]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
drm/radeon: prefer lower reference dividers
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 1;
116 #else
117 2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122 randomize_va_space = 0;
123 return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135 static int __init init_zero_pfn(void)
136 {
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
153 }
154 }
155 current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
200 }
201
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
204
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
208
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
217 return true;
218 }
219
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 struct mmu_gather_batch *batch;
255
256 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb);
258 #endif
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
278 {
279 struct mmu_gather_batch *batch, *next;
280
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
302 */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 struct mmu_gather_batch *batch;
306
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
309
310 batch = tlb->active;
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
320 }
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323 return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331 * See the comment near struct mmu_table_batch.
332 */
333
334 /*
335 * If we want tlb_remove_table() to imply TLB invalidates.
336 */
337 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
338 {
339 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
340 /*
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
344 */
345 tlb_flush_mmu_tlbonly(tlb);
346 #endif
347 }
348
349 static void tlb_remove_table_smp_sync(void *arg)
350 {
351 /* Simply deliver the interrupt */
352 }
353
354 static void tlb_remove_table_one(void *table)
355 {
356 /*
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
359 *
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
362 */
363 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 __tlb_remove_table(table);
365 }
366
367 static void tlb_remove_table_rcu(struct rcu_head *head)
368 {
369 struct mmu_table_batch *batch;
370 int i;
371
372 batch = container_of(head, struct mmu_table_batch, rcu);
373
374 for (i = 0; i < batch->nr; i++)
375 __tlb_remove_table(batch->tables[i]);
376
377 free_page((unsigned long)batch);
378 }
379
380 void tlb_table_flush(struct mmu_gather *tlb)
381 {
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 if (*batch) {
385 tlb_table_invalidate(tlb);
386 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 *batch = NULL;
388 }
389 }
390
391 void tlb_remove_table(struct mmu_gather *tlb, void *table)
392 {
393 struct mmu_table_batch **batch = &tlb->batch;
394
395 if (*batch == NULL) {
396 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 if (*batch == NULL) {
398 tlb_table_invalidate(tlb);
399 tlb_remove_table_one(table);
400 return;
401 }
402 (*batch)->nr = 0;
403 }
404
405 (*batch)->tables[(*batch)->nr++] = table;
406 if ((*batch)->nr == MAX_TABLE_BATCH)
407 tlb_table_flush(tlb);
408 }
409
410 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
411
412 /* tlb_gather_mmu
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
416 */
417 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 unsigned long start, unsigned long end)
419 {
420 arch_tlb_gather_mmu(tlb, mm, start, end);
421 inc_tlb_flush_pending(tlb->mm);
422 }
423
424 void tlb_finish_mmu(struct mmu_gather *tlb,
425 unsigned long start, unsigned long end)
426 {
427 /*
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
433 */
434 bool force = mm_tlb_flush_nested(tlb->mm);
435
436 arch_tlb_finish_mmu(tlb, start, end, force);
437 dec_tlb_flush_pending(tlb->mm);
438 }
439
440 /*
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
443 */
444 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 unsigned long addr)
446 {
447 pgtable_t token = pmd_pgtable(*pmd);
448 pmd_clear(pmd);
449 pte_free_tlb(tlb, token, addr);
450 mm_dec_nr_ptes(tlb->mm);
451 }
452
453 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
456 {
457 pmd_t *pmd;
458 unsigned long next;
459 unsigned long start;
460
461 start = addr;
462 pmd = pmd_offset(pud, addr);
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(pmd))
466 continue;
467 free_pte_range(tlb, pmd, addr);
468 } while (pmd++, addr = next, addr != end);
469
470 start &= PUD_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PUD_MASK;
475 if (!ceiling)
476 return;
477 }
478 if (end - 1 > ceiling - 1)
479 return;
480
481 pmd = pmd_offset(pud, start);
482 pud_clear(pud);
483 pmd_free_tlb(tlb, pmd, start);
484 mm_dec_nr_pmds(tlb->mm);
485 }
486
487 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
488 unsigned long addr, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
490 {
491 pud_t *pud;
492 unsigned long next;
493 unsigned long start;
494
495 start = addr;
496 pud = pud_offset(p4d, addr);
497 do {
498 next = pud_addr_end(addr, end);
499 if (pud_none_or_clear_bad(pud))
500 continue;
501 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
502 } while (pud++, addr = next, addr != end);
503
504 start &= P4D_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= P4D_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
514
515 pud = pud_offset(p4d, start);
516 p4d_clear(p4d);
517 pud_free_tlb(tlb, pud, start);
518 mm_dec_nr_puds(tlb->mm);
519 }
520
521 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
522 unsigned long addr, unsigned long end,
523 unsigned long floor, unsigned long ceiling)
524 {
525 p4d_t *p4d;
526 unsigned long next;
527 unsigned long start;
528
529 start = addr;
530 p4d = p4d_offset(pgd, addr);
531 do {
532 next = p4d_addr_end(addr, end);
533 if (p4d_none_or_clear_bad(p4d))
534 continue;
535 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
536 } while (p4d++, addr = next, addr != end);
537
538 start &= PGDIR_MASK;
539 if (start < floor)
540 return;
541 if (ceiling) {
542 ceiling &= PGDIR_MASK;
543 if (!ceiling)
544 return;
545 }
546 if (end - 1 > ceiling - 1)
547 return;
548
549 p4d = p4d_offset(pgd, start);
550 pgd_clear(pgd);
551 p4d_free_tlb(tlb, p4d, start);
552 }
553
554 /*
555 * This function frees user-level page tables of a process.
556 */
557 void free_pgd_range(struct mmu_gather *tlb,
558 unsigned long addr, unsigned long end,
559 unsigned long floor, unsigned long ceiling)
560 {
561 pgd_t *pgd;
562 unsigned long next;
563
564 /*
565 * The next few lines have given us lots of grief...
566 *
567 * Why are we testing PMD* at this top level? Because often
568 * there will be no work to do at all, and we'd prefer not to
569 * go all the way down to the bottom just to discover that.
570 *
571 * Why all these "- 1"s? Because 0 represents both the bottom
572 * of the address space and the top of it (using -1 for the
573 * top wouldn't help much: the masks would do the wrong thing).
574 * The rule is that addr 0 and floor 0 refer to the bottom of
575 * the address space, but end 0 and ceiling 0 refer to the top
576 * Comparisons need to use "end - 1" and "ceiling - 1" (though
577 * that end 0 case should be mythical).
578 *
579 * Wherever addr is brought up or ceiling brought down, we must
580 * be careful to reject "the opposite 0" before it confuses the
581 * subsequent tests. But what about where end is brought down
582 * by PMD_SIZE below? no, end can't go down to 0 there.
583 *
584 * Whereas we round start (addr) and ceiling down, by different
585 * masks at different levels, in order to test whether a table
586 * now has no other vmas using it, so can be freed, we don't
587 * bother to round floor or end up - the tests don't need that.
588 */
589
590 addr &= PMD_MASK;
591 if (addr < floor) {
592 addr += PMD_SIZE;
593 if (!addr)
594 return;
595 }
596 if (ceiling) {
597 ceiling &= PMD_MASK;
598 if (!ceiling)
599 return;
600 }
601 if (end - 1 > ceiling - 1)
602 end -= PMD_SIZE;
603 if (addr > end - 1)
604 return;
605 /*
606 * We add page table cache pages with PAGE_SIZE,
607 * (see pte_free_tlb()), flush the tlb if we need
608 */
609 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
610 pgd = pgd_offset(tlb->mm, addr);
611 do {
612 next = pgd_addr_end(addr, end);
613 if (pgd_none_or_clear_bad(pgd))
614 continue;
615 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
616 } while (pgd++, addr = next, addr != end);
617 }
618
619 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
620 unsigned long floor, unsigned long ceiling)
621 {
622 while (vma) {
623 struct vm_area_struct *next = vma->vm_next;
624 unsigned long addr = vma->vm_start;
625
626 /*
627 * Hide vma from rmap and truncate_pagecache before freeing
628 * pgtables
629 */
630 unlink_anon_vmas(vma);
631 unlink_file_vma(vma);
632
633 if (is_vm_hugetlb_page(vma)) {
634 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
635 floor, next ? next->vm_start : ceiling);
636 } else {
637 /*
638 * Optimization: gather nearby vmas into one call down
639 */
640 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
641 && !is_vm_hugetlb_page(next)) {
642 vma = next;
643 next = vma->vm_next;
644 unlink_anon_vmas(vma);
645 unlink_file_vma(vma);
646 }
647 free_pgd_range(tlb, addr, vma->vm_end,
648 floor, next ? next->vm_start : ceiling);
649 }
650 vma = next;
651 }
652 }
653
654 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
655 {
656 spinlock_t *ptl;
657 pgtable_t new = pte_alloc_one(mm, address);
658 if (!new)
659 return -ENOMEM;
660
661 /*
662 * Ensure all pte setup (eg. pte page lock and page clearing) are
663 * visible before the pte is made visible to other CPUs by being
664 * put into page tables.
665 *
666 * The other side of the story is the pointer chasing in the page
667 * table walking code (when walking the page table without locking;
668 * ie. most of the time). Fortunately, these data accesses consist
669 * of a chain of data-dependent loads, meaning most CPUs (alpha
670 * being the notable exception) will already guarantee loads are
671 * seen in-order. See the alpha page table accessors for the
672 * smp_read_barrier_depends() barriers in page table walking code.
673 */
674 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
675
676 ptl = pmd_lock(mm, pmd);
677 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
678 mm_inc_nr_ptes(mm);
679 pmd_populate(mm, pmd, new);
680 new = NULL;
681 }
682 spin_unlock(ptl);
683 if (new)
684 pte_free(mm, new);
685 return 0;
686 }
687
688 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
689 {
690 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
691 if (!new)
692 return -ENOMEM;
693
694 smp_wmb(); /* See comment in __pte_alloc */
695
696 spin_lock(&init_mm.page_table_lock);
697 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
698 pmd_populate_kernel(&init_mm, pmd, new);
699 new = NULL;
700 }
701 spin_unlock(&init_mm.page_table_lock);
702 if (new)
703 pte_free_kernel(&init_mm, new);
704 return 0;
705 }
706
707 static inline void init_rss_vec(int *rss)
708 {
709 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
710 }
711
712 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
713 {
714 int i;
715
716 if (current->mm == mm)
717 sync_mm_rss(mm);
718 for (i = 0; i < NR_MM_COUNTERS; i++)
719 if (rss[i])
720 add_mm_counter(mm, i, rss[i]);
721 }
722
723 /*
724 * This function is called to print an error when a bad pte
725 * is found. For example, we might have a PFN-mapped pte in
726 * a region that doesn't allow it.
727 *
728 * The calling function must still handle the error.
729 */
730 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
731 pte_t pte, struct page *page)
732 {
733 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
734 p4d_t *p4d = p4d_offset(pgd, addr);
735 pud_t *pud = pud_offset(p4d, addr);
736 pmd_t *pmd = pmd_offset(pud, addr);
737 struct address_space *mapping;
738 pgoff_t index;
739 static unsigned long resume;
740 static unsigned long nr_shown;
741 static unsigned long nr_unshown;
742
743 /*
744 * Allow a burst of 60 reports, then keep quiet for that minute;
745 * or allow a steady drip of one report per second.
746 */
747 if (nr_shown == 60) {
748 if (time_before(jiffies, resume)) {
749 nr_unshown++;
750 return;
751 }
752 if (nr_unshown) {
753 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
754 nr_unshown);
755 nr_unshown = 0;
756 }
757 nr_shown = 0;
758 }
759 if (nr_shown++ == 0)
760 resume = jiffies + 60 * HZ;
761
762 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
763 index = linear_page_index(vma, addr);
764
765 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
766 current->comm,
767 (long long)pte_val(pte), (long long)pmd_val(*pmd));
768 if (page)
769 dump_page(page, "bad pte");
770 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
771 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
772 /*
773 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
774 */
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
780 dump_stack();
781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 *
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 *
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
799 *
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
813 *
814 *
815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
825 */
826 #ifdef __HAVE_ARCH_PTE_SPECIAL
827 # define HAVE_PTE_SPECIAL 1
828 #else
829 # define HAVE_PTE_SPECIAL 0
830 #endif
831 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832 pte_t pte, bool with_public_device)
833 {
834 unsigned long pfn = pte_pfn(pte);
835
836 if (HAVE_PTE_SPECIAL) {
837 if (likely(!pte_special(pte)))
838 goto check_pfn;
839 if (vma->vm_ops && vma->vm_ops->find_special_page)
840 return vma->vm_ops->find_special_page(vma, addr);
841 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842 return NULL;
843 if (is_zero_pfn(pfn))
844 return NULL;
845
846 /*
847 * Device public pages are special pages (they are ZONE_DEVICE
848 * pages but different from persistent memory). They behave
849 * allmost like normal pages. The difference is that they are
850 * not on the lru and thus should never be involve with any-
851 * thing that involve lru manipulation (mlock, numa balancing,
852 * ...).
853 *
854 * This is why we still want to return NULL for such page from
855 * vm_normal_page() so that we do not have to special case all
856 * call site of vm_normal_page().
857 */
858 if (likely(pfn <= highest_memmap_pfn)) {
859 struct page *page = pfn_to_page(pfn);
860
861 if (is_device_public_page(page)) {
862 if (with_public_device)
863 return page;
864 return NULL;
865 }
866 }
867 print_bad_pte(vma, addr, pte, NULL);
868 return NULL;
869 }
870
871 /* !HAVE_PTE_SPECIAL case follows: */
872
873 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
874 if (vma->vm_flags & VM_MIXEDMAP) {
875 if (!pfn_valid(pfn))
876 return NULL;
877 goto out;
878 } else {
879 unsigned long off;
880 off = (addr - vma->vm_start) >> PAGE_SHIFT;
881 if (pfn == vma->vm_pgoff + off)
882 return NULL;
883 if (!is_cow_mapping(vma->vm_flags))
884 return NULL;
885 }
886 }
887
888 if (is_zero_pfn(pfn))
889 return NULL;
890 check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
895
896 /*
897 * NOTE! We still have PageReserved() pages in the page tables.
898 * eg. VDSO mappings can cause them to exist.
899 */
900 out:
901 return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907 {
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
913 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
930 if (is_zero_pfn(pfn))
931 return NULL;
932 if (unlikely(pfn > highest_memmap_pfn))
933 return NULL;
934
935 /*
936 * NOTE! We still have PageReserved() pages in the page tables.
937 * eg. VDSO mappings can cause them to exist.
938 */
939 out:
940 return pfn_to_page(pfn);
941 }
942 #endif
943
944 /*
945 * copy one vm_area from one task to the other. Assumes the page tables
946 * already present in the new task to be cleared in the whole range
947 * covered by this vma.
948 */
949
950 static inline unsigned long
951 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
953 unsigned long addr, int *rss)
954 {
955 unsigned long vm_flags = vma->vm_flags;
956 pte_t pte = *src_pte;
957 struct page *page;
958
959 /* pte contains position in swap or file, so copy. */
960 if (unlikely(!pte_present(pte))) {
961 swp_entry_t entry = pte_to_swp_entry(pte);
962
963 if (likely(!non_swap_entry(entry))) {
964 if (swap_duplicate(entry) < 0)
965 return entry.val;
966
967 /* make sure dst_mm is on swapoff's mmlist. */
968 if (unlikely(list_empty(&dst_mm->mmlist))) {
969 spin_lock(&mmlist_lock);
970 if (list_empty(&dst_mm->mmlist))
971 list_add(&dst_mm->mmlist,
972 &src_mm->mmlist);
973 spin_unlock(&mmlist_lock);
974 }
975 rss[MM_SWAPENTS]++;
976 } else if (is_migration_entry(entry)) {
977 page = migration_entry_to_page(entry);
978
979 rss[mm_counter(page)]++;
980
981 if (is_write_migration_entry(entry) &&
982 is_cow_mapping(vm_flags)) {
983 /*
984 * COW mappings require pages in both
985 * parent and child to be set to read.
986 */
987 make_migration_entry_read(&entry);
988 pte = swp_entry_to_pte(entry);
989 if (pte_swp_soft_dirty(*src_pte))
990 pte = pte_swp_mksoft_dirty(pte);
991 set_pte_at(src_mm, addr, src_pte, pte);
992 }
993 } else if (is_device_private_entry(entry)) {
994 page = device_private_entry_to_page(entry);
995
996 /*
997 * Update rss count even for unaddressable pages, as
998 * they should treated just like normal pages in this
999 * respect.
1000 *
1001 * We will likely want to have some new rss counters
1002 * for unaddressable pages, at some point. But for now
1003 * keep things as they are.
1004 */
1005 get_page(page);
1006 rss[mm_counter(page)]++;
1007 page_dup_rmap(page, false);
1008
1009 /*
1010 * We do not preserve soft-dirty information, because so
1011 * far, checkpoint/restore is the only feature that
1012 * requires that. And checkpoint/restore does not work
1013 * when a device driver is involved (you cannot easily
1014 * save and restore device driver state).
1015 */
1016 if (is_write_device_private_entry(entry) &&
1017 is_cow_mapping(vm_flags)) {
1018 make_device_private_entry_read(&entry);
1019 pte = swp_entry_to_pte(entry);
1020 set_pte_at(src_mm, addr, src_pte, pte);
1021 }
1022 }
1023 goto out_set_pte;
1024 }
1025
1026 /*
1027 * If it's a COW mapping, write protect it both
1028 * in the parent and the child
1029 */
1030 if (is_cow_mapping(vm_flags)) {
1031 ptep_set_wrprotect(src_mm, addr, src_pte);
1032 pte = pte_wrprotect(pte);
1033 }
1034
1035 /*
1036 * If it's a shared mapping, mark it clean in
1037 * the child
1038 */
1039 if (vm_flags & VM_SHARED)
1040 pte = pte_mkclean(pte);
1041 pte = pte_mkold(pte);
1042
1043 page = vm_normal_page(vma, addr, pte);
1044 if (page) {
1045 get_page(page);
1046 page_dup_rmap(page, false);
1047 rss[mm_counter(page)]++;
1048 } else if (pte_devmap(pte)) {
1049 page = pte_page(pte);
1050
1051 /*
1052 * Cache coherent device memory behave like regular page and
1053 * not like persistent memory page. For more informations see
1054 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1055 */
1056 if (is_device_public_page(page)) {
1057 get_page(page);
1058 page_dup_rmap(page, false);
1059 rss[mm_counter(page)]++;
1060 }
1061 }
1062
1063 out_set_pte:
1064 set_pte_at(dst_mm, addr, dst_pte, pte);
1065 return 0;
1066 }
1067
1068 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1069 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1070 unsigned long addr, unsigned long end)
1071 {
1072 pte_t *orig_src_pte, *orig_dst_pte;
1073 pte_t *src_pte, *dst_pte;
1074 spinlock_t *src_ptl, *dst_ptl;
1075 int progress = 0;
1076 int rss[NR_MM_COUNTERS];
1077 swp_entry_t entry = (swp_entry_t){0};
1078
1079 again:
1080 init_rss_vec(rss);
1081
1082 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1083 if (!dst_pte)
1084 return -ENOMEM;
1085 src_pte = pte_offset_map(src_pmd, addr);
1086 src_ptl = pte_lockptr(src_mm, src_pmd);
1087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088 orig_src_pte = src_pte;
1089 orig_dst_pte = dst_pte;
1090 arch_enter_lazy_mmu_mode();
1091
1092 do {
1093 /*
1094 * We are holding two locks at this point - either of them
1095 * could generate latencies in another task on another CPU.
1096 */
1097 if (progress >= 32) {
1098 progress = 0;
1099 if (need_resched() ||
1100 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1101 break;
1102 }
1103 if (pte_none(*src_pte)) {
1104 progress++;
1105 continue;
1106 }
1107 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1108 vma, addr, rss);
1109 if (entry.val)
1110 break;
1111 progress += 8;
1112 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1113
1114 arch_leave_lazy_mmu_mode();
1115 spin_unlock(src_ptl);
1116 pte_unmap(orig_src_pte);
1117 add_mm_rss_vec(dst_mm, rss);
1118 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1119 cond_resched();
1120
1121 if (entry.val) {
1122 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1123 return -ENOMEM;
1124 progress = 0;
1125 }
1126 if (addr != end)
1127 goto again;
1128 return 0;
1129 }
1130
1131 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1132 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1133 unsigned long addr, unsigned long end)
1134 {
1135 pmd_t *src_pmd, *dst_pmd;
1136 unsigned long next;
1137
1138 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1139 if (!dst_pmd)
1140 return -ENOMEM;
1141 src_pmd = pmd_offset(src_pud, addr);
1142 do {
1143 next = pmd_addr_end(addr, end);
1144 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1145 || pmd_devmap(*src_pmd)) {
1146 int err;
1147 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1148 err = copy_huge_pmd(dst_mm, src_mm,
1149 dst_pmd, src_pmd, addr, vma);
1150 if (err == -ENOMEM)
1151 return -ENOMEM;
1152 if (!err)
1153 continue;
1154 /* fall through */
1155 }
1156 if (pmd_none_or_clear_bad(src_pmd))
1157 continue;
1158 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1159 vma, addr, next))
1160 return -ENOMEM;
1161 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1162 return 0;
1163 }
1164
1165 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1166 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1167 unsigned long addr, unsigned long end)
1168 {
1169 pud_t *src_pud, *dst_pud;
1170 unsigned long next;
1171
1172 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1173 if (!dst_pud)
1174 return -ENOMEM;
1175 src_pud = pud_offset(src_p4d, addr);
1176 do {
1177 next = pud_addr_end(addr, end);
1178 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1179 int err;
1180
1181 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1182 err = copy_huge_pud(dst_mm, src_mm,
1183 dst_pud, src_pud, addr, vma);
1184 if (err == -ENOMEM)
1185 return -ENOMEM;
1186 if (!err)
1187 continue;
1188 /* fall through */
1189 }
1190 if (pud_none_or_clear_bad(src_pud))
1191 continue;
1192 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1193 vma, addr, next))
1194 return -ENOMEM;
1195 } while (dst_pud++, src_pud++, addr = next, addr != end);
1196 return 0;
1197 }
1198
1199 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1200 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1201 unsigned long addr, unsigned long end)
1202 {
1203 p4d_t *src_p4d, *dst_p4d;
1204 unsigned long next;
1205
1206 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1207 if (!dst_p4d)
1208 return -ENOMEM;
1209 src_p4d = p4d_offset(src_pgd, addr);
1210 do {
1211 next = p4d_addr_end(addr, end);
1212 if (p4d_none_or_clear_bad(src_p4d))
1213 continue;
1214 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1215 vma, addr, next))
1216 return -ENOMEM;
1217 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1218 return 0;
1219 }
1220
1221 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1222 struct vm_area_struct *vma)
1223 {
1224 pgd_t *src_pgd, *dst_pgd;
1225 unsigned long next;
1226 unsigned long addr = vma->vm_start;
1227 unsigned long end = vma->vm_end;
1228 unsigned long mmun_start; /* For mmu_notifiers */
1229 unsigned long mmun_end; /* For mmu_notifiers */
1230 bool is_cow;
1231 int ret;
1232
1233 /*
1234 * Don't copy ptes where a page fault will fill them correctly.
1235 * Fork becomes much lighter when there are big shared or private
1236 * readonly mappings. The tradeoff is that copy_page_range is more
1237 * efficient than faulting.
1238 */
1239 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1240 !vma->anon_vma)
1241 return 0;
1242
1243 if (is_vm_hugetlb_page(vma))
1244 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1245
1246 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1247 /*
1248 * We do not free on error cases below as remove_vma
1249 * gets called on error from higher level routine
1250 */
1251 ret = track_pfn_copy(vma);
1252 if (ret)
1253 return ret;
1254 }
1255
1256 /*
1257 * We need to invalidate the secondary MMU mappings only when
1258 * there could be a permission downgrade on the ptes of the
1259 * parent mm. And a permission downgrade will only happen if
1260 * is_cow_mapping() returns true.
1261 */
1262 is_cow = is_cow_mapping(vma->vm_flags);
1263 mmun_start = addr;
1264 mmun_end = end;
1265 if (is_cow)
1266 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1267 mmun_end);
1268
1269 ret = 0;
1270 dst_pgd = pgd_offset(dst_mm, addr);
1271 src_pgd = pgd_offset(src_mm, addr);
1272 do {
1273 next = pgd_addr_end(addr, end);
1274 if (pgd_none_or_clear_bad(src_pgd))
1275 continue;
1276 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1277 vma, addr, next))) {
1278 ret = -ENOMEM;
1279 break;
1280 }
1281 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1282
1283 if (is_cow)
1284 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1285 return ret;
1286 }
1287
1288 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma, pmd_t *pmd,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1292 {
1293 struct mm_struct *mm = tlb->mm;
1294 int force_flush = 0;
1295 int rss[NR_MM_COUNTERS];
1296 spinlock_t *ptl;
1297 pte_t *start_pte;
1298 pte_t *pte;
1299 swp_entry_t entry;
1300
1301 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1302 again:
1303 init_rss_vec(rss);
1304 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1305 pte = start_pte;
1306 flush_tlb_batched_pending(mm);
1307 arch_enter_lazy_mmu_mode();
1308 do {
1309 pte_t ptent = *pte;
1310 if (pte_none(ptent))
1311 continue;
1312
1313 if (pte_present(ptent)) {
1314 struct page *page;
1315
1316 page = _vm_normal_page(vma, addr, ptent, true);
1317 if (unlikely(details) && page) {
1318 /*
1319 * unmap_shared_mapping_pages() wants to
1320 * invalidate cache without truncating:
1321 * unmap shared but keep private pages.
1322 */
1323 if (details->check_mapping &&
1324 details->check_mapping != page_rmapping(page))
1325 continue;
1326 }
1327 ptent = ptep_get_and_clear_full(mm, addr, pte,
1328 tlb->fullmm);
1329 tlb_remove_tlb_entry(tlb, pte, addr);
1330 if (unlikely(!page))
1331 continue;
1332
1333 if (!PageAnon(page)) {
1334 if (pte_dirty(ptent)) {
1335 force_flush = 1;
1336 set_page_dirty(page);
1337 }
1338 if (pte_young(ptent) &&
1339 likely(!(vma->vm_flags & VM_SEQ_READ)))
1340 mark_page_accessed(page);
1341 }
1342 rss[mm_counter(page)]--;
1343 page_remove_rmap(page, false);
1344 if (unlikely(page_mapcount(page) < 0))
1345 print_bad_pte(vma, addr, ptent, page);
1346 if (unlikely(__tlb_remove_page(tlb, page))) {
1347 force_flush = 1;
1348 addr += PAGE_SIZE;
1349 break;
1350 }
1351 continue;
1352 }
1353
1354 entry = pte_to_swp_entry(ptent);
1355 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1356 struct page *page = device_private_entry_to_page(entry);
1357
1358 if (unlikely(details && details->check_mapping)) {
1359 /*
1360 * unmap_shared_mapping_pages() wants to
1361 * invalidate cache without truncating:
1362 * unmap shared but keep private pages.
1363 */
1364 if (details->check_mapping !=
1365 page_rmapping(page))
1366 continue;
1367 }
1368
1369 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1370 rss[mm_counter(page)]--;
1371 page_remove_rmap(page, false);
1372 put_page(page);
1373 continue;
1374 }
1375
1376 /* If details->check_mapping, we leave swap entries. */
1377 if (unlikely(details))
1378 continue;
1379
1380 entry = pte_to_swp_entry(ptent);
1381 if (!non_swap_entry(entry))
1382 rss[MM_SWAPENTS]--;
1383 else if (is_migration_entry(entry)) {
1384 struct page *page;
1385
1386 page = migration_entry_to_page(entry);
1387 rss[mm_counter(page)]--;
1388 }
1389 if (unlikely(!free_swap_and_cache(entry)))
1390 print_bad_pte(vma, addr, ptent, NULL);
1391 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1392 } while (pte++, addr += PAGE_SIZE, addr != end);
1393
1394 add_mm_rss_vec(mm, rss);
1395 arch_leave_lazy_mmu_mode();
1396
1397 /* Do the actual TLB flush before dropping ptl */
1398 if (force_flush)
1399 tlb_flush_mmu_tlbonly(tlb);
1400 pte_unmap_unlock(start_pte, ptl);
1401
1402 /*
1403 * If we forced a TLB flush (either due to running out of
1404 * batch buffers or because we needed to flush dirty TLB
1405 * entries before releasing the ptl), free the batched
1406 * memory too. Restart if we didn't do everything.
1407 */
1408 if (force_flush) {
1409 force_flush = 0;
1410 tlb_flush_mmu_free(tlb);
1411 if (addr != end)
1412 goto again;
1413 }
1414
1415 return addr;
1416 }
1417
1418 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1419 struct vm_area_struct *vma, pud_t *pud,
1420 unsigned long addr, unsigned long end,
1421 struct zap_details *details)
1422 {
1423 pmd_t *pmd;
1424 unsigned long next;
1425
1426 pmd = pmd_offset(pud, addr);
1427 do {
1428 next = pmd_addr_end(addr, end);
1429 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1430 if (next - addr != HPAGE_PMD_SIZE) {
1431 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1432 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1433 __split_huge_pmd(vma, pmd, addr, false, NULL);
1434 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1435 goto next;
1436 /* fall through */
1437 }
1438 /*
1439 * Here there can be other concurrent MADV_DONTNEED or
1440 * trans huge page faults running, and if the pmd is
1441 * none or trans huge it can change under us. This is
1442 * because MADV_DONTNEED holds the mmap_sem in read
1443 * mode.
1444 */
1445 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446 goto next;
1447 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1448 next:
1449 cond_resched();
1450 } while (pmd++, addr = next, addr != end);
1451
1452 return addr;
1453 }
1454
1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1456 struct vm_area_struct *vma, p4d_t *p4d,
1457 unsigned long addr, unsigned long end,
1458 struct zap_details *details)
1459 {
1460 pud_t *pud;
1461 unsigned long next;
1462
1463 pud = pud_offset(p4d, addr);
1464 do {
1465 next = pud_addr_end(addr, end);
1466 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467 if (next - addr != HPAGE_PUD_SIZE) {
1468 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469 split_huge_pud(vma, pud, addr);
1470 } else if (zap_huge_pud(tlb, vma, pud, addr))
1471 goto next;
1472 /* fall through */
1473 }
1474 if (pud_none_or_clear_bad(pud))
1475 continue;
1476 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1477 next:
1478 cond_resched();
1479 } while (pud++, addr = next, addr != end);
1480
1481 return addr;
1482 }
1483
1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485 struct vm_area_struct *vma, pgd_t *pgd,
1486 unsigned long addr, unsigned long end,
1487 struct zap_details *details)
1488 {
1489 p4d_t *p4d;
1490 unsigned long next;
1491
1492 p4d = p4d_offset(pgd, addr);
1493 do {
1494 next = p4d_addr_end(addr, end);
1495 if (p4d_none_or_clear_bad(p4d))
1496 continue;
1497 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498 } while (p4d++, addr = next, addr != end);
1499
1500 return addr;
1501 }
1502
1503 void unmap_page_range(struct mmu_gather *tlb,
1504 struct vm_area_struct *vma,
1505 unsigned long addr, unsigned long end,
1506 struct zap_details *details)
1507 {
1508 pgd_t *pgd;
1509 unsigned long next;
1510
1511 BUG_ON(addr >= end);
1512 tlb_start_vma(tlb, vma);
1513 pgd = pgd_offset(vma->vm_mm, addr);
1514 do {
1515 next = pgd_addr_end(addr, end);
1516 if (pgd_none_or_clear_bad(pgd))
1517 continue;
1518 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1519 } while (pgd++, addr = next, addr != end);
1520 tlb_end_vma(tlb, vma);
1521 }
1522
1523
1524 static void unmap_single_vma(struct mmu_gather *tlb,
1525 struct vm_area_struct *vma, unsigned long start_addr,
1526 unsigned long end_addr,
1527 struct zap_details *details)
1528 {
1529 unsigned long start = max(vma->vm_start, start_addr);
1530 unsigned long end;
1531
1532 if (start >= vma->vm_end)
1533 return;
1534 end = min(vma->vm_end, end_addr);
1535 if (end <= vma->vm_start)
1536 return;
1537
1538 if (vma->vm_file)
1539 uprobe_munmap(vma, start, end);
1540
1541 if (unlikely(vma->vm_flags & VM_PFNMAP))
1542 untrack_pfn(vma, 0, 0);
1543
1544 if (start != end) {
1545 if (unlikely(is_vm_hugetlb_page(vma))) {
1546 /*
1547 * It is undesirable to test vma->vm_file as it
1548 * should be non-null for valid hugetlb area.
1549 * However, vm_file will be NULL in the error
1550 * cleanup path of mmap_region. When
1551 * hugetlbfs ->mmap method fails,
1552 * mmap_region() nullifies vma->vm_file
1553 * before calling this function to clean up.
1554 * Since no pte has actually been setup, it is
1555 * safe to do nothing in this case.
1556 */
1557 if (vma->vm_file) {
1558 i_mmap_lock_write(vma->vm_file->f_mapping);
1559 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1560 i_mmap_unlock_write(vma->vm_file->f_mapping);
1561 }
1562 } else
1563 unmap_page_range(tlb, vma, start, end, details);
1564 }
1565 }
1566
1567 /**
1568 * unmap_vmas - unmap a range of memory covered by a list of vma's
1569 * @tlb: address of the caller's struct mmu_gather
1570 * @vma: the starting vma
1571 * @start_addr: virtual address at which to start unmapping
1572 * @end_addr: virtual address at which to end unmapping
1573 *
1574 * Unmap all pages in the vma list.
1575 *
1576 * Only addresses between `start' and `end' will be unmapped.
1577 *
1578 * The VMA list must be sorted in ascending virtual address order.
1579 *
1580 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581 * range after unmap_vmas() returns. So the only responsibility here is to
1582 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583 * drops the lock and schedules.
1584 */
1585 void unmap_vmas(struct mmu_gather *tlb,
1586 struct vm_area_struct *vma, unsigned long start_addr,
1587 unsigned long end_addr)
1588 {
1589 struct mm_struct *mm = vma->vm_mm;
1590
1591 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1592 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1593 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1594 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 }
1596
1597 /**
1598 * zap_page_range - remove user pages in a given range
1599 * @vma: vm_area_struct holding the applicable pages
1600 * @start: starting address of pages to zap
1601 * @size: number of bytes to zap
1602 *
1603 * Caller must protect the VMA list
1604 */
1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1606 unsigned long size)
1607 {
1608 struct mm_struct *mm = vma->vm_mm;
1609 struct mmu_gather tlb;
1610 unsigned long end = start + size;
1611
1612 lru_add_drain();
1613 tlb_gather_mmu(&tlb, mm, start, end);
1614 update_hiwater_rss(mm);
1615 mmu_notifier_invalidate_range_start(mm, start, end);
1616 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1617 unmap_single_vma(&tlb, vma, start, end, NULL);
1618
1619 /*
1620 * zap_page_range does not specify whether mmap_sem should be
1621 * held for read or write. That allows parallel zap_page_range
1622 * operations to unmap a PTE and defer a flush meaning that
1623 * this call observes pte_none and fails to flush the TLB.
1624 * Rather than adding a complex API, ensure that no stale
1625 * TLB entries exist when this call returns.
1626 */
1627 flush_tlb_range(vma, start, end);
1628 }
1629
1630 mmu_notifier_invalidate_range_end(mm, start, end);
1631 tlb_finish_mmu(&tlb, start, end);
1632 }
1633
1634 /**
1635 * zap_page_range_single - remove user pages in a given range
1636 * @vma: vm_area_struct holding the applicable pages
1637 * @address: starting address of pages to zap
1638 * @size: number of bytes to zap
1639 * @details: details of shared cache invalidation
1640 *
1641 * The range must fit into one VMA.
1642 */
1643 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1644 unsigned long size, struct zap_details *details)
1645 {
1646 struct mm_struct *mm = vma->vm_mm;
1647 struct mmu_gather tlb;
1648 unsigned long end = address + size;
1649
1650 lru_add_drain();
1651 tlb_gather_mmu(&tlb, mm, address, end);
1652 update_hiwater_rss(mm);
1653 mmu_notifier_invalidate_range_start(mm, address, end);
1654 unmap_single_vma(&tlb, vma, address, end, details);
1655 mmu_notifier_invalidate_range_end(mm, address, end);
1656 tlb_finish_mmu(&tlb, address, end);
1657 }
1658
1659 /**
1660 * zap_vma_ptes - remove ptes mapping the vma
1661 * @vma: vm_area_struct holding ptes to be zapped
1662 * @address: starting address of pages to zap
1663 * @size: number of bytes to zap
1664 *
1665 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1666 *
1667 * The entire address range must be fully contained within the vma.
1668 *
1669 * Returns 0 if successful.
1670 */
1671 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1672 unsigned long size)
1673 {
1674 if (address < vma->vm_start || address + size > vma->vm_end ||
1675 !(vma->vm_flags & VM_PFNMAP))
1676 return -1;
1677 zap_page_range_single(vma, address, size, NULL);
1678 return 0;
1679 }
1680 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1681
1682 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1683 spinlock_t **ptl)
1684 {
1685 pgd_t *pgd;
1686 p4d_t *p4d;
1687 pud_t *pud;
1688 pmd_t *pmd;
1689
1690 pgd = pgd_offset(mm, addr);
1691 p4d = p4d_alloc(mm, pgd, addr);
1692 if (!p4d)
1693 return NULL;
1694 pud = pud_alloc(mm, p4d, addr);
1695 if (!pud)
1696 return NULL;
1697 pmd = pmd_alloc(mm, pud, addr);
1698 if (!pmd)
1699 return NULL;
1700
1701 VM_BUG_ON(pmd_trans_huge(*pmd));
1702 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1703 }
1704
1705 /*
1706 * This is the old fallback for page remapping.
1707 *
1708 * For historical reasons, it only allows reserved pages. Only
1709 * old drivers should use this, and they needed to mark their
1710 * pages reserved for the old functions anyway.
1711 */
1712 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1713 struct page *page, pgprot_t prot)
1714 {
1715 struct mm_struct *mm = vma->vm_mm;
1716 int retval;
1717 pte_t *pte;
1718 spinlock_t *ptl;
1719
1720 retval = -EINVAL;
1721 if (PageAnon(page))
1722 goto out;
1723 retval = -ENOMEM;
1724 flush_dcache_page(page);
1725 pte = get_locked_pte(mm, addr, &ptl);
1726 if (!pte)
1727 goto out;
1728 retval = -EBUSY;
1729 if (!pte_none(*pte))
1730 goto out_unlock;
1731
1732 /* Ok, finally just insert the thing.. */
1733 get_page(page);
1734 inc_mm_counter_fast(mm, mm_counter_file(page));
1735 page_add_file_rmap(page, false);
1736 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1737
1738 retval = 0;
1739 pte_unmap_unlock(pte, ptl);
1740 return retval;
1741 out_unlock:
1742 pte_unmap_unlock(pte, ptl);
1743 out:
1744 return retval;
1745 }
1746
1747 /**
1748 * vm_insert_page - insert single page into user vma
1749 * @vma: user vma to map to
1750 * @addr: target user address of this page
1751 * @page: source kernel page
1752 *
1753 * This allows drivers to insert individual pages they've allocated
1754 * into a user vma.
1755 *
1756 * The page has to be a nice clean _individual_ kernel allocation.
1757 * If you allocate a compound page, you need to have marked it as
1758 * such (__GFP_COMP), or manually just split the page up yourself
1759 * (see split_page()).
1760 *
1761 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1762 * took an arbitrary page protection parameter. This doesn't allow
1763 * that. Your vma protection will have to be set up correctly, which
1764 * means that if you want a shared writable mapping, you'd better
1765 * ask for a shared writable mapping!
1766 *
1767 * The page does not need to be reserved.
1768 *
1769 * Usually this function is called from f_op->mmap() handler
1770 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1771 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1772 * function from other places, for example from page-fault handler.
1773 */
1774 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1775 struct page *page)
1776 {
1777 if (addr < vma->vm_start || addr >= vma->vm_end)
1778 return -EFAULT;
1779 if (!page_count(page))
1780 return -EINVAL;
1781 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1782 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1783 BUG_ON(vma->vm_flags & VM_PFNMAP);
1784 vma->vm_flags |= VM_MIXEDMAP;
1785 }
1786 return insert_page(vma, addr, page, vma->vm_page_prot);
1787 }
1788 EXPORT_SYMBOL(vm_insert_page);
1789
1790 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1791 pfn_t pfn, pgprot_t prot, bool mkwrite)
1792 {
1793 struct mm_struct *mm = vma->vm_mm;
1794 int retval;
1795 pte_t *pte, entry;
1796 spinlock_t *ptl;
1797
1798 retval = -ENOMEM;
1799 pte = get_locked_pte(mm, addr, &ptl);
1800 if (!pte)
1801 goto out;
1802 retval = -EBUSY;
1803 if (!pte_none(*pte)) {
1804 if (mkwrite) {
1805 /*
1806 * For read faults on private mappings the PFN passed
1807 * in may not match the PFN we have mapped if the
1808 * mapped PFN is a writeable COW page. In the mkwrite
1809 * case we are creating a writable PTE for a shared
1810 * mapping and we expect the PFNs to match.
1811 */
1812 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1813 goto out_unlock;
1814 entry = *pte;
1815 goto out_mkwrite;
1816 } else
1817 goto out_unlock;
1818 }
1819
1820 /* Ok, finally just insert the thing.. */
1821 if (pfn_t_devmap(pfn))
1822 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1823 else
1824 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1825
1826 out_mkwrite:
1827 if (mkwrite) {
1828 entry = pte_mkyoung(entry);
1829 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1830 }
1831
1832 set_pte_at(mm, addr, pte, entry);
1833 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1834
1835 retval = 0;
1836 out_unlock:
1837 pte_unmap_unlock(pte, ptl);
1838 out:
1839 return retval;
1840 }
1841
1842 /**
1843 * vm_insert_pfn - insert single pfn into user vma
1844 * @vma: user vma to map to
1845 * @addr: target user address of this page
1846 * @pfn: source kernel pfn
1847 *
1848 * Similar to vm_insert_page, this allows drivers to insert individual pages
1849 * they've allocated into a user vma. Same comments apply.
1850 *
1851 * This function should only be called from a vm_ops->fault handler, and
1852 * in that case the handler should return NULL.
1853 *
1854 * vma cannot be a COW mapping.
1855 *
1856 * As this is called only for pages that do not currently exist, we
1857 * do not need to flush old virtual caches or the TLB.
1858 */
1859 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1860 unsigned long pfn)
1861 {
1862 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1863 }
1864 EXPORT_SYMBOL(vm_insert_pfn);
1865
1866 /**
1867 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1868 * @vma: user vma to map to
1869 * @addr: target user address of this page
1870 * @pfn: source kernel pfn
1871 * @pgprot: pgprot flags for the inserted page
1872 *
1873 * This is exactly like vm_insert_pfn, except that it allows drivers to
1874 * to override pgprot on a per-page basis.
1875 *
1876 * This only makes sense for IO mappings, and it makes no sense for
1877 * cow mappings. In general, using multiple vmas is preferable;
1878 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1879 * impractical.
1880 */
1881 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1882 unsigned long pfn, pgprot_t pgprot)
1883 {
1884 int ret;
1885 /*
1886 * Technically, architectures with pte_special can avoid all these
1887 * restrictions (same for remap_pfn_range). However we would like
1888 * consistency in testing and feature parity among all, so we should
1889 * try to keep these invariants in place for everybody.
1890 */
1891 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1892 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1893 (VM_PFNMAP|VM_MIXEDMAP));
1894 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1895 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1896
1897 if (addr < vma->vm_start || addr >= vma->vm_end)
1898 return -EFAULT;
1899
1900 if (!pfn_modify_allowed(pfn, pgprot))
1901 return -EACCES;
1902
1903 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1904
1905 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1906 false);
1907
1908 return ret;
1909 }
1910 EXPORT_SYMBOL(vm_insert_pfn_prot);
1911
1912 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1913 {
1914 /* these checks mirror the abort conditions in vm_normal_page */
1915 if (vma->vm_flags & VM_MIXEDMAP)
1916 return true;
1917 if (pfn_t_devmap(pfn))
1918 return true;
1919 if (pfn_t_special(pfn))
1920 return true;
1921 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1922 return true;
1923 return false;
1924 }
1925
1926 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1927 pfn_t pfn, bool mkwrite)
1928 {
1929 pgprot_t pgprot = vma->vm_page_prot;
1930
1931 BUG_ON(!vm_mixed_ok(vma, pfn));
1932
1933 if (addr < vma->vm_start || addr >= vma->vm_end)
1934 return -EFAULT;
1935
1936 track_pfn_insert(vma, &pgprot, pfn);
1937
1938 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1939 return -EACCES;
1940
1941 /*
1942 * If we don't have pte special, then we have to use the pfn_valid()
1943 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1944 * refcount the page if pfn_valid is true (hence insert_page rather
1945 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1946 * without pte special, it would there be refcounted as a normal page.
1947 */
1948 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1949 struct page *page;
1950
1951 /*
1952 * At this point we are committed to insert_page()
1953 * regardless of whether the caller specified flags that
1954 * result in pfn_t_has_page() == false.
1955 */
1956 page = pfn_to_page(pfn_t_to_pfn(pfn));
1957 return insert_page(vma, addr, page, pgprot);
1958 }
1959 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1960 }
1961
1962 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1963 pfn_t pfn)
1964 {
1965 return __vm_insert_mixed(vma, addr, pfn, false);
1966
1967 }
1968 EXPORT_SYMBOL(vm_insert_mixed);
1969
1970 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1971 pfn_t pfn)
1972 {
1973 return __vm_insert_mixed(vma, addr, pfn, true);
1974 }
1975 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1976
1977 /*
1978 * maps a range of physical memory into the requested pages. the old
1979 * mappings are removed. any references to nonexistent pages results
1980 * in null mappings (currently treated as "copy-on-access")
1981 */
1982 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983 unsigned long addr, unsigned long end,
1984 unsigned long pfn, pgprot_t prot)
1985 {
1986 pte_t *pte;
1987 spinlock_t *ptl;
1988 int err = 0;
1989
1990 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1991 if (!pte)
1992 return -ENOMEM;
1993 arch_enter_lazy_mmu_mode();
1994 do {
1995 BUG_ON(!pte_none(*pte));
1996 if (!pfn_modify_allowed(pfn, prot)) {
1997 err = -EACCES;
1998 break;
1999 }
2000 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2001 pfn++;
2002 } while (pte++, addr += PAGE_SIZE, addr != end);
2003 arch_leave_lazy_mmu_mode();
2004 pte_unmap_unlock(pte - 1, ptl);
2005 return err;
2006 }
2007
2008 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2009 unsigned long addr, unsigned long end,
2010 unsigned long pfn, pgprot_t prot)
2011 {
2012 pmd_t *pmd;
2013 unsigned long next;
2014 int err;
2015
2016 pfn -= addr >> PAGE_SHIFT;
2017 pmd = pmd_alloc(mm, pud, addr);
2018 if (!pmd)
2019 return -ENOMEM;
2020 VM_BUG_ON(pmd_trans_huge(*pmd));
2021 do {
2022 next = pmd_addr_end(addr, end);
2023 err = remap_pte_range(mm, pmd, addr, next,
2024 pfn + (addr >> PAGE_SHIFT), prot);
2025 if (err)
2026 return err;
2027 } while (pmd++, addr = next, addr != end);
2028 return 0;
2029 }
2030
2031 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2032 unsigned long addr, unsigned long end,
2033 unsigned long pfn, pgprot_t prot)
2034 {
2035 pud_t *pud;
2036 unsigned long next;
2037 int err;
2038
2039 pfn -= addr >> PAGE_SHIFT;
2040 pud = pud_alloc(mm, p4d, addr);
2041 if (!pud)
2042 return -ENOMEM;
2043 do {
2044 next = pud_addr_end(addr, end);
2045 err = remap_pmd_range(mm, pud, addr, next,
2046 pfn + (addr >> PAGE_SHIFT), prot);
2047 if (err)
2048 return err;
2049 } while (pud++, addr = next, addr != end);
2050 return 0;
2051 }
2052
2053 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2054 unsigned long addr, unsigned long end,
2055 unsigned long pfn, pgprot_t prot)
2056 {
2057 p4d_t *p4d;
2058 unsigned long next;
2059 int err;
2060
2061 pfn -= addr >> PAGE_SHIFT;
2062 p4d = p4d_alloc(mm, pgd, addr);
2063 if (!p4d)
2064 return -ENOMEM;
2065 do {
2066 next = p4d_addr_end(addr, end);
2067 err = remap_pud_range(mm, p4d, addr, next,
2068 pfn + (addr >> PAGE_SHIFT), prot);
2069 if (err)
2070 return err;
2071 } while (p4d++, addr = next, addr != end);
2072 return 0;
2073 }
2074
2075 /**
2076 * remap_pfn_range - remap kernel memory to userspace
2077 * @vma: user vma to map to
2078 * @addr: target user address to start at
2079 * @pfn: physical address of kernel memory
2080 * @size: size of map area
2081 * @prot: page protection flags for this mapping
2082 *
2083 * Note: this is only safe if the mm semaphore is held when called.
2084 */
2085 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2086 unsigned long pfn, unsigned long size, pgprot_t prot)
2087 {
2088 pgd_t *pgd;
2089 unsigned long next;
2090 unsigned long end = addr + PAGE_ALIGN(size);
2091 struct mm_struct *mm = vma->vm_mm;
2092 unsigned long remap_pfn = pfn;
2093 int err;
2094
2095 /*
2096 * Physically remapped pages are special. Tell the
2097 * rest of the world about it:
2098 * VM_IO tells people not to look at these pages
2099 * (accesses can have side effects).
2100 * VM_PFNMAP tells the core MM that the base pages are just
2101 * raw PFN mappings, and do not have a "struct page" associated
2102 * with them.
2103 * VM_DONTEXPAND
2104 * Disable vma merging and expanding with mremap().
2105 * VM_DONTDUMP
2106 * Omit vma from core dump, even when VM_IO turned off.
2107 *
2108 * There's a horrible special case to handle copy-on-write
2109 * behaviour that some programs depend on. We mark the "original"
2110 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2111 * See vm_normal_page() for details.
2112 */
2113 if (is_cow_mapping(vma->vm_flags)) {
2114 if (addr != vma->vm_start || end != vma->vm_end)
2115 return -EINVAL;
2116 vma->vm_pgoff = pfn;
2117 }
2118
2119 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2120 if (err)
2121 return -EINVAL;
2122
2123 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2124
2125 BUG_ON(addr >= end);
2126 pfn -= addr >> PAGE_SHIFT;
2127 pgd = pgd_offset(mm, addr);
2128 flush_cache_range(vma, addr, end);
2129 do {
2130 next = pgd_addr_end(addr, end);
2131 err = remap_p4d_range(mm, pgd, addr, next,
2132 pfn + (addr >> PAGE_SHIFT), prot);
2133 if (err)
2134 break;
2135 } while (pgd++, addr = next, addr != end);
2136
2137 if (err)
2138 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2139
2140 return err;
2141 }
2142 EXPORT_SYMBOL(remap_pfn_range);
2143
2144 /**
2145 * vm_iomap_memory - remap memory to userspace
2146 * @vma: user vma to map to
2147 * @start: start of area
2148 * @len: size of area
2149 *
2150 * This is a simplified io_remap_pfn_range() for common driver use. The
2151 * driver just needs to give us the physical memory range to be mapped,
2152 * we'll figure out the rest from the vma information.
2153 *
2154 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2155 * whatever write-combining details or similar.
2156 */
2157 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2158 {
2159 unsigned long vm_len, pfn, pages;
2160
2161 /* Check that the physical memory area passed in looks valid */
2162 if (start + len < start)
2163 return -EINVAL;
2164 /*
2165 * You *really* shouldn't map things that aren't page-aligned,
2166 * but we've historically allowed it because IO memory might
2167 * just have smaller alignment.
2168 */
2169 len += start & ~PAGE_MASK;
2170 pfn = start >> PAGE_SHIFT;
2171 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2172 if (pfn + pages < pfn)
2173 return -EINVAL;
2174
2175 /* We start the mapping 'vm_pgoff' pages into the area */
2176 if (vma->vm_pgoff > pages)
2177 return -EINVAL;
2178 pfn += vma->vm_pgoff;
2179 pages -= vma->vm_pgoff;
2180
2181 /* Can we fit all of the mapping? */
2182 vm_len = vma->vm_end - vma->vm_start;
2183 if (vm_len >> PAGE_SHIFT > pages)
2184 return -EINVAL;
2185
2186 /* Ok, let it rip */
2187 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2188 }
2189 EXPORT_SYMBOL(vm_iomap_memory);
2190
2191 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2192 unsigned long addr, unsigned long end,
2193 pte_fn_t fn, void *data)
2194 {
2195 pte_t *pte;
2196 int err;
2197 pgtable_t token;
2198 spinlock_t *uninitialized_var(ptl);
2199
2200 pte = (mm == &init_mm) ?
2201 pte_alloc_kernel(pmd, addr) :
2202 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203 if (!pte)
2204 return -ENOMEM;
2205
2206 BUG_ON(pmd_huge(*pmd));
2207
2208 arch_enter_lazy_mmu_mode();
2209
2210 token = pmd_pgtable(*pmd);
2211
2212 do {
2213 err = fn(pte++, token, addr, data);
2214 if (err)
2215 break;
2216 } while (addr += PAGE_SIZE, addr != end);
2217
2218 arch_leave_lazy_mmu_mode();
2219
2220 if (mm != &init_mm)
2221 pte_unmap_unlock(pte-1, ptl);
2222 return err;
2223 }
2224
2225 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2226 unsigned long addr, unsigned long end,
2227 pte_fn_t fn, void *data)
2228 {
2229 pmd_t *pmd;
2230 unsigned long next;
2231 int err;
2232
2233 BUG_ON(pud_huge(*pud));
2234
2235 pmd = pmd_alloc(mm, pud, addr);
2236 if (!pmd)
2237 return -ENOMEM;
2238 do {
2239 next = pmd_addr_end(addr, end);
2240 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2241 if (err)
2242 break;
2243 } while (pmd++, addr = next, addr != end);
2244 return err;
2245 }
2246
2247 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2248 unsigned long addr, unsigned long end,
2249 pte_fn_t fn, void *data)
2250 {
2251 pud_t *pud;
2252 unsigned long next;
2253 int err;
2254
2255 pud = pud_alloc(mm, p4d, addr);
2256 if (!pud)
2257 return -ENOMEM;
2258 do {
2259 next = pud_addr_end(addr, end);
2260 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2261 if (err)
2262 break;
2263 } while (pud++, addr = next, addr != end);
2264 return err;
2265 }
2266
2267 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2268 unsigned long addr, unsigned long end,
2269 pte_fn_t fn, void *data)
2270 {
2271 p4d_t *p4d;
2272 unsigned long next;
2273 int err;
2274
2275 p4d = p4d_alloc(mm, pgd, addr);
2276 if (!p4d)
2277 return -ENOMEM;
2278 do {
2279 next = p4d_addr_end(addr, end);
2280 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2281 if (err)
2282 break;
2283 } while (p4d++, addr = next, addr != end);
2284 return err;
2285 }
2286
2287 /*
2288 * Scan a region of virtual memory, filling in page tables as necessary
2289 * and calling a provided function on each leaf page table.
2290 */
2291 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2292 unsigned long size, pte_fn_t fn, void *data)
2293 {
2294 pgd_t *pgd;
2295 unsigned long next;
2296 unsigned long end = addr + size;
2297 int err;
2298
2299 if (WARN_ON(addr >= end))
2300 return -EINVAL;
2301
2302 pgd = pgd_offset(mm, addr);
2303 do {
2304 next = pgd_addr_end(addr, end);
2305 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2306 if (err)
2307 break;
2308 } while (pgd++, addr = next, addr != end);
2309
2310 return err;
2311 }
2312 EXPORT_SYMBOL_GPL(apply_to_page_range);
2313
2314 /*
2315 * handle_pte_fault chooses page fault handler according to an entry which was
2316 * read non-atomically. Before making any commitment, on those architectures
2317 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2318 * parts, do_swap_page must check under lock before unmapping the pte and
2319 * proceeding (but do_wp_page is only called after already making such a check;
2320 * and do_anonymous_page can safely check later on).
2321 */
2322 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2323 pte_t *page_table, pte_t orig_pte)
2324 {
2325 int same = 1;
2326 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2327 if (sizeof(pte_t) > sizeof(unsigned long)) {
2328 spinlock_t *ptl = pte_lockptr(mm, pmd);
2329 spin_lock(ptl);
2330 same = pte_same(*page_table, orig_pte);
2331 spin_unlock(ptl);
2332 }
2333 #endif
2334 pte_unmap(page_table);
2335 return same;
2336 }
2337
2338 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2339 {
2340 debug_dma_assert_idle(src);
2341
2342 /*
2343 * If the source page was a PFN mapping, we don't have
2344 * a "struct page" for it. We do a best-effort copy by
2345 * just copying from the original user address. If that
2346 * fails, we just zero-fill it. Live with it.
2347 */
2348 if (unlikely(!src)) {
2349 void *kaddr = kmap_atomic(dst);
2350 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2351
2352 /*
2353 * This really shouldn't fail, because the page is there
2354 * in the page tables. But it might just be unreadable,
2355 * in which case we just give up and fill the result with
2356 * zeroes.
2357 */
2358 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2359 clear_page(kaddr);
2360 kunmap_atomic(kaddr);
2361 flush_dcache_page(dst);
2362 } else
2363 copy_user_highpage(dst, src, va, vma);
2364 }
2365
2366 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2367 {
2368 struct file *vm_file = vma->vm_file;
2369
2370 if (vm_file)
2371 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2372
2373 /*
2374 * Special mappings (e.g. VDSO) do not have any file so fake
2375 * a default GFP_KERNEL for them.
2376 */
2377 return GFP_KERNEL;
2378 }
2379
2380 /*
2381 * Notify the address space that the page is about to become writable so that
2382 * it can prohibit this or wait for the page to get into an appropriate state.
2383 *
2384 * We do this without the lock held, so that it can sleep if it needs to.
2385 */
2386 static int do_page_mkwrite(struct vm_fault *vmf)
2387 {
2388 int ret;
2389 struct page *page = vmf->page;
2390 unsigned int old_flags = vmf->flags;
2391
2392 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2393
2394 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2395 /* Restore original flags so that caller is not surprised */
2396 vmf->flags = old_flags;
2397 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2398 return ret;
2399 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2400 lock_page(page);
2401 if (!page->mapping) {
2402 unlock_page(page);
2403 return 0; /* retry */
2404 }
2405 ret |= VM_FAULT_LOCKED;
2406 } else
2407 VM_BUG_ON_PAGE(!PageLocked(page), page);
2408 return ret;
2409 }
2410
2411 /*
2412 * Handle dirtying of a page in shared file mapping on a write fault.
2413 *
2414 * The function expects the page to be locked and unlocks it.
2415 */
2416 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2417 struct page *page)
2418 {
2419 struct address_space *mapping;
2420 bool dirtied;
2421 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2422
2423 dirtied = set_page_dirty(page);
2424 VM_BUG_ON_PAGE(PageAnon(page), page);
2425 /*
2426 * Take a local copy of the address_space - page.mapping may be zeroed
2427 * by truncate after unlock_page(). The address_space itself remains
2428 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2429 * release semantics to prevent the compiler from undoing this copying.
2430 */
2431 mapping = page_rmapping(page);
2432 unlock_page(page);
2433
2434 if ((dirtied || page_mkwrite) && mapping) {
2435 /*
2436 * Some device drivers do not set page.mapping
2437 * but still dirty their pages
2438 */
2439 balance_dirty_pages_ratelimited(mapping);
2440 }
2441
2442 if (!page_mkwrite)
2443 file_update_time(vma->vm_file);
2444 }
2445
2446 /*
2447 * Handle write page faults for pages that can be reused in the current vma
2448 *
2449 * This can happen either due to the mapping being with the VM_SHARED flag,
2450 * or due to us being the last reference standing to the page. In either
2451 * case, all we need to do here is to mark the page as writable and update
2452 * any related book-keeping.
2453 */
2454 static inline void wp_page_reuse(struct vm_fault *vmf)
2455 __releases(vmf->ptl)
2456 {
2457 struct vm_area_struct *vma = vmf->vma;
2458 struct page *page = vmf->page;
2459 pte_t entry;
2460 /*
2461 * Clear the pages cpupid information as the existing
2462 * information potentially belongs to a now completely
2463 * unrelated process.
2464 */
2465 if (page)
2466 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2467
2468 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2469 entry = pte_mkyoung(vmf->orig_pte);
2470 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2471 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2472 update_mmu_cache(vma, vmf->address, vmf->pte);
2473 pte_unmap_unlock(vmf->pte, vmf->ptl);
2474 }
2475
2476 /*
2477 * Handle the case of a page which we actually need to copy to a new page.
2478 *
2479 * Called with mmap_sem locked and the old page referenced, but
2480 * without the ptl held.
2481 *
2482 * High level logic flow:
2483 *
2484 * - Allocate a page, copy the content of the old page to the new one.
2485 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2486 * - Take the PTL. If the pte changed, bail out and release the allocated page
2487 * - If the pte is still the way we remember it, update the page table and all
2488 * relevant references. This includes dropping the reference the page-table
2489 * held to the old page, as well as updating the rmap.
2490 * - In any case, unlock the PTL and drop the reference we took to the old page.
2491 */
2492 static int wp_page_copy(struct vm_fault *vmf)
2493 {
2494 struct vm_area_struct *vma = vmf->vma;
2495 struct mm_struct *mm = vma->vm_mm;
2496 struct page *old_page = vmf->page;
2497 struct page *new_page = NULL;
2498 pte_t entry;
2499 int page_copied = 0;
2500 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2501 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2502 struct mem_cgroup *memcg;
2503
2504 if (unlikely(anon_vma_prepare(vma)))
2505 goto oom;
2506
2507 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2508 new_page = alloc_zeroed_user_highpage_movable(vma,
2509 vmf->address);
2510 if (!new_page)
2511 goto oom;
2512 } else {
2513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2514 vmf->address);
2515 if (!new_page)
2516 goto oom;
2517 cow_user_page(new_page, old_page, vmf->address, vma);
2518 }
2519
2520 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2521 goto oom_free_new;
2522
2523 __SetPageUptodate(new_page);
2524
2525 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2526
2527 /*
2528 * Re-check the pte - we dropped the lock
2529 */
2530 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2531 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2532 if (old_page) {
2533 if (!PageAnon(old_page)) {
2534 dec_mm_counter_fast(mm,
2535 mm_counter_file(old_page));
2536 inc_mm_counter_fast(mm, MM_ANONPAGES);
2537 }
2538 } else {
2539 inc_mm_counter_fast(mm, MM_ANONPAGES);
2540 }
2541 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2542 entry = mk_pte(new_page, vma->vm_page_prot);
2543 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2544 /*
2545 * Clear the pte entry and flush it first, before updating the
2546 * pte with the new entry. This will avoid a race condition
2547 * seen in the presence of one thread doing SMC and another
2548 * thread doing COW.
2549 */
2550 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2551 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2552 mem_cgroup_commit_charge(new_page, memcg, false, false);
2553 lru_cache_add_active_or_unevictable(new_page, vma);
2554 /*
2555 * We call the notify macro here because, when using secondary
2556 * mmu page tables (such as kvm shadow page tables), we want the
2557 * new page to be mapped directly into the secondary page table.
2558 */
2559 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2560 update_mmu_cache(vma, vmf->address, vmf->pte);
2561 if (old_page) {
2562 /*
2563 * Only after switching the pte to the new page may
2564 * we remove the mapcount here. Otherwise another
2565 * process may come and find the rmap count decremented
2566 * before the pte is switched to the new page, and
2567 * "reuse" the old page writing into it while our pte
2568 * here still points into it and can be read by other
2569 * threads.
2570 *
2571 * The critical issue is to order this
2572 * page_remove_rmap with the ptp_clear_flush above.
2573 * Those stores are ordered by (if nothing else,)
2574 * the barrier present in the atomic_add_negative
2575 * in page_remove_rmap.
2576 *
2577 * Then the TLB flush in ptep_clear_flush ensures that
2578 * no process can access the old page before the
2579 * decremented mapcount is visible. And the old page
2580 * cannot be reused until after the decremented
2581 * mapcount is visible. So transitively, TLBs to
2582 * old page will be flushed before it can be reused.
2583 */
2584 page_remove_rmap(old_page, false);
2585 }
2586
2587 /* Free the old page.. */
2588 new_page = old_page;
2589 page_copied = 1;
2590 } else {
2591 mem_cgroup_cancel_charge(new_page, memcg, false);
2592 }
2593
2594 if (new_page)
2595 put_page(new_page);
2596
2597 pte_unmap_unlock(vmf->pte, vmf->ptl);
2598 /*
2599 * No need to double call mmu_notifier->invalidate_range() callback as
2600 * the above ptep_clear_flush_notify() did already call it.
2601 */
2602 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2603 if (old_page) {
2604 /*
2605 * Don't let another task, with possibly unlocked vma,
2606 * keep the mlocked page.
2607 */
2608 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2609 lock_page(old_page); /* LRU manipulation */
2610 if (PageMlocked(old_page))
2611 munlock_vma_page(old_page);
2612 unlock_page(old_page);
2613 }
2614 put_page(old_page);
2615 }
2616 return page_copied ? VM_FAULT_WRITE : 0;
2617 oom_free_new:
2618 put_page(new_page);
2619 oom:
2620 if (old_page)
2621 put_page(old_page);
2622 return VM_FAULT_OOM;
2623 }
2624
2625 /**
2626 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2627 * writeable once the page is prepared
2628 *
2629 * @vmf: structure describing the fault
2630 *
2631 * This function handles all that is needed to finish a write page fault in a
2632 * shared mapping due to PTE being read-only once the mapped page is prepared.
2633 * It handles locking of PTE and modifying it. The function returns
2634 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2635 * lock.
2636 *
2637 * The function expects the page to be locked or other protection against
2638 * concurrent faults / writeback (such as DAX radix tree locks).
2639 */
2640 int finish_mkwrite_fault(struct vm_fault *vmf)
2641 {
2642 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2643 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2644 &vmf->ptl);
2645 /*
2646 * We might have raced with another page fault while we released the
2647 * pte_offset_map_lock.
2648 */
2649 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2650 pte_unmap_unlock(vmf->pte, vmf->ptl);
2651 return VM_FAULT_NOPAGE;
2652 }
2653 wp_page_reuse(vmf);
2654 return 0;
2655 }
2656
2657 /*
2658 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2659 * mapping
2660 */
2661 static int wp_pfn_shared(struct vm_fault *vmf)
2662 {
2663 struct vm_area_struct *vma = vmf->vma;
2664
2665 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2666 int ret;
2667
2668 pte_unmap_unlock(vmf->pte, vmf->ptl);
2669 vmf->flags |= FAULT_FLAG_MKWRITE;
2670 ret = vma->vm_ops->pfn_mkwrite(vmf);
2671 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2672 return ret;
2673 return finish_mkwrite_fault(vmf);
2674 }
2675 wp_page_reuse(vmf);
2676 return VM_FAULT_WRITE;
2677 }
2678
2679 static int wp_page_shared(struct vm_fault *vmf)
2680 __releases(vmf->ptl)
2681 {
2682 struct vm_area_struct *vma = vmf->vma;
2683
2684 get_page(vmf->page);
2685
2686 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2687 int tmp;
2688
2689 pte_unmap_unlock(vmf->pte, vmf->ptl);
2690 tmp = do_page_mkwrite(vmf);
2691 if (unlikely(!tmp || (tmp &
2692 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2693 put_page(vmf->page);
2694 return tmp;
2695 }
2696 tmp = finish_mkwrite_fault(vmf);
2697 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2698 unlock_page(vmf->page);
2699 put_page(vmf->page);
2700 return tmp;
2701 }
2702 } else {
2703 wp_page_reuse(vmf);
2704 lock_page(vmf->page);
2705 }
2706 fault_dirty_shared_page(vma, vmf->page);
2707 put_page(vmf->page);
2708
2709 return VM_FAULT_WRITE;
2710 }
2711
2712 /*
2713 * This routine handles present pages, when users try to write
2714 * to a shared page. It is done by copying the page to a new address
2715 * and decrementing the shared-page counter for the old page.
2716 *
2717 * Note that this routine assumes that the protection checks have been
2718 * done by the caller (the low-level page fault routine in most cases).
2719 * Thus we can safely just mark it writable once we've done any necessary
2720 * COW.
2721 *
2722 * We also mark the page dirty at this point even though the page will
2723 * change only once the write actually happens. This avoids a few races,
2724 * and potentially makes it more efficient.
2725 *
2726 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2727 * but allow concurrent faults), with pte both mapped and locked.
2728 * We return with mmap_sem still held, but pte unmapped and unlocked.
2729 */
2730 static int do_wp_page(struct vm_fault *vmf)
2731 __releases(vmf->ptl)
2732 {
2733 struct vm_area_struct *vma = vmf->vma;
2734
2735 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2736 if (!vmf->page) {
2737 /*
2738 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2739 * VM_PFNMAP VMA.
2740 *
2741 * We should not cow pages in a shared writeable mapping.
2742 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2743 */
2744 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2745 (VM_WRITE|VM_SHARED))
2746 return wp_pfn_shared(vmf);
2747
2748 pte_unmap_unlock(vmf->pte, vmf->ptl);
2749 return wp_page_copy(vmf);
2750 }
2751
2752 /*
2753 * Take out anonymous pages first, anonymous shared vmas are
2754 * not dirty accountable.
2755 */
2756 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2757 int total_map_swapcount;
2758 if (!trylock_page(vmf->page)) {
2759 get_page(vmf->page);
2760 pte_unmap_unlock(vmf->pte, vmf->ptl);
2761 lock_page(vmf->page);
2762 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2763 vmf->address, &vmf->ptl);
2764 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2765 unlock_page(vmf->page);
2766 pte_unmap_unlock(vmf->pte, vmf->ptl);
2767 put_page(vmf->page);
2768 return 0;
2769 }
2770 put_page(vmf->page);
2771 }
2772 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2773 if (total_map_swapcount == 1) {
2774 /*
2775 * The page is all ours. Move it to
2776 * our anon_vma so the rmap code will
2777 * not search our parent or siblings.
2778 * Protected against the rmap code by
2779 * the page lock.
2780 */
2781 page_move_anon_rmap(vmf->page, vma);
2782 }
2783 unlock_page(vmf->page);
2784 wp_page_reuse(vmf);
2785 return VM_FAULT_WRITE;
2786 }
2787 unlock_page(vmf->page);
2788 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2789 (VM_WRITE|VM_SHARED))) {
2790 return wp_page_shared(vmf);
2791 }
2792
2793 /*
2794 * Ok, we need to copy. Oh, well..
2795 */
2796 get_page(vmf->page);
2797
2798 pte_unmap_unlock(vmf->pte, vmf->ptl);
2799 return wp_page_copy(vmf);
2800 }
2801
2802 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2803 unsigned long start_addr, unsigned long end_addr,
2804 struct zap_details *details)
2805 {
2806 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2807 }
2808
2809 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2810 struct zap_details *details)
2811 {
2812 struct vm_area_struct *vma;
2813 pgoff_t vba, vea, zba, zea;
2814
2815 vma_interval_tree_foreach(vma, root,
2816 details->first_index, details->last_index) {
2817
2818 vba = vma->vm_pgoff;
2819 vea = vba + vma_pages(vma) - 1;
2820 zba = details->first_index;
2821 if (zba < vba)
2822 zba = vba;
2823 zea = details->last_index;
2824 if (zea > vea)
2825 zea = vea;
2826
2827 unmap_mapping_range_vma(vma,
2828 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2829 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2830 details);
2831 }
2832 }
2833
2834 /**
2835 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2836 * address_space corresponding to the specified page range in the underlying
2837 * file.
2838 *
2839 * @mapping: the address space containing mmaps to be unmapped.
2840 * @holebegin: byte in first page to unmap, relative to the start of
2841 * the underlying file. This will be rounded down to a PAGE_SIZE
2842 * boundary. Note that this is different from truncate_pagecache(), which
2843 * must keep the partial page. In contrast, we must get rid of
2844 * partial pages.
2845 * @holelen: size of prospective hole in bytes. This will be rounded
2846 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2847 * end of the file.
2848 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2849 * but 0 when invalidating pagecache, don't throw away private data.
2850 */
2851 void unmap_mapping_range(struct address_space *mapping,
2852 loff_t const holebegin, loff_t const holelen, int even_cows)
2853 {
2854 struct zap_details details = { };
2855 pgoff_t hba = holebegin >> PAGE_SHIFT;
2856 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857
2858 /* Check for overflow. */
2859 if (sizeof(holelen) > sizeof(hlen)) {
2860 long long holeend =
2861 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862 if (holeend & ~(long long)ULONG_MAX)
2863 hlen = ULONG_MAX - hba + 1;
2864 }
2865
2866 details.check_mapping = even_cows ? NULL : mapping;
2867 details.first_index = hba;
2868 details.last_index = hba + hlen - 1;
2869 if (details.last_index < details.first_index)
2870 details.last_index = ULONG_MAX;
2871
2872 i_mmap_lock_write(mapping);
2873 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2874 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2875 i_mmap_unlock_write(mapping);
2876 }
2877 EXPORT_SYMBOL(unmap_mapping_range);
2878
2879 /*
2880 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2881 * but allow concurrent faults), and pte mapped but not yet locked.
2882 * We return with pte unmapped and unlocked.
2883 *
2884 * We return with the mmap_sem locked or unlocked in the same cases
2885 * as does filemap_fault().
2886 */
2887 int do_swap_page(struct vm_fault *vmf)
2888 {
2889 struct vm_area_struct *vma = vmf->vma;
2890 struct page *page = NULL, *swapcache = NULL;
2891 struct mem_cgroup *memcg;
2892 struct vma_swap_readahead swap_ra;
2893 swp_entry_t entry;
2894 pte_t pte;
2895 int locked;
2896 int exclusive = 0;
2897 int ret = 0;
2898 bool vma_readahead = swap_use_vma_readahead();
2899
2900 if (vma_readahead) {
2901 page = swap_readahead_detect(vmf, &swap_ra);
2902 swapcache = page;
2903 }
2904
2905 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2906 if (page)
2907 put_page(page);
2908 goto out;
2909 }
2910
2911 entry = pte_to_swp_entry(vmf->orig_pte);
2912 if (unlikely(non_swap_entry(entry))) {
2913 if (is_migration_entry(entry)) {
2914 migration_entry_wait(vma->vm_mm, vmf->pmd,
2915 vmf->address);
2916 } else if (is_device_private_entry(entry)) {
2917 /*
2918 * For un-addressable device memory we call the pgmap
2919 * fault handler callback. The callback must migrate
2920 * the page back to some CPU accessible page.
2921 */
2922 ret = device_private_entry_fault(vma, vmf->address, entry,
2923 vmf->flags, vmf->pmd);
2924 } else if (is_hwpoison_entry(entry)) {
2925 ret = VM_FAULT_HWPOISON;
2926 } else {
2927 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2928 ret = VM_FAULT_SIGBUS;
2929 }
2930 goto out;
2931 }
2932
2933
2934 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2935 if (!page) {
2936 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2937 vmf->address);
2938 swapcache = page;
2939 }
2940
2941 if (!page) {
2942 struct swap_info_struct *si = swp_swap_info(entry);
2943
2944 if (si->flags & SWP_SYNCHRONOUS_IO &&
2945 __swap_count(si, entry) == 1) {
2946 /* skip swapcache */
2947 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2948 if (page) {
2949 __SetPageLocked(page);
2950 __SetPageSwapBacked(page);
2951 set_page_private(page, entry.val);
2952 lru_cache_add_anon(page);
2953 swap_readpage(page, true);
2954 }
2955 } else {
2956 if (vma_readahead)
2957 page = do_swap_page_readahead(entry,
2958 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2959 else
2960 page = swapin_readahead(entry,
2961 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2962 swapcache = page;
2963 }
2964
2965 if (!page) {
2966 /*
2967 * Back out if somebody else faulted in this pte
2968 * while we released the pte lock.
2969 */
2970 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2971 vmf->address, &vmf->ptl);
2972 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2973 ret = VM_FAULT_OOM;
2974 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975 goto unlock;
2976 }
2977
2978 /* Had to read the page from swap area: Major fault */
2979 ret = VM_FAULT_MAJOR;
2980 count_vm_event(PGMAJFAULT);
2981 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2982 } else if (PageHWPoison(page)) {
2983 /*
2984 * hwpoisoned dirty swapcache pages are kept for killing
2985 * owner processes (which may be unknown at hwpoison time)
2986 */
2987 ret = VM_FAULT_HWPOISON;
2988 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2989 swapcache = page;
2990 goto out_release;
2991 }
2992
2993 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2994
2995 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2996 if (!locked) {
2997 ret |= VM_FAULT_RETRY;
2998 goto out_release;
2999 }
3000
3001 /*
3002 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3003 * release the swapcache from under us. The page pin, and pte_same
3004 * test below, are not enough to exclude that. Even if it is still
3005 * swapcache, we need to check that the page's swap has not changed.
3006 */
3007 if (unlikely((!PageSwapCache(page) ||
3008 page_private(page) != entry.val)) && swapcache)
3009 goto out_page;
3010
3011 page = ksm_might_need_to_copy(page, vma, vmf->address);
3012 if (unlikely(!page)) {
3013 ret = VM_FAULT_OOM;
3014 page = swapcache;
3015 goto out_page;
3016 }
3017
3018 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3019 &memcg, false)) {
3020 ret = VM_FAULT_OOM;
3021 goto out_page;
3022 }
3023
3024 /*
3025 * Back out if somebody else already faulted in this pte.
3026 */
3027 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3028 &vmf->ptl);
3029 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3030 goto out_nomap;
3031
3032 if (unlikely(!PageUptodate(page))) {
3033 ret = VM_FAULT_SIGBUS;
3034 goto out_nomap;
3035 }
3036
3037 /*
3038 * The page isn't present yet, go ahead with the fault.
3039 *
3040 * Be careful about the sequence of operations here.
3041 * To get its accounting right, reuse_swap_page() must be called
3042 * while the page is counted on swap but not yet in mapcount i.e.
3043 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3044 * must be called after the swap_free(), or it will never succeed.
3045 */
3046
3047 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3048 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3049 pte = mk_pte(page, vma->vm_page_prot);
3050 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3051 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3052 vmf->flags &= ~FAULT_FLAG_WRITE;
3053 ret |= VM_FAULT_WRITE;
3054 exclusive = RMAP_EXCLUSIVE;
3055 }
3056 flush_icache_page(vma, page);
3057 if (pte_swp_soft_dirty(vmf->orig_pte))
3058 pte = pte_mksoft_dirty(pte);
3059 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3060 vmf->orig_pte = pte;
3061
3062 /* ksm created a completely new copy */
3063 if (unlikely(page != swapcache && swapcache)) {
3064 page_add_new_anon_rmap(page, vma, vmf->address, false);
3065 mem_cgroup_commit_charge(page, memcg, false, false);
3066 lru_cache_add_active_or_unevictable(page, vma);
3067 } else {
3068 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3069 mem_cgroup_commit_charge(page, memcg, true, false);
3070 activate_page(page);
3071 }
3072
3073 swap_free(entry);
3074 if (mem_cgroup_swap_full(page) ||
3075 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3076 try_to_free_swap(page);
3077 unlock_page(page);
3078 if (page != swapcache && swapcache) {
3079 /*
3080 * Hold the lock to avoid the swap entry to be reused
3081 * until we take the PT lock for the pte_same() check
3082 * (to avoid false positives from pte_same). For
3083 * further safety release the lock after the swap_free
3084 * so that the swap count won't change under a
3085 * parallel locked swapcache.
3086 */
3087 unlock_page(swapcache);
3088 put_page(swapcache);
3089 }
3090
3091 if (vmf->flags & FAULT_FLAG_WRITE) {
3092 ret |= do_wp_page(vmf);
3093 if (ret & VM_FAULT_ERROR)
3094 ret &= VM_FAULT_ERROR;
3095 goto out;
3096 }
3097
3098 /* No need to invalidate - it was non-present before */
3099 update_mmu_cache(vma, vmf->address, vmf->pte);
3100 unlock:
3101 pte_unmap_unlock(vmf->pte, vmf->ptl);
3102 out:
3103 return ret;
3104 out_nomap:
3105 mem_cgroup_cancel_charge(page, memcg, false);
3106 pte_unmap_unlock(vmf->pte, vmf->ptl);
3107 out_page:
3108 unlock_page(page);
3109 out_release:
3110 put_page(page);
3111 if (page != swapcache && swapcache) {
3112 unlock_page(swapcache);
3113 put_page(swapcache);
3114 }
3115 return ret;
3116 }
3117
3118 /*
3119 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3120 * but allow concurrent faults), and pte mapped but not yet locked.
3121 * We return with mmap_sem still held, but pte unmapped and unlocked.
3122 */
3123 static int do_anonymous_page(struct vm_fault *vmf)
3124 {
3125 struct vm_area_struct *vma = vmf->vma;
3126 struct mem_cgroup *memcg;
3127 struct page *page;
3128 int ret = 0;
3129 pte_t entry;
3130
3131 /* File mapping without ->vm_ops ? */
3132 if (vma->vm_flags & VM_SHARED)
3133 return VM_FAULT_SIGBUS;
3134
3135 /*
3136 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3137 * pte_offset_map() on pmds where a huge pmd might be created
3138 * from a different thread.
3139 *
3140 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3141 * parallel threads are excluded by other means.
3142 *
3143 * Here we only have down_read(mmap_sem).
3144 */
3145 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3146 return VM_FAULT_OOM;
3147
3148 /* See the comment in pte_alloc_one_map() */
3149 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3150 return 0;
3151
3152 /* Use the zero-page for reads */
3153 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3154 !mm_forbids_zeropage(vma->vm_mm)) {
3155 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3156 vma->vm_page_prot));
3157 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3158 vmf->address, &vmf->ptl);
3159 if (!pte_none(*vmf->pte))
3160 goto unlock;
3161 ret = check_stable_address_space(vma->vm_mm);
3162 if (ret)
3163 goto unlock;
3164 /* Deliver the page fault to userland, check inside PT lock */
3165 if (userfaultfd_missing(vma)) {
3166 pte_unmap_unlock(vmf->pte, vmf->ptl);
3167 return handle_userfault(vmf, VM_UFFD_MISSING);
3168 }
3169 goto setpte;
3170 }
3171
3172 /* Allocate our own private page. */
3173 if (unlikely(anon_vma_prepare(vma)))
3174 goto oom;
3175 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3176 if (!page)
3177 goto oom;
3178
3179 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3180 goto oom_free_page;
3181
3182 /*
3183 * The memory barrier inside __SetPageUptodate makes sure that
3184 * preceeding stores to the page contents become visible before
3185 * the set_pte_at() write.
3186 */
3187 __SetPageUptodate(page);
3188
3189 entry = mk_pte(page, vma->vm_page_prot);
3190 if (vma->vm_flags & VM_WRITE)
3191 entry = pte_mkwrite(pte_mkdirty(entry));
3192
3193 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3194 &vmf->ptl);
3195 if (!pte_none(*vmf->pte))
3196 goto release;
3197
3198 ret = check_stable_address_space(vma->vm_mm);
3199 if (ret)
3200 goto release;
3201
3202 /* Deliver the page fault to userland, check inside PT lock */
3203 if (userfaultfd_missing(vma)) {
3204 pte_unmap_unlock(vmf->pte, vmf->ptl);
3205 mem_cgroup_cancel_charge(page, memcg, false);
3206 put_page(page);
3207 return handle_userfault(vmf, VM_UFFD_MISSING);
3208 }
3209
3210 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3211 page_add_new_anon_rmap(page, vma, vmf->address, false);
3212 mem_cgroup_commit_charge(page, memcg, false, false);
3213 lru_cache_add_active_or_unevictable(page, vma);
3214 setpte:
3215 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3216
3217 /* No need to invalidate - it was non-present before */
3218 update_mmu_cache(vma, vmf->address, vmf->pte);
3219 unlock:
3220 pte_unmap_unlock(vmf->pte, vmf->ptl);
3221 return ret;
3222 release:
3223 mem_cgroup_cancel_charge(page, memcg, false);
3224 put_page(page);
3225 goto unlock;
3226 oom_free_page:
3227 put_page(page);
3228 oom:
3229 return VM_FAULT_OOM;
3230 }
3231
3232 /*
3233 * The mmap_sem must have been held on entry, and may have been
3234 * released depending on flags and vma->vm_ops->fault() return value.
3235 * See filemap_fault() and __lock_page_retry().
3236 */
3237 static int __do_fault(struct vm_fault *vmf)
3238 {
3239 struct vm_area_struct *vma = vmf->vma;
3240 int ret;
3241
3242 ret = vma->vm_ops->fault(vmf);
3243 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3244 VM_FAULT_DONE_COW)))
3245 return ret;
3246
3247 if (unlikely(PageHWPoison(vmf->page))) {
3248 if (ret & VM_FAULT_LOCKED)
3249 unlock_page(vmf->page);
3250 put_page(vmf->page);
3251 vmf->page = NULL;
3252 return VM_FAULT_HWPOISON;
3253 }
3254
3255 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3256 lock_page(vmf->page);
3257 else
3258 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3259
3260 return ret;
3261 }
3262
3263 /*
3264 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3265 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3266 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3267 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3268 */
3269 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3270 {
3271 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3272 }
3273
3274 static int pte_alloc_one_map(struct vm_fault *vmf)
3275 {
3276 struct vm_area_struct *vma = vmf->vma;
3277
3278 if (!pmd_none(*vmf->pmd))
3279 goto map_pte;
3280 if (vmf->prealloc_pte) {
3281 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3282 if (unlikely(!pmd_none(*vmf->pmd))) {
3283 spin_unlock(vmf->ptl);
3284 goto map_pte;
3285 }
3286
3287 mm_inc_nr_ptes(vma->vm_mm);
3288 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3289 spin_unlock(vmf->ptl);
3290 vmf->prealloc_pte = NULL;
3291 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3292 return VM_FAULT_OOM;
3293 }
3294 map_pte:
3295 /*
3296 * If a huge pmd materialized under us just retry later. Use
3297 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3298 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3299 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3300 * running immediately after a huge pmd fault in a different thread of
3301 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3302 * All we have to ensure is that it is a regular pmd that we can walk
3303 * with pte_offset_map() and we can do that through an atomic read in
3304 * C, which is what pmd_trans_unstable() provides.
3305 */
3306 if (pmd_devmap_trans_unstable(vmf->pmd))
3307 return VM_FAULT_NOPAGE;
3308
3309 /*
3310 * At this point we know that our vmf->pmd points to a page of ptes
3311 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3312 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3313 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3314 * be valid and we will re-check to make sure the vmf->pte isn't
3315 * pte_none() under vmf->ptl protection when we return to
3316 * alloc_set_pte().
3317 */
3318 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3319 &vmf->ptl);
3320 return 0;
3321 }
3322
3323 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3324
3325 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3326 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3327 unsigned long haddr)
3328 {
3329 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3330 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3331 return false;
3332 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3333 return false;
3334 return true;
3335 }
3336
3337 static void deposit_prealloc_pte(struct vm_fault *vmf)
3338 {
3339 struct vm_area_struct *vma = vmf->vma;
3340
3341 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3342 /*
3343 * We are going to consume the prealloc table,
3344 * count that as nr_ptes.
3345 */
3346 mm_inc_nr_ptes(vma->vm_mm);
3347 vmf->prealloc_pte = NULL;
3348 }
3349
3350 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3351 {
3352 struct vm_area_struct *vma = vmf->vma;
3353 bool write = vmf->flags & FAULT_FLAG_WRITE;
3354 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3355 pmd_t entry;
3356 int i, ret;
3357
3358 if (!transhuge_vma_suitable(vma, haddr))
3359 return VM_FAULT_FALLBACK;
3360
3361 ret = VM_FAULT_FALLBACK;
3362 page = compound_head(page);
3363
3364 /*
3365 * Archs like ppc64 need additonal space to store information
3366 * related to pte entry. Use the preallocated table for that.
3367 */
3368 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3369 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3370 if (!vmf->prealloc_pte)
3371 return VM_FAULT_OOM;
3372 smp_wmb(); /* See comment in __pte_alloc() */
3373 }
3374
3375 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3376 if (unlikely(!pmd_none(*vmf->pmd)))
3377 goto out;
3378
3379 for (i = 0; i < HPAGE_PMD_NR; i++)
3380 flush_icache_page(vma, page + i);
3381
3382 entry = mk_huge_pmd(page, vma->vm_page_prot);
3383 if (write)
3384 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3385
3386 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3387 page_add_file_rmap(page, true);
3388 /*
3389 * deposit and withdraw with pmd lock held
3390 */
3391 if (arch_needs_pgtable_deposit())
3392 deposit_prealloc_pte(vmf);
3393
3394 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3395
3396 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3397
3398 /* fault is handled */
3399 ret = 0;
3400 count_vm_event(THP_FILE_MAPPED);
3401 out:
3402 spin_unlock(vmf->ptl);
3403 return ret;
3404 }
3405 #else
3406 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3407 {
3408 BUILD_BUG();
3409 return 0;
3410 }
3411 #endif
3412
3413 /**
3414 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3415 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3416 *
3417 * @vmf: fault environment
3418 * @memcg: memcg to charge page (only for private mappings)
3419 * @page: page to map
3420 *
3421 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3422 * return.
3423 *
3424 * Target users are page handler itself and implementations of
3425 * vm_ops->map_pages.
3426 */
3427 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3428 struct page *page)
3429 {
3430 struct vm_area_struct *vma = vmf->vma;
3431 bool write = vmf->flags & FAULT_FLAG_WRITE;
3432 pte_t entry;
3433 int ret;
3434
3435 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3436 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3437 /* THP on COW? */
3438 VM_BUG_ON_PAGE(memcg, page);
3439
3440 ret = do_set_pmd(vmf, page);
3441 if (ret != VM_FAULT_FALLBACK)
3442 return ret;
3443 }
3444
3445 if (!vmf->pte) {
3446 ret = pte_alloc_one_map(vmf);
3447 if (ret)
3448 return ret;
3449 }
3450
3451 /* Re-check under ptl */
3452 if (unlikely(!pte_none(*vmf->pte)))
3453 return VM_FAULT_NOPAGE;
3454
3455 flush_icache_page(vma, page);
3456 entry = mk_pte(page, vma->vm_page_prot);
3457 if (write)
3458 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3459 /* copy-on-write page */
3460 if (write && !(vma->vm_flags & VM_SHARED)) {
3461 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3462 page_add_new_anon_rmap(page, vma, vmf->address, false);
3463 mem_cgroup_commit_charge(page, memcg, false, false);
3464 lru_cache_add_active_or_unevictable(page, vma);
3465 } else {
3466 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3467 page_add_file_rmap(page, false);
3468 }
3469 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3470
3471 /* no need to invalidate: a not-present page won't be cached */
3472 update_mmu_cache(vma, vmf->address, vmf->pte);
3473
3474 return 0;
3475 }
3476
3477
3478 /**
3479 * finish_fault - finish page fault once we have prepared the page to fault
3480 *
3481 * @vmf: structure describing the fault
3482 *
3483 * This function handles all that is needed to finish a page fault once the
3484 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3485 * given page, adds reverse page mapping, handles memcg charges and LRU
3486 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3487 * error.
3488 *
3489 * The function expects the page to be locked and on success it consumes a
3490 * reference of a page being mapped (for the PTE which maps it).
3491 */
3492 int finish_fault(struct vm_fault *vmf)
3493 {
3494 struct page *page;
3495 int ret = 0;
3496
3497 /* Did we COW the page? */
3498 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3499 !(vmf->vma->vm_flags & VM_SHARED))
3500 page = vmf->cow_page;
3501 else
3502 page = vmf->page;
3503
3504 /*
3505 * check even for read faults because we might have lost our CoWed
3506 * page
3507 */
3508 if (!(vmf->vma->vm_flags & VM_SHARED))
3509 ret = check_stable_address_space(vmf->vma->vm_mm);
3510 if (!ret)
3511 ret = alloc_set_pte(vmf, vmf->memcg, page);
3512 if (vmf->pte)
3513 pte_unmap_unlock(vmf->pte, vmf->ptl);
3514 return ret;
3515 }
3516
3517 static unsigned long fault_around_bytes __read_mostly =
3518 rounddown_pow_of_two(65536);
3519
3520 #ifdef CONFIG_DEBUG_FS
3521 static int fault_around_bytes_get(void *data, u64 *val)
3522 {
3523 *val = fault_around_bytes;
3524 return 0;
3525 }
3526
3527 /*
3528 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3529 * rounded down to nearest page order. It's what do_fault_around() expects to
3530 * see.
3531 */
3532 static int fault_around_bytes_set(void *data, u64 val)
3533 {
3534 if (val / PAGE_SIZE > PTRS_PER_PTE)
3535 return -EINVAL;
3536 if (val > PAGE_SIZE)
3537 fault_around_bytes = rounddown_pow_of_two(val);
3538 else
3539 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3540 return 0;
3541 }
3542 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3543 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3544
3545 static int __init fault_around_debugfs(void)
3546 {
3547 void *ret;
3548
3549 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3550 &fault_around_bytes_fops);
3551 if (!ret)
3552 pr_warn("Failed to create fault_around_bytes in debugfs");
3553 return 0;
3554 }
3555 late_initcall(fault_around_debugfs);
3556 #endif
3557
3558 /*
3559 * do_fault_around() tries to map few pages around the fault address. The hope
3560 * is that the pages will be needed soon and this will lower the number of
3561 * faults to handle.
3562 *
3563 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3564 * not ready to be mapped: not up-to-date, locked, etc.
3565 *
3566 * This function is called with the page table lock taken. In the split ptlock
3567 * case the page table lock only protects only those entries which belong to
3568 * the page table corresponding to the fault address.
3569 *
3570 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3571 * only once.
3572 *
3573 * fault_around_pages() defines how many pages we'll try to map.
3574 * do_fault_around() expects it to return a power of two less than or equal to
3575 * PTRS_PER_PTE.
3576 *
3577 * The virtual address of the area that we map is naturally aligned to the
3578 * fault_around_pages() value (and therefore to page order). This way it's
3579 * easier to guarantee that we don't cross page table boundaries.
3580 */
3581 static int do_fault_around(struct vm_fault *vmf)
3582 {
3583 unsigned long address = vmf->address, nr_pages, mask;
3584 pgoff_t start_pgoff = vmf->pgoff;
3585 pgoff_t end_pgoff;
3586 int off, ret = 0;
3587
3588 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3589 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3590
3591 vmf->address = max(address & mask, vmf->vma->vm_start);
3592 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3593 start_pgoff -= off;
3594
3595 /*
3596 * end_pgoff is either end of page table or end of vma
3597 * or fault_around_pages() from start_pgoff, depending what is nearest.
3598 */
3599 end_pgoff = start_pgoff -
3600 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3601 PTRS_PER_PTE - 1;
3602 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3603 start_pgoff + nr_pages - 1);
3604
3605 if (pmd_none(*vmf->pmd)) {
3606 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3607 vmf->address);
3608 if (!vmf->prealloc_pte)
3609 goto out;
3610 smp_wmb(); /* See comment in __pte_alloc() */
3611 }
3612
3613 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3614
3615 /* Huge page is mapped? Page fault is solved */
3616 if (pmd_trans_huge(*vmf->pmd)) {
3617 ret = VM_FAULT_NOPAGE;
3618 goto out;
3619 }
3620
3621 /* ->map_pages() haven't done anything useful. Cold page cache? */
3622 if (!vmf->pte)
3623 goto out;
3624
3625 /* check if the page fault is solved */
3626 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3627 if (!pte_none(*vmf->pte))
3628 ret = VM_FAULT_NOPAGE;
3629 pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 out:
3631 vmf->address = address;
3632 vmf->pte = NULL;
3633 return ret;
3634 }
3635
3636 static int do_read_fault(struct vm_fault *vmf)
3637 {
3638 struct vm_area_struct *vma = vmf->vma;
3639 int ret = 0;
3640
3641 /*
3642 * Let's call ->map_pages() first and use ->fault() as fallback
3643 * if page by the offset is not ready to be mapped (cold cache or
3644 * something).
3645 */
3646 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3647 ret = do_fault_around(vmf);
3648 if (ret)
3649 return ret;
3650 }
3651
3652 ret = __do_fault(vmf);
3653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654 return ret;
3655
3656 ret |= finish_fault(vmf);
3657 unlock_page(vmf->page);
3658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659 put_page(vmf->page);
3660 return ret;
3661 }
3662
3663 static int do_cow_fault(struct vm_fault *vmf)
3664 {
3665 struct vm_area_struct *vma = vmf->vma;
3666 int ret;
3667
3668 if (unlikely(anon_vma_prepare(vma)))
3669 return VM_FAULT_OOM;
3670
3671 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3672 if (!vmf->cow_page)
3673 return VM_FAULT_OOM;
3674
3675 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3676 &vmf->memcg, false)) {
3677 put_page(vmf->cow_page);
3678 return VM_FAULT_OOM;
3679 }
3680
3681 ret = __do_fault(vmf);
3682 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683 goto uncharge_out;
3684 if (ret & VM_FAULT_DONE_COW)
3685 return ret;
3686
3687 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3688 __SetPageUptodate(vmf->cow_page);
3689
3690 ret |= finish_fault(vmf);
3691 unlock_page(vmf->page);
3692 put_page(vmf->page);
3693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694 goto uncharge_out;
3695 return ret;
3696 uncharge_out:
3697 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3698 put_page(vmf->cow_page);
3699 return ret;
3700 }
3701
3702 static int do_shared_fault(struct vm_fault *vmf)
3703 {
3704 struct vm_area_struct *vma = vmf->vma;
3705 int ret, tmp;
3706
3707 ret = __do_fault(vmf);
3708 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3709 return ret;
3710
3711 /*
3712 * Check if the backing address space wants to know that the page is
3713 * about to become writable
3714 */
3715 if (vma->vm_ops->page_mkwrite) {
3716 unlock_page(vmf->page);
3717 tmp = do_page_mkwrite(vmf);
3718 if (unlikely(!tmp ||
3719 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3720 put_page(vmf->page);
3721 return tmp;
3722 }
3723 }
3724
3725 ret |= finish_fault(vmf);
3726 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3727 VM_FAULT_RETRY))) {
3728 unlock_page(vmf->page);
3729 put_page(vmf->page);
3730 return ret;
3731 }
3732
3733 fault_dirty_shared_page(vma, vmf->page);
3734 return ret;
3735 }
3736
3737 /*
3738 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739 * but allow concurrent faults).
3740 * The mmap_sem may have been released depending on flags and our
3741 * return value. See filemap_fault() and __lock_page_or_retry().
3742 */
3743 static int do_fault(struct vm_fault *vmf)
3744 {
3745 struct vm_area_struct *vma = vmf->vma;
3746 int ret;
3747
3748 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749 if (!vma->vm_ops->fault)
3750 ret = VM_FAULT_SIGBUS;
3751 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3752 ret = do_read_fault(vmf);
3753 else if (!(vma->vm_flags & VM_SHARED))
3754 ret = do_cow_fault(vmf);
3755 else
3756 ret = do_shared_fault(vmf);
3757
3758 /* preallocated pagetable is unused: free it */
3759 if (vmf->prealloc_pte) {
3760 pte_free(vma->vm_mm, vmf->prealloc_pte);
3761 vmf->prealloc_pte = NULL;
3762 }
3763 return ret;
3764 }
3765
3766 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3767 unsigned long addr, int page_nid,
3768 int *flags)
3769 {
3770 get_page(page);
3771
3772 count_vm_numa_event(NUMA_HINT_FAULTS);
3773 if (page_nid == numa_node_id()) {
3774 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3775 *flags |= TNF_FAULT_LOCAL;
3776 }
3777
3778 return mpol_misplaced(page, vma, addr);
3779 }
3780
3781 static int do_numa_page(struct vm_fault *vmf)
3782 {
3783 struct vm_area_struct *vma = vmf->vma;
3784 struct page *page = NULL;
3785 int page_nid = -1;
3786 int last_cpupid;
3787 int target_nid;
3788 bool migrated = false;
3789 pte_t pte;
3790 bool was_writable = pte_savedwrite(vmf->orig_pte);
3791 int flags = 0;
3792
3793 /*
3794 * The "pte" at this point cannot be used safely without
3795 * validation through pte_unmap_same(). It's of NUMA type but
3796 * the pfn may be screwed if the read is non atomic.
3797 */
3798 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3799 spin_lock(vmf->ptl);
3800 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3801 pte_unmap_unlock(vmf->pte, vmf->ptl);
3802 goto out;
3803 }
3804
3805 /*
3806 * Make it present again, Depending on how arch implementes non
3807 * accessible ptes, some can allow access by kernel mode.
3808 */
3809 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3810 pte = pte_modify(pte, vma->vm_page_prot);
3811 pte = pte_mkyoung(pte);
3812 if (was_writable)
3813 pte = pte_mkwrite(pte);
3814 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3815 update_mmu_cache(vma, vmf->address, vmf->pte);
3816
3817 page = vm_normal_page(vma, vmf->address, pte);
3818 if (!page) {
3819 pte_unmap_unlock(vmf->pte, vmf->ptl);
3820 return 0;
3821 }
3822
3823 /* TODO: handle PTE-mapped THP */
3824 if (PageCompound(page)) {
3825 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 return 0;
3827 }
3828
3829 /*
3830 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831 * much anyway since they can be in shared cache state. This misses
3832 * the case where a mapping is writable but the process never writes
3833 * to it but pte_write gets cleared during protection updates and
3834 * pte_dirty has unpredictable behaviour between PTE scan updates,
3835 * background writeback, dirty balancing and application behaviour.
3836 */
3837 if (!pte_write(pte))
3838 flags |= TNF_NO_GROUP;
3839
3840 /*
3841 * Flag if the page is shared between multiple address spaces. This
3842 * is later used when determining whether to group tasks together
3843 */
3844 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3845 flags |= TNF_SHARED;
3846
3847 last_cpupid = page_cpupid_last(page);
3848 page_nid = page_to_nid(page);
3849 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3850 &flags);
3851 pte_unmap_unlock(vmf->pte, vmf->ptl);
3852 if (target_nid == -1) {
3853 put_page(page);
3854 goto out;
3855 }
3856
3857 /* Migrate to the requested node */
3858 migrated = migrate_misplaced_page(page, vma, target_nid);
3859 if (migrated) {
3860 page_nid = target_nid;
3861 flags |= TNF_MIGRATED;
3862 } else
3863 flags |= TNF_MIGRATE_FAIL;
3864
3865 out:
3866 if (page_nid != -1)
3867 task_numa_fault(last_cpupid, page_nid, 1, flags);
3868 return 0;
3869 }
3870
3871 static inline int create_huge_pmd(struct vm_fault *vmf)
3872 {
3873 if (vma_is_anonymous(vmf->vma))
3874 return do_huge_pmd_anonymous_page(vmf);
3875 if (vmf->vma->vm_ops->huge_fault)
3876 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877 return VM_FAULT_FALLBACK;
3878 }
3879
3880 /* `inline' is required to avoid gcc 4.1.2 build error */
3881 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3882 {
3883 if (vma_is_anonymous(vmf->vma))
3884 return do_huge_pmd_wp_page(vmf, orig_pmd);
3885 if (vmf->vma->vm_ops->huge_fault)
3886 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3887
3888 /* COW handled on pte level: split pmd */
3889 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3890 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3891
3892 return VM_FAULT_FALLBACK;
3893 }
3894
3895 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3896 {
3897 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3898 }
3899
3900 static int create_huge_pud(struct vm_fault *vmf)
3901 {
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 /* No support for anonymous transparent PUD pages yet */
3904 if (vma_is_anonymous(vmf->vma))
3905 return VM_FAULT_FALLBACK;
3906 if (vmf->vma->vm_ops->huge_fault)
3907 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909 return VM_FAULT_FALLBACK;
3910 }
3911
3912 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3913 {
3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915 /* No support for anonymous transparent PUD pages yet */
3916 if (vma_is_anonymous(vmf->vma))
3917 return VM_FAULT_FALLBACK;
3918 if (vmf->vma->vm_ops->huge_fault)
3919 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921 return VM_FAULT_FALLBACK;
3922 }
3923
3924 /*
3925 * These routines also need to handle stuff like marking pages dirty
3926 * and/or accessed for architectures that don't do it in hardware (most
3927 * RISC architectures). The early dirtying is also good on the i386.
3928 *
3929 * There is also a hook called "update_mmu_cache()" that architectures
3930 * with external mmu caches can use to update those (ie the Sparc or
3931 * PowerPC hashed page tables that act as extended TLBs).
3932 *
3933 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934 * concurrent faults).
3935 *
3936 * The mmap_sem may have been released depending on flags and our return value.
3937 * See filemap_fault() and __lock_page_or_retry().
3938 */
3939 static int handle_pte_fault(struct vm_fault *vmf)
3940 {
3941 pte_t entry;
3942
3943 if (unlikely(pmd_none(*vmf->pmd))) {
3944 /*
3945 * Leave __pte_alloc() until later: because vm_ops->fault may
3946 * want to allocate huge page, and if we expose page table
3947 * for an instant, it will be difficult to retract from
3948 * concurrent faults and from rmap lookups.
3949 */
3950 vmf->pte = NULL;
3951 } else {
3952 /* See comment in pte_alloc_one_map() */
3953 if (pmd_devmap_trans_unstable(vmf->pmd))
3954 return 0;
3955 /*
3956 * A regular pmd is established and it can't morph into a huge
3957 * pmd from under us anymore at this point because we hold the
3958 * mmap_sem read mode and khugepaged takes it in write mode.
3959 * So now it's safe to run pte_offset_map().
3960 */
3961 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3962 vmf->orig_pte = *vmf->pte;
3963
3964 /*
3965 * some architectures can have larger ptes than wordsize,
3966 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968 * accesses. The code below just needs a consistent view
3969 * for the ifs and we later double check anyway with the
3970 * ptl lock held. So here a barrier will do.
3971 */
3972 barrier();
3973 if (pte_none(vmf->orig_pte)) {
3974 pte_unmap(vmf->pte);
3975 vmf->pte = NULL;
3976 }
3977 }
3978
3979 if (!vmf->pte) {
3980 if (vma_is_anonymous(vmf->vma))
3981 return do_anonymous_page(vmf);
3982 else
3983 return do_fault(vmf);
3984 }
3985
3986 if (!pte_present(vmf->orig_pte))
3987 return do_swap_page(vmf);
3988
3989 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3990 return do_numa_page(vmf);
3991
3992 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3993 spin_lock(vmf->ptl);
3994 entry = vmf->orig_pte;
3995 if (unlikely(!pte_same(*vmf->pte, entry)))
3996 goto unlock;
3997 if (vmf->flags & FAULT_FLAG_WRITE) {
3998 if (!pte_write(entry))
3999 return do_wp_page(vmf);
4000 entry = pte_mkdirty(entry);
4001 }
4002 entry = pte_mkyoung(entry);
4003 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4004 vmf->flags & FAULT_FLAG_WRITE)) {
4005 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4006 } else {
4007 /*
4008 * This is needed only for protection faults but the arch code
4009 * is not yet telling us if this is a protection fault or not.
4010 * This still avoids useless tlb flushes for .text page faults
4011 * with threads.
4012 */
4013 if (vmf->flags & FAULT_FLAG_WRITE)
4014 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4015 }
4016 unlock:
4017 pte_unmap_unlock(vmf->pte, vmf->ptl);
4018 return 0;
4019 }
4020
4021 /*
4022 * By the time we get here, we already hold the mm semaphore
4023 *
4024 * The mmap_sem may have been released depending on flags and our
4025 * return value. See filemap_fault() and __lock_page_or_retry().
4026 */
4027 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4028 unsigned int flags)
4029 {
4030 struct vm_fault vmf = {
4031 .vma = vma,
4032 .address = address & PAGE_MASK,
4033 .flags = flags,
4034 .pgoff = linear_page_index(vma, address),
4035 .gfp_mask = __get_fault_gfp_mask(vma),
4036 };
4037 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4038 struct mm_struct *mm = vma->vm_mm;
4039 pgd_t *pgd;
4040 p4d_t *p4d;
4041 int ret;
4042
4043 pgd = pgd_offset(mm, address);
4044 p4d = p4d_alloc(mm, pgd, address);
4045 if (!p4d)
4046 return VM_FAULT_OOM;
4047
4048 vmf.pud = pud_alloc(mm, p4d, address);
4049 if (!vmf.pud)
4050 return VM_FAULT_OOM;
4051 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4052 ret = create_huge_pud(&vmf);
4053 if (!(ret & VM_FAULT_FALLBACK))
4054 return ret;
4055 } else {
4056 pud_t orig_pud = *vmf.pud;
4057
4058 barrier();
4059 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4060
4061 /* NUMA case for anonymous PUDs would go here */
4062
4063 if (dirty && !pud_write(orig_pud)) {
4064 ret = wp_huge_pud(&vmf, orig_pud);
4065 if (!(ret & VM_FAULT_FALLBACK))
4066 return ret;
4067 } else {
4068 huge_pud_set_accessed(&vmf, orig_pud);
4069 return 0;
4070 }
4071 }
4072 }
4073
4074 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4075 if (!vmf.pmd)
4076 return VM_FAULT_OOM;
4077 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4078 ret = create_huge_pmd(&vmf);
4079 if (!(ret & VM_FAULT_FALLBACK))
4080 return ret;
4081 } else {
4082 pmd_t orig_pmd = *vmf.pmd;
4083
4084 barrier();
4085 if (unlikely(is_swap_pmd(orig_pmd))) {
4086 VM_BUG_ON(thp_migration_supported() &&
4087 !is_pmd_migration_entry(orig_pmd));
4088 if (is_pmd_migration_entry(orig_pmd))
4089 pmd_migration_entry_wait(mm, vmf.pmd);
4090 return 0;
4091 }
4092 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4093 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4094 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4095
4096 if (dirty && !pmd_write(orig_pmd)) {
4097 ret = wp_huge_pmd(&vmf, orig_pmd);
4098 if (!(ret & VM_FAULT_FALLBACK))
4099 return ret;
4100 } else {
4101 huge_pmd_set_accessed(&vmf, orig_pmd);
4102 return 0;
4103 }
4104 }
4105 }
4106
4107 return handle_pte_fault(&vmf);
4108 }
4109
4110 /*
4111 * By the time we get here, we already hold the mm semaphore
4112 *
4113 * The mmap_sem may have been released depending on flags and our
4114 * return value. See filemap_fault() and __lock_page_or_retry().
4115 */
4116 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4117 unsigned int flags)
4118 {
4119 int ret;
4120
4121 __set_current_state(TASK_RUNNING);
4122
4123 count_vm_event(PGFAULT);
4124 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4125
4126 /* do counter updates before entering really critical section. */
4127 check_sync_rss_stat(current);
4128
4129 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4130 flags & FAULT_FLAG_INSTRUCTION,
4131 flags & FAULT_FLAG_REMOTE))
4132 return VM_FAULT_SIGSEGV;
4133
4134 /*
4135 * Enable the memcg OOM handling for faults triggered in user
4136 * space. Kernel faults are handled more gracefully.
4137 */
4138 if (flags & FAULT_FLAG_USER)
4139 mem_cgroup_oom_enable();
4140
4141 if (unlikely(is_vm_hugetlb_page(vma)))
4142 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4143 else
4144 ret = __handle_mm_fault(vma, address, flags);
4145
4146 if (flags & FAULT_FLAG_USER) {
4147 mem_cgroup_oom_disable();
4148 /*
4149 * The task may have entered a memcg OOM situation but
4150 * if the allocation error was handled gracefully (no
4151 * VM_FAULT_OOM), there is no need to kill anything.
4152 * Just clean up the OOM state peacefully.
4153 */
4154 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4155 mem_cgroup_oom_synchronize(false);
4156 }
4157
4158 return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(handle_mm_fault);
4161
4162 #ifndef __PAGETABLE_P4D_FOLDED
4163 /*
4164 * Allocate p4d page table.
4165 * We've already handled the fast-path in-line.
4166 */
4167 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4168 {
4169 p4d_t *new = p4d_alloc_one(mm, address);
4170 if (!new)
4171 return -ENOMEM;
4172
4173 smp_wmb(); /* See comment in __pte_alloc */
4174
4175 spin_lock(&mm->page_table_lock);
4176 if (pgd_present(*pgd)) /* Another has populated it */
4177 p4d_free(mm, new);
4178 else
4179 pgd_populate(mm, pgd, new);
4180 spin_unlock(&mm->page_table_lock);
4181 return 0;
4182 }
4183 #endif /* __PAGETABLE_P4D_FOLDED */
4184
4185 #ifndef __PAGETABLE_PUD_FOLDED
4186 /*
4187 * Allocate page upper directory.
4188 * We've already handled the fast-path in-line.
4189 */
4190 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4191 {
4192 pud_t *new = pud_alloc_one(mm, address);
4193 if (!new)
4194 return -ENOMEM;
4195
4196 smp_wmb(); /* See comment in __pte_alloc */
4197
4198 spin_lock(&mm->page_table_lock);
4199 #ifndef __ARCH_HAS_5LEVEL_HACK
4200 if (!p4d_present(*p4d)) {
4201 mm_inc_nr_puds(mm);
4202 p4d_populate(mm, p4d, new);
4203 } else /* Another has populated it */
4204 pud_free(mm, new);
4205 #else
4206 if (!pgd_present(*p4d)) {
4207 mm_inc_nr_puds(mm);
4208 pgd_populate(mm, p4d, new);
4209 } else /* Another has populated it */
4210 pud_free(mm, new);
4211 #endif /* __ARCH_HAS_5LEVEL_HACK */
4212 spin_unlock(&mm->page_table_lock);
4213 return 0;
4214 }
4215 #endif /* __PAGETABLE_PUD_FOLDED */
4216
4217 #ifndef __PAGETABLE_PMD_FOLDED
4218 /*
4219 * Allocate page middle directory.
4220 * We've already handled the fast-path in-line.
4221 */
4222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4223 {
4224 spinlock_t *ptl;
4225 pmd_t *new = pmd_alloc_one(mm, address);
4226 if (!new)
4227 return -ENOMEM;
4228
4229 smp_wmb(); /* See comment in __pte_alloc */
4230
4231 ptl = pud_lock(mm, pud);
4232 #ifndef __ARCH_HAS_4LEVEL_HACK
4233 if (!pud_present(*pud)) {
4234 mm_inc_nr_pmds(mm);
4235 pud_populate(mm, pud, new);
4236 } else /* Another has populated it */
4237 pmd_free(mm, new);
4238 #else
4239 if (!pgd_present(*pud)) {
4240 mm_inc_nr_pmds(mm);
4241 pgd_populate(mm, pud, new);
4242 } else /* Another has populated it */
4243 pmd_free(mm, new);
4244 #endif /* __ARCH_HAS_4LEVEL_HACK */
4245 spin_unlock(ptl);
4246 return 0;
4247 }
4248 #endif /* __PAGETABLE_PMD_FOLDED */
4249
4250 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4251 unsigned long *start, unsigned long *end,
4252 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4253 {
4254 pgd_t *pgd;
4255 p4d_t *p4d;
4256 pud_t *pud;
4257 pmd_t *pmd;
4258 pte_t *ptep;
4259
4260 pgd = pgd_offset(mm, address);
4261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4262 goto out;
4263
4264 p4d = p4d_offset(pgd, address);
4265 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4266 goto out;
4267
4268 pud = pud_offset(p4d, address);
4269 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4270 goto out;
4271
4272 pmd = pmd_offset(pud, address);
4273 VM_BUG_ON(pmd_trans_huge(*pmd));
4274
4275 if (pmd_huge(*pmd)) {
4276 if (!pmdpp)
4277 goto out;
4278
4279 if (start && end) {
4280 *start = address & PMD_MASK;
4281 *end = *start + PMD_SIZE;
4282 mmu_notifier_invalidate_range_start(mm, *start, *end);
4283 }
4284 *ptlp = pmd_lock(mm, pmd);
4285 if (pmd_huge(*pmd)) {
4286 *pmdpp = pmd;
4287 return 0;
4288 }
4289 spin_unlock(*ptlp);
4290 if (start && end)
4291 mmu_notifier_invalidate_range_end(mm, *start, *end);
4292 }
4293
4294 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4295 goto out;
4296
4297 if (start && end) {
4298 *start = address & PAGE_MASK;
4299 *end = *start + PAGE_SIZE;
4300 mmu_notifier_invalidate_range_start(mm, *start, *end);
4301 }
4302 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4303 if (!pte_present(*ptep))
4304 goto unlock;
4305 *ptepp = ptep;
4306 return 0;
4307 unlock:
4308 pte_unmap_unlock(ptep, *ptlp);
4309 if (start && end)
4310 mmu_notifier_invalidate_range_end(mm, *start, *end);
4311 out:
4312 return -EINVAL;
4313 }
4314
4315 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4316 pte_t **ptepp, spinlock_t **ptlp)
4317 {
4318 int res;
4319
4320 /* (void) is needed to make gcc happy */
4321 (void) __cond_lock(*ptlp,
4322 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4323 ptepp, NULL, ptlp)));
4324 return res;
4325 }
4326
4327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4328 unsigned long *start, unsigned long *end,
4329 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4330 {
4331 int res;
4332
4333 /* (void) is needed to make gcc happy */
4334 (void) __cond_lock(*ptlp,
4335 !(res = __follow_pte_pmd(mm, address, start, end,
4336 ptepp, pmdpp, ptlp)));
4337 return res;
4338 }
4339 EXPORT_SYMBOL(follow_pte_pmd);
4340
4341 /**
4342 * follow_pfn - look up PFN at a user virtual address
4343 * @vma: memory mapping
4344 * @address: user virtual address
4345 * @pfn: location to store found PFN
4346 *
4347 * Only IO mappings and raw PFN mappings are allowed.
4348 *
4349 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4350 */
4351 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4352 unsigned long *pfn)
4353 {
4354 int ret = -EINVAL;
4355 spinlock_t *ptl;
4356 pte_t *ptep;
4357
4358 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359 return ret;
4360
4361 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4362 if (ret)
4363 return ret;
4364 *pfn = pte_pfn(*ptep);
4365 pte_unmap_unlock(ptep, ptl);
4366 return 0;
4367 }
4368 EXPORT_SYMBOL(follow_pfn);
4369
4370 #ifdef CONFIG_HAVE_IOREMAP_PROT
4371 int follow_phys(struct vm_area_struct *vma,
4372 unsigned long address, unsigned int flags,
4373 unsigned long *prot, resource_size_t *phys)
4374 {
4375 int ret = -EINVAL;
4376 pte_t *ptep, pte;
4377 spinlock_t *ptl;
4378
4379 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4380 goto out;
4381
4382 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4383 goto out;
4384 pte = *ptep;
4385
4386 if ((flags & FOLL_WRITE) && !pte_write(pte))
4387 goto unlock;
4388
4389 *prot = pgprot_val(pte_pgprot(pte));
4390 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4391
4392 ret = 0;
4393 unlock:
4394 pte_unmap_unlock(ptep, ptl);
4395 out:
4396 return ret;
4397 }
4398
4399 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4400 void *buf, int len, int write)
4401 {
4402 resource_size_t phys_addr;
4403 unsigned long prot = 0;
4404 void __iomem *maddr;
4405 int offset = addr & (PAGE_SIZE-1);
4406
4407 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4408 return -EINVAL;
4409
4410 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4411 if (write)
4412 memcpy_toio(maddr + offset, buf, len);
4413 else
4414 memcpy_fromio(buf, maddr + offset, len);
4415 iounmap(maddr);
4416
4417 return len;
4418 }
4419 EXPORT_SYMBOL_GPL(generic_access_phys);
4420 #endif
4421
4422 /*
4423 * Access another process' address space as given in mm. If non-NULL, use the
4424 * given task for page fault accounting.
4425 */
4426 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4427 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4428 {
4429 struct vm_area_struct *vma;
4430 void *old_buf = buf;
4431 int write = gup_flags & FOLL_WRITE;
4432
4433 down_read(&mm->mmap_sem);
4434 /* ignore errors, just check how much was successfully transferred */
4435 while (len) {
4436 int bytes, ret, offset;
4437 void *maddr;
4438 struct page *page = NULL;
4439
4440 ret = get_user_pages_remote(tsk, mm, addr, 1,
4441 gup_flags, &page, &vma, NULL);
4442 if (ret <= 0) {
4443 #ifndef CONFIG_HAVE_IOREMAP_PROT
4444 break;
4445 #else
4446 /*
4447 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4448 * we can access using slightly different code.
4449 */
4450 vma = find_vma(mm, addr);
4451 if (!vma || vma->vm_start > addr)
4452 break;
4453 if (vma->vm_ops && vma->vm_ops->access)
4454 ret = vma->vm_ops->access(vma, addr, buf,
4455 len, write);
4456 if (ret <= 0)
4457 break;
4458 bytes = ret;
4459 #endif
4460 } else {
4461 bytes = len;
4462 offset = addr & (PAGE_SIZE-1);
4463 if (bytes > PAGE_SIZE-offset)
4464 bytes = PAGE_SIZE-offset;
4465
4466 maddr = kmap(page);
4467 if (write) {
4468 copy_to_user_page(vma, page, addr,
4469 maddr + offset, buf, bytes);
4470 set_page_dirty_lock(page);
4471 } else {
4472 copy_from_user_page(vma, page, addr,
4473 buf, maddr + offset, bytes);
4474 }
4475 kunmap(page);
4476 put_page(page);
4477 }
4478 len -= bytes;
4479 buf += bytes;
4480 addr += bytes;
4481 }
4482 up_read(&mm->mmap_sem);
4483
4484 return buf - old_buf;
4485 }
4486
4487 /**
4488 * access_remote_vm - access another process' address space
4489 * @mm: the mm_struct of the target address space
4490 * @addr: start address to access
4491 * @buf: source or destination buffer
4492 * @len: number of bytes to transfer
4493 * @gup_flags: flags modifying lookup behaviour
4494 *
4495 * The caller must hold a reference on @mm.
4496 */
4497 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4498 void *buf, int len, unsigned int gup_flags)
4499 {
4500 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4501 }
4502
4503 /*
4504 * Access another process' address space.
4505 * Source/target buffer must be kernel space,
4506 * Do not walk the page table directly, use get_user_pages
4507 */
4508 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4509 void *buf, int len, unsigned int gup_flags)
4510 {
4511 struct mm_struct *mm;
4512 int ret;
4513
4514 mm = get_task_mm(tsk);
4515 if (!mm)
4516 return 0;
4517
4518 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4519
4520 mmput(mm);
4521
4522 return ret;
4523 }
4524 EXPORT_SYMBOL_GPL(access_process_vm);
4525
4526 /*
4527 * Print the name of a VMA.
4528 */
4529 void print_vma_addr(char *prefix, unsigned long ip)
4530 {
4531 struct mm_struct *mm = current->mm;
4532 struct vm_area_struct *vma;
4533
4534 /*
4535 * we might be running from an atomic context so we cannot sleep
4536 */
4537 if (!down_read_trylock(&mm->mmap_sem))
4538 return;
4539
4540 vma = find_vma(mm, ip);
4541 if (vma && vma->vm_file) {
4542 struct file *f = vma->vm_file;
4543 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4544 if (buf) {
4545 char *p;
4546
4547 p = file_path(f, buf, PAGE_SIZE);
4548 if (IS_ERR(p))
4549 p = "?";
4550 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4551 vma->vm_start,
4552 vma->vm_end - vma->vm_start);
4553 free_page((unsigned long)buf);
4554 }
4555 }
4556 up_read(&mm->mmap_sem);
4557 }
4558
4559 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4560 void __might_fault(const char *file, int line)
4561 {
4562 /*
4563 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4564 * holding the mmap_sem, this is safe because kernel memory doesn't
4565 * get paged out, therefore we'll never actually fault, and the
4566 * below annotations will generate false positives.
4567 */
4568 if (uaccess_kernel())
4569 return;
4570 if (pagefault_disabled())
4571 return;
4572 __might_sleep(file, line, 0);
4573 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4574 if (current->mm)
4575 might_lock_read(&current->mm->mmap_sem);
4576 #endif
4577 }
4578 EXPORT_SYMBOL(__might_fault);
4579 #endif
4580
4581 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4582 static void clear_gigantic_page(struct page *page,
4583 unsigned long addr,
4584 unsigned int pages_per_huge_page)
4585 {
4586 int i;
4587 struct page *p = page;
4588
4589 might_sleep();
4590 for (i = 0; i < pages_per_huge_page;
4591 i++, p = mem_map_next(p, page, i)) {
4592 cond_resched();
4593 clear_user_highpage(p, addr + i * PAGE_SIZE);
4594 }
4595 }
4596 void clear_huge_page(struct page *page,
4597 unsigned long addr_hint, unsigned int pages_per_huge_page)
4598 {
4599 int i, n, base, l;
4600 unsigned long addr = addr_hint &
4601 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4602
4603 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4604 clear_gigantic_page(page, addr, pages_per_huge_page);
4605 return;
4606 }
4607
4608 /* Clear sub-page to access last to keep its cache lines hot */
4609 might_sleep();
4610 n = (addr_hint - addr) / PAGE_SIZE;
4611 if (2 * n <= pages_per_huge_page) {
4612 /* If sub-page to access in first half of huge page */
4613 base = 0;
4614 l = n;
4615 /* Clear sub-pages at the end of huge page */
4616 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4617 cond_resched();
4618 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4619 }
4620 } else {
4621 /* If sub-page to access in second half of huge page */
4622 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4623 l = pages_per_huge_page - n;
4624 /* Clear sub-pages at the begin of huge page */
4625 for (i = 0; i < base; i++) {
4626 cond_resched();
4627 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4628 }
4629 }
4630 /*
4631 * Clear remaining sub-pages in left-right-left-right pattern
4632 * towards the sub-page to access
4633 */
4634 for (i = 0; i < l; i++) {
4635 int left_idx = base + i;
4636 int right_idx = base + 2 * l - 1 - i;
4637
4638 cond_resched();
4639 clear_user_highpage(page + left_idx,
4640 addr + left_idx * PAGE_SIZE);
4641 cond_resched();
4642 clear_user_highpage(page + right_idx,
4643 addr + right_idx * PAGE_SIZE);
4644 }
4645 }
4646
4647 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4648 unsigned long addr,
4649 struct vm_area_struct *vma,
4650 unsigned int pages_per_huge_page)
4651 {
4652 int i;
4653 struct page *dst_base = dst;
4654 struct page *src_base = src;
4655
4656 for (i = 0; i < pages_per_huge_page; ) {
4657 cond_resched();
4658 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4659
4660 i++;
4661 dst = mem_map_next(dst, dst_base, i);
4662 src = mem_map_next(src, src_base, i);
4663 }
4664 }
4665
4666 void copy_user_huge_page(struct page *dst, struct page *src,
4667 unsigned long addr, struct vm_area_struct *vma,
4668 unsigned int pages_per_huge_page)
4669 {
4670 int i;
4671
4672 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4673 copy_user_gigantic_page(dst, src, addr, vma,
4674 pages_per_huge_page);
4675 return;
4676 }
4677
4678 might_sleep();
4679 for (i = 0; i < pages_per_huge_page; i++) {
4680 cond_resched();
4681 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4682 }
4683 }
4684
4685 long copy_huge_page_from_user(struct page *dst_page,
4686 const void __user *usr_src,
4687 unsigned int pages_per_huge_page,
4688 bool allow_pagefault)
4689 {
4690 void *src = (void *)usr_src;
4691 void *page_kaddr;
4692 unsigned long i, rc = 0;
4693 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4694
4695 for (i = 0; i < pages_per_huge_page; i++) {
4696 if (allow_pagefault)
4697 page_kaddr = kmap(dst_page + i);
4698 else
4699 page_kaddr = kmap_atomic(dst_page + i);
4700 rc = copy_from_user(page_kaddr,
4701 (const void __user *)(src + i * PAGE_SIZE),
4702 PAGE_SIZE);
4703 if (allow_pagefault)
4704 kunmap(dst_page + i);
4705 else
4706 kunmap_atomic(page_kaddr);
4707
4708 ret_val -= (PAGE_SIZE - rc);
4709 if (rc)
4710 break;
4711
4712 cond_resched();
4713 }
4714 return ret_val;
4715 }
4716 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4717
4718 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4719
4720 static struct kmem_cache *page_ptl_cachep;
4721
4722 void __init ptlock_cache_init(void)
4723 {
4724 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4725 SLAB_PANIC, NULL);
4726 }
4727
4728 bool ptlock_alloc(struct page *page)
4729 {
4730 spinlock_t *ptl;
4731
4732 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4733 if (!ptl)
4734 return false;
4735 page->ptl = ptl;
4736 return true;
4737 }
4738
4739 void ptlock_free(struct page *page)
4740 {
4741 kmem_cache_free(page_ptl_cachep, page->ptl);
4742 }
4743 #endif