]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
mm/mempolicy.c: fix an incorrect rebind node in mpol_rebind_nodemask
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414 };
415
416 /*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424 {
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430
431 /*
432 * queue_pages_pmd() has three possible return values:
433 * 1 - pages are placed on the right node or queued successfully.
434 * 0 - THP was split.
435 * -EIO - is migration entry or MPOL_MF_STRICT was specified and an existing
436 * page was already on a node that does not follow the policy.
437 */
438 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
439 unsigned long end, struct mm_walk *walk)
440 {
441 int ret = 0;
442 struct page *page;
443 struct queue_pages *qp = walk->private;
444 unsigned long flags;
445
446 if (unlikely(is_pmd_migration_entry(*pmd))) {
447 ret = -EIO;
448 goto unlock;
449 }
450 page = pmd_page(*pmd);
451 if (is_huge_zero_page(page)) {
452 spin_unlock(ptl);
453 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
454 goto out;
455 }
456 if (!thp_migration_supported()) {
457 get_page(page);
458 spin_unlock(ptl);
459 lock_page(page);
460 ret = split_huge_page(page);
461 unlock_page(page);
462 put_page(page);
463 goto out;
464 }
465 if (!queue_pages_required(page, qp)) {
466 ret = 1;
467 goto unlock;
468 }
469
470 ret = 1;
471 flags = qp->flags;
472 /* go to thp migration */
473 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
474 if (!vma_migratable(walk->vma)) {
475 ret = -EIO;
476 goto unlock;
477 }
478
479 migrate_page_add(page, qp->pagelist, flags);
480 } else
481 ret = -EIO;
482 unlock:
483 spin_unlock(ptl);
484 out:
485 return ret;
486 }
487
488 /*
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
491 */
492 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
493 unsigned long end, struct mm_walk *walk)
494 {
495 struct vm_area_struct *vma = walk->vma;
496 struct page *page;
497 struct queue_pages *qp = walk->private;
498 unsigned long flags = qp->flags;
499 int ret;
500 pte_t *pte;
501 spinlock_t *ptl;
502
503 ptl = pmd_trans_huge_lock(pmd, vma);
504 if (ptl) {
505 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
506 if (ret > 0)
507 return 0;
508 else if (ret < 0)
509 return ret;
510 }
511
512 if (pmd_trans_unstable(pmd))
513 return 0;
514 retry:
515 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
516 for (; addr != end; pte++, addr += PAGE_SIZE) {
517 if (!pte_present(*pte))
518 continue;
519 page = vm_normal_page(vma, addr, *pte);
520 if (!page)
521 continue;
522 /*
523 * vm_normal_page() filters out zero pages, but there might
524 * still be PageReserved pages to skip, perhaps in a VDSO.
525 */
526 if (PageReserved(page))
527 continue;
528 if (!queue_pages_required(page, qp))
529 continue;
530 if (PageTransCompound(page) && !thp_migration_supported()) {
531 get_page(page);
532 pte_unmap_unlock(pte, ptl);
533 lock_page(page);
534 ret = split_huge_page(page);
535 unlock_page(page);
536 put_page(page);
537 /* Failed to split -- skip. */
538 if (ret) {
539 pte = pte_offset_map_lock(walk->mm, pmd,
540 addr, &ptl);
541 continue;
542 }
543 goto retry;
544 }
545
546 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
547 if (!vma_migratable(vma))
548 break;
549 migrate_page_add(page, qp->pagelist, flags);
550 } else
551 break;
552 }
553 pte_unmap_unlock(pte - 1, ptl);
554 cond_resched();
555 return addr != end ? -EIO : 0;
556 }
557
558 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
559 unsigned long addr, unsigned long end,
560 struct mm_walk *walk)
561 {
562 #ifdef CONFIG_HUGETLB_PAGE
563 struct queue_pages *qp = walk->private;
564 unsigned long flags = qp->flags;
565 struct page *page;
566 spinlock_t *ptl;
567 pte_t entry;
568
569 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
570 entry = huge_ptep_get(pte);
571 if (!pte_present(entry))
572 goto unlock;
573 page = pte_page(entry);
574 if (!queue_pages_required(page, qp))
575 goto unlock;
576 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
577 if (flags & (MPOL_MF_MOVE_ALL) ||
578 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
579 isolate_huge_page(page, qp->pagelist);
580 unlock:
581 spin_unlock(ptl);
582 #else
583 BUG();
584 #endif
585 return 0;
586 }
587
588 #ifdef CONFIG_NUMA_BALANCING
589 /*
590 * This is used to mark a range of virtual addresses to be inaccessible.
591 * These are later cleared by a NUMA hinting fault. Depending on these
592 * faults, pages may be migrated for better NUMA placement.
593 *
594 * This is assuming that NUMA faults are handled using PROT_NONE. If
595 * an architecture makes a different choice, it will need further
596 * changes to the core.
597 */
598 unsigned long change_prot_numa(struct vm_area_struct *vma,
599 unsigned long addr, unsigned long end)
600 {
601 int nr_updated;
602
603 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
604 if (nr_updated)
605 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
606
607 return nr_updated;
608 }
609 #else
610 static unsigned long change_prot_numa(struct vm_area_struct *vma,
611 unsigned long addr, unsigned long end)
612 {
613 return 0;
614 }
615 #endif /* CONFIG_NUMA_BALANCING */
616
617 static int queue_pages_test_walk(unsigned long start, unsigned long end,
618 struct mm_walk *walk)
619 {
620 struct vm_area_struct *vma = walk->vma;
621 struct queue_pages *qp = walk->private;
622 unsigned long endvma = vma->vm_end;
623 unsigned long flags = qp->flags;
624
625 /*
626 * Need check MPOL_MF_STRICT to return -EIO if possible
627 * regardless of vma_migratable
628 */
629 if (!vma_migratable(vma) &&
630 !(flags & MPOL_MF_STRICT))
631 return 1;
632
633 if (endvma > end)
634 endvma = end;
635 if (vma->vm_start > start)
636 start = vma->vm_start;
637
638 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
639 if (!vma->vm_next && vma->vm_end < end)
640 return -EFAULT;
641 if (qp->prev && qp->prev->vm_end < vma->vm_start)
642 return -EFAULT;
643 }
644
645 qp->prev = vma;
646
647 if (flags & MPOL_MF_LAZY) {
648 /* Similar to task_numa_work, skip inaccessible VMAs */
649 if (!is_vm_hugetlb_page(vma) &&
650 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
651 !(vma->vm_flags & VM_MIXEDMAP))
652 change_prot_numa(vma, start, endvma);
653 return 1;
654 }
655
656 /* queue pages from current vma */
657 if (flags & MPOL_MF_VALID)
658 return 0;
659 return 1;
660 }
661
662 /*
663 * Walk through page tables and collect pages to be migrated.
664 *
665 * If pages found in a given range are on a set of nodes (determined by
666 * @nodes and @flags,) it's isolated and queued to the pagelist which is
667 * passed via @private.)
668 */
669 static int
670 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
671 nodemask_t *nodes, unsigned long flags,
672 struct list_head *pagelist)
673 {
674 struct queue_pages qp = {
675 .pagelist = pagelist,
676 .flags = flags,
677 .nmask = nodes,
678 .prev = NULL,
679 };
680 struct mm_walk queue_pages_walk = {
681 .hugetlb_entry = queue_pages_hugetlb,
682 .pmd_entry = queue_pages_pte_range,
683 .test_walk = queue_pages_test_walk,
684 .mm = mm,
685 .private = &qp,
686 };
687
688 return walk_page_range(start, end, &queue_pages_walk);
689 }
690
691 /*
692 * Apply policy to a single VMA
693 * This must be called with the mmap_sem held for writing.
694 */
695 static int vma_replace_policy(struct vm_area_struct *vma,
696 struct mempolicy *pol)
697 {
698 int err;
699 struct mempolicy *old;
700 struct mempolicy *new;
701
702 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
703 vma->vm_start, vma->vm_end, vma->vm_pgoff,
704 vma->vm_ops, vma->vm_file,
705 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
706
707 new = mpol_dup(pol);
708 if (IS_ERR(new))
709 return PTR_ERR(new);
710
711 if (vma->vm_ops && vma->vm_ops->set_policy) {
712 err = vma->vm_ops->set_policy(vma, new);
713 if (err)
714 goto err_out;
715 }
716
717 old = vma->vm_policy;
718 vma->vm_policy = new; /* protected by mmap_sem */
719 mpol_put(old);
720
721 return 0;
722 err_out:
723 mpol_put(new);
724 return err;
725 }
726
727 /* Step 2: apply policy to a range and do splits. */
728 static int mbind_range(struct mm_struct *mm, unsigned long start,
729 unsigned long end, struct mempolicy *new_pol)
730 {
731 struct vm_area_struct *next;
732 struct vm_area_struct *prev;
733 struct vm_area_struct *vma;
734 int err = 0;
735 pgoff_t pgoff;
736 unsigned long vmstart;
737 unsigned long vmend;
738
739 vma = find_vma(mm, start);
740 if (!vma || vma->vm_start > start)
741 return -EFAULT;
742
743 prev = vma->vm_prev;
744 if (start > vma->vm_start)
745 prev = vma;
746
747 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
748 next = vma->vm_next;
749 vmstart = max(start, vma->vm_start);
750 vmend = min(end, vma->vm_end);
751
752 if (mpol_equal(vma_policy(vma), new_pol))
753 continue;
754
755 pgoff = vma->vm_pgoff +
756 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
757 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
758 vma->anon_vma, vma->vm_file, pgoff,
759 new_pol, vma->vm_userfaultfd_ctx);
760 if (prev) {
761 vma = prev;
762 next = vma->vm_next;
763 if (mpol_equal(vma_policy(vma), new_pol))
764 continue;
765 /* vma_merge() joined vma && vma->next, case 8 */
766 goto replace;
767 }
768 if (vma->vm_start != vmstart) {
769 err = split_vma(vma->vm_mm, vma, vmstart, 1);
770 if (err)
771 goto out;
772 }
773 if (vma->vm_end != vmend) {
774 err = split_vma(vma->vm_mm, vma, vmend, 0);
775 if (err)
776 goto out;
777 }
778 replace:
779 err = vma_replace_policy(vma, new_pol);
780 if (err)
781 goto out;
782 }
783
784 out:
785 return err;
786 }
787
788 /* Set the process memory policy */
789 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
790 nodemask_t *nodes)
791 {
792 struct mempolicy *new, *old;
793 NODEMASK_SCRATCH(scratch);
794 int ret;
795
796 if (!scratch)
797 return -ENOMEM;
798
799 new = mpol_new(mode, flags, nodes);
800 if (IS_ERR(new)) {
801 ret = PTR_ERR(new);
802 goto out;
803 }
804
805 task_lock(current);
806 ret = mpol_set_nodemask(new, nodes, scratch);
807 if (ret) {
808 task_unlock(current);
809 mpol_put(new);
810 goto out;
811 }
812 old = current->mempolicy;
813 current->mempolicy = new;
814 if (new && new->mode == MPOL_INTERLEAVE)
815 current->il_prev = MAX_NUMNODES-1;
816 task_unlock(current);
817 mpol_put(old);
818 ret = 0;
819 out:
820 NODEMASK_SCRATCH_FREE(scratch);
821 return ret;
822 }
823
824 /*
825 * Return nodemask for policy for get_mempolicy() query
826 *
827 * Called with task's alloc_lock held
828 */
829 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
830 {
831 nodes_clear(*nodes);
832 if (p == &default_policy)
833 return;
834
835 switch (p->mode) {
836 case MPOL_BIND:
837 /* Fall through */
838 case MPOL_INTERLEAVE:
839 *nodes = p->v.nodes;
840 break;
841 case MPOL_PREFERRED:
842 if (!(p->flags & MPOL_F_LOCAL))
843 node_set(p->v.preferred_node, *nodes);
844 /* else return empty node mask for local allocation */
845 break;
846 default:
847 BUG();
848 }
849 }
850
851 static int lookup_node(unsigned long addr)
852 {
853 struct page *p;
854 int err;
855
856 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
857 if (err >= 0) {
858 err = page_to_nid(p);
859 put_page(p);
860 }
861 return err;
862 }
863
864 /* Retrieve NUMA policy */
865 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
866 unsigned long addr, unsigned long flags)
867 {
868 int err;
869 struct mm_struct *mm = current->mm;
870 struct vm_area_struct *vma = NULL;
871 struct mempolicy *pol = current->mempolicy;
872
873 if (flags &
874 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
875 return -EINVAL;
876
877 if (flags & MPOL_F_MEMS_ALLOWED) {
878 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
879 return -EINVAL;
880 *policy = 0; /* just so it's initialized */
881 task_lock(current);
882 *nmask = cpuset_current_mems_allowed;
883 task_unlock(current);
884 return 0;
885 }
886
887 if (flags & MPOL_F_ADDR) {
888 /*
889 * Do NOT fall back to task policy if the
890 * vma/shared policy at addr is NULL. We
891 * want to return MPOL_DEFAULT in this case.
892 */
893 down_read(&mm->mmap_sem);
894 vma = find_vma_intersection(mm, addr, addr+1);
895 if (!vma) {
896 up_read(&mm->mmap_sem);
897 return -EFAULT;
898 }
899 if (vma->vm_ops && vma->vm_ops->get_policy)
900 pol = vma->vm_ops->get_policy(vma, addr);
901 else
902 pol = vma->vm_policy;
903 } else if (addr)
904 return -EINVAL;
905
906 if (!pol)
907 pol = &default_policy; /* indicates default behavior */
908
909 if (flags & MPOL_F_NODE) {
910 if (flags & MPOL_F_ADDR) {
911 err = lookup_node(addr);
912 if (err < 0)
913 goto out;
914 *policy = err;
915 } else if (pol == current->mempolicy &&
916 pol->mode == MPOL_INTERLEAVE) {
917 *policy = next_node_in(current->il_prev, pol->v.nodes);
918 } else {
919 err = -EINVAL;
920 goto out;
921 }
922 } else {
923 *policy = pol == &default_policy ? MPOL_DEFAULT :
924 pol->mode;
925 /*
926 * Internal mempolicy flags must be masked off before exposing
927 * the policy to userspace.
928 */
929 *policy |= (pol->flags & MPOL_MODE_FLAGS);
930 }
931
932 err = 0;
933 if (nmask) {
934 if (mpol_store_user_nodemask(pol)) {
935 *nmask = pol->w.user_nodemask;
936 } else {
937 task_lock(current);
938 get_policy_nodemask(pol, nmask);
939 task_unlock(current);
940 }
941 }
942
943 out:
944 mpol_cond_put(pol);
945 if (vma)
946 up_read(&current->mm->mmap_sem);
947 return err;
948 }
949
950 #ifdef CONFIG_MIGRATION
951 /*
952 * page migration, thp tail pages can be passed.
953 */
954 static void migrate_page_add(struct page *page, struct list_head *pagelist,
955 unsigned long flags)
956 {
957 struct page *head = compound_head(page);
958 /*
959 * Avoid migrating a page that is shared with others.
960 */
961 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
962 if (!isolate_lru_page(head)) {
963 list_add_tail(&head->lru, pagelist);
964 mod_node_page_state(page_pgdat(head),
965 NR_ISOLATED_ANON + page_is_file_cache(head),
966 hpage_nr_pages(head));
967 }
968 }
969 }
970
971 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
972 {
973 if (PageHuge(page))
974 return alloc_huge_page_node(page_hstate(compound_head(page)),
975 node);
976 else if (thp_migration_supported() && PageTransHuge(page)) {
977 struct page *thp;
978
979 thp = alloc_pages_node(node,
980 (GFP_TRANSHUGE | __GFP_THISNODE),
981 HPAGE_PMD_ORDER);
982 if (!thp)
983 return NULL;
984 prep_transhuge_page(thp);
985 return thp;
986 } else
987 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
988 __GFP_THISNODE, 0);
989 }
990
991 /*
992 * Migrate pages from one node to a target node.
993 * Returns error or the number of pages not migrated.
994 */
995 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
996 int flags)
997 {
998 nodemask_t nmask;
999 LIST_HEAD(pagelist);
1000 int err = 0;
1001
1002 nodes_clear(nmask);
1003 node_set(source, nmask);
1004
1005 /*
1006 * This does not "check" the range but isolates all pages that
1007 * need migration. Between passing in the full user address
1008 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1009 */
1010 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1011 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1012 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1013
1014 if (!list_empty(&pagelist)) {
1015 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1016 MIGRATE_SYNC, MR_SYSCALL);
1017 if (err)
1018 putback_movable_pages(&pagelist);
1019 }
1020
1021 return err;
1022 }
1023
1024 /*
1025 * Move pages between the two nodesets so as to preserve the physical
1026 * layout as much as possible.
1027 *
1028 * Returns the number of page that could not be moved.
1029 */
1030 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1031 const nodemask_t *to, int flags)
1032 {
1033 int busy = 0;
1034 int err;
1035 nodemask_t tmp;
1036
1037 err = migrate_prep();
1038 if (err)
1039 return err;
1040
1041 down_read(&mm->mmap_sem);
1042
1043 /*
1044 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1045 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1046 * bit in 'tmp', and return that <source, dest> pair for migration.
1047 * The pair of nodemasks 'to' and 'from' define the map.
1048 *
1049 * If no pair of bits is found that way, fallback to picking some
1050 * pair of 'source' and 'dest' bits that are not the same. If the
1051 * 'source' and 'dest' bits are the same, this represents a node
1052 * that will be migrating to itself, so no pages need move.
1053 *
1054 * If no bits are left in 'tmp', or if all remaining bits left
1055 * in 'tmp' correspond to the same bit in 'to', return false
1056 * (nothing left to migrate).
1057 *
1058 * This lets us pick a pair of nodes to migrate between, such that
1059 * if possible the dest node is not already occupied by some other
1060 * source node, minimizing the risk of overloading the memory on a
1061 * node that would happen if we migrated incoming memory to a node
1062 * before migrating outgoing memory source that same node.
1063 *
1064 * A single scan of tmp is sufficient. As we go, we remember the
1065 * most recent <s, d> pair that moved (s != d). If we find a pair
1066 * that not only moved, but what's better, moved to an empty slot
1067 * (d is not set in tmp), then we break out then, with that pair.
1068 * Otherwise when we finish scanning from_tmp, we at least have the
1069 * most recent <s, d> pair that moved. If we get all the way through
1070 * the scan of tmp without finding any node that moved, much less
1071 * moved to an empty node, then there is nothing left worth migrating.
1072 */
1073
1074 tmp = *from;
1075 while (!nodes_empty(tmp)) {
1076 int s,d;
1077 int source = NUMA_NO_NODE;
1078 int dest = 0;
1079
1080 for_each_node_mask(s, tmp) {
1081
1082 /*
1083 * do_migrate_pages() tries to maintain the relative
1084 * node relationship of the pages established between
1085 * threads and memory areas.
1086 *
1087 * However if the number of source nodes is not equal to
1088 * the number of destination nodes we can not preserve
1089 * this node relative relationship. In that case, skip
1090 * copying memory from a node that is in the destination
1091 * mask.
1092 *
1093 * Example: [2,3,4] -> [3,4,5] moves everything.
1094 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1095 */
1096
1097 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1098 (node_isset(s, *to)))
1099 continue;
1100
1101 d = node_remap(s, *from, *to);
1102 if (s == d)
1103 continue;
1104
1105 source = s; /* Node moved. Memorize */
1106 dest = d;
1107
1108 /* dest not in remaining from nodes? */
1109 if (!node_isset(dest, tmp))
1110 break;
1111 }
1112 if (source == NUMA_NO_NODE)
1113 break;
1114
1115 node_clear(source, tmp);
1116 err = migrate_to_node(mm, source, dest, flags);
1117 if (err > 0)
1118 busy += err;
1119 if (err < 0)
1120 break;
1121 }
1122 up_read(&mm->mmap_sem);
1123 if (err < 0)
1124 return err;
1125 return busy;
1126
1127 }
1128
1129 /*
1130 * Allocate a new page for page migration based on vma policy.
1131 * Start by assuming the page is mapped by the same vma as contains @start.
1132 * Search forward from there, if not. N.B., this assumes that the
1133 * list of pages handed to migrate_pages()--which is how we get here--
1134 * is in virtual address order.
1135 */
1136 static struct page *new_page(struct page *page, unsigned long start, int **x)
1137 {
1138 struct vm_area_struct *vma;
1139 unsigned long uninitialized_var(address);
1140
1141 vma = find_vma(current->mm, start);
1142 while (vma) {
1143 address = page_address_in_vma(page, vma);
1144 if (address != -EFAULT)
1145 break;
1146 vma = vma->vm_next;
1147 }
1148
1149 if (PageHuge(page)) {
1150 BUG_ON(!vma);
1151 return alloc_huge_page_noerr(vma, address, 1);
1152 } else if (thp_migration_supported() && PageTransHuge(page)) {
1153 struct page *thp;
1154
1155 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1156 HPAGE_PMD_ORDER);
1157 if (!thp)
1158 return NULL;
1159 prep_transhuge_page(thp);
1160 return thp;
1161 }
1162 /*
1163 * if !vma, alloc_page_vma() will use task or system default policy
1164 */
1165 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1166 vma, address);
1167 }
1168 #else
1169
1170 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1171 unsigned long flags)
1172 {
1173 }
1174
1175 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1176 const nodemask_t *to, int flags)
1177 {
1178 return -ENOSYS;
1179 }
1180
1181 static struct page *new_page(struct page *page, unsigned long start, int **x)
1182 {
1183 return NULL;
1184 }
1185 #endif
1186
1187 static long do_mbind(unsigned long start, unsigned long len,
1188 unsigned short mode, unsigned short mode_flags,
1189 nodemask_t *nmask, unsigned long flags)
1190 {
1191 struct mm_struct *mm = current->mm;
1192 struct mempolicy *new;
1193 unsigned long end;
1194 int err;
1195 LIST_HEAD(pagelist);
1196
1197 if (flags & ~(unsigned long)MPOL_MF_VALID)
1198 return -EINVAL;
1199 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1200 return -EPERM;
1201
1202 if (start & ~PAGE_MASK)
1203 return -EINVAL;
1204
1205 if (mode == MPOL_DEFAULT)
1206 flags &= ~MPOL_MF_STRICT;
1207
1208 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1209 end = start + len;
1210
1211 if (end < start)
1212 return -EINVAL;
1213 if (end == start)
1214 return 0;
1215
1216 new = mpol_new(mode, mode_flags, nmask);
1217 if (IS_ERR(new))
1218 return PTR_ERR(new);
1219
1220 if (flags & MPOL_MF_LAZY)
1221 new->flags |= MPOL_F_MOF;
1222
1223 /*
1224 * If we are using the default policy then operation
1225 * on discontinuous address spaces is okay after all
1226 */
1227 if (!new)
1228 flags |= MPOL_MF_DISCONTIG_OK;
1229
1230 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1231 start, start + len, mode, mode_flags,
1232 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1233
1234 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1235
1236 err = migrate_prep();
1237 if (err)
1238 goto mpol_out;
1239 }
1240 {
1241 NODEMASK_SCRATCH(scratch);
1242 if (scratch) {
1243 down_write(&mm->mmap_sem);
1244 task_lock(current);
1245 err = mpol_set_nodemask(new, nmask, scratch);
1246 task_unlock(current);
1247 if (err)
1248 up_write(&mm->mmap_sem);
1249 } else
1250 err = -ENOMEM;
1251 NODEMASK_SCRATCH_FREE(scratch);
1252 }
1253 if (err)
1254 goto mpol_out;
1255
1256 err = queue_pages_range(mm, start, end, nmask,
1257 flags | MPOL_MF_INVERT, &pagelist);
1258 if (!err)
1259 err = mbind_range(mm, start, end, new);
1260
1261 if (!err) {
1262 int nr_failed = 0;
1263
1264 if (!list_empty(&pagelist)) {
1265 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1266 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1267 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1268 if (nr_failed)
1269 putback_movable_pages(&pagelist);
1270 }
1271
1272 if (nr_failed && (flags & MPOL_MF_STRICT))
1273 err = -EIO;
1274 } else
1275 putback_movable_pages(&pagelist);
1276
1277 up_write(&mm->mmap_sem);
1278 mpol_out:
1279 mpol_put(new);
1280 return err;
1281 }
1282
1283 /*
1284 * User space interface with variable sized bitmaps for nodelists.
1285 */
1286
1287 /* Copy a node mask from user space. */
1288 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1289 unsigned long maxnode)
1290 {
1291 unsigned long k;
1292 unsigned long t;
1293 unsigned long nlongs;
1294 unsigned long endmask;
1295
1296 --maxnode;
1297 nodes_clear(*nodes);
1298 if (maxnode == 0 || !nmask)
1299 return 0;
1300 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1301 return -EINVAL;
1302
1303 nlongs = BITS_TO_LONGS(maxnode);
1304 if ((maxnode % BITS_PER_LONG) == 0)
1305 endmask = ~0UL;
1306 else
1307 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1308
1309 /*
1310 * When the user specified more nodes than supported just check
1311 * if the non supported part is all zero.
1312 *
1313 * If maxnode have more longs than MAX_NUMNODES, check
1314 * the bits in that area first. And then go through to
1315 * check the rest bits which equal or bigger than MAX_NUMNODES.
1316 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1317 */
1318 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1319 if (nlongs > PAGE_SIZE/sizeof(long))
1320 return -EINVAL;
1321 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1322 if (get_user(t, nmask + k))
1323 return -EFAULT;
1324 if (k == nlongs - 1) {
1325 if (t & endmask)
1326 return -EINVAL;
1327 } else if (t)
1328 return -EINVAL;
1329 }
1330 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1331 endmask = ~0UL;
1332 }
1333
1334 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1335 unsigned long valid_mask = endmask;
1336
1337 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1338 if (get_user(t, nmask + nlongs - 1))
1339 return -EFAULT;
1340 if (t & valid_mask)
1341 return -EINVAL;
1342 }
1343
1344 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1345 return -EFAULT;
1346 nodes_addr(*nodes)[nlongs-1] &= endmask;
1347 return 0;
1348 }
1349
1350 /* Copy a kernel node mask to user space */
1351 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1352 nodemask_t *nodes)
1353 {
1354 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1355 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1356
1357 if (copy > nbytes) {
1358 if (copy > PAGE_SIZE)
1359 return -EINVAL;
1360 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1361 return -EFAULT;
1362 copy = nbytes;
1363 }
1364 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1365 }
1366
1367 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1368 unsigned long, mode, const unsigned long __user *, nmask,
1369 unsigned long, maxnode, unsigned, flags)
1370 {
1371 nodemask_t nodes;
1372 int err;
1373 unsigned short mode_flags;
1374
1375 mode_flags = mode & MPOL_MODE_FLAGS;
1376 mode &= ~MPOL_MODE_FLAGS;
1377 if (mode >= MPOL_MAX)
1378 return -EINVAL;
1379 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1380 (mode_flags & MPOL_F_RELATIVE_NODES))
1381 return -EINVAL;
1382 err = get_nodes(&nodes, nmask, maxnode);
1383 if (err)
1384 return err;
1385 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1386 }
1387
1388 /* Set the process memory policy */
1389 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1390 unsigned long, maxnode)
1391 {
1392 int err;
1393 nodemask_t nodes;
1394 unsigned short flags;
1395
1396 flags = mode & MPOL_MODE_FLAGS;
1397 mode &= ~MPOL_MODE_FLAGS;
1398 if ((unsigned int)mode >= MPOL_MAX)
1399 return -EINVAL;
1400 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1401 return -EINVAL;
1402 err = get_nodes(&nodes, nmask, maxnode);
1403 if (err)
1404 return err;
1405 return do_set_mempolicy(mode, flags, &nodes);
1406 }
1407
1408 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1409 const unsigned long __user *, old_nodes,
1410 const unsigned long __user *, new_nodes)
1411 {
1412 struct mm_struct *mm = NULL;
1413 struct task_struct *task;
1414 nodemask_t task_nodes;
1415 int err;
1416 nodemask_t *old;
1417 nodemask_t *new;
1418 NODEMASK_SCRATCH(scratch);
1419
1420 if (!scratch)
1421 return -ENOMEM;
1422
1423 old = &scratch->mask1;
1424 new = &scratch->mask2;
1425
1426 err = get_nodes(old, old_nodes, maxnode);
1427 if (err)
1428 goto out;
1429
1430 err = get_nodes(new, new_nodes, maxnode);
1431 if (err)
1432 goto out;
1433
1434 /* Find the mm_struct */
1435 rcu_read_lock();
1436 task = pid ? find_task_by_vpid(pid) : current;
1437 if (!task) {
1438 rcu_read_unlock();
1439 err = -ESRCH;
1440 goto out;
1441 }
1442 get_task_struct(task);
1443
1444 err = -EINVAL;
1445
1446 /*
1447 * Check if this process has the right to modify the specified process.
1448 * Use the regular "ptrace_may_access()" checks.
1449 */
1450 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1451 rcu_read_unlock();
1452 err = -EPERM;
1453 goto out_put;
1454 }
1455 rcu_read_unlock();
1456
1457 task_nodes = cpuset_mems_allowed(task);
1458 /* Is the user allowed to access the target nodes? */
1459 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1460 err = -EPERM;
1461 goto out_put;
1462 }
1463
1464 task_nodes = cpuset_mems_allowed(current);
1465 nodes_and(*new, *new, task_nodes);
1466 if (nodes_empty(*new))
1467 goto out_put;
1468
1469 nodes_and(*new, *new, node_states[N_MEMORY]);
1470 if (nodes_empty(*new))
1471 goto out_put;
1472
1473 err = security_task_movememory(task);
1474 if (err)
1475 goto out_put;
1476
1477 mm = get_task_mm(task);
1478 put_task_struct(task);
1479
1480 if (!mm) {
1481 err = -EINVAL;
1482 goto out;
1483 }
1484
1485 err = do_migrate_pages(mm, old, new,
1486 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1487
1488 mmput(mm);
1489 out:
1490 NODEMASK_SCRATCH_FREE(scratch);
1491
1492 return err;
1493
1494 out_put:
1495 put_task_struct(task);
1496 goto out;
1497
1498 }
1499
1500
1501 /* Retrieve NUMA policy */
1502 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1503 unsigned long __user *, nmask, unsigned long, maxnode,
1504 unsigned long, addr, unsigned long, flags)
1505 {
1506 int err;
1507 int uninitialized_var(pval);
1508 nodemask_t nodes;
1509
1510 if (nmask != NULL && maxnode < nr_node_ids)
1511 return -EINVAL;
1512
1513 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1514
1515 if (err)
1516 return err;
1517
1518 if (policy && put_user(pval, policy))
1519 return -EFAULT;
1520
1521 if (nmask)
1522 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1523
1524 return err;
1525 }
1526
1527 #ifdef CONFIG_COMPAT
1528
1529 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1530 compat_ulong_t __user *, nmask,
1531 compat_ulong_t, maxnode,
1532 compat_ulong_t, addr, compat_ulong_t, flags)
1533 {
1534 long err;
1535 unsigned long __user *nm = NULL;
1536 unsigned long nr_bits, alloc_size;
1537 DECLARE_BITMAP(bm, MAX_NUMNODES);
1538
1539 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1540 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1541
1542 if (nmask)
1543 nm = compat_alloc_user_space(alloc_size);
1544
1545 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1546
1547 if (!err && nmask) {
1548 unsigned long copy_size;
1549 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1550 err = copy_from_user(bm, nm, copy_size);
1551 /* ensure entire bitmap is zeroed */
1552 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1553 err |= compat_put_bitmap(nmask, bm, nr_bits);
1554 }
1555
1556 return err;
1557 }
1558
1559 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1560 compat_ulong_t, maxnode)
1561 {
1562 unsigned long __user *nm = NULL;
1563 unsigned long nr_bits, alloc_size;
1564 DECLARE_BITMAP(bm, MAX_NUMNODES);
1565
1566 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1567 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1568
1569 if (nmask) {
1570 if (compat_get_bitmap(bm, nmask, nr_bits))
1571 return -EFAULT;
1572 nm = compat_alloc_user_space(alloc_size);
1573 if (copy_to_user(nm, bm, alloc_size))
1574 return -EFAULT;
1575 }
1576
1577 return sys_set_mempolicy(mode, nm, nr_bits+1);
1578 }
1579
1580 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1581 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1582 compat_ulong_t, maxnode, compat_ulong_t, flags)
1583 {
1584 unsigned long __user *nm = NULL;
1585 unsigned long nr_bits, alloc_size;
1586 nodemask_t bm;
1587
1588 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1589 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1590
1591 if (nmask) {
1592 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1593 return -EFAULT;
1594 nm = compat_alloc_user_space(alloc_size);
1595 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1596 return -EFAULT;
1597 }
1598
1599 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1600 }
1601
1602 #endif
1603
1604 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1605 unsigned long addr)
1606 {
1607 struct mempolicy *pol = NULL;
1608
1609 if (vma) {
1610 if (vma->vm_ops && vma->vm_ops->get_policy) {
1611 pol = vma->vm_ops->get_policy(vma, addr);
1612 } else if (vma->vm_policy) {
1613 pol = vma->vm_policy;
1614
1615 /*
1616 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1617 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1618 * count on these policies which will be dropped by
1619 * mpol_cond_put() later
1620 */
1621 if (mpol_needs_cond_ref(pol))
1622 mpol_get(pol);
1623 }
1624 }
1625
1626 return pol;
1627 }
1628
1629 /*
1630 * get_vma_policy(@vma, @addr)
1631 * @vma: virtual memory area whose policy is sought
1632 * @addr: address in @vma for shared policy lookup
1633 *
1634 * Returns effective policy for a VMA at specified address.
1635 * Falls back to current->mempolicy or system default policy, as necessary.
1636 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1637 * count--added by the get_policy() vm_op, as appropriate--to protect against
1638 * freeing by another task. It is the caller's responsibility to free the
1639 * extra reference for shared policies.
1640 */
1641 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1642 unsigned long addr)
1643 {
1644 struct mempolicy *pol = __get_vma_policy(vma, addr);
1645
1646 if (!pol)
1647 pol = get_task_policy(current);
1648
1649 return pol;
1650 }
1651
1652 bool vma_policy_mof(struct vm_area_struct *vma)
1653 {
1654 struct mempolicy *pol;
1655
1656 if (vma->vm_ops && vma->vm_ops->get_policy) {
1657 bool ret = false;
1658
1659 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1660 if (pol && (pol->flags & MPOL_F_MOF))
1661 ret = true;
1662 mpol_cond_put(pol);
1663
1664 return ret;
1665 }
1666
1667 pol = vma->vm_policy;
1668 if (!pol)
1669 pol = get_task_policy(current);
1670
1671 return pol->flags & MPOL_F_MOF;
1672 }
1673
1674 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1675 {
1676 enum zone_type dynamic_policy_zone = policy_zone;
1677
1678 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1679
1680 /*
1681 * if policy->v.nodes has movable memory only,
1682 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1683 *
1684 * policy->v.nodes is intersect with node_states[N_MEMORY].
1685 * so if the following test faile, it implies
1686 * policy->v.nodes has movable memory only.
1687 */
1688 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1689 dynamic_policy_zone = ZONE_MOVABLE;
1690
1691 return zone >= dynamic_policy_zone;
1692 }
1693
1694 /*
1695 * Return a nodemask representing a mempolicy for filtering nodes for
1696 * page allocation
1697 */
1698 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1699 {
1700 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1701 if (unlikely(policy->mode == MPOL_BIND) &&
1702 apply_policy_zone(policy, gfp_zone(gfp)) &&
1703 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1704 return &policy->v.nodes;
1705
1706 return NULL;
1707 }
1708
1709 /* Return the node id preferred by the given mempolicy, or the given id */
1710 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1711 int nd)
1712 {
1713 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1714 nd = policy->v.preferred_node;
1715 else {
1716 /*
1717 * __GFP_THISNODE shouldn't even be used with the bind policy
1718 * because we might easily break the expectation to stay on the
1719 * requested node and not break the policy.
1720 */
1721 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1722 }
1723
1724 return nd;
1725 }
1726
1727 /* Do dynamic interleaving for a process */
1728 static unsigned interleave_nodes(struct mempolicy *policy)
1729 {
1730 unsigned next;
1731 struct task_struct *me = current;
1732
1733 next = next_node_in(me->il_prev, policy->v.nodes);
1734 if (next < MAX_NUMNODES)
1735 me->il_prev = next;
1736 return next;
1737 }
1738
1739 /*
1740 * Depending on the memory policy provide a node from which to allocate the
1741 * next slab entry.
1742 */
1743 unsigned int mempolicy_slab_node(void)
1744 {
1745 struct mempolicy *policy;
1746 int node = numa_mem_id();
1747
1748 if (in_interrupt())
1749 return node;
1750
1751 policy = current->mempolicy;
1752 if (!policy || policy->flags & MPOL_F_LOCAL)
1753 return node;
1754
1755 switch (policy->mode) {
1756 case MPOL_PREFERRED:
1757 /*
1758 * handled MPOL_F_LOCAL above
1759 */
1760 return policy->v.preferred_node;
1761
1762 case MPOL_INTERLEAVE:
1763 return interleave_nodes(policy);
1764
1765 case MPOL_BIND: {
1766 struct zoneref *z;
1767
1768 /*
1769 * Follow bind policy behavior and start allocation at the
1770 * first node.
1771 */
1772 struct zonelist *zonelist;
1773 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1774 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1775 z = first_zones_zonelist(zonelist, highest_zoneidx,
1776 &policy->v.nodes);
1777 return z->zone ? z->zone->node : node;
1778 }
1779
1780 default:
1781 BUG();
1782 }
1783 }
1784
1785 /*
1786 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1787 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1788 * number of present nodes.
1789 */
1790 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1791 {
1792 unsigned nnodes = nodes_weight(pol->v.nodes);
1793 unsigned target;
1794 int i;
1795 int nid;
1796
1797 if (!nnodes)
1798 return numa_node_id();
1799 target = (unsigned int)n % nnodes;
1800 nid = first_node(pol->v.nodes);
1801 for (i = 0; i < target; i++)
1802 nid = next_node(nid, pol->v.nodes);
1803 return nid;
1804 }
1805
1806 /* Determine a node number for interleave */
1807 static inline unsigned interleave_nid(struct mempolicy *pol,
1808 struct vm_area_struct *vma, unsigned long addr, int shift)
1809 {
1810 if (vma) {
1811 unsigned long off;
1812
1813 /*
1814 * for small pages, there is no difference between
1815 * shift and PAGE_SHIFT, so the bit-shift is safe.
1816 * for huge pages, since vm_pgoff is in units of small
1817 * pages, we need to shift off the always 0 bits to get
1818 * a useful offset.
1819 */
1820 BUG_ON(shift < PAGE_SHIFT);
1821 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1822 off += (addr - vma->vm_start) >> shift;
1823 return offset_il_node(pol, off);
1824 } else
1825 return interleave_nodes(pol);
1826 }
1827
1828 #ifdef CONFIG_HUGETLBFS
1829 /*
1830 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1831 * @vma: virtual memory area whose policy is sought
1832 * @addr: address in @vma for shared policy lookup and interleave policy
1833 * @gfp_flags: for requested zone
1834 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1835 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1836 *
1837 * Returns a nid suitable for a huge page allocation and a pointer
1838 * to the struct mempolicy for conditional unref after allocation.
1839 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1840 * @nodemask for filtering the zonelist.
1841 *
1842 * Must be protected by read_mems_allowed_begin()
1843 */
1844 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1845 struct mempolicy **mpol, nodemask_t **nodemask)
1846 {
1847 int nid;
1848
1849 *mpol = get_vma_policy(vma, addr);
1850 *nodemask = NULL; /* assume !MPOL_BIND */
1851
1852 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1853 nid = interleave_nid(*mpol, vma, addr,
1854 huge_page_shift(hstate_vma(vma)));
1855 } else {
1856 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1857 if ((*mpol)->mode == MPOL_BIND)
1858 *nodemask = &(*mpol)->v.nodes;
1859 }
1860 return nid;
1861 }
1862
1863 /*
1864 * init_nodemask_of_mempolicy
1865 *
1866 * If the current task's mempolicy is "default" [NULL], return 'false'
1867 * to indicate default policy. Otherwise, extract the policy nodemask
1868 * for 'bind' or 'interleave' policy into the argument nodemask, or
1869 * initialize the argument nodemask to contain the single node for
1870 * 'preferred' or 'local' policy and return 'true' to indicate presence
1871 * of non-default mempolicy.
1872 *
1873 * We don't bother with reference counting the mempolicy [mpol_get/put]
1874 * because the current task is examining it's own mempolicy and a task's
1875 * mempolicy is only ever changed by the task itself.
1876 *
1877 * N.B., it is the caller's responsibility to free a returned nodemask.
1878 */
1879 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1880 {
1881 struct mempolicy *mempolicy;
1882 int nid;
1883
1884 if (!(mask && current->mempolicy))
1885 return false;
1886
1887 task_lock(current);
1888 mempolicy = current->mempolicy;
1889 switch (mempolicy->mode) {
1890 case MPOL_PREFERRED:
1891 if (mempolicy->flags & MPOL_F_LOCAL)
1892 nid = numa_node_id();
1893 else
1894 nid = mempolicy->v.preferred_node;
1895 init_nodemask_of_node(mask, nid);
1896 break;
1897
1898 case MPOL_BIND:
1899 /* Fall through */
1900 case MPOL_INTERLEAVE:
1901 *mask = mempolicy->v.nodes;
1902 break;
1903
1904 default:
1905 BUG();
1906 }
1907 task_unlock(current);
1908
1909 return true;
1910 }
1911 #endif
1912
1913 /*
1914 * mempolicy_nodemask_intersects
1915 *
1916 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1917 * policy. Otherwise, check for intersection between mask and the policy
1918 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1919 * policy, always return true since it may allocate elsewhere on fallback.
1920 *
1921 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1922 */
1923 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1924 const nodemask_t *mask)
1925 {
1926 struct mempolicy *mempolicy;
1927 bool ret = true;
1928
1929 if (!mask)
1930 return ret;
1931 task_lock(tsk);
1932 mempolicy = tsk->mempolicy;
1933 if (!mempolicy)
1934 goto out;
1935
1936 switch (mempolicy->mode) {
1937 case MPOL_PREFERRED:
1938 /*
1939 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1940 * allocate from, they may fallback to other nodes when oom.
1941 * Thus, it's possible for tsk to have allocated memory from
1942 * nodes in mask.
1943 */
1944 break;
1945 case MPOL_BIND:
1946 case MPOL_INTERLEAVE:
1947 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1948 break;
1949 default:
1950 BUG();
1951 }
1952 out:
1953 task_unlock(tsk);
1954 return ret;
1955 }
1956
1957 /* Allocate a page in interleaved policy.
1958 Own path because it needs to do special accounting. */
1959 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1960 unsigned nid)
1961 {
1962 struct page *page;
1963
1964 page = __alloc_pages(gfp, order, nid);
1965 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1966 if (!static_branch_likely(&vm_numa_stat_key))
1967 return page;
1968 if (page && page_to_nid(page) == nid) {
1969 preempt_disable();
1970 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1971 preempt_enable();
1972 }
1973 return page;
1974 }
1975
1976 /**
1977 * alloc_pages_vma - Allocate a page for a VMA.
1978 *
1979 * @gfp:
1980 * %GFP_USER user allocation.
1981 * %GFP_KERNEL kernel allocations,
1982 * %GFP_HIGHMEM highmem/user allocations,
1983 * %GFP_FS allocation should not call back into a file system.
1984 * %GFP_ATOMIC don't sleep.
1985 *
1986 * @order:Order of the GFP allocation.
1987 * @vma: Pointer to VMA or NULL if not available.
1988 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1989 * @node: Which node to prefer for allocation (modulo policy).
1990 * @hugepage: for hugepages try only the preferred node if possible
1991 *
1992 * This function allocates a page from the kernel page pool and applies
1993 * a NUMA policy associated with the VMA or the current process.
1994 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1995 * mm_struct of the VMA to prevent it from going away. Should be used for
1996 * all allocations for pages that will be mapped into user space. Returns
1997 * NULL when no page can be allocated.
1998 */
1999 struct page *
2000 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2001 unsigned long addr, int node, bool hugepage)
2002 {
2003 struct mempolicy *pol;
2004 struct page *page;
2005 int preferred_nid;
2006 nodemask_t *nmask;
2007
2008 pol = get_vma_policy(vma, addr);
2009
2010 if (pol->mode == MPOL_INTERLEAVE) {
2011 unsigned nid;
2012
2013 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2014 mpol_cond_put(pol);
2015 page = alloc_page_interleave(gfp, order, nid);
2016 goto out;
2017 }
2018
2019 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2020 int hpage_node = node;
2021
2022 /*
2023 * For hugepage allocation and non-interleave policy which
2024 * allows the current node (or other explicitly preferred
2025 * node) we only try to allocate from the current/preferred
2026 * node and don't fall back to other nodes, as the cost of
2027 * remote accesses would likely offset THP benefits.
2028 *
2029 * If the policy is interleave, or does not allow the current
2030 * node in its nodemask, we allocate the standard way.
2031 */
2032 if (pol->mode == MPOL_PREFERRED &&
2033 !(pol->flags & MPOL_F_LOCAL))
2034 hpage_node = pol->v.preferred_node;
2035
2036 nmask = policy_nodemask(gfp, pol);
2037 if (!nmask || node_isset(hpage_node, *nmask)) {
2038 mpol_cond_put(pol);
2039 /*
2040 * We cannot invoke reclaim if __GFP_THISNODE
2041 * is set. Invoking reclaim with
2042 * __GFP_THISNODE set, would cause THP
2043 * allocations to trigger heavy swapping
2044 * despite there may be tons of free memory
2045 * (including potentially plenty of THP
2046 * already available in the buddy) on all the
2047 * other NUMA nodes.
2048 *
2049 * At most we could invoke compaction when
2050 * __GFP_THISNODE is set (but we would need to
2051 * refrain from invoking reclaim even if
2052 * compaction returned COMPACT_SKIPPED because
2053 * there wasn't not enough memory to succeed
2054 * compaction). For now just avoid
2055 * __GFP_THISNODE instead of limiting the
2056 * allocation path to a strict and single
2057 * compaction invocation.
2058 *
2059 * Supposedly if direct reclaim was enabled by
2060 * the caller, the app prefers THP regardless
2061 * of the node it comes from so this would be
2062 * more desiderable behavior than only
2063 * providing THP originated from the local
2064 * node in such case.
2065 */
2066 if (!(gfp & __GFP_DIRECT_RECLAIM))
2067 gfp |= __GFP_THISNODE;
2068 page = __alloc_pages_node(hpage_node, gfp, order);
2069 goto out;
2070 }
2071 }
2072
2073 nmask = policy_nodemask(gfp, pol);
2074 preferred_nid = policy_node(gfp, pol, node);
2075 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2076 mpol_cond_put(pol);
2077 out:
2078 return page;
2079 }
2080
2081 /**
2082 * alloc_pages_current - Allocate pages.
2083 *
2084 * @gfp:
2085 * %GFP_USER user allocation,
2086 * %GFP_KERNEL kernel allocation,
2087 * %GFP_HIGHMEM highmem allocation,
2088 * %GFP_FS don't call back into a file system.
2089 * %GFP_ATOMIC don't sleep.
2090 * @order: Power of two of allocation size in pages. 0 is a single page.
2091 *
2092 * Allocate a page from the kernel page pool. When not in
2093 * interrupt context and apply the current process NUMA policy.
2094 * Returns NULL when no page can be allocated.
2095 */
2096 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2097 {
2098 struct mempolicy *pol = &default_policy;
2099 struct page *page;
2100
2101 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2102 pol = get_task_policy(current);
2103
2104 /*
2105 * No reference counting needed for current->mempolicy
2106 * nor system default_policy
2107 */
2108 if (pol->mode == MPOL_INTERLEAVE)
2109 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2110 else
2111 page = __alloc_pages_nodemask(gfp, order,
2112 policy_node(gfp, pol, numa_node_id()),
2113 policy_nodemask(gfp, pol));
2114
2115 return page;
2116 }
2117 EXPORT_SYMBOL(alloc_pages_current);
2118
2119 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2120 {
2121 struct mempolicy *pol = mpol_dup(vma_policy(src));
2122
2123 if (IS_ERR(pol))
2124 return PTR_ERR(pol);
2125 dst->vm_policy = pol;
2126 return 0;
2127 }
2128
2129 /*
2130 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2131 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2132 * with the mems_allowed returned by cpuset_mems_allowed(). This
2133 * keeps mempolicies cpuset relative after its cpuset moves. See
2134 * further kernel/cpuset.c update_nodemask().
2135 *
2136 * current's mempolicy may be rebinded by the other task(the task that changes
2137 * cpuset's mems), so we needn't do rebind work for current task.
2138 */
2139
2140 /* Slow path of a mempolicy duplicate */
2141 struct mempolicy *__mpol_dup(struct mempolicy *old)
2142 {
2143 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2144
2145 if (!new)
2146 return ERR_PTR(-ENOMEM);
2147
2148 /* task's mempolicy is protected by alloc_lock */
2149 if (old == current->mempolicy) {
2150 task_lock(current);
2151 *new = *old;
2152 task_unlock(current);
2153 } else
2154 *new = *old;
2155
2156 if (current_cpuset_is_being_rebound()) {
2157 nodemask_t mems = cpuset_mems_allowed(current);
2158 mpol_rebind_policy(new, &mems);
2159 }
2160 atomic_set(&new->refcnt, 1);
2161 return new;
2162 }
2163
2164 /* Slow path of a mempolicy comparison */
2165 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2166 {
2167 if (!a || !b)
2168 return false;
2169 if (a->mode != b->mode)
2170 return false;
2171 if (a->flags != b->flags)
2172 return false;
2173 if (mpol_store_user_nodemask(a))
2174 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2175 return false;
2176
2177 switch (a->mode) {
2178 case MPOL_BIND:
2179 /* Fall through */
2180 case MPOL_INTERLEAVE:
2181 return !!nodes_equal(a->v.nodes, b->v.nodes);
2182 case MPOL_PREFERRED:
2183 /* a's ->flags is the same as b's */
2184 if (a->flags & MPOL_F_LOCAL)
2185 return true;
2186 return a->v.preferred_node == b->v.preferred_node;
2187 default:
2188 BUG();
2189 return false;
2190 }
2191 }
2192
2193 /*
2194 * Shared memory backing store policy support.
2195 *
2196 * Remember policies even when nobody has shared memory mapped.
2197 * The policies are kept in Red-Black tree linked from the inode.
2198 * They are protected by the sp->lock rwlock, which should be held
2199 * for any accesses to the tree.
2200 */
2201
2202 /*
2203 * lookup first element intersecting start-end. Caller holds sp->lock for
2204 * reading or for writing
2205 */
2206 static struct sp_node *
2207 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2208 {
2209 struct rb_node *n = sp->root.rb_node;
2210
2211 while (n) {
2212 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2213
2214 if (start >= p->end)
2215 n = n->rb_right;
2216 else if (end <= p->start)
2217 n = n->rb_left;
2218 else
2219 break;
2220 }
2221 if (!n)
2222 return NULL;
2223 for (;;) {
2224 struct sp_node *w = NULL;
2225 struct rb_node *prev = rb_prev(n);
2226 if (!prev)
2227 break;
2228 w = rb_entry(prev, struct sp_node, nd);
2229 if (w->end <= start)
2230 break;
2231 n = prev;
2232 }
2233 return rb_entry(n, struct sp_node, nd);
2234 }
2235
2236 /*
2237 * Insert a new shared policy into the list. Caller holds sp->lock for
2238 * writing.
2239 */
2240 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2241 {
2242 struct rb_node **p = &sp->root.rb_node;
2243 struct rb_node *parent = NULL;
2244 struct sp_node *nd;
2245
2246 while (*p) {
2247 parent = *p;
2248 nd = rb_entry(parent, struct sp_node, nd);
2249 if (new->start < nd->start)
2250 p = &(*p)->rb_left;
2251 else if (new->end > nd->end)
2252 p = &(*p)->rb_right;
2253 else
2254 BUG();
2255 }
2256 rb_link_node(&new->nd, parent, p);
2257 rb_insert_color(&new->nd, &sp->root);
2258 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2259 new->policy ? new->policy->mode : 0);
2260 }
2261
2262 /* Find shared policy intersecting idx */
2263 struct mempolicy *
2264 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2265 {
2266 struct mempolicy *pol = NULL;
2267 struct sp_node *sn;
2268
2269 if (!sp->root.rb_node)
2270 return NULL;
2271 read_lock(&sp->lock);
2272 sn = sp_lookup(sp, idx, idx+1);
2273 if (sn) {
2274 mpol_get(sn->policy);
2275 pol = sn->policy;
2276 }
2277 read_unlock(&sp->lock);
2278 return pol;
2279 }
2280
2281 static void sp_free(struct sp_node *n)
2282 {
2283 mpol_put(n->policy);
2284 kmem_cache_free(sn_cache, n);
2285 }
2286
2287 /**
2288 * mpol_misplaced - check whether current page node is valid in policy
2289 *
2290 * @page: page to be checked
2291 * @vma: vm area where page mapped
2292 * @addr: virtual address where page mapped
2293 *
2294 * Lookup current policy node id for vma,addr and "compare to" page's
2295 * node id.
2296 *
2297 * Returns:
2298 * -1 - not misplaced, page is in the right node
2299 * node - node id where the page should be
2300 *
2301 * Policy determination "mimics" alloc_page_vma().
2302 * Called from fault path where we know the vma and faulting address.
2303 */
2304 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2305 {
2306 struct mempolicy *pol;
2307 struct zoneref *z;
2308 int curnid = page_to_nid(page);
2309 unsigned long pgoff;
2310 int thiscpu = raw_smp_processor_id();
2311 int thisnid = cpu_to_node(thiscpu);
2312 int polnid = -1;
2313 int ret = -1;
2314
2315 pol = get_vma_policy(vma, addr);
2316 if (!(pol->flags & MPOL_F_MOF))
2317 goto out;
2318
2319 switch (pol->mode) {
2320 case MPOL_INTERLEAVE:
2321 pgoff = vma->vm_pgoff;
2322 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2323 polnid = offset_il_node(pol, pgoff);
2324 break;
2325
2326 case MPOL_PREFERRED:
2327 if (pol->flags & MPOL_F_LOCAL)
2328 polnid = numa_node_id();
2329 else
2330 polnid = pol->v.preferred_node;
2331 break;
2332
2333 case MPOL_BIND:
2334
2335 /*
2336 * allows binding to multiple nodes.
2337 * use current page if in policy nodemask,
2338 * else select nearest allowed node, if any.
2339 * If no allowed nodes, use current [!misplaced].
2340 */
2341 if (node_isset(curnid, pol->v.nodes))
2342 goto out;
2343 z = first_zones_zonelist(
2344 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2345 gfp_zone(GFP_HIGHUSER),
2346 &pol->v.nodes);
2347 polnid = z->zone->node;
2348 break;
2349
2350 default:
2351 BUG();
2352 }
2353
2354 /* Migrate the page towards the node whose CPU is referencing it */
2355 if (pol->flags & MPOL_F_MORON) {
2356 polnid = thisnid;
2357
2358 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2359 goto out;
2360 }
2361
2362 if (curnid != polnid)
2363 ret = polnid;
2364 out:
2365 mpol_cond_put(pol);
2366
2367 return ret;
2368 }
2369
2370 /*
2371 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2372 * dropped after task->mempolicy is set to NULL so that any allocation done as
2373 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2374 * policy.
2375 */
2376 void mpol_put_task_policy(struct task_struct *task)
2377 {
2378 struct mempolicy *pol;
2379
2380 task_lock(task);
2381 pol = task->mempolicy;
2382 task->mempolicy = NULL;
2383 task_unlock(task);
2384 mpol_put(pol);
2385 }
2386
2387 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2388 {
2389 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2390 rb_erase(&n->nd, &sp->root);
2391 sp_free(n);
2392 }
2393
2394 static void sp_node_init(struct sp_node *node, unsigned long start,
2395 unsigned long end, struct mempolicy *pol)
2396 {
2397 node->start = start;
2398 node->end = end;
2399 node->policy = pol;
2400 }
2401
2402 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2403 struct mempolicy *pol)
2404 {
2405 struct sp_node *n;
2406 struct mempolicy *newpol;
2407
2408 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2409 if (!n)
2410 return NULL;
2411
2412 newpol = mpol_dup(pol);
2413 if (IS_ERR(newpol)) {
2414 kmem_cache_free(sn_cache, n);
2415 return NULL;
2416 }
2417 newpol->flags |= MPOL_F_SHARED;
2418 sp_node_init(n, start, end, newpol);
2419
2420 return n;
2421 }
2422
2423 /* Replace a policy range. */
2424 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2425 unsigned long end, struct sp_node *new)
2426 {
2427 struct sp_node *n;
2428 struct sp_node *n_new = NULL;
2429 struct mempolicy *mpol_new = NULL;
2430 int ret = 0;
2431
2432 restart:
2433 write_lock(&sp->lock);
2434 n = sp_lookup(sp, start, end);
2435 /* Take care of old policies in the same range. */
2436 while (n && n->start < end) {
2437 struct rb_node *next = rb_next(&n->nd);
2438 if (n->start >= start) {
2439 if (n->end <= end)
2440 sp_delete(sp, n);
2441 else
2442 n->start = end;
2443 } else {
2444 /* Old policy spanning whole new range. */
2445 if (n->end > end) {
2446 if (!n_new)
2447 goto alloc_new;
2448
2449 *mpol_new = *n->policy;
2450 atomic_set(&mpol_new->refcnt, 1);
2451 sp_node_init(n_new, end, n->end, mpol_new);
2452 n->end = start;
2453 sp_insert(sp, n_new);
2454 n_new = NULL;
2455 mpol_new = NULL;
2456 break;
2457 } else
2458 n->end = start;
2459 }
2460 if (!next)
2461 break;
2462 n = rb_entry(next, struct sp_node, nd);
2463 }
2464 if (new)
2465 sp_insert(sp, new);
2466 write_unlock(&sp->lock);
2467 ret = 0;
2468
2469 err_out:
2470 if (mpol_new)
2471 mpol_put(mpol_new);
2472 if (n_new)
2473 kmem_cache_free(sn_cache, n_new);
2474
2475 return ret;
2476
2477 alloc_new:
2478 write_unlock(&sp->lock);
2479 ret = -ENOMEM;
2480 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2481 if (!n_new)
2482 goto err_out;
2483 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2484 if (!mpol_new)
2485 goto err_out;
2486 goto restart;
2487 }
2488
2489 /**
2490 * mpol_shared_policy_init - initialize shared policy for inode
2491 * @sp: pointer to inode shared policy
2492 * @mpol: struct mempolicy to install
2493 *
2494 * Install non-NULL @mpol in inode's shared policy rb-tree.
2495 * On entry, the current task has a reference on a non-NULL @mpol.
2496 * This must be released on exit.
2497 * This is called at get_inode() calls and we can use GFP_KERNEL.
2498 */
2499 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2500 {
2501 int ret;
2502
2503 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2504 rwlock_init(&sp->lock);
2505
2506 if (mpol) {
2507 struct vm_area_struct pvma;
2508 struct mempolicy *new;
2509 NODEMASK_SCRATCH(scratch);
2510
2511 if (!scratch)
2512 goto put_mpol;
2513 /* contextualize the tmpfs mount point mempolicy */
2514 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2515 if (IS_ERR(new))
2516 goto free_scratch; /* no valid nodemask intersection */
2517
2518 task_lock(current);
2519 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2520 task_unlock(current);
2521 if (ret)
2522 goto put_new;
2523
2524 /* Create pseudo-vma that contains just the policy */
2525 memset(&pvma, 0, sizeof(struct vm_area_struct));
2526 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2527 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2528
2529 put_new:
2530 mpol_put(new); /* drop initial ref */
2531 free_scratch:
2532 NODEMASK_SCRATCH_FREE(scratch);
2533 put_mpol:
2534 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2535 }
2536 }
2537
2538 int mpol_set_shared_policy(struct shared_policy *info,
2539 struct vm_area_struct *vma, struct mempolicy *npol)
2540 {
2541 int err;
2542 struct sp_node *new = NULL;
2543 unsigned long sz = vma_pages(vma);
2544
2545 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2546 vma->vm_pgoff,
2547 sz, npol ? npol->mode : -1,
2548 npol ? npol->flags : -1,
2549 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2550
2551 if (npol) {
2552 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2553 if (!new)
2554 return -ENOMEM;
2555 }
2556 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2557 if (err && new)
2558 sp_free(new);
2559 return err;
2560 }
2561
2562 /* Free a backing policy store on inode delete. */
2563 void mpol_free_shared_policy(struct shared_policy *p)
2564 {
2565 struct sp_node *n;
2566 struct rb_node *next;
2567
2568 if (!p->root.rb_node)
2569 return;
2570 write_lock(&p->lock);
2571 next = rb_first(&p->root);
2572 while (next) {
2573 n = rb_entry(next, struct sp_node, nd);
2574 next = rb_next(&n->nd);
2575 sp_delete(p, n);
2576 }
2577 write_unlock(&p->lock);
2578 }
2579
2580 #ifdef CONFIG_NUMA_BALANCING
2581 static int __initdata numabalancing_override;
2582
2583 static void __init check_numabalancing_enable(void)
2584 {
2585 bool numabalancing_default = false;
2586
2587 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2588 numabalancing_default = true;
2589
2590 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2591 if (numabalancing_override)
2592 set_numabalancing_state(numabalancing_override == 1);
2593
2594 if (num_online_nodes() > 1 && !numabalancing_override) {
2595 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2596 numabalancing_default ? "Enabling" : "Disabling");
2597 set_numabalancing_state(numabalancing_default);
2598 }
2599 }
2600
2601 static int __init setup_numabalancing(char *str)
2602 {
2603 int ret = 0;
2604 if (!str)
2605 goto out;
2606
2607 if (!strcmp(str, "enable")) {
2608 numabalancing_override = 1;
2609 ret = 1;
2610 } else if (!strcmp(str, "disable")) {
2611 numabalancing_override = -1;
2612 ret = 1;
2613 }
2614 out:
2615 if (!ret)
2616 pr_warn("Unable to parse numa_balancing=\n");
2617
2618 return ret;
2619 }
2620 __setup("numa_balancing=", setup_numabalancing);
2621 #else
2622 static inline void __init check_numabalancing_enable(void)
2623 {
2624 }
2625 #endif /* CONFIG_NUMA_BALANCING */
2626
2627 /* assumes fs == KERNEL_DS */
2628 void __init numa_policy_init(void)
2629 {
2630 nodemask_t interleave_nodes;
2631 unsigned long largest = 0;
2632 int nid, prefer = 0;
2633
2634 policy_cache = kmem_cache_create("numa_policy",
2635 sizeof(struct mempolicy),
2636 0, SLAB_PANIC, NULL);
2637
2638 sn_cache = kmem_cache_create("shared_policy_node",
2639 sizeof(struct sp_node),
2640 0, SLAB_PANIC, NULL);
2641
2642 for_each_node(nid) {
2643 preferred_node_policy[nid] = (struct mempolicy) {
2644 .refcnt = ATOMIC_INIT(1),
2645 .mode = MPOL_PREFERRED,
2646 .flags = MPOL_F_MOF | MPOL_F_MORON,
2647 .v = { .preferred_node = nid, },
2648 };
2649 }
2650
2651 /*
2652 * Set interleaving policy for system init. Interleaving is only
2653 * enabled across suitably sized nodes (default is >= 16MB), or
2654 * fall back to the largest node if they're all smaller.
2655 */
2656 nodes_clear(interleave_nodes);
2657 for_each_node_state(nid, N_MEMORY) {
2658 unsigned long total_pages = node_present_pages(nid);
2659
2660 /* Preserve the largest node */
2661 if (largest < total_pages) {
2662 largest = total_pages;
2663 prefer = nid;
2664 }
2665
2666 /* Interleave this node? */
2667 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2668 node_set(nid, interleave_nodes);
2669 }
2670
2671 /* All too small, use the largest */
2672 if (unlikely(nodes_empty(interleave_nodes)))
2673 node_set(prefer, interleave_nodes);
2674
2675 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2676 pr_err("%s: interleaving failed\n", __func__);
2677
2678 check_numabalancing_enable();
2679 }
2680
2681 /* Reset policy of current process to default */
2682 void numa_default_policy(void)
2683 {
2684 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2685 }
2686
2687 /*
2688 * Parse and format mempolicy from/to strings
2689 */
2690
2691 /*
2692 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2693 */
2694 static const char * const policy_modes[] =
2695 {
2696 [MPOL_DEFAULT] = "default",
2697 [MPOL_PREFERRED] = "prefer",
2698 [MPOL_BIND] = "bind",
2699 [MPOL_INTERLEAVE] = "interleave",
2700 [MPOL_LOCAL] = "local",
2701 };
2702
2703
2704 #ifdef CONFIG_TMPFS
2705 /**
2706 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2707 * @str: string containing mempolicy to parse
2708 * @mpol: pointer to struct mempolicy pointer, returned on success.
2709 *
2710 * Format of input:
2711 * <mode>[=<flags>][:<nodelist>]
2712 *
2713 * On success, returns 0, else 1
2714 */
2715 int mpol_parse_str(char *str, struct mempolicy **mpol)
2716 {
2717 struct mempolicy *new = NULL;
2718 unsigned short mode;
2719 unsigned short mode_flags;
2720 nodemask_t nodes;
2721 char *nodelist = strchr(str, ':');
2722 char *flags = strchr(str, '=');
2723 int err = 1;
2724
2725 if (nodelist) {
2726 /* NUL-terminate mode or flags string */
2727 *nodelist++ = '\0';
2728 if (nodelist_parse(nodelist, nodes))
2729 goto out;
2730 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2731 goto out;
2732 } else
2733 nodes_clear(nodes);
2734
2735 if (flags)
2736 *flags++ = '\0'; /* terminate mode string */
2737
2738 for (mode = 0; mode < MPOL_MAX; mode++) {
2739 if (!strcmp(str, policy_modes[mode])) {
2740 break;
2741 }
2742 }
2743 if (mode >= MPOL_MAX)
2744 goto out;
2745
2746 switch (mode) {
2747 case MPOL_PREFERRED:
2748 /*
2749 * Insist on a nodelist of one node only
2750 */
2751 if (nodelist) {
2752 char *rest = nodelist;
2753 while (isdigit(*rest))
2754 rest++;
2755 if (*rest)
2756 goto out;
2757 }
2758 break;
2759 case MPOL_INTERLEAVE:
2760 /*
2761 * Default to online nodes with memory if no nodelist
2762 */
2763 if (!nodelist)
2764 nodes = node_states[N_MEMORY];
2765 break;
2766 case MPOL_LOCAL:
2767 /*
2768 * Don't allow a nodelist; mpol_new() checks flags
2769 */
2770 if (nodelist)
2771 goto out;
2772 mode = MPOL_PREFERRED;
2773 break;
2774 case MPOL_DEFAULT:
2775 /*
2776 * Insist on a empty nodelist
2777 */
2778 if (!nodelist)
2779 err = 0;
2780 goto out;
2781 case MPOL_BIND:
2782 /*
2783 * Insist on a nodelist
2784 */
2785 if (!nodelist)
2786 goto out;
2787 }
2788
2789 mode_flags = 0;
2790 if (flags) {
2791 /*
2792 * Currently, we only support two mutually exclusive
2793 * mode flags.
2794 */
2795 if (!strcmp(flags, "static"))
2796 mode_flags |= MPOL_F_STATIC_NODES;
2797 else if (!strcmp(flags, "relative"))
2798 mode_flags |= MPOL_F_RELATIVE_NODES;
2799 else
2800 goto out;
2801 }
2802
2803 new = mpol_new(mode, mode_flags, &nodes);
2804 if (IS_ERR(new))
2805 goto out;
2806
2807 /*
2808 * Save nodes for mpol_to_str() to show the tmpfs mount options
2809 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2810 */
2811 if (mode != MPOL_PREFERRED)
2812 new->v.nodes = nodes;
2813 else if (nodelist)
2814 new->v.preferred_node = first_node(nodes);
2815 else
2816 new->flags |= MPOL_F_LOCAL;
2817
2818 /*
2819 * Save nodes for contextualization: this will be used to "clone"
2820 * the mempolicy in a specific context [cpuset] at a later time.
2821 */
2822 new->w.user_nodemask = nodes;
2823
2824 err = 0;
2825
2826 out:
2827 /* Restore string for error message */
2828 if (nodelist)
2829 *--nodelist = ':';
2830 if (flags)
2831 *--flags = '=';
2832 if (!err)
2833 *mpol = new;
2834 return err;
2835 }
2836 #endif /* CONFIG_TMPFS */
2837
2838 /**
2839 * mpol_to_str - format a mempolicy structure for printing
2840 * @buffer: to contain formatted mempolicy string
2841 * @maxlen: length of @buffer
2842 * @pol: pointer to mempolicy to be formatted
2843 *
2844 * Convert @pol into a string. If @buffer is too short, truncate the string.
2845 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2846 * longest flag, "relative", and to display at least a few node ids.
2847 */
2848 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2849 {
2850 char *p = buffer;
2851 nodemask_t nodes = NODE_MASK_NONE;
2852 unsigned short mode = MPOL_DEFAULT;
2853 unsigned short flags = 0;
2854
2855 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2856 mode = pol->mode;
2857 flags = pol->flags;
2858 }
2859
2860 switch (mode) {
2861 case MPOL_DEFAULT:
2862 break;
2863 case MPOL_PREFERRED:
2864 if (flags & MPOL_F_LOCAL)
2865 mode = MPOL_LOCAL;
2866 else
2867 node_set(pol->v.preferred_node, nodes);
2868 break;
2869 case MPOL_BIND:
2870 case MPOL_INTERLEAVE:
2871 nodes = pol->v.nodes;
2872 break;
2873 default:
2874 WARN_ON_ONCE(1);
2875 snprintf(p, maxlen, "unknown");
2876 return;
2877 }
2878
2879 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2880
2881 if (flags & MPOL_MODE_FLAGS) {
2882 p += snprintf(p, buffer + maxlen - p, "=");
2883
2884 /*
2885 * Currently, the only defined flags are mutually exclusive
2886 */
2887 if (flags & MPOL_F_STATIC_NODES)
2888 p += snprintf(p, buffer + maxlen - p, "static");
2889 else if (flags & MPOL_F_RELATIVE_NODES)
2890 p += snprintf(p, buffer + maxlen - p, "relative");
2891 }
2892
2893 if (!nodes_empty(nodes))
2894 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2895 nodemask_pr_args(&nodes));
2896 }