]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/rhashtable.c
lib/test_kmod.c: potential double free in error handling
[mirror_ubuntu-bionic-kernel.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31
32 #define HASH_DEFAULT_SIZE 64UL
33 #define HASH_MIN_SIZE 4U
34 #define BUCKET_LOCKS_PER_CPU 32UL
35
36 union nested_table {
37 union nested_table __rcu *table;
38 struct rhash_head __rcu *bucket;
39 };
40
41 static u32 head_hashfn(struct rhashtable *ht,
42 const struct bucket_table *tbl,
43 const struct rhash_head *he)
44 {
45 return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 spinlock_t *lock = rht_bucket_lock(tbl, hash);
60
61 return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67
68
69 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
70 gfp_t gfp)
71 {
72 unsigned int i, size;
73 #if defined(CONFIG_PROVE_LOCKING)
74 unsigned int nr_pcpus = 2;
75 #else
76 unsigned int nr_pcpus = num_possible_cpus();
77 #endif
78
79 nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
80 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
81
82 /* Never allocate more than 0.5 locks per bucket */
83 size = min_t(unsigned int, size, tbl->size >> 1);
84
85 if (tbl->nest)
86 size = min(size, 1U << tbl->nest);
87
88 if (sizeof(spinlock_t) != 0) {
89 if (gfpflags_allow_blocking(gfp))
90 tbl->locks = kvmalloc(size * sizeof(spinlock_t), gfp);
91 else
92 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
93 gfp);
94 if (!tbl->locks)
95 return -ENOMEM;
96 for (i = 0; i < size; i++)
97 spin_lock_init(&tbl->locks[i]);
98 }
99 tbl->locks_mask = size - 1;
100
101 return 0;
102 }
103
104 static void nested_table_free(union nested_table *ntbl, unsigned int size)
105 {
106 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
107 const unsigned int len = 1 << shift;
108 unsigned int i;
109
110 ntbl = rcu_dereference_raw(ntbl->table);
111 if (!ntbl)
112 return;
113
114 if (size > len) {
115 size >>= shift;
116 for (i = 0; i < len; i++)
117 nested_table_free(ntbl + i, size);
118 }
119
120 kfree(ntbl);
121 }
122
123 static void nested_bucket_table_free(const struct bucket_table *tbl)
124 {
125 unsigned int size = tbl->size >> tbl->nest;
126 unsigned int len = 1 << tbl->nest;
127 union nested_table *ntbl;
128 unsigned int i;
129
130 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
131
132 for (i = 0; i < len; i++)
133 nested_table_free(ntbl + i, size);
134
135 kfree(ntbl);
136 }
137
138 static void bucket_table_free(const struct bucket_table *tbl)
139 {
140 if (tbl->nest)
141 nested_bucket_table_free(tbl);
142
143 kvfree(tbl->locks);
144 kvfree(tbl);
145 }
146
147 static void bucket_table_free_rcu(struct rcu_head *head)
148 {
149 bucket_table_free(container_of(head, struct bucket_table, rcu));
150 }
151
152 static union nested_table *nested_table_alloc(struct rhashtable *ht,
153 union nested_table __rcu **prev,
154 unsigned int shifted,
155 unsigned int nhash)
156 {
157 union nested_table *ntbl;
158 int i;
159
160 ntbl = rcu_dereference(*prev);
161 if (ntbl)
162 return ntbl;
163
164 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
165
166 if (ntbl && shifted) {
167 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
168 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
169 (i << shifted) | nhash);
170 }
171
172 rcu_assign_pointer(*prev, ntbl);
173
174 return ntbl;
175 }
176
177 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
178 size_t nbuckets,
179 gfp_t gfp)
180 {
181 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
182 struct bucket_table *tbl;
183 size_t size;
184
185 if (nbuckets < (1 << (shift + 1)))
186 return NULL;
187
188 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
189
190 tbl = kzalloc(size, gfp);
191 if (!tbl)
192 return NULL;
193
194 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
195 0, 0)) {
196 kfree(tbl);
197 return NULL;
198 }
199
200 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
201
202 return tbl;
203 }
204
205 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
206 size_t nbuckets,
207 gfp_t gfp)
208 {
209 struct bucket_table *tbl = NULL;
210 size_t size;
211 int i;
212
213 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
214 if (gfp != GFP_KERNEL)
215 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
216 else
217 tbl = kvzalloc(size, gfp);
218
219 size = nbuckets;
220
221 if (tbl == NULL && gfp != GFP_KERNEL) {
222 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
223 nbuckets = 0;
224 }
225 if (tbl == NULL)
226 return NULL;
227
228 tbl->size = size;
229
230 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
231 bucket_table_free(tbl);
232 return NULL;
233 }
234
235 INIT_LIST_HEAD(&tbl->walkers);
236
237 tbl->hash_rnd = get_random_u32();
238
239 for (i = 0; i < nbuckets; i++)
240 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
241
242 return tbl;
243 }
244
245 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
246 struct bucket_table *tbl)
247 {
248 struct bucket_table *new_tbl;
249
250 do {
251 new_tbl = tbl;
252 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
253 } while (tbl);
254
255 return new_tbl;
256 }
257
258 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
259 {
260 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
261 struct bucket_table *new_tbl = rhashtable_last_table(ht,
262 rht_dereference_rcu(old_tbl->future_tbl, ht));
263 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
264 int err = -EAGAIN;
265 struct rhash_head *head, *next, *entry;
266 spinlock_t *new_bucket_lock;
267 unsigned int new_hash;
268
269 if (new_tbl->nest)
270 goto out;
271
272 err = -ENOENT;
273
274 rht_for_each(entry, old_tbl, old_hash) {
275 err = 0;
276 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
277
278 if (rht_is_a_nulls(next))
279 break;
280
281 pprev = &entry->next;
282 }
283
284 if (err)
285 goto out;
286
287 new_hash = head_hashfn(ht, new_tbl, entry);
288
289 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
290
291 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
292 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
293 new_tbl, new_hash);
294
295 RCU_INIT_POINTER(entry->next, head);
296
297 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
298 spin_unlock(new_bucket_lock);
299
300 rcu_assign_pointer(*pprev, next);
301
302 out:
303 return err;
304 }
305
306 static int rhashtable_rehash_chain(struct rhashtable *ht,
307 unsigned int old_hash)
308 {
309 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
310 spinlock_t *old_bucket_lock;
311 int err;
312
313 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
314
315 spin_lock_bh(old_bucket_lock);
316 while (!(err = rhashtable_rehash_one(ht, old_hash)))
317 ;
318
319 if (err == -ENOENT) {
320 old_tbl->rehash++;
321 err = 0;
322 }
323 spin_unlock_bh(old_bucket_lock);
324
325 return err;
326 }
327
328 static int rhashtable_rehash_attach(struct rhashtable *ht,
329 struct bucket_table *old_tbl,
330 struct bucket_table *new_tbl)
331 {
332 /* Protect future_tbl using the first bucket lock. */
333 spin_lock_bh(old_tbl->locks);
334
335 /* Did somebody beat us to it? */
336 if (rcu_access_pointer(old_tbl->future_tbl)) {
337 spin_unlock_bh(old_tbl->locks);
338 return -EEXIST;
339 }
340
341 /* Make insertions go into the new, empty table right away. Deletions
342 * and lookups will be attempted in both tables until we synchronize.
343 */
344 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
345
346 spin_unlock_bh(old_tbl->locks);
347
348 return 0;
349 }
350
351 static int rhashtable_rehash_table(struct rhashtable *ht)
352 {
353 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
354 struct bucket_table *new_tbl;
355 struct rhashtable_walker *walker;
356 unsigned int old_hash;
357 int err;
358
359 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
360 if (!new_tbl)
361 return 0;
362
363 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
364 err = rhashtable_rehash_chain(ht, old_hash);
365 if (err)
366 return err;
367 cond_resched();
368 }
369
370 /* Publish the new table pointer. */
371 rcu_assign_pointer(ht->tbl, new_tbl);
372
373 spin_lock(&ht->lock);
374 list_for_each_entry(walker, &old_tbl->walkers, list)
375 walker->tbl = NULL;
376 spin_unlock(&ht->lock);
377
378 /* Wait for readers. All new readers will see the new
379 * table, and thus no references to the old table will
380 * remain.
381 */
382 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
383
384 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
385 }
386
387 static int rhashtable_rehash_alloc(struct rhashtable *ht,
388 struct bucket_table *old_tbl,
389 unsigned int size)
390 {
391 struct bucket_table *new_tbl;
392 int err;
393
394 ASSERT_RHT_MUTEX(ht);
395
396 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
397 if (new_tbl == NULL)
398 return -ENOMEM;
399
400 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
401 if (err)
402 bucket_table_free(new_tbl);
403
404 return err;
405 }
406
407 /**
408 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
409 * @ht: the hash table to shrink
410 *
411 * This function shrinks the hash table to fit, i.e., the smallest
412 * size would not cause it to expand right away automatically.
413 *
414 * The caller must ensure that no concurrent resizing occurs by holding
415 * ht->mutex.
416 *
417 * The caller must ensure that no concurrent table mutations take place.
418 * It is however valid to have concurrent lookups if they are RCU protected.
419 *
420 * It is valid to have concurrent insertions and deletions protected by per
421 * bucket locks or concurrent RCU protected lookups and traversals.
422 */
423 static int rhashtable_shrink(struct rhashtable *ht)
424 {
425 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
426 unsigned int nelems = atomic_read(&ht->nelems);
427 unsigned int size = 0;
428
429 if (nelems)
430 size = roundup_pow_of_two(nelems * 3 / 2);
431 if (size < ht->p.min_size)
432 size = ht->p.min_size;
433
434 if (old_tbl->size <= size)
435 return 0;
436
437 if (rht_dereference(old_tbl->future_tbl, ht))
438 return -EEXIST;
439
440 return rhashtable_rehash_alloc(ht, old_tbl, size);
441 }
442
443 static void rht_deferred_worker(struct work_struct *work)
444 {
445 struct rhashtable *ht;
446 struct bucket_table *tbl;
447 int err = 0;
448
449 ht = container_of(work, struct rhashtable, run_work);
450 mutex_lock(&ht->mutex);
451
452 tbl = rht_dereference(ht->tbl, ht);
453 tbl = rhashtable_last_table(ht, tbl);
454
455 if (rht_grow_above_75(ht, tbl))
456 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
457 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
458 err = rhashtable_shrink(ht);
459 else if (tbl->nest)
460 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
461
462 if (!err)
463 err = rhashtable_rehash_table(ht);
464
465 mutex_unlock(&ht->mutex);
466
467 if (err)
468 schedule_work(&ht->run_work);
469 }
470
471 static int rhashtable_insert_rehash(struct rhashtable *ht,
472 struct bucket_table *tbl)
473 {
474 struct bucket_table *old_tbl;
475 struct bucket_table *new_tbl;
476 unsigned int size;
477 int err;
478
479 old_tbl = rht_dereference_rcu(ht->tbl, ht);
480
481 size = tbl->size;
482
483 err = -EBUSY;
484
485 if (rht_grow_above_75(ht, tbl))
486 size *= 2;
487 /* Do not schedule more than one rehash */
488 else if (old_tbl != tbl)
489 goto fail;
490
491 err = -ENOMEM;
492
493 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
494 if (new_tbl == NULL)
495 goto fail;
496
497 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
498 if (err) {
499 bucket_table_free(new_tbl);
500 if (err == -EEXIST)
501 err = 0;
502 } else
503 schedule_work(&ht->run_work);
504
505 return err;
506
507 fail:
508 /* Do not fail the insert if someone else did a rehash. */
509 if (likely(rcu_dereference_raw(tbl->future_tbl)))
510 return 0;
511
512 /* Schedule async rehash to retry allocation in process context. */
513 if (err == -ENOMEM)
514 schedule_work(&ht->run_work);
515
516 return err;
517 }
518
519 static void *rhashtable_lookup_one(struct rhashtable *ht,
520 struct bucket_table *tbl, unsigned int hash,
521 const void *key, struct rhash_head *obj)
522 {
523 struct rhashtable_compare_arg arg = {
524 .ht = ht,
525 .key = key,
526 };
527 struct rhash_head __rcu **pprev;
528 struct rhash_head *head;
529 int elasticity;
530
531 elasticity = RHT_ELASTICITY;
532 pprev = rht_bucket_var(tbl, hash);
533 rht_for_each_continue(head, *pprev, tbl, hash) {
534 struct rhlist_head *list;
535 struct rhlist_head *plist;
536
537 elasticity--;
538 if (!key ||
539 (ht->p.obj_cmpfn ?
540 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
541 rhashtable_compare(&arg, rht_obj(ht, head)))) {
542 pprev = &head->next;
543 continue;
544 }
545
546 if (!ht->rhlist)
547 return rht_obj(ht, head);
548
549 list = container_of(obj, struct rhlist_head, rhead);
550 plist = container_of(head, struct rhlist_head, rhead);
551
552 RCU_INIT_POINTER(list->next, plist);
553 head = rht_dereference_bucket(head->next, tbl, hash);
554 RCU_INIT_POINTER(list->rhead.next, head);
555 rcu_assign_pointer(*pprev, obj);
556
557 return NULL;
558 }
559
560 if (elasticity <= 0)
561 return ERR_PTR(-EAGAIN);
562
563 return ERR_PTR(-ENOENT);
564 }
565
566 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
567 struct bucket_table *tbl,
568 unsigned int hash,
569 struct rhash_head *obj,
570 void *data)
571 {
572 struct rhash_head __rcu **pprev;
573 struct bucket_table *new_tbl;
574 struct rhash_head *head;
575
576 if (!IS_ERR_OR_NULL(data))
577 return ERR_PTR(-EEXIST);
578
579 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
580 return ERR_CAST(data);
581
582 new_tbl = rcu_dereference(tbl->future_tbl);
583 if (new_tbl)
584 return new_tbl;
585
586 if (PTR_ERR(data) != -ENOENT)
587 return ERR_CAST(data);
588
589 if (unlikely(rht_grow_above_max(ht, tbl)))
590 return ERR_PTR(-E2BIG);
591
592 if (unlikely(rht_grow_above_100(ht, tbl)))
593 return ERR_PTR(-EAGAIN);
594
595 pprev = rht_bucket_insert(ht, tbl, hash);
596 if (!pprev)
597 return ERR_PTR(-ENOMEM);
598
599 head = rht_dereference_bucket(*pprev, tbl, hash);
600
601 RCU_INIT_POINTER(obj->next, head);
602 if (ht->rhlist) {
603 struct rhlist_head *list;
604
605 list = container_of(obj, struct rhlist_head, rhead);
606 RCU_INIT_POINTER(list->next, NULL);
607 }
608
609 rcu_assign_pointer(*pprev, obj);
610
611 atomic_inc(&ht->nelems);
612 if (rht_grow_above_75(ht, tbl))
613 schedule_work(&ht->run_work);
614
615 return NULL;
616 }
617
618 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
619 struct rhash_head *obj)
620 {
621 struct bucket_table *new_tbl;
622 struct bucket_table *tbl;
623 unsigned int hash;
624 spinlock_t *lock;
625 void *data;
626
627 tbl = rcu_dereference(ht->tbl);
628
629 /* All insertions must grab the oldest table containing
630 * the hashed bucket that is yet to be rehashed.
631 */
632 for (;;) {
633 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
634 lock = rht_bucket_lock(tbl, hash);
635 spin_lock_bh(lock);
636
637 if (tbl->rehash <= hash)
638 break;
639
640 spin_unlock_bh(lock);
641 tbl = rcu_dereference(tbl->future_tbl);
642 }
643
644 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
645 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
646 if (PTR_ERR(new_tbl) != -EEXIST)
647 data = ERR_CAST(new_tbl);
648
649 while (!IS_ERR_OR_NULL(new_tbl)) {
650 tbl = new_tbl;
651 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
652 spin_lock_nested(rht_bucket_lock(tbl, hash),
653 SINGLE_DEPTH_NESTING);
654
655 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
656 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
657 if (PTR_ERR(new_tbl) != -EEXIST)
658 data = ERR_CAST(new_tbl);
659
660 spin_unlock(rht_bucket_lock(tbl, hash));
661 }
662
663 spin_unlock_bh(lock);
664
665 if (PTR_ERR(data) == -EAGAIN)
666 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
667 -EAGAIN);
668
669 return data;
670 }
671
672 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
673 struct rhash_head *obj)
674 {
675 void *data;
676
677 do {
678 rcu_read_lock();
679 data = rhashtable_try_insert(ht, key, obj);
680 rcu_read_unlock();
681 } while (PTR_ERR(data) == -EAGAIN);
682
683 return data;
684 }
685 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
686
687 /**
688 * rhashtable_walk_enter - Initialise an iterator
689 * @ht: Table to walk over
690 * @iter: Hash table Iterator
691 *
692 * This function prepares a hash table walk.
693 *
694 * Note that if you restart a walk after rhashtable_walk_stop you
695 * may see the same object twice. Also, you may miss objects if
696 * there are removals in between rhashtable_walk_stop and the next
697 * call to rhashtable_walk_start.
698 *
699 * For a completely stable walk you should construct your own data
700 * structure outside the hash table.
701 *
702 * This function may sleep so you must not call it from interrupt
703 * context or with spin locks held.
704 *
705 * You must call rhashtable_walk_exit after this function returns.
706 */
707 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
708 {
709 iter->ht = ht;
710 iter->p = NULL;
711 iter->slot = 0;
712 iter->skip = 0;
713
714 spin_lock(&ht->lock);
715 iter->walker.tbl =
716 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
717 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
718 spin_unlock(&ht->lock);
719 }
720 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
721
722 /**
723 * rhashtable_walk_exit - Free an iterator
724 * @iter: Hash table Iterator
725 *
726 * This function frees resources allocated by rhashtable_walk_init.
727 */
728 void rhashtable_walk_exit(struct rhashtable_iter *iter)
729 {
730 spin_lock(&iter->ht->lock);
731 if (iter->walker.tbl)
732 list_del(&iter->walker.list);
733 spin_unlock(&iter->ht->lock);
734 }
735 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
736
737 /**
738 * rhashtable_walk_start - Start a hash table walk
739 * @iter: Hash table iterator
740 *
741 * Start a hash table walk at the current iterator position. Note that we take
742 * the RCU lock in all cases including when we return an error. So you must
743 * always call rhashtable_walk_stop to clean up.
744 *
745 * Returns zero if successful.
746 *
747 * Returns -EAGAIN if resize event occured. Note that the iterator
748 * will rewind back to the beginning and you may use it immediately
749 * by calling rhashtable_walk_next.
750 */
751 int rhashtable_walk_start(struct rhashtable_iter *iter)
752 __acquires(RCU)
753 {
754 struct rhashtable *ht = iter->ht;
755
756 rcu_read_lock();
757
758 spin_lock(&ht->lock);
759 if (iter->walker.tbl)
760 list_del(&iter->walker.list);
761 spin_unlock(&ht->lock);
762
763 if (!iter->walker.tbl) {
764 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
765 return -EAGAIN;
766 }
767
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
771
772 /**
773 * rhashtable_walk_next - Return the next object and advance the iterator
774 * @iter: Hash table iterator
775 *
776 * Note that you must call rhashtable_walk_stop when you are finished
777 * with the walk.
778 *
779 * Returns the next object or NULL when the end of the table is reached.
780 *
781 * Returns -EAGAIN if resize event occured. Note that the iterator
782 * will rewind back to the beginning and you may continue to use it.
783 */
784 void *rhashtable_walk_next(struct rhashtable_iter *iter)
785 {
786 struct bucket_table *tbl = iter->walker.tbl;
787 struct rhlist_head *list = iter->list;
788 struct rhashtable *ht = iter->ht;
789 struct rhash_head *p = iter->p;
790 bool rhlist = ht->rhlist;
791
792 if (p) {
793 if (!rhlist || !(list = rcu_dereference(list->next))) {
794 p = rcu_dereference(p->next);
795 list = container_of(p, struct rhlist_head, rhead);
796 }
797 goto next;
798 }
799
800 for (; iter->slot < tbl->size; iter->slot++) {
801 int skip = iter->skip;
802
803 rht_for_each_rcu(p, tbl, iter->slot) {
804 if (rhlist) {
805 list = container_of(p, struct rhlist_head,
806 rhead);
807 do {
808 if (!skip)
809 goto next;
810 skip--;
811 list = rcu_dereference(list->next);
812 } while (list);
813
814 continue;
815 }
816 if (!skip)
817 break;
818 skip--;
819 }
820
821 next:
822 if (!rht_is_a_nulls(p)) {
823 iter->skip++;
824 iter->p = p;
825 iter->list = list;
826 return rht_obj(ht, rhlist ? &list->rhead : p);
827 }
828
829 iter->skip = 0;
830 }
831
832 iter->p = NULL;
833
834 /* Ensure we see any new tables. */
835 smp_rmb();
836
837 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
838 if (iter->walker.tbl) {
839 iter->slot = 0;
840 iter->skip = 0;
841 return ERR_PTR(-EAGAIN);
842 }
843
844 return NULL;
845 }
846 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
847
848 /**
849 * rhashtable_walk_stop - Finish a hash table walk
850 * @iter: Hash table iterator
851 *
852 * Finish a hash table walk. Does not reset the iterator to the start of the
853 * hash table.
854 */
855 void rhashtable_walk_stop(struct rhashtable_iter *iter)
856 __releases(RCU)
857 {
858 struct rhashtable *ht;
859 struct bucket_table *tbl = iter->walker.tbl;
860
861 if (!tbl)
862 goto out;
863
864 ht = iter->ht;
865
866 spin_lock(&ht->lock);
867 if (tbl->rehash < tbl->size)
868 list_add(&iter->walker.list, &tbl->walkers);
869 else
870 iter->walker.tbl = NULL;
871 spin_unlock(&ht->lock);
872
873 iter->p = NULL;
874
875 out:
876 rcu_read_unlock();
877 }
878 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
879
880 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
881 {
882 size_t retsize;
883
884 if (params->nelem_hint)
885 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
886 (unsigned long)params->min_size);
887 else
888 retsize = max(HASH_DEFAULT_SIZE,
889 (unsigned long)params->min_size);
890
891 return retsize;
892 }
893
894 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
895 {
896 return jhash2(key, length, seed);
897 }
898
899 /**
900 * rhashtable_init - initialize a new hash table
901 * @ht: hash table to be initialized
902 * @params: configuration parameters
903 *
904 * Initializes a new hash table based on the provided configuration
905 * parameters. A table can be configured either with a variable or
906 * fixed length key:
907 *
908 * Configuration Example 1: Fixed length keys
909 * struct test_obj {
910 * int key;
911 * void * my_member;
912 * struct rhash_head node;
913 * };
914 *
915 * struct rhashtable_params params = {
916 * .head_offset = offsetof(struct test_obj, node),
917 * .key_offset = offsetof(struct test_obj, key),
918 * .key_len = sizeof(int),
919 * .hashfn = jhash,
920 * .nulls_base = (1U << RHT_BASE_SHIFT),
921 * };
922 *
923 * Configuration Example 2: Variable length keys
924 * struct test_obj {
925 * [...]
926 * struct rhash_head node;
927 * };
928 *
929 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
930 * {
931 * struct test_obj *obj = data;
932 *
933 * return [... hash ...];
934 * }
935 *
936 * struct rhashtable_params params = {
937 * .head_offset = offsetof(struct test_obj, node),
938 * .hashfn = jhash,
939 * .obj_hashfn = my_hash_fn,
940 * };
941 */
942 int rhashtable_init(struct rhashtable *ht,
943 const struct rhashtable_params *params)
944 {
945 struct bucket_table *tbl;
946 size_t size;
947
948 if ((!params->key_len && !params->obj_hashfn) ||
949 (params->obj_hashfn && !params->obj_cmpfn))
950 return -EINVAL;
951
952 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
953 return -EINVAL;
954
955 memset(ht, 0, sizeof(*ht));
956 mutex_init(&ht->mutex);
957 spin_lock_init(&ht->lock);
958 memcpy(&ht->p, params, sizeof(*params));
959
960 if (params->min_size)
961 ht->p.min_size = roundup_pow_of_two(params->min_size);
962
963 /* Cap total entries at 2^31 to avoid nelems overflow. */
964 ht->max_elems = 1u << 31;
965
966 if (params->max_size) {
967 ht->p.max_size = rounddown_pow_of_two(params->max_size);
968 if (ht->p.max_size < ht->max_elems / 2)
969 ht->max_elems = ht->p.max_size * 2;
970 }
971
972 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
973
974 size = rounded_hashtable_size(&ht->p);
975
976 if (params->locks_mul)
977 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
978 else
979 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
980
981 ht->key_len = ht->p.key_len;
982 if (!params->hashfn) {
983 ht->p.hashfn = jhash;
984
985 if (!(ht->key_len & (sizeof(u32) - 1))) {
986 ht->key_len /= sizeof(u32);
987 ht->p.hashfn = rhashtable_jhash2;
988 }
989 }
990
991 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
992 if (tbl == NULL)
993 return -ENOMEM;
994
995 atomic_set(&ht->nelems, 0);
996
997 RCU_INIT_POINTER(ht->tbl, tbl);
998
999 INIT_WORK(&ht->run_work, rht_deferred_worker);
1000
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(rhashtable_init);
1004
1005 /**
1006 * rhltable_init - initialize a new hash list table
1007 * @hlt: hash list table to be initialized
1008 * @params: configuration parameters
1009 *
1010 * Initializes a new hash list table.
1011 *
1012 * See documentation for rhashtable_init.
1013 */
1014 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1015 {
1016 int err;
1017
1018 /* No rhlist NULLs marking for now. */
1019 if (params->nulls_base)
1020 return -EINVAL;
1021
1022 err = rhashtable_init(&hlt->ht, params);
1023 hlt->ht.rhlist = true;
1024 return err;
1025 }
1026 EXPORT_SYMBOL_GPL(rhltable_init);
1027
1028 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1029 void (*free_fn)(void *ptr, void *arg),
1030 void *arg)
1031 {
1032 struct rhlist_head *list;
1033
1034 if (!ht->rhlist) {
1035 free_fn(rht_obj(ht, obj), arg);
1036 return;
1037 }
1038
1039 list = container_of(obj, struct rhlist_head, rhead);
1040 do {
1041 obj = &list->rhead;
1042 list = rht_dereference(list->next, ht);
1043 free_fn(rht_obj(ht, obj), arg);
1044 } while (list);
1045 }
1046
1047 /**
1048 * rhashtable_free_and_destroy - free elements and destroy hash table
1049 * @ht: the hash table to destroy
1050 * @free_fn: callback to release resources of element
1051 * @arg: pointer passed to free_fn
1052 *
1053 * Stops an eventual async resize. If defined, invokes free_fn for each
1054 * element to releasal resources. Please note that RCU protected
1055 * readers may still be accessing the elements. Releasing of resources
1056 * must occur in a compatible manner. Then frees the bucket array.
1057 *
1058 * This function will eventually sleep to wait for an async resize
1059 * to complete. The caller is responsible that no further write operations
1060 * occurs in parallel.
1061 */
1062 void rhashtable_free_and_destroy(struct rhashtable *ht,
1063 void (*free_fn)(void *ptr, void *arg),
1064 void *arg)
1065 {
1066 struct bucket_table *tbl, *next_tbl;
1067 unsigned int i;
1068
1069 cancel_work_sync(&ht->run_work);
1070
1071 mutex_lock(&ht->mutex);
1072 tbl = rht_dereference(ht->tbl, ht);
1073 restart:
1074 if (free_fn) {
1075 for (i = 0; i < tbl->size; i++) {
1076 struct rhash_head *pos, *next;
1077
1078 cond_resched();
1079 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1080 next = !rht_is_a_nulls(pos) ?
1081 rht_dereference(pos->next, ht) : NULL;
1082 !rht_is_a_nulls(pos);
1083 pos = next,
1084 next = !rht_is_a_nulls(pos) ?
1085 rht_dereference(pos->next, ht) : NULL)
1086 rhashtable_free_one(ht, pos, free_fn, arg);
1087 }
1088 }
1089
1090 next_tbl = rht_dereference(tbl->future_tbl, ht);
1091 bucket_table_free(tbl);
1092 if (next_tbl) {
1093 tbl = next_tbl;
1094 goto restart;
1095 }
1096 mutex_unlock(&ht->mutex);
1097 }
1098 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1099
1100 void rhashtable_destroy(struct rhashtable *ht)
1101 {
1102 return rhashtable_free_and_destroy(ht, NULL, NULL);
1103 }
1104 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1105
1106 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1107 unsigned int hash)
1108 {
1109 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1110 static struct rhash_head __rcu *rhnull =
1111 (struct rhash_head __rcu *)NULLS_MARKER(0);
1112 unsigned int index = hash & ((1 << tbl->nest) - 1);
1113 unsigned int size = tbl->size >> tbl->nest;
1114 unsigned int subhash = hash;
1115 union nested_table *ntbl;
1116
1117 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1118 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1119 subhash >>= tbl->nest;
1120
1121 while (ntbl && size > (1 << shift)) {
1122 index = subhash & ((1 << shift) - 1);
1123 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1124 tbl, hash);
1125 size >>= shift;
1126 subhash >>= shift;
1127 }
1128
1129 if (!ntbl)
1130 return &rhnull;
1131
1132 return &ntbl[subhash].bucket;
1133
1134 }
1135 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1136
1137 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1138 struct bucket_table *tbl,
1139 unsigned int hash)
1140 {
1141 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1142 unsigned int index = hash & ((1 << tbl->nest) - 1);
1143 unsigned int size = tbl->size >> tbl->nest;
1144 union nested_table *ntbl;
1145 unsigned int shifted;
1146 unsigned int nhash;
1147
1148 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1149 hash >>= tbl->nest;
1150 nhash = index;
1151 shifted = tbl->nest;
1152 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1153 size <= (1 << shift) ? shifted : 0, nhash);
1154
1155 while (ntbl && size > (1 << shift)) {
1156 index = hash & ((1 << shift) - 1);
1157 size >>= shift;
1158 hash >>= shift;
1159 nhash |= index << shifted;
1160 shifted += shift;
1161 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1162 size <= (1 << shift) ? shifted : 0,
1163 nhash);
1164 }
1165
1166 if (!ntbl)
1167 return NULL;
1168
1169 return &ntbl[hash].bucket;
1170
1171 }
1172 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);