]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/migrate.c
mm/mempolicy.c: fix out of bounds write in mpol_parse_str()
[mirror_ubuntu-bionic-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49
50 #include <asm/tlbflush.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
54
55 #include "internal.h"
56
57 /*
58 * migrate_prep() needs to be called before we start compiling a list of pages
59 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60 * undesirable, use migrate_prep_local()
61 */
62 int migrate_prep(void)
63 {
64 /*
65 * Clear the LRU lists so pages can be isolated.
66 * Note that pages may be moved off the LRU after we have
67 * drained them. Those pages will fail to migrate like other
68 * pages that may be busy.
69 */
70 lru_add_drain_all();
71
72 return 0;
73 }
74
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
77 {
78 lru_add_drain();
79
80 return 0;
81 }
82
83 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 {
85 struct address_space *mapping;
86
87 /*
88 * Avoid burning cycles with pages that are yet under __free_pages(),
89 * or just got freed under us.
90 *
91 * In case we 'win' a race for a movable page being freed under us and
92 * raise its refcount preventing __free_pages() from doing its job
93 * the put_page() at the end of this block will take care of
94 * release this page, thus avoiding a nasty leakage.
95 */
96 if (unlikely(!get_page_unless_zero(page)))
97 goto out;
98
99 /*
100 * Check PageMovable before holding a PG_lock because page's owner
101 * assumes anybody doesn't touch PG_lock of newly allocated page
102 * so unconditionally grapping the lock ruins page's owner side.
103 */
104 if (unlikely(!__PageMovable(page)))
105 goto out_putpage;
106 /*
107 * As movable pages are not isolated from LRU lists, concurrent
108 * compaction threads can race against page migration functions
109 * as well as race against the releasing a page.
110 *
111 * In order to avoid having an already isolated movable page
112 * being (wrongly) re-isolated while it is under migration,
113 * or to avoid attempting to isolate pages being released,
114 * lets be sure we have the page lock
115 * before proceeding with the movable page isolation steps.
116 */
117 if (unlikely(!trylock_page(page)))
118 goto out_putpage;
119
120 if (!PageMovable(page) || PageIsolated(page))
121 goto out_no_isolated;
122
123 mapping = page_mapping(page);
124 VM_BUG_ON_PAGE(!mapping, page);
125
126 if (!mapping->a_ops->isolate_page(page, mode))
127 goto out_no_isolated;
128
129 /* Driver shouldn't use PG_isolated bit of page->flags */
130 WARN_ON_ONCE(PageIsolated(page));
131 __SetPageIsolated(page);
132 unlock_page(page);
133
134 return 0;
135
136 out_no_isolated:
137 unlock_page(page);
138 out_putpage:
139 put_page(page);
140 out:
141 return -EBUSY;
142 }
143
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page *page)
146 {
147 struct address_space *mapping;
148
149 VM_BUG_ON_PAGE(!PageLocked(page), page);
150 VM_BUG_ON_PAGE(!PageMovable(page), page);
151 VM_BUG_ON_PAGE(!PageIsolated(page), page);
152
153 mapping = page_mapping(page);
154 mapping->a_ops->putback_page(page);
155 __ClearPageIsolated(page);
156 }
157
158 /*
159 * Put previously isolated pages back onto the appropriate lists
160 * from where they were once taken off for compaction/migration.
161 *
162 * This function shall be used whenever the isolated pageset has been
163 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164 * and isolate_huge_page().
165 */
166 void putback_movable_pages(struct list_head *l)
167 {
168 struct page *page;
169 struct page *page2;
170
171 list_for_each_entry_safe(page, page2, l, lru) {
172 if (unlikely(PageHuge(page))) {
173 putback_active_hugepage(page);
174 continue;
175 }
176 list_del(&page->lru);
177 /*
178 * We isolated non-lru movable page so here we can use
179 * __PageMovable because LRU page's mapping cannot have
180 * PAGE_MAPPING_MOVABLE.
181 */
182 if (unlikely(__PageMovable(page))) {
183 VM_BUG_ON_PAGE(!PageIsolated(page), page);
184 lock_page(page);
185 if (PageMovable(page))
186 putback_movable_page(page);
187 else
188 __ClearPageIsolated(page);
189 unlock_page(page);
190 put_page(page);
191 } else {
192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
193 page_is_file_cache(page), -hpage_nr_pages(page));
194 putback_lru_page(page);
195 }
196 }
197 }
198
199 /*
200 * Restore a potential migration pte to a working pte entry
201 */
202 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
203 unsigned long addr, void *old)
204 {
205 struct page_vma_mapped_walk pvmw = {
206 .page = old,
207 .vma = vma,
208 .address = addr,
209 .flags = PVMW_SYNC | PVMW_MIGRATION,
210 };
211 struct page *new;
212 pte_t pte;
213 swp_entry_t entry;
214
215 VM_BUG_ON_PAGE(PageTail(page), page);
216 while (page_vma_mapped_walk(&pvmw)) {
217 if (PageKsm(page))
218 new = page;
219 else
220 new = page - pvmw.page->index +
221 linear_page_index(vma, pvmw.address);
222
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224 /* PMD-mapped THP migration entry */
225 if (!pvmw.pte) {
226 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
227 remove_migration_pmd(&pvmw, new);
228 continue;
229 }
230 #endif
231
232 get_page(new);
233 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
234 if (pte_swp_soft_dirty(*pvmw.pte))
235 pte = pte_mksoft_dirty(pte);
236
237 /*
238 * Recheck VMA as permissions can change since migration started
239 */
240 entry = pte_to_swp_entry(*pvmw.pte);
241 if (is_write_migration_entry(entry))
242 pte = maybe_mkwrite(pte, vma);
243
244 if (unlikely(is_zone_device_page(new))) {
245 if (is_device_private_page(new)) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 } else if (is_device_public_page(new)) {
249 pte = pte_mkdevmap(pte);
250 }
251 }
252
253 #ifdef CONFIG_HUGETLB_PAGE
254 if (PageHuge(new)) {
255 pte = pte_mkhuge(pte);
256 pte = arch_make_huge_pte(pte, vma, new, 0);
257 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 if (PageAnon(new))
259 hugepage_add_anon_rmap(new, vma, pvmw.address);
260 else
261 page_dup_rmap(new, true);
262 } else
263 #endif
264 {
265 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267 if (PageAnon(new))
268 page_add_anon_rmap(new, vma, pvmw.address, false);
269 else
270 page_add_file_rmap(new, false);
271 }
272 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 mlock_vma_page(new);
274
275 if (PageTransHuge(page) && PageMlocked(page))
276 clear_page_mlock(page);
277
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
281
282 return true;
283 }
284
285 /*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
300 }
301
302 /*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
306 */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 spinlock_t *ptl)
309 {
310 pte_t pte;
311 swp_entry_t entry;
312 struct page *page;
313
314 spin_lock(ptl);
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
324
325 /*
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
331 */
332 if (!get_page_unless_zero(page))
333 goto out;
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338 out:
339 pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344 {
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
352 {
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373 unlock:
374 spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
382 {
383 struct buffer_head *bh = head;
384
385 /* Simple case, sync compaction */
386 if (mode != MIGRATE_ASYNC) {
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 return true;
395 }
396
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
401 /*
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
404 */
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
412 }
413 return false;
414 }
415
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 enum migrate_mode mode)
423 {
424 return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429 * Replace the page in the mapping.
430 *
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435 */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 struct page *newpage, struct page *page,
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
440 {
441 struct zone *oldzone, *newzone;
442 int dirty;
443 int expected_count = 1 + extra_count;
444 void **pslot;
445
446 /*
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
449 */
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
452
453 if (!mapping) {
454 /* Anonymous page without mapping */
455 if (page_count(page) != expected_count)
456 return -EAGAIN;
457
458 /* No turning back from here */
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
462 __SetPageSwapBacked(newpage);
463
464 return MIGRATEPAGE_SUCCESS;
465 }
466
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
469
470 spin_lock_irq(&mapping->tree_lock);
471
472 pslot = radix_tree_lookup_slot(&mapping->page_tree,
473 page_index(page));
474
475 expected_count += 1 + page_has_private(page);
476 if (page_count(page) != expected_count ||
477 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
478 spin_unlock_irq(&mapping->tree_lock);
479 return -EAGAIN;
480 }
481
482 if (!page_ref_freeze(page, expected_count)) {
483 spin_unlock_irq(&mapping->tree_lock);
484 return -EAGAIN;
485 }
486
487 /*
488 * In the async migration case of moving a page with buffers, lock the
489 * buffers using trylock before the mapping is moved. If the mapping
490 * was moved, we later failed to lock the buffers and could not move
491 * the mapping back due to an elevated page count, we would have to
492 * block waiting on other references to be dropped.
493 */
494 if (mode == MIGRATE_ASYNC && head &&
495 !buffer_migrate_lock_buffers(head, mode)) {
496 page_ref_unfreeze(page, expected_count);
497 spin_unlock_irq(&mapping->tree_lock);
498 return -EAGAIN;
499 }
500
501 /*
502 * Now we know that no one else is looking at the page:
503 * no turning back from here.
504 */
505 newpage->index = page->index;
506 newpage->mapping = page->mapping;
507 get_page(newpage); /* add cache reference */
508 if (PageSwapBacked(page)) {
509 __SetPageSwapBacked(newpage);
510 if (PageSwapCache(page)) {
511 SetPageSwapCache(newpage);
512 set_page_private(newpage, page_private(page));
513 }
514 } else {
515 VM_BUG_ON_PAGE(PageSwapCache(page), page);
516 }
517
518 /* Move dirty while page refs frozen and newpage not yet exposed */
519 dirty = PageDirty(page);
520 if (dirty) {
521 ClearPageDirty(page);
522 SetPageDirty(newpage);
523 }
524
525 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
526
527 /*
528 * Drop cache reference from old page by unfreezing
529 * to one less reference.
530 * We know this isn't the last reference.
531 */
532 page_ref_unfreeze(page, expected_count - 1);
533
534 spin_unlock(&mapping->tree_lock);
535 /* Leave irq disabled to prevent preemption while updating stats */
536
537 /*
538 * If moved to a different zone then also account
539 * the page for that zone. Other VM counters will be
540 * taken care of when we establish references to the
541 * new page and drop references to the old page.
542 *
543 * Note that anonymous pages are accounted for
544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545 * are mapped to swap space.
546 */
547 if (newzone != oldzone) {
548 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
550 if (PageSwapBacked(page) && !PageSwapCache(page)) {
551 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
553 }
554 if (dirty && mapping_cap_account_dirty(mapping)) {
555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
556 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
557 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
558 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
559 }
560 }
561 local_irq_enable();
562
563 return MIGRATEPAGE_SUCCESS;
564 }
565 EXPORT_SYMBOL(migrate_page_move_mapping);
566
567 /*
568 * The expected number of remaining references is the same as that
569 * of migrate_page_move_mapping().
570 */
571 int migrate_huge_page_move_mapping(struct address_space *mapping,
572 struct page *newpage, struct page *page)
573 {
574 int expected_count;
575 void **pslot;
576
577 spin_lock_irq(&mapping->tree_lock);
578
579 pslot = radix_tree_lookup_slot(&mapping->page_tree,
580 page_index(page));
581
582 expected_count = 2 + page_has_private(page);
583 if (page_count(page) != expected_count ||
584 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
585 spin_unlock_irq(&mapping->tree_lock);
586 return -EAGAIN;
587 }
588
589 if (!page_ref_freeze(page, expected_count)) {
590 spin_unlock_irq(&mapping->tree_lock);
591 return -EAGAIN;
592 }
593
594 newpage->index = page->index;
595 newpage->mapping = page->mapping;
596
597 get_page(newpage);
598
599 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
600
601 page_ref_unfreeze(page, expected_count - 1);
602
603 spin_unlock_irq(&mapping->tree_lock);
604
605 return MIGRATEPAGE_SUCCESS;
606 }
607
608 /*
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
611 * specialized.
612 */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614 int nr_pages)
615 {
616 int i;
617 struct page *dst_base = dst;
618 struct page *src_base = src;
619
620 for (i = 0; i < nr_pages; ) {
621 cond_resched();
622 copy_highpage(dst, src);
623
624 i++;
625 dst = mem_map_next(dst, dst_base, i);
626 src = mem_map_next(src, src_base, i);
627 }
628 }
629
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632 int i;
633 int nr_pages;
634
635 if (PageHuge(src)) {
636 /* hugetlbfs page */
637 struct hstate *h = page_hstate(src);
638 nr_pages = pages_per_huge_page(h);
639
640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 __copy_gigantic_page(dst, src, nr_pages);
642 return;
643 }
644 } else {
645 /* thp page */
646 BUG_ON(!PageTransHuge(src));
647 nr_pages = hpage_nr_pages(src);
648 }
649
650 for (i = 0; i < nr_pages; i++) {
651 cond_resched();
652 copy_highpage(dst + i, src + i);
653 }
654 }
655
656 /*
657 * Copy the page to its new location
658 */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661 int cpupid;
662
663 if (PageError(page))
664 SetPageError(newpage);
665 if (PageReferenced(page))
666 SetPageReferenced(newpage);
667 if (PageUptodate(page))
668 SetPageUptodate(newpage);
669 if (TestClearPageActive(page)) {
670 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671 SetPageActive(newpage);
672 } else if (TestClearPageUnevictable(page))
673 SetPageUnevictable(newpage);
674 if (PageChecked(page))
675 SetPageChecked(newpage);
676 if (PageMappedToDisk(page))
677 SetPageMappedToDisk(newpage);
678
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
680 if (PageDirty(page))
681 SetPageDirty(newpage);
682
683 if (page_is_young(page))
684 set_page_young(newpage);
685 if (page_is_idle(page))
686 set_page_idle(newpage);
687
688 /*
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
691 */
692 cpupid = page_cpupid_xchg_last(page, -1);
693 page_cpupid_xchg_last(newpage, cpupid);
694
695 ksm_migrate_page(newpage, page);
696 /*
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 */
700 if (PageSwapCache(page))
701 ClearPageSwapCache(page);
702 ClearPagePrivate(page);
703 set_page_private(page, 0);
704
705 /*
706 * If any waiters have accumulated on the new page then
707 * wake them up.
708 */
709 if (PageWriteback(newpage))
710 end_page_writeback(newpage);
711
712 copy_page_owner(page, newpage);
713
714 mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720 if (PageHuge(page) || PageTransHuge(page))
721 copy_huge_page(newpage, page);
722 else
723 copy_highpage(newpage, page);
724
725 migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728
729 /************************************************************
730 * Migration functions
731 ***********************************************************/
732
733 /*
734 * Common logic to directly migrate a single LRU page suitable for
735 * pages that do not use PagePrivate/PagePrivate2.
736 *
737 * Pages are locked upon entry and exit.
738 */
739 int migrate_page(struct address_space *mapping,
740 struct page *newpage, struct page *page,
741 enum migrate_mode mode)
742 {
743 int rc;
744
745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
746
747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748
749 if (rc != MIGRATEPAGE_SUCCESS)
750 return rc;
751
752 if (mode != MIGRATE_SYNC_NO_COPY)
753 migrate_page_copy(newpage, page);
754 else
755 migrate_page_states(newpage, page);
756 return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759
760 #ifdef CONFIG_BLOCK
761 /*
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
764 * exist.
765 */
766 int buffer_migrate_page(struct address_space *mapping,
767 struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769 struct buffer_head *bh, *head;
770 int rc;
771
772 if (!page_has_buffers(page))
773 return migrate_page(mapping, newpage, page, mode);
774
775 head = page_buffers(page);
776
777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778
779 if (rc != MIGRATEPAGE_SUCCESS)
780 return rc;
781
782 /*
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
786 */
787 if (mode != MIGRATE_ASYNC)
788 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789
790 ClearPagePrivate(page);
791 set_page_private(newpage, page_private(page));
792 set_page_private(page, 0);
793 put_page(page);
794 get_page(newpage);
795
796 bh = head;
797 do {
798 set_bh_page(bh, newpage, bh_offset(bh));
799 bh = bh->b_this_page;
800
801 } while (bh != head);
802
803 SetPagePrivate(newpage);
804
805 if (mode != MIGRATE_SYNC_NO_COPY)
806 migrate_page_copy(newpage, page);
807 else
808 migrate_page_states(newpage, page);
809
810 bh = head;
811 do {
812 unlock_buffer(bh);
813 put_bh(bh);
814 bh = bh->b_this_page;
815
816 } while (bh != head);
817
818 return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822
823 /*
824 * Writeback a page to clean the dirty state
825 */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828 struct writeback_control wbc = {
829 .sync_mode = WB_SYNC_NONE,
830 .nr_to_write = 1,
831 .range_start = 0,
832 .range_end = LLONG_MAX,
833 .for_reclaim = 1
834 };
835 int rc;
836
837 if (!mapping->a_ops->writepage)
838 /* No write method for the address space */
839 return -EINVAL;
840
841 if (!clear_page_dirty_for_io(page))
842 /* Someone else already triggered a write */
843 return -EAGAIN;
844
845 /*
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
851 * be successful.
852 */
853 remove_migration_ptes(page, page, false);
854
855 rc = mapping->a_ops->writepage(page, &wbc);
856
857 if (rc != AOP_WRITEPAGE_ACTIVATE)
858 /* unlocked. Relock */
859 lock_page(page);
860
861 return (rc < 0) ? -EIO : -EAGAIN;
862 }
863
864 /*
865 * Default handling if a filesystem does not provide a migration function.
866 */
867 static int fallback_migrate_page(struct address_space *mapping,
868 struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870 if (PageDirty(page)) {
871 /* Only writeback pages in full synchronous migration */
872 switch (mode) {
873 case MIGRATE_SYNC:
874 case MIGRATE_SYNC_NO_COPY:
875 break;
876 default:
877 return -EBUSY;
878 }
879 return writeout(mapping, page);
880 }
881
882 /*
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
885 */
886 if (page_has_private(page) &&
887 !try_to_release_page(page, GFP_KERNEL))
888 return -EAGAIN;
889
890 return migrate_page(mapping, newpage, page, mode);
891 }
892
893 /*
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
896 *
897 * The new page will have replaced the old page if this function
898 * is successful.
899 *
900 * Return value:
901 * < 0 - error code
902 * MIGRATEPAGE_SUCCESS - success
903 */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905 enum migrate_mode mode)
906 {
907 struct address_space *mapping;
908 int rc = -EAGAIN;
909 bool is_lru = !__PageMovable(page);
910
911 VM_BUG_ON_PAGE(!PageLocked(page), page);
912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913
914 mapping = page_mapping(page);
915
916 if (likely(is_lru)) {
917 if (!mapping)
918 rc = migrate_page(mapping, newpage, page, mode);
919 else if (mapping->a_ops->migratepage)
920 /*
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
926 */
927 rc = mapping->a_ops->migratepage(mapping, newpage,
928 page, mode);
929 else
930 rc = fallback_migrate_page(mapping, newpage,
931 page, mode);
932 } else {
933 /*
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
936 */
937 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 if (!PageMovable(page)) {
939 rc = MIGRATEPAGE_SUCCESS;
940 __ClearPageIsolated(page);
941 goto out;
942 }
943
944 rc = mapping->a_ops->migratepage(mapping, newpage,
945 page, mode);
946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 !PageIsolated(page));
948 }
949
950 /*
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
953 */
954 if (rc == MIGRATEPAGE_SUCCESS) {
955 if (__PageMovable(page)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958 /*
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
961 */
962 __ClearPageIsolated(page);
963 }
964
965 /*
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
969 */
970 if (!PageMappingFlags(page))
971 page->mapping = NULL;
972
973 if (unlikely(is_zone_device_page(newpage))) {
974 if (is_device_public_page(newpage))
975 flush_dcache_page(newpage);
976 } else
977 flush_dcache_page(newpage);
978
979 }
980 out:
981 return rc;
982 }
983
984 static int __unmap_and_move(struct page *page, struct page *newpage,
985 int force, enum migrate_mode mode)
986 {
987 int rc = -EAGAIN;
988 int page_was_mapped = 0;
989 struct anon_vma *anon_vma = NULL;
990 bool is_lru = !__PageMovable(page);
991
992 if (!trylock_page(page)) {
993 if (!force || mode == MIGRATE_ASYNC)
994 goto out;
995
996 /*
997 * It's not safe for direct compaction to call lock_page.
998 * For example, during page readahead pages are added locked
999 * to the LRU. Later, when the IO completes the pages are
1000 * marked uptodate and unlocked. However, the queueing
1001 * could be merging multiple pages for one bio (e.g.
1002 * mpage_readpages). If an allocation happens for the
1003 * second or third page, the process can end up locking
1004 * the same page twice and deadlocking. Rather than
1005 * trying to be clever about what pages can be locked,
1006 * avoid the use of lock_page for direct compaction
1007 * altogether.
1008 */
1009 if (current->flags & PF_MEMALLOC)
1010 goto out;
1011
1012 lock_page(page);
1013 }
1014
1015 if (PageWriteback(page)) {
1016 /*
1017 * Only in the case of a full synchronous migration is it
1018 * necessary to wait for PageWriteback. In the async case,
1019 * the retry loop is too short and in the sync-light case,
1020 * the overhead of stalling is too much
1021 */
1022 switch (mode) {
1023 case MIGRATE_SYNC:
1024 case MIGRATE_SYNC_NO_COPY:
1025 break;
1026 default:
1027 rc = -EBUSY;
1028 goto out_unlock;
1029 }
1030 if (!force)
1031 goto out_unlock;
1032 wait_on_page_writeback(page);
1033 }
1034
1035 /*
1036 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1037 * we cannot notice that anon_vma is freed while we migrates a page.
1038 * This get_anon_vma() delays freeing anon_vma pointer until the end
1039 * of migration. File cache pages are no problem because of page_lock()
1040 * File Caches may use write_page() or lock_page() in migration, then,
1041 * just care Anon page here.
1042 *
1043 * Only page_get_anon_vma() understands the subtleties of
1044 * getting a hold on an anon_vma from outside one of its mms.
1045 * But if we cannot get anon_vma, then we won't need it anyway,
1046 * because that implies that the anon page is no longer mapped
1047 * (and cannot be remapped so long as we hold the page lock).
1048 */
1049 if (PageAnon(page) && !PageKsm(page))
1050 anon_vma = page_get_anon_vma(page);
1051
1052 /*
1053 * Block others from accessing the new page when we get around to
1054 * establishing additional references. We are usually the only one
1055 * holding a reference to newpage at this point. We used to have a BUG
1056 * here if trylock_page(newpage) fails, but would like to allow for
1057 * cases where there might be a race with the previous use of newpage.
1058 * This is much like races on refcount of oldpage: just don't BUG().
1059 */
1060 if (unlikely(!trylock_page(newpage)))
1061 goto out_unlock;
1062
1063 if (unlikely(!is_lru)) {
1064 rc = move_to_new_page(newpage, page, mode);
1065 goto out_unlock_both;
1066 }
1067
1068 /*
1069 * Corner case handling:
1070 * 1. When a new swap-cache page is read into, it is added to the LRU
1071 * and treated as swapcache but it has no rmap yet.
1072 * Calling try_to_unmap() against a page->mapping==NULL page will
1073 * trigger a BUG. So handle it here.
1074 * 2. An orphaned page (see truncate_complete_page) might have
1075 * fs-private metadata. The page can be picked up due to memory
1076 * offlining. Everywhere else except page reclaim, the page is
1077 * invisible to the vm, so the page can not be migrated. So try to
1078 * free the metadata, so the page can be freed.
1079 */
1080 if (!page->mapping) {
1081 VM_BUG_ON_PAGE(PageAnon(page), page);
1082 if (page_has_private(page)) {
1083 try_to_free_buffers(page);
1084 goto out_unlock_both;
1085 }
1086 } else if (page_mapped(page)) {
1087 /* Establish migration ptes */
1088 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1089 page);
1090 try_to_unmap(page,
1091 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1092 page_was_mapped = 1;
1093 }
1094
1095 if (!page_mapped(page))
1096 rc = move_to_new_page(newpage, page, mode);
1097
1098 if (page_was_mapped)
1099 remove_migration_ptes(page,
1100 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1101
1102 out_unlock_both:
1103 unlock_page(newpage);
1104 out_unlock:
1105 /* Drop an anon_vma reference if we took one */
1106 if (anon_vma)
1107 put_anon_vma(anon_vma);
1108 unlock_page(page);
1109 out:
1110 /*
1111 * If migration is successful, decrease refcount of the newpage
1112 * which will not free the page because new page owner increased
1113 * refcounter. As well, if it is LRU page, add the page to LRU
1114 * list in here. Use the old state of the isolated source page to
1115 * determine if we migrated a LRU page. newpage was already unlocked
1116 * and possibly modified by its owner - don't rely on the page
1117 * state.
1118 */
1119 if (rc == MIGRATEPAGE_SUCCESS) {
1120 if (unlikely(!is_lru))
1121 put_page(newpage);
1122 else
1123 putback_lru_page(newpage);
1124 }
1125
1126 return rc;
1127 }
1128
1129 /*
1130 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1131 * around it.
1132 */
1133 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1134 #define ICE_noinline noinline
1135 #else
1136 #define ICE_noinline
1137 #endif
1138
1139 /*
1140 * Obtain the lock on page, remove all ptes and migrate the page
1141 * to the newly allocated page in newpage.
1142 */
1143 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1144 free_page_t put_new_page,
1145 unsigned long private, struct page *page,
1146 int force, enum migrate_mode mode,
1147 enum migrate_reason reason)
1148 {
1149 int rc = MIGRATEPAGE_SUCCESS;
1150 int *result = NULL;
1151 struct page *newpage;
1152
1153 newpage = get_new_page(page, private, &result);
1154 if (!newpage)
1155 return -ENOMEM;
1156
1157 if (page_count(page) == 1) {
1158 /* page was freed from under us. So we are done. */
1159 ClearPageActive(page);
1160 ClearPageUnevictable(page);
1161 if (unlikely(__PageMovable(page))) {
1162 lock_page(page);
1163 if (!PageMovable(page))
1164 __ClearPageIsolated(page);
1165 unlock_page(page);
1166 }
1167 if (put_new_page)
1168 put_new_page(newpage, private);
1169 else
1170 put_page(newpage);
1171 goto out;
1172 }
1173
1174 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1175 lock_page(page);
1176 rc = split_huge_page(page);
1177 unlock_page(page);
1178 if (rc)
1179 goto out;
1180 }
1181
1182 rc = __unmap_and_move(page, newpage, force, mode);
1183 if (rc == MIGRATEPAGE_SUCCESS)
1184 set_page_owner_migrate_reason(newpage, reason);
1185
1186 out:
1187 if (rc != -EAGAIN) {
1188 /*
1189 * A page that has been migrated has all references
1190 * removed and will be freed. A page that has not been
1191 * migrated will have kepts its references and be
1192 * restored.
1193 */
1194 list_del(&page->lru);
1195
1196 /*
1197 * Compaction can migrate also non-LRU pages which are
1198 * not accounted to NR_ISOLATED_*. They can be recognized
1199 * as __PageMovable
1200 */
1201 if (likely(!__PageMovable(page)))
1202 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1203 page_is_file_cache(page), -hpage_nr_pages(page));
1204 }
1205
1206 /*
1207 * If migration is successful, releases reference grabbed during
1208 * isolation. Otherwise, restore the page to right list unless
1209 * we want to retry.
1210 */
1211 if (rc == MIGRATEPAGE_SUCCESS) {
1212 put_page(page);
1213 if (reason == MR_MEMORY_FAILURE) {
1214 /*
1215 * Set PG_HWPoison on just freed page
1216 * intentionally. Although it's rather weird,
1217 * it's how HWPoison flag works at the moment.
1218 */
1219 if (!test_set_page_hwpoison(page))
1220 num_poisoned_pages_inc();
1221 }
1222 } else {
1223 if (rc != -EAGAIN) {
1224 if (likely(!__PageMovable(page))) {
1225 putback_lru_page(page);
1226 goto put_new;
1227 }
1228
1229 lock_page(page);
1230 if (PageMovable(page))
1231 putback_movable_page(page);
1232 else
1233 __ClearPageIsolated(page);
1234 unlock_page(page);
1235 put_page(page);
1236 }
1237 put_new:
1238 if (put_new_page)
1239 put_new_page(newpage, private);
1240 else
1241 put_page(newpage);
1242 }
1243
1244 if (result) {
1245 if (rc)
1246 *result = rc;
1247 else
1248 *result = page_to_nid(newpage);
1249 }
1250 return rc;
1251 }
1252
1253 /*
1254 * Counterpart of unmap_and_move_page() for hugepage migration.
1255 *
1256 * This function doesn't wait the completion of hugepage I/O
1257 * because there is no race between I/O and migration for hugepage.
1258 * Note that currently hugepage I/O occurs only in direct I/O
1259 * where no lock is held and PG_writeback is irrelevant,
1260 * and writeback status of all subpages are counted in the reference
1261 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1262 * under direct I/O, the reference of the head page is 512 and a bit more.)
1263 * This means that when we try to migrate hugepage whose subpages are
1264 * doing direct I/O, some references remain after try_to_unmap() and
1265 * hugepage migration fails without data corruption.
1266 *
1267 * There is also no race when direct I/O is issued on the page under migration,
1268 * because then pte is replaced with migration swap entry and direct I/O code
1269 * will wait in the page fault for migration to complete.
1270 */
1271 static int unmap_and_move_huge_page(new_page_t get_new_page,
1272 free_page_t put_new_page, unsigned long private,
1273 struct page *hpage, int force,
1274 enum migrate_mode mode, int reason)
1275 {
1276 int rc = -EAGAIN;
1277 int *result = NULL;
1278 int page_was_mapped = 0;
1279 struct page *new_hpage;
1280 struct anon_vma *anon_vma = NULL;
1281
1282 /*
1283 * Movability of hugepages depends on architectures and hugepage size.
1284 * This check is necessary because some callers of hugepage migration
1285 * like soft offline and memory hotremove don't walk through page
1286 * tables or check whether the hugepage is pmd-based or not before
1287 * kicking migration.
1288 */
1289 if (!hugepage_migration_supported(page_hstate(hpage))) {
1290 putback_active_hugepage(hpage);
1291 return -ENOSYS;
1292 }
1293
1294 new_hpage = get_new_page(hpage, private, &result);
1295 if (!new_hpage)
1296 return -ENOMEM;
1297
1298 if (!trylock_page(hpage)) {
1299 if (!force)
1300 goto out;
1301 switch (mode) {
1302 case MIGRATE_SYNC:
1303 case MIGRATE_SYNC_NO_COPY:
1304 break;
1305 default:
1306 goto out;
1307 }
1308 lock_page(hpage);
1309 }
1310
1311 /*
1312 * Check for pages which are in the process of being freed. Without
1313 * page_mapping() set, hugetlbfs specific move page routine will not
1314 * be called and we could leak usage counts for subpools.
1315 */
1316 if (page_private(hpage) && !page_mapping(hpage)) {
1317 rc = -EBUSY;
1318 goto out_unlock;
1319 }
1320
1321 if (PageAnon(hpage))
1322 anon_vma = page_get_anon_vma(hpage);
1323
1324 if (unlikely(!trylock_page(new_hpage)))
1325 goto put_anon;
1326
1327 if (page_mapped(hpage)) {
1328 try_to_unmap(hpage,
1329 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1330 page_was_mapped = 1;
1331 }
1332
1333 if (!page_mapped(hpage))
1334 rc = move_to_new_page(new_hpage, hpage, mode);
1335
1336 if (page_was_mapped)
1337 remove_migration_ptes(hpage,
1338 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1339
1340 unlock_page(new_hpage);
1341
1342 put_anon:
1343 if (anon_vma)
1344 put_anon_vma(anon_vma);
1345
1346 if (rc == MIGRATEPAGE_SUCCESS) {
1347 hugetlb_cgroup_migrate(hpage, new_hpage);
1348 put_new_page = NULL;
1349 set_page_owner_migrate_reason(new_hpage, reason);
1350 }
1351
1352 out_unlock:
1353 unlock_page(hpage);
1354 out:
1355 if (rc != -EAGAIN)
1356 putback_active_hugepage(hpage);
1357 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1358 num_poisoned_pages_inc();
1359
1360 /*
1361 * If migration was not successful and there's a freeing callback, use
1362 * it. Otherwise, put_page() will drop the reference grabbed during
1363 * isolation.
1364 */
1365 if (put_new_page)
1366 put_new_page(new_hpage, private);
1367 else
1368 putback_active_hugepage(new_hpage);
1369
1370 if (result) {
1371 if (rc)
1372 *result = rc;
1373 else
1374 *result = page_to_nid(new_hpage);
1375 }
1376 return rc;
1377 }
1378
1379 /*
1380 * migrate_pages - migrate the pages specified in a list, to the free pages
1381 * supplied as the target for the page migration
1382 *
1383 * @from: The list of pages to be migrated.
1384 * @get_new_page: The function used to allocate free pages to be used
1385 * as the target of the page migration.
1386 * @put_new_page: The function used to free target pages if migration
1387 * fails, or NULL if no special handling is necessary.
1388 * @private: Private data to be passed on to get_new_page()
1389 * @mode: The migration mode that specifies the constraints for
1390 * page migration, if any.
1391 * @reason: The reason for page migration.
1392 *
1393 * The function returns after 10 attempts or if no pages are movable any more
1394 * because the list has become empty or no retryable pages exist any more.
1395 * The caller should call putback_movable_pages() to return pages to the LRU
1396 * or free list only if ret != 0.
1397 *
1398 * Returns the number of pages that were not migrated, or an error code.
1399 */
1400 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1401 free_page_t put_new_page, unsigned long private,
1402 enum migrate_mode mode, int reason)
1403 {
1404 int retry = 1;
1405 int nr_failed = 0;
1406 int nr_succeeded = 0;
1407 int pass = 0;
1408 struct page *page;
1409 struct page *page2;
1410 int swapwrite = current->flags & PF_SWAPWRITE;
1411 int rc;
1412
1413 if (!swapwrite)
1414 current->flags |= PF_SWAPWRITE;
1415
1416 for(pass = 0; pass < 10 && retry; pass++) {
1417 retry = 0;
1418
1419 list_for_each_entry_safe(page, page2, from, lru) {
1420 cond_resched();
1421
1422 if (PageHuge(page))
1423 rc = unmap_and_move_huge_page(get_new_page,
1424 put_new_page, private, page,
1425 pass > 2, mode, reason);
1426 else
1427 rc = unmap_and_move(get_new_page, put_new_page,
1428 private, page, pass > 2, mode,
1429 reason);
1430
1431 switch(rc) {
1432 case -ENOMEM:
1433 nr_failed++;
1434 goto out;
1435 case -EAGAIN:
1436 retry++;
1437 break;
1438 case MIGRATEPAGE_SUCCESS:
1439 nr_succeeded++;
1440 break;
1441 default:
1442 /*
1443 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1444 * unlike -EAGAIN case, the failed page is
1445 * removed from migration page list and not
1446 * retried in the next outer loop.
1447 */
1448 nr_failed++;
1449 break;
1450 }
1451 }
1452 }
1453 nr_failed += retry;
1454 rc = nr_failed;
1455 out:
1456 if (nr_succeeded)
1457 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1458 if (nr_failed)
1459 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1460 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1461
1462 if (!swapwrite)
1463 current->flags &= ~PF_SWAPWRITE;
1464
1465 return rc;
1466 }
1467
1468 #ifdef CONFIG_NUMA
1469 /*
1470 * Move a list of individual pages
1471 */
1472 struct page_to_node {
1473 unsigned long addr;
1474 struct page *page;
1475 int node;
1476 int status;
1477 };
1478
1479 static struct page *new_page_node(struct page *p, unsigned long private,
1480 int **result)
1481 {
1482 struct page_to_node *pm = (struct page_to_node *)private;
1483
1484 while (pm->node != MAX_NUMNODES && pm->page != p)
1485 pm++;
1486
1487 if (pm->node == MAX_NUMNODES)
1488 return NULL;
1489
1490 *result = &pm->status;
1491
1492 if (PageHuge(p))
1493 return alloc_huge_page_node(page_hstate(compound_head(p)),
1494 pm->node);
1495 else if (thp_migration_supported() && PageTransHuge(p)) {
1496 struct page *thp;
1497
1498 thp = alloc_pages_node(pm->node,
1499 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1500 HPAGE_PMD_ORDER);
1501 if (!thp)
1502 return NULL;
1503 prep_transhuge_page(thp);
1504 return thp;
1505 } else
1506 return __alloc_pages_node(pm->node,
1507 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1508 }
1509
1510 /*
1511 * Move a set of pages as indicated in the pm array. The addr
1512 * field must be set to the virtual address of the page to be moved
1513 * and the node number must contain a valid target node.
1514 * The pm array ends with node = MAX_NUMNODES.
1515 */
1516 static int do_move_page_to_node_array(struct mm_struct *mm,
1517 struct page_to_node *pm,
1518 int migrate_all)
1519 {
1520 int err;
1521 struct page_to_node *pp;
1522 LIST_HEAD(pagelist);
1523
1524 down_read(&mm->mmap_sem);
1525
1526 /*
1527 * Build a list of pages to migrate
1528 */
1529 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1530 struct vm_area_struct *vma;
1531 struct page *page;
1532 struct page *head;
1533 unsigned int follflags;
1534
1535 err = -EFAULT;
1536 vma = find_vma(mm, pp->addr);
1537 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1538 goto set_status;
1539
1540 /* FOLL_DUMP to ignore special (like zero) pages */
1541 follflags = FOLL_GET | FOLL_DUMP;
1542 if (!thp_migration_supported())
1543 follflags |= FOLL_SPLIT;
1544 page = follow_page(vma, pp->addr, follflags);
1545
1546 err = PTR_ERR(page);
1547 if (IS_ERR(page))
1548 goto set_status;
1549
1550 err = -ENOENT;
1551 if (!page)
1552 goto set_status;
1553
1554 err = page_to_nid(page);
1555
1556 if (err == pp->node)
1557 /*
1558 * Node already in the right place
1559 */
1560 goto put_and_set;
1561
1562 err = -EACCES;
1563 if (page_mapcount(page) > 1 &&
1564 !migrate_all)
1565 goto put_and_set;
1566
1567 if (PageHuge(page)) {
1568 if (PageHead(page)) {
1569 isolate_huge_page(page, &pagelist);
1570 err = 0;
1571 pp->page = page;
1572 }
1573 goto put_and_set;
1574 }
1575
1576 pp->page = compound_head(page);
1577 head = compound_head(page);
1578 err = isolate_lru_page(head);
1579 if (!err) {
1580 list_add_tail(&head->lru, &pagelist);
1581 mod_node_page_state(page_pgdat(head),
1582 NR_ISOLATED_ANON + page_is_file_cache(head),
1583 hpage_nr_pages(head));
1584 }
1585 put_and_set:
1586 /*
1587 * Either remove the duplicate refcount from
1588 * isolate_lru_page() or drop the page ref if it was
1589 * not isolated.
1590 */
1591 put_page(page);
1592 set_status:
1593 pp->status = err;
1594 }
1595
1596 err = 0;
1597 if (!list_empty(&pagelist)) {
1598 err = migrate_pages(&pagelist, new_page_node, NULL,
1599 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1600 if (err)
1601 putback_movable_pages(&pagelist);
1602 }
1603
1604 up_read(&mm->mmap_sem);
1605 return err;
1606 }
1607
1608 /*
1609 * Migrate an array of page address onto an array of nodes and fill
1610 * the corresponding array of status.
1611 */
1612 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1613 unsigned long nr_pages,
1614 const void __user * __user *pages,
1615 const int __user *nodes,
1616 int __user *status, int flags)
1617 {
1618 struct page_to_node *pm;
1619 unsigned long chunk_nr_pages;
1620 unsigned long chunk_start;
1621 int err;
1622
1623 err = -ENOMEM;
1624 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1625 if (!pm)
1626 goto out;
1627
1628 migrate_prep();
1629
1630 /*
1631 * Store a chunk of page_to_node array in a page,
1632 * but keep the last one as a marker
1633 */
1634 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1635
1636 for (chunk_start = 0;
1637 chunk_start < nr_pages;
1638 chunk_start += chunk_nr_pages) {
1639 int j;
1640
1641 if (chunk_start + chunk_nr_pages > nr_pages)
1642 chunk_nr_pages = nr_pages - chunk_start;
1643
1644 /* fill the chunk pm with addrs and nodes from user-space */
1645 for (j = 0; j < chunk_nr_pages; j++) {
1646 const void __user *p;
1647 int node;
1648
1649 err = -EFAULT;
1650 if (get_user(p, pages + j + chunk_start))
1651 goto out_pm;
1652 pm[j].addr = (unsigned long) p;
1653
1654 if (get_user(node, nodes + j + chunk_start))
1655 goto out_pm;
1656
1657 err = -ENODEV;
1658 if (node < 0 || node >= MAX_NUMNODES)
1659 goto out_pm;
1660
1661 if (!node_state(node, N_MEMORY))
1662 goto out_pm;
1663
1664 err = -EACCES;
1665 if (!node_isset(node, task_nodes))
1666 goto out_pm;
1667
1668 pm[j].node = node;
1669 }
1670
1671 /* End marker for this chunk */
1672 pm[chunk_nr_pages].node = MAX_NUMNODES;
1673
1674 /* Migrate this chunk */
1675 err = do_move_page_to_node_array(mm, pm,
1676 flags & MPOL_MF_MOVE_ALL);
1677 if (err < 0)
1678 goto out_pm;
1679
1680 /* Return status information */
1681 for (j = 0; j < chunk_nr_pages; j++)
1682 if (put_user(pm[j].status, status + j + chunk_start)) {
1683 err = -EFAULT;
1684 goto out_pm;
1685 }
1686 }
1687 err = 0;
1688
1689 out_pm:
1690 free_page((unsigned long)pm);
1691 out:
1692 return err;
1693 }
1694
1695 /*
1696 * Determine the nodes of an array of pages and store it in an array of status.
1697 */
1698 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1699 const void __user **pages, int *status)
1700 {
1701 unsigned long i;
1702
1703 down_read(&mm->mmap_sem);
1704
1705 for (i = 0; i < nr_pages; i++) {
1706 unsigned long addr = (unsigned long)(*pages);
1707 struct vm_area_struct *vma;
1708 struct page *page;
1709 int err = -EFAULT;
1710
1711 vma = find_vma(mm, addr);
1712 if (!vma || addr < vma->vm_start)
1713 goto set_status;
1714
1715 /* FOLL_DUMP to ignore special (like zero) pages */
1716 page = follow_page(vma, addr, FOLL_DUMP);
1717
1718 err = PTR_ERR(page);
1719 if (IS_ERR(page))
1720 goto set_status;
1721
1722 err = page ? page_to_nid(page) : -ENOENT;
1723 set_status:
1724 *status = err;
1725
1726 pages++;
1727 status++;
1728 }
1729
1730 up_read(&mm->mmap_sem);
1731 }
1732
1733 /*
1734 * Determine the nodes of a user array of pages and store it in
1735 * a user array of status.
1736 */
1737 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1738 const void __user * __user *pages,
1739 int __user *status)
1740 {
1741 #define DO_PAGES_STAT_CHUNK_NR 16
1742 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1743 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1744
1745 while (nr_pages) {
1746 unsigned long chunk_nr;
1747
1748 chunk_nr = nr_pages;
1749 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1750 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1751
1752 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1753 break;
1754
1755 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1756
1757 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1758 break;
1759
1760 pages += chunk_nr;
1761 status += chunk_nr;
1762 nr_pages -= chunk_nr;
1763 }
1764 return nr_pages ? -EFAULT : 0;
1765 }
1766
1767 /*
1768 * Move a list of pages in the address space of the currently executing
1769 * process.
1770 */
1771 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1772 const void __user * __user *, pages,
1773 const int __user *, nodes,
1774 int __user *, status, int, flags)
1775 {
1776 struct task_struct *task;
1777 struct mm_struct *mm;
1778 int err;
1779 nodemask_t task_nodes;
1780
1781 /* Check flags */
1782 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1783 return -EINVAL;
1784
1785 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1786 return -EPERM;
1787
1788 /* Find the mm_struct */
1789 rcu_read_lock();
1790 task = pid ? find_task_by_vpid(pid) : current;
1791 if (!task) {
1792 rcu_read_unlock();
1793 return -ESRCH;
1794 }
1795 get_task_struct(task);
1796
1797 /*
1798 * Check if this process has the right to modify the specified
1799 * process. Use the regular "ptrace_may_access()" checks.
1800 */
1801 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1802 rcu_read_unlock();
1803 err = -EPERM;
1804 goto out;
1805 }
1806 rcu_read_unlock();
1807
1808 err = security_task_movememory(task);
1809 if (err)
1810 goto out;
1811
1812 task_nodes = cpuset_mems_allowed(task);
1813 mm = get_task_mm(task);
1814 put_task_struct(task);
1815
1816 if (!mm)
1817 return -EINVAL;
1818
1819 if (nodes)
1820 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1821 nodes, status, flags);
1822 else
1823 err = do_pages_stat(mm, nr_pages, pages, status);
1824
1825 mmput(mm);
1826 return err;
1827
1828 out:
1829 put_task_struct(task);
1830 return err;
1831 }
1832
1833 #ifdef CONFIG_NUMA_BALANCING
1834 /*
1835 * Returns true if this is a safe migration target node for misplaced NUMA
1836 * pages. Currently it only checks the watermarks which crude
1837 */
1838 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1839 unsigned long nr_migrate_pages)
1840 {
1841 int z;
1842
1843 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1844 struct zone *zone = pgdat->node_zones + z;
1845
1846 if (!populated_zone(zone))
1847 continue;
1848
1849 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1850 if (!zone_watermark_ok(zone, 0,
1851 high_wmark_pages(zone) +
1852 nr_migrate_pages,
1853 0, 0))
1854 continue;
1855 return true;
1856 }
1857 return false;
1858 }
1859
1860 static struct page *alloc_misplaced_dst_page(struct page *page,
1861 unsigned long data,
1862 int **result)
1863 {
1864 int nid = (int) data;
1865 struct page *newpage;
1866
1867 newpage = __alloc_pages_node(nid,
1868 (GFP_HIGHUSER_MOVABLE |
1869 __GFP_THISNODE | __GFP_NOMEMALLOC |
1870 __GFP_NORETRY | __GFP_NOWARN) &
1871 ~__GFP_RECLAIM, 0);
1872
1873 return newpage;
1874 }
1875
1876 /*
1877 * page migration rate limiting control.
1878 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1879 * window of time. Default here says do not migrate more than 1280M per second.
1880 */
1881 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1882 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1883
1884 /* Returns true if the node is migrate rate-limited after the update */
1885 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1886 unsigned long nr_pages)
1887 {
1888 /*
1889 * Rate-limit the amount of data that is being migrated to a node.
1890 * Optimal placement is no good if the memory bus is saturated and
1891 * all the time is being spent migrating!
1892 */
1893 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1894 spin_lock(&pgdat->numabalancing_migrate_lock);
1895 pgdat->numabalancing_migrate_nr_pages = 0;
1896 pgdat->numabalancing_migrate_next_window = jiffies +
1897 msecs_to_jiffies(migrate_interval_millisecs);
1898 spin_unlock(&pgdat->numabalancing_migrate_lock);
1899 }
1900 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1901 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1902 nr_pages);
1903 return true;
1904 }
1905
1906 /*
1907 * This is an unlocked non-atomic update so errors are possible.
1908 * The consequences are failing to migrate when we potentiall should
1909 * have which is not severe enough to warrant locking. If it is ever
1910 * a problem, it can be converted to a per-cpu counter.
1911 */
1912 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1913 return false;
1914 }
1915
1916 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1917 {
1918 int page_lru;
1919
1920 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1921
1922 /* Avoid migrating to a node that is nearly full */
1923 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1924 return 0;
1925
1926 if (isolate_lru_page(page))
1927 return 0;
1928
1929 /*
1930 * migrate_misplaced_transhuge_page() skips page migration's usual
1931 * check on page_count(), so we must do it here, now that the page
1932 * has been isolated: a GUP pin, or any other pin, prevents migration.
1933 * The expected page count is 3: 1 for page's mapcount and 1 for the
1934 * caller's pin and 1 for the reference taken by isolate_lru_page().
1935 */
1936 if (PageTransHuge(page) && page_count(page) != 3) {
1937 putback_lru_page(page);
1938 return 0;
1939 }
1940
1941 page_lru = page_is_file_cache(page);
1942 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1943 hpage_nr_pages(page));
1944
1945 /*
1946 * Isolating the page has taken another reference, so the
1947 * caller's reference can be safely dropped without the page
1948 * disappearing underneath us during migration.
1949 */
1950 put_page(page);
1951 return 1;
1952 }
1953
1954 bool pmd_trans_migrating(pmd_t pmd)
1955 {
1956 struct page *page = pmd_page(pmd);
1957 return PageLocked(page);
1958 }
1959
1960 /*
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1964 */
1965 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966 int node)
1967 {
1968 pg_data_t *pgdat = NODE_DATA(node);
1969 int isolated;
1970 int nr_remaining;
1971 LIST_HEAD(migratepages);
1972
1973 /*
1974 * Don't migrate file pages that are mapped in multiple processes
1975 * with execute permissions as they are probably shared libraries.
1976 */
1977 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978 (vma->vm_flags & VM_EXEC))
1979 goto out;
1980
1981 /*
1982 * Rate-limit the amount of data that is being migrated to a node.
1983 * Optimal placement is no good if the memory bus is saturated and
1984 * all the time is being spent migrating!
1985 */
1986 if (numamigrate_update_ratelimit(pgdat, 1))
1987 goto out;
1988
1989 isolated = numamigrate_isolate_page(pgdat, page);
1990 if (!isolated)
1991 goto out;
1992
1993 list_add(&page->lru, &migratepages);
1994 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1995 NULL, node, MIGRATE_ASYNC,
1996 MR_NUMA_MISPLACED);
1997 if (nr_remaining) {
1998 if (!list_empty(&migratepages)) {
1999 list_del(&page->lru);
2000 dec_node_page_state(page, NR_ISOLATED_ANON +
2001 page_is_file_cache(page));
2002 putback_lru_page(page);
2003 }
2004 isolated = 0;
2005 } else
2006 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2007 BUG_ON(!list_empty(&migratepages));
2008 return isolated;
2009
2010 out:
2011 put_page(page);
2012 return 0;
2013 }
2014 #endif /* CONFIG_NUMA_BALANCING */
2015
2016 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2017 /*
2018 * Migrates a THP to a given target node. page must be locked and is unlocked
2019 * before returning.
2020 */
2021 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2022 struct vm_area_struct *vma,
2023 pmd_t *pmd, pmd_t entry,
2024 unsigned long address,
2025 struct page *page, int node)
2026 {
2027 spinlock_t *ptl;
2028 pg_data_t *pgdat = NODE_DATA(node);
2029 int isolated = 0;
2030 struct page *new_page = NULL;
2031 int page_lru = page_is_file_cache(page);
2032 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2033 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2034
2035 /*
2036 * Rate-limit the amount of data that is being migrated to a node.
2037 * Optimal placement is no good if the memory bus is saturated and
2038 * all the time is being spent migrating!
2039 */
2040 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2041 goto out_dropref;
2042
2043 new_page = alloc_pages_node(node,
2044 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2045 HPAGE_PMD_ORDER);
2046 if (!new_page)
2047 goto out_fail;
2048 prep_transhuge_page(new_page);
2049
2050 isolated = numamigrate_isolate_page(pgdat, page);
2051 if (!isolated) {
2052 put_page(new_page);
2053 goto out_fail;
2054 }
2055
2056 /* Prepare a page as a migration target */
2057 __SetPageLocked(new_page);
2058 if (PageSwapBacked(page))
2059 __SetPageSwapBacked(new_page);
2060
2061 /* anon mapping, we can simply copy page->mapping to the new page: */
2062 new_page->mapping = page->mapping;
2063 new_page->index = page->index;
2064 migrate_page_copy(new_page, page);
2065 WARN_ON(PageLRU(new_page));
2066
2067 /* Recheck the target PMD */
2068 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2069 ptl = pmd_lock(mm, pmd);
2070 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2071 spin_unlock(ptl);
2072 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2073
2074 /* Reverse changes made by migrate_page_copy() */
2075 if (TestClearPageActive(new_page))
2076 SetPageActive(page);
2077 if (TestClearPageUnevictable(new_page))
2078 SetPageUnevictable(page);
2079
2080 unlock_page(new_page);
2081 put_page(new_page); /* Free it */
2082
2083 /* Retake the callers reference and putback on LRU */
2084 get_page(page);
2085 putback_lru_page(page);
2086 mod_node_page_state(page_pgdat(page),
2087 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2088
2089 goto out_unlock;
2090 }
2091
2092 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2093 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2094
2095 /*
2096 * Overwrite the old entry under pagetable lock and establish
2097 * the new PTE. Any parallel GUP will either observe the old
2098 * page blocking on the page lock, block on the page table
2099 * lock or observe the new page. The SetPageUptodate on the
2100 * new page and page_add_new_anon_rmap guarantee the copy is
2101 * visible before the pagetable update.
2102 */
2103 flush_cache_range(vma, mmun_start, mmun_end);
2104 page_add_anon_rmap(new_page, vma, mmun_start, true);
2105 /*
2106 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2107 * has already been flushed globally. So no TLB can be currently
2108 * caching this non present pmd mapping. There's no need to clear the
2109 * pmd before doing set_pmd_at(), nor to flush the TLB after
2110 * set_pmd_at(). Clearing the pmd here would introduce a race
2111 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2112 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2113 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2114 * pmd.
2115 */
2116 set_pmd_at(mm, mmun_start, pmd, entry);
2117 update_mmu_cache_pmd(vma, address, &entry);
2118
2119 page_ref_unfreeze(page, 2);
2120 mlock_migrate_page(new_page, page);
2121 page_remove_rmap(page, true);
2122 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2123
2124 spin_unlock(ptl);
2125 /*
2126 * No need to double call mmu_notifier->invalidate_range() callback as
2127 * the above pmdp_huge_clear_flush_notify() did already call it.
2128 */
2129 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2130
2131 /* Take an "isolate" reference and put new page on the LRU. */
2132 get_page(new_page);
2133 putback_lru_page(new_page);
2134
2135 unlock_page(new_page);
2136 unlock_page(page);
2137 put_page(page); /* Drop the rmap reference */
2138 put_page(page); /* Drop the LRU isolation reference */
2139
2140 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2141 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2142
2143 mod_node_page_state(page_pgdat(page),
2144 NR_ISOLATED_ANON + page_lru,
2145 -HPAGE_PMD_NR);
2146 return isolated;
2147
2148 out_fail:
2149 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2150 out_dropref:
2151 ptl = pmd_lock(mm, pmd);
2152 if (pmd_same(*pmd, entry)) {
2153 entry = pmd_modify(entry, vma->vm_page_prot);
2154 set_pmd_at(mm, mmun_start, pmd, entry);
2155 update_mmu_cache_pmd(vma, address, &entry);
2156 }
2157 spin_unlock(ptl);
2158
2159 out_unlock:
2160 unlock_page(page);
2161 put_page(page);
2162 return 0;
2163 }
2164 #endif /* CONFIG_NUMA_BALANCING */
2165
2166 #endif /* CONFIG_NUMA */
2167
2168 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2169 struct migrate_vma {
2170 struct vm_area_struct *vma;
2171 unsigned long *dst;
2172 unsigned long *src;
2173 unsigned long cpages;
2174 unsigned long npages;
2175 unsigned long start;
2176 unsigned long end;
2177 };
2178
2179 static int migrate_vma_collect_hole(unsigned long start,
2180 unsigned long end,
2181 struct mm_walk *walk)
2182 {
2183 struct migrate_vma *migrate = walk->private;
2184 unsigned long addr;
2185
2186 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2187 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2188 migrate->dst[migrate->npages] = 0;
2189 migrate->npages++;
2190 migrate->cpages++;
2191 }
2192
2193 return 0;
2194 }
2195
2196 static int migrate_vma_collect_skip(unsigned long start,
2197 unsigned long end,
2198 struct mm_walk *walk)
2199 {
2200 struct migrate_vma *migrate = walk->private;
2201 unsigned long addr;
2202
2203 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2204 migrate->dst[migrate->npages] = 0;
2205 migrate->src[migrate->npages++] = 0;
2206 }
2207
2208 return 0;
2209 }
2210
2211 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2212 unsigned long start,
2213 unsigned long end,
2214 struct mm_walk *walk)
2215 {
2216 struct migrate_vma *migrate = walk->private;
2217 struct vm_area_struct *vma = walk->vma;
2218 struct mm_struct *mm = vma->vm_mm;
2219 unsigned long addr = start, unmapped = 0;
2220 spinlock_t *ptl;
2221 pte_t *ptep;
2222
2223 again:
2224 if (pmd_none(*pmdp))
2225 return migrate_vma_collect_hole(start, end, walk);
2226
2227 if (pmd_trans_huge(*pmdp)) {
2228 struct page *page;
2229
2230 ptl = pmd_lock(mm, pmdp);
2231 if (unlikely(!pmd_trans_huge(*pmdp))) {
2232 spin_unlock(ptl);
2233 goto again;
2234 }
2235
2236 page = pmd_page(*pmdp);
2237 if (is_huge_zero_page(page)) {
2238 spin_unlock(ptl);
2239 split_huge_pmd(vma, pmdp, addr);
2240 if (pmd_trans_unstable(pmdp))
2241 return migrate_vma_collect_skip(start, end,
2242 walk);
2243 } else {
2244 int ret;
2245
2246 get_page(page);
2247 spin_unlock(ptl);
2248 if (unlikely(!trylock_page(page)))
2249 return migrate_vma_collect_skip(start, end,
2250 walk);
2251 ret = split_huge_page(page);
2252 unlock_page(page);
2253 put_page(page);
2254 if (ret)
2255 return migrate_vma_collect_skip(start, end,
2256 walk);
2257 if (pmd_none(*pmdp))
2258 return migrate_vma_collect_hole(start, end,
2259 walk);
2260 }
2261 }
2262
2263 if (unlikely(pmd_bad(*pmdp)))
2264 return migrate_vma_collect_skip(start, end, walk);
2265
2266 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2267 arch_enter_lazy_mmu_mode();
2268
2269 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2270 unsigned long mpfn, pfn;
2271 struct page *page;
2272 swp_entry_t entry;
2273 pte_t pte;
2274
2275 pte = *ptep;
2276 pfn = pte_pfn(pte);
2277
2278 if (pte_none(pte)) {
2279 mpfn = MIGRATE_PFN_MIGRATE;
2280 migrate->cpages++;
2281 pfn = 0;
2282 goto next;
2283 }
2284
2285 if (!pte_present(pte)) {
2286 mpfn = pfn = 0;
2287
2288 /*
2289 * Only care about unaddressable device page special
2290 * page table entry. Other special swap entries are not
2291 * migratable, and we ignore regular swapped page.
2292 */
2293 entry = pte_to_swp_entry(pte);
2294 if (!is_device_private_entry(entry))
2295 goto next;
2296
2297 page = device_private_entry_to_page(entry);
2298 mpfn = migrate_pfn(page_to_pfn(page))|
2299 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2300 if (is_write_device_private_entry(entry))
2301 mpfn |= MIGRATE_PFN_WRITE;
2302 } else {
2303 if (is_zero_pfn(pfn)) {
2304 mpfn = MIGRATE_PFN_MIGRATE;
2305 migrate->cpages++;
2306 pfn = 0;
2307 goto next;
2308 }
2309 page = _vm_normal_page(migrate->vma, addr, pte, true);
2310 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2311 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2312 }
2313
2314 /* FIXME support THP */
2315 if (!page || !page->mapping || PageTransCompound(page)) {
2316 mpfn = pfn = 0;
2317 goto next;
2318 }
2319 pfn = page_to_pfn(page);
2320
2321 /*
2322 * By getting a reference on the page we pin it and that blocks
2323 * any kind of migration. Side effect is that it "freezes" the
2324 * pte.
2325 *
2326 * We drop this reference after isolating the page from the lru
2327 * for non device page (device page are not on the lru and thus
2328 * can't be dropped from it).
2329 */
2330 get_page(page);
2331 migrate->cpages++;
2332
2333 /*
2334 * Optimize for the common case where page is only mapped once
2335 * in one process. If we can lock the page, then we can safely
2336 * set up a special migration page table entry now.
2337 */
2338 if (trylock_page(page)) {
2339 pte_t swp_pte;
2340
2341 mpfn |= MIGRATE_PFN_LOCKED;
2342 ptep_get_and_clear(mm, addr, ptep);
2343
2344 /* Setup special migration page table entry */
2345 entry = make_migration_entry(page, pte_write(pte));
2346 swp_pte = swp_entry_to_pte(entry);
2347 if (pte_soft_dirty(pte))
2348 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2349 set_pte_at(mm, addr, ptep, swp_pte);
2350
2351 /*
2352 * This is like regular unmap: we remove the rmap and
2353 * drop page refcount. Page won't be freed, as we took
2354 * a reference just above.
2355 */
2356 page_remove_rmap(page, false);
2357 put_page(page);
2358
2359 if (pte_present(pte))
2360 unmapped++;
2361 }
2362
2363 next:
2364 migrate->dst[migrate->npages] = 0;
2365 migrate->src[migrate->npages++] = mpfn;
2366 }
2367 arch_leave_lazy_mmu_mode();
2368 pte_unmap_unlock(ptep - 1, ptl);
2369
2370 /* Only flush the TLB if we actually modified any entries */
2371 if (unmapped)
2372 flush_tlb_range(walk->vma, start, end);
2373
2374 return 0;
2375 }
2376
2377 /*
2378 * migrate_vma_collect() - collect pages over a range of virtual addresses
2379 * @migrate: migrate struct containing all migration information
2380 *
2381 * This will walk the CPU page table. For each virtual address backed by a
2382 * valid page, it updates the src array and takes a reference on the page, in
2383 * order to pin the page until we lock it and unmap it.
2384 */
2385 static void migrate_vma_collect(struct migrate_vma *migrate)
2386 {
2387 struct mm_walk mm_walk = {
2388 .pmd_entry = migrate_vma_collect_pmd,
2389 .pte_hole = migrate_vma_collect_hole,
2390 .vma = migrate->vma,
2391 .mm = migrate->vma->vm_mm,
2392 .private = migrate,
2393 };
2394
2395 mmu_notifier_invalidate_range_start(mm_walk.mm,
2396 migrate->start,
2397 migrate->end);
2398 walk_page_range(migrate->start, migrate->end, &mm_walk);
2399 mmu_notifier_invalidate_range_end(mm_walk.mm,
2400 migrate->start,
2401 migrate->end);
2402
2403 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2404 }
2405
2406 /*
2407 * migrate_vma_check_page() - check if page is pinned or not
2408 * @page: struct page to check
2409 *
2410 * Pinned pages cannot be migrated. This is the same test as in
2411 * migrate_page_move_mapping(), except that here we allow migration of a
2412 * ZONE_DEVICE page.
2413 */
2414 static bool migrate_vma_check_page(struct page *page)
2415 {
2416 /*
2417 * One extra ref because caller holds an extra reference, either from
2418 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2419 * a device page.
2420 */
2421 int extra = 1;
2422
2423 /*
2424 * FIXME support THP (transparent huge page), it is bit more complex to
2425 * check them than regular pages, because they can be mapped with a pmd
2426 * or with a pte (split pte mapping).
2427 */
2428 if (PageCompound(page))
2429 return false;
2430
2431 /* Page from ZONE_DEVICE have one extra reference */
2432 if (is_zone_device_page(page)) {
2433 /*
2434 * Private page can never be pin as they have no valid pte and
2435 * GUP will fail for those. Yet if there is a pending migration
2436 * a thread might try to wait on the pte migration entry and
2437 * will bump the page reference count. Sadly there is no way to
2438 * differentiate a regular pin from migration wait. Hence to
2439 * avoid 2 racing thread trying to migrate back to CPU to enter
2440 * infinite loop (one stoping migration because the other is
2441 * waiting on pte migration entry). We always return true here.
2442 *
2443 * FIXME proper solution is to rework migration_entry_wait() so
2444 * it does not need to take a reference on page.
2445 */
2446 if (is_device_private_page(page))
2447 return true;
2448
2449 /*
2450 * Only allow device public page to be migrated and account for
2451 * the extra reference count imply by ZONE_DEVICE pages.
2452 */
2453 if (!is_device_public_page(page))
2454 return false;
2455 extra++;
2456 }
2457
2458 /* For file back page */
2459 if (page_mapping(page))
2460 extra += 1 + page_has_private(page);
2461
2462 if ((page_count(page) - extra) > page_mapcount(page))
2463 return false;
2464
2465 return true;
2466 }
2467
2468 /*
2469 * migrate_vma_prepare() - lock pages and isolate them from the lru
2470 * @migrate: migrate struct containing all migration information
2471 *
2472 * This locks pages that have been collected by migrate_vma_collect(). Once each
2473 * page is locked it is isolated from the lru (for non-device pages). Finally,
2474 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2475 * migrated by concurrent kernel threads.
2476 */
2477 static void migrate_vma_prepare(struct migrate_vma *migrate)
2478 {
2479 const unsigned long npages = migrate->npages;
2480 const unsigned long start = migrate->start;
2481 unsigned long addr, i, restore = 0;
2482 bool allow_drain = true;
2483
2484 lru_add_drain();
2485
2486 for (i = 0; (i < npages) && migrate->cpages; i++) {
2487 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2488 bool remap = true;
2489
2490 if (!page)
2491 continue;
2492
2493 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2494 /*
2495 * Because we are migrating several pages there can be
2496 * a deadlock between 2 concurrent migration where each
2497 * are waiting on each other page lock.
2498 *
2499 * Make migrate_vma() a best effort thing and backoff
2500 * for any page we can not lock right away.
2501 */
2502 if (!trylock_page(page)) {
2503 migrate->src[i] = 0;
2504 migrate->cpages--;
2505 put_page(page);
2506 continue;
2507 }
2508 remap = false;
2509 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2510 }
2511
2512 /* ZONE_DEVICE pages are not on LRU */
2513 if (!is_zone_device_page(page)) {
2514 if (!PageLRU(page) && allow_drain) {
2515 /* Drain CPU's pagevec */
2516 lru_add_drain_all();
2517 allow_drain = false;
2518 }
2519
2520 if (isolate_lru_page(page)) {
2521 if (remap) {
2522 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 migrate->cpages--;
2524 restore++;
2525 } else {
2526 migrate->src[i] = 0;
2527 unlock_page(page);
2528 migrate->cpages--;
2529 put_page(page);
2530 }
2531 continue;
2532 }
2533
2534 /* Drop the reference we took in collect */
2535 put_page(page);
2536 }
2537
2538 if (!migrate_vma_check_page(page)) {
2539 if (remap) {
2540 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2541 migrate->cpages--;
2542 restore++;
2543
2544 if (!is_zone_device_page(page)) {
2545 get_page(page);
2546 putback_lru_page(page);
2547 }
2548 } else {
2549 migrate->src[i] = 0;
2550 unlock_page(page);
2551 migrate->cpages--;
2552
2553 if (!is_zone_device_page(page))
2554 putback_lru_page(page);
2555 else
2556 put_page(page);
2557 }
2558 }
2559 }
2560
2561 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2562 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565 continue;
2566
2567 remove_migration_pte(page, migrate->vma, addr, page);
2568
2569 migrate->src[i] = 0;
2570 unlock_page(page);
2571 put_page(page);
2572 restore--;
2573 }
2574 }
2575
2576 /*
2577 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2578 * @migrate: migrate struct containing all migration information
2579 *
2580 * Replace page mapping (CPU page table pte) with a special migration pte entry
2581 * and check again if it has been pinned. Pinned pages are restored because we
2582 * cannot migrate them.
2583 *
2584 * This is the last step before we call the device driver callback to allocate
2585 * destination memory and copy contents of original page over to new page.
2586 */
2587 static void migrate_vma_unmap(struct migrate_vma *migrate)
2588 {
2589 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2590 const unsigned long npages = migrate->npages;
2591 const unsigned long start = migrate->start;
2592 unsigned long addr, i, restore = 0;
2593
2594 for (i = 0; i < npages; i++) {
2595 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2596
2597 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2598 continue;
2599
2600 if (page_mapped(page)) {
2601 try_to_unmap(page, flags);
2602 if (page_mapped(page))
2603 goto restore;
2604 }
2605
2606 if (migrate_vma_check_page(page))
2607 continue;
2608
2609 restore:
2610 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611 migrate->cpages--;
2612 restore++;
2613 }
2614
2615 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2616 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2617
2618 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2619 continue;
2620
2621 remove_migration_ptes(page, page, false);
2622
2623 migrate->src[i] = 0;
2624 unlock_page(page);
2625 restore--;
2626
2627 if (is_zone_device_page(page))
2628 put_page(page);
2629 else
2630 putback_lru_page(page);
2631 }
2632 }
2633
2634 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2635 unsigned long addr,
2636 struct page *page,
2637 unsigned long *src,
2638 unsigned long *dst)
2639 {
2640 struct vm_area_struct *vma = migrate->vma;
2641 struct mm_struct *mm = vma->vm_mm;
2642 struct mem_cgroup *memcg;
2643 bool flush = false;
2644 spinlock_t *ptl;
2645 pte_t entry;
2646 pgd_t *pgdp;
2647 p4d_t *p4dp;
2648 pud_t *pudp;
2649 pmd_t *pmdp;
2650 pte_t *ptep;
2651
2652 /* Only allow populating anonymous memory */
2653 if (!vma_is_anonymous(vma))
2654 goto abort;
2655
2656 pgdp = pgd_offset(mm, addr);
2657 p4dp = p4d_alloc(mm, pgdp, addr);
2658 if (!p4dp)
2659 goto abort;
2660 pudp = pud_alloc(mm, p4dp, addr);
2661 if (!pudp)
2662 goto abort;
2663 pmdp = pmd_alloc(mm, pudp, addr);
2664 if (!pmdp)
2665 goto abort;
2666
2667 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2668 goto abort;
2669
2670 /*
2671 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2672 * pte_offset_map() on pmds where a huge pmd might be created
2673 * from a different thread.
2674 *
2675 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2676 * parallel threads are excluded by other means.
2677 *
2678 * Here we only have down_read(mmap_sem).
2679 */
2680 if (pte_alloc(mm, pmdp, addr))
2681 goto abort;
2682
2683 /* See the comment in pte_alloc_one_map() */
2684 if (unlikely(pmd_trans_unstable(pmdp)))
2685 goto abort;
2686
2687 if (unlikely(anon_vma_prepare(vma)))
2688 goto abort;
2689 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2690 goto abort;
2691
2692 /*
2693 * The memory barrier inside __SetPageUptodate makes sure that
2694 * preceding stores to the page contents become visible before
2695 * the set_pte_at() write.
2696 */
2697 __SetPageUptodate(page);
2698
2699 if (is_zone_device_page(page)) {
2700 if (is_device_private_page(page)) {
2701 swp_entry_t swp_entry;
2702
2703 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2704 entry = swp_entry_to_pte(swp_entry);
2705 } else if (is_device_public_page(page)) {
2706 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2707 if (vma->vm_flags & VM_WRITE)
2708 entry = pte_mkwrite(pte_mkdirty(entry));
2709 entry = pte_mkdevmap(entry);
2710 }
2711 } else {
2712 entry = mk_pte(page, vma->vm_page_prot);
2713 if (vma->vm_flags & VM_WRITE)
2714 entry = pte_mkwrite(pte_mkdirty(entry));
2715 }
2716
2717 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2718
2719 if (pte_present(*ptep)) {
2720 unsigned long pfn = pte_pfn(*ptep);
2721
2722 if (!is_zero_pfn(pfn)) {
2723 pte_unmap_unlock(ptep, ptl);
2724 mem_cgroup_cancel_charge(page, memcg, false);
2725 goto abort;
2726 }
2727 flush = true;
2728 } else if (!pte_none(*ptep)) {
2729 pte_unmap_unlock(ptep, ptl);
2730 mem_cgroup_cancel_charge(page, memcg, false);
2731 goto abort;
2732 }
2733
2734 /*
2735 * Check for usefaultfd but do not deliver the fault. Instead,
2736 * just back off.
2737 */
2738 if (userfaultfd_missing(vma)) {
2739 pte_unmap_unlock(ptep, ptl);
2740 mem_cgroup_cancel_charge(page, memcg, false);
2741 goto abort;
2742 }
2743
2744 inc_mm_counter(mm, MM_ANONPAGES);
2745 page_add_new_anon_rmap(page, vma, addr, false);
2746 mem_cgroup_commit_charge(page, memcg, false, false);
2747 if (!is_zone_device_page(page))
2748 lru_cache_add_active_or_unevictable(page, vma);
2749 get_page(page);
2750
2751 if (flush) {
2752 flush_cache_page(vma, addr, pte_pfn(*ptep));
2753 ptep_clear_flush_notify(vma, addr, ptep);
2754 set_pte_at_notify(mm, addr, ptep, entry);
2755 update_mmu_cache(vma, addr, ptep);
2756 } else {
2757 /* No need to invalidate - it was non-present before */
2758 set_pte_at(mm, addr, ptep, entry);
2759 update_mmu_cache(vma, addr, ptep);
2760 }
2761
2762 pte_unmap_unlock(ptep, ptl);
2763 *src = MIGRATE_PFN_MIGRATE;
2764 return;
2765
2766 abort:
2767 *src &= ~MIGRATE_PFN_MIGRATE;
2768 }
2769
2770 /*
2771 * migrate_vma_pages() - migrate meta-data from src page to dst page
2772 * @migrate: migrate struct containing all migration information
2773 *
2774 * This migrates struct page meta-data from source struct page to destination
2775 * struct page. This effectively finishes the migration from source page to the
2776 * destination page.
2777 */
2778 static void migrate_vma_pages(struct migrate_vma *migrate)
2779 {
2780 const unsigned long npages = migrate->npages;
2781 const unsigned long start = migrate->start;
2782 struct vm_area_struct *vma = migrate->vma;
2783 struct mm_struct *mm = vma->vm_mm;
2784 unsigned long addr, i, mmu_start;
2785 bool notified = false;
2786
2787 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2788 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2789 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2790 struct address_space *mapping;
2791 int r;
2792
2793 if (!newpage) {
2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 continue;
2796 }
2797
2798 if (!page) {
2799 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2800 continue;
2801 }
2802 if (!notified) {
2803 mmu_start = addr;
2804 notified = true;
2805 mmu_notifier_invalidate_range_start(mm,
2806 mmu_start,
2807 migrate->end);
2808 }
2809 migrate_vma_insert_page(migrate, addr, newpage,
2810 &migrate->src[i],
2811 &migrate->dst[i]);
2812 continue;
2813 }
2814
2815 mapping = page_mapping(page);
2816
2817 if (is_zone_device_page(newpage)) {
2818 if (is_device_private_page(newpage)) {
2819 /*
2820 * For now only support private anonymous when
2821 * migrating to un-addressable device memory.
2822 */
2823 if (mapping) {
2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 continue;
2826 }
2827 } else if (!is_device_public_page(newpage)) {
2828 /*
2829 * Other types of ZONE_DEVICE page are not
2830 * supported.
2831 */
2832 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833 continue;
2834 }
2835 }
2836
2837 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2838 if (r != MIGRATEPAGE_SUCCESS)
2839 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2840 }
2841
2842 /*
2843 * No need to double call mmu_notifier->invalidate_range() callback as
2844 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2845 * did already call it.
2846 */
2847 if (notified)
2848 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2849 migrate->end);
2850 }
2851
2852 /*
2853 * migrate_vma_finalize() - restore CPU page table entry
2854 * @migrate: migrate struct containing all migration information
2855 *
2856 * This replaces the special migration pte entry with either a mapping to the
2857 * new page if migration was successful for that page, or to the original page
2858 * otherwise.
2859 *
2860 * This also unlocks the pages and puts them back on the lru, or drops the extra
2861 * refcount, for device pages.
2862 */
2863 static void migrate_vma_finalize(struct migrate_vma *migrate)
2864 {
2865 const unsigned long npages = migrate->npages;
2866 unsigned long i;
2867
2868 for (i = 0; i < npages; i++) {
2869 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2870 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2871
2872 if (!page) {
2873 if (newpage) {
2874 unlock_page(newpage);
2875 put_page(newpage);
2876 }
2877 continue;
2878 }
2879
2880 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2881 if (newpage) {
2882 unlock_page(newpage);
2883 put_page(newpage);
2884 }
2885 newpage = page;
2886 }
2887
2888 remove_migration_ptes(page, newpage, false);
2889 unlock_page(page);
2890 migrate->cpages--;
2891
2892 if (is_zone_device_page(page))
2893 put_page(page);
2894 else
2895 putback_lru_page(page);
2896
2897 if (newpage != page) {
2898 unlock_page(newpage);
2899 if (is_zone_device_page(newpage))
2900 put_page(newpage);
2901 else
2902 putback_lru_page(newpage);
2903 }
2904 }
2905 }
2906
2907 /*
2908 * migrate_vma() - migrate a range of memory inside vma
2909 *
2910 * @ops: migration callback for allocating destination memory and copying
2911 * @vma: virtual memory area containing the range to be migrated
2912 * @start: start address of the range to migrate (inclusive)
2913 * @end: end address of the range to migrate (exclusive)
2914 * @src: array of hmm_pfn_t containing source pfns
2915 * @dst: array of hmm_pfn_t containing destination pfns
2916 * @private: pointer passed back to each of the callback
2917 * Returns: 0 on success, error code otherwise
2918 *
2919 * This function tries to migrate a range of memory virtual address range, using
2920 * callbacks to allocate and copy memory from source to destination. First it
2921 * collects all the pages backing each virtual address in the range, saving this
2922 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2923 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2924 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2925 * in the corresponding src array entry. It then restores any pages that are
2926 * pinned, by remapping and unlocking those pages.
2927 *
2928 * At this point it calls the alloc_and_copy() callback. For documentation on
2929 * what is expected from that callback, see struct migrate_vma_ops comments in
2930 * include/linux/migrate.h
2931 *
2932 * After the alloc_and_copy() callback, this function goes over each entry in
2933 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2934 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2935 * then the function tries to migrate struct page information from the source
2936 * struct page to the destination struct page. If it fails to migrate the struct
2937 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2938 * array.
2939 *
2940 * At this point all successfully migrated pages have an entry in the src
2941 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2942 * array entry with MIGRATE_PFN_VALID flag set.
2943 *
2944 * It then calls the finalize_and_map() callback. See comments for "struct
2945 * migrate_vma_ops", in include/linux/migrate.h for details about
2946 * finalize_and_map() behavior.
2947 *
2948 * After the finalize_and_map() callback, for successfully migrated pages, this
2949 * function updates the CPU page table to point to new pages, otherwise it
2950 * restores the CPU page table to point to the original source pages.
2951 *
2952 * Function returns 0 after the above steps, even if no pages were migrated
2953 * (The function only returns an error if any of the arguments are invalid.)
2954 *
2955 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2956 * unsigned long entries.
2957 */
2958 int migrate_vma(const struct migrate_vma_ops *ops,
2959 struct vm_area_struct *vma,
2960 unsigned long start,
2961 unsigned long end,
2962 unsigned long *src,
2963 unsigned long *dst,
2964 void *private)
2965 {
2966 struct migrate_vma migrate;
2967
2968 /* Sanity check the arguments */
2969 start &= PAGE_MASK;
2970 end &= PAGE_MASK;
2971 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2972 return -EINVAL;
2973 if (start < vma->vm_start || start >= vma->vm_end)
2974 return -EINVAL;
2975 if (end <= vma->vm_start || end > vma->vm_end)
2976 return -EINVAL;
2977 if (!ops || !src || !dst || start >= end)
2978 return -EINVAL;
2979
2980 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2981 migrate.src = src;
2982 migrate.dst = dst;
2983 migrate.start = start;
2984 migrate.npages = 0;
2985 migrate.cpages = 0;
2986 migrate.end = end;
2987 migrate.vma = vma;
2988
2989 /* Collect, and try to unmap source pages */
2990 migrate_vma_collect(&migrate);
2991 if (!migrate.cpages)
2992 return 0;
2993
2994 /* Lock and isolate page */
2995 migrate_vma_prepare(&migrate);
2996 if (!migrate.cpages)
2997 return 0;
2998
2999 /* Unmap pages */
3000 migrate_vma_unmap(&migrate);
3001 if (!migrate.cpages)
3002 return 0;
3003
3004 /*
3005 * At this point pages are locked and unmapped, and thus they have
3006 * stable content and can safely be copied to destination memory that
3007 * is allocated by the callback.
3008 *
3009 * Note that migration can fail in migrate_vma_struct_page() for each
3010 * individual page.
3011 */
3012 ops->alloc_and_copy(vma, src, dst, start, end, private);
3013
3014 /* This does the real migration of struct page */
3015 migrate_vma_pages(&migrate);
3016
3017 ops->finalize_and_map(vma, src, dst, start, end, private);
3018
3019 /* Unlock and remap pages */
3020 migrate_vma_finalize(&migrate);
3021
3022 return 0;
3023 }
3024 EXPORT_SYMBOL(migrate_vma);
3025 #endif /* defined(MIGRATE_VMA_HELPER) */