]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/radix-tree.c
214ed8995c3eca45f7eb203a6c3a3ace4a7b9b41
[mirror_ubuntu-bionic-kernel.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/cpu.h>
28 #include <linux/errno.h>
29 #include <linux/export.h>
30 #include <linux/idr.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/kmemleak.h>
34 #include <linux/percpu.h>
35 #include <linux/preempt.h> /* in_interrupt() */
36 #include <linux/radix-tree.h>
37 #include <linux/rcupdate.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40
41
42 /* Number of nodes in fully populated tree of given height */
43 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
45 /*
46 * Radix tree node cache.
47 */
48 static struct kmem_cache *radix_tree_node_cachep;
49
50 /*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
63 /*
64 * The IDR does not have to be as high as the radix tree since it uses
65 * signed integers, not unsigned longs.
66 */
67 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
68 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
69 RADIX_TREE_MAP_SHIFT))
70 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
71
72 /*
73 * The IDA is even shorter since it uses a bitmap at the last level.
74 */
75 #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76 #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
77 RADIX_TREE_MAP_SHIFT))
78 #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
79
80 /*
81 * Per-cpu pool of preloaded nodes
82 */
83 struct radix_tree_preload {
84 unsigned nr;
85 /* nodes->parent points to next preallocated node */
86 struct radix_tree_node *nodes;
87 };
88 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
89
90 static inline struct radix_tree_node *entry_to_node(void *ptr)
91 {
92 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93 }
94
95 static inline void *node_to_entry(void *ptr)
96 {
97 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
98 }
99
100 #define RADIX_TREE_RETRY node_to_entry(NULL)
101
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 /* Sibling slots point directly to another slot in the same node */
104 static inline
105 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
106 {
107 void __rcu **ptr = node;
108 return (parent->slots <= ptr) &&
109 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110 }
111 #else
112 static inline
113 bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
114 {
115 return false;
116 }
117 #endif
118
119 static inline unsigned long
120 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
121 {
122 return slot - parent->slots;
123 }
124
125 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
126 struct radix_tree_node **nodep, unsigned long index)
127 {
128 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
129 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
130
131 #ifdef CONFIG_RADIX_TREE_MULTIORDER
132 if (radix_tree_is_internal_node(entry)) {
133 if (is_sibling_entry(parent, entry)) {
134 void __rcu **sibentry;
135 sibentry = (void __rcu **) entry_to_node(entry);
136 offset = get_slot_offset(parent, sibentry);
137 entry = rcu_dereference_raw(*sibentry);
138 }
139 }
140 #endif
141
142 *nodep = (void *)entry;
143 return offset;
144 }
145
146 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
147 {
148 return root->gfp_mask & __GFP_BITS_MASK;
149 }
150
151 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
152 int offset)
153 {
154 __set_bit(offset, node->tags[tag]);
155 }
156
157 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
158 int offset)
159 {
160 __clear_bit(offset, node->tags[tag]);
161 }
162
163 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
164 int offset)
165 {
166 return test_bit(offset, node->tags[tag]);
167 }
168
169 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
170 {
171 root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
172 }
173
174 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
175 {
176 root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
177 }
178
179 static inline void root_tag_clear_all(struct radix_tree_root *root)
180 {
181 root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
182 }
183
184 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
185 {
186 return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
187 }
188
189 static inline unsigned root_tags_get(const struct radix_tree_root *root)
190 {
191 return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
192 }
193
194 static inline bool is_idr(const struct radix_tree_root *root)
195 {
196 return !!(root->gfp_mask & ROOT_IS_IDR);
197 }
198
199 /*
200 * Returns 1 if any slot in the node has this tag set.
201 * Otherwise returns 0.
202 */
203 static inline int any_tag_set(const struct radix_tree_node *node,
204 unsigned int tag)
205 {
206 unsigned idx;
207 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
208 if (node->tags[tag][idx])
209 return 1;
210 }
211 return 0;
212 }
213
214 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
215 {
216 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
217 }
218
219 /**
220 * radix_tree_find_next_bit - find the next set bit in a memory region
221 *
222 * @addr: The address to base the search on
223 * @size: The bitmap size in bits
224 * @offset: The bitnumber to start searching at
225 *
226 * Unrollable variant of find_next_bit() for constant size arrays.
227 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
228 * Returns next bit offset, or size if nothing found.
229 */
230 static __always_inline unsigned long
231 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
232 unsigned long offset)
233 {
234 const unsigned long *addr = node->tags[tag];
235
236 if (offset < RADIX_TREE_MAP_SIZE) {
237 unsigned long tmp;
238
239 addr += offset / BITS_PER_LONG;
240 tmp = *addr >> (offset % BITS_PER_LONG);
241 if (tmp)
242 return __ffs(tmp) + offset;
243 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
244 while (offset < RADIX_TREE_MAP_SIZE) {
245 tmp = *++addr;
246 if (tmp)
247 return __ffs(tmp) + offset;
248 offset += BITS_PER_LONG;
249 }
250 }
251 return RADIX_TREE_MAP_SIZE;
252 }
253
254 static unsigned int iter_offset(const struct radix_tree_iter *iter)
255 {
256 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
257 }
258
259 /*
260 * The maximum index which can be stored in a radix tree
261 */
262 static inline unsigned long shift_maxindex(unsigned int shift)
263 {
264 return (RADIX_TREE_MAP_SIZE << shift) - 1;
265 }
266
267 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
268 {
269 return shift_maxindex(node->shift);
270 }
271
272 static unsigned long next_index(unsigned long index,
273 const struct radix_tree_node *node,
274 unsigned long offset)
275 {
276 return (index & ~node_maxindex(node)) + (offset << node->shift);
277 }
278
279 #ifndef __KERNEL__
280 static void dump_node(struct radix_tree_node *node, unsigned long index)
281 {
282 unsigned long i;
283
284 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
285 node, node->offset, index, index | node_maxindex(node),
286 node->parent,
287 node->tags[0][0], node->tags[1][0], node->tags[2][0],
288 node->shift, node->count, node->exceptional);
289
290 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
291 unsigned long first = index | (i << node->shift);
292 unsigned long last = first | ((1UL << node->shift) - 1);
293 void *entry = node->slots[i];
294 if (!entry)
295 continue;
296 if (entry == RADIX_TREE_RETRY) {
297 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
298 i, first, last, node);
299 } else if (!radix_tree_is_internal_node(entry)) {
300 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
301 entry, i, first, last, node);
302 } else if (is_sibling_entry(node, entry)) {
303 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
304 entry, i, first, last, node,
305 *(void **)entry_to_node(entry));
306 } else {
307 dump_node(entry_to_node(entry), first);
308 }
309 }
310 }
311
312 /* For debug */
313 static void radix_tree_dump(struct radix_tree_root *root)
314 {
315 pr_debug("radix root: %p rnode %p tags %x\n",
316 root, root->rnode,
317 root->gfp_mask >> ROOT_TAG_SHIFT);
318 if (!radix_tree_is_internal_node(root->rnode))
319 return;
320 dump_node(entry_to_node(root->rnode), 0);
321 }
322
323 static void dump_ida_node(void *entry, unsigned long index)
324 {
325 unsigned long i;
326
327 if (!entry)
328 return;
329
330 if (radix_tree_is_internal_node(entry)) {
331 struct radix_tree_node *node = entry_to_node(entry);
332
333 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
334 node, node->offset, index * IDA_BITMAP_BITS,
335 ((index | node_maxindex(node)) + 1) *
336 IDA_BITMAP_BITS - 1,
337 node->parent, node->tags[0][0], node->shift,
338 node->count);
339 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
340 dump_ida_node(node->slots[i],
341 index | (i << node->shift));
342 } else if (radix_tree_exceptional_entry(entry)) {
343 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
344 entry, (int)(index & RADIX_TREE_MAP_MASK),
345 index * IDA_BITMAP_BITS,
346 index * IDA_BITMAP_BITS + BITS_PER_LONG -
347 RADIX_TREE_EXCEPTIONAL_SHIFT,
348 (unsigned long)entry >>
349 RADIX_TREE_EXCEPTIONAL_SHIFT);
350 } else {
351 struct ida_bitmap *bitmap = entry;
352
353 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
354 (int)(index & RADIX_TREE_MAP_MASK),
355 index * IDA_BITMAP_BITS,
356 (index + 1) * IDA_BITMAP_BITS - 1);
357 for (i = 0; i < IDA_BITMAP_LONGS; i++)
358 pr_cont(" %lx", bitmap->bitmap[i]);
359 pr_cont("\n");
360 }
361 }
362
363 static void ida_dump(struct ida *ida)
364 {
365 struct radix_tree_root *root = &ida->ida_rt;
366 pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
367 root->gfp_mask >> ROOT_TAG_SHIFT);
368 dump_ida_node(root->rnode, 0);
369 }
370 #endif
371
372 /*
373 * This assumes that the caller has performed appropriate preallocation, and
374 * that the caller has pinned this thread of control to the current CPU.
375 */
376 static struct radix_tree_node *
377 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
378 struct radix_tree_root *root,
379 unsigned int shift, unsigned int offset,
380 unsigned int count, unsigned int exceptional)
381 {
382 struct radix_tree_node *ret = NULL;
383
384 /*
385 * Preload code isn't irq safe and it doesn't make sense to use
386 * preloading during an interrupt anyway as all the allocations have
387 * to be atomic. So just do normal allocation when in interrupt.
388 */
389 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
390 struct radix_tree_preload *rtp;
391
392 /*
393 * Even if the caller has preloaded, try to allocate from the
394 * cache first for the new node to get accounted to the memory
395 * cgroup.
396 */
397 ret = kmem_cache_alloc(radix_tree_node_cachep,
398 gfp_mask | __GFP_NOWARN);
399 if (ret)
400 goto out;
401
402 /*
403 * Provided the caller has preloaded here, we will always
404 * succeed in getting a node here (and never reach
405 * kmem_cache_alloc)
406 */
407 rtp = this_cpu_ptr(&radix_tree_preloads);
408 if (rtp->nr) {
409 ret = rtp->nodes;
410 rtp->nodes = ret->parent;
411 rtp->nr--;
412 }
413 /*
414 * Update the allocation stack trace as this is more useful
415 * for debugging.
416 */
417 kmemleak_update_trace(ret);
418 goto out;
419 }
420 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
421 out:
422 BUG_ON(radix_tree_is_internal_node(ret));
423 if (ret) {
424 ret->shift = shift;
425 ret->offset = offset;
426 ret->count = count;
427 ret->exceptional = exceptional;
428 ret->parent = parent;
429 ret->root = root;
430 }
431 return ret;
432 }
433
434 static void radix_tree_node_rcu_free(struct rcu_head *head)
435 {
436 struct radix_tree_node *node =
437 container_of(head, struct radix_tree_node, rcu_head);
438
439 /*
440 * Must only free zeroed nodes into the slab. We can be left with
441 * non-NULL entries by radix_tree_free_nodes, so clear the entries
442 * and tags here.
443 */
444 memset(node->slots, 0, sizeof(node->slots));
445 memset(node->tags, 0, sizeof(node->tags));
446 INIT_LIST_HEAD(&node->private_list);
447
448 kmem_cache_free(radix_tree_node_cachep, node);
449 }
450
451 static inline void
452 radix_tree_node_free(struct radix_tree_node *node)
453 {
454 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
455 }
456
457 /*
458 * Load up this CPU's radix_tree_node buffer with sufficient objects to
459 * ensure that the addition of a single element in the tree cannot fail. On
460 * success, return zero, with preemption disabled. On error, return -ENOMEM
461 * with preemption not disabled.
462 *
463 * To make use of this facility, the radix tree must be initialised without
464 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
465 */
466 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
467 {
468 struct radix_tree_preload *rtp;
469 struct radix_tree_node *node;
470 int ret = -ENOMEM;
471
472 /*
473 * Nodes preloaded by one cgroup can be be used by another cgroup, so
474 * they should never be accounted to any particular memory cgroup.
475 */
476 gfp_mask &= ~__GFP_ACCOUNT;
477
478 preempt_disable();
479 rtp = this_cpu_ptr(&radix_tree_preloads);
480 while (rtp->nr < nr) {
481 preempt_enable();
482 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
483 if (node == NULL)
484 goto out;
485 preempt_disable();
486 rtp = this_cpu_ptr(&radix_tree_preloads);
487 if (rtp->nr < nr) {
488 node->parent = rtp->nodes;
489 rtp->nodes = node;
490 rtp->nr++;
491 } else {
492 kmem_cache_free(radix_tree_node_cachep, node);
493 }
494 }
495 ret = 0;
496 out:
497 return ret;
498 }
499
500 /*
501 * Load up this CPU's radix_tree_node buffer with sufficient objects to
502 * ensure that the addition of a single element in the tree cannot fail. On
503 * success, return zero, with preemption disabled. On error, return -ENOMEM
504 * with preemption not disabled.
505 *
506 * To make use of this facility, the radix tree must be initialised without
507 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
508 */
509 int radix_tree_preload(gfp_t gfp_mask)
510 {
511 /* Warn on non-sensical use... */
512 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
513 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
514 }
515 EXPORT_SYMBOL(radix_tree_preload);
516
517 /*
518 * The same as above function, except we don't guarantee preloading happens.
519 * We do it, if we decide it helps. On success, return zero with preemption
520 * disabled. On error, return -ENOMEM with preemption not disabled.
521 */
522 int radix_tree_maybe_preload(gfp_t gfp_mask)
523 {
524 if (gfpflags_allow_blocking(gfp_mask))
525 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
526 /* Preloading doesn't help anything with this gfp mask, skip it */
527 preempt_disable();
528 return 0;
529 }
530 EXPORT_SYMBOL(radix_tree_maybe_preload);
531
532 #ifdef CONFIG_RADIX_TREE_MULTIORDER
533 /*
534 * Preload with enough objects to ensure that we can split a single entry
535 * of order @old_order into many entries of size @new_order
536 */
537 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
538 gfp_t gfp_mask)
539 {
540 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
541 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
542 (new_order / RADIX_TREE_MAP_SHIFT);
543 unsigned nr = 0;
544
545 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
546 BUG_ON(new_order >= old_order);
547
548 while (layers--)
549 nr = nr * RADIX_TREE_MAP_SIZE + 1;
550 return __radix_tree_preload(gfp_mask, top * nr);
551 }
552 #endif
553
554 /*
555 * The same as function above, but preload number of nodes required to insert
556 * (1 << order) continuous naturally-aligned elements.
557 */
558 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
559 {
560 unsigned long nr_subtrees;
561 int nr_nodes, subtree_height;
562
563 /* Preloading doesn't help anything with this gfp mask, skip it */
564 if (!gfpflags_allow_blocking(gfp_mask)) {
565 preempt_disable();
566 return 0;
567 }
568
569 /*
570 * Calculate number and height of fully populated subtrees it takes to
571 * store (1 << order) elements.
572 */
573 nr_subtrees = 1 << order;
574 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
575 subtree_height++)
576 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
577
578 /*
579 * The worst case is zero height tree with a single item at index 0 and
580 * then inserting items starting at ULONG_MAX - (1 << order).
581 *
582 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
583 * 0-index item.
584 */
585 nr_nodes = RADIX_TREE_MAX_PATH;
586
587 /* Plus branch to fully populated subtrees. */
588 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
589
590 /* Root node is shared. */
591 nr_nodes--;
592
593 /* Plus nodes required to build subtrees. */
594 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
595
596 return __radix_tree_preload(gfp_mask, nr_nodes);
597 }
598
599 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
600 struct radix_tree_node **nodep, unsigned long *maxindex)
601 {
602 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
603
604 *nodep = node;
605
606 if (likely(radix_tree_is_internal_node(node))) {
607 node = entry_to_node(node);
608 *maxindex = node_maxindex(node);
609 return node->shift + RADIX_TREE_MAP_SHIFT;
610 }
611
612 *maxindex = 0;
613 return 0;
614 }
615
616 /*
617 * Extend a radix tree so it can store key @index.
618 */
619 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
620 unsigned long index, unsigned int shift)
621 {
622 void *entry;
623 unsigned int maxshift;
624 int tag;
625
626 /* Figure out what the shift should be. */
627 maxshift = shift;
628 while (index > shift_maxindex(maxshift))
629 maxshift += RADIX_TREE_MAP_SHIFT;
630
631 entry = rcu_dereference_raw(root->rnode);
632 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
633 goto out;
634
635 do {
636 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
637 root, shift, 0, 1, 0);
638 if (!node)
639 return -ENOMEM;
640
641 if (is_idr(root)) {
642 all_tag_set(node, IDR_FREE);
643 if (!root_tag_get(root, IDR_FREE)) {
644 tag_clear(node, IDR_FREE, 0);
645 root_tag_set(root, IDR_FREE);
646 }
647 } else {
648 /* Propagate the aggregated tag info to the new child */
649 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
650 if (root_tag_get(root, tag))
651 tag_set(node, tag, 0);
652 }
653 }
654
655 BUG_ON(shift > BITS_PER_LONG);
656 if (radix_tree_is_internal_node(entry)) {
657 entry_to_node(entry)->parent = node;
658 } else if (radix_tree_exceptional_entry(entry)) {
659 /* Moving an exceptional root->rnode to a node */
660 node->exceptional = 1;
661 }
662 /*
663 * entry was already in the radix tree, so we do not need
664 * rcu_assign_pointer here
665 */
666 node->slots[0] = (void __rcu *)entry;
667 entry = node_to_entry(node);
668 rcu_assign_pointer(root->rnode, entry);
669 shift += RADIX_TREE_MAP_SHIFT;
670 } while (shift <= maxshift);
671 out:
672 return maxshift + RADIX_TREE_MAP_SHIFT;
673 }
674
675 /**
676 * radix_tree_shrink - shrink radix tree to minimum height
677 * @root radix tree root
678 */
679 static inline bool radix_tree_shrink(struct radix_tree_root *root,
680 radix_tree_update_node_t update_node)
681 {
682 bool shrunk = false;
683
684 for (;;) {
685 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
686 struct radix_tree_node *child;
687
688 if (!radix_tree_is_internal_node(node))
689 break;
690 node = entry_to_node(node);
691
692 /*
693 * The candidate node has more than one child, or its child
694 * is not at the leftmost slot, or the child is a multiorder
695 * entry, we cannot shrink.
696 */
697 if (node->count != 1)
698 break;
699 child = rcu_dereference_raw(node->slots[0]);
700 if (!child)
701 break;
702 if (!radix_tree_is_internal_node(child) && node->shift)
703 break;
704
705 if (radix_tree_is_internal_node(child))
706 entry_to_node(child)->parent = NULL;
707
708 /*
709 * We don't need rcu_assign_pointer(), since we are simply
710 * moving the node from one part of the tree to another: if it
711 * was safe to dereference the old pointer to it
712 * (node->slots[0]), it will be safe to dereference the new
713 * one (root->rnode) as far as dependent read barriers go.
714 */
715 root->rnode = (void __rcu *)child;
716 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
717 root_tag_clear(root, IDR_FREE);
718
719 /*
720 * We have a dilemma here. The node's slot[0] must not be
721 * NULLed in case there are concurrent lookups expecting to
722 * find the item. However if this was a bottom-level node,
723 * then it may be subject to the slot pointer being visible
724 * to callers dereferencing it. If item corresponding to
725 * slot[0] is subsequently deleted, these callers would expect
726 * their slot to become empty sooner or later.
727 *
728 * For example, lockless pagecache will look up a slot, deref
729 * the page pointer, and if the page has 0 refcount it means it
730 * was concurrently deleted from pagecache so try the deref
731 * again. Fortunately there is already a requirement for logic
732 * to retry the entire slot lookup -- the indirect pointer
733 * problem (replacing direct root node with an indirect pointer
734 * also results in a stale slot). So tag the slot as indirect
735 * to force callers to retry.
736 */
737 node->count = 0;
738 if (!radix_tree_is_internal_node(child)) {
739 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
740 if (update_node)
741 update_node(node);
742 }
743
744 WARN_ON_ONCE(!list_empty(&node->private_list));
745 radix_tree_node_free(node);
746 shrunk = true;
747 }
748
749 return shrunk;
750 }
751
752 static bool delete_node(struct radix_tree_root *root,
753 struct radix_tree_node *node,
754 radix_tree_update_node_t update_node)
755 {
756 bool deleted = false;
757
758 do {
759 struct radix_tree_node *parent;
760
761 if (node->count) {
762 if (node_to_entry(node) ==
763 rcu_dereference_raw(root->rnode))
764 deleted |= radix_tree_shrink(root,
765 update_node);
766 return deleted;
767 }
768
769 parent = node->parent;
770 if (parent) {
771 parent->slots[node->offset] = NULL;
772 parent->count--;
773 } else {
774 /*
775 * Shouldn't the tags already have all been cleared
776 * by the caller?
777 */
778 if (!is_idr(root))
779 root_tag_clear_all(root);
780 root->rnode = NULL;
781 }
782
783 WARN_ON_ONCE(!list_empty(&node->private_list));
784 radix_tree_node_free(node);
785 deleted = true;
786
787 node = parent;
788 } while (node);
789
790 return deleted;
791 }
792
793 /**
794 * __radix_tree_create - create a slot in a radix tree
795 * @root: radix tree root
796 * @index: index key
797 * @order: index occupies 2^order aligned slots
798 * @nodep: returns node
799 * @slotp: returns slot
800 *
801 * Create, if necessary, and return the node and slot for an item
802 * at position @index in the radix tree @root.
803 *
804 * Until there is more than one item in the tree, no nodes are
805 * allocated and @root->rnode is used as a direct slot instead of
806 * pointing to a node, in which case *@nodep will be NULL.
807 *
808 * Returns -ENOMEM, or 0 for success.
809 */
810 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
811 unsigned order, struct radix_tree_node **nodep,
812 void __rcu ***slotp)
813 {
814 struct radix_tree_node *node = NULL, *child;
815 void __rcu **slot = (void __rcu **)&root->rnode;
816 unsigned long maxindex;
817 unsigned int shift, offset = 0;
818 unsigned long max = index | ((1UL << order) - 1);
819 gfp_t gfp = root_gfp_mask(root);
820
821 shift = radix_tree_load_root(root, &child, &maxindex);
822
823 /* Make sure the tree is high enough. */
824 if (order > 0 && max == ((1UL << order) - 1))
825 max++;
826 if (max > maxindex) {
827 int error = radix_tree_extend(root, gfp, max, shift);
828 if (error < 0)
829 return error;
830 shift = error;
831 child = rcu_dereference_raw(root->rnode);
832 }
833
834 while (shift > order) {
835 shift -= RADIX_TREE_MAP_SHIFT;
836 if (child == NULL) {
837 /* Have to add a child node. */
838 child = radix_tree_node_alloc(gfp, node, root, shift,
839 offset, 0, 0);
840 if (!child)
841 return -ENOMEM;
842 rcu_assign_pointer(*slot, node_to_entry(child));
843 if (node)
844 node->count++;
845 } else if (!radix_tree_is_internal_node(child))
846 break;
847
848 /* Go a level down */
849 node = entry_to_node(child);
850 offset = radix_tree_descend(node, &child, index);
851 slot = &node->slots[offset];
852 }
853
854 if (nodep)
855 *nodep = node;
856 if (slotp)
857 *slotp = slot;
858 return 0;
859 }
860
861 /*
862 * Free any nodes below this node. The tree is presumed to not need
863 * shrinking, and any user data in the tree is presumed to not need a
864 * destructor called on it. If we need to add a destructor, we can
865 * add that functionality later. Note that we may not clear tags or
866 * slots from the tree as an RCU walker may still have a pointer into
867 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
868 * but we'll still have to clear those in rcu_free.
869 */
870 static void radix_tree_free_nodes(struct radix_tree_node *node)
871 {
872 unsigned offset = 0;
873 struct radix_tree_node *child = entry_to_node(node);
874
875 for (;;) {
876 void *entry = rcu_dereference_raw(child->slots[offset]);
877 if (radix_tree_is_internal_node(entry) &&
878 !is_sibling_entry(child, entry)) {
879 child = entry_to_node(entry);
880 offset = 0;
881 continue;
882 }
883 offset++;
884 while (offset == RADIX_TREE_MAP_SIZE) {
885 struct radix_tree_node *old = child;
886 offset = child->offset + 1;
887 child = child->parent;
888 WARN_ON_ONCE(!list_empty(&old->private_list));
889 radix_tree_node_free(old);
890 if (old == entry_to_node(node))
891 return;
892 }
893 }
894 }
895
896 #ifdef CONFIG_RADIX_TREE_MULTIORDER
897 static inline int insert_entries(struct radix_tree_node *node,
898 void __rcu **slot, void *item, unsigned order, bool replace)
899 {
900 struct radix_tree_node *child;
901 unsigned i, n, tag, offset, tags = 0;
902
903 if (node) {
904 if (order > node->shift)
905 n = 1 << (order - node->shift);
906 else
907 n = 1;
908 offset = get_slot_offset(node, slot);
909 } else {
910 n = 1;
911 offset = 0;
912 }
913
914 if (n > 1) {
915 offset = offset & ~(n - 1);
916 slot = &node->slots[offset];
917 }
918 child = node_to_entry(slot);
919
920 for (i = 0; i < n; i++) {
921 if (slot[i]) {
922 if (replace) {
923 node->count--;
924 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
925 if (tag_get(node, tag, offset + i))
926 tags |= 1 << tag;
927 } else
928 return -EEXIST;
929 }
930 }
931
932 for (i = 0; i < n; i++) {
933 struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
934 if (i) {
935 rcu_assign_pointer(slot[i], child);
936 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
937 if (tags & (1 << tag))
938 tag_clear(node, tag, offset + i);
939 } else {
940 rcu_assign_pointer(slot[i], item);
941 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
942 if (tags & (1 << tag))
943 tag_set(node, tag, offset);
944 }
945 if (radix_tree_is_internal_node(old) &&
946 !is_sibling_entry(node, old) &&
947 (old != RADIX_TREE_RETRY))
948 radix_tree_free_nodes(old);
949 if (radix_tree_exceptional_entry(old))
950 node->exceptional--;
951 }
952 if (node) {
953 node->count += n;
954 if (radix_tree_exceptional_entry(item))
955 node->exceptional += n;
956 }
957 return n;
958 }
959 #else
960 static inline int insert_entries(struct radix_tree_node *node,
961 void __rcu **slot, void *item, unsigned order, bool replace)
962 {
963 if (*slot)
964 return -EEXIST;
965 rcu_assign_pointer(*slot, item);
966 if (node) {
967 node->count++;
968 if (radix_tree_exceptional_entry(item))
969 node->exceptional++;
970 }
971 return 1;
972 }
973 #endif
974
975 /**
976 * __radix_tree_insert - insert into a radix tree
977 * @root: radix tree root
978 * @index: index key
979 * @order: key covers the 2^order indices around index
980 * @item: item to insert
981 *
982 * Insert an item into the radix tree at position @index.
983 */
984 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
985 unsigned order, void *item)
986 {
987 struct radix_tree_node *node;
988 void __rcu **slot;
989 int error;
990
991 BUG_ON(radix_tree_is_internal_node(item));
992
993 error = __radix_tree_create(root, index, order, &node, &slot);
994 if (error)
995 return error;
996
997 error = insert_entries(node, slot, item, order, false);
998 if (error < 0)
999 return error;
1000
1001 if (node) {
1002 unsigned offset = get_slot_offset(node, slot);
1003 BUG_ON(tag_get(node, 0, offset));
1004 BUG_ON(tag_get(node, 1, offset));
1005 BUG_ON(tag_get(node, 2, offset));
1006 } else {
1007 BUG_ON(root_tags_get(root));
1008 }
1009
1010 return 0;
1011 }
1012 EXPORT_SYMBOL(__radix_tree_insert);
1013
1014 /**
1015 * __radix_tree_lookup - lookup an item in a radix tree
1016 * @root: radix tree root
1017 * @index: index key
1018 * @nodep: returns node
1019 * @slotp: returns slot
1020 *
1021 * Lookup and return the item at position @index in the radix
1022 * tree @root.
1023 *
1024 * Until there is more than one item in the tree, no nodes are
1025 * allocated and @root->rnode is used as a direct slot instead of
1026 * pointing to a node, in which case *@nodep will be NULL.
1027 */
1028 void *__radix_tree_lookup(const struct radix_tree_root *root,
1029 unsigned long index, struct radix_tree_node **nodep,
1030 void __rcu ***slotp)
1031 {
1032 struct radix_tree_node *node, *parent;
1033 unsigned long maxindex;
1034 void __rcu **slot;
1035
1036 restart:
1037 parent = NULL;
1038 slot = (void __rcu **)&root->rnode;
1039 radix_tree_load_root(root, &node, &maxindex);
1040 if (index > maxindex)
1041 return NULL;
1042
1043 while (radix_tree_is_internal_node(node)) {
1044 unsigned offset;
1045
1046 if (node == RADIX_TREE_RETRY)
1047 goto restart;
1048 parent = entry_to_node(node);
1049 offset = radix_tree_descend(parent, &node, index);
1050 slot = parent->slots + offset;
1051 }
1052
1053 if (nodep)
1054 *nodep = parent;
1055 if (slotp)
1056 *slotp = slot;
1057 return node;
1058 }
1059
1060 /**
1061 * radix_tree_lookup_slot - lookup a slot in a radix tree
1062 * @root: radix tree root
1063 * @index: index key
1064 *
1065 * Returns: the slot corresponding to the position @index in the
1066 * radix tree @root. This is useful for update-if-exists operations.
1067 *
1068 * This function can be called under rcu_read_lock iff the slot is not
1069 * modified by radix_tree_replace_slot, otherwise it must be called
1070 * exclusive from other writers. Any dereference of the slot must be done
1071 * using radix_tree_deref_slot.
1072 */
1073 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1074 unsigned long index)
1075 {
1076 void __rcu **slot;
1077
1078 if (!__radix_tree_lookup(root, index, NULL, &slot))
1079 return NULL;
1080 return slot;
1081 }
1082 EXPORT_SYMBOL(radix_tree_lookup_slot);
1083
1084 /**
1085 * radix_tree_lookup - perform lookup operation on a radix tree
1086 * @root: radix tree root
1087 * @index: index key
1088 *
1089 * Lookup the item at the position @index in the radix tree @root.
1090 *
1091 * This function can be called under rcu_read_lock, however the caller
1092 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1093 * them safely). No RCU barriers are required to access or modify the
1094 * returned item, however.
1095 */
1096 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1097 {
1098 return __radix_tree_lookup(root, index, NULL, NULL);
1099 }
1100 EXPORT_SYMBOL(radix_tree_lookup);
1101
1102 static inline void replace_sibling_entries(struct radix_tree_node *node,
1103 void __rcu **slot, int count, int exceptional)
1104 {
1105 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1106 void *ptr = node_to_entry(slot);
1107 unsigned offset = get_slot_offset(node, slot) + 1;
1108
1109 while (offset < RADIX_TREE_MAP_SIZE) {
1110 if (rcu_dereference_raw(node->slots[offset]) != ptr)
1111 break;
1112 if (count < 0) {
1113 node->slots[offset] = NULL;
1114 node->count--;
1115 }
1116 node->exceptional += exceptional;
1117 offset++;
1118 }
1119 #endif
1120 }
1121
1122 static void replace_slot(void __rcu **slot, void *item,
1123 struct radix_tree_node *node, int count, int exceptional)
1124 {
1125 if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1126 return;
1127
1128 if (node && (count || exceptional)) {
1129 node->count += count;
1130 node->exceptional += exceptional;
1131 replace_sibling_entries(node, slot, count, exceptional);
1132 }
1133
1134 rcu_assign_pointer(*slot, item);
1135 }
1136
1137 static bool node_tag_get(const struct radix_tree_root *root,
1138 const struct radix_tree_node *node,
1139 unsigned int tag, unsigned int offset)
1140 {
1141 if (node)
1142 return tag_get(node, tag, offset);
1143 return root_tag_get(root, tag);
1144 }
1145
1146 /*
1147 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1148 * free, don't adjust the count, even if it's transitioning between NULL and
1149 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1150 * have empty bits, but it only stores NULL in slots when they're being
1151 * deleted.
1152 */
1153 static int calculate_count(struct radix_tree_root *root,
1154 struct radix_tree_node *node, void __rcu **slot,
1155 void *item, void *old)
1156 {
1157 if (is_idr(root)) {
1158 unsigned offset = get_slot_offset(node, slot);
1159 bool free = node_tag_get(root, node, IDR_FREE, offset);
1160 if (!free)
1161 return 0;
1162 if (!old)
1163 return 1;
1164 }
1165 return !!item - !!old;
1166 }
1167
1168 /**
1169 * __radix_tree_replace - replace item in a slot
1170 * @root: radix tree root
1171 * @node: pointer to tree node
1172 * @slot: pointer to slot in @node
1173 * @item: new item to store in the slot.
1174 * @update_node: callback for changing leaf nodes
1175 *
1176 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1177 * across slot lookup and replacement.
1178 */
1179 void __radix_tree_replace(struct radix_tree_root *root,
1180 struct radix_tree_node *node,
1181 void __rcu **slot, void *item,
1182 radix_tree_update_node_t update_node)
1183 {
1184 void *old = rcu_dereference_raw(*slot);
1185 int exceptional = !!radix_tree_exceptional_entry(item) -
1186 !!radix_tree_exceptional_entry(old);
1187 int count = calculate_count(root, node, slot, item, old);
1188
1189 /*
1190 * This function supports replacing exceptional entries and
1191 * deleting entries, but that needs accounting against the
1192 * node unless the slot is root->rnode.
1193 */
1194 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1195 (count || exceptional));
1196 replace_slot(slot, item, node, count, exceptional);
1197
1198 if (!node)
1199 return;
1200
1201 if (update_node)
1202 update_node(node);
1203
1204 delete_node(root, node, update_node);
1205 }
1206
1207 /**
1208 * radix_tree_replace_slot - replace item in a slot
1209 * @root: radix tree root
1210 * @slot: pointer to slot
1211 * @item: new item to store in the slot.
1212 *
1213 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1214 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1215 * across slot lookup and replacement.
1216 *
1217 * NOTE: This cannot be used to switch between non-entries (empty slots),
1218 * regular entries, and exceptional entries, as that requires accounting
1219 * inside the radix tree node. When switching from one type of entry or
1220 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1221 * radix_tree_iter_replace().
1222 */
1223 void radix_tree_replace_slot(struct radix_tree_root *root,
1224 void __rcu **slot, void *item)
1225 {
1226 __radix_tree_replace(root, NULL, slot, item, NULL);
1227 }
1228 EXPORT_SYMBOL(radix_tree_replace_slot);
1229
1230 /**
1231 * radix_tree_iter_replace - replace item in a slot
1232 * @root: radix tree root
1233 * @slot: pointer to slot
1234 * @item: new item to store in the slot.
1235 *
1236 * For use with radix_tree_split() and radix_tree_for_each_slot().
1237 * Caller must hold tree write locked across split and replacement.
1238 */
1239 void radix_tree_iter_replace(struct radix_tree_root *root,
1240 const struct radix_tree_iter *iter,
1241 void __rcu **slot, void *item)
1242 {
1243 __radix_tree_replace(root, iter->node, slot, item, NULL);
1244 }
1245
1246 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1247 /**
1248 * radix_tree_join - replace multiple entries with one multiorder entry
1249 * @root: radix tree root
1250 * @index: an index inside the new entry
1251 * @order: order of the new entry
1252 * @item: new entry
1253 *
1254 * Call this function to replace several entries with one larger entry.
1255 * The existing entries are presumed to not need freeing as a result of
1256 * this call.
1257 *
1258 * The replacement entry will have all the tags set on it that were set
1259 * on any of the entries it is replacing.
1260 */
1261 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1262 unsigned order, void *item)
1263 {
1264 struct radix_tree_node *node;
1265 void __rcu **slot;
1266 int error;
1267
1268 BUG_ON(radix_tree_is_internal_node(item));
1269
1270 error = __radix_tree_create(root, index, order, &node, &slot);
1271 if (!error)
1272 error = insert_entries(node, slot, item, order, true);
1273 if (error > 0)
1274 error = 0;
1275
1276 return error;
1277 }
1278
1279 /**
1280 * radix_tree_split - Split an entry into smaller entries
1281 * @root: radix tree root
1282 * @index: An index within the large entry
1283 * @order: Order of new entries
1284 *
1285 * Call this function as the first step in replacing a multiorder entry
1286 * with several entries of lower order. After this function returns,
1287 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1288 * and call radix_tree_iter_replace() to set up each new entry.
1289 *
1290 * The tags from this entry are replicated to all the new entries.
1291 *
1292 * The radix tree should be locked against modification during the entire
1293 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1294 * should prompt RCU walkers to restart the lookup from the root.
1295 */
1296 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1297 unsigned order)
1298 {
1299 struct radix_tree_node *parent, *node, *child;
1300 void __rcu **slot;
1301 unsigned int offset, end;
1302 unsigned n, tag, tags = 0;
1303 gfp_t gfp = root_gfp_mask(root);
1304
1305 if (!__radix_tree_lookup(root, index, &parent, &slot))
1306 return -ENOENT;
1307 if (!parent)
1308 return -ENOENT;
1309
1310 offset = get_slot_offset(parent, slot);
1311
1312 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1313 if (tag_get(parent, tag, offset))
1314 tags |= 1 << tag;
1315
1316 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1317 if (!is_sibling_entry(parent,
1318 rcu_dereference_raw(parent->slots[end])))
1319 break;
1320 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1321 if (tags & (1 << tag))
1322 tag_set(parent, tag, end);
1323 /* rcu_assign_pointer ensures tags are set before RETRY */
1324 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1325 }
1326 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1327 parent->exceptional -= (end - offset);
1328
1329 if (order == parent->shift)
1330 return 0;
1331 if (order > parent->shift) {
1332 while (offset < end)
1333 offset += insert_entries(parent, &parent->slots[offset],
1334 RADIX_TREE_RETRY, order, true);
1335 return 0;
1336 }
1337
1338 node = parent;
1339
1340 for (;;) {
1341 if (node->shift > order) {
1342 child = radix_tree_node_alloc(gfp, node, root,
1343 node->shift - RADIX_TREE_MAP_SHIFT,
1344 offset, 0, 0);
1345 if (!child)
1346 goto nomem;
1347 if (node != parent) {
1348 node->count++;
1349 rcu_assign_pointer(node->slots[offset],
1350 node_to_entry(child));
1351 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1352 if (tags & (1 << tag))
1353 tag_set(node, tag, offset);
1354 }
1355
1356 node = child;
1357 offset = 0;
1358 continue;
1359 }
1360
1361 n = insert_entries(node, &node->slots[offset],
1362 RADIX_TREE_RETRY, order, false);
1363 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1364
1365 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1366 if (tags & (1 << tag))
1367 tag_set(node, tag, offset);
1368 offset += n;
1369
1370 while (offset == RADIX_TREE_MAP_SIZE) {
1371 if (node == parent)
1372 break;
1373 offset = node->offset;
1374 child = node;
1375 node = node->parent;
1376 rcu_assign_pointer(node->slots[offset],
1377 node_to_entry(child));
1378 offset++;
1379 }
1380 if ((node == parent) && (offset == end))
1381 return 0;
1382 }
1383
1384 nomem:
1385 /* Shouldn't happen; did user forget to preload? */
1386 /* TODO: free all the allocated nodes */
1387 WARN_ON(1);
1388 return -ENOMEM;
1389 }
1390 #endif
1391
1392 static void node_tag_set(struct radix_tree_root *root,
1393 struct radix_tree_node *node,
1394 unsigned int tag, unsigned int offset)
1395 {
1396 while (node) {
1397 if (tag_get(node, tag, offset))
1398 return;
1399 tag_set(node, tag, offset);
1400 offset = node->offset;
1401 node = node->parent;
1402 }
1403
1404 if (!root_tag_get(root, tag))
1405 root_tag_set(root, tag);
1406 }
1407
1408 /**
1409 * radix_tree_tag_set - set a tag on a radix tree node
1410 * @root: radix tree root
1411 * @index: index key
1412 * @tag: tag index
1413 *
1414 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1415 * corresponding to @index in the radix tree. From
1416 * the root all the way down to the leaf node.
1417 *
1418 * Returns the address of the tagged item. Setting a tag on a not-present
1419 * item is a bug.
1420 */
1421 void *radix_tree_tag_set(struct radix_tree_root *root,
1422 unsigned long index, unsigned int tag)
1423 {
1424 struct radix_tree_node *node, *parent;
1425 unsigned long maxindex;
1426
1427 radix_tree_load_root(root, &node, &maxindex);
1428 BUG_ON(index > maxindex);
1429
1430 while (radix_tree_is_internal_node(node)) {
1431 unsigned offset;
1432
1433 parent = entry_to_node(node);
1434 offset = radix_tree_descend(parent, &node, index);
1435 BUG_ON(!node);
1436
1437 if (!tag_get(parent, tag, offset))
1438 tag_set(parent, tag, offset);
1439 }
1440
1441 /* set the root's tag bit */
1442 if (!root_tag_get(root, tag))
1443 root_tag_set(root, tag);
1444
1445 return node;
1446 }
1447 EXPORT_SYMBOL(radix_tree_tag_set);
1448
1449 /**
1450 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1451 * @root: radix tree root
1452 * @iter: iterator state
1453 * @tag: tag to set
1454 */
1455 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1456 const struct radix_tree_iter *iter, unsigned int tag)
1457 {
1458 node_tag_set(root, iter->node, tag, iter_offset(iter));
1459 }
1460
1461 static void node_tag_clear(struct radix_tree_root *root,
1462 struct radix_tree_node *node,
1463 unsigned int tag, unsigned int offset)
1464 {
1465 while (node) {
1466 if (!tag_get(node, tag, offset))
1467 return;
1468 tag_clear(node, tag, offset);
1469 if (any_tag_set(node, tag))
1470 return;
1471
1472 offset = node->offset;
1473 node = node->parent;
1474 }
1475
1476 /* clear the root's tag bit */
1477 if (root_tag_get(root, tag))
1478 root_tag_clear(root, tag);
1479 }
1480
1481 /**
1482 * radix_tree_tag_clear - clear a tag on a radix tree node
1483 * @root: radix tree root
1484 * @index: index key
1485 * @tag: tag index
1486 *
1487 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1488 * corresponding to @index in the radix tree. If this causes
1489 * the leaf node to have no tags set then clear the tag in the
1490 * next-to-leaf node, etc.
1491 *
1492 * Returns the address of the tagged item on success, else NULL. ie:
1493 * has the same return value and semantics as radix_tree_lookup().
1494 */
1495 void *radix_tree_tag_clear(struct radix_tree_root *root,
1496 unsigned long index, unsigned int tag)
1497 {
1498 struct radix_tree_node *node, *parent;
1499 unsigned long maxindex;
1500 int uninitialized_var(offset);
1501
1502 radix_tree_load_root(root, &node, &maxindex);
1503 if (index > maxindex)
1504 return NULL;
1505
1506 parent = NULL;
1507
1508 while (radix_tree_is_internal_node(node)) {
1509 parent = entry_to_node(node);
1510 offset = radix_tree_descend(parent, &node, index);
1511 }
1512
1513 if (node)
1514 node_tag_clear(root, parent, tag, offset);
1515
1516 return node;
1517 }
1518 EXPORT_SYMBOL(radix_tree_tag_clear);
1519
1520 /**
1521 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1522 * @root: radix tree root
1523 * @iter: iterator state
1524 * @tag: tag to clear
1525 */
1526 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1527 const struct radix_tree_iter *iter, unsigned int tag)
1528 {
1529 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1530 }
1531
1532 /**
1533 * radix_tree_tag_get - get a tag on a radix tree node
1534 * @root: radix tree root
1535 * @index: index key
1536 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1537 *
1538 * Return values:
1539 *
1540 * 0: tag not present or not set
1541 * 1: tag set
1542 *
1543 * Note that the return value of this function may not be relied on, even if
1544 * the RCU lock is held, unless tag modification and node deletion are excluded
1545 * from concurrency.
1546 */
1547 int radix_tree_tag_get(const struct radix_tree_root *root,
1548 unsigned long index, unsigned int tag)
1549 {
1550 struct radix_tree_node *node, *parent;
1551 unsigned long maxindex;
1552
1553 if (!root_tag_get(root, tag))
1554 return 0;
1555
1556 radix_tree_load_root(root, &node, &maxindex);
1557 if (index > maxindex)
1558 return 0;
1559
1560 while (radix_tree_is_internal_node(node)) {
1561 unsigned offset;
1562
1563 parent = entry_to_node(node);
1564 offset = radix_tree_descend(parent, &node, index);
1565
1566 if (!tag_get(parent, tag, offset))
1567 return 0;
1568 if (node == RADIX_TREE_RETRY)
1569 break;
1570 }
1571
1572 return 1;
1573 }
1574 EXPORT_SYMBOL(radix_tree_tag_get);
1575
1576 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1577 unsigned int shift)
1578 {
1579 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1580 iter->shift = shift;
1581 #endif
1582 }
1583
1584 /* Construct iter->tags bit-mask from node->tags[tag] array */
1585 static void set_iter_tags(struct radix_tree_iter *iter,
1586 struct radix_tree_node *node, unsigned offset,
1587 unsigned tag)
1588 {
1589 unsigned tag_long = offset / BITS_PER_LONG;
1590 unsigned tag_bit = offset % BITS_PER_LONG;
1591
1592 if (!node) {
1593 iter->tags = 1;
1594 return;
1595 }
1596
1597 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1598
1599 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1600 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1601 /* Pick tags from next element */
1602 if (tag_bit)
1603 iter->tags |= node->tags[tag][tag_long + 1] <<
1604 (BITS_PER_LONG - tag_bit);
1605 /* Clip chunk size, here only BITS_PER_LONG tags */
1606 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1607 }
1608 }
1609
1610 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1611 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1612 void __rcu **slot, struct radix_tree_iter *iter)
1613 {
1614 while (iter->index < iter->next_index) {
1615 *nodep = rcu_dereference_raw(*slot);
1616 if (*nodep && !is_sibling_entry(iter->node, *nodep))
1617 return slot;
1618 slot++;
1619 iter->index = __radix_tree_iter_add(iter, 1);
1620 iter->tags >>= 1;
1621 }
1622
1623 *nodep = NULL;
1624 return NULL;
1625 }
1626
1627 void __rcu **__radix_tree_next_slot(void __rcu **slot,
1628 struct radix_tree_iter *iter, unsigned flags)
1629 {
1630 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1631 struct radix_tree_node *node;
1632
1633 slot = skip_siblings(&node, slot, iter);
1634
1635 while (radix_tree_is_internal_node(node)) {
1636 unsigned offset;
1637 unsigned long next_index;
1638
1639 if (node == RADIX_TREE_RETRY)
1640 return slot;
1641 node = entry_to_node(node);
1642 iter->node = node;
1643 iter->shift = node->shift;
1644
1645 if (flags & RADIX_TREE_ITER_TAGGED) {
1646 offset = radix_tree_find_next_bit(node, tag, 0);
1647 if (offset == RADIX_TREE_MAP_SIZE)
1648 return NULL;
1649 slot = &node->slots[offset];
1650 iter->index = __radix_tree_iter_add(iter, offset);
1651 set_iter_tags(iter, node, offset, tag);
1652 node = rcu_dereference_raw(*slot);
1653 } else {
1654 offset = 0;
1655 slot = &node->slots[0];
1656 for (;;) {
1657 node = rcu_dereference_raw(*slot);
1658 if (node)
1659 break;
1660 slot++;
1661 offset++;
1662 if (offset == RADIX_TREE_MAP_SIZE)
1663 return NULL;
1664 }
1665 iter->index = __radix_tree_iter_add(iter, offset);
1666 }
1667 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1668 goto none;
1669 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1670 if (next_index < iter->next_index)
1671 iter->next_index = next_index;
1672 }
1673
1674 return slot;
1675 none:
1676 iter->next_index = 0;
1677 return NULL;
1678 }
1679 EXPORT_SYMBOL(__radix_tree_next_slot);
1680 #else
1681 static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1682 void __rcu **slot, struct radix_tree_iter *iter)
1683 {
1684 return slot;
1685 }
1686 #endif
1687
1688 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1689 struct radix_tree_iter *iter)
1690 {
1691 struct radix_tree_node *node;
1692
1693 slot++;
1694 iter->index = __radix_tree_iter_add(iter, 1);
1695 skip_siblings(&node, slot, iter);
1696 iter->next_index = iter->index;
1697 iter->tags = 0;
1698 return NULL;
1699 }
1700 EXPORT_SYMBOL(radix_tree_iter_resume);
1701
1702 /**
1703 * radix_tree_next_chunk - find next chunk of slots for iteration
1704 *
1705 * @root: radix tree root
1706 * @iter: iterator state
1707 * @flags: RADIX_TREE_ITER_* flags and tag index
1708 * Returns: pointer to chunk first slot, or NULL if iteration is over
1709 */
1710 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1711 struct radix_tree_iter *iter, unsigned flags)
1712 {
1713 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1714 struct radix_tree_node *node, *child;
1715 unsigned long index, offset, maxindex;
1716
1717 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1718 return NULL;
1719
1720 /*
1721 * Catch next_index overflow after ~0UL. iter->index never overflows
1722 * during iterating; it can be zero only at the beginning.
1723 * And we cannot overflow iter->next_index in a single step,
1724 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1725 *
1726 * This condition also used by radix_tree_next_slot() to stop
1727 * contiguous iterating, and forbid switching to the next chunk.
1728 */
1729 index = iter->next_index;
1730 if (!index && iter->index)
1731 return NULL;
1732
1733 restart:
1734 radix_tree_load_root(root, &child, &maxindex);
1735 if (index > maxindex)
1736 return NULL;
1737 if (!child)
1738 return NULL;
1739
1740 if (!radix_tree_is_internal_node(child)) {
1741 /* Single-slot tree */
1742 iter->index = index;
1743 iter->next_index = maxindex + 1;
1744 iter->tags = 1;
1745 iter->node = NULL;
1746 __set_iter_shift(iter, 0);
1747 return (void __rcu **)&root->rnode;
1748 }
1749
1750 do {
1751 node = entry_to_node(child);
1752 offset = radix_tree_descend(node, &child, index);
1753
1754 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1755 !tag_get(node, tag, offset) : !child) {
1756 /* Hole detected */
1757 if (flags & RADIX_TREE_ITER_CONTIG)
1758 return NULL;
1759
1760 if (flags & RADIX_TREE_ITER_TAGGED)
1761 offset = radix_tree_find_next_bit(node, tag,
1762 offset + 1);
1763 else
1764 while (++offset < RADIX_TREE_MAP_SIZE) {
1765 void *slot = rcu_dereference_raw(
1766 node->slots[offset]);
1767 if (is_sibling_entry(node, slot))
1768 continue;
1769 if (slot)
1770 break;
1771 }
1772 index &= ~node_maxindex(node);
1773 index += offset << node->shift;
1774 /* Overflow after ~0UL */
1775 if (!index)
1776 return NULL;
1777 if (offset == RADIX_TREE_MAP_SIZE)
1778 goto restart;
1779 child = rcu_dereference_raw(node->slots[offset]);
1780 }
1781
1782 if (!child)
1783 goto restart;
1784 if (child == RADIX_TREE_RETRY)
1785 break;
1786 } while (radix_tree_is_internal_node(child));
1787
1788 /* Update the iterator state */
1789 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1790 iter->next_index = (index | node_maxindex(node)) + 1;
1791 iter->node = node;
1792 __set_iter_shift(iter, node->shift);
1793
1794 if (flags & RADIX_TREE_ITER_TAGGED)
1795 set_iter_tags(iter, node, offset, tag);
1796
1797 return node->slots + offset;
1798 }
1799 EXPORT_SYMBOL(radix_tree_next_chunk);
1800
1801 /**
1802 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1803 * @root: radix tree root
1804 * @results: where the results of the lookup are placed
1805 * @first_index: start the lookup from this key
1806 * @max_items: place up to this many items at *results
1807 *
1808 * Performs an index-ascending scan of the tree for present items. Places
1809 * them at *@results and returns the number of items which were placed at
1810 * *@results.
1811 *
1812 * The implementation is naive.
1813 *
1814 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1815 * rcu_read_lock. In this case, rather than the returned results being
1816 * an atomic snapshot of the tree at a single point in time, the
1817 * semantics of an RCU protected gang lookup are as though multiple
1818 * radix_tree_lookups have been issued in individual locks, and results
1819 * stored in 'results'.
1820 */
1821 unsigned int
1822 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1823 unsigned long first_index, unsigned int max_items)
1824 {
1825 struct radix_tree_iter iter;
1826 void __rcu **slot;
1827 unsigned int ret = 0;
1828
1829 if (unlikely(!max_items))
1830 return 0;
1831
1832 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1833 results[ret] = rcu_dereference_raw(*slot);
1834 if (!results[ret])
1835 continue;
1836 if (radix_tree_is_internal_node(results[ret])) {
1837 slot = radix_tree_iter_retry(&iter);
1838 continue;
1839 }
1840 if (++ret == max_items)
1841 break;
1842 }
1843
1844 return ret;
1845 }
1846 EXPORT_SYMBOL(radix_tree_gang_lookup);
1847
1848 /**
1849 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1850 * @root: radix tree root
1851 * @results: where the results of the lookup are placed
1852 * @indices: where their indices should be placed (but usually NULL)
1853 * @first_index: start the lookup from this key
1854 * @max_items: place up to this many items at *results
1855 *
1856 * Performs an index-ascending scan of the tree for present items. Places
1857 * their slots at *@results and returns the number of items which were
1858 * placed at *@results.
1859 *
1860 * The implementation is naive.
1861 *
1862 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1863 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1864 * protection, radix_tree_deref_slot may fail requiring a retry.
1865 */
1866 unsigned int
1867 radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1868 void __rcu ***results, unsigned long *indices,
1869 unsigned long first_index, unsigned int max_items)
1870 {
1871 struct radix_tree_iter iter;
1872 void __rcu **slot;
1873 unsigned int ret = 0;
1874
1875 if (unlikely(!max_items))
1876 return 0;
1877
1878 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1879 results[ret] = slot;
1880 if (indices)
1881 indices[ret] = iter.index;
1882 if (++ret == max_items)
1883 break;
1884 }
1885
1886 return ret;
1887 }
1888 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1889
1890 /**
1891 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1892 * based on a tag
1893 * @root: radix tree root
1894 * @results: where the results of the lookup are placed
1895 * @first_index: start the lookup from this key
1896 * @max_items: place up to this many items at *results
1897 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1898 *
1899 * Performs an index-ascending scan of the tree for present items which
1900 * have the tag indexed by @tag set. Places the items at *@results and
1901 * returns the number of items which were placed at *@results.
1902 */
1903 unsigned int
1904 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1905 unsigned long first_index, unsigned int max_items,
1906 unsigned int tag)
1907 {
1908 struct radix_tree_iter iter;
1909 void __rcu **slot;
1910 unsigned int ret = 0;
1911
1912 if (unlikely(!max_items))
1913 return 0;
1914
1915 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1916 results[ret] = rcu_dereference_raw(*slot);
1917 if (!results[ret])
1918 continue;
1919 if (radix_tree_is_internal_node(results[ret])) {
1920 slot = radix_tree_iter_retry(&iter);
1921 continue;
1922 }
1923 if (++ret == max_items)
1924 break;
1925 }
1926
1927 return ret;
1928 }
1929 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1930
1931 /**
1932 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1933 * radix tree based on a tag
1934 * @root: radix tree root
1935 * @results: where the results of the lookup are placed
1936 * @first_index: start the lookup from this key
1937 * @max_items: place up to this many items at *results
1938 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1939 *
1940 * Performs an index-ascending scan of the tree for present items which
1941 * have the tag indexed by @tag set. Places the slots at *@results and
1942 * returns the number of slots which were placed at *@results.
1943 */
1944 unsigned int
1945 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1946 void __rcu ***results, unsigned long first_index,
1947 unsigned int max_items, unsigned int tag)
1948 {
1949 struct radix_tree_iter iter;
1950 void __rcu **slot;
1951 unsigned int ret = 0;
1952
1953 if (unlikely(!max_items))
1954 return 0;
1955
1956 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1957 results[ret] = slot;
1958 if (++ret == max_items)
1959 break;
1960 }
1961
1962 return ret;
1963 }
1964 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1965
1966 /**
1967 * __radix_tree_delete_node - try to free node after clearing a slot
1968 * @root: radix tree root
1969 * @node: node containing @index
1970 * @update_node: callback for changing leaf nodes
1971 *
1972 * After clearing the slot at @index in @node from radix tree
1973 * rooted at @root, call this function to attempt freeing the
1974 * node and shrinking the tree.
1975 */
1976 void __radix_tree_delete_node(struct radix_tree_root *root,
1977 struct radix_tree_node *node,
1978 radix_tree_update_node_t update_node)
1979 {
1980 delete_node(root, node, update_node);
1981 }
1982
1983 static bool __radix_tree_delete(struct radix_tree_root *root,
1984 struct radix_tree_node *node, void __rcu **slot)
1985 {
1986 void *old = rcu_dereference_raw(*slot);
1987 int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1988 unsigned offset = get_slot_offset(node, slot);
1989 int tag;
1990
1991 if (is_idr(root))
1992 node_tag_set(root, node, IDR_FREE, offset);
1993 else
1994 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1995 node_tag_clear(root, node, tag, offset);
1996
1997 replace_slot(slot, NULL, node, -1, exceptional);
1998 return node && delete_node(root, node, NULL);
1999 }
2000
2001 /**
2002 * radix_tree_iter_delete - delete the entry at this iterator position
2003 * @root: radix tree root
2004 * @iter: iterator state
2005 * @slot: pointer to slot
2006 *
2007 * Delete the entry at the position currently pointed to by the iterator.
2008 * This may result in the current node being freed; if it is, the iterator
2009 * is advanced so that it will not reference the freed memory. This
2010 * function may be called without any locking if there are no other threads
2011 * which can access this tree.
2012 */
2013 void radix_tree_iter_delete(struct radix_tree_root *root,
2014 struct radix_tree_iter *iter, void __rcu **slot)
2015 {
2016 if (__radix_tree_delete(root, iter->node, slot))
2017 iter->index = iter->next_index;
2018 }
2019 EXPORT_SYMBOL(radix_tree_iter_delete);
2020
2021 /**
2022 * radix_tree_delete_item - delete an item from a radix tree
2023 * @root: radix tree root
2024 * @index: index key
2025 * @item: expected item
2026 *
2027 * Remove @item at @index from the radix tree rooted at @root.
2028 *
2029 * Return: the deleted entry, or %NULL if it was not present
2030 * or the entry at the given @index was not @item.
2031 */
2032 void *radix_tree_delete_item(struct radix_tree_root *root,
2033 unsigned long index, void *item)
2034 {
2035 struct radix_tree_node *node = NULL;
2036 void __rcu **slot;
2037 void *entry;
2038
2039 entry = __radix_tree_lookup(root, index, &node, &slot);
2040 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2041 get_slot_offset(node, slot))))
2042 return NULL;
2043
2044 if (item && entry != item)
2045 return NULL;
2046
2047 __radix_tree_delete(root, node, slot);
2048
2049 return entry;
2050 }
2051 EXPORT_SYMBOL(radix_tree_delete_item);
2052
2053 /**
2054 * radix_tree_delete - delete an entry from a radix tree
2055 * @root: radix tree root
2056 * @index: index key
2057 *
2058 * Remove the entry at @index from the radix tree rooted at @root.
2059 *
2060 * Return: The deleted entry, or %NULL if it was not present.
2061 */
2062 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2063 {
2064 return radix_tree_delete_item(root, index, NULL);
2065 }
2066 EXPORT_SYMBOL(radix_tree_delete);
2067
2068 void radix_tree_clear_tags(struct radix_tree_root *root,
2069 struct radix_tree_node *node,
2070 void __rcu **slot)
2071 {
2072 if (node) {
2073 unsigned int tag, offset = get_slot_offset(node, slot);
2074 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2075 node_tag_clear(root, node, tag, offset);
2076 } else {
2077 root_tag_clear_all(root);
2078 }
2079 }
2080
2081 /**
2082 * radix_tree_tagged - test whether any items in the tree are tagged
2083 * @root: radix tree root
2084 * @tag: tag to test
2085 */
2086 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2087 {
2088 return root_tag_get(root, tag);
2089 }
2090 EXPORT_SYMBOL(radix_tree_tagged);
2091
2092 /**
2093 * idr_preload - preload for idr_alloc()
2094 * @gfp_mask: allocation mask to use for preloading
2095 *
2096 * Preallocate memory to use for the next call to idr_alloc(). This function
2097 * returns with preemption disabled. It will be enabled by idr_preload_end().
2098 */
2099 void idr_preload(gfp_t gfp_mask)
2100 {
2101 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2102 preempt_disable();
2103 }
2104 EXPORT_SYMBOL(idr_preload);
2105
2106 /**
2107 * ida_pre_get - reserve resources for ida allocation
2108 * @ida: ida handle
2109 * @gfp: memory allocation flags
2110 *
2111 * This function should be called before calling ida_get_new_above(). If it
2112 * is unable to allocate memory, it will return %0. On success, it returns %1.
2113 */
2114 int ida_pre_get(struct ida *ida, gfp_t gfp)
2115 {
2116 /*
2117 * The IDA API has no preload_end() equivalent. Instead,
2118 * ida_get_new() can return -EAGAIN, prompting the caller
2119 * to return to the ida_pre_get() step.
2120 */
2121 if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2122 preempt_enable();
2123
2124 if (!this_cpu_read(ida_bitmap)) {
2125 struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2126 if (!bitmap)
2127 return 0;
2128 if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2129 kfree(bitmap);
2130 }
2131
2132 return 1;
2133 }
2134 EXPORT_SYMBOL(ida_pre_get);
2135
2136 void __rcu **idr_get_free_cmn(struct radix_tree_root *root,
2137 struct radix_tree_iter *iter, gfp_t gfp,
2138 unsigned long max)
2139 {
2140 struct radix_tree_node *node = NULL, *child;
2141 void __rcu **slot = (void __rcu **)&root->rnode;
2142 unsigned long maxindex, start = iter->next_index;
2143 unsigned int shift, offset = 0;
2144
2145 grow:
2146 shift = radix_tree_load_root(root, &child, &maxindex);
2147 if (!radix_tree_tagged(root, IDR_FREE))
2148 start = max(start, maxindex + 1);
2149 if (start > max)
2150 return ERR_PTR(-ENOSPC);
2151
2152 if (start > maxindex) {
2153 int error = radix_tree_extend(root, gfp, start, shift);
2154 if (error < 0)
2155 return ERR_PTR(error);
2156 shift = error;
2157 child = rcu_dereference_raw(root->rnode);
2158 }
2159
2160 while (shift) {
2161 shift -= RADIX_TREE_MAP_SHIFT;
2162 if (child == NULL) {
2163 /* Have to add a child node. */
2164 child = radix_tree_node_alloc(gfp, node, root, shift,
2165 offset, 0, 0);
2166 if (!child)
2167 return ERR_PTR(-ENOMEM);
2168 all_tag_set(child, IDR_FREE);
2169 rcu_assign_pointer(*slot, node_to_entry(child));
2170 if (node)
2171 node->count++;
2172 } else if (!radix_tree_is_internal_node(child))
2173 break;
2174
2175 node = entry_to_node(child);
2176 offset = radix_tree_descend(node, &child, start);
2177 if (!tag_get(node, IDR_FREE, offset)) {
2178 offset = radix_tree_find_next_bit(node, IDR_FREE,
2179 offset + 1);
2180 start = next_index(start, node, offset);
2181 if (start > max)
2182 return ERR_PTR(-ENOSPC);
2183 while (offset == RADIX_TREE_MAP_SIZE) {
2184 offset = node->offset + 1;
2185 node = node->parent;
2186 if (!node)
2187 goto grow;
2188 shift = node->shift;
2189 }
2190 child = rcu_dereference_raw(node->slots[offset]);
2191 }
2192 slot = &node->slots[offset];
2193 }
2194
2195 iter->index = start;
2196 if (node)
2197 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2198 else
2199 iter->next_index = 1;
2200 iter->node = node;
2201 __set_iter_shift(iter, shift);
2202 set_iter_tags(iter, node, offset, IDR_FREE);
2203
2204 return slot;
2205 }
2206
2207 /**
2208 * idr_destroy - release all internal memory from an IDR
2209 * @idr: idr handle
2210 *
2211 * After this function is called, the IDR is empty, and may be reused or
2212 * the data structure containing it may be freed.
2213 *
2214 * A typical clean-up sequence for objects stored in an idr tree will use
2215 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2216 * free the memory used to keep track of those objects.
2217 */
2218 void idr_destroy(struct idr *idr)
2219 {
2220 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2221 if (radix_tree_is_internal_node(node))
2222 radix_tree_free_nodes(node);
2223 idr->idr_rt.rnode = NULL;
2224 root_tag_set(&idr->idr_rt, IDR_FREE);
2225 }
2226 EXPORT_SYMBOL(idr_destroy);
2227
2228 static void
2229 radix_tree_node_ctor(void *arg)
2230 {
2231 struct radix_tree_node *node = arg;
2232
2233 memset(node, 0, sizeof(*node));
2234 INIT_LIST_HEAD(&node->private_list);
2235 }
2236
2237 static __init unsigned long __maxindex(unsigned int height)
2238 {
2239 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2240 int shift = RADIX_TREE_INDEX_BITS - width;
2241
2242 if (shift < 0)
2243 return ~0UL;
2244 if (shift >= BITS_PER_LONG)
2245 return 0UL;
2246 return ~0UL >> shift;
2247 }
2248
2249 static __init void radix_tree_init_maxnodes(void)
2250 {
2251 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2252 unsigned int i, j;
2253
2254 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2255 height_to_maxindex[i] = __maxindex(i);
2256 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2257 for (j = i; j > 0; j--)
2258 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2259 }
2260 }
2261
2262 static int radix_tree_cpu_dead(unsigned int cpu)
2263 {
2264 struct radix_tree_preload *rtp;
2265 struct radix_tree_node *node;
2266
2267 /* Free per-cpu pool of preloaded nodes */
2268 rtp = &per_cpu(radix_tree_preloads, cpu);
2269 while (rtp->nr) {
2270 node = rtp->nodes;
2271 rtp->nodes = node->parent;
2272 kmem_cache_free(radix_tree_node_cachep, node);
2273 rtp->nr--;
2274 }
2275 kfree(per_cpu(ida_bitmap, cpu));
2276 per_cpu(ida_bitmap, cpu) = NULL;
2277 return 0;
2278 }
2279
2280 void __init radix_tree_init(void)
2281 {
2282 int ret;
2283
2284 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2285 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2286 sizeof(struct radix_tree_node), 0,
2287 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2288 radix_tree_node_ctor);
2289 radix_tree_init_maxnodes();
2290 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2291 NULL, radix_tree_cpu_dead);
2292 WARN_ON(ret < 0);
2293 }