]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/filemap.c
Revert "UBUNTU: SAUCE: Import aufs driver"
[mirror_ubuntu-bionic-kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/filemap.h>
44
45 /*
46 * FIXME: remove all knowledge of the buffer layer from the core VM
47 */
48 #include <linux/buffer_head.h> /* for try_to_free_buffers */
49
50 #include <asm/mman.h>
51
52 /*
53 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * though.
55 *
56 * Shared mappings now work. 15.8.1995 Bruno.
57 *
58 * finished 'unifying' the page and buffer cache and SMP-threaded the
59 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
60 *
61 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 */
63
64 /*
65 * Lock ordering:
66 *
67 * ->i_mmap_rwsem (truncate_pagecache)
68 * ->private_lock (__free_pte->__set_page_dirty_buffers)
69 * ->swap_lock (exclusive_swap_page, others)
70 * ->mapping->tree_lock
71 *
72 * ->i_mutex
73 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
74 *
75 * ->mmap_sem
76 * ->i_mmap_rwsem
77 * ->page_table_lock or pte_lock (various, mainly in memory.c)
78 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 *
80 * ->mmap_sem
81 * ->lock_page (access_process_vm)
82 *
83 * ->i_mutex (generic_perform_write)
84 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 *
86 * bdi->wb.list_lock
87 * sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
89 *
90 * ->i_mmap_rwsem
91 * ->anon_vma.lock (vma_adjust)
92 *
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 *
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
101 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
105 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
106 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
107 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
108 * ->inode->i_lock (zap_pte_range->set_page_dirty)
109 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
110 *
111 * ->i_mmap_rwsem
112 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 */
114
115 static int page_cache_tree_insert(struct address_space *mapping,
116 struct page *page, void **shadowp)
117 {
118 struct radix_tree_node *node;
119 void **slot;
120 int error;
121
122 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
123 &node, &slot);
124 if (error)
125 return error;
126 if (*slot) {
127 void *p;
128
129 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
130 if (!radix_tree_exceptional_entry(p))
131 return -EEXIST;
132
133 mapping->nrexceptional--;
134 if (shadowp)
135 *shadowp = p;
136 }
137 __radix_tree_replace(&mapping->page_tree, node, slot, page,
138 workingset_lookup_update(mapping));
139 mapping->nrpages++;
140 return 0;
141 }
142
143 static void page_cache_tree_delete(struct address_space *mapping,
144 struct page *page, void *shadow)
145 {
146 int i, nr;
147
148 /* hugetlb pages are represented by one entry in the radix tree */
149 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
150
151 VM_BUG_ON_PAGE(!PageLocked(page), page);
152 VM_BUG_ON_PAGE(PageTail(page), page);
153 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
154
155 for (i = 0; i < nr; i++) {
156 struct radix_tree_node *node;
157 void **slot;
158
159 __radix_tree_lookup(&mapping->page_tree, page->index + i,
160 &node, &slot);
161
162 VM_BUG_ON_PAGE(!node && nr != 1, page);
163
164 radix_tree_clear_tags(&mapping->page_tree, node, slot);
165 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
166 workingset_lookup_update(mapping));
167 }
168
169 page->mapping = NULL;
170 /* Leave page->index set: truncation lookup relies upon it */
171
172 if (shadow) {
173 mapping->nrexceptional += nr;
174 /*
175 * Make sure the nrexceptional update is committed before
176 * the nrpages update so that final truncate racing
177 * with reclaim does not see both counters 0 at the
178 * same time and miss a shadow entry.
179 */
180 smp_wmb();
181 }
182 mapping->nrpages -= nr;
183 }
184
185 static void unaccount_page_cache_page(struct address_space *mapping,
186 struct page *page)
187 {
188 int nr;
189
190 /*
191 * if we're uptodate, flush out into the cleancache, otherwise
192 * invalidate any existing cleancache entries. We can't leave
193 * stale data around in the cleancache once our page is gone
194 */
195 if (PageUptodate(page) && PageMappedToDisk(page))
196 cleancache_put_page(page);
197 else
198 cleancache_invalidate_page(mapping, page);
199
200 VM_BUG_ON_PAGE(PageTail(page), page);
201 VM_BUG_ON_PAGE(page_mapped(page), page);
202 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
203 int mapcount;
204
205 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
206 current->comm, page_to_pfn(page));
207 dump_page(page, "still mapped when deleted");
208 dump_stack();
209 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
210
211 mapcount = page_mapcount(page);
212 if (mapping_exiting(mapping) &&
213 page_count(page) >= mapcount + 2) {
214 /*
215 * All vmas have already been torn down, so it's
216 * a good bet that actually the page is unmapped,
217 * and we'd prefer not to leak it: if we're wrong,
218 * some other bad page check should catch it later.
219 */
220 page_mapcount_reset(page);
221 page_ref_sub(page, mapcount);
222 }
223 }
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (PageHuge(page))
227 return;
228
229 nr = hpage_nr_pages(page);
230
231 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
232 if (PageSwapBacked(page)) {
233 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
234 if (PageTransHuge(page))
235 __dec_node_page_state(page, NR_SHMEM_THPS);
236 } else {
237 VM_BUG_ON_PAGE(PageTransHuge(page), page);
238 }
239
240 /*
241 * At this point page must be either written or cleaned by
242 * truncate. Dirty page here signals a bug and loss of
243 * unwritten data.
244 *
245 * This fixes dirty accounting after removing the page entirely
246 * but leaves PageDirty set: it has no effect for truncated
247 * page and anyway will be cleared before returning page into
248 * buddy allocator.
249 */
250 if (WARN_ON_ONCE(PageDirty(page)))
251 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
252 }
253
254 /*
255 * Delete a page from the page cache and free it. Caller has to make
256 * sure the page is locked and that nobody else uses it - or that usage
257 * is safe. The caller must hold the mapping's tree_lock.
258 */
259 void __delete_from_page_cache(struct page *page, void *shadow)
260 {
261 struct address_space *mapping = page->mapping;
262
263 trace_mm_filemap_delete_from_page_cache(page);
264
265 unaccount_page_cache_page(mapping, page);
266 page_cache_tree_delete(mapping, page, shadow);
267 }
268
269 static void page_cache_free_page(struct address_space *mapping,
270 struct page *page)
271 {
272 void (*freepage)(struct page *);
273
274 freepage = mapping->a_ops->freepage;
275 if (freepage)
276 freepage(page);
277
278 if (PageTransHuge(page) && !PageHuge(page)) {
279 page_ref_sub(page, HPAGE_PMD_NR);
280 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
281 } else {
282 put_page(page);
283 }
284 }
285
286 /**
287 * delete_from_page_cache - delete page from page cache
288 * @page: the page which the kernel is trying to remove from page cache
289 *
290 * This must be called only on pages that have been verified to be in the page
291 * cache and locked. It will never put the page into the free list, the caller
292 * has a reference on the page.
293 */
294 void delete_from_page_cache(struct page *page)
295 {
296 struct address_space *mapping = page_mapping(page);
297 unsigned long flags;
298
299 BUG_ON(!PageLocked(page));
300 spin_lock_irqsave(&mapping->tree_lock, flags);
301 __delete_from_page_cache(page, NULL);
302 spin_unlock_irqrestore(&mapping->tree_lock, flags);
303
304 page_cache_free_page(mapping, page);
305 }
306 EXPORT_SYMBOL(delete_from_page_cache);
307
308 /*
309 * page_cache_tree_delete_batch - delete several pages from page cache
310 * @mapping: the mapping to which pages belong
311 * @pvec: pagevec with pages to delete
312 *
313 * The function walks over mapping->page_tree and removes pages passed in @pvec
314 * from the radix tree. The function expects @pvec to be sorted by page index.
315 * It tolerates holes in @pvec (radix tree entries at those indices are not
316 * modified). The function expects only THP head pages to be present in the
317 * @pvec and takes care to delete all corresponding tail pages from the radix
318 * tree as well.
319 *
320 * The function expects mapping->tree_lock to be held.
321 */
322 static void
323 page_cache_tree_delete_batch(struct address_space *mapping,
324 struct pagevec *pvec)
325 {
326 struct radix_tree_iter iter;
327 void **slot;
328 int total_pages = 0;
329 int i = 0, tail_pages = 0;
330 struct page *page;
331 pgoff_t start;
332
333 start = pvec->pages[0]->index;
334 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
335 if (i >= pagevec_count(pvec) && !tail_pages)
336 break;
337 page = radix_tree_deref_slot_protected(slot,
338 &mapping->tree_lock);
339 if (radix_tree_exceptional_entry(page))
340 continue;
341 if (!tail_pages) {
342 /*
343 * Some page got inserted in our range? Skip it. We
344 * have our pages locked so they are protected from
345 * being removed.
346 */
347 if (page != pvec->pages[i])
348 continue;
349 WARN_ON_ONCE(!PageLocked(page));
350 if (PageTransHuge(page) && !PageHuge(page))
351 tail_pages = HPAGE_PMD_NR - 1;
352 page->mapping = NULL;
353 /*
354 * Leave page->index set: truncation lookup relies
355 * upon it
356 */
357 i++;
358 } else {
359 tail_pages--;
360 }
361 radix_tree_clear_tags(&mapping->page_tree, iter.node, slot);
362 __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL,
363 workingset_lookup_update(mapping));
364 total_pages++;
365 }
366 mapping->nrpages -= total_pages;
367 }
368
369 void delete_from_page_cache_batch(struct address_space *mapping,
370 struct pagevec *pvec)
371 {
372 int i;
373 unsigned long flags;
374
375 if (!pagevec_count(pvec))
376 return;
377
378 spin_lock_irqsave(&mapping->tree_lock, flags);
379 for (i = 0; i < pagevec_count(pvec); i++) {
380 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
381
382 unaccount_page_cache_page(mapping, pvec->pages[i]);
383 }
384 page_cache_tree_delete_batch(mapping, pvec);
385 spin_unlock_irqrestore(&mapping->tree_lock, flags);
386
387 for (i = 0; i < pagevec_count(pvec); i++)
388 page_cache_free_page(mapping, pvec->pages[i]);
389 }
390
391 int filemap_check_errors(struct address_space *mapping)
392 {
393 int ret = 0;
394 /* Check for outstanding write errors */
395 if (test_bit(AS_ENOSPC, &mapping->flags) &&
396 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
397 ret = -ENOSPC;
398 if (test_bit(AS_EIO, &mapping->flags) &&
399 test_and_clear_bit(AS_EIO, &mapping->flags))
400 ret = -EIO;
401 return ret;
402 }
403 EXPORT_SYMBOL(filemap_check_errors);
404
405 static int filemap_check_and_keep_errors(struct address_space *mapping)
406 {
407 /* Check for outstanding write errors */
408 if (test_bit(AS_EIO, &mapping->flags))
409 return -EIO;
410 if (test_bit(AS_ENOSPC, &mapping->flags))
411 return -ENOSPC;
412 return 0;
413 }
414
415 /**
416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
417 * @mapping: address space structure to write
418 * @start: offset in bytes where the range starts
419 * @end: offset in bytes where the range ends (inclusive)
420 * @sync_mode: enable synchronous operation
421 *
422 * Start writeback against all of a mapping's dirty pages that lie
423 * within the byte offsets <start, end> inclusive.
424 *
425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
426 * opposed to a regular memory cleansing writeback. The difference between
427 * these two operations is that if a dirty page/buffer is encountered, it must
428 * be waited upon, and not just skipped over.
429 */
430 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 loff_t end, int sync_mode)
432 {
433 int ret;
434 struct writeback_control wbc = {
435 .sync_mode = sync_mode,
436 .nr_to_write = LONG_MAX,
437 .range_start = start,
438 .range_end = end,
439 };
440
441 if (!mapping_cap_writeback_dirty(mapping))
442 return 0;
443
444 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
445 ret = do_writepages(mapping, &wbc);
446 wbc_detach_inode(&wbc);
447 return ret;
448 }
449
450 static inline int __filemap_fdatawrite(struct address_space *mapping,
451 int sync_mode)
452 {
453 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
454 }
455
456 int filemap_fdatawrite(struct address_space *mapping)
457 {
458 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
459 }
460 EXPORT_SYMBOL(filemap_fdatawrite);
461
462 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
463 loff_t end)
464 {
465 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
466 }
467 EXPORT_SYMBOL(filemap_fdatawrite_range);
468
469 /**
470 * filemap_flush - mostly a non-blocking flush
471 * @mapping: target address_space
472 *
473 * This is a mostly non-blocking flush. Not suitable for data-integrity
474 * purposes - I/O may not be started against all dirty pages.
475 */
476 int filemap_flush(struct address_space *mapping)
477 {
478 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
479 }
480 EXPORT_SYMBOL(filemap_flush);
481
482 /**
483 * filemap_range_has_page - check if a page exists in range.
484 * @mapping: address space within which to check
485 * @start_byte: offset in bytes where the range starts
486 * @end_byte: offset in bytes where the range ends (inclusive)
487 *
488 * Find at least one page in the range supplied, usually used to check if
489 * direct writing in this range will trigger a writeback.
490 */
491 bool filemap_range_has_page(struct address_space *mapping,
492 loff_t start_byte, loff_t end_byte)
493 {
494 pgoff_t index = start_byte >> PAGE_SHIFT;
495 pgoff_t end = end_byte >> PAGE_SHIFT;
496 struct page *page;
497
498 if (end_byte < start_byte)
499 return false;
500
501 if (mapping->nrpages == 0)
502 return false;
503
504 if (!find_get_pages_range(mapping, &index, end, 1, &page))
505 return false;
506 put_page(page);
507 return true;
508 }
509 EXPORT_SYMBOL(filemap_range_has_page);
510
511 static void __filemap_fdatawait_range(struct address_space *mapping,
512 loff_t start_byte, loff_t end_byte)
513 {
514 pgoff_t index = start_byte >> PAGE_SHIFT;
515 pgoff_t end = end_byte >> PAGE_SHIFT;
516 struct pagevec pvec;
517 int nr_pages;
518
519 if (end_byte < start_byte)
520 return;
521
522 pagevec_init(&pvec);
523 while (index <= end) {
524 unsigned i;
525
526 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
527 end, PAGECACHE_TAG_WRITEBACK);
528 if (!nr_pages)
529 break;
530
531 for (i = 0; i < nr_pages; i++) {
532 struct page *page = pvec.pages[i];
533
534 wait_on_page_writeback(page);
535 ClearPageError(page);
536 }
537 pagevec_release(&pvec);
538 cond_resched();
539 }
540 }
541
542 /**
543 * filemap_fdatawait_range - wait for writeback to complete
544 * @mapping: address space structure to wait for
545 * @start_byte: offset in bytes where the range starts
546 * @end_byte: offset in bytes where the range ends (inclusive)
547 *
548 * Walk the list of under-writeback pages of the given address space
549 * in the given range and wait for all of them. Check error status of
550 * the address space and return it.
551 *
552 * Since the error status of the address space is cleared by this function,
553 * callers are responsible for checking the return value and handling and/or
554 * reporting the error.
555 */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 loff_t end_byte)
558 {
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563
564 /**
565 * file_fdatawait_range - wait for writeback to complete
566 * @file: file pointing to address space structure to wait for
567 * @start_byte: offset in bytes where the range starts
568 * @end_byte: offset in bytes where the range ends (inclusive)
569 *
570 * Walk the list of under-writeback pages of the address space that file
571 * refers to, in the given range and wait for all of them. Check error
572 * status of the address space vs. the file->f_wb_err cursor and return it.
573 *
574 * Since the error status of the file is advanced by this function,
575 * callers are responsible for checking the return value and handling and/or
576 * reporting the error.
577 */
578 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
579 {
580 struct address_space *mapping = file->f_mapping;
581
582 __filemap_fdatawait_range(mapping, start_byte, end_byte);
583 return file_check_and_advance_wb_err(file);
584 }
585 EXPORT_SYMBOL(file_fdatawait_range);
586
587 /**
588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
589 * @mapping: address space structure to wait for
590 *
591 * Walk the list of under-writeback pages of the given address space
592 * and wait for all of them. Unlike filemap_fdatawait(), this function
593 * does not clear error status of the address space.
594 *
595 * Use this function if callers don't handle errors themselves. Expected
596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
597 * fsfreeze(8)
598 */
599 int filemap_fdatawait_keep_errors(struct address_space *mapping)
600 {
601 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
602 return filemap_check_and_keep_errors(mapping);
603 }
604 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
605
606 static bool mapping_needs_writeback(struct address_space *mapping)
607 {
608 return (!dax_mapping(mapping) && mapping->nrpages) ||
609 (dax_mapping(mapping) && mapping->nrexceptional);
610 }
611
612 int filemap_write_and_wait(struct address_space *mapping)
613 {
614 int err = 0;
615
616 if (mapping_needs_writeback(mapping)) {
617 err = filemap_fdatawrite(mapping);
618 /*
619 * Even if the above returned error, the pages may be
620 * written partially (e.g. -ENOSPC), so we wait for it.
621 * But the -EIO is special case, it may indicate the worst
622 * thing (e.g. bug) happened, so we avoid waiting for it.
623 */
624 if (err != -EIO) {
625 int err2 = filemap_fdatawait(mapping);
626 if (!err)
627 err = err2;
628 } else {
629 /* Clear any previously stored errors */
630 filemap_check_errors(mapping);
631 }
632 } else {
633 err = filemap_check_errors(mapping);
634 }
635 return err;
636 }
637 EXPORT_SYMBOL(filemap_write_and_wait);
638
639 /**
640 * filemap_write_and_wait_range - write out & wait on a file range
641 * @mapping: the address_space for the pages
642 * @lstart: offset in bytes where the range starts
643 * @lend: offset in bytes where the range ends (inclusive)
644 *
645 * Write out and wait upon file offsets lstart->lend, inclusive.
646 *
647 * Note that @lend is inclusive (describes the last byte to be written) so
648 * that this function can be used to write to the very end-of-file (end = -1).
649 */
650 int filemap_write_and_wait_range(struct address_space *mapping,
651 loff_t lstart, loff_t lend)
652 {
653 int err = 0;
654
655 if (mapping_needs_writeback(mapping)) {
656 err = __filemap_fdatawrite_range(mapping, lstart, lend,
657 WB_SYNC_ALL);
658 /* See comment of filemap_write_and_wait() */
659 if (err != -EIO) {
660 int err2 = filemap_fdatawait_range(mapping,
661 lstart, lend);
662 if (!err)
663 err = err2;
664 } else {
665 /* Clear any previously stored errors */
666 filemap_check_errors(mapping);
667 }
668 } else {
669 err = filemap_check_errors(mapping);
670 }
671 return err;
672 }
673 EXPORT_SYMBOL(filemap_write_and_wait_range);
674
675 void __filemap_set_wb_err(struct address_space *mapping, int err)
676 {
677 errseq_t eseq = errseq_set(&mapping->wb_err, err);
678
679 trace_filemap_set_wb_err(mapping, eseq);
680 }
681 EXPORT_SYMBOL(__filemap_set_wb_err);
682
683 /**
684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
685 * and advance wb_err to current one
686 * @file: struct file on which the error is being reported
687 *
688 * When userland calls fsync (or something like nfsd does the equivalent), we
689 * want to report any writeback errors that occurred since the last fsync (or
690 * since the file was opened if there haven't been any).
691 *
692 * Grab the wb_err from the mapping. If it matches what we have in the file,
693 * then just quickly return 0. The file is all caught up.
694 *
695 * If it doesn't match, then take the mapping value, set the "seen" flag in
696 * it and try to swap it into place. If it works, or another task beat us
697 * to it with the new value, then update the f_wb_err and return the error
698 * portion. The error at this point must be reported via proper channels
699 * (a'la fsync, or NFS COMMIT operation, etc.).
700 *
701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
702 * value is protected by the f_lock since we must ensure that it reflects
703 * the latest value swapped in for this file descriptor.
704 */
705 int file_check_and_advance_wb_err(struct file *file)
706 {
707 int err = 0;
708 errseq_t old = READ_ONCE(file->f_wb_err);
709 struct address_space *mapping = file->f_mapping;
710
711 /* Locklessly handle the common case where nothing has changed */
712 if (errseq_check(&mapping->wb_err, old)) {
713 /* Something changed, must use slow path */
714 spin_lock(&file->f_lock);
715 old = file->f_wb_err;
716 err = errseq_check_and_advance(&mapping->wb_err,
717 &file->f_wb_err);
718 trace_file_check_and_advance_wb_err(file, old);
719 spin_unlock(&file->f_lock);
720 }
721
722 /*
723 * We're mostly using this function as a drop in replacement for
724 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
725 * that the legacy code would have had on these flags.
726 */
727 clear_bit(AS_EIO, &mapping->flags);
728 clear_bit(AS_ENOSPC, &mapping->flags);
729 return err;
730 }
731 EXPORT_SYMBOL(file_check_and_advance_wb_err);
732
733 /**
734 * file_write_and_wait_range - write out & wait on a file range
735 * @file: file pointing to address_space with pages
736 * @lstart: offset in bytes where the range starts
737 * @lend: offset in bytes where the range ends (inclusive)
738 *
739 * Write out and wait upon file offsets lstart->lend, inclusive.
740 *
741 * Note that @lend is inclusive (describes the last byte to be written) so
742 * that this function can be used to write to the very end-of-file (end = -1).
743 *
744 * After writing out and waiting on the data, we check and advance the
745 * f_wb_err cursor to the latest value, and return any errors detected there.
746 */
747 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
748 {
749 int err = 0, err2;
750 struct address_space *mapping = file->f_mapping;
751
752 if (mapping_needs_writeback(mapping)) {
753 err = __filemap_fdatawrite_range(mapping, lstart, lend,
754 WB_SYNC_ALL);
755 /* See comment of filemap_write_and_wait() */
756 if (err != -EIO)
757 __filemap_fdatawait_range(mapping, lstart, lend);
758 }
759 err2 = file_check_and_advance_wb_err(file);
760 if (!err)
761 err = err2;
762 return err;
763 }
764 EXPORT_SYMBOL(file_write_and_wait_range);
765
766 /**
767 * replace_page_cache_page - replace a pagecache page with a new one
768 * @old: page to be replaced
769 * @new: page to replace with
770 * @gfp_mask: allocation mode
771 *
772 * This function replaces a page in the pagecache with a new one. On
773 * success it acquires the pagecache reference for the new page and
774 * drops it for the old page. Both the old and new pages must be
775 * locked. This function does not add the new page to the LRU, the
776 * caller must do that.
777 *
778 * The remove + add is atomic. The only way this function can fail is
779 * memory allocation failure.
780 */
781 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
782 {
783 int error;
784
785 VM_BUG_ON_PAGE(!PageLocked(old), old);
786 VM_BUG_ON_PAGE(!PageLocked(new), new);
787 VM_BUG_ON_PAGE(new->mapping, new);
788
789 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
790 if (!error) {
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *);
793 unsigned long flags;
794
795 pgoff_t offset = old->index;
796 freepage = mapping->a_ops->freepage;
797
798 get_page(new);
799 new->mapping = mapping;
800 new->index = offset;
801
802 spin_lock_irqsave(&mapping->tree_lock, flags);
803 __delete_from_page_cache(old, NULL);
804 error = page_cache_tree_insert(mapping, new, NULL);
805 BUG_ON(error);
806
807 /*
808 * hugetlb pages do not participate in page cache accounting.
809 */
810 if (!PageHuge(new))
811 __inc_node_page_state(new, NR_FILE_PAGES);
812 if (PageSwapBacked(new))
813 __inc_node_page_state(new, NR_SHMEM);
814 spin_unlock_irqrestore(&mapping->tree_lock, flags);
815 mem_cgroup_migrate(old, new);
816 radix_tree_preload_end();
817 if (freepage)
818 freepage(old);
819 put_page(old);
820 }
821
822 return error;
823 }
824 EXPORT_SYMBOL_GPL(replace_page_cache_page);
825
826 static int __add_to_page_cache_locked(struct page *page,
827 struct address_space *mapping,
828 pgoff_t offset, gfp_t gfp_mask,
829 void **shadowp)
830 {
831 int huge = PageHuge(page);
832 struct mem_cgroup *memcg;
833 int error;
834
835 VM_BUG_ON_PAGE(!PageLocked(page), page);
836 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
837
838 if (!huge) {
839 error = mem_cgroup_try_charge(page, current->mm,
840 gfp_mask, &memcg, false);
841 if (error)
842 return error;
843 }
844
845 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
846 if (error) {
847 if (!huge)
848 mem_cgroup_cancel_charge(page, memcg, false);
849 return error;
850 }
851
852 get_page(page);
853 page->mapping = mapping;
854 page->index = offset;
855
856 spin_lock_irq(&mapping->tree_lock);
857 error = page_cache_tree_insert(mapping, page, shadowp);
858 radix_tree_preload_end();
859 if (unlikely(error))
860 goto err_insert;
861
862 /* hugetlb pages do not participate in page cache accounting. */
863 if (!huge)
864 __inc_node_page_state(page, NR_FILE_PAGES);
865 spin_unlock_irq(&mapping->tree_lock);
866 if (!huge)
867 mem_cgroup_commit_charge(page, memcg, false, false);
868 trace_mm_filemap_add_to_page_cache(page);
869 return 0;
870 err_insert:
871 page->mapping = NULL;
872 /* Leave page->index set: truncation relies upon it */
873 spin_unlock_irq(&mapping->tree_lock);
874 if (!huge)
875 mem_cgroup_cancel_charge(page, memcg, false);
876 put_page(page);
877 return error;
878 }
879
880 /**
881 * add_to_page_cache_locked - add a locked page to the pagecache
882 * @page: page to add
883 * @mapping: the page's address_space
884 * @offset: page index
885 * @gfp_mask: page allocation mode
886 *
887 * This function is used to add a page to the pagecache. It must be locked.
888 * This function does not add the page to the LRU. The caller must do that.
889 */
890 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
891 pgoff_t offset, gfp_t gfp_mask)
892 {
893 return __add_to_page_cache_locked(page, mapping, offset,
894 gfp_mask, NULL);
895 }
896 EXPORT_SYMBOL(add_to_page_cache_locked);
897
898 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
899 pgoff_t offset, gfp_t gfp_mask)
900 {
901 void *shadow = NULL;
902 int ret;
903
904 __SetPageLocked(page);
905 ret = __add_to_page_cache_locked(page, mapping, offset,
906 gfp_mask, &shadow);
907 if (unlikely(ret))
908 __ClearPageLocked(page);
909 else {
910 /*
911 * The page might have been evicted from cache only
912 * recently, in which case it should be activated like
913 * any other repeatedly accessed page.
914 * The exception is pages getting rewritten; evicting other
915 * data from the working set, only to cache data that will
916 * get overwritten with something else, is a waste of memory.
917 */
918 if (!(gfp_mask & __GFP_WRITE) &&
919 shadow && workingset_refault(shadow)) {
920 SetPageActive(page);
921 workingset_activation(page);
922 } else
923 ClearPageActive(page);
924 lru_cache_add(page);
925 }
926 return ret;
927 }
928 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
929
930 #ifdef CONFIG_NUMA
931 struct page *__page_cache_alloc(gfp_t gfp)
932 {
933 int n;
934 struct page *page;
935
936 if (cpuset_do_page_mem_spread()) {
937 unsigned int cpuset_mems_cookie;
938 do {
939 cpuset_mems_cookie = read_mems_allowed_begin();
940 n = cpuset_mem_spread_node();
941 page = __alloc_pages_node(n, gfp, 0);
942 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
943
944 return page;
945 }
946 return alloc_pages(gfp, 0);
947 }
948 EXPORT_SYMBOL(__page_cache_alloc);
949 #endif
950
951 /*
952 * In order to wait for pages to become available there must be
953 * waitqueues associated with pages. By using a hash table of
954 * waitqueues where the bucket discipline is to maintain all
955 * waiters on the same queue and wake all when any of the pages
956 * become available, and for the woken contexts to check to be
957 * sure the appropriate page became available, this saves space
958 * at a cost of "thundering herd" phenomena during rare hash
959 * collisions.
960 */
961 #define PAGE_WAIT_TABLE_BITS 8
962 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
963 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
964
965 static wait_queue_head_t *page_waitqueue(struct page *page)
966 {
967 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
968 }
969
970 void __init pagecache_init(void)
971 {
972 int i;
973
974 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
975 init_waitqueue_head(&page_wait_table[i]);
976
977 page_writeback_init();
978 }
979
980 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
981 struct wait_page_key {
982 struct page *page;
983 int bit_nr;
984 int page_match;
985 };
986
987 struct wait_page_queue {
988 struct page *page;
989 int bit_nr;
990 wait_queue_entry_t wait;
991 };
992
993 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
994 {
995 struct wait_page_key *key = arg;
996 struct wait_page_queue *wait_page
997 = container_of(wait, struct wait_page_queue, wait);
998
999 if (wait_page->page != key->page)
1000 return 0;
1001 key->page_match = 1;
1002
1003 if (wait_page->bit_nr != key->bit_nr)
1004 return 0;
1005
1006 /* Stop walking if it's locked */
1007 if (test_bit(key->bit_nr, &key->page->flags))
1008 return -1;
1009
1010 return autoremove_wake_function(wait, mode, sync, key);
1011 }
1012
1013 static void wake_up_page_bit(struct page *page, int bit_nr)
1014 {
1015 wait_queue_head_t *q = page_waitqueue(page);
1016 struct wait_page_key key;
1017 unsigned long flags;
1018 wait_queue_entry_t bookmark;
1019
1020 key.page = page;
1021 key.bit_nr = bit_nr;
1022 key.page_match = 0;
1023
1024 bookmark.flags = 0;
1025 bookmark.private = NULL;
1026 bookmark.func = NULL;
1027 INIT_LIST_HEAD(&bookmark.entry);
1028
1029 spin_lock_irqsave(&q->lock, flags);
1030 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033 /*
1034 * Take a breather from holding the lock,
1035 * allow pages that finish wake up asynchronously
1036 * to acquire the lock and remove themselves
1037 * from wait queue
1038 */
1039 spin_unlock_irqrestore(&q->lock, flags);
1040 cpu_relax();
1041 spin_lock_irqsave(&q->lock, flags);
1042 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043 }
1044
1045 /*
1046 * It is possible for other pages to have collided on the waitqueue
1047 * hash, so in that case check for a page match. That prevents a long-
1048 * term waiter
1049 *
1050 * It is still possible to miss a case here, when we woke page waiters
1051 * and removed them from the waitqueue, but there are still other
1052 * page waiters.
1053 */
1054 if (!waitqueue_active(q) || !key.page_match) {
1055 ClearPageWaiters(page);
1056 /*
1057 * It's possible to miss clearing Waiters here, when we woke
1058 * our page waiters, but the hashed waitqueue has waiters for
1059 * other pages on it.
1060 *
1061 * That's okay, it's a rare case. The next waker will clear it.
1062 */
1063 }
1064 spin_unlock_irqrestore(&q->lock, flags);
1065 }
1066
1067 static void wake_up_page(struct page *page, int bit)
1068 {
1069 if (!PageWaiters(page))
1070 return;
1071 wake_up_page_bit(page, bit);
1072 }
1073
1074 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075 struct page *page, int bit_nr, int state, bool lock)
1076 {
1077 struct wait_page_queue wait_page;
1078 wait_queue_entry_t *wait = &wait_page.wait;
1079 int ret = 0;
1080
1081 init_wait(wait);
1082 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083 wait->func = wake_page_function;
1084 wait_page.page = page;
1085 wait_page.bit_nr = bit_nr;
1086
1087 for (;;) {
1088 spin_lock_irq(&q->lock);
1089
1090 if (likely(list_empty(&wait->entry))) {
1091 __add_wait_queue_entry_tail(q, wait);
1092 SetPageWaiters(page);
1093 }
1094
1095 set_current_state(state);
1096
1097 spin_unlock_irq(&q->lock);
1098
1099 if (likely(test_bit(bit_nr, &page->flags))) {
1100 io_schedule();
1101 }
1102
1103 if (lock) {
1104 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105 break;
1106 } else {
1107 if (!test_bit(bit_nr, &page->flags))
1108 break;
1109 }
1110
1111 if (unlikely(signal_pending_state(state, current))) {
1112 ret = -EINTR;
1113 break;
1114 }
1115 }
1116
1117 finish_wait(q, wait);
1118
1119 /*
1120 * A signal could leave PageWaiters set. Clearing it here if
1121 * !waitqueue_active would be possible (by open-coding finish_wait),
1122 * but still fail to catch it in the case of wait hash collision. We
1123 * already can fail to clear wait hash collision cases, so don't
1124 * bother with signals either.
1125 */
1126
1127 return ret;
1128 }
1129
1130 void wait_on_page_bit(struct page *page, int bit_nr)
1131 {
1132 wait_queue_head_t *q = page_waitqueue(page);
1133 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134 }
1135 EXPORT_SYMBOL(wait_on_page_bit);
1136
1137 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138 {
1139 wait_queue_head_t *q = page_waitqueue(page);
1140 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141 }
1142 EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144 /**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152 {
1153 wait_queue_head_t *q = page_waitqueue(page);
1154 unsigned long flags;
1155
1156 spin_lock_irqsave(&q->lock, flags);
1157 __add_wait_queue_entry_tail(q, waiter);
1158 SetPageWaiters(page);
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 }
1161 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163 #ifndef clear_bit_unlock_is_negative_byte
1164
1165 /*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178 {
1179 clear_bit_unlock(nr, mem);
1180 /* smp_mb__after_atomic(); */
1181 return test_bit(PG_waiters, mem);
1182 }
1183
1184 #endif
1185
1186 /**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201 void unlock_page(struct page *page)
1202 {
1203 BUILD_BUG_ON(PG_waiters != 7);
1204 page = compound_head(page);
1205 VM_BUG_ON_PAGE(!PageLocked(page), page);
1206 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207 wake_up_page_bit(page, PG_locked);
1208 }
1209 EXPORT_SYMBOL(unlock_page);
1210
1211 /**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1214 */
1215 void end_page_writeback(struct page *page)
1216 {
1217 /*
1218 * TestClearPageReclaim could be used here but it is an atomic
1219 * operation and overkill in this particular case. Failing to
1220 * shuffle a page marked for immediate reclaim is too mild to
1221 * justify taking an atomic operation penalty at the end of
1222 * ever page writeback.
1223 */
1224 if (PageReclaim(page)) {
1225 ClearPageReclaim(page);
1226 rotate_reclaimable_page(page);
1227 }
1228
1229 if (!test_clear_page_writeback(page))
1230 BUG();
1231
1232 smp_mb__after_atomic();
1233 wake_up_page(page, PG_writeback);
1234 }
1235 EXPORT_SYMBOL(end_page_writeback);
1236
1237 /*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
1241 void page_endio(struct page *page, bool is_write, int err)
1242 {
1243 if (!is_write) {
1244 if (!err) {
1245 SetPageUptodate(page);
1246 } else {
1247 ClearPageUptodate(page);
1248 SetPageError(page);
1249 }
1250 unlock_page(page);
1251 } else {
1252 if (err) {
1253 struct address_space *mapping;
1254
1255 SetPageError(page);
1256 mapping = page_mapping(page);
1257 if (mapping)
1258 mapping_set_error(mapping, err);
1259 }
1260 end_page_writeback(page);
1261 }
1262 }
1263 EXPORT_SYMBOL_GPL(page_endio);
1264
1265 /**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269 void __lock_page(struct page *__page)
1270 {
1271 struct page *page = compound_head(__page);
1272 wait_queue_head_t *q = page_waitqueue(page);
1273 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1274 }
1275 EXPORT_SYMBOL(__lock_page);
1276
1277 int __lock_page_killable(struct page *__page)
1278 {
1279 struct page *page = compound_head(__page);
1280 wait_queue_head_t *q = page_waitqueue(page);
1281 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1282 }
1283 EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
1285 /*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 * mmap_sem has been released (up_read()), unless flags had both
1290 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 * which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297 unsigned int flags)
1298 {
1299 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300 /*
1301 * CAUTION! In this case, mmap_sem is not released
1302 * even though return 0.
1303 */
1304 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305 return 0;
1306
1307 up_read(&mm->mmap_sem);
1308 if (flags & FAULT_FLAG_KILLABLE)
1309 wait_on_page_locked_killable(page);
1310 else
1311 wait_on_page_locked(page);
1312 return 0;
1313 } else {
1314 if (flags & FAULT_FLAG_KILLABLE) {
1315 int ret;
1316
1317 ret = __lock_page_killable(page);
1318 if (ret) {
1319 up_read(&mm->mmap_sem);
1320 return 0;
1321 }
1322 } else
1323 __lock_page(page);
1324 return 1;
1325 }
1326 }
1327
1328 /**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349 pgoff_t page_cache_next_hole(struct address_space *mapping,
1350 pgoff_t index, unsigned long max_scan)
1351 {
1352 unsigned long i;
1353
1354 for (i = 0; i < max_scan; i++) {
1355 struct page *page;
1356
1357 page = radix_tree_lookup(&mapping->page_tree, index);
1358 if (!page || radix_tree_exceptional_entry(page))
1359 break;
1360 index++;
1361 if (index == 0)
1362 break;
1363 }
1364
1365 return index;
1366 }
1367 EXPORT_SYMBOL(page_cache_next_hole);
1368
1369 /**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391 pgoff_t index, unsigned long max_scan)
1392 {
1393 unsigned long i;
1394
1395 for (i = 0; i < max_scan; i++) {
1396 struct page *page;
1397
1398 page = radix_tree_lookup(&mapping->page_tree, index);
1399 if (!page || radix_tree_exceptional_entry(page))
1400 break;
1401 index--;
1402 if (index == ULONG_MAX)
1403 break;
1404 }
1405
1406 return index;
1407 }
1408 EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410 /**
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset. If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424 {
1425 void **pagep;
1426 struct page *head, *page;
1427
1428 rcu_read_lock();
1429 repeat:
1430 page = NULL;
1431 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1432 if (pagep) {
1433 page = radix_tree_deref_slot(pagep);
1434 if (unlikely(!page))
1435 goto out;
1436 if (radix_tree_exception(page)) {
1437 if (radix_tree_deref_retry(page))
1438 goto repeat;
1439 /*
1440 * A shadow entry of a recently evicted page,
1441 * or a swap entry from shmem/tmpfs. Return
1442 * it without attempting to raise page count.
1443 */
1444 goto out;
1445 }
1446
1447 head = compound_head(page);
1448 if (!page_cache_get_speculative(head))
1449 goto repeat;
1450
1451 /* The page was split under us? */
1452 if (compound_head(page) != head) {
1453 put_page(head);
1454 goto repeat;
1455 }
1456
1457 /*
1458 * Has the page moved?
1459 * This is part of the lockless pagecache protocol. See
1460 * include/linux/pagemap.h for details.
1461 */
1462 if (unlikely(page != *pagep)) {
1463 put_page(head);
1464 goto repeat;
1465 }
1466 }
1467 out:
1468 rcu_read_unlock();
1469
1470 return page;
1471 }
1472 EXPORT_SYMBOL(find_get_entry);
1473
1474 /**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset. If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491 {
1492 struct page *page;
1493
1494 repeat:
1495 page = find_get_entry(mapping, offset);
1496 if (page && !radix_tree_exception(page)) {
1497 lock_page(page);
1498 /* Has the page been truncated? */
1499 if (unlikely(page_mapping(page) != mapping)) {
1500 unlock_page(page);
1501 put_page(page);
1502 goto repeat;
1503 }
1504 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505 }
1506 return page;
1507 }
1508 EXPORT_SYMBOL(find_lock_entry);
1509
1510 /**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 * @gfp_mask and added to the page cache and the VM's LRU
1527 * list. The page is returned locked and with an increased
1528 * refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
1534 */
1535 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536 int fgp_flags, gfp_t gfp_mask)
1537 {
1538 struct page *page;
1539
1540 repeat:
1541 page = find_get_entry(mapping, offset);
1542 if (radix_tree_exceptional_entry(page))
1543 page = NULL;
1544 if (!page)
1545 goto no_page;
1546
1547 if (fgp_flags & FGP_LOCK) {
1548 if (fgp_flags & FGP_NOWAIT) {
1549 if (!trylock_page(page)) {
1550 put_page(page);
1551 return NULL;
1552 }
1553 } else {
1554 lock_page(page);
1555 }
1556
1557 /* Has the page been truncated? */
1558 if (unlikely(page->mapping != mapping)) {
1559 unlock_page(page);
1560 put_page(page);
1561 goto repeat;
1562 }
1563 VM_BUG_ON_PAGE(page->index != offset, page);
1564 }
1565
1566 if (page && (fgp_flags & FGP_ACCESSED))
1567 mark_page_accessed(page);
1568
1569 no_page:
1570 if (!page && (fgp_flags & FGP_CREAT)) {
1571 int err;
1572 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573 gfp_mask |= __GFP_WRITE;
1574 if (fgp_flags & FGP_NOFS)
1575 gfp_mask &= ~__GFP_FS;
1576
1577 page = __page_cache_alloc(gfp_mask);
1578 if (!page)
1579 return NULL;
1580
1581 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582 fgp_flags |= FGP_LOCK;
1583
1584 /* Init accessed so avoid atomic mark_page_accessed later */
1585 if (fgp_flags & FGP_ACCESSED)
1586 __SetPageReferenced(page);
1587
1588 err = add_to_page_cache_lru(page, mapping, offset,
1589 gfp_mask & GFP_RECLAIM_MASK);
1590 if (unlikely(err)) {
1591 put_page(page);
1592 page = NULL;
1593 if (err == -EEXIST)
1594 goto repeat;
1595 }
1596 }
1597
1598 return page;
1599 }
1600 EXPORT_SYMBOL(pagecache_get_page);
1601
1602 /**
1603 * find_get_entries - gang pagecache lookup
1604 * @mapping: The address_space to search
1605 * @start: The starting page cache index
1606 * @nr_entries: The maximum number of entries
1607 * @entries: Where the resulting entries are placed
1608 * @indices: The cache indices corresponding to the entries in @entries
1609 *
1610 * find_get_entries() will search for and return a group of up to
1611 * @nr_entries entries in the mapping. The entries are placed at
1612 * @entries. find_get_entries() takes a reference against any actual
1613 * pages it returns.
1614 *
1615 * The search returns a group of mapping-contiguous page cache entries
1616 * with ascending indexes. There may be holes in the indices due to
1617 * not-present pages.
1618 *
1619 * Any shadow entries of evicted pages, or swap entries from
1620 * shmem/tmpfs, are included in the returned array.
1621 *
1622 * find_get_entries() returns the number of pages and shadow entries
1623 * which were found.
1624 */
1625 unsigned find_get_entries(struct address_space *mapping,
1626 pgoff_t start, unsigned int nr_entries,
1627 struct page **entries, pgoff_t *indices)
1628 {
1629 void **slot;
1630 unsigned int ret = 0;
1631 struct radix_tree_iter iter;
1632
1633 if (!nr_entries)
1634 return 0;
1635
1636 rcu_read_lock();
1637 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1638 struct page *head, *page;
1639 repeat:
1640 page = radix_tree_deref_slot(slot);
1641 if (unlikely(!page))
1642 continue;
1643 if (radix_tree_exception(page)) {
1644 if (radix_tree_deref_retry(page)) {
1645 slot = radix_tree_iter_retry(&iter);
1646 continue;
1647 }
1648 /*
1649 * A shadow entry of a recently evicted page, a swap
1650 * entry from shmem/tmpfs or a DAX entry. Return it
1651 * without attempting to raise page count.
1652 */
1653 goto export;
1654 }
1655
1656 head = compound_head(page);
1657 if (!page_cache_get_speculative(head))
1658 goto repeat;
1659
1660 /* The page was split under us? */
1661 if (compound_head(page) != head) {
1662 put_page(head);
1663 goto repeat;
1664 }
1665
1666 /* Has the page moved? */
1667 if (unlikely(page != *slot)) {
1668 put_page(head);
1669 goto repeat;
1670 }
1671 export:
1672 indices[ret] = iter.index;
1673 entries[ret] = page;
1674 if (++ret == nr_entries)
1675 break;
1676 }
1677 rcu_read_unlock();
1678 return ret;
1679 }
1680
1681 /**
1682 * find_get_pages_range - gang pagecache lookup
1683 * @mapping: The address_space to search
1684 * @start: The starting page index
1685 * @end: The final page index (inclusive)
1686 * @nr_pages: The maximum number of pages
1687 * @pages: Where the resulting pages are placed
1688 *
1689 * find_get_pages_range() will search for and return a group of up to @nr_pages
1690 * pages in the mapping starting at index @start and up to index @end
1691 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1692 * a reference against the returned pages.
1693 *
1694 * The search returns a group of mapping-contiguous pages with ascending
1695 * indexes. There may be holes in the indices due to not-present pages.
1696 * We also update @start to index the next page for the traversal.
1697 *
1698 * find_get_pages_range() returns the number of pages which were found. If this
1699 * number is smaller than @nr_pages, the end of specified range has been
1700 * reached.
1701 */
1702 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1703 pgoff_t end, unsigned int nr_pages,
1704 struct page **pages)
1705 {
1706 struct radix_tree_iter iter;
1707 void **slot;
1708 unsigned ret = 0;
1709
1710 if (unlikely(!nr_pages))
1711 return 0;
1712
1713 rcu_read_lock();
1714 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1715 struct page *head, *page;
1716
1717 if (iter.index > end)
1718 break;
1719 repeat:
1720 page = radix_tree_deref_slot(slot);
1721 if (unlikely(!page))
1722 continue;
1723
1724 if (radix_tree_exception(page)) {
1725 if (radix_tree_deref_retry(page)) {
1726 slot = radix_tree_iter_retry(&iter);
1727 continue;
1728 }
1729 /*
1730 * A shadow entry of a recently evicted page,
1731 * or a swap entry from shmem/tmpfs. Skip
1732 * over it.
1733 */
1734 continue;
1735 }
1736
1737 head = compound_head(page);
1738 if (!page_cache_get_speculative(head))
1739 goto repeat;
1740
1741 /* The page was split under us? */
1742 if (compound_head(page) != head) {
1743 put_page(head);
1744 goto repeat;
1745 }
1746
1747 /* Has the page moved? */
1748 if (unlikely(page != *slot)) {
1749 put_page(head);
1750 goto repeat;
1751 }
1752
1753 pages[ret] = page;
1754 if (++ret == nr_pages) {
1755 *start = pages[ret - 1]->index + 1;
1756 goto out;
1757 }
1758 }
1759
1760 /*
1761 * We come here when there is no page beyond @end. We take care to not
1762 * overflow the index @start as it confuses some of the callers. This
1763 * breaks the iteration when there is page at index -1 but that is
1764 * already broken anyway.
1765 */
1766 if (end == (pgoff_t)-1)
1767 *start = (pgoff_t)-1;
1768 else
1769 *start = end + 1;
1770 out:
1771 rcu_read_unlock();
1772
1773 return ret;
1774 }
1775
1776 /**
1777 * find_get_pages_contig - gang contiguous pagecache lookup
1778 * @mapping: The address_space to search
1779 * @index: The starting page index
1780 * @nr_pages: The maximum number of pages
1781 * @pages: Where the resulting pages are placed
1782 *
1783 * find_get_pages_contig() works exactly like find_get_pages(), except
1784 * that the returned number of pages are guaranteed to be contiguous.
1785 *
1786 * find_get_pages_contig() returns the number of pages which were found.
1787 */
1788 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1789 unsigned int nr_pages, struct page **pages)
1790 {
1791 struct radix_tree_iter iter;
1792 void **slot;
1793 unsigned int ret = 0;
1794
1795 if (unlikely(!nr_pages))
1796 return 0;
1797
1798 rcu_read_lock();
1799 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1800 struct page *head, *page;
1801 repeat:
1802 page = radix_tree_deref_slot(slot);
1803 /* The hole, there no reason to continue */
1804 if (unlikely(!page))
1805 break;
1806
1807 if (radix_tree_exception(page)) {
1808 if (radix_tree_deref_retry(page)) {
1809 slot = radix_tree_iter_retry(&iter);
1810 continue;
1811 }
1812 /*
1813 * A shadow entry of a recently evicted page,
1814 * or a swap entry from shmem/tmpfs. Stop
1815 * looking for contiguous pages.
1816 */
1817 break;
1818 }
1819
1820 head = compound_head(page);
1821 if (!page_cache_get_speculative(head))
1822 goto repeat;
1823
1824 /* The page was split under us? */
1825 if (compound_head(page) != head) {
1826 put_page(head);
1827 goto repeat;
1828 }
1829
1830 /* Has the page moved? */
1831 if (unlikely(page != *slot)) {
1832 put_page(head);
1833 goto repeat;
1834 }
1835
1836 /*
1837 * must check mapping and index after taking the ref.
1838 * otherwise we can get both false positives and false
1839 * negatives, which is just confusing to the caller.
1840 */
1841 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1842 put_page(page);
1843 break;
1844 }
1845
1846 pages[ret] = page;
1847 if (++ret == nr_pages)
1848 break;
1849 }
1850 rcu_read_unlock();
1851 return ret;
1852 }
1853 EXPORT_SYMBOL(find_get_pages_contig);
1854
1855 /**
1856 * find_get_pages_range_tag - find and return pages in given range matching @tag
1857 * @mapping: the address_space to search
1858 * @index: the starting page index
1859 * @end: The final page index (inclusive)
1860 * @tag: the tag index
1861 * @nr_pages: the maximum number of pages
1862 * @pages: where the resulting pages are placed
1863 *
1864 * Like find_get_pages, except we only return pages which are tagged with
1865 * @tag. We update @index to index the next page for the traversal.
1866 */
1867 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1868 pgoff_t end, int tag, unsigned int nr_pages,
1869 struct page **pages)
1870 {
1871 struct radix_tree_iter iter;
1872 void **slot;
1873 unsigned ret = 0;
1874
1875 if (unlikely(!nr_pages))
1876 return 0;
1877
1878 rcu_read_lock();
1879 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1880 &iter, *index, tag) {
1881 struct page *head, *page;
1882
1883 if (iter.index > end)
1884 break;
1885 repeat:
1886 page = radix_tree_deref_slot(slot);
1887 if (unlikely(!page))
1888 continue;
1889
1890 if (radix_tree_exception(page)) {
1891 if (radix_tree_deref_retry(page)) {
1892 slot = radix_tree_iter_retry(&iter);
1893 continue;
1894 }
1895 /*
1896 * A shadow entry of a recently evicted page.
1897 *
1898 * Those entries should never be tagged, but
1899 * this tree walk is lockless and the tags are
1900 * looked up in bulk, one radix tree node at a
1901 * time, so there is a sizable window for page
1902 * reclaim to evict a page we saw tagged.
1903 *
1904 * Skip over it.
1905 */
1906 continue;
1907 }
1908
1909 head = compound_head(page);
1910 if (!page_cache_get_speculative(head))
1911 goto repeat;
1912
1913 /* The page was split under us? */
1914 if (compound_head(page) != head) {
1915 put_page(head);
1916 goto repeat;
1917 }
1918
1919 /* Has the page moved? */
1920 if (unlikely(page != *slot)) {
1921 put_page(head);
1922 goto repeat;
1923 }
1924
1925 pages[ret] = page;
1926 if (++ret == nr_pages) {
1927 *index = pages[ret - 1]->index + 1;
1928 goto out;
1929 }
1930 }
1931
1932 /*
1933 * We come here when we got at @end. We take care to not overflow the
1934 * index @index as it confuses some of the callers. This breaks the
1935 * iteration when there is page at index -1 but that is already broken
1936 * anyway.
1937 */
1938 if (end == (pgoff_t)-1)
1939 *index = (pgoff_t)-1;
1940 else
1941 *index = end + 1;
1942 out:
1943 rcu_read_unlock();
1944
1945 return ret;
1946 }
1947 EXPORT_SYMBOL(find_get_pages_range_tag);
1948
1949 /**
1950 * find_get_entries_tag - find and return entries that match @tag
1951 * @mapping: the address_space to search
1952 * @start: the starting page cache index
1953 * @tag: the tag index
1954 * @nr_entries: the maximum number of entries
1955 * @entries: where the resulting entries are placed
1956 * @indices: the cache indices corresponding to the entries in @entries
1957 *
1958 * Like find_get_entries, except we only return entries which are tagged with
1959 * @tag.
1960 */
1961 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1962 int tag, unsigned int nr_entries,
1963 struct page **entries, pgoff_t *indices)
1964 {
1965 void **slot;
1966 unsigned int ret = 0;
1967 struct radix_tree_iter iter;
1968
1969 if (!nr_entries)
1970 return 0;
1971
1972 rcu_read_lock();
1973 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1974 &iter, start, tag) {
1975 struct page *head, *page;
1976 repeat:
1977 page = radix_tree_deref_slot(slot);
1978 if (unlikely(!page))
1979 continue;
1980 if (radix_tree_exception(page)) {
1981 if (radix_tree_deref_retry(page)) {
1982 slot = radix_tree_iter_retry(&iter);
1983 continue;
1984 }
1985
1986 /*
1987 * A shadow entry of a recently evicted page, a swap
1988 * entry from shmem/tmpfs or a DAX entry. Return it
1989 * without attempting to raise page count.
1990 */
1991 goto export;
1992 }
1993
1994 head = compound_head(page);
1995 if (!page_cache_get_speculative(head))
1996 goto repeat;
1997
1998 /* The page was split under us? */
1999 if (compound_head(page) != head) {
2000 put_page(head);
2001 goto repeat;
2002 }
2003
2004 /* Has the page moved? */
2005 if (unlikely(page != *slot)) {
2006 put_page(head);
2007 goto repeat;
2008 }
2009 export:
2010 indices[ret] = iter.index;
2011 entries[ret] = page;
2012 if (++ret == nr_entries)
2013 break;
2014 }
2015 rcu_read_unlock();
2016 return ret;
2017 }
2018 EXPORT_SYMBOL(find_get_entries_tag);
2019
2020 /*
2021 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2022 * a _large_ part of the i/o request. Imagine the worst scenario:
2023 *
2024 * ---R__________________________________________B__________
2025 * ^ reading here ^ bad block(assume 4k)
2026 *
2027 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2028 * => failing the whole request => read(R) => read(R+1) =>
2029 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2030 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2031 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2032 *
2033 * It is going insane. Fix it by quickly scaling down the readahead size.
2034 */
2035 static void shrink_readahead_size_eio(struct file *filp,
2036 struct file_ra_state *ra)
2037 {
2038 ra->ra_pages /= 4;
2039 }
2040
2041 /**
2042 * generic_file_buffered_read - generic file read routine
2043 * @iocb: the iocb to read
2044 * @iter: data destination
2045 * @written: already copied
2046 *
2047 * This is a generic file read routine, and uses the
2048 * mapping->a_ops->readpage() function for the actual low-level stuff.
2049 *
2050 * This is really ugly. But the goto's actually try to clarify some
2051 * of the logic when it comes to error handling etc.
2052 */
2053 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2054 struct iov_iter *iter, ssize_t written)
2055 {
2056 struct file *filp = iocb->ki_filp;
2057 struct address_space *mapping = filp->f_mapping;
2058 struct inode *inode = mapping->host;
2059 struct file_ra_state *ra = &filp->f_ra;
2060 loff_t *ppos = &iocb->ki_pos;
2061 pgoff_t index;
2062 pgoff_t last_index;
2063 pgoff_t prev_index;
2064 unsigned long offset; /* offset into pagecache page */
2065 unsigned int prev_offset;
2066 int error = 0;
2067
2068 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2069 return 0;
2070 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2071
2072 index = *ppos >> PAGE_SHIFT;
2073 prev_index = ra->prev_pos >> PAGE_SHIFT;
2074 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2075 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2076 offset = *ppos & ~PAGE_MASK;
2077
2078 for (;;) {
2079 struct page *page;
2080 pgoff_t end_index;
2081 loff_t isize;
2082 unsigned long nr, ret;
2083
2084 cond_resched();
2085 find_page:
2086 if (fatal_signal_pending(current)) {
2087 error = -EINTR;
2088 goto out;
2089 }
2090
2091 page = find_get_page(mapping, index);
2092 if (!page) {
2093 if (iocb->ki_flags & IOCB_NOWAIT)
2094 goto would_block;
2095 page_cache_sync_readahead(mapping,
2096 ra, filp,
2097 index, last_index - index);
2098 page = find_get_page(mapping, index);
2099 if (unlikely(page == NULL))
2100 goto no_cached_page;
2101 }
2102 if (PageReadahead(page)) {
2103 page_cache_async_readahead(mapping,
2104 ra, filp, page,
2105 index, last_index - index);
2106 }
2107 if (!PageUptodate(page)) {
2108 if (iocb->ki_flags & IOCB_NOWAIT) {
2109 put_page(page);
2110 goto would_block;
2111 }
2112
2113 /*
2114 * See comment in do_read_cache_page on why
2115 * wait_on_page_locked is used to avoid unnecessarily
2116 * serialisations and why it's safe.
2117 */
2118 error = wait_on_page_locked_killable(page);
2119 if (unlikely(error))
2120 goto readpage_error;
2121 if (PageUptodate(page))
2122 goto page_ok;
2123
2124 if (inode->i_blkbits == PAGE_SHIFT ||
2125 !mapping->a_ops->is_partially_uptodate)
2126 goto page_not_up_to_date;
2127 /* pipes can't handle partially uptodate pages */
2128 if (unlikely(iter->type & ITER_PIPE))
2129 goto page_not_up_to_date;
2130 if (!trylock_page(page))
2131 goto page_not_up_to_date;
2132 /* Did it get truncated before we got the lock? */
2133 if (!page->mapping)
2134 goto page_not_up_to_date_locked;
2135 if (!mapping->a_ops->is_partially_uptodate(page,
2136 offset, iter->count))
2137 goto page_not_up_to_date_locked;
2138 unlock_page(page);
2139 }
2140 page_ok:
2141 /*
2142 * i_size must be checked after we know the page is Uptodate.
2143 *
2144 * Checking i_size after the check allows us to calculate
2145 * the correct value for "nr", which means the zero-filled
2146 * part of the page is not copied back to userspace (unless
2147 * another truncate extends the file - this is desired though).
2148 */
2149
2150 isize = i_size_read(inode);
2151 end_index = (isize - 1) >> PAGE_SHIFT;
2152 if (unlikely(!isize || index > end_index)) {
2153 put_page(page);
2154 goto out;
2155 }
2156
2157 /* nr is the maximum number of bytes to copy from this page */
2158 nr = PAGE_SIZE;
2159 if (index == end_index) {
2160 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2161 if (nr <= offset) {
2162 put_page(page);
2163 goto out;
2164 }
2165 }
2166 nr = nr - offset;
2167
2168 /* If users can be writing to this page using arbitrary
2169 * virtual addresses, take care about potential aliasing
2170 * before reading the page on the kernel side.
2171 */
2172 if (mapping_writably_mapped(mapping))
2173 flush_dcache_page(page);
2174
2175 /*
2176 * When a sequential read accesses a page several times,
2177 * only mark it as accessed the first time.
2178 */
2179 if (prev_index != index || offset != prev_offset)
2180 mark_page_accessed(page);
2181 prev_index = index;
2182
2183 /*
2184 * Ok, we have the page, and it's up-to-date, so
2185 * now we can copy it to user space...
2186 */
2187
2188 ret = copy_page_to_iter(page, offset, nr, iter);
2189 offset += ret;
2190 index += offset >> PAGE_SHIFT;
2191 offset &= ~PAGE_MASK;
2192 prev_offset = offset;
2193
2194 put_page(page);
2195 written += ret;
2196 if (!iov_iter_count(iter))
2197 goto out;
2198 if (ret < nr) {
2199 error = -EFAULT;
2200 goto out;
2201 }
2202 continue;
2203
2204 page_not_up_to_date:
2205 /* Get exclusive access to the page ... */
2206 error = lock_page_killable(page);
2207 if (unlikely(error))
2208 goto readpage_error;
2209
2210 page_not_up_to_date_locked:
2211 /* Did it get truncated before we got the lock? */
2212 if (!page->mapping) {
2213 unlock_page(page);
2214 put_page(page);
2215 continue;
2216 }
2217
2218 /* Did somebody else fill it already? */
2219 if (PageUptodate(page)) {
2220 unlock_page(page);
2221 goto page_ok;
2222 }
2223
2224 readpage:
2225 /*
2226 * A previous I/O error may have been due to temporary
2227 * failures, eg. multipath errors.
2228 * PG_error will be set again if readpage fails.
2229 */
2230 ClearPageError(page);
2231 /* Start the actual read. The read will unlock the page. */
2232 error = mapping->a_ops->readpage(filp, page);
2233
2234 if (unlikely(error)) {
2235 if (error == AOP_TRUNCATED_PAGE) {
2236 put_page(page);
2237 error = 0;
2238 goto find_page;
2239 }
2240 goto readpage_error;
2241 }
2242
2243 if (!PageUptodate(page)) {
2244 error = lock_page_killable(page);
2245 if (unlikely(error))
2246 goto readpage_error;
2247 if (!PageUptodate(page)) {
2248 if (page->mapping == NULL) {
2249 /*
2250 * invalidate_mapping_pages got it
2251 */
2252 unlock_page(page);
2253 put_page(page);
2254 goto find_page;
2255 }
2256 unlock_page(page);
2257 shrink_readahead_size_eio(filp, ra);
2258 error = -EIO;
2259 goto readpage_error;
2260 }
2261 unlock_page(page);
2262 }
2263
2264 goto page_ok;
2265
2266 readpage_error:
2267 /* UHHUH! A synchronous read error occurred. Report it */
2268 put_page(page);
2269 goto out;
2270
2271 no_cached_page:
2272 /*
2273 * Ok, it wasn't cached, so we need to create a new
2274 * page..
2275 */
2276 page = page_cache_alloc(mapping);
2277 if (!page) {
2278 error = -ENOMEM;
2279 goto out;
2280 }
2281 error = add_to_page_cache_lru(page, mapping, index,
2282 mapping_gfp_constraint(mapping, GFP_KERNEL));
2283 if (error) {
2284 put_page(page);
2285 if (error == -EEXIST) {
2286 error = 0;
2287 goto find_page;
2288 }
2289 goto out;
2290 }
2291 goto readpage;
2292 }
2293
2294 would_block:
2295 error = -EAGAIN;
2296 out:
2297 ra->prev_pos = prev_index;
2298 ra->prev_pos <<= PAGE_SHIFT;
2299 ra->prev_pos |= prev_offset;
2300
2301 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2302 file_accessed(filp);
2303 return written ? written : error;
2304 }
2305
2306 /**
2307 * generic_file_read_iter - generic filesystem read routine
2308 * @iocb: kernel I/O control block
2309 * @iter: destination for the data read
2310 *
2311 * This is the "read_iter()" routine for all filesystems
2312 * that can use the page cache directly.
2313 */
2314 ssize_t
2315 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2316 {
2317 size_t count = iov_iter_count(iter);
2318 ssize_t retval = 0;
2319
2320 if (!count)
2321 goto out; /* skip atime */
2322
2323 if (iocb->ki_flags & IOCB_DIRECT) {
2324 struct file *file = iocb->ki_filp;
2325 struct address_space *mapping = file->f_mapping;
2326 struct inode *inode = mapping->host;
2327 loff_t size;
2328
2329 size = i_size_read(inode);
2330 if (iocb->ki_flags & IOCB_NOWAIT) {
2331 if (filemap_range_has_page(mapping, iocb->ki_pos,
2332 iocb->ki_pos + count - 1))
2333 return -EAGAIN;
2334 } else {
2335 retval = filemap_write_and_wait_range(mapping,
2336 iocb->ki_pos,
2337 iocb->ki_pos + count - 1);
2338 if (retval < 0)
2339 goto out;
2340 }
2341
2342 file_accessed(file);
2343
2344 retval = mapping->a_ops->direct_IO(iocb, iter);
2345 if (retval >= 0) {
2346 iocb->ki_pos += retval;
2347 count -= retval;
2348 }
2349 iov_iter_revert(iter, count - iov_iter_count(iter));
2350
2351 /*
2352 * Btrfs can have a short DIO read if we encounter
2353 * compressed extents, so if there was an error, or if
2354 * we've already read everything we wanted to, or if
2355 * there was a short read because we hit EOF, go ahead
2356 * and return. Otherwise fallthrough to buffered io for
2357 * the rest of the read. Buffered reads will not work for
2358 * DAX files, so don't bother trying.
2359 */
2360 if (retval < 0 || !count || iocb->ki_pos >= size ||
2361 IS_DAX(inode))
2362 goto out;
2363 }
2364
2365 retval = generic_file_buffered_read(iocb, iter, retval);
2366 out:
2367 return retval;
2368 }
2369 EXPORT_SYMBOL(generic_file_read_iter);
2370
2371 #ifdef CONFIG_MMU
2372 /**
2373 * page_cache_read - adds requested page to the page cache if not already there
2374 * @file: file to read
2375 * @offset: page index
2376 * @gfp_mask: memory allocation flags
2377 *
2378 * This adds the requested page to the page cache if it isn't already there,
2379 * and schedules an I/O to read in its contents from disk.
2380 */
2381 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2382 {
2383 struct address_space *mapping = file->f_mapping;
2384 struct page *page;
2385 int ret;
2386
2387 do {
2388 page = __page_cache_alloc(gfp_mask);
2389 if (!page)
2390 return -ENOMEM;
2391
2392 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2393 if (ret == 0)
2394 ret = mapping->a_ops->readpage(file, page);
2395 else if (ret == -EEXIST)
2396 ret = 0; /* losing race to add is OK */
2397
2398 put_page(page);
2399
2400 } while (ret == AOP_TRUNCATED_PAGE);
2401
2402 return ret;
2403 }
2404
2405 #define MMAP_LOTSAMISS (100)
2406
2407 /*
2408 * Synchronous readahead happens when we don't even find
2409 * a page in the page cache at all.
2410 */
2411 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2412 struct file_ra_state *ra,
2413 struct file *file,
2414 pgoff_t offset)
2415 {
2416 struct address_space *mapping = file->f_mapping;
2417
2418 /* If we don't want any read-ahead, don't bother */
2419 if (vma->vm_flags & VM_RAND_READ)
2420 return;
2421 if (!ra->ra_pages)
2422 return;
2423
2424 if (vma->vm_flags & VM_SEQ_READ) {
2425 page_cache_sync_readahead(mapping, ra, file, offset,
2426 ra->ra_pages);
2427 return;
2428 }
2429
2430 /* Avoid banging the cache line if not needed */
2431 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2432 ra->mmap_miss++;
2433
2434 /*
2435 * Do we miss much more than hit in this file? If so,
2436 * stop bothering with read-ahead. It will only hurt.
2437 */
2438 if (ra->mmap_miss > MMAP_LOTSAMISS)
2439 return;
2440
2441 /*
2442 * mmap read-around
2443 */
2444 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2445 ra->size = ra->ra_pages;
2446 ra->async_size = ra->ra_pages / 4;
2447 ra_submit(ra, mapping, file);
2448 }
2449
2450 /*
2451 * Asynchronous readahead happens when we find the page and PG_readahead,
2452 * so we want to possibly extend the readahead further..
2453 */
2454 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2455 struct file_ra_state *ra,
2456 struct file *file,
2457 struct page *page,
2458 pgoff_t offset)
2459 {
2460 struct address_space *mapping = file->f_mapping;
2461
2462 /* If we don't want any read-ahead, don't bother */
2463 if (vma->vm_flags & VM_RAND_READ)
2464 return;
2465 if (ra->mmap_miss > 0)
2466 ra->mmap_miss--;
2467 if (PageReadahead(page))
2468 page_cache_async_readahead(mapping, ra, file,
2469 page, offset, ra->ra_pages);
2470 }
2471
2472 /**
2473 * filemap_fault - read in file data for page fault handling
2474 * @vmf: struct vm_fault containing details of the fault
2475 *
2476 * filemap_fault() is invoked via the vma operations vector for a
2477 * mapped memory region to read in file data during a page fault.
2478 *
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
2482 *
2483 * vma->vm_mm->mmap_sem must be held on entry.
2484 *
2485 * If our return value has VM_FAULT_RETRY set, it's because
2486 * lock_page_or_retry() returned 0.
2487 * The mmap_sem has usually been released in this case.
2488 * See __lock_page_or_retry() for the exception.
2489 *
2490 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2491 * has not been released.
2492 *
2493 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494 */
2495 int filemap_fault(struct vm_fault *vmf)
2496 {
2497 int error;
2498 struct file *file = vmf->vma->vm_file;
2499 struct address_space *mapping = file->f_mapping;
2500 struct file_ra_state *ra = &file->f_ra;
2501 struct inode *inode = mapping->host;
2502 pgoff_t offset = vmf->pgoff;
2503 pgoff_t max_off;
2504 struct page *page;
2505 int ret = 0;
2506
2507 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2508 if (unlikely(offset >= max_off))
2509 return VM_FAULT_SIGBUS;
2510
2511 /*
2512 * Do we have something in the page cache already?
2513 */
2514 page = find_get_page(mapping, offset);
2515 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2516 /*
2517 * We found the page, so try async readahead before
2518 * waiting for the lock.
2519 */
2520 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2521 } else if (!page) {
2522 /* No page in the page cache at all */
2523 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2524 count_vm_event(PGMAJFAULT);
2525 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2526 ret = VM_FAULT_MAJOR;
2527 retry_find:
2528 page = find_get_page(mapping, offset);
2529 if (!page)
2530 goto no_cached_page;
2531 }
2532
2533 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2534 put_page(page);
2535 return ret | VM_FAULT_RETRY;
2536 }
2537
2538 /* Did it get truncated? */
2539 if (unlikely(page->mapping != mapping)) {
2540 unlock_page(page);
2541 put_page(page);
2542 goto retry_find;
2543 }
2544 VM_BUG_ON_PAGE(page->index != offset, page);
2545
2546 /*
2547 * We have a locked page in the page cache, now we need to check
2548 * that it's up-to-date. If not, it is going to be due to an error.
2549 */
2550 if (unlikely(!PageUptodate(page)))
2551 goto page_not_uptodate;
2552
2553 /*
2554 * Found the page and have a reference on it.
2555 * We must recheck i_size under page lock.
2556 */
2557 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2558 if (unlikely(offset >= max_off)) {
2559 unlock_page(page);
2560 put_page(page);
2561 return VM_FAULT_SIGBUS;
2562 }
2563
2564 vmf->page = page;
2565 return ret | VM_FAULT_LOCKED;
2566
2567 no_cached_page:
2568 /*
2569 * We're only likely to ever get here if MADV_RANDOM is in
2570 * effect.
2571 */
2572 error = page_cache_read(file, offset, vmf->gfp_mask);
2573
2574 /*
2575 * The page we want has now been added to the page cache.
2576 * In the unlikely event that someone removed it in the
2577 * meantime, we'll just come back here and read it again.
2578 */
2579 if (error >= 0)
2580 goto retry_find;
2581
2582 /*
2583 * An error return from page_cache_read can result if the
2584 * system is low on memory, or a problem occurs while trying
2585 * to schedule I/O.
2586 */
2587 if (error == -ENOMEM)
2588 return VM_FAULT_OOM;
2589 return VM_FAULT_SIGBUS;
2590
2591 page_not_uptodate:
2592 /*
2593 * Umm, take care of errors if the page isn't up-to-date.
2594 * Try to re-read it _once_. We do this synchronously,
2595 * because there really aren't any performance issues here
2596 * and we need to check for errors.
2597 */
2598 ClearPageError(page);
2599 error = mapping->a_ops->readpage(file, page);
2600 if (!error) {
2601 wait_on_page_locked(page);
2602 if (!PageUptodate(page))
2603 error = -EIO;
2604 }
2605 put_page(page);
2606
2607 if (!error || error == AOP_TRUNCATED_PAGE)
2608 goto retry_find;
2609
2610 /* Things didn't work out. Return zero to tell the mm layer so. */
2611 shrink_readahead_size_eio(file, ra);
2612 return VM_FAULT_SIGBUS;
2613 }
2614 EXPORT_SYMBOL(filemap_fault);
2615
2616 void filemap_map_pages(struct vm_fault *vmf,
2617 pgoff_t start_pgoff, pgoff_t end_pgoff)
2618 {
2619 struct radix_tree_iter iter;
2620 void **slot;
2621 struct file *file = vmf->vma->vm_file;
2622 struct address_space *mapping = file->f_mapping;
2623 pgoff_t last_pgoff = start_pgoff;
2624 unsigned long max_idx;
2625 struct page *head, *page;
2626
2627 rcu_read_lock();
2628 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2629 start_pgoff) {
2630 if (iter.index > end_pgoff)
2631 break;
2632 repeat:
2633 page = radix_tree_deref_slot(slot);
2634 if (unlikely(!page))
2635 goto next;
2636 if (radix_tree_exception(page)) {
2637 if (radix_tree_deref_retry(page)) {
2638 slot = radix_tree_iter_retry(&iter);
2639 continue;
2640 }
2641 goto next;
2642 }
2643
2644 head = compound_head(page);
2645 if (!page_cache_get_speculative(head))
2646 goto repeat;
2647
2648 /* The page was split under us? */
2649 if (compound_head(page) != head) {
2650 put_page(head);
2651 goto repeat;
2652 }
2653
2654 /* Has the page moved? */
2655 if (unlikely(page != *slot)) {
2656 put_page(head);
2657 goto repeat;
2658 }
2659
2660 if (!PageUptodate(page) ||
2661 PageReadahead(page) ||
2662 PageHWPoison(page))
2663 goto skip;
2664 if (!trylock_page(page))
2665 goto skip;
2666
2667 if (page->mapping != mapping || !PageUptodate(page))
2668 goto unlock;
2669
2670 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2671 if (page->index >= max_idx)
2672 goto unlock;
2673
2674 if (file->f_ra.mmap_miss > 0)
2675 file->f_ra.mmap_miss--;
2676
2677 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2678 if (vmf->pte)
2679 vmf->pte += iter.index - last_pgoff;
2680 last_pgoff = iter.index;
2681 if (alloc_set_pte(vmf, NULL, page))
2682 goto unlock;
2683 unlock_page(page);
2684 goto next;
2685 unlock:
2686 unlock_page(page);
2687 skip:
2688 put_page(page);
2689 next:
2690 /* Huge page is mapped? No need to proceed. */
2691 if (pmd_trans_huge(*vmf->pmd))
2692 break;
2693 if (iter.index == end_pgoff)
2694 break;
2695 }
2696 rcu_read_unlock();
2697 }
2698 EXPORT_SYMBOL(filemap_map_pages);
2699
2700 int filemap_page_mkwrite(struct vm_fault *vmf)
2701 {
2702 struct page *page = vmf->page;
2703 struct inode *inode = file_inode(vmf->vma->vm_file);
2704 int ret = VM_FAULT_LOCKED;
2705
2706 sb_start_pagefault(inode->i_sb);
2707 file_update_time(vmf->vma->vm_file);
2708 lock_page(page);
2709 if (page->mapping != inode->i_mapping) {
2710 unlock_page(page);
2711 ret = VM_FAULT_NOPAGE;
2712 goto out;
2713 }
2714 /*
2715 * We mark the page dirty already here so that when freeze is in
2716 * progress, we are guaranteed that writeback during freezing will
2717 * see the dirty page and writeprotect it again.
2718 */
2719 set_page_dirty(page);
2720 wait_for_stable_page(page);
2721 out:
2722 sb_end_pagefault(inode->i_sb);
2723 return ret;
2724 }
2725 EXPORT_SYMBOL(filemap_page_mkwrite);
2726
2727 const struct vm_operations_struct generic_file_vm_ops = {
2728 .fault = filemap_fault,
2729 .map_pages = filemap_map_pages,
2730 .page_mkwrite = filemap_page_mkwrite,
2731 };
2732
2733 /* This is used for a general mmap of a disk file */
2734
2735 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2736 {
2737 struct address_space *mapping = file->f_mapping;
2738
2739 if (!mapping->a_ops->readpage)
2740 return -ENOEXEC;
2741 file_accessed(file);
2742 vma->vm_ops = &generic_file_vm_ops;
2743 return 0;
2744 }
2745
2746 /*
2747 * This is for filesystems which do not implement ->writepage.
2748 */
2749 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2750 {
2751 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2752 return -EINVAL;
2753 return generic_file_mmap(file, vma);
2754 }
2755 #else
2756 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2757 {
2758 return -ENOSYS;
2759 }
2760 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2761 {
2762 return -ENOSYS;
2763 }
2764 #endif /* CONFIG_MMU */
2765
2766 EXPORT_SYMBOL(generic_file_mmap);
2767 EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769 static struct page *wait_on_page_read(struct page *page)
2770 {
2771 if (!IS_ERR(page)) {
2772 wait_on_page_locked(page);
2773 if (!PageUptodate(page)) {
2774 put_page(page);
2775 page = ERR_PTR(-EIO);
2776 }
2777 }
2778 return page;
2779 }
2780
2781 static struct page *do_read_cache_page(struct address_space *mapping,
2782 pgoff_t index,
2783 int (*filler)(void *, struct page *),
2784 void *data,
2785 gfp_t gfp)
2786 {
2787 struct page *page;
2788 int err;
2789 repeat:
2790 page = find_get_page(mapping, index);
2791 if (!page) {
2792 page = __page_cache_alloc(gfp);
2793 if (!page)
2794 return ERR_PTR(-ENOMEM);
2795 err = add_to_page_cache_lru(page, mapping, index, gfp);
2796 if (unlikely(err)) {
2797 put_page(page);
2798 if (err == -EEXIST)
2799 goto repeat;
2800 /* Presumably ENOMEM for radix tree node */
2801 return ERR_PTR(err);
2802 }
2803
2804 filler:
2805 err = filler(data, page);
2806 if (err < 0) {
2807 put_page(page);
2808 return ERR_PTR(err);
2809 }
2810
2811 page = wait_on_page_read(page);
2812 if (IS_ERR(page))
2813 return page;
2814 goto out;
2815 }
2816 if (PageUptodate(page))
2817 goto out;
2818
2819 /*
2820 * Page is not up to date and may be locked due one of the following
2821 * case a: Page is being filled and the page lock is held
2822 * case b: Read/write error clearing the page uptodate status
2823 * case c: Truncation in progress (page locked)
2824 * case d: Reclaim in progress
2825 *
2826 * Case a, the page will be up to date when the page is unlocked.
2827 * There is no need to serialise on the page lock here as the page
2828 * is pinned so the lock gives no additional protection. Even if the
2829 * the page is truncated, the data is still valid if PageUptodate as
2830 * it's a race vs truncate race.
2831 * Case b, the page will not be up to date
2832 * Case c, the page may be truncated but in itself, the data may still
2833 * be valid after IO completes as it's a read vs truncate race. The
2834 * operation must restart if the page is not uptodate on unlock but
2835 * otherwise serialising on page lock to stabilise the mapping gives
2836 * no additional guarantees to the caller as the page lock is
2837 * released before return.
2838 * Case d, similar to truncation. If reclaim holds the page lock, it
2839 * will be a race with remove_mapping that determines if the mapping
2840 * is valid on unlock but otherwise the data is valid and there is
2841 * no need to serialise with page lock.
2842 *
2843 * As the page lock gives no additional guarantee, we optimistically
2844 * wait on the page to be unlocked and check if it's up to date and
2845 * use the page if it is. Otherwise, the page lock is required to
2846 * distinguish between the different cases. The motivation is that we
2847 * avoid spurious serialisations and wakeups when multiple processes
2848 * wait on the same page for IO to complete.
2849 */
2850 wait_on_page_locked(page);
2851 if (PageUptodate(page))
2852 goto out;
2853
2854 /* Distinguish between all the cases under the safety of the lock */
2855 lock_page(page);
2856
2857 /* Case c or d, restart the operation */
2858 if (!page->mapping) {
2859 unlock_page(page);
2860 put_page(page);
2861 goto repeat;
2862 }
2863
2864 /* Someone else locked and filled the page in a very small window */
2865 if (PageUptodate(page)) {
2866 unlock_page(page);
2867 goto out;
2868 }
2869 goto filler;
2870
2871 out:
2872 mark_page_accessed(page);
2873 return page;
2874 }
2875
2876 /**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping: the page's address_space
2879 * @index: the page index
2880 * @filler: function to perform the read
2881 * @data: first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 */
2888 struct page *read_cache_page(struct address_space *mapping,
2889 pgoff_t index,
2890 int (*filler)(void *, struct page *),
2891 void *data)
2892 {
2893 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2894 }
2895 EXPORT_SYMBOL(read_cache_page);
2896
2897 /**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping: the page's address_space
2900 * @index: the page index
2901 * @gfp: the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
2907 */
2908 struct page *read_cache_page_gfp(struct address_space *mapping,
2909 pgoff_t index,
2910 gfp_t gfp)
2911 {
2912 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915 }
2916 EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918 /*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926 {
2927 struct file *file = iocb->ki_filp;
2928 struct inode *inode = file->f_mapping->host;
2929 unsigned long limit = rlimit(RLIMIT_FSIZE);
2930 loff_t pos;
2931
2932 if (!iov_iter_count(from))
2933 return 0;
2934
2935 /* FIXME: this is for backwards compatibility with 2.4 */
2936 if (iocb->ki_flags & IOCB_APPEND)
2937 iocb->ki_pos = i_size_read(inode);
2938
2939 pos = iocb->ki_pos;
2940
2941 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942 return -EINVAL;
2943
2944 if (limit != RLIM_INFINITY) {
2945 if (iocb->ki_pos >= limit) {
2946 send_sig(SIGXFSZ, current, 0);
2947 return -EFBIG;
2948 }
2949 iov_iter_truncate(from, limit - (unsigned long)pos);
2950 }
2951
2952 /*
2953 * LFS rule
2954 */
2955 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956 !(file->f_flags & O_LARGEFILE))) {
2957 if (pos >= MAX_NON_LFS)
2958 return -EFBIG;
2959 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960 }
2961
2962 /*
2963 * Are we about to exceed the fs block limit ?
2964 *
2965 * If we have written data it becomes a short write. If we have
2966 * exceeded without writing data we send a signal and return EFBIG.
2967 * Linus frestrict idea will clean these up nicely..
2968 */
2969 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970 return -EFBIG;
2971
2972 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973 return iov_iter_count(from);
2974 }
2975 EXPORT_SYMBOL(generic_write_checks);
2976
2977 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978 loff_t pos, unsigned len, unsigned flags,
2979 struct page **pagep, void **fsdata)
2980 {
2981 const struct address_space_operations *aops = mapping->a_ops;
2982
2983 return aops->write_begin(file, mapping, pos, len, flags,
2984 pagep, fsdata);
2985 }
2986 EXPORT_SYMBOL(pagecache_write_begin);
2987
2988 int pagecache_write_end(struct file *file, struct address_space *mapping,
2989 loff_t pos, unsigned len, unsigned copied,
2990 struct page *page, void *fsdata)
2991 {
2992 const struct address_space_operations *aops = mapping->a_ops;
2993
2994 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995 }
2996 EXPORT_SYMBOL(pagecache_write_end);
2997
2998 ssize_t
2999 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000 {
3001 struct file *file = iocb->ki_filp;
3002 struct address_space *mapping = file->f_mapping;
3003 struct inode *inode = mapping->host;
3004 loff_t pos = iocb->ki_pos;
3005 ssize_t written;
3006 size_t write_len;
3007 pgoff_t end;
3008
3009 write_len = iov_iter_count(from);
3010 end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012 if (iocb->ki_flags & IOCB_NOWAIT) {
3013 /* If there are pages to writeback, return */
3014 if (filemap_range_has_page(inode->i_mapping, pos,
3015 pos + iov_iter_count(from)))
3016 return -EAGAIN;
3017 } else {
3018 written = filemap_write_and_wait_range(mapping, pos,
3019 pos + write_len - 1);
3020 if (written)
3021 goto out;
3022 }
3023
3024 /*
3025 * After a write we want buffered reads to be sure to go to disk to get
3026 * the new data. We invalidate clean cached page from the region we're
3027 * about to write. We do this *before* the write so that we can return
3028 * without clobbering -EIOCBQUEUED from ->direct_IO().
3029 */
3030 written = invalidate_inode_pages2_range(mapping,
3031 pos >> PAGE_SHIFT, end);
3032 /*
3033 * If a page can not be invalidated, return 0 to fall back
3034 * to buffered write.
3035 */
3036 if (written) {
3037 if (written == -EBUSY)
3038 return 0;
3039 goto out;
3040 }
3041
3042 written = mapping->a_ops->direct_IO(iocb, from);
3043
3044 /*
3045 * Finally, try again to invalidate clean pages which might have been
3046 * cached by non-direct readahead, or faulted in by get_user_pages()
3047 * if the source of the write was an mmap'ed region of the file
3048 * we're writing. Either one is a pretty crazy thing to do,
3049 * so we don't support it 100%. If this invalidation
3050 * fails, tough, the write still worked...
3051 *
3052 * Most of the time we do not need this since dio_complete() will do
3053 * the invalidation for us. However there are some file systems that
3054 * do not end up with dio_complete() being called, so let's not break
3055 * them by removing it completely
3056 */
3057 if (mapping->nrpages)
3058 invalidate_inode_pages2_range(mapping,
3059 pos >> PAGE_SHIFT, end);
3060
3061 if (written > 0) {
3062 pos += written;
3063 write_len -= written;
3064 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065 i_size_write(inode, pos);
3066 mark_inode_dirty(inode);
3067 }
3068 iocb->ki_pos = pos;
3069 }
3070 iov_iter_revert(from, write_len - iov_iter_count(from));
3071 out:
3072 return written;
3073 }
3074 EXPORT_SYMBOL(generic_file_direct_write);
3075
3076 /*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081 pgoff_t index, unsigned flags)
3082 {
3083 struct page *page;
3084 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086 if (flags & AOP_FLAG_NOFS)
3087 fgp_flags |= FGP_NOFS;
3088
3089 page = pagecache_get_page(mapping, index, fgp_flags,
3090 mapping_gfp_mask(mapping));
3091 if (page)
3092 wait_for_stable_page(page);
3093
3094 return page;
3095 }
3096 EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098 ssize_t generic_perform_write(struct file *file,
3099 struct iov_iter *i, loff_t pos)
3100 {
3101 struct address_space *mapping = file->f_mapping;
3102 const struct address_space_operations *a_ops = mapping->a_ops;
3103 long status = 0;
3104 ssize_t written = 0;
3105 unsigned int flags = 0;
3106
3107 do {
3108 struct page *page;
3109 unsigned long offset; /* Offset into pagecache page */
3110 unsigned long bytes; /* Bytes to write to page */
3111 size_t copied; /* Bytes copied from user */
3112 void *fsdata;
3113
3114 offset = (pos & (PAGE_SIZE - 1));
3115 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116 iov_iter_count(i));
3117
3118 again:
3119 /*
3120 * Bring in the user page that we will copy from _first_.
3121 * Otherwise there's a nasty deadlock on copying from the
3122 * same page as we're writing to, without it being marked
3123 * up-to-date.
3124 *
3125 * Not only is this an optimisation, but it is also required
3126 * to check that the address is actually valid, when atomic
3127 * usercopies are used, below.
3128 */
3129 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130 status = -EFAULT;
3131 break;
3132 }
3133
3134 if (fatal_signal_pending(current)) {
3135 status = -EINTR;
3136 break;
3137 }
3138
3139 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140 &page, &fsdata);
3141 if (unlikely(status < 0))
3142 break;
3143
3144 if (mapping_writably_mapped(mapping))
3145 flush_dcache_page(page);
3146
3147 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148 flush_dcache_page(page);
3149
3150 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151 page, fsdata);
3152 if (unlikely(status < 0))
3153 break;
3154 copied = status;
3155
3156 cond_resched();
3157
3158 iov_iter_advance(i, copied);
3159 if (unlikely(copied == 0)) {
3160 /*
3161 * If we were unable to copy any data at all, we must
3162 * fall back to a single segment length write.
3163 *
3164 * If we didn't fallback here, we could livelock
3165 * because not all segments in the iov can be copied at
3166 * once without a pagefault.
3167 */
3168 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169 iov_iter_single_seg_count(i));
3170 goto again;
3171 }
3172 pos += copied;
3173 written += copied;
3174
3175 balance_dirty_pages_ratelimited(mapping);
3176 } while (iov_iter_count(i));
3177
3178 return written ? written : status;
3179 }
3180 EXPORT_SYMBOL(generic_perform_write);
3181
3182 /**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb: IO state structure (file, offset, etc.)
3185 * @from: iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
3198 */
3199 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200 {
3201 struct file *file = iocb->ki_filp;
3202 struct address_space * mapping = file->f_mapping;
3203 struct inode *inode = mapping->host;
3204 ssize_t written = 0;
3205 ssize_t err;
3206 ssize_t status;
3207
3208 /* We can write back this queue in page reclaim */
3209 current->backing_dev_info = inode_to_bdi(inode);
3210 err = file_remove_privs(file);
3211 if (err)
3212 goto out;
3213
3214 err = file_update_time(file);
3215 if (err)
3216 goto out;
3217
3218 if (iocb->ki_flags & IOCB_DIRECT) {
3219 loff_t pos, endbyte;
3220
3221 written = generic_file_direct_write(iocb, from);
3222 /*
3223 * If the write stopped short of completing, fall back to
3224 * buffered writes. Some filesystems do this for writes to
3225 * holes, for example. For DAX files, a buffered write will
3226 * not succeed (even if it did, DAX does not handle dirty
3227 * page-cache pages correctly).
3228 */
3229 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230 goto out;
3231
3232 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233 /*
3234 * If generic_perform_write() returned a synchronous error
3235 * then we want to return the number of bytes which were
3236 * direct-written, or the error code if that was zero. Note
3237 * that this differs from normal direct-io semantics, which
3238 * will return -EFOO even if some bytes were written.
3239 */
3240 if (unlikely(status < 0)) {
3241 err = status;
3242 goto out;
3243 }
3244 /*
3245 * We need to ensure that the page cache pages are written to
3246 * disk and invalidated to preserve the expected O_DIRECT
3247 * semantics.
3248 */
3249 endbyte = pos + status - 1;
3250 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251 if (err == 0) {
3252 iocb->ki_pos = endbyte + 1;
3253 written += status;
3254 invalidate_mapping_pages(mapping,
3255 pos >> PAGE_SHIFT,
3256 endbyte >> PAGE_SHIFT);
3257 } else {
3258 /*
3259 * We don't know how much we wrote, so just return
3260 * the number of bytes which were direct-written
3261 */
3262 }
3263 } else {
3264 written = generic_perform_write(file, from, iocb->ki_pos);
3265 if (likely(written > 0))
3266 iocb->ki_pos += written;
3267 }
3268 out:
3269 current->backing_dev_info = NULL;
3270 return written ? written : err;
3271 }
3272 EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274 /**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb: IO state structure
3277 * @from: iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
3282 */
3283 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284 {
3285 struct file *file = iocb->ki_filp;
3286 struct inode *inode = file->f_mapping->host;
3287 ssize_t ret;
3288
3289 inode_lock(inode);
3290 ret = generic_write_checks(iocb, from);
3291 if (ret > 0)
3292 ret = __generic_file_write_iter(iocb, from);
3293 inode_unlock(inode);
3294
3295 if (ret > 0)
3296 ret = generic_write_sync(iocb, ret);
3297 return ret;
3298 }
3299 EXPORT_SYMBOL(generic_file_write_iter);
3300
3301 /**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private). If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
3317 */
3318 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319 {
3320 struct address_space * const mapping = page->mapping;
3321
3322 BUG_ON(!PageLocked(page));
3323 if (PageWriteback(page))
3324 return 0;
3325
3326 if (mapping && mapping->a_ops->releasepage)
3327 return mapping->a_ops->releasepage(page, gfp_mask);
3328 return try_to_free_buffers(page);
3329 }
3330
3331 EXPORT_SYMBOL(try_to_release_page);