]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hmm.c
333141b24713a6f7d94e9f0de0a15c63e56de5c0
[mirror_ubuntu-bionic-kernel.git] / mm / hmm.c
1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * Authors: Jérôme Glisse <jglisse@redhat.com>
15 */
16 /*
17 * Refer to include/linux/hmm.h for information about heterogeneous memory
18 * management or HMM for short.
19 */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41 */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51 * struct hmm - HMM per mm struct
52 *
53 * @mm: mm struct this HMM struct is bound to
54 * @lock: lock protecting ranges list
55 * @sequence: we track updates to the CPU page table with a sequence number
56 * @ranges: list of range being snapshotted
57 * @mirrors: list of mirrors for this mm
58 * @mmu_notifier: mmu notifier to track updates to CPU page table
59 * @mirrors_sem: read/write semaphore protecting the mirrors list
60 */
61 struct hmm {
62 struct mm_struct *mm;
63 spinlock_t lock;
64 atomic_t sequence;
65 struct list_head ranges;
66 struct list_head mirrors;
67 struct mmu_notifier mmu_notifier;
68 struct rw_semaphore mirrors_sem;
69 };
70
71 /*
72 * hmm_register - register HMM against an mm (HMM internal)
73 *
74 * @mm: mm struct to attach to
75 *
76 * This is not intended to be used directly by device drivers. It allocates an
77 * HMM struct if mm does not have one, and initializes it.
78 */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81 struct hmm *hmm = READ_ONCE(mm->hmm);
82 bool cleanup = false;
83
84 /*
85 * The hmm struct can only be freed once the mm_struct goes away,
86 * hence we should always have pre-allocated an new hmm struct
87 * above.
88 */
89 if (hmm)
90 return hmm;
91
92 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93 if (!hmm)
94 return NULL;
95 INIT_LIST_HEAD(&hmm->mirrors);
96 init_rwsem(&hmm->mirrors_sem);
97 atomic_set(&hmm->sequence, 0);
98 hmm->mmu_notifier.ops = NULL;
99 INIT_LIST_HEAD(&hmm->ranges);
100 spin_lock_init(&hmm->lock);
101 hmm->mm = mm;
102
103 /*
104 * We should only get here if hold the mmap_sem in write mode ie on
105 * registration of first mirror through hmm_mirror_register()
106 */
107 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109 kfree(hmm);
110 return NULL;
111 }
112
113 spin_lock(&mm->page_table_lock);
114 if (!mm->hmm)
115 mm->hmm = hmm;
116 else
117 cleanup = true;
118 spin_unlock(&mm->page_table_lock);
119
120 if (cleanup) {
121 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122 kfree(hmm);
123 }
124
125 return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130 kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134 enum hmm_update_type action,
135 unsigned long start,
136 unsigned long end)
137 {
138 struct hmm_mirror *mirror;
139 struct hmm_range *range;
140
141 spin_lock(&hmm->lock);
142 list_for_each_entry(range, &hmm->ranges, list) {
143 unsigned long addr, idx, npages;
144
145 if (end < range->start || start >= range->end)
146 continue;
147
148 range->valid = false;
149 addr = max(start, range->start);
150 idx = (addr - range->start) >> PAGE_SHIFT;
151 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153 }
154 spin_unlock(&hmm->lock);
155
156 down_read(&hmm->mirrors_sem);
157 list_for_each_entry(mirror, &hmm->mirrors, list)
158 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159 start, end);
160 up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
164 struct mm_struct *mm,
165 unsigned long start,
166 unsigned long end)
167 {
168 struct hmm *hmm = mm->hmm;
169
170 VM_BUG_ON(!hmm);
171
172 atomic_inc(&hmm->sequence);
173 }
174
175 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
176 struct mm_struct *mm,
177 unsigned long start,
178 unsigned long end)
179 {
180 struct hmm *hmm = mm->hmm;
181
182 VM_BUG_ON(!hmm);
183
184 hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
185 }
186
187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
188 .invalidate_range_start = hmm_invalidate_range_start,
189 .invalidate_range_end = hmm_invalidate_range_end,
190 };
191
192 /*
193 * hmm_mirror_register() - register a mirror against an mm
194 *
195 * @mirror: new mirror struct to register
196 * @mm: mm to register against
197 *
198 * To start mirroring a process address space, the device driver must register
199 * an HMM mirror struct.
200 *
201 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
202 */
203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
204 {
205 /* Sanity check */
206 if (!mm || !mirror || !mirror->ops)
207 return -EINVAL;
208
209 mirror->hmm = hmm_register(mm);
210 if (!mirror->hmm)
211 return -ENOMEM;
212
213 down_write(&mirror->hmm->mirrors_sem);
214 list_add(&mirror->list, &mirror->hmm->mirrors);
215 up_write(&mirror->hmm->mirrors_sem);
216
217 return 0;
218 }
219 EXPORT_SYMBOL(hmm_mirror_register);
220
221 /*
222 * hmm_mirror_unregister() - unregister a mirror
223 *
224 * @mirror: new mirror struct to register
225 *
226 * Stop mirroring a process address space, and cleanup.
227 */
228 void hmm_mirror_unregister(struct hmm_mirror *mirror)
229 {
230 struct hmm *hmm = mirror->hmm;
231
232 down_write(&hmm->mirrors_sem);
233 list_del(&mirror->list);
234 up_write(&hmm->mirrors_sem);
235 }
236 EXPORT_SYMBOL(hmm_mirror_unregister);
237
238 struct hmm_vma_walk {
239 struct hmm_range *range;
240 unsigned long last;
241 bool fault;
242 bool block;
243 bool write;
244 };
245
246 static int hmm_vma_do_fault(struct mm_walk *walk,
247 unsigned long addr,
248 hmm_pfn_t *pfn)
249 {
250 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
251 struct hmm_vma_walk *hmm_vma_walk = walk->private;
252 struct vm_area_struct *vma = walk->vma;
253 int r;
254
255 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
256 flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
257 r = handle_mm_fault(vma, addr, flags);
258 if (r & VM_FAULT_RETRY)
259 return -EBUSY;
260 if (r & VM_FAULT_ERROR) {
261 *pfn = HMM_PFN_ERROR;
262 return -EFAULT;
263 }
264
265 return -EAGAIN;
266 }
267
268 static void hmm_pfns_special(hmm_pfn_t *pfns,
269 unsigned long addr,
270 unsigned long end)
271 {
272 for (; addr < end; addr += PAGE_SIZE, pfns++)
273 *pfns = HMM_PFN_SPECIAL;
274 }
275
276 static int hmm_pfns_bad(unsigned long addr,
277 unsigned long end,
278 struct mm_walk *walk)
279 {
280 struct hmm_vma_walk *hmm_vma_walk = walk->private;
281 struct hmm_range *range = hmm_vma_walk->range;
282 hmm_pfn_t *pfns = range->pfns;
283 unsigned long i;
284
285 i = (addr - range->start) >> PAGE_SHIFT;
286 for (; addr < end; addr += PAGE_SIZE, i++)
287 pfns[i] = HMM_PFN_ERROR;
288
289 return 0;
290 }
291
292 static void hmm_pfns_clear(hmm_pfn_t *pfns,
293 unsigned long addr,
294 unsigned long end)
295 {
296 for (; addr < end; addr += PAGE_SIZE, pfns++)
297 *pfns = 0;
298 }
299
300 static int hmm_vma_walk_hole(unsigned long addr,
301 unsigned long end,
302 struct mm_walk *walk)
303 {
304 struct hmm_vma_walk *hmm_vma_walk = walk->private;
305 struct hmm_range *range = hmm_vma_walk->range;
306 hmm_pfn_t *pfns = range->pfns;
307 unsigned long i;
308
309 hmm_vma_walk->last = addr;
310 i = (addr - range->start) >> PAGE_SHIFT;
311 for (; addr < end; addr += PAGE_SIZE, i++) {
312 pfns[i] = HMM_PFN_EMPTY;
313 if (hmm_vma_walk->fault) {
314 int ret;
315
316 ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
317 if (ret != -EAGAIN)
318 return ret;
319 }
320 }
321
322 return hmm_vma_walk->fault ? -EAGAIN : 0;
323 }
324
325 static int hmm_vma_walk_clear(unsigned long addr,
326 unsigned long end,
327 struct mm_walk *walk)
328 {
329 struct hmm_vma_walk *hmm_vma_walk = walk->private;
330 struct hmm_range *range = hmm_vma_walk->range;
331 hmm_pfn_t *pfns = range->pfns;
332 unsigned long i;
333
334 hmm_vma_walk->last = addr;
335 i = (addr - range->start) >> PAGE_SHIFT;
336 for (; addr < end; addr += PAGE_SIZE, i++) {
337 pfns[i] = 0;
338 if (hmm_vma_walk->fault) {
339 int ret;
340
341 ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
342 if (ret != -EAGAIN)
343 return ret;
344 }
345 }
346
347 return hmm_vma_walk->fault ? -EAGAIN : 0;
348 }
349
350 static int hmm_vma_walk_pmd(pmd_t *pmdp,
351 unsigned long start,
352 unsigned long end,
353 struct mm_walk *walk)
354 {
355 struct hmm_vma_walk *hmm_vma_walk = walk->private;
356 struct hmm_range *range = hmm_vma_walk->range;
357 struct vm_area_struct *vma = walk->vma;
358 hmm_pfn_t *pfns = range->pfns;
359 unsigned long addr = start, i;
360 bool write_fault;
361 hmm_pfn_t flag;
362 pte_t *ptep;
363
364 i = (addr - range->start) >> PAGE_SHIFT;
365 flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
366 write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
367
368 again:
369 if (pmd_none(*pmdp))
370 return hmm_vma_walk_hole(start, end, walk);
371
372 if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
373 return hmm_pfns_bad(start, end, walk);
374
375 if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
376 unsigned long pfn;
377 pmd_t pmd;
378
379 /*
380 * No need to take pmd_lock here, even if some other threads
381 * is splitting the huge pmd we will get that event through
382 * mmu_notifier callback.
383 *
384 * So just read pmd value and check again its a transparent
385 * huge or device mapping one and compute corresponding pfn
386 * values.
387 */
388 pmd = pmd_read_atomic(pmdp);
389 barrier();
390 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
391 goto again;
392 if (pmd_protnone(pmd))
393 return hmm_vma_walk_clear(start, end, walk);
394
395 if (write_fault && !pmd_write(pmd))
396 return hmm_vma_walk_clear(start, end, walk);
397
398 pfn = pmd_pfn(pmd) + pte_index(addr);
399 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
400 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
401 pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
402 return 0;
403 }
404
405 if (pmd_bad(*pmdp))
406 return hmm_pfns_bad(start, end, walk);
407
408 ptep = pte_offset_map(pmdp, addr);
409 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
410 pte_t pte = *ptep;
411
412 pfns[i] = 0;
413
414 if (pte_none(pte)) {
415 pfns[i] = HMM_PFN_EMPTY;
416 if (hmm_vma_walk->fault)
417 goto fault;
418 continue;
419 }
420
421 if (!pte_present(pte)) {
422 swp_entry_t entry;
423
424 if (!non_swap_entry(entry)) {
425 if (hmm_vma_walk->fault)
426 goto fault;
427 continue;
428 }
429
430 entry = pte_to_swp_entry(pte);
431
432 /*
433 * This is a special swap entry, ignore migration, use
434 * device and report anything else as error.
435 */
436 if (is_device_private_entry(entry)) {
437 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
438 if (is_write_device_private_entry(entry)) {
439 pfns[i] |= HMM_PFN_WRITE;
440 } else if (write_fault)
441 goto fault;
442 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
443 pfns[i] |= flag;
444 } else if (is_migration_entry(entry)) {
445 if (hmm_vma_walk->fault) {
446 pte_unmap(ptep);
447 hmm_vma_walk->last = addr;
448 migration_entry_wait(vma->vm_mm,
449 pmdp, addr);
450 return -EAGAIN;
451 }
452 continue;
453 } else {
454 /* Report error for everything else */
455 pfns[i] = HMM_PFN_ERROR;
456 }
457 continue;
458 }
459
460 if (write_fault && !pte_write(pte))
461 goto fault;
462
463 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
464 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
465 continue;
466
467 fault:
468 pte_unmap(ptep);
469 /* Fault all pages in range */
470 return hmm_vma_walk_clear(start, end, walk);
471 }
472 pte_unmap(ptep - 1);
473
474 return 0;
475 }
476
477 /*
478 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
479 * @vma: virtual memory area containing the virtual address range
480 * @range: used to track snapshot validity
481 * @start: range virtual start address (inclusive)
482 * @end: range virtual end address (exclusive)
483 * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
484 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
485 *
486 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
487 * validity is tracked by range struct. See hmm_vma_range_done() for further
488 * information.
489 *
490 * The range struct is initialized here. It tracks the CPU page table, but only
491 * if the function returns success (0), in which case the caller must then call
492 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
493 *
494 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
495 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
496 */
497 int hmm_vma_get_pfns(struct vm_area_struct *vma,
498 struct hmm_range *range,
499 unsigned long start,
500 unsigned long end,
501 hmm_pfn_t *pfns)
502 {
503 struct hmm_vma_walk hmm_vma_walk;
504 struct mm_walk mm_walk;
505 struct hmm *hmm;
506
507 /* FIXME support hugetlb fs */
508 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
509 hmm_pfns_special(pfns, start, end);
510 return -EINVAL;
511 }
512
513 /* Sanity check, this really should not happen ! */
514 if (start < vma->vm_start || start >= vma->vm_end)
515 return -EINVAL;
516 if (end < vma->vm_start || end > vma->vm_end)
517 return -EINVAL;
518
519 hmm = hmm_register(vma->vm_mm);
520 if (!hmm)
521 return -ENOMEM;
522 /* Caller must have registered a mirror, via hmm_mirror_register() ! */
523 if (!hmm->mmu_notifier.ops)
524 return -EINVAL;
525
526 /* Initialize range to track CPU page table update */
527 range->start = start;
528 range->pfns = pfns;
529 range->end = end;
530 spin_lock(&hmm->lock);
531 range->valid = true;
532 list_add_rcu(&range->list, &hmm->ranges);
533 spin_unlock(&hmm->lock);
534
535 hmm_vma_walk.fault = false;
536 hmm_vma_walk.range = range;
537 mm_walk.private = &hmm_vma_walk;
538
539 mm_walk.vma = vma;
540 mm_walk.mm = vma->vm_mm;
541 mm_walk.pte_entry = NULL;
542 mm_walk.test_walk = NULL;
543 mm_walk.hugetlb_entry = NULL;
544 mm_walk.pmd_entry = hmm_vma_walk_pmd;
545 mm_walk.pte_hole = hmm_vma_walk_hole;
546
547 walk_page_range(start, end, &mm_walk);
548 return 0;
549 }
550 EXPORT_SYMBOL(hmm_vma_get_pfns);
551
552 /*
553 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
554 * @vma: virtual memory area containing the virtual address range
555 * @range: range being tracked
556 * Returns: false if range data has been invalidated, true otherwise
557 *
558 * Range struct is used to track updates to the CPU page table after a call to
559 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
560 * using the data, or wants to lock updates to the data it got from those
561 * functions, it must call the hmm_vma_range_done() function, which will then
562 * stop tracking CPU page table updates.
563 *
564 * Note that device driver must still implement general CPU page table update
565 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
566 * the mmu_notifier API directly.
567 *
568 * CPU page table update tracking done through hmm_range is only temporary and
569 * to be used while trying to duplicate CPU page table contents for a range of
570 * virtual addresses.
571 *
572 * There are two ways to use this :
573 * again:
574 * hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
575 * trans = device_build_page_table_update_transaction(pfns);
576 * device_page_table_lock();
577 * if (!hmm_vma_range_done(vma, range)) {
578 * device_page_table_unlock();
579 * goto again;
580 * }
581 * device_commit_transaction(trans);
582 * device_page_table_unlock();
583 *
584 * Or:
585 * hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
586 * device_page_table_lock();
587 * hmm_vma_range_done(vma, range);
588 * device_update_page_table(pfns);
589 * device_page_table_unlock();
590 */
591 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
592 {
593 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
594 struct hmm *hmm;
595
596 if (range->end <= range->start) {
597 BUG();
598 return false;
599 }
600
601 hmm = hmm_register(vma->vm_mm);
602 if (!hmm) {
603 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
604 return false;
605 }
606
607 spin_lock(&hmm->lock);
608 list_del_rcu(&range->list);
609 spin_unlock(&hmm->lock);
610
611 return range->valid;
612 }
613 EXPORT_SYMBOL(hmm_vma_range_done);
614
615 /*
616 * hmm_vma_fault() - try to fault some address in a virtual address range
617 * @vma: virtual memory area containing the virtual address range
618 * @range: use to track pfns array content validity
619 * @start: fault range virtual start address (inclusive)
620 * @end: fault range virtual end address (exclusive)
621 * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
622 * @write: is it a write fault
623 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
624 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
625 *
626 * This is similar to a regular CPU page fault except that it will not trigger
627 * any memory migration if the memory being faulted is not accessible by CPUs.
628 *
629 * On error, for one virtual address in the range, the function will set the
630 * hmm_pfn_t error flag for the corresponding pfn entry.
631 *
632 * Expected use pattern:
633 * retry:
634 * down_read(&mm->mmap_sem);
635 * // Find vma and address device wants to fault, initialize hmm_pfn_t
636 * // array accordingly
637 * ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
638 * switch (ret) {
639 * case -EAGAIN:
640 * hmm_vma_range_done(vma, range);
641 * // You might want to rate limit or yield to play nicely, you may
642 * // also commit any valid pfn in the array assuming that you are
643 * // getting true from hmm_vma_range_monitor_end()
644 * goto retry;
645 * case 0:
646 * break;
647 * default:
648 * // Handle error !
649 * up_read(&mm->mmap_sem)
650 * return;
651 * }
652 * // Take device driver lock that serialize device page table update
653 * driver_lock_device_page_table_update();
654 * hmm_vma_range_done(vma, range);
655 * // Commit pfns we got from hmm_vma_fault()
656 * driver_unlock_device_page_table_update();
657 * up_read(&mm->mmap_sem)
658 *
659 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
660 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
661 *
662 * YOU HAVE BEEN WARNED !
663 */
664 int hmm_vma_fault(struct vm_area_struct *vma,
665 struct hmm_range *range,
666 unsigned long start,
667 unsigned long end,
668 hmm_pfn_t *pfns,
669 bool write,
670 bool block)
671 {
672 struct hmm_vma_walk hmm_vma_walk;
673 struct mm_walk mm_walk;
674 struct hmm *hmm;
675 int ret;
676
677 /* Sanity check, this really should not happen ! */
678 if (start < vma->vm_start || start >= vma->vm_end)
679 return -EINVAL;
680 if (end < vma->vm_start || end > vma->vm_end)
681 return -EINVAL;
682
683 hmm = hmm_register(vma->vm_mm);
684 if (!hmm) {
685 hmm_pfns_clear(pfns, start, end);
686 return -ENOMEM;
687 }
688 /* Caller must have registered a mirror using hmm_mirror_register() */
689 if (!hmm->mmu_notifier.ops)
690 return -EINVAL;
691
692 /* Initialize range to track CPU page table update */
693 range->start = start;
694 range->pfns = pfns;
695 range->end = end;
696 spin_lock(&hmm->lock);
697 range->valid = true;
698 list_add_rcu(&range->list, &hmm->ranges);
699 spin_unlock(&hmm->lock);
700
701 /* FIXME support hugetlb fs */
702 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
703 hmm_pfns_special(pfns, start, end);
704 return 0;
705 }
706
707 hmm_vma_walk.fault = true;
708 hmm_vma_walk.write = write;
709 hmm_vma_walk.block = block;
710 hmm_vma_walk.range = range;
711 mm_walk.private = &hmm_vma_walk;
712 hmm_vma_walk.last = range->start;
713
714 mm_walk.vma = vma;
715 mm_walk.mm = vma->vm_mm;
716 mm_walk.pte_entry = NULL;
717 mm_walk.test_walk = NULL;
718 mm_walk.hugetlb_entry = NULL;
719 mm_walk.pmd_entry = hmm_vma_walk_pmd;
720 mm_walk.pte_hole = hmm_vma_walk_hole;
721
722 do {
723 ret = walk_page_range(start, end, &mm_walk);
724 start = hmm_vma_walk.last;
725 } while (ret == -EAGAIN);
726
727 if (ret) {
728 unsigned long i;
729
730 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
731 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
732 hmm_vma_range_done(vma, range);
733 }
734 return ret;
735 }
736 EXPORT_SYMBOL(hmm_vma_fault);
737 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
738
739
740 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
741 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
742 unsigned long addr)
743 {
744 struct page *page;
745
746 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
747 if (!page)
748 return NULL;
749 lock_page(page);
750 return page;
751 }
752 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
753
754
755 static void hmm_devmem_ref_release(struct percpu_ref *ref)
756 {
757 struct hmm_devmem *devmem;
758
759 devmem = container_of(ref, struct hmm_devmem, ref);
760 complete(&devmem->completion);
761 }
762
763 static void hmm_devmem_ref_exit(void *data)
764 {
765 struct percpu_ref *ref = data;
766 struct hmm_devmem *devmem;
767
768 devmem = container_of(ref, struct hmm_devmem, ref);
769 percpu_ref_exit(ref);
770 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
771 }
772
773 static void hmm_devmem_ref_kill(void *data)
774 {
775 struct percpu_ref *ref = data;
776 struct hmm_devmem *devmem;
777
778 devmem = container_of(ref, struct hmm_devmem, ref);
779 percpu_ref_kill(ref);
780 wait_for_completion(&devmem->completion);
781 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
782 }
783
784 static int hmm_devmem_fault(struct vm_area_struct *vma,
785 unsigned long addr,
786 const struct page *page,
787 unsigned int flags,
788 pmd_t *pmdp)
789 {
790 struct hmm_devmem *devmem = page->pgmap->data;
791
792 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
793 }
794
795 static void hmm_devmem_free(struct page *page, void *data)
796 {
797 struct hmm_devmem *devmem = data;
798
799 page->mapping = NULL;
800
801 devmem->ops->free(devmem, page);
802 }
803
804 static DEFINE_MUTEX(hmm_devmem_lock);
805 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
806
807 static void hmm_devmem_radix_release(struct resource *resource)
808 {
809 resource_size_t key, align_start, align_size;
810
811 align_start = resource->start & ~(PA_SECTION_SIZE - 1);
812 align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
813
814 mutex_lock(&hmm_devmem_lock);
815 for (key = resource->start;
816 key <= resource->end;
817 key += PA_SECTION_SIZE)
818 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
819 mutex_unlock(&hmm_devmem_lock);
820 }
821
822 static void hmm_devmem_release(struct device *dev, void *data)
823 {
824 struct hmm_devmem *devmem = data;
825 struct resource *resource = devmem->resource;
826 unsigned long start_pfn, npages;
827 struct zone *zone;
828 struct page *page;
829
830 if (percpu_ref_tryget_live(&devmem->ref)) {
831 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
832 percpu_ref_put(&devmem->ref);
833 }
834
835 /* pages are dead and unused, undo the arch mapping */
836 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
837 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
838
839 page = pfn_to_page(start_pfn);
840 zone = page_zone(page);
841
842 mem_hotplug_begin();
843 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
844 __remove_pages(zone, start_pfn, npages);
845 else
846 arch_remove_memory(start_pfn << PAGE_SHIFT,
847 npages << PAGE_SHIFT);
848 mem_hotplug_done();
849
850 hmm_devmem_radix_release(resource);
851 }
852
853 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
854 {
855 WARN_ON_ONCE(!rcu_read_lock_held());
856
857 return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
858 }
859
860 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
861 {
862 resource_size_t key, align_start, align_size, align_end;
863 struct device *device = devmem->device;
864 int ret, nid, is_ram;
865 unsigned long pfn;
866
867 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
868 align_size = ALIGN(devmem->resource->start +
869 resource_size(devmem->resource),
870 PA_SECTION_SIZE) - align_start;
871
872 is_ram = region_intersects(align_start, align_size,
873 IORESOURCE_SYSTEM_RAM,
874 IORES_DESC_NONE);
875 if (is_ram == REGION_MIXED) {
876 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
877 __func__, devmem->resource);
878 return -ENXIO;
879 }
880 if (is_ram == REGION_INTERSECTS)
881 return -ENXIO;
882
883 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
884 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
885 else
886 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
887
888 devmem->pagemap.res = devmem->resource;
889 devmem->pagemap.page_fault = hmm_devmem_fault;
890 devmem->pagemap.page_free = hmm_devmem_free;
891 devmem->pagemap.dev = devmem->device;
892 devmem->pagemap.ref = &devmem->ref;
893 devmem->pagemap.data = devmem;
894
895 mutex_lock(&hmm_devmem_lock);
896 align_end = align_start + align_size - 1;
897 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
898 struct hmm_devmem *dup;
899
900 rcu_read_lock();
901 dup = hmm_devmem_find(key);
902 rcu_read_unlock();
903 if (dup) {
904 dev_err(device, "%s: collides with mapping for %s\n",
905 __func__, dev_name(dup->device));
906 mutex_unlock(&hmm_devmem_lock);
907 ret = -EBUSY;
908 goto error;
909 }
910 ret = radix_tree_insert(&hmm_devmem_radix,
911 key >> PA_SECTION_SHIFT,
912 devmem);
913 if (ret) {
914 dev_err(device, "%s: failed: %d\n", __func__, ret);
915 mutex_unlock(&hmm_devmem_lock);
916 goto error_radix;
917 }
918 }
919 mutex_unlock(&hmm_devmem_lock);
920
921 nid = dev_to_node(device);
922 if (nid < 0)
923 nid = numa_mem_id();
924
925 mem_hotplug_begin();
926 /*
927 * For device private memory we call add_pages() as we only need to
928 * allocate and initialize struct page for the device memory. More-
929 * over the device memory is un-accessible thus we do not want to
930 * create a linear mapping for the memory like arch_add_memory()
931 * would do.
932 *
933 * For device public memory, which is accesible by the CPU, we do
934 * want the linear mapping and thus use arch_add_memory().
935 */
936 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
937 ret = arch_add_memory(nid, align_start, align_size, false);
938 else
939 ret = add_pages(nid, align_start >> PAGE_SHIFT,
940 align_size >> PAGE_SHIFT, false);
941 if (ret) {
942 mem_hotplug_done();
943 goto error_add_memory;
944 }
945 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
946 align_start >> PAGE_SHIFT,
947 align_size >> PAGE_SHIFT);
948 mem_hotplug_done();
949
950 for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
951 struct page *page = pfn_to_page(pfn);
952
953 page->pgmap = &devmem->pagemap;
954 }
955 return 0;
956
957 error_add_memory:
958 untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
959 error_radix:
960 hmm_devmem_radix_release(devmem->resource);
961 error:
962 return ret;
963 }
964
965 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
966 {
967 struct hmm_devmem *devmem = data;
968
969 return devmem->resource == match_data;
970 }
971
972 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
973 {
974 devres_release(devmem->device, &hmm_devmem_release,
975 &hmm_devmem_match, devmem->resource);
976 }
977
978 /*
979 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
980 *
981 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
982 * @device: device struct to bind the resource too
983 * @size: size in bytes of the device memory to add
984 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
985 *
986 * This function first finds an empty range of physical address big enough to
987 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
988 * in turn allocates struct pages. It does not do anything beyond that; all
989 * events affecting the memory will go through the various callbacks provided
990 * by hmm_devmem_ops struct.
991 *
992 * Device driver should call this function during device initialization and
993 * is then responsible of memory management. HMM only provides helpers.
994 */
995 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
996 struct device *device,
997 unsigned long size)
998 {
999 struct hmm_devmem *devmem;
1000 resource_size_t addr;
1001 int ret;
1002
1003 static_branch_enable(&device_private_key);
1004
1005 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1006 GFP_KERNEL, dev_to_node(device));
1007 if (!devmem)
1008 return ERR_PTR(-ENOMEM);
1009
1010 init_completion(&devmem->completion);
1011 devmem->pfn_first = -1UL;
1012 devmem->pfn_last = -1UL;
1013 devmem->resource = NULL;
1014 devmem->device = device;
1015 devmem->ops = ops;
1016
1017 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1018 0, GFP_KERNEL);
1019 if (ret)
1020 goto error_percpu_ref;
1021
1022 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1023 if (ret)
1024 goto error_devm_add_action;
1025
1026 size = ALIGN(size, PA_SECTION_SIZE);
1027 addr = min((unsigned long)iomem_resource.end,
1028 (1UL << MAX_PHYSMEM_BITS) - 1);
1029 addr = addr - size + 1UL;
1030
1031 /*
1032 * FIXME add a new helper to quickly walk resource tree and find free
1033 * range
1034 *
1035 * FIXME what about ioport_resource resource ?
1036 */
1037 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1038 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1039 if (ret != REGION_DISJOINT)
1040 continue;
1041
1042 devmem->resource = devm_request_mem_region(device, addr, size,
1043 dev_name(device));
1044 if (!devmem->resource) {
1045 ret = -ENOMEM;
1046 goto error_no_resource;
1047 }
1048 break;
1049 }
1050 if (!devmem->resource) {
1051 ret = -ERANGE;
1052 goto error_no_resource;
1053 }
1054
1055 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1056 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1057 devmem->pfn_last = devmem->pfn_first +
1058 (resource_size(devmem->resource) >> PAGE_SHIFT);
1059
1060 ret = hmm_devmem_pages_create(devmem);
1061 if (ret)
1062 goto error_pages;
1063
1064 devres_add(device, devmem);
1065
1066 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1067 if (ret) {
1068 hmm_devmem_remove(devmem);
1069 return ERR_PTR(ret);
1070 }
1071
1072 return devmem;
1073
1074 error_pages:
1075 devm_release_mem_region(device, devmem->resource->start,
1076 resource_size(devmem->resource));
1077 error_no_resource:
1078 error_devm_add_action:
1079 hmm_devmem_ref_kill(&devmem->ref);
1080 hmm_devmem_ref_exit(&devmem->ref);
1081 error_percpu_ref:
1082 devres_free(devmem);
1083 return ERR_PTR(ret);
1084 }
1085 EXPORT_SYMBOL(hmm_devmem_add);
1086
1087 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1088 struct device *device,
1089 struct resource *res)
1090 {
1091 struct hmm_devmem *devmem;
1092 int ret;
1093
1094 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1095 return ERR_PTR(-EINVAL);
1096
1097 static_branch_enable(&device_private_key);
1098
1099 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1100 GFP_KERNEL, dev_to_node(device));
1101 if (!devmem)
1102 return ERR_PTR(-ENOMEM);
1103
1104 init_completion(&devmem->completion);
1105 devmem->pfn_first = -1UL;
1106 devmem->pfn_last = -1UL;
1107 devmem->resource = res;
1108 devmem->device = device;
1109 devmem->ops = ops;
1110
1111 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1112 0, GFP_KERNEL);
1113 if (ret)
1114 goto error_percpu_ref;
1115
1116 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1117 if (ret)
1118 goto error_devm_add_action;
1119
1120
1121 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1122 devmem->pfn_last = devmem->pfn_first +
1123 (resource_size(devmem->resource) >> PAGE_SHIFT);
1124
1125 ret = hmm_devmem_pages_create(devmem);
1126 if (ret)
1127 goto error_devm_add_action;
1128
1129 devres_add(device, devmem);
1130
1131 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1132 if (ret) {
1133 hmm_devmem_remove(devmem);
1134 return ERR_PTR(ret);
1135 }
1136
1137 return devmem;
1138
1139 error_devm_add_action:
1140 hmm_devmem_ref_kill(&devmem->ref);
1141 hmm_devmem_ref_exit(&devmem->ref);
1142 error_percpu_ref:
1143 devres_free(devmem);
1144 return ERR_PTR(ret);
1145 }
1146 EXPORT_SYMBOL(hmm_devmem_add_resource);
1147
1148 /*
1149 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1150 *
1151 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1152 *
1153 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1154 * of the device driver. It will free struct page and remove the resource that
1155 * reserved the physical address range for this device memory.
1156 */
1157 void hmm_devmem_remove(struct hmm_devmem *devmem)
1158 {
1159 resource_size_t start, size;
1160 struct device *device;
1161 bool cdm = false;
1162
1163 if (!devmem)
1164 return;
1165
1166 device = devmem->device;
1167 start = devmem->resource->start;
1168 size = resource_size(devmem->resource);
1169
1170 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1171 hmm_devmem_ref_kill(&devmem->ref);
1172 hmm_devmem_ref_exit(&devmem->ref);
1173 hmm_devmem_pages_remove(devmem);
1174
1175 if (!cdm)
1176 devm_release_mem_region(device, start, size);
1177 }
1178 EXPORT_SYMBOL(hmm_devmem_remove);
1179
1180 /*
1181 * A device driver that wants to handle multiple devices memory through a
1182 * single fake device can use hmm_device to do so. This is purely a helper
1183 * and it is not needed to make use of any HMM functionality.
1184 */
1185 #define HMM_DEVICE_MAX 256
1186
1187 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1188 static DEFINE_SPINLOCK(hmm_device_lock);
1189 static struct class *hmm_device_class;
1190 static dev_t hmm_device_devt;
1191
1192 static void hmm_device_release(struct device *device)
1193 {
1194 struct hmm_device *hmm_device;
1195
1196 hmm_device = container_of(device, struct hmm_device, device);
1197 spin_lock(&hmm_device_lock);
1198 clear_bit(hmm_device->minor, hmm_device_mask);
1199 spin_unlock(&hmm_device_lock);
1200
1201 kfree(hmm_device);
1202 }
1203
1204 struct hmm_device *hmm_device_new(void *drvdata)
1205 {
1206 struct hmm_device *hmm_device;
1207
1208 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1209 if (!hmm_device)
1210 return ERR_PTR(-ENOMEM);
1211
1212 spin_lock(&hmm_device_lock);
1213 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1214 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1215 spin_unlock(&hmm_device_lock);
1216 kfree(hmm_device);
1217 return ERR_PTR(-EBUSY);
1218 }
1219 set_bit(hmm_device->minor, hmm_device_mask);
1220 spin_unlock(&hmm_device_lock);
1221
1222 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1223 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1224 hmm_device->minor);
1225 hmm_device->device.release = hmm_device_release;
1226 dev_set_drvdata(&hmm_device->device, drvdata);
1227 hmm_device->device.class = hmm_device_class;
1228 device_initialize(&hmm_device->device);
1229
1230 return hmm_device;
1231 }
1232 EXPORT_SYMBOL(hmm_device_new);
1233
1234 void hmm_device_put(struct hmm_device *hmm_device)
1235 {
1236 put_device(&hmm_device->device);
1237 }
1238 EXPORT_SYMBOL(hmm_device_put);
1239
1240 static int __init hmm_init(void)
1241 {
1242 int ret;
1243
1244 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1245 HMM_DEVICE_MAX,
1246 "hmm_device");
1247 if (ret)
1248 return ret;
1249
1250 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1251 if (IS_ERR(hmm_device_class)) {
1252 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1253 return PTR_ERR(hmm_device_class);
1254 }
1255 return 0;
1256 }
1257
1258 device_initcall(hmm_init);
1259 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */