]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - lib/scatterlist.c
lib: logic_pio: Add logic_pio_unregister_range()
[mirror_ubuntu-bionic-kernel.git] / lib / scatterlist.c
1 /*
2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
3 *
4 * Scatterlist handling helpers.
5 *
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
9 #include <linux/export.h>
10 #include <linux/slab.h>
11 #include <linux/scatterlist.h>
12 #include <linux/highmem.h>
13 #include <linux/kmemleak.h>
14
15 /**
16 * sg_next - return the next scatterlist entry in a list
17 * @sg: The current sg entry
18 *
19 * Description:
20 * Usually the next entry will be @sg@ + 1, but if this sg element is part
21 * of a chained scatterlist, it could jump to the start of a new
22 * scatterlist array.
23 *
24 **/
25 struct scatterlist *sg_next(struct scatterlist *sg)
26 {
27 #ifdef CONFIG_DEBUG_SG
28 BUG_ON(sg->sg_magic != SG_MAGIC);
29 #endif
30 if (sg_is_last(sg))
31 return NULL;
32
33 sg++;
34 if (unlikely(sg_is_chain(sg)))
35 sg = sg_chain_ptr(sg);
36
37 return sg;
38 }
39 EXPORT_SYMBOL(sg_next);
40
41 /**
42 * sg_nents - return total count of entries in scatterlist
43 * @sg: The scatterlist
44 *
45 * Description:
46 * Allows to know how many entries are in sg, taking into acount
47 * chaining as well
48 *
49 **/
50 int sg_nents(struct scatterlist *sg)
51 {
52 int nents;
53 for (nents = 0; sg; sg = sg_next(sg))
54 nents++;
55 return nents;
56 }
57 EXPORT_SYMBOL(sg_nents);
58
59 /**
60 * sg_nents_for_len - return total count of entries in scatterlist
61 * needed to satisfy the supplied length
62 * @sg: The scatterlist
63 * @len: The total required length
64 *
65 * Description:
66 * Determines the number of entries in sg that are required to meet
67 * the supplied length, taking into acount chaining as well
68 *
69 * Returns:
70 * the number of sg entries needed, negative error on failure
71 *
72 **/
73 int sg_nents_for_len(struct scatterlist *sg, u64 len)
74 {
75 int nents;
76 u64 total;
77
78 if (!len)
79 return 0;
80
81 for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
82 nents++;
83 total += sg->length;
84 if (total >= len)
85 return nents;
86 }
87
88 return -EINVAL;
89 }
90 EXPORT_SYMBOL(sg_nents_for_len);
91
92 /**
93 * sg_last - return the last scatterlist entry in a list
94 * @sgl: First entry in the scatterlist
95 * @nents: Number of entries in the scatterlist
96 *
97 * Description:
98 * Should only be used casually, it (currently) scans the entire list
99 * to get the last entry.
100 *
101 * Note that the @sgl@ pointer passed in need not be the first one,
102 * the important bit is that @nents@ denotes the number of entries that
103 * exist from @sgl@.
104 *
105 **/
106 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107 {
108 struct scatterlist *sg, *ret = NULL;
109 unsigned int i;
110
111 for_each_sg(sgl, sg, nents, i)
112 ret = sg;
113
114 #ifdef CONFIG_DEBUG_SG
115 BUG_ON(sgl[0].sg_magic != SG_MAGIC);
116 BUG_ON(!sg_is_last(ret));
117 #endif
118 return ret;
119 }
120 EXPORT_SYMBOL(sg_last);
121
122 /**
123 * sg_init_table - Initialize SG table
124 * @sgl: The SG table
125 * @nents: Number of entries in table
126 *
127 * Notes:
128 * If this is part of a chained sg table, sg_mark_end() should be
129 * used only on the last table part.
130 *
131 **/
132 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
133 {
134 memset(sgl, 0, sizeof(*sgl) * nents);
135 #ifdef CONFIG_DEBUG_SG
136 {
137 unsigned int i;
138 for (i = 0; i < nents; i++)
139 sgl[i].sg_magic = SG_MAGIC;
140 }
141 #endif
142 sg_mark_end(&sgl[nents - 1]);
143 }
144 EXPORT_SYMBOL(sg_init_table);
145
146 /**
147 * sg_init_one - Initialize a single entry sg list
148 * @sg: SG entry
149 * @buf: Virtual address for IO
150 * @buflen: IO length
151 *
152 **/
153 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
154 {
155 sg_init_table(sg, 1);
156 sg_set_buf(sg, buf, buflen);
157 }
158 EXPORT_SYMBOL(sg_init_one);
159
160 /*
161 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
162 * helpers.
163 */
164 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
165 {
166 if (nents == SG_MAX_SINGLE_ALLOC) {
167 /*
168 * Kmemleak doesn't track page allocations as they are not
169 * commonly used (in a raw form) for kernel data structures.
170 * As we chain together a list of pages and then a normal
171 * kmalloc (tracked by kmemleak), in order to for that last
172 * allocation not to become decoupled (and thus a
173 * false-positive) we need to inform kmemleak of all the
174 * intermediate allocations.
175 */
176 void *ptr = (void *) __get_free_page(gfp_mask);
177 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
178 return ptr;
179 } else
180 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
181 }
182
183 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
184 {
185 if (nents == SG_MAX_SINGLE_ALLOC) {
186 kmemleak_free(sg);
187 free_page((unsigned long) sg);
188 } else
189 kfree(sg);
190 }
191
192 /**
193 * __sg_free_table - Free a previously mapped sg table
194 * @table: The sg table header to use
195 * @max_ents: The maximum number of entries per single scatterlist
196 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
197 * @free_fn: Free function
198 *
199 * Description:
200 * Free an sg table previously allocated and setup with
201 * __sg_alloc_table(). The @max_ents value must be identical to
202 * that previously used with __sg_alloc_table().
203 *
204 **/
205 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
206 bool skip_first_chunk, sg_free_fn *free_fn)
207 {
208 struct scatterlist *sgl, *next;
209
210 if (unlikely(!table->sgl))
211 return;
212
213 sgl = table->sgl;
214 while (table->orig_nents) {
215 unsigned int alloc_size = table->orig_nents;
216 unsigned int sg_size;
217
218 /*
219 * If we have more than max_ents segments left,
220 * then assign 'next' to the sg table after the current one.
221 * sg_size is then one less than alloc size, since the last
222 * element is the chain pointer.
223 */
224 if (alloc_size > max_ents) {
225 next = sg_chain_ptr(&sgl[max_ents - 1]);
226 alloc_size = max_ents;
227 sg_size = alloc_size - 1;
228 } else {
229 sg_size = alloc_size;
230 next = NULL;
231 }
232
233 table->orig_nents -= sg_size;
234 if (skip_first_chunk)
235 skip_first_chunk = false;
236 else
237 free_fn(sgl, alloc_size);
238 sgl = next;
239 }
240
241 table->sgl = NULL;
242 }
243 EXPORT_SYMBOL(__sg_free_table);
244
245 /**
246 * sg_free_table - Free a previously allocated sg table
247 * @table: The mapped sg table header
248 *
249 **/
250 void sg_free_table(struct sg_table *table)
251 {
252 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
253 }
254 EXPORT_SYMBOL(sg_free_table);
255
256 /**
257 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
258 * @table: The sg table header to use
259 * @nents: Number of entries in sg list
260 * @max_ents: The maximum number of entries the allocator returns per call
261 * @gfp_mask: GFP allocation mask
262 * @alloc_fn: Allocator to use
263 *
264 * Description:
265 * This function returns a @table @nents long. The allocator is
266 * defined to return scatterlist chunks of maximum size @max_ents.
267 * Thus if @nents is bigger than @max_ents, the scatterlists will be
268 * chained in units of @max_ents.
269 *
270 * Notes:
271 * If this function returns non-0 (eg failure), the caller must call
272 * __sg_free_table() to cleanup any leftover allocations.
273 *
274 **/
275 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
276 unsigned int max_ents, struct scatterlist *first_chunk,
277 gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
278 {
279 struct scatterlist *sg, *prv;
280 unsigned int left;
281
282 memset(table, 0, sizeof(*table));
283
284 if (nents == 0)
285 return -EINVAL;
286 #ifndef CONFIG_ARCH_HAS_SG_CHAIN
287 if (WARN_ON_ONCE(nents > max_ents))
288 return -EINVAL;
289 #endif
290
291 left = nents;
292 prv = NULL;
293 do {
294 unsigned int sg_size, alloc_size = left;
295
296 if (alloc_size > max_ents) {
297 alloc_size = max_ents;
298 sg_size = alloc_size - 1;
299 } else
300 sg_size = alloc_size;
301
302 left -= sg_size;
303
304 if (first_chunk) {
305 sg = first_chunk;
306 first_chunk = NULL;
307 } else {
308 sg = alloc_fn(alloc_size, gfp_mask);
309 }
310 if (unlikely(!sg)) {
311 /*
312 * Adjust entry count to reflect that the last
313 * entry of the previous table won't be used for
314 * linkage. Without this, sg_kfree() may get
315 * confused.
316 */
317 if (prv)
318 table->nents = ++table->orig_nents;
319
320 return -ENOMEM;
321 }
322
323 sg_init_table(sg, alloc_size);
324 table->nents = table->orig_nents += sg_size;
325
326 /*
327 * If this is the first mapping, assign the sg table header.
328 * If this is not the first mapping, chain previous part.
329 */
330 if (prv)
331 sg_chain(prv, max_ents, sg);
332 else
333 table->sgl = sg;
334
335 /*
336 * If no more entries after this one, mark the end
337 */
338 if (!left)
339 sg_mark_end(&sg[sg_size - 1]);
340
341 prv = sg;
342 } while (left);
343
344 return 0;
345 }
346 EXPORT_SYMBOL(__sg_alloc_table);
347
348 /**
349 * sg_alloc_table - Allocate and initialize an sg table
350 * @table: The sg table header to use
351 * @nents: Number of entries in sg list
352 * @gfp_mask: GFP allocation mask
353 *
354 * Description:
355 * Allocate and initialize an sg table. If @nents@ is larger than
356 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
357 *
358 **/
359 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
360 {
361 int ret;
362
363 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
364 NULL, gfp_mask, sg_kmalloc);
365 if (unlikely(ret))
366 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
367
368 return ret;
369 }
370 EXPORT_SYMBOL(sg_alloc_table);
371
372 /**
373 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
374 * an array of pages
375 * @sgt: The sg table header to use
376 * @pages: Pointer to an array of page pointers
377 * @n_pages: Number of pages in the pages array
378 * @offset: Offset from start of the first page to the start of a buffer
379 * @size: Number of valid bytes in the buffer (after offset)
380 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
381 * @gfp_mask: GFP allocation mask
382 *
383 * Description:
384 * Allocate and initialize an sg table from a list of pages. Contiguous
385 * ranges of the pages are squashed into a single scatterlist node up to the
386 * maximum size specified in @max_segment. An user may provide an offset at a
387 * start and a size of valid data in a buffer specified by the page array.
388 * The returned sg table is released by sg_free_table.
389 *
390 * Returns:
391 * 0 on success, negative error on failure
392 */
393 int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
394 unsigned int n_pages, unsigned int offset,
395 unsigned long size, unsigned int max_segment,
396 gfp_t gfp_mask)
397 {
398 unsigned int chunks, cur_page, seg_len, i;
399 int ret;
400 struct scatterlist *s;
401
402 if (WARN_ON(!max_segment || offset_in_page(max_segment)))
403 return -EINVAL;
404
405 /* compute number of contiguous chunks */
406 chunks = 1;
407 seg_len = 0;
408 for (i = 1; i < n_pages; i++) {
409 seg_len += PAGE_SIZE;
410 if (seg_len >= max_segment ||
411 page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
412 chunks++;
413 seg_len = 0;
414 }
415 }
416
417 ret = sg_alloc_table(sgt, chunks, gfp_mask);
418 if (unlikely(ret))
419 return ret;
420
421 /* merging chunks and putting them into the scatterlist */
422 cur_page = 0;
423 for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
424 unsigned int j, chunk_size;
425
426 /* look for the end of the current chunk */
427 seg_len = 0;
428 for (j = cur_page + 1; j < n_pages; j++) {
429 seg_len += PAGE_SIZE;
430 if (seg_len >= max_segment ||
431 page_to_pfn(pages[j]) !=
432 page_to_pfn(pages[j - 1]) + 1)
433 break;
434 }
435
436 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
437 sg_set_page(s, pages[cur_page],
438 min_t(unsigned long, size, chunk_size), offset);
439 size -= chunk_size;
440 offset = 0;
441 cur_page = j;
442 }
443
444 return 0;
445 }
446 EXPORT_SYMBOL(__sg_alloc_table_from_pages);
447
448 /**
449 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
450 * an array of pages
451 * @sgt: The sg table header to use
452 * @pages: Pointer to an array of page pointers
453 * @n_pages: Number of pages in the pages array
454 * @offset: Offset from start of the first page to the start of a buffer
455 * @size: Number of valid bytes in the buffer (after offset)
456 * @gfp_mask: GFP allocation mask
457 *
458 * Description:
459 * Allocate and initialize an sg table from a list of pages. Contiguous
460 * ranges of the pages are squashed into a single scatterlist node. A user
461 * may provide an offset at a start and a size of valid data in a buffer
462 * specified by the page array. The returned sg table is released by
463 * sg_free_table.
464 *
465 * Returns:
466 * 0 on success, negative error on failure
467 */
468 int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
469 unsigned int n_pages, unsigned int offset,
470 unsigned long size, gfp_t gfp_mask)
471 {
472 return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
473 SCATTERLIST_MAX_SEGMENT, gfp_mask);
474 }
475 EXPORT_SYMBOL(sg_alloc_table_from_pages);
476
477 void __sg_page_iter_start(struct sg_page_iter *piter,
478 struct scatterlist *sglist, unsigned int nents,
479 unsigned long pgoffset)
480 {
481 piter->__pg_advance = 0;
482 piter->__nents = nents;
483
484 piter->sg = sglist;
485 piter->sg_pgoffset = pgoffset;
486 }
487 EXPORT_SYMBOL(__sg_page_iter_start);
488
489 static int sg_page_count(struct scatterlist *sg)
490 {
491 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
492 }
493
494 bool __sg_page_iter_next(struct sg_page_iter *piter)
495 {
496 if (!piter->__nents || !piter->sg)
497 return false;
498
499 piter->sg_pgoffset += piter->__pg_advance;
500 piter->__pg_advance = 1;
501
502 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
503 piter->sg_pgoffset -= sg_page_count(piter->sg);
504 piter->sg = sg_next(piter->sg);
505 if (!--piter->__nents || !piter->sg)
506 return false;
507 }
508
509 return true;
510 }
511 EXPORT_SYMBOL(__sg_page_iter_next);
512
513 /**
514 * sg_miter_start - start mapping iteration over a sg list
515 * @miter: sg mapping iter to be started
516 * @sgl: sg list to iterate over
517 * @nents: number of sg entries
518 *
519 * Description:
520 * Starts mapping iterator @miter.
521 *
522 * Context:
523 * Don't care.
524 */
525 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
526 unsigned int nents, unsigned int flags)
527 {
528 memset(miter, 0, sizeof(struct sg_mapping_iter));
529
530 __sg_page_iter_start(&miter->piter, sgl, nents, 0);
531 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
532 miter->__flags = flags;
533 }
534 EXPORT_SYMBOL(sg_miter_start);
535
536 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
537 {
538 if (!miter->__remaining) {
539 struct scatterlist *sg;
540
541 if (!__sg_page_iter_next(&miter->piter))
542 return false;
543
544 sg = miter->piter.sg;
545
546 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
547 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
548 miter->__offset &= PAGE_SIZE - 1;
549 miter->__remaining = sg->offset + sg->length -
550 (miter->piter.sg_pgoffset << PAGE_SHIFT) -
551 miter->__offset;
552 miter->__remaining = min_t(unsigned long, miter->__remaining,
553 PAGE_SIZE - miter->__offset);
554 }
555
556 return true;
557 }
558
559 /**
560 * sg_miter_skip - reposition mapping iterator
561 * @miter: sg mapping iter to be skipped
562 * @offset: number of bytes to plus the current location
563 *
564 * Description:
565 * Sets the offset of @miter to its current location plus @offset bytes.
566 * If mapping iterator @miter has been proceeded by sg_miter_next(), this
567 * stops @miter.
568 *
569 * Context:
570 * Don't care if @miter is stopped, or not proceeded yet.
571 * Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
572 *
573 * Returns:
574 * true if @miter contains the valid mapping. false if end of sg
575 * list is reached.
576 */
577 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
578 {
579 sg_miter_stop(miter);
580
581 while (offset) {
582 off_t consumed;
583
584 if (!sg_miter_get_next_page(miter))
585 return false;
586
587 consumed = min_t(off_t, offset, miter->__remaining);
588 miter->__offset += consumed;
589 miter->__remaining -= consumed;
590 offset -= consumed;
591 }
592
593 return true;
594 }
595 EXPORT_SYMBOL(sg_miter_skip);
596
597 /**
598 * sg_miter_next - proceed mapping iterator to the next mapping
599 * @miter: sg mapping iter to proceed
600 *
601 * Description:
602 * Proceeds @miter to the next mapping. @miter should have been started
603 * using sg_miter_start(). On successful return, @miter->page,
604 * @miter->addr and @miter->length point to the current mapping.
605 *
606 * Context:
607 * Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled
608 * till @miter is stopped. May sleep if !SG_MITER_ATOMIC.
609 *
610 * Returns:
611 * true if @miter contains the next mapping. false if end of sg
612 * list is reached.
613 */
614 bool sg_miter_next(struct sg_mapping_iter *miter)
615 {
616 sg_miter_stop(miter);
617
618 /*
619 * Get to the next page if necessary.
620 * __remaining, __offset is adjusted by sg_miter_stop
621 */
622 if (!sg_miter_get_next_page(miter))
623 return false;
624
625 miter->page = sg_page_iter_page(&miter->piter);
626 miter->consumed = miter->length = miter->__remaining;
627
628 if (miter->__flags & SG_MITER_ATOMIC)
629 miter->addr = kmap_atomic(miter->page) + miter->__offset;
630 else
631 miter->addr = kmap(miter->page) + miter->__offset;
632
633 return true;
634 }
635 EXPORT_SYMBOL(sg_miter_next);
636
637 /**
638 * sg_miter_stop - stop mapping iteration
639 * @miter: sg mapping iter to be stopped
640 *
641 * Description:
642 * Stops mapping iterator @miter. @miter should have been started
643 * using sg_miter_start(). A stopped iteration can be resumed by
644 * calling sg_miter_next() on it. This is useful when resources (kmap)
645 * need to be released during iteration.
646 *
647 * Context:
648 * Preemption disabled if the SG_MITER_ATOMIC is set. Don't care
649 * otherwise.
650 */
651 void sg_miter_stop(struct sg_mapping_iter *miter)
652 {
653 WARN_ON(miter->consumed > miter->length);
654
655 /* drop resources from the last iteration */
656 if (miter->addr) {
657 miter->__offset += miter->consumed;
658 miter->__remaining -= miter->consumed;
659
660 if ((miter->__flags & SG_MITER_TO_SG) &&
661 !PageSlab(miter->page))
662 flush_kernel_dcache_page(miter->page);
663
664 if (miter->__flags & SG_MITER_ATOMIC) {
665 WARN_ON_ONCE(preemptible());
666 kunmap_atomic(miter->addr);
667 } else
668 kunmap(miter->page);
669
670 miter->page = NULL;
671 miter->addr = NULL;
672 miter->length = 0;
673 miter->consumed = 0;
674 }
675 }
676 EXPORT_SYMBOL(sg_miter_stop);
677
678 /**
679 * sg_copy_buffer - Copy data between a linear buffer and an SG list
680 * @sgl: The SG list
681 * @nents: Number of SG entries
682 * @buf: Where to copy from
683 * @buflen: The number of bytes to copy
684 * @skip: Number of bytes to skip before copying
685 * @to_buffer: transfer direction (true == from an sg list to a
686 * buffer, false == from a buffer to an sg list
687 *
688 * Returns the number of copied bytes.
689 *
690 **/
691 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
692 size_t buflen, off_t skip, bool to_buffer)
693 {
694 unsigned int offset = 0;
695 struct sg_mapping_iter miter;
696 unsigned int sg_flags = SG_MITER_ATOMIC;
697
698 if (to_buffer)
699 sg_flags |= SG_MITER_FROM_SG;
700 else
701 sg_flags |= SG_MITER_TO_SG;
702
703 sg_miter_start(&miter, sgl, nents, sg_flags);
704
705 if (!sg_miter_skip(&miter, skip))
706 return false;
707
708 while ((offset < buflen) && sg_miter_next(&miter)) {
709 unsigned int len;
710
711 len = min(miter.length, buflen - offset);
712
713 if (to_buffer)
714 memcpy(buf + offset, miter.addr, len);
715 else
716 memcpy(miter.addr, buf + offset, len);
717
718 offset += len;
719 }
720
721 sg_miter_stop(&miter);
722
723 return offset;
724 }
725 EXPORT_SYMBOL(sg_copy_buffer);
726
727 /**
728 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
729 * @sgl: The SG list
730 * @nents: Number of SG entries
731 * @buf: Where to copy from
732 * @buflen: The number of bytes to copy
733 *
734 * Returns the number of copied bytes.
735 *
736 **/
737 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
738 const void *buf, size_t buflen)
739 {
740 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
741 }
742 EXPORT_SYMBOL(sg_copy_from_buffer);
743
744 /**
745 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
746 * @sgl: The SG list
747 * @nents: Number of SG entries
748 * @buf: Where to copy to
749 * @buflen: The number of bytes to copy
750 *
751 * Returns the number of copied bytes.
752 *
753 **/
754 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
755 void *buf, size_t buflen)
756 {
757 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
758 }
759 EXPORT_SYMBOL(sg_copy_to_buffer);
760
761 /**
762 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
763 * @sgl: The SG list
764 * @nents: Number of SG entries
765 * @buf: Where to copy from
766 * @buflen: The number of bytes to copy
767 * @skip: Number of bytes to skip before copying
768 *
769 * Returns the number of copied bytes.
770 *
771 **/
772 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
773 const void *buf, size_t buflen, off_t skip)
774 {
775 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
776 }
777 EXPORT_SYMBOL(sg_pcopy_from_buffer);
778
779 /**
780 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
781 * @sgl: The SG list
782 * @nents: Number of SG entries
783 * @buf: Where to copy to
784 * @buflen: The number of bytes to copy
785 * @skip: Number of bytes to skip before copying
786 *
787 * Returns the number of copied bytes.
788 *
789 **/
790 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
791 void *buf, size_t buflen, off_t skip)
792 {
793 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
794 }
795 EXPORT_SYMBOL(sg_pcopy_to_buffer);
796
797 /**
798 * sg_zero_buffer - Zero-out a part of a SG list
799 * @sgl: The SG list
800 * @nents: Number of SG entries
801 * @buflen: The number of bytes to zero out
802 * @skip: Number of bytes to skip before zeroing
803 *
804 * Returns the number of bytes zeroed.
805 **/
806 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
807 size_t buflen, off_t skip)
808 {
809 unsigned int offset = 0;
810 struct sg_mapping_iter miter;
811 unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
812
813 sg_miter_start(&miter, sgl, nents, sg_flags);
814
815 if (!sg_miter_skip(&miter, skip))
816 return false;
817
818 while (offset < buflen && sg_miter_next(&miter)) {
819 unsigned int len;
820
821 len = min(miter.length, buflen - offset);
822 memset(miter.addr, 0, len);
823
824 offset += len;
825 }
826
827 sg_miter_stop(&miter);
828 return offset;
829 }
830 EXPORT_SYMBOL(sg_zero_buffer);