an error.
395 */
396 if (totaldigits && c && isspace(old_c))
397 return -EINVAL;
398
399 /* A '\0' or a ',' signal the end of the chunk */
400 if (c == '\0' || c == ',')
401 break;
402
403 if (!isxdigit(c))
404 return -EINVAL;
405
406 /*
407 * Make sure there are at least 4 free bits in 'chunk'.
408 * If not, this hexdigit will overflow 'chunk', so
409 * throw an error.
410 */
411 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
412 return -EOVERFLOW;
413
414 chunk = (chunk << 4) | hex_to_bin(c);
415 totaldigits++;
416 }
417 if (ndigits == totaldigits)
418 return -EINVAL;
419 if (nchunks == 0 && chunk == 0)
420 continue;
421
422 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
423 *maskp |= chunk;
424 nchunks++;
425 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
426 if (nbits > nmaskbits)
427 return -EOVERFLOW;
428 } while (buflen && c == ',');
429
430 return 0;
431 }
432 EXPORT_SYMBOL(__bitmap_parse);
433
434 /**
435 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
436 *
437 * @ubuf: pointer to user buffer containing string.
438 * @ulen: buffer size in bytes. If string is smaller than this
439 * then it must be terminated with a \0.
440 * @maskp: pointer to bitmap array that will contain result.
441 * @nmaskbits: size of bitmap, in bits.
442 *
443 * Wrapper for __bitmap_parse(), providing it with user buffer.
444 *
445 * We cannot have this as an inline function in bitmap.h because it needs
446 * linux/uaccess.h to get the access_ok() declaration and this causes
447 * cyclic dependencies.
448 */
449 int bitmap_parse_user(const char __user *ubuf,
450 unsigned int ulen, unsigned long *maskp,
451 int nmaskbits)
452 {
453 if (!access_ok(VERIFY_READ, ubuf, ulen))
454 return -EFAULT;
455 return __bitmap_parse((const char __force *)ubuf,
456 ulen, 1, maskp, nmaskbits);
457
458 }
459 EXPORT_SYMBOL(bitmap_parse_user);
460
461 /**
462 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
463 * @list: indicates whether the bitmap must be list
464 * @buf: page aligned buffer into which string is placed
465 * @maskp: pointer to bitmap to convert
466 * @nmaskbits: size of bitmap, in bits
467 *
468 * Output format is a comma-separated list of decimal numbers and
469 * ranges if list is specified or hex digits grouped into comma-separated
470 * sets of 8 digits/set. Returns the number of characters written to buf.
471 *
472 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
473 * area and that sufficient storage remains at @buf to accommodate the
474 * bitmap_print_to_pagebuf() output. Returns the number of characters
475 * actually printed to @buf, excluding terminating '\0'.
476 */
477 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
478 int nmaskbits)
479 {
480 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
481 int n = 0;
482
483 if (len > 1)
484 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
485 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
486 return n;
487 }
488 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
489
490 /**
491 * __bitmap_parselist - convert list format ASCII string to bitmap
492 * @buf: read nul-terminated user string from this buffer
493 * @buflen: buffer size in bytes. If string is smaller than this
494 * then it must be terminated with a \0.
495 * @is_user: location of buffer, 0 indicates kernel space
496 * @maskp: write resulting mask here
497 * @nmaskbits: number of bits in mask to be written
498 *
499 * Input format is a comma-separated list of decimal numbers and
500 * ranges. Consecutively set bits are shown as two hyphen-separated
501 * decimal numbers, the smallest and largest bit numbers set in
502 * the range.
503 * Optionally each range can be postfixed to denote that only parts of it
504 * should be set. The range will divided to groups of specific size.
505 * From each group will be used only defined amount of bits.
506 * Syntax: range:used_size/group_size
507 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
508 *
509 * Returns: 0 on success, -errno on invalid input strings. Error values:
510 *
511 * - ``-EINVAL``: second number in range smaller than first
512 * - ``-EINVAL``: invalid character in string
513 * - ``-ERANGE``: bit number specified too large for mask
514 */
515 static int __bitmap_parselist(const char *buf, unsigned int buflen,
516 int is_user, unsigned long *maskp,
517 int nmaskbits)
518 {
519 unsigned int a, b, old_a, old_b;
520 unsigned int group_size, used_size, off;
521 int c, old_c, totaldigits, ndigits;
522 const char __user __force *ubuf = (const char __user __force *)buf;
523 int at_start, in_range, in_partial_range;
524
525 totaldigits = c = 0;
526 old_a = old_b = 0;
527 group_size = used_size = 0;
528 bitmap_zero(maskp, nmaskbits);
529 do {
530 at_start = 1;
531 in_range = 0;
532 in_partial_range = 0;
533 a = b = 0;
534 ndigits = totaldigits;
535
536 /* Get the next cpu# or a range of cpu#'s */
537 while (buflen) {
538 old_c = c;
539 if (is_user) {
540 if (__get_user(c, ubuf++))
541 return -EFAULT;
542 } else
543 c = *buf++;
544 buflen--;
545 if (isspace(c))
546 continue;
547
548 /* A '\0' or a ',' signal the end of a cpu# or range */
549 if (c == '\0' || c == ',')
550 break;
551 /*
552 * whitespaces between digits are not allowed,
553 * but it's ok if whitespaces are on head or tail.
554 * when old_c is whilespace,
555 * if totaldigits == ndigits, whitespace is on head.
556 * if whitespace is on tail, it should not run here.
557 * as c was ',' or '\0',
558 * the last code line has broken the current loop.
559 */
560 if ((totaldigits != ndigits) && isspace(old_c))
561 return -EINVAL;
562
563 if (c == '/') {
564 used_size = a;
565 at_start = 1;
566 in_range = 0;
567 a = b = 0;
568 continue;
569 }
570
571 if (c == ':') {
572 old_a = a;
573 old_b = b;
574 at_start = 1;
575 in_range = 0;
576 in_partial_range = 1;
577 a = b = 0;
578 continue;
579 }
580
581 if (c == '-') {
582 if (at_start || in_range)
583 return -EINVAL;
584 b = 0;
585 in_range = 1;
586 at_start = 1;
587 continue;
588 }
589
590 if (!isdigit(c))
591 return -EINVAL;
592
593 b = b * 10 + (c - '0');
594 if (!in_range)
595 a = b;
596 at_start = 0;
597 totaldigits++;
598 }
599 if (ndigits == totaldigits)
600 continue;
601 if (in_partial_range) {
602 group_size = a;
603 a = old_a;
604 b = old_b;
605 old_a = old_b = 0;
606 } else {
607 used_size = group_size = b - a + 1;
608 }
609 /* if no digit is after '-', it's wrong*/
610 if (at_start && in_range)
611 return -EINVAL;
612 if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
613 return -EINVAL;
614 if (b >= nmaskbits)
615 return -ERANGE;
616 while (a <= b) {
617 off = min(b - a + 1, used_size);
618 bitmap_set(maskp, a, off);
619 a += group_size;
620 }
621 } while (buflen && c == ',');
622 return 0;
623 }
624
625 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
626 {
627 char *nl = strchrnul(bp, '\n');
628 int len = nl - bp;
629
630 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
631 }
632 EXPORT_SYMBOL(bitmap_parselist);
633
634
635 /**
636 * bitmap_parselist_user()
637 *
638 * @ubuf: pointer to user buffer containing string.
639 * @ulen: buffer size in bytes. If string is smaller than this
640 * then it must be terminated with a \0.
641 * @maskp: pointer to bitmap array that will contain result.
642 * @nmaskbits: size of bitmap, in bits.
643 *
644 * Wrapper for bitmap_parselist(), providing it with user buffer.
645 *
646 * We cannot have this as an inline function in bitmap.h because it needs
647 * linux/uaccess.h to get the access_ok() declaration and this causes
648 * cyclic dependencies.
649 */
650 int bitmap_parselist_user(const char __user *ubuf,
651 unsigned int ulen, unsigned long *maskp,
652 int nmaskbits)
653 {
654 if (!access_ok(VERIFY_READ, ubuf, ulen))
655 return -EFAULT;
656 return __bitmap_parselist((const char __force *)ubuf,
657 ulen, 1, maskp, nmaskbits);
658 }
659 EXPORT_SYMBOL(bitmap_parselist_user);
660
661
662 /**
663 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
664 * @buf: pointer to a bitmap
665 * @pos: a bit position in @buf (0 <= @pos < @nbits)
666 * @nbits: number of valid bit positions in @buf
667 *
668 * Map the bit at position @pos in @buf (of length @nbits) to the
669 * ordinal of which set bit it is. If it is not set or if @pos
670 * is not a valid bit position, map to -1.
671 *
672 * If for example, just bits 4 through 7 are set in @buf, then @pos
673 * values 4 through 7 will get mapped to 0 through 3, respectively,
674 * and other @pos values will get mapped to -1. When @pos value 7
675 * gets mapped to (returns) @ord value 3 in this example, that means
676 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
677 *
678 * The bit positions 0 through @bits are valid positions in @buf.
679 */
680 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
681 {
682 if (pos >= nbits || !test_bit(pos, buf))
683 return -1;
684
685 return __bitmap_weight(buf, pos);
686 }
687
688 /**
689 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
690 * @buf: pointer to bitmap
691 * @ord: ordinal bit position (n-th set bit, n >= 0)
692 * @nbits: number of valid bit positions in @buf
693 *
694 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
695 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
696 * >= weight(buf), returns @nbits.
697 *
698 * If for example, just bits 4 through 7 are set in @buf, then @ord
699 * values 0 through 3 will get mapped to 4 through 7, respectively,
700 * and all other @ord values returns @nbits. When @ord value 3
701 * gets mapped to (returns) @pos value 7 in this example, that means
702 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
703 *
704 * The bit positions 0 through @nbits-1 are valid positions in @buf.
705 */
706 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
707 {
708 unsigned int pos;
709
710 for (pos = find_first_bit(buf, nbits);
711 pos < nbits && ord;
712 pos = find_next_bit(buf, nbits, pos + 1))
713 ord--;
714
715 return pos;
716 }
717
718 /**
719 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
720 * @dst: remapped result
721 * @src: subset to be remapped
722 * @old: defines domain of map
723 * @new: defines range of map
724 * @nbits: number of bits in each of these bitmaps
725 *
726 * Let @old and @new define a mapping of bit positions, such that
727 * whatever position is held by the n-th set bit in @old is mapped
728 * to the n-th set bit in @new. In the more general case, allowing
729 * for the possibility that the weight 'w' of @new is less than the
730 * weight of @old, map the position of the n-th set bit in @old to
731 * the position of the m-th set bit in @new, where m == n % w.
732 *
733 * If either of the @old and @new bitmaps are empty, or if @src and
734 * @dst point to the same location, then this routine copies @src
735 * to @dst.
736 *
737 * The positions of unset bits in @old are mapped to themselves
738 * (the identify map).
739 *
740 * Apply the above specified mapping to @src, placing the result in
741 * @dst, clearing any bits previously set in @dst.
742 *
743 * For example, lets say that @old has bits 4 through 7 set, and
744 * @new has bits 12 through 15 set. This defines the mapping of bit
745 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
746 * bit positions unchanged. So if say @src comes into this routine
747 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
748 * 13 and 15 set.
749 */
750 void bitmap_remap(unsigned long *dst, const unsigned long *src,
751 const unsigned long *old, const unsigned long *new,
752 unsigned int nbits)
753 {
754 unsigned int oldbit, w;
755
756 if (dst == src) /* following doesn't handle inplace remaps */
757 return;
758 bitmap_zero(dst, nbits);
759
760 w = bitmap_weight(new, nbits);
761 for_each_set_bit(oldbit, src, nbits) {
762 int n = bitmap_pos_to_ord(old, oldbit, nbits);
763
764 if (n < 0 || w == 0)
765 set_bit(oldbit, dst); /* identity map */
766 else
767 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
768 }
769 }
770 EXPORT_SYMBOL(bitmap_remap);
771
772 /**
773 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
774 * @oldbit: bit position to be mapped
775 * @old: defines domain of map
776 * @new: defines range of map
777 * @bits: number of bits in each of these bitmaps
778 *
779 * Let @old and @new define a mapping of bit positions, such that
780 * whatever position is held by the n-th set bit in @old is mapped
781 * to the n-th set bit in @new. In the more general case, allowing
782 * for the possibility that the weight 'w' of @new is less than the
783 * weight of @old, map the position of the n-th set bit in @old to
784 * the position of the m-th set bit in @new, where m == n % w.
785 *
786 * The positions of unset bits in @old are mapped to themselves
787 * (the identify map).
788 *
789 * Apply the above specified mapping to bit position @oldbit, returning
790 * the new bit position.
791 *
792 * For example, lets say that @old has bits 4 through 7 set, and
793 * @new has bits 12 through 15 set. This defines the mapping of bit
794 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
795 * bit positions unchanged. So if say @oldbit is 5, then this routine
796 * returns 13.
797 */
798 int bitmap_bitremap(int oldbit, const unsigned long *old,
799 const unsigned long *new, int bits)
800 {
801 int w = bitmap_weight(new, bits);
802 int n = bitmap_pos_to_ord(old, oldbit, bits);
803 if (n < 0 || w == 0)
804 return oldbit;
805 else
806 return bitmap_ord_to_pos(new, n % w, bits);
807 }
808 EXPORT_SYMBOL(bitmap_bitremap);
809
810 /**
811 * bitmap_onto - translate one bitmap relative to another
812 * @dst: resulting translated bitmap
813 * @orig: original untranslated bitmap
814 * @relmap: bitmap relative to which translated
815 * @bits: number of bits in each of these bitmaps
816 *
817 * Set the n-th bit of @dst iff there exists some m such that the
818 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
819 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
820 * (If you understood the previous sentence the first time your
821 * read it, you're overqualified for your current job.)
822 *
823 * In other words, @orig is mapped onto (surjectively) @dst,
824 * using the map { <n, m> | the n-th bit of @relmap is the
825 * m-th set bit of @relmap }.
826 *
827 * Any set bits in @orig above bit number W, where W is the
828 * weight of (number of set bits in) @relmap are mapped nowhere.
829 * In particular, if for all bits m set in @orig, m >= W, then
830 * @dst will end up empty. In situations where the possibility
831 * of such an empty result is not desired, one way to avoid it is
832 * to use the bitmap_fold() operator, below, to first fold the
833 * @orig bitmap over itself so that all its set bits x are in the
834 * range 0 <= x < W. The bitmap_fold() operator does this by
835 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
836 *
837 * Example [1] for bitmap_onto():
838 * Let's say @relmap has bits 30-39 set, and @orig has bits
839 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
840 * @dst will have bits 31, 33, 35, 37 and 39 set.
841 *
842 * When bit 0 is set in @orig, it means turn on the bit in
843 * @dst corresponding to whatever is the first bit (if any)
844 * that is turned on in @relmap. Since bit 0 was off in the
845 * above example, we leave off that bit (bit 30) in @dst.
846 *
847 * When bit 1 is set in @orig (as in the above example), it
848 * means turn on the bit in @dst corresponding to whatever
849 * is the second bit that is turned on in @relmap. The second
850 * bit in @relmap that was turned on in the above example was
851 * bit 31, so we turned on bit 31 in @dst.
852 *
853 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
854 * because they were the 4th, 6th, 8th and 10th set bits
855 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
856 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
857 *
858 * When bit 11 is set in @orig, it means turn on the bit in
859 * @dst corresponding to whatever is the twelfth bit that is
860 * turned on in @relmap. In the above example, there were
861 * only ten bits turned on in @relmap (30..39), so that bit
862 * 11 was set in @orig had no affect on @dst.
863 *
864 * Example [2] for bitmap_fold() + bitmap_onto():
865 * Let's say @relmap has these ten bits set::
866 *
867 * 40 41 42 43 45 48 53 61 74 95
868 *
869 * (for the curious, that's 40 plus the first ten terms of the
870 * Fibonacci sequence.)
871 *
872 * Further lets say we use the following code, invoking
873 * bitmap_fold() then bitmap_onto, as suggested above to
874 * avoid the possibility of an empty @dst result::
875 *
876 * unsigned long *tmp; // a temporary bitmap's bits
877 *
878 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
879 * bitmap_onto(dst, tmp, relmap, bits);
880 *
881 * Then this table shows what various values of @dst would be, for
882 * various @orig's. I list the zero-based positions of each set bit.
883 * The tmp column shows the intermediate result, as computed by
884 * using bitmap_fold() to fold the @orig bitmap modulo ten
885 * (the weight of @relmap):
886 *
887 * =============== ============== =================
888 * @orig tmp @dst
889 * 0 0 40
890 * 1 1 41
891 * 9 9 95
892 * 10 0 40 [#f1]_
893 * 1 3 5 7 1 3 5 7 41 43 48 61
894 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
895 * 0 9 18 27 0 9 8 7 40 61 74 95
896 * 0 10 20 30 0 40
897 * 0 11 22 33 0 1 2 3 40 41 42 43
898 * 0 12 24 36 0 2 4 6 40 42 45 53
899 * 78 102 211 1 2 8 41 42 74 [#f1]_
900 * =============== ============== =================
901 *
902 * .. [#f1]
903 *
904 * For these marked lines, if we hadn't first done bitmap_fold()
905 * into tmp, then the @dst result would have been empty.
906 *
907 * If either of @orig or @relmap is empty (no set bits), then @dst
908 * will be returned empty.
909 *
910 * If (as explained above) the only set bits in @orig are in positions
911 * m where m >= W, (where W is the weight of @relmap) then @dst will
912 * once again be returned empty.
913 *
914 * All bits in @dst not set by the above rule are cleared.
915 */
916 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
917 const unsigned long *relmap, unsigned int bits)
918 {
919 unsigned int n, m; /* same meaning as in above comment */
920
921 if (dst == orig) /* following doesn't handle inplace mappings */
922 return;
923 bitmap_zero(dst, bits);
924
925 /*
926 * The following code is a more efficient, but less
927 * obvious, equivalent to the loop:
928 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
929 * n = bitmap_ord_to_pos(orig, m, bits);
930 * if (test_bit(m, orig))
931 * set_bit(n, dst);
932 * }
933 */
934
935 m = 0;
936 for_each_set_bit(n, relmap, bits) {
937 /* m == bitmap_pos_to_ord(relmap, n, bits) */
938 if (test_bit(m, orig))
939 set_bit(n, dst);
940 m++;
941 }
942 }
943 EXPORT_SYMBOL(bitmap_onto);
944
945 /**
946 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
947 * @dst: resulting smaller bitmap
948 * @orig: original larger bitmap
949 * @sz: specified size
950 * @nbits: number of bits in each of these bitmaps
951 *
952 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
953 * Clear all other bits in @dst. See further the comment and
954 * Example [2] for bitmap_onto() for why and how to use this.
955 */
956 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
957 unsigned int sz, unsigned int nbits)
958 {
959 unsigned int oldbit;
960
961 if (dst == orig) /* following doesn't handle inplace mappings */
962 return;
963 bitmap_zero(dst, nbits);
964
965 for_each_set_bit(oldbit, orig, nbits)
966 set_bit(oldbit % sz, dst);
967 }
968 EXPORT_SYMBOL(bitmap_fold);
969
970 /*
971 * Common code for bitmap_*_region() routines.
972 * bitmap: array of unsigned longs corresponding to the bitmap
973 * pos: the beginning of the region
974 * order: region size (log base 2 of number of bits)
975 * reg_op: operation(s) to perform on that region of bitmap
976 *
977 * Can set, verify and/or release a region of bits in a bitmap,
978 * depending on which combination of REG_OP_* flag bits is set.
979 *
980 * A region of a bitmap is a sequence of bits in the bitmap, of
981 * some size '1 << order' (a power of two), aligned to that same
982 * '1 << order' power of two.
983 *
984 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
985 * Returns 0 in all other cases and reg_ops.
986 */
987
988 enum {
989 REG_OP_ISFREE, /* true if region is all zero bits */
990 REG_OP_ALLOC, /* set all bits in region */
991 REG_OP_RELEASE, /* clear all bits in region */
992 };
993
994 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
995 {
996 int nbits_reg; /* number of bits in region */
997 int index; /* index first long of region in bitmap */
998 int offset; /* bit offset region in bitmap[index] */
999 int nlongs_reg; /* num longs spanned by region in bitmap */
1000 int nbitsinlong; /* num bits of region in each spanned long */
1001 unsigned long mask; /* bitmask for one long of region */
1002 int i; /* scans bitmap by longs */
1003 int ret = 0; /* return value */
1004
1005 /*
1006 * Either nlongs_reg == 1 (for small orders that fit in one long)
1007 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1008 */
1009 nbits_reg = 1 << order;
1010 index = pos / BITS_PER_LONG;
1011 offset = pos - (index * BITS_PER_LONG);
1012 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1013 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1014
1015 /*
1016 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1017 * overflows if nbitsinlong == BITS_PER_LONG.
1018 */
1019 mask = (1UL << (nbitsinlong - 1));
1020 mask += mask - 1;
1021 mask <<= offset;
1022
1023 switch (reg_op) {
1024 case REG_OP_ISFREE:
1025 for (i = 0; i < nlongs_reg; i++) {
1026 if (bitmap[index + i] & mask)
1027 goto done;
1028 }
1029 ret = 1; /* all bits in region free (zero) */
1030 break;
1031
1032 case REG_OP_ALLOC:
1033 for (i = 0; i < nlongs_reg; i++)
1034 bitmap[index + i] |= mask;
1035 break;
1036
1037 case REG_OP_RELEASE:
1038 for (i = 0; i < nlongs_reg; i++)
1039 bitmap[index + i] &= ~mask;
1040 break;
1041 }
1042 done:
1043 return ret;
1044 }
1045
1046 /**
1047 * bitmap_find_free_region - find a contiguous aligned mem region
1048 * @bitmap: array of unsigned longs corresponding to the bitmap
1049 * @bits: number of bits in the bitmap
1050 * @order: region size (log base 2 of number of bits) to find
1051 *
1052 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1053 * allocate them (set them to one). Only consider regions of length
1054 * a power (@order) of two, aligned to that power of two, which
1055 * makes the search algorithm much faster.
1056 *
1057 * Return the bit offset in bitmap of the allocated region,
1058 * or -errno on failure.
1059 */
1060 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1061 {
1062 unsigned int pos, end; /* scans bitmap by regions of size order */
1063
1064 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1065 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1066 continue;
1067 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1068 return pos;
1069 }
1070 return -ENOMEM;
1071 }
1072 EXPORT_SYMBOL(bitmap_find_free_region);
1073
1074 /**
1075 * bitmap_release_region - release allocated bitmap region
1076 * @bitmap: array of unsigned longs corresponding to the bitmap
1077 * @pos: beginning of bit region to release
1078 * @order: region size (log base 2 of number of bits) to release
1079 *
1080 * This is the complement to __bitmap_find_free_region() and releases
1081 * the found region (by clearing it in the bitmap).
1082 *
1083 * No return value.
1084 */
1085 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1086 {
1087 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1088 }
1089 EXPORT_SYMBOL(bitmap_release_region);
1090
1091 /**
1092 * bitmap_allocate_region - allocate bitmap region
1093 * @bitmap: array of unsigned longs corresponding to the bitmap
1094 * @pos: beginning of bit region to allocate
1095 * @order: region size (log base 2 of number of bits) to allocate
1096 *
1097 * Allocate (set bits in) a specified region of a bitmap.
1098 *
1099 * Return 0 on success, or %-EBUSY if specified region wasn't
1100 * free (not all bits were zero).
1101 */
1102 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1103 {
1104 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1105 return -EBUSY;
1106 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1107 }
1108 EXPORT_SYMBOL(bitmap_allocate_region);
1109
1110 /**
1111 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1112 * @bitmap: array of unsigned longs, the destination bitmap, non NULL
1113 * @nbits: number of bits in @bitmap
1114 * @buf: array of u32 (in host byte order), the source bitmap, non NULL
1115 * @nwords: number of u32 words in @buf
1116 *
1117 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1118 * bits between nword and nbits in @bitmap (if any) are cleared. In
1119 * last word of @bitmap, the bits beyond nbits (if any) are kept
1120 * unchanged.
1121 *
1122 * Return the number of bits effectively copied.
1123 */
1124 unsigned int
1125 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1126 const u32 *buf, unsigned int nwords)
1127 {
1128 unsigned int dst_idx, src_idx;
1129
1130 for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1131 unsigned long part = 0;
1132
1133 if (src_idx < nwords)
1134 part = buf[src_idx++];
1135
1136 #if BITS_PER_LONG == 64
1137 if (src_idx < nwords)
1138 part |= ((unsigned long) buf[src_idx++]) << 32;
1139 #endif
1140
1141 if (dst_idx < nbits/BITS_PER_LONG)
1142 bitmap[dst_idx] = part;
1143 else {
1144 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1145
1146 bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1147 | (part & mask);
1148 }
1149 }
1150
1151 return min_t(unsigned int, nbits, 32*nwords);
1152 }
1153 EXPORT_SYMBOL(bitmap_from_u32array);
1154
1155 /**
1156 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1157 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL
1158 * @nwords: number of u32 words in @buf
1159 * @bitmap: array of unsigned longs, the source bitmap, non NULL
1160 * @nbits: number of bits in @bitmap
1161 *
1162 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1163 * bits after nbits in @buf (if any) are cleared.
1164 *
1165 * Return the number of bits effectively copied.
1166 */
1167 unsigned int
1168 bitmap_to_u32array(u32 *buf, unsigned int nwords,
1169 const unsigned long *bitmap, unsigned int nbits)
1170 {
1171 unsigned int dst_idx = 0, src_idx = 0;
1172
1173 while (dst_idx < nwords) {
1174 unsigned long part = 0;
1175
1176 if (src_idx < BITS_TO_LONGS(nbits)) {
1177 part = bitmap[src_idx];
1178 if (src_idx >= nbits/BITS_PER_LONG)
1179 part &= BITMAP_LAST_WORD_MASK(nbits);
1180 src_idx++;
1181 }
1182
1183 buf[dst_idx++] = part & 0xffffffffUL;
1184
1185 #if BITS_PER_LONG == 64
1186 if (dst_idx < nwords) {
1187 part >>= 32;
1188 buf[dst_idx++] = part & 0xffffffffUL;
1189 }
1190 #endif
1191 }
1192
1193 return min_t(unsigned int, nbits, 32*nwords);
1194 }
1195 EXPORT_SYMBOL(bitmap_to_u32array);
1196
1197 /**
1198 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1199 * @dst: destination buffer
1200 * @src: bitmap to copy
1201 * @nbits: number of bits in the bitmap
1202 *
1203 * Require nbits % BITS_PER_LONG == 0.
1204 */
1205 #ifdef __BIG_ENDIAN
1206 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1207 {
1208 unsigned int i;
1209
1210 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1211 if (BITS_PER_LONG == 64)
1212 dst[i] = cpu_to_le64(src[i]);
1213 else
1214 dst[i] = cpu_to_le32(src[i]);
1215 }
1216 }
1217 EXPORT_SYMBOL(bitmap_copy_le);
1218 #endif