]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mmap.c
drm/i915: Save the old CDCLK atomic state
[mirror_ubuntu-bionic-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 return prot;
107 }
108 #endif
109
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139
140 /*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145 {
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154 }
155
156 /*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170 }
171
172 /*
173 * Close a vm structure and free it, returning the next.
174 */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 struct vm_area_struct *next = vma->vm_next;
178
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 vma_fput(vma);
184 mpol_put(vma_policy(vma));
185 kmem_cache_free(vm_area_cachep, vma);
186 return next;
187 }
188
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 unsigned long retval;
194 unsigned long newbrk, oldbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 LIST_HEAD(uf);
200
201 if (down_write_killable(&mm->mmap_sem))
202 return -EINTR;
203
204 #ifdef CONFIG_COMPAT_BRK
205 /*
206 * CONFIG_COMPAT_BRK can still be overridden by setting
207 * randomize_va_space to 2, which will still cause mm->start_brk
208 * to be arbitrarily shifted
209 */
210 if (current->brk_randomized)
211 min_brk = mm->start_brk;
212 else
213 min_brk = mm->end_data;
214 #else
215 min_brk = mm->start_brk;
216 #endif
217 if (brk < min_brk)
218 goto out;
219
220 /*
221 * Check against rlimit here. If this check is done later after the test
222 * of oldbrk with newbrk then it can escape the test and let the data
223 * segment grow beyond its set limit the in case where the limit is
224 * not page aligned -Ram Gupta
225 */
226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 mm->end_data, mm->start_data))
228 goto out;
229
230 newbrk = PAGE_ALIGN(brk);
231 oldbrk = PAGE_ALIGN(mm->brk);
232 if (oldbrk == newbrk)
233 goto set_brk;
234
235 /* Always allow shrinking brk. */
236 if (brk <= mm->brk) {
237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
238 goto set_brk;
239 goto out;
240 }
241
242 /* Check against existing mmap mappings. */
243 next = find_vma(mm, oldbrk);
244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
245 goto out;
246
247 /* Ok, looks good - let it rip. */
248 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
249 goto out;
250
251 set_brk:
252 mm->brk = brk;
253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 up_write(&mm->mmap_sem);
255 userfaultfd_unmap_complete(mm, &uf);
256 if (populate)
257 mm_populate(oldbrk, newbrk - oldbrk);
258 return brk;
259
260 out:
261 retval = mm->brk;
262 up_write(&mm->mmap_sem);
263 return retval;
264 }
265
266 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
267 {
268 unsigned long max, prev_end, subtree_gap;
269
270 /*
271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 * allow two stack_guard_gaps between them here, and when choosing
273 * an unmapped area; whereas when expanding we only require one.
274 * That's a little inconsistent, but keeps the code here simpler.
275 */
276 max = vm_start_gap(vma);
277 if (vma->vm_prev) {
278 prev_end = vm_end_gap(vma->vm_prev);
279 if (max > prev_end)
280 max -= prev_end;
281 else
282 max = 0;
283 }
284 if (vma->vm_rb.rb_left) {
285 subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 if (subtree_gap > max)
288 max = subtree_gap;
289 }
290 if (vma->vm_rb.rb_right) {
291 subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 if (subtree_gap > max)
294 max = subtree_gap;
295 }
296 return max;
297 }
298
299 #ifdef CONFIG_DEBUG_VM_RB
300 static int browse_rb(struct mm_struct *mm)
301 {
302 struct rb_root *root = &mm->mm_rb;
303 int i = 0, j, bug = 0;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev) {
311 pr_emerg("vm_start %lx < prev %lx\n",
312 vma->vm_start, prev);
313 bug = 1;
314 }
315 if (vma->vm_start < pend) {
316 pr_emerg("vm_start %lx < pend %lx\n",
317 vma->vm_start, pend);
318 bug = 1;
319 }
320 if (vma->vm_start > vma->vm_end) {
321 pr_emerg("vm_start %lx > vm_end %lx\n",
322 vma->vm_start, vma->vm_end);
323 bug = 1;
324 }
325 spin_lock(&mm->page_table_lock);
326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 pr_emerg("free gap %lx, correct %lx\n",
328 vma->rb_subtree_gap,
329 vma_compute_subtree_gap(vma));
330 bug = 1;
331 }
332 spin_unlock(&mm->page_table_lock);
333 i++;
334 pn = nd;
335 prev = vma->vm_start;
336 pend = vma->vm_end;
337 }
338 j = 0;
339 for (nd = pn; nd; nd = rb_prev(nd))
340 j++;
341 if (i != j) {
342 pr_emerg("backwards %d, forwards %d\n", j, i);
343 bug = 1;
344 }
345 return bug ? -1 : i;
346 }
347
348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
349 {
350 struct rb_node *nd;
351
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 VM_BUG_ON_VMA(vma != ignore &&
356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
357 vma);
358 }
359 }
360
361 static void validate_mm(struct mm_struct *mm)
362 {
363 int bug = 0;
364 int i = 0;
365 unsigned long highest_address = 0;
366 struct vm_area_struct *vma = mm->mmap;
367
368 while (vma) {
369 struct anon_vma *anon_vma = vma->anon_vma;
370 struct anon_vma_chain *avc;
371
372 if (anon_vma) {
373 anon_vma_lock_read(anon_vma);
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_verify(avc);
376 anon_vma_unlock_read(anon_vma);
377 }
378
379 highest_address = vm_end_gap(vma);
380 vma = vma->vm_next;
381 i++;
382 }
383 if (i != mm->map_count) {
384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
385 bug = 1;
386 }
387 if (highest_address != mm->highest_vm_end) {
388 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 mm->highest_vm_end, highest_address);
390 bug = 1;
391 }
392 i = browse_rb(mm);
393 if (i != mm->map_count) {
394 if (i != -1)
395 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
396 bug = 1;
397 }
398 VM_BUG_ON_MM(bug, mm);
399 }
400 #else
401 #define validate_mm_rb(root, ignore) do { } while (0)
402 #define validate_mm(mm) do { } while (0)
403 #endif
404
405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
407
408 /*
409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
411 * in the rbtree.
412 */
413 static void vma_gap_update(struct vm_area_struct *vma)
414 {
415 /*
416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 * function that does exacltly what we want.
418 */
419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
420 }
421
422 static inline void vma_rb_insert(struct vm_area_struct *vma,
423 struct rb_root *root)
424 {
425 /* All rb_subtree_gap values must be consistent prior to insertion */
426 validate_mm_rb(root, NULL);
427
428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430
431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
432 {
433 /*
434 * Note rb_erase_augmented is a fairly large inline function,
435 * so make sure we instantiate it only once with our desired
436 * augmented rbtree callbacks.
437 */
438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
439 }
440
441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 struct rb_root *root,
443 struct vm_area_struct *ignore)
444 {
445 /*
446 * All rb_subtree_gap values must be consistent prior to erase,
447 * with the possible exception of the "next" vma being erased if
448 * next->vm_start was reduced.
449 */
450 validate_mm_rb(root, ignore);
451
452 __vma_rb_erase(vma, root);
453 }
454
455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 struct rb_root *root)
457 {
458 /*
459 * All rb_subtree_gap values must be consistent prior to erase,
460 * with the possible exception of the vma being erased.
461 */
462 validate_mm_rb(root, vma);
463
464 __vma_rb_erase(vma, root);
465 }
466
467 /*
468 * vma has some anon_vma assigned, and is already inserted on that
469 * anon_vma's interval trees.
470 *
471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472 * vma must be removed from the anon_vma's interval trees using
473 * anon_vma_interval_tree_pre_update_vma().
474 *
475 * After the update, the vma will be reinserted using
476 * anon_vma_interval_tree_post_update_vma().
477 *
478 * The entire update must be protected by exclusive mmap_sem and by
479 * the root anon_vma's mutex.
480 */
481 static inline void
482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
483 {
484 struct anon_vma_chain *avc;
485
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
488 }
489
490 static inline void
491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
492 {
493 struct anon_vma_chain *avc;
494
495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
497 }
498
499 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 unsigned long end, struct vm_area_struct **pprev,
501 struct rb_node ***rb_link, struct rb_node **rb_parent)
502 {
503 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
504
505 __rb_link = &mm->mm_rb.rb_node;
506 rb_prev = __rb_parent = NULL;
507
508 while (*__rb_link) {
509 struct vm_area_struct *vma_tmp;
510
511 __rb_parent = *__rb_link;
512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
513
514 if (vma_tmp->vm_end > addr) {
515 /* Fail if an existing vma overlaps the area */
516 if (vma_tmp->vm_start < end)
517 return -ENOMEM;
518 __rb_link = &__rb_parent->rb_left;
519 } else {
520 rb_prev = __rb_parent;
521 __rb_link = &__rb_parent->rb_right;
522 }
523 }
524
525 *pprev = NULL;
526 if (rb_prev)
527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 *rb_link = __rb_link;
529 *rb_parent = __rb_parent;
530 return 0;
531 }
532
533 static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 unsigned long addr, unsigned long end)
535 {
536 unsigned long nr_pages = 0;
537 struct vm_area_struct *vma;
538
539 /* Find first overlaping mapping */
540 vma = find_vma_intersection(mm, addr, end);
541 if (!vma)
542 return 0;
543
544 nr_pages = (min(end, vma->vm_end) -
545 max(addr, vma->vm_start)) >> PAGE_SHIFT;
546
547 /* Iterate over the rest of the overlaps */
548 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 unsigned long overlap_len;
550
551 if (vma->vm_start > end)
552 break;
553
554 overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 nr_pages += overlap_len >> PAGE_SHIFT;
556 }
557
558 return nr_pages;
559 }
560
561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 struct rb_node **rb_link, struct rb_node *rb_parent)
563 {
564 /* Update tracking information for the gap following the new vma. */
565 if (vma->vm_next)
566 vma_gap_update(vma->vm_next);
567 else
568 mm->highest_vm_end = vm_end_gap(vma);
569
570 /*
571 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 * correct insertion point for that vma. As a result, we could not
573 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 * So, we first insert the vma with a zero rb_subtree_gap value
575 * (to be consistent with what we did on the way down), and then
576 * immediately update the gap to the correct value. Finally we
577 * rebalance the rbtree after all augmented values have been set.
578 */
579 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 vma->rb_subtree_gap = 0;
581 vma_gap_update(vma);
582 vma_rb_insert(vma, &mm->mm_rb);
583 }
584
585 static void __vma_link_file(struct vm_area_struct *vma)
586 {
587 struct file *file;
588
589 file = vma->vm_file;
590 if (file) {
591 struct address_space *mapping = file->f_mapping;
592
593 if (vma->vm_flags & VM_DENYWRITE)
594 atomic_dec(&file_inode(file)->i_writecount);
595 if (vma->vm_flags & VM_SHARED)
596 atomic_inc(&mapping->i_mmap_writable);
597
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 }
602 }
603
604 static void
605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
608 {
609 __vma_link_list(mm, vma, prev, rb_parent);
610 __vma_link_rb(mm, vma, rb_link, rb_parent);
611 }
612
613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 struct vm_area_struct *prev, struct rb_node **rb_link,
615 struct rb_node *rb_parent)
616 {
617 struct address_space *mapping = NULL;
618
619 if (vma->vm_file) {
620 mapping = vma->vm_file->f_mapping;
621 i_mmap_lock_write(mapping);
622 }
623
624 __vma_link(mm, vma, prev, rb_link, rb_parent);
625 __vma_link_file(vma);
626
627 if (mapping)
628 i_mmap_unlock_write(mapping);
629
630 mm->map_count++;
631 validate_mm(mm);
632 }
633
634 /*
635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636 * mm's list and rbtree. It has already been inserted into the interval tree.
637 */
638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
639 {
640 struct vm_area_struct *prev;
641 struct rb_node **rb_link, *rb_parent;
642
643 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 &prev, &rb_link, &rb_parent))
645 BUG();
646 __vma_link(mm, vma, prev, rb_link, rb_parent);
647 mm->map_count++;
648 }
649
650 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev,
653 bool has_prev,
654 struct vm_area_struct *ignore)
655 {
656 struct vm_area_struct *next;
657
658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
659 next = vma->vm_next;
660 if (has_prev)
661 prev->vm_next = next;
662 else {
663 prev = vma->vm_prev;
664 if (prev)
665 prev->vm_next = next;
666 else
667 mm->mmap = next;
668 }
669 if (next)
670 next->vm_prev = prev;
671
672 /* Kill the cache */
673 vmacache_invalidate(mm);
674 }
675
676 static inline void __vma_unlink_prev(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev)
679 {
680 __vma_unlink_common(mm, vma, prev, true, vma);
681 }
682
683 /*
684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685 * is already present in an i_mmap tree without adjusting the tree.
686 * The following helper function should be used when such adjustments
687 * are necessary. The "insert" vma (if any) is to be inserted
688 * before we drop the necessary locks.
689 */
690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 struct vm_area_struct *expand)
693 {
694 struct mm_struct *mm = vma->vm_mm;
695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 struct address_space *mapping = NULL;
697 struct rb_root_cached *root = NULL;
698 struct anon_vma *anon_vma = NULL;
699 struct file *file = vma->vm_file;
700 bool start_changed = false, end_changed = false;
701 long adjust_next = 0;
702 int remove_next = 0;
703
704 if (next && !insert) {
705 struct vm_area_struct *exporter = NULL, *importer = NULL;
706
707 if (end >= next->vm_end) {
708 /*
709 * vma expands, overlapping all the next, and
710 * perhaps the one after too (mprotect case 6).
711 * The only other cases that gets here are
712 * case 1, case 7 and case 8.
713 */
714 if (next == expand) {
715 /*
716 * The only case where we don't expand "vma"
717 * and we expand "next" instead is case 8.
718 */
719 VM_WARN_ON(end != next->vm_end);
720 /*
721 * remove_next == 3 means we're
722 * removing "vma" and that to do so we
723 * swapped "vma" and "next".
724 */
725 remove_next = 3;
726 VM_WARN_ON(file != next->vm_file);
727 swap(vma, next);
728 } else {
729 VM_WARN_ON(expand != vma);
730 /*
731 * case 1, 6, 7, remove_next == 2 is case 6,
732 * remove_next == 1 is case 1 or 7.
733 */
734 remove_next = 1 + (end > next->vm_end);
735 VM_WARN_ON(remove_next == 2 &&
736 end != next->vm_next->vm_end);
737 VM_WARN_ON(remove_next == 1 &&
738 end != next->vm_end);
739 /* trim end to next, for case 6 first pass */
740 end = next->vm_end;
741 }
742
743 exporter = next;
744 importer = vma;
745
746 /*
747 * If next doesn't have anon_vma, import from vma after
748 * next, if the vma overlaps with it.
749 */
750 if (remove_next == 2 && !next->anon_vma)
751 exporter = next->vm_next;
752
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 VM_WARN_ON(expand != importer);
762 } else if (end < vma->vm_end) {
763 /*
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
767 */
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
771 VM_WARN_ON(expand != importer);
772 }
773
774 /*
775 * Easily overlooked: when mprotect shifts the boundary,
776 * make sure the expanding vma has anon_vma set if the
777 * shrinking vma had, to cover any anon pages imported.
778 */
779 if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 int error;
781
782 importer->anon_vma = exporter->anon_vma;
783 error = anon_vma_clone(importer, exporter);
784 if (error)
785 return error;
786 }
787 }
788 again:
789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
790
791 if (file) {
792 mapping = file->f_mapping;
793 root = &mapping->i_mmap;
794 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795
796 if (adjust_next)
797 uprobe_munmap(next, next->vm_start, next->vm_end);
798
799 i_mmap_lock_write(mapping);
800 if (insert) {
801 /*
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
806 */
807 __vma_link_file(insert);
808 }
809 }
810
811 anon_vma = vma->anon_vma;
812 if (!anon_vma && adjust_next)
813 anon_vma = next->anon_vma;
814 if (anon_vma) {
815 VM_WARN_ON(adjust_next && next->anon_vma &&
816 anon_vma != next->anon_vma);
817 anon_vma_lock_write(anon_vma);
818 anon_vma_interval_tree_pre_update_vma(vma);
819 if (adjust_next)
820 anon_vma_interval_tree_pre_update_vma(next);
821 }
822
823 if (root) {
824 flush_dcache_mmap_lock(mapping);
825 vma_interval_tree_remove(vma, root);
826 if (adjust_next)
827 vma_interval_tree_remove(next, root);
828 }
829
830 if (start != vma->vm_start) {
831 vma->vm_start = start;
832 start_changed = true;
833 }
834 if (end != vma->vm_end) {
835 vma->vm_end = end;
836 end_changed = true;
837 }
838 vma->vm_pgoff = pgoff;
839 if (adjust_next) {
840 next->vm_start += adjust_next << PAGE_SHIFT;
841 next->vm_pgoff += adjust_next;
842 }
843
844 if (root) {
845 if (adjust_next)
846 vma_interval_tree_insert(next, root);
847 vma_interval_tree_insert(vma, root);
848 flush_dcache_mmap_unlock(mapping);
849 }
850
851 if (remove_next) {
852 /*
853 * vma_merge has merged next into vma, and needs
854 * us to remove next before dropping the locks.
855 */
856 if (remove_next != 3)
857 __vma_unlink_prev(mm, next, vma);
858 else
859 /*
860 * vma is not before next if they've been
861 * swapped.
862 *
863 * pre-swap() next->vm_start was reduced so
864 * tell validate_mm_rb to ignore pre-swap()
865 * "next" (which is stored in post-swap()
866 * "vma").
867 */
868 __vma_unlink_common(mm, next, NULL, false, vma);
869 if (file)
870 __remove_shared_vm_struct(next, file, mapping);
871 } else if (insert) {
872 /*
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
876 */
877 __insert_vm_struct(mm, insert);
878 } else {
879 if (start_changed)
880 vma_gap_update(vma);
881 if (end_changed) {
882 if (!next)
883 mm->highest_vm_end = vm_end_gap(vma);
884 else if (!adjust_next)
885 vma_gap_update(next);
886 }
887 }
888
889 if (anon_vma) {
890 anon_vma_interval_tree_post_update_vma(vma);
891 if (adjust_next)
892 anon_vma_interval_tree_post_update_vma(next);
893 anon_vma_unlock_write(anon_vma);
894 }
895 if (mapping)
896 i_mmap_unlock_write(mapping);
897
898 if (root) {
899 uprobe_mmap(vma);
900
901 if (adjust_next)
902 uprobe_mmap(next);
903 }
904
905 if (remove_next) {
906 if (file) {
907 uprobe_munmap(next, next->vm_start, next->vm_end);
908 vma_fput(vma);
909 }
910 if (next->anon_vma)
911 anon_vma_merge(vma, next);
912 mm->map_count--;
913 mpol_put(vma_policy(next));
914 kmem_cache_free(vm_area_cachep, next);
915 /*
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
919 */
920 if (remove_next != 3) {
921 /*
922 * If "next" was removed and vma->vm_end was
923 * expanded (up) over it, in turn
924 * "next->vm_prev->vm_end" changed and the
925 * "vma->vm_next" gap must be updated.
926 */
927 next = vma->vm_next;
928 } else {
929 /*
930 * For the scope of the comment "next" and
931 * "vma" considered pre-swap(): if "vma" was
932 * removed, next->vm_start was expanded (down)
933 * over it and the "next" gap must be updated.
934 * Because of the swap() the post-swap() "vma"
935 * actually points to pre-swap() "next"
936 * (post-swap() "next" as opposed is now a
937 * dangling pointer).
938 */
939 next = vma;
940 }
941 if (remove_next == 2) {
942 remove_next = 1;
943 end = next->vm_end;
944 goto again;
945 }
946 else if (next)
947 vma_gap_update(next);
948 else {
949 /*
950 * If remove_next == 2 we obviously can't
951 * reach this path.
952 *
953 * If remove_next == 3 we can't reach this
954 * path because pre-swap() next is always not
955 * NULL. pre-swap() "next" is not being
956 * removed and its next->vm_end is not altered
957 * (and furthermore "end" already matches
958 * next->vm_end in remove_next == 3).
959 *
960 * We reach this only in the remove_next == 1
961 * case if the "next" vma that was removed was
962 * the highest vma of the mm. However in such
963 * case next->vm_end == "end" and the extended
964 * "vma" has vma->vm_end == next->vm_end so
965 * mm->highest_vm_end doesn't need any update
966 * in remove_next == 1 case.
967 */
968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
969 }
970 }
971 if (insert && file)
972 uprobe_mmap(insert);
973
974 validate_mm(mm);
975
976 return 0;
977 }
978
979 /*
980 * If the vma has a ->close operation then the driver probably needs to release
981 * per-vma resources, so we don't attempt to merge those.
982 */
983 static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 struct file *file, unsigned long vm_flags,
985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
986 {
987 /*
988 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 * match the flags but dirty bit -- the caller should mark
990 * merged VMA as dirty. If dirty bit won't be excluded from
991 * comparison, we increase pressue on the memory system forcing
992 * the kernel to generate new VMAs when old one could be
993 * extended instead.
994 */
995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
996 return 0;
997 if (vma->vm_file != file)
998 return 0;
999 if (vma->vm_ops && vma->vm_ops->close)
1000 return 0;
1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002 return 0;
1003 return 1;
1004 }
1005
1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 struct anon_vma *anon_vma2,
1008 struct vm_area_struct *vma)
1009 {
1010 /*
1011 * The list_is_singular() test is to avoid merging VMA cloned from
1012 * parents. This can improve scalability caused by anon_vma lock.
1013 */
1014 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 list_is_singular(&vma->anon_vma_chain)))
1016 return 1;
1017 return anon_vma1 == anon_vma2;
1018 }
1019
1020 /*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031 static int
1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1034 pgoff_t vm_pgoff,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 if (vma->vm_pgoff == vm_pgoff)
1040 return 1;
1041 }
1042 return 0;
1043 }
1044
1045 /*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052 static int
1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1055 pgoff_t vm_pgoff,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060 pgoff_t vm_pglen;
1061 vm_pglen = vma_pages(vma);
1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 * AAAA AAAA AAAA AAAA
1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1086 * cannot merge might become might become might become
1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1089 * mremap move: PPPPXXXXXXXX 8
1090 * AAAA
1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1092 * might become case 1 below case 2 below case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 struct vm_area_struct *prev, unsigned long addr,
1110 unsigned long end, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t pgoff, struct mempolicy *policy,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114 {
1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 struct vm_area_struct *area, *next;
1117 int err;
1118
1119 /*
1120 * We later require that vma->vm_flags == vm_flags,
1121 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122 */
1123 if (vm_flags & VM_SPECIAL)
1124 return NULL;
1125
1126 if (prev)
1127 next = prev->vm_next;
1128 else
1129 next = mm->mmap;
1130 area = next;
1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1132 next = next->vm_next;
1133
1134 /* verify some invariant that must be enforced by the caller */
1135 VM_WARN_ON(prev && addr <= prev->vm_start);
1136 VM_WARN_ON(area && end > area->vm_end);
1137 VM_WARN_ON(addr >= end);
1138
1139 /*
1140 * Can it merge with the predecessor?
1141 */
1142 if (prev && prev->vm_end == addr &&
1143 mpol_equal(vma_policy(prev), policy) &&
1144 can_vma_merge_after(prev, vm_flags,
1145 anon_vma, file, pgoff,
1146 vm_userfaultfd_ctx)) {
1147 /*
1148 * OK, it can. Can we now merge in the successor as well?
1149 */
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1153 anon_vma, file,
1154 pgoff+pglen,
1155 vm_userfaultfd_ctx) &&
1156 is_mergeable_anon_vma(prev->anon_vma,
1157 next->anon_vma, NULL)) {
1158 /* cases 1, 6 */
1159 err = __vma_adjust(prev, prev->vm_start,
1160 next->vm_end, prev->vm_pgoff, NULL,
1161 prev);
1162 } else /* cases 2, 5, 7 */
1163 err = __vma_adjust(prev, prev->vm_start,
1164 end, prev->vm_pgoff, NULL, prev);
1165 if (err)
1166 return NULL;
1167 khugepaged_enter_vma_merge(prev, vm_flags);
1168 return prev;
1169 }
1170
1171 /*
1172 * Can this new request be merged in front of next?
1173 */
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file, pgoff+pglen,
1178 vm_userfaultfd_ctx)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1185 /*
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1189 */
1190 area = next;
1191 }
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(area, vm_flags);
1195 return area;
1196 }
1197
1198 return NULL;
1199 }
1200
1201 /*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215 {
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221 }
1222
1223 /*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246 {
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 return anon_vma;
1252 }
1253 return NULL;
1254 }
1255
1256 /*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265 {
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1268
1269 near = vma->vm_next;
1270 if (!near)
1271 goto try_prev;
1272
1273 anon_vma = reusable_anon_vma(near, vma, near);
1274 if (anon_vma)
1275 return anon_vma;
1276 try_prev:
1277 near = vma->vm_prev;
1278 if (!near)
1279 goto none;
1280
1281 anon_vma = reusable_anon_vma(near, near, vma);
1282 if (anon_vma)
1283 return anon_vma;
1284 none:
1285 /*
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1292 */
1293 return NULL;
1294 }
1295
1296 /*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1301 {
1302 hint &= PAGE_MASK;
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1306 return hint;
1307 }
1308
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1311 unsigned long len)
1312 {
1313 unsigned long locked, lock_limit;
1314
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 return -EAGAIN;
1323 }
1324 return 0;
1325 }
1326
1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328 {
1329 if (S_ISREG(inode->i_mode))
1330 return MAX_LFS_FILESIZE;
1331
1332 if (S_ISBLK(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1334
1335 /* Special "we do even unsigned file positions" case */
1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337 return 0;
1338
1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340 return ULONG_MAX;
1341 }
1342
1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 unsigned long pgoff, unsigned long len)
1345 {
1346 u64 maxsize = file_mmap_size_max(file, inode);
1347
1348 if (maxsize && len > maxsize)
1349 return false;
1350 maxsize -= len;
1351 if (pgoff > maxsize >> PAGE_SHIFT)
1352 return false;
1353 return true;
1354 }
1355
1356 /*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359 unsigned long do_mmap(struct file *file, unsigned long addr,
1360 unsigned long len, unsigned long prot,
1361 unsigned long flags, vm_flags_t vm_flags,
1362 unsigned long pgoff, unsigned long *populate,
1363 struct list_head *uf)
1364 {
1365 struct mm_struct *mm = current->mm;
1366 int pkey = 0;
1367
1368 *populate = 0;
1369
1370 if (!len)
1371 return -EINVAL;
1372
1373 /*
1374 * Does the application expect PROT_READ to imply PROT_EXEC?
1375 *
1376 * (the exception is when the underlying filesystem is noexec
1377 * mounted, in which case we dont add PROT_EXEC.)
1378 */
1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 if (!(file && path_noexec(&file->f_path)))
1381 prot |= PROT_EXEC;
1382
1383 if (!(flags & MAP_FIXED))
1384 addr = round_hint_to_min(addr);
1385
1386 /* Careful about overflows.. */
1387 len = PAGE_ALIGN(len);
1388 if (!len)
1389 return -ENOMEM;
1390
1391 /* offset overflow? */
1392 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1393 return -EOVERFLOW;
1394
1395 /* Too many mappings? */
1396 if (mm->map_count > sysctl_max_map_count)
1397 return -ENOMEM;
1398
1399 /* Obtain the address to map to. we verify (or select) it and ensure
1400 * that it represents a valid section of the address space.
1401 */
1402 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1403 if (offset_in_page(addr))
1404 return addr;
1405
1406 if (prot == PROT_EXEC) {
1407 pkey = execute_only_pkey(mm);
1408 if (pkey < 0)
1409 pkey = 0;
1410 }
1411
1412 /* Do simple checking here so the lower-level routines won't have
1413 * to. we assume access permissions have been handled by the open
1414 * of the memory object, so we don't do any here.
1415 */
1416 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1417 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1418
1419 if (flags & MAP_LOCKED)
1420 if (!can_do_mlock())
1421 return -EPERM;
1422
1423 if (mlock_future_check(mm, vm_flags, len))
1424 return -EAGAIN;
1425
1426 if (file) {
1427 struct inode *inode = file_inode(file);
1428 unsigned long flags_mask;
1429
1430 if (!file_mmap_ok(file, inode, pgoff, len))
1431 return -EOVERFLOW;
1432
1433 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1434
1435 switch (flags & MAP_TYPE) {
1436 case MAP_SHARED:
1437 /*
1438 * Force use of MAP_SHARED_VALIDATE with non-legacy
1439 * flags. E.g. MAP_SYNC is dangerous to use with
1440 * MAP_SHARED as you don't know which consistency model
1441 * you will get. We silently ignore unsupported flags
1442 * with MAP_SHARED to preserve backward compatibility.
1443 */
1444 flags &= LEGACY_MAP_MASK;
1445 /* fall through */
1446 case MAP_SHARED_VALIDATE:
1447 if (flags & ~flags_mask)
1448 return -EOPNOTSUPP;
1449 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1450 return -EACCES;
1451
1452 /*
1453 * Make sure we don't allow writing to an append-only
1454 * file..
1455 */
1456 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1457 return -EACCES;
1458
1459 /*
1460 * Make sure there are no mandatory locks on the file.
1461 */
1462 if (locks_verify_locked(file))
1463 return -EAGAIN;
1464
1465 vm_flags |= VM_SHARED | VM_MAYSHARE;
1466 if (!(file->f_mode & FMODE_WRITE))
1467 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1468
1469 /* fall through */
1470 case MAP_PRIVATE:
1471 if (!(file->f_mode & FMODE_READ))
1472 return -EACCES;
1473 if (path_noexec(&file->f_path)) {
1474 if (vm_flags & VM_EXEC)
1475 return -EPERM;
1476 vm_flags &= ~VM_MAYEXEC;
1477 }
1478
1479 if (!file->f_op->mmap)
1480 return -ENODEV;
1481 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1482 return -EINVAL;
1483 break;
1484
1485 default:
1486 return -EINVAL;
1487 }
1488 } else {
1489 switch (flags & MAP_TYPE) {
1490 case MAP_SHARED:
1491 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1492 return -EINVAL;
1493 /*
1494 * Ignore pgoff.
1495 */
1496 pgoff = 0;
1497 vm_flags |= VM_SHARED | VM_MAYSHARE;
1498 break;
1499 case MAP_PRIVATE:
1500 /*
1501 * Set pgoff according to addr for anon_vma.
1502 */
1503 pgoff = addr >> PAGE_SHIFT;
1504 break;
1505 default:
1506 return -EINVAL;
1507 }
1508 }
1509
1510 /*
1511 * Set 'VM_NORESERVE' if we should not account for the
1512 * memory use of this mapping.
1513 */
1514 if (flags & MAP_NORESERVE) {
1515 /* We honor MAP_NORESERVE if allowed to overcommit */
1516 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1517 vm_flags |= VM_NORESERVE;
1518
1519 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1520 if (file && is_file_hugepages(file))
1521 vm_flags |= VM_NORESERVE;
1522 }
1523
1524 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1525 if (!IS_ERR_VALUE(addr) &&
1526 ((vm_flags & VM_LOCKED) ||
1527 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1528 *populate = len;
1529 return addr;
1530 }
1531
1532 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1533 unsigned long, prot, unsigned long, flags,
1534 unsigned long, fd, unsigned long, pgoff)
1535 {
1536 struct file *file = NULL;
1537 unsigned long retval;
1538
1539 if (!(flags & MAP_ANONYMOUS)) {
1540 audit_mmap_fd(fd, flags);
1541 file = fget(fd);
1542 if (!file)
1543 return -EBADF;
1544 if (is_file_hugepages(file))
1545 len = ALIGN(len, huge_page_size(hstate_file(file)));
1546 retval = -EINVAL;
1547 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1548 goto out_fput;
1549 } else if (flags & MAP_HUGETLB) {
1550 struct user_struct *user = NULL;
1551 struct hstate *hs;
1552
1553 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1554 if (!hs)
1555 return -EINVAL;
1556
1557 len = ALIGN(len, huge_page_size(hs));
1558 /*
1559 * VM_NORESERVE is used because the reservations will be
1560 * taken when vm_ops->mmap() is called
1561 * A dummy user value is used because we are not locking
1562 * memory so no accounting is necessary
1563 */
1564 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1565 VM_NORESERVE,
1566 &user, HUGETLB_ANONHUGE_INODE,
1567 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1568 if (IS_ERR(file))
1569 return PTR_ERR(file);
1570 }
1571
1572 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1573
1574 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1575 out_fput:
1576 if (file)
1577 fput(file);
1578 return retval;
1579 }
1580
1581 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1582 struct mmap_arg_struct {
1583 unsigned long addr;
1584 unsigned long len;
1585 unsigned long prot;
1586 unsigned long flags;
1587 unsigned long fd;
1588 unsigned long offset;
1589 };
1590
1591 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1592 {
1593 struct mmap_arg_struct a;
1594
1595 if (copy_from_user(&a, arg, sizeof(a)))
1596 return -EFAULT;
1597 if (offset_in_page(a.offset))
1598 return -EINVAL;
1599
1600 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1601 a.offset >> PAGE_SHIFT);
1602 }
1603 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1604
1605 /*
1606 * Some shared mappigns will want the pages marked read-only
1607 * to track write events. If so, we'll downgrade vm_page_prot
1608 * to the private version (using protection_map[] without the
1609 * VM_SHARED bit).
1610 */
1611 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1612 {
1613 vm_flags_t vm_flags = vma->vm_flags;
1614 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1615
1616 /* If it was private or non-writable, the write bit is already clear */
1617 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1618 return 0;
1619
1620 /* The backer wishes to know when pages are first written to? */
1621 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1622 return 1;
1623
1624 /* The open routine did something to the protections that pgprot_modify
1625 * won't preserve? */
1626 if (pgprot_val(vm_page_prot) !=
1627 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1628 return 0;
1629
1630 /* Do we need to track softdirty? */
1631 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1632 return 1;
1633
1634 /* Specialty mapping? */
1635 if (vm_flags & VM_PFNMAP)
1636 return 0;
1637
1638 /* Can the mapping track the dirty pages? */
1639 return vma->vm_file && vma->vm_file->f_mapping &&
1640 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1641 }
1642
1643 /*
1644 * We account for memory if it's a private writeable mapping,
1645 * not hugepages and VM_NORESERVE wasn't set.
1646 */
1647 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1648 {
1649 /*
1650 * hugetlb has its own accounting separate from the core VM
1651 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1652 */
1653 if (file && is_file_hugepages(file))
1654 return 0;
1655
1656 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1657 }
1658
1659 unsigned long mmap_region(struct file *file, unsigned long addr,
1660 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1661 struct list_head *uf)
1662 {
1663 struct mm_struct *mm = current->mm;
1664 struct vm_area_struct *vma, *prev;
1665 int error;
1666 struct rb_node **rb_link, *rb_parent;
1667 unsigned long charged = 0;
1668
1669 /* Check against address space limit. */
1670 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1671 unsigned long nr_pages;
1672
1673 /*
1674 * MAP_FIXED may remove pages of mappings that intersects with
1675 * requested mapping. Account for the pages it would unmap.
1676 */
1677 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1678
1679 if (!may_expand_vm(mm, vm_flags,
1680 (len >> PAGE_SHIFT) - nr_pages))
1681 return -ENOMEM;
1682 }
1683
1684 /* Clear old maps */
1685 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1686 &rb_parent)) {
1687 if (do_munmap(mm, addr, len, uf))
1688 return -ENOMEM;
1689 }
1690
1691 /*
1692 * Private writable mapping: check memory availability
1693 */
1694 if (accountable_mapping(file, vm_flags)) {
1695 charged = len >> PAGE_SHIFT;
1696 if (security_vm_enough_memory_mm(mm, charged))
1697 return -ENOMEM;
1698 vm_flags |= VM_ACCOUNT;
1699 }
1700
1701 /*
1702 * Can we just expand an old mapping?
1703 */
1704 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1705 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1706 if (vma)
1707 goto out;
1708
1709 /*
1710 * Determine the object being mapped and call the appropriate
1711 * specific mapper. the address has already been validated, but
1712 * not unmapped, but the maps are removed from the list.
1713 */
1714 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1715 if (!vma) {
1716 error = -ENOMEM;
1717 goto unacct_error;
1718 }
1719
1720 vma->vm_mm = mm;
1721 vma->vm_start = addr;
1722 vma->vm_end = addr + len;
1723 vma->vm_flags = vm_flags;
1724 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1725 vma->vm_pgoff = pgoff;
1726 INIT_LIST_HEAD(&vma->anon_vma_chain);
1727
1728 if (file) {
1729 if (vm_flags & VM_DENYWRITE) {
1730 error = deny_write_access(file);
1731 if (error)
1732 goto free_vma;
1733 }
1734 if (vm_flags & VM_SHARED) {
1735 error = mapping_map_writable(file->f_mapping);
1736 if (error)
1737 goto allow_write_and_free_vma;
1738 }
1739
1740 /* ->mmap() can change vma->vm_file, but must guarantee that
1741 * vma_link() below can deny write-access if VM_DENYWRITE is set
1742 * and map writably if VM_SHARED is set. This usually means the
1743 * new file must not have been exposed to user-space, yet.
1744 */
1745 vma->vm_file = get_file(file);
1746 error = call_mmap(file, vma);
1747 if (error)
1748 goto unmap_and_free_vma;
1749
1750 /* Can addr have changed??
1751 *
1752 * Answer: Yes, several device drivers can do it in their
1753 * f_op->mmap method. -DaveM
1754 * Bug: If addr is changed, prev, rb_link, rb_parent should
1755 * be updated for vma_link()
1756 */
1757 WARN_ON_ONCE(addr != vma->vm_start);
1758
1759 addr = vma->vm_start;
1760 vm_flags = vma->vm_flags;
1761 } else if (vm_flags & VM_SHARED) {
1762 error = shmem_zero_setup(vma);
1763 if (error)
1764 goto free_vma;
1765 }
1766
1767 vma_link(mm, vma, prev, rb_link, rb_parent);
1768 /* Once vma denies write, undo our temporary denial count */
1769 if (file) {
1770 if (vm_flags & VM_SHARED)
1771 mapping_unmap_writable(file->f_mapping);
1772 if (vm_flags & VM_DENYWRITE)
1773 allow_write_access(file);
1774 }
1775 file = vma->vm_file;
1776 out:
1777 perf_event_mmap(vma);
1778
1779 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1780 if (vm_flags & VM_LOCKED) {
1781 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1782 vma == get_gate_vma(current->mm)))
1783 mm->locked_vm += (len >> PAGE_SHIFT);
1784 else
1785 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1786 }
1787
1788 if (file)
1789 uprobe_mmap(vma);
1790
1791 /*
1792 * New (or expanded) vma always get soft dirty status.
1793 * Otherwise user-space soft-dirty page tracker won't
1794 * be able to distinguish situation when vma area unmapped,
1795 * then new mapped in-place (which must be aimed as
1796 * a completely new data area).
1797 */
1798 vma->vm_flags |= VM_SOFTDIRTY;
1799
1800 vma_set_page_prot(vma);
1801
1802 return addr;
1803
1804 unmap_and_free_vma:
1805 vma_fput(vma);
1806 vma->vm_file = NULL;
1807
1808 /* Undo any partial mapping done by a device driver. */
1809 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1810 charged = 0;
1811 if (vm_flags & VM_SHARED)
1812 mapping_unmap_writable(file->f_mapping);
1813 allow_write_and_free_vma:
1814 if (vm_flags & VM_DENYWRITE)
1815 allow_write_access(file);
1816 free_vma:
1817 kmem_cache_free(vm_area_cachep, vma);
1818 unacct_error:
1819 if (charged)
1820 vm_unacct_memory(charged);
1821 return error;
1822 }
1823
1824 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1825 {
1826 /*
1827 * We implement the search by looking for an rbtree node that
1828 * immediately follows a suitable gap. That is,
1829 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1830 * - gap_end = vma->vm_start >= info->low_limit + length;
1831 * - gap_end - gap_start >= length
1832 */
1833
1834 struct mm_struct *mm = current->mm;
1835 struct vm_area_struct *vma;
1836 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1837
1838 /* Adjust search length to account for worst case alignment overhead */
1839 length = info->length + info->align_mask;
1840 if (length < info->length)
1841 return -ENOMEM;
1842
1843 /* Adjust search limits by the desired length */
1844 if (info->high_limit < length)
1845 return -ENOMEM;
1846 high_limit = info->high_limit - length;
1847
1848 if (info->low_limit > high_limit)
1849 return -ENOMEM;
1850 low_limit = info->low_limit + length;
1851
1852 /* Check if rbtree root looks promising */
1853 if (RB_EMPTY_ROOT(&mm->mm_rb))
1854 goto check_highest;
1855 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1856 if (vma->rb_subtree_gap < length)
1857 goto check_highest;
1858
1859 while (true) {
1860 /* Visit left subtree if it looks promising */
1861 gap_end = vm_start_gap(vma);
1862 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1863 struct vm_area_struct *left =
1864 rb_entry(vma->vm_rb.rb_left,
1865 struct vm_area_struct, vm_rb);
1866 if (left->rb_subtree_gap >= length) {
1867 vma = left;
1868 continue;
1869 }
1870 }
1871
1872 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1873 check_current:
1874 /* Check if current node has a suitable gap */
1875 if (gap_start > high_limit)
1876 return -ENOMEM;
1877 if (gap_end >= low_limit &&
1878 gap_end > gap_start && gap_end - gap_start >= length)
1879 goto found;
1880
1881 /* Visit right subtree if it looks promising */
1882 if (vma->vm_rb.rb_right) {
1883 struct vm_area_struct *right =
1884 rb_entry(vma->vm_rb.rb_right,
1885 struct vm_area_struct, vm_rb);
1886 if (right->rb_subtree_gap >= length) {
1887 vma = right;
1888 continue;
1889 }
1890 }
1891
1892 /* Go back up the rbtree to find next candidate node */
1893 while (true) {
1894 struct rb_node *prev = &vma->vm_rb;
1895 if (!rb_parent(prev))
1896 goto check_highest;
1897 vma = rb_entry(rb_parent(prev),
1898 struct vm_area_struct, vm_rb);
1899 if (prev == vma->vm_rb.rb_left) {
1900 gap_start = vm_end_gap(vma->vm_prev);
1901 gap_end = vm_start_gap(vma);
1902 goto check_current;
1903 }
1904 }
1905 }
1906
1907 check_highest:
1908 /* Check highest gap, which does not precede any rbtree node */
1909 gap_start = mm->highest_vm_end;
1910 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1911 if (gap_start > high_limit)
1912 return -ENOMEM;
1913
1914 found:
1915 /* We found a suitable gap. Clip it with the original low_limit. */
1916 if (gap_start < info->low_limit)
1917 gap_start = info->low_limit;
1918
1919 /* Adjust gap address to the desired alignment */
1920 gap_start += (info->align_offset - gap_start) & info->align_mask;
1921
1922 VM_BUG_ON(gap_start + info->length > info->high_limit);
1923 VM_BUG_ON(gap_start + info->length > gap_end);
1924 return gap_start;
1925 }
1926
1927 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1928 {
1929 struct mm_struct *mm = current->mm;
1930 struct vm_area_struct *vma;
1931 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1932
1933 /* Adjust search length to account for worst case alignment overhead */
1934 length = info->length + info->align_mask;
1935 if (length < info->length)
1936 return -ENOMEM;
1937
1938 /*
1939 * Adjust search limits by the desired length.
1940 * See implementation comment at top of unmapped_area().
1941 */
1942 gap_end = info->high_limit;
1943 if (gap_end < length)
1944 return -ENOMEM;
1945 high_limit = gap_end - length;
1946
1947 if (info->low_limit > high_limit)
1948 return -ENOMEM;
1949 low_limit = info->low_limit + length;
1950
1951 /* Check highest gap, which does not precede any rbtree node */
1952 gap_start = mm->highest_vm_end;
1953 if (gap_start <= high_limit)
1954 goto found_highest;
1955
1956 /* Check if rbtree root looks promising */
1957 if (RB_EMPTY_ROOT(&mm->mm_rb))
1958 return -ENOMEM;
1959 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1960 if (vma->rb_subtree_gap < length)
1961 return -ENOMEM;
1962
1963 while (true) {
1964 /* Visit right subtree if it looks promising */
1965 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1966 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1967 struct vm_area_struct *right =
1968 rb_entry(vma->vm_rb.rb_right,
1969 struct vm_area_struct, vm_rb);
1970 if (right->rb_subtree_gap >= length) {
1971 vma = right;
1972 continue;
1973 }
1974 }
1975
1976 check_current:
1977 /* Check if current node has a suitable gap */
1978 gap_end = vm_start_gap(vma);
1979 if (gap_end < low_limit)
1980 return -ENOMEM;
1981 if (gap_start <= high_limit &&
1982 gap_end > gap_start && gap_end - gap_start >= length)
1983 goto found;
1984
1985 /* Visit left subtree if it looks promising */
1986 if (vma->vm_rb.rb_left) {
1987 struct vm_area_struct *left =
1988 rb_entry(vma->vm_rb.rb_left,
1989 struct vm_area_struct, vm_rb);
1990 if (left->rb_subtree_gap >= length) {
1991 vma = left;
1992 continue;
1993 }
1994 }
1995
1996 /* Go back up the rbtree to find next candidate node */
1997 while (true) {
1998 struct rb_node *prev = &vma->vm_rb;
1999 if (!rb_parent(prev))
2000 return -ENOMEM;
2001 vma = rb_entry(rb_parent(prev),
2002 struct vm_area_struct, vm_rb);
2003 if (prev == vma->vm_rb.rb_right) {
2004 gap_start = vma->vm_prev ?
2005 vm_end_gap(vma->vm_prev) : 0;
2006 goto check_current;
2007 }
2008 }
2009 }
2010
2011 found:
2012 /* We found a suitable gap. Clip it with the original high_limit. */
2013 if (gap_end > info->high_limit)
2014 gap_end = info->high_limit;
2015
2016 found_highest:
2017 /* Compute highest gap address at the desired alignment */
2018 gap_end -= info->length;
2019 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2020
2021 VM_BUG_ON(gap_end < info->low_limit);
2022 VM_BUG_ON(gap_end < gap_start);
2023 return gap_end;
2024 }
2025
2026 /* Get an address range which is currently unmapped.
2027 * For shmat() with addr=0.
2028 *
2029 * Ugly calling convention alert:
2030 * Return value with the low bits set means error value,
2031 * ie
2032 * if (ret & ~PAGE_MASK)
2033 * error = ret;
2034 *
2035 * This function "knows" that -ENOMEM has the bits set.
2036 */
2037 #ifndef HAVE_ARCH_UNMAPPED_AREA
2038 unsigned long
2039 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2040 unsigned long len, unsigned long pgoff, unsigned long flags)
2041 {
2042 struct mm_struct *mm = current->mm;
2043 struct vm_area_struct *vma, *prev;
2044 struct vm_unmapped_area_info info;
2045
2046 if (len > TASK_SIZE - mmap_min_addr)
2047 return -ENOMEM;
2048
2049 if (flags & MAP_FIXED)
2050 return addr;
2051
2052 if (addr) {
2053 addr = PAGE_ALIGN(addr);
2054 vma = find_vma_prev(mm, addr, &prev);
2055 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2056 (!vma || addr + len <= vm_start_gap(vma)) &&
2057 (!prev || addr >= vm_end_gap(prev)))
2058 return addr;
2059 }
2060
2061 info.flags = 0;
2062 info.length = len;
2063 info.low_limit = mm->mmap_base;
2064 info.high_limit = TASK_SIZE;
2065 info.align_mask = 0;
2066 return vm_unmapped_area(&info);
2067 }
2068 #endif
2069
2070 /*
2071 * This mmap-allocator allocates new areas top-down from below the
2072 * stack's low limit (the base):
2073 */
2074 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2075 unsigned long
2076 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2077 const unsigned long len, const unsigned long pgoff,
2078 const unsigned long flags)
2079 {
2080 struct vm_area_struct *vma, *prev;
2081 struct mm_struct *mm = current->mm;
2082 unsigned long addr = addr0;
2083 struct vm_unmapped_area_info info;
2084
2085 /* requested length too big for entire address space */
2086 if (len > TASK_SIZE - mmap_min_addr)
2087 return -ENOMEM;
2088
2089 if (flags & MAP_FIXED)
2090 return addr;
2091
2092 /* requesting a specific address */
2093 if (addr) {
2094 addr = PAGE_ALIGN(addr);
2095 vma = find_vma_prev(mm, addr, &prev);
2096 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2097 (!vma || addr + len <= vm_start_gap(vma)) &&
2098 (!prev || addr >= vm_end_gap(prev)))
2099 return addr;
2100 }
2101
2102 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2103 info.length = len;
2104 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2105 info.high_limit = mm->mmap_base;
2106 info.align_mask = 0;
2107 addr = vm_unmapped_area(&info);
2108
2109 /*
2110 * A failed mmap() very likely causes application failure,
2111 * so fall back to the bottom-up function here. This scenario
2112 * can happen with large stack limits and large mmap()
2113 * allocations.
2114 */
2115 if (offset_in_page(addr)) {
2116 VM_BUG_ON(addr != -ENOMEM);
2117 info.flags = 0;
2118 info.low_limit = TASK_UNMAPPED_BASE;
2119 info.high_limit = TASK_SIZE;
2120 addr = vm_unmapped_area(&info);
2121 }
2122
2123 return addr;
2124 }
2125 #endif
2126
2127 unsigned long
2128 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2129 unsigned long pgoff, unsigned long flags)
2130 {
2131 unsigned long (*get_area)(struct file *, unsigned long,
2132 unsigned long, unsigned long, unsigned long);
2133
2134 unsigned long error = arch_mmap_check(addr, len, flags);
2135 if (error)
2136 return error;
2137
2138 /* Careful about overflows.. */
2139 if (len > TASK_SIZE)
2140 return -ENOMEM;
2141
2142 get_area = current->mm->get_unmapped_area;
2143 if (file) {
2144 if (file->f_op->get_unmapped_area)
2145 get_area = file->f_op->get_unmapped_area;
2146 } else if (flags & MAP_SHARED) {
2147 /*
2148 * mmap_region() will call shmem_zero_setup() to create a file,
2149 * so use shmem's get_unmapped_area in case it can be huge.
2150 * do_mmap_pgoff() will clear pgoff, so match alignment.
2151 */
2152 pgoff = 0;
2153 get_area = shmem_get_unmapped_area;
2154 }
2155
2156 addr = get_area(file, addr, len, pgoff, flags);
2157 if (IS_ERR_VALUE(addr))
2158 return addr;
2159
2160 if (addr > TASK_SIZE - len)
2161 return -ENOMEM;
2162 if (offset_in_page(addr))
2163 return -EINVAL;
2164
2165 error = security_mmap_addr(addr);
2166 return error ? error : addr;
2167 }
2168
2169 EXPORT_SYMBOL(get_unmapped_area);
2170
2171 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2172 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2173 {
2174 struct rb_node *rb_node;
2175 struct vm_area_struct *vma;
2176
2177 /* Check the cache first. */
2178 vma = vmacache_find(mm, addr);
2179 if (likely(vma))
2180 return vma;
2181
2182 rb_node = mm->mm_rb.rb_node;
2183
2184 while (rb_node) {
2185 struct vm_area_struct *tmp;
2186
2187 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2188
2189 if (tmp->vm_end > addr) {
2190 vma = tmp;
2191 if (tmp->vm_start <= addr)
2192 break;
2193 rb_node = rb_node->rb_left;
2194 } else
2195 rb_node = rb_node->rb_right;
2196 }
2197
2198 if (vma)
2199 vmacache_update(addr, vma);
2200 return vma;
2201 }
2202
2203 EXPORT_SYMBOL(find_vma);
2204
2205 /*
2206 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2207 */
2208 struct vm_area_struct *
2209 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2210 struct vm_area_struct **pprev)
2211 {
2212 struct vm_area_struct *vma;
2213
2214 vma = find_vma(mm, addr);
2215 if (vma) {
2216 *pprev = vma->vm_prev;
2217 } else {
2218 struct rb_node *rb_node = mm->mm_rb.rb_node;
2219 *pprev = NULL;
2220 while (rb_node) {
2221 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2222 rb_node = rb_node->rb_right;
2223 }
2224 }
2225 return vma;
2226 }
2227
2228 /*
2229 * Verify that the stack growth is acceptable and
2230 * update accounting. This is shared with both the
2231 * grow-up and grow-down cases.
2232 */
2233 static int acct_stack_growth(struct vm_area_struct *vma,
2234 unsigned long size, unsigned long grow)
2235 {
2236 struct mm_struct *mm = vma->vm_mm;
2237 unsigned long new_start;
2238
2239 /* address space limit tests */
2240 if (!may_expand_vm(mm, vma->vm_flags, grow))
2241 return -ENOMEM;
2242
2243 /* Stack limit test */
2244 if (size > rlimit(RLIMIT_STACK))
2245 return -ENOMEM;
2246
2247 /* mlock limit tests */
2248 if (vma->vm_flags & VM_LOCKED) {
2249 unsigned long locked;
2250 unsigned long limit;
2251 locked = mm->locked_vm + grow;
2252 limit = rlimit(RLIMIT_MEMLOCK);
2253 limit >>= PAGE_SHIFT;
2254 if (locked > limit && !capable(CAP_IPC_LOCK))
2255 return -ENOMEM;
2256 }
2257
2258 /* Check to ensure the stack will not grow into a hugetlb-only region */
2259 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2260 vma->vm_end - size;
2261 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2262 return -EFAULT;
2263
2264 /*
2265 * Overcommit.. This must be the final test, as it will
2266 * update security statistics.
2267 */
2268 if (security_vm_enough_memory_mm(mm, grow))
2269 return -ENOMEM;
2270
2271 return 0;
2272 }
2273
2274 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2275 /*
2276 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2277 * vma is the last one with address > vma->vm_end. Have to extend vma.
2278 */
2279 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2280 {
2281 struct mm_struct *mm = vma->vm_mm;
2282 struct vm_area_struct *next;
2283 unsigned long gap_addr;
2284 int error = 0;
2285
2286 if (!(vma->vm_flags & VM_GROWSUP))
2287 return -EFAULT;
2288
2289 /* Guard against exceeding limits of the address space. */
2290 address &= PAGE_MASK;
2291 if (address >= (TASK_SIZE & PAGE_MASK))
2292 return -ENOMEM;
2293 address += PAGE_SIZE;
2294
2295 /* Enforce stack_guard_gap */
2296 gap_addr = address + stack_guard_gap;
2297
2298 /* Guard against overflow */
2299 if (gap_addr < address || gap_addr > TASK_SIZE)
2300 gap_addr = TASK_SIZE;
2301
2302 next = vma->vm_next;
2303 if (next && next->vm_start < gap_addr &&
2304 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2305 if (!(next->vm_flags & VM_GROWSUP))
2306 return -ENOMEM;
2307 /* Check that both stack segments have the same anon_vma? */
2308 }
2309
2310 /* We must make sure the anon_vma is allocated. */
2311 if (unlikely(anon_vma_prepare(vma)))
2312 return -ENOMEM;
2313
2314 /*
2315 * vma->vm_start/vm_end cannot change under us because the caller
2316 * is required to hold the mmap_sem in read mode. We need the
2317 * anon_vma lock to serialize against concurrent expand_stacks.
2318 */
2319 anon_vma_lock_write(vma->anon_vma);
2320
2321 /* Somebody else might have raced and expanded it already */
2322 if (address > vma->vm_end) {
2323 unsigned long size, grow;
2324
2325 size = address - vma->vm_start;
2326 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2327
2328 error = -ENOMEM;
2329 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2330 error = acct_stack_growth(vma, size, grow);
2331 if (!error) {
2332 /*
2333 * vma_gap_update() doesn't support concurrent
2334 * updates, but we only hold a shared mmap_sem
2335 * lock here, so we need to protect against
2336 * concurrent vma expansions.
2337 * anon_vma_lock_write() doesn't help here, as
2338 * we don't guarantee that all growable vmas
2339 * in a mm share the same root anon vma.
2340 * So, we reuse mm->page_table_lock to guard
2341 * against concurrent vma expansions.
2342 */
2343 spin_lock(&mm->page_table_lock);
2344 if (vma->vm_flags & VM_LOCKED)
2345 mm->locked_vm += grow;
2346 vm_stat_account(mm, vma->vm_flags, grow);
2347 anon_vma_interval_tree_pre_update_vma(vma);
2348 vma->vm_end = address;
2349 anon_vma_interval_tree_post_update_vma(vma);
2350 if (vma->vm_next)
2351 vma_gap_update(vma->vm_next);
2352 else
2353 mm->highest_vm_end = vm_end_gap(vma);
2354 spin_unlock(&mm->page_table_lock);
2355
2356 perf_event_mmap(vma);
2357 }
2358 }
2359 }
2360 anon_vma_unlock_write(vma->anon_vma);
2361 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2362 validate_mm(mm);
2363 return error;
2364 }
2365 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2366
2367 /*
2368 * vma is the first one with address < vma->vm_start. Have to extend vma.
2369 */
2370 int expand_downwards(struct vm_area_struct *vma,
2371 unsigned long address)
2372 {
2373 struct mm_struct *mm = vma->vm_mm;
2374 struct vm_area_struct *prev;
2375 int error = 0;
2376
2377 address &= PAGE_MASK;
2378 if (address < mmap_min_addr)
2379 return -EPERM;
2380
2381 /* Enforce stack_guard_gap */
2382 prev = vma->vm_prev;
2383 /* Check that both stack segments have the same anon_vma? */
2384 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2385 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2386 if (address - prev->vm_end < stack_guard_gap)
2387 return -ENOMEM;
2388 }
2389
2390 /* We must make sure the anon_vma is allocated. */
2391 if (unlikely(anon_vma_prepare(vma)))
2392 return -ENOMEM;
2393
2394 /*
2395 * vma->vm_start/vm_end cannot change under us because the caller
2396 * is required to hold the mmap_sem in read mode. We need the
2397 * anon_vma lock to serialize against concurrent expand_stacks.
2398 */
2399 anon_vma_lock_write(vma->anon_vma);
2400
2401 /* Somebody else might have raced and expanded it already */
2402 if (address < vma->vm_start) {
2403 unsigned long size, grow;
2404
2405 size = vma->vm_end - address;
2406 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2407
2408 error = -ENOMEM;
2409 if (grow <= vma->vm_pgoff) {
2410 error = acct_stack_growth(vma, size, grow);
2411 if (!error) {
2412 /*
2413 * vma_gap_update() doesn't support concurrent
2414 * updates, but we only hold a shared mmap_sem
2415 * lock here, so we need to protect against
2416 * concurrent vma expansions.
2417 * anon_vma_lock_write() doesn't help here, as
2418 * we don't guarantee that all growable vmas
2419 * in a mm share the same root anon vma.
2420 * So, we reuse mm->page_table_lock to guard
2421 * against concurrent vma expansions.
2422 */
2423 spin_lock(&mm->page_table_lock);
2424 if (vma->vm_flags & VM_LOCKED)
2425 mm->locked_vm += grow;
2426 vm_stat_account(mm, vma->vm_flags, grow);
2427 anon_vma_interval_tree_pre_update_vma(vma);
2428 vma->vm_start = address;
2429 vma->vm_pgoff -= grow;
2430 anon_vma_interval_tree_post_update_vma(vma);
2431 vma_gap_update(vma);
2432 spin_unlock(&mm->page_table_lock);
2433
2434 perf_event_mmap(vma);
2435 }
2436 }
2437 }
2438 anon_vma_unlock_write(vma->anon_vma);
2439 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2440 validate_mm(mm);
2441 return error;
2442 }
2443
2444 /* enforced gap between the expanding stack and other mappings. */
2445 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2446
2447 static int __init cmdline_parse_stack_guard_gap(char *p)
2448 {
2449 unsigned long val;
2450 char *endptr;
2451
2452 val = simple_strtoul(p, &endptr, 10);
2453 if (!*endptr)
2454 stack_guard_gap = val << PAGE_SHIFT;
2455
2456 return 0;
2457 }
2458 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2459
2460 #ifdef CONFIG_STACK_GROWSUP
2461 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2462 {
2463 return expand_upwards(vma, address);
2464 }
2465
2466 struct vm_area_struct *
2467 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2468 {
2469 struct vm_area_struct *vma, *prev;
2470
2471 addr &= PAGE_MASK;
2472 vma = find_vma_prev(mm, addr, &prev);
2473 if (vma && (vma->vm_start <= addr))
2474 return vma;
2475 if (!prev || expand_stack(prev, addr))
2476 return NULL;
2477 if (prev->vm_flags & VM_LOCKED)
2478 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2479 return prev;
2480 }
2481 #else
2482 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2483 {
2484 return expand_downwards(vma, address);
2485 }
2486
2487 struct vm_area_struct *
2488 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2489 {
2490 struct vm_area_struct *vma;
2491 unsigned long start;
2492
2493 addr &= PAGE_MASK;
2494 vma = find_vma(mm, addr);
2495 if (!vma)
2496 return NULL;
2497 if (vma->vm_start <= addr)
2498 return vma;
2499 if (!(vma->vm_flags & VM_GROWSDOWN))
2500 return NULL;
2501 start = vma->vm_start;
2502 if (expand_stack(vma, addr))
2503 return NULL;
2504 if (vma->vm_flags & VM_LOCKED)
2505 populate_vma_page_range(vma, addr, start, NULL);
2506 return vma;
2507 }
2508 #endif
2509
2510 EXPORT_SYMBOL_GPL(find_extend_vma);
2511
2512 /*
2513 * Ok - we have the memory areas we should free on the vma list,
2514 * so release them, and do the vma updates.
2515 *
2516 * Called with the mm semaphore held.
2517 */
2518 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2519 {
2520 unsigned long nr_accounted = 0;
2521
2522 /* Update high watermark before we lower total_vm */
2523 update_hiwater_vm(mm);
2524 do {
2525 long nrpages = vma_pages(vma);
2526
2527 if (vma->vm_flags & VM_ACCOUNT)
2528 nr_accounted += nrpages;
2529 vm_stat_account(mm, vma->vm_flags, -nrpages);
2530 vma = remove_vma(vma);
2531 } while (vma);
2532 vm_unacct_memory(nr_accounted);
2533 validate_mm(mm);
2534 }
2535
2536 /*
2537 * Get rid of page table information in the indicated region.
2538 *
2539 * Called with the mm semaphore held.
2540 */
2541 static void unmap_region(struct mm_struct *mm,
2542 struct vm_area_struct *vma, struct vm_area_struct *prev,
2543 unsigned long start, unsigned long end)
2544 {
2545 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2546 struct mmu_gather tlb;
2547
2548 lru_add_drain();
2549 tlb_gather_mmu(&tlb, mm, start, end);
2550 update_hiwater_rss(mm);
2551 unmap_vmas(&tlb, vma, start, end);
2552 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2553 next ? next->vm_start : USER_PGTABLES_CEILING);
2554 tlb_finish_mmu(&tlb, start, end);
2555 }
2556
2557 /*
2558 * Create a list of vma's touched by the unmap, removing them from the mm's
2559 * vma list as we go..
2560 */
2561 static void
2562 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2563 struct vm_area_struct *prev, unsigned long end)
2564 {
2565 struct vm_area_struct **insertion_point;
2566 struct vm_area_struct *tail_vma = NULL;
2567
2568 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2569 vma->vm_prev = NULL;
2570 do {
2571 vma_rb_erase(vma, &mm->mm_rb);
2572 mm->map_count--;
2573 tail_vma = vma;
2574 vma = vma->vm_next;
2575 } while (vma && vma->vm_start < end);
2576 *insertion_point = vma;
2577 if (vma) {
2578 vma->vm_prev = prev;
2579 vma_gap_update(vma);
2580 } else
2581 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2582 tail_vma->vm_next = NULL;
2583
2584 /* Kill the cache */
2585 vmacache_invalidate(mm);
2586 }
2587
2588 /*
2589 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2590 * has already been checked or doesn't make sense to fail.
2591 */
2592 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2593 unsigned long addr, int new_below)
2594 {
2595 struct vm_area_struct *new;
2596 int err;
2597
2598 if (vma->vm_ops && vma->vm_ops->split) {
2599 err = vma->vm_ops->split(vma, addr);
2600 if (err)
2601 return err;
2602 }
2603
2604 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2605 if (!new)
2606 return -ENOMEM;
2607
2608 /* most fields are the same, copy all, and then fixup */
2609 *new = *vma;
2610
2611 INIT_LIST_HEAD(&new->anon_vma_chain);
2612
2613 if (new_below)
2614 new->vm_end = addr;
2615 else {
2616 new->vm_start = addr;
2617 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2618 }
2619
2620 err = vma_dup_policy(vma, new);
2621 if (err)
2622 goto out_free_vma;
2623
2624 err = anon_vma_clone(new, vma);
2625 if (err)
2626 goto out_free_mpol;
2627
2628 if (new->vm_file)
2629 vma_get_file(new);
2630
2631 if (new->vm_ops && new->vm_ops->open)
2632 new->vm_ops->open(new);
2633
2634 if (new_below)
2635 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2636 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2637 else
2638 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2639
2640 /* Success. */
2641 if (!err)
2642 return 0;
2643
2644 /* Clean everything up if vma_adjust failed. */
2645 if (new->vm_ops && new->vm_ops->close)
2646 new->vm_ops->close(new);
2647 if (new->vm_file)
2648 vma_fput(new);
2649 unlink_anon_vmas(new);
2650 out_free_mpol:
2651 mpol_put(vma_policy(new));
2652 out_free_vma:
2653 kmem_cache_free(vm_area_cachep, new);
2654 return err;
2655 }
2656
2657 /*
2658 * Split a vma into two pieces at address 'addr', a new vma is allocated
2659 * either for the first part or the tail.
2660 */
2661 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2662 unsigned long addr, int new_below)
2663 {
2664 if (mm->map_count >= sysctl_max_map_count)
2665 return -ENOMEM;
2666
2667 return __split_vma(mm, vma, addr, new_below);
2668 }
2669
2670 /* Munmap is split into 2 main parts -- this part which finds
2671 * what needs doing, and the areas themselves, which do the
2672 * work. This now handles partial unmappings.
2673 * Jeremy Fitzhardinge <jeremy@goop.org>
2674 */
2675 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2676 struct list_head *uf)
2677 {
2678 unsigned long end;
2679 struct vm_area_struct *vma, *prev, *last;
2680
2681 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2682 return -EINVAL;
2683
2684 len = PAGE_ALIGN(len);
2685 if (len == 0)
2686 return -EINVAL;
2687
2688 /* Find the first overlapping VMA */
2689 vma = find_vma(mm, start);
2690 if (!vma)
2691 return 0;
2692 prev = vma->vm_prev;
2693 /* we have start < vma->vm_end */
2694
2695 /* if it doesn't overlap, we have nothing.. */
2696 end = start + len;
2697 if (vma->vm_start >= end)
2698 return 0;
2699
2700 /*
2701 * If we need to split any vma, do it now to save pain later.
2702 *
2703 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2704 * unmapped vm_area_struct will remain in use: so lower split_vma
2705 * places tmp vma above, and higher split_vma places tmp vma below.
2706 */
2707 if (start > vma->vm_start) {
2708 int error;
2709
2710 /*
2711 * Make sure that map_count on return from munmap() will
2712 * not exceed its limit; but let map_count go just above
2713 * its limit temporarily, to help free resources as expected.
2714 */
2715 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2716 return -ENOMEM;
2717
2718 error = __split_vma(mm, vma, start, 0);
2719 if (error)
2720 return error;
2721 prev = vma;
2722 }
2723
2724 /* Does it split the last one? */
2725 last = find_vma(mm, end);
2726 if (last && end > last->vm_start) {
2727 int error = __split_vma(mm, last, end, 1);
2728 if (error)
2729 return error;
2730 }
2731 vma = prev ? prev->vm_next : mm->mmap;
2732
2733 if (unlikely(uf)) {
2734 /*
2735 * If userfaultfd_unmap_prep returns an error the vmas
2736 * will remain splitted, but userland will get a
2737 * highly unexpected error anyway. This is no
2738 * different than the case where the first of the two
2739 * __split_vma fails, but we don't undo the first
2740 * split, despite we could. This is unlikely enough
2741 * failure that it's not worth optimizing it for.
2742 */
2743 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2744 if (error)
2745 return error;
2746 }
2747
2748 /*
2749 * unlock any mlock()ed ranges before detaching vmas
2750 */
2751 if (mm->locked_vm) {
2752 struct vm_area_struct *tmp = vma;
2753 while (tmp && tmp->vm_start < end) {
2754 if (tmp->vm_flags & VM_LOCKED) {
2755 mm->locked_vm -= vma_pages(tmp);
2756 munlock_vma_pages_all(tmp);
2757 }
2758 tmp = tmp->vm_next;
2759 }
2760 }
2761
2762 /*
2763 * Remove the vma's, and unmap the actual pages
2764 */
2765 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2766 unmap_region(mm, vma, prev, start, end);
2767
2768 arch_unmap(mm, vma, start, end);
2769
2770 /* Fix up all other VM information */
2771 remove_vma_list(mm, vma);
2772
2773 return 0;
2774 }
2775
2776 int vm_munmap(unsigned long start, size_t len)
2777 {
2778 int ret;
2779 struct mm_struct *mm = current->mm;
2780 LIST_HEAD(uf);
2781
2782 if (down_write_killable(&mm->mmap_sem))
2783 return -EINTR;
2784
2785 ret = do_munmap(mm, start, len, &uf);
2786 up_write(&mm->mmap_sem);
2787 userfaultfd_unmap_complete(mm, &uf);
2788 return ret;
2789 }
2790 EXPORT_SYMBOL(vm_munmap);
2791
2792 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2793 {
2794 profile_munmap(addr);
2795 return vm_munmap(addr, len);
2796 }
2797
2798
2799 /*
2800 * Emulation of deprecated remap_file_pages() syscall.
2801 */
2802 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2803 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2804 {
2805
2806 struct mm_struct *mm = current->mm;
2807 struct vm_area_struct *vma;
2808 unsigned long populate = 0;
2809 unsigned long ret = -EINVAL;
2810 struct file *file, *prfile;
2811
2812 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2813 current->comm, current->pid);
2814
2815 if (prot)
2816 return ret;
2817 start = start & PAGE_MASK;
2818 size = size & PAGE_MASK;
2819
2820 if (start + size <= start)
2821 return ret;
2822
2823 /* Does pgoff wrap? */
2824 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2825 return ret;
2826
2827 if (down_write_killable(&mm->mmap_sem))
2828 return -EINTR;
2829
2830 vma = find_vma(mm, start);
2831
2832 if (!vma || !(vma->vm_flags & VM_SHARED))
2833 goto out;
2834
2835 if (start < vma->vm_start)
2836 goto out;
2837
2838 if (start + size > vma->vm_end) {
2839 struct vm_area_struct *next;
2840
2841 for (next = vma->vm_next; next; next = next->vm_next) {
2842 /* hole between vmas ? */
2843 if (next->vm_start != next->vm_prev->vm_end)
2844 goto out;
2845
2846 if (next->vm_file != vma->vm_file)
2847 goto out;
2848
2849 if (next->vm_flags != vma->vm_flags)
2850 goto out;
2851
2852 if (start + size <= next->vm_end)
2853 break;
2854 }
2855
2856 if (!next)
2857 goto out;
2858 }
2859
2860 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2861 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2862 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2863
2864 flags &= MAP_NONBLOCK;
2865 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2866 if (vma->vm_flags & VM_LOCKED) {
2867 struct vm_area_struct *tmp;
2868 flags |= MAP_LOCKED;
2869
2870 /* drop PG_Mlocked flag for over-mapped range */
2871 for (tmp = vma; tmp->vm_start >= start + size;
2872 tmp = tmp->vm_next) {
2873 /*
2874 * Split pmd and munlock page on the border
2875 * of the range.
2876 */
2877 vma_adjust_trans_huge(tmp, start, start + size, 0);
2878
2879 munlock_vma_pages_range(tmp,
2880 max(tmp->vm_start, start),
2881 min(tmp->vm_end, start + size));
2882 }
2883 }
2884
2885 vma_get_file(vma);
2886 file = vma->vm_file;
2887 prfile = vma->vm_prfile;
2888 ret = do_mmap_pgoff(vma->vm_file, start, size,
2889 prot, flags, pgoff, &populate, NULL);
2890 if (!IS_ERR_VALUE(ret) && file && prfile) {
2891 struct vm_area_struct *new_vma;
2892
2893 new_vma = find_vma(mm, ret);
2894 if (!new_vma->vm_prfile)
2895 new_vma->vm_prfile = prfile;
2896 if (new_vma != vma)
2897 get_file(prfile);
2898 }
2899 /*
2900 * two fput()s instead of vma_fput(vma),
2901 * coz vma may not be available anymore.
2902 */
2903 fput(file);
2904 if (prfile)
2905 fput(prfile);
2906 out:
2907 up_write(&mm->mmap_sem);
2908 if (populate)
2909 mm_populate(ret, populate);
2910 if (!IS_ERR_VALUE(ret))
2911 ret = 0;
2912 return ret;
2913 }
2914
2915 static inline void verify_mm_writelocked(struct mm_struct *mm)
2916 {
2917 #ifdef CONFIG_DEBUG_VM
2918 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2919 WARN_ON(1);
2920 up_read(&mm->mmap_sem);
2921 }
2922 #endif
2923 }
2924
2925 /*
2926 * this is really a simplified "do_mmap". it only handles
2927 * anonymous maps. eventually we may be able to do some
2928 * brk-specific accounting here.
2929 */
2930 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2931 {
2932 struct mm_struct *mm = current->mm;
2933 struct vm_area_struct *vma, *prev;
2934 struct rb_node **rb_link, *rb_parent;
2935 pgoff_t pgoff = addr >> PAGE_SHIFT;
2936 int error;
2937
2938 /* Until we need other flags, refuse anything except VM_EXEC. */
2939 if ((flags & (~VM_EXEC)) != 0)
2940 return -EINVAL;
2941 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2942
2943 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2944 if (offset_in_page(error))
2945 return error;
2946
2947 error = mlock_future_check(mm, mm->def_flags, len);
2948 if (error)
2949 return error;
2950
2951 /*
2952 * mm->mmap_sem is required to protect against another thread
2953 * changing the mappings in case we sleep.
2954 */
2955 verify_mm_writelocked(mm);
2956
2957 /*
2958 * Clear old maps. this also does some error checking for us
2959 */
2960 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2961 &rb_parent)) {
2962 if (do_munmap(mm, addr, len, uf))
2963 return -ENOMEM;
2964 }
2965
2966 /* Check against address space limits *after* clearing old maps... */
2967 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2968 return -ENOMEM;
2969
2970 if (mm->map_count > sysctl_max_map_count)
2971 return -ENOMEM;
2972
2973 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2974 return -ENOMEM;
2975
2976 /* Can we just expand an old private anonymous mapping? */
2977 vma = vma_merge(mm, prev, addr, addr + len, flags,
2978 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2979 if (vma)
2980 goto out;
2981
2982 /*
2983 * create a vma struct for an anonymous mapping
2984 */
2985 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2986 if (!vma) {
2987 vm_unacct_memory(len >> PAGE_SHIFT);
2988 return -ENOMEM;
2989 }
2990
2991 INIT_LIST_HEAD(&vma->anon_vma_chain);
2992 vma->vm_mm = mm;
2993 vma->vm_start = addr;
2994 vma->vm_end = addr + len;
2995 vma->vm_pgoff = pgoff;
2996 vma->vm_flags = flags;
2997 vma->vm_page_prot = vm_get_page_prot(flags);
2998 vma_link(mm, vma, prev, rb_link, rb_parent);
2999 out:
3000 perf_event_mmap(vma);
3001 mm->total_vm += len >> PAGE_SHIFT;
3002 mm->data_vm += len >> PAGE_SHIFT;
3003 if (flags & VM_LOCKED)
3004 mm->locked_vm += (len >> PAGE_SHIFT);
3005 vma->vm_flags |= VM_SOFTDIRTY;
3006 return 0;
3007 }
3008
3009 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3010 {
3011 struct mm_struct *mm = current->mm;
3012 unsigned long len;
3013 int ret;
3014 bool populate;
3015 LIST_HEAD(uf);
3016
3017 len = PAGE_ALIGN(request);
3018 if (len < request)
3019 return -ENOMEM;
3020 if (!len)
3021 return 0;
3022
3023 if (down_write_killable(&mm->mmap_sem))
3024 return -EINTR;
3025
3026 ret = do_brk_flags(addr, len, flags, &uf);
3027 populate = ((mm->def_flags & VM_LOCKED) != 0);
3028 up_write(&mm->mmap_sem);
3029 userfaultfd_unmap_complete(mm, &uf);
3030 if (populate && !ret)
3031 mm_populate(addr, len);
3032 return ret;
3033 }
3034 EXPORT_SYMBOL(vm_brk_flags);
3035
3036 int vm_brk(unsigned long addr, unsigned long len)
3037 {
3038 return vm_brk_flags(addr, len, 0);
3039 }
3040 EXPORT_SYMBOL(vm_brk);
3041
3042 /* Release all mmaps. */
3043 void exit_mmap(struct mm_struct *mm)
3044 {
3045 struct mmu_gather tlb;
3046 struct vm_area_struct *vma;
3047 unsigned long nr_accounted = 0;
3048
3049 /* mm's last user has gone, and its about to be pulled down */
3050 mmu_notifier_release(mm);
3051
3052 if (unlikely(mm_is_oom_victim(mm))) {
3053 /*
3054 * Manually reap the mm to free as much memory as possible.
3055 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3056 * this mm from further consideration. Taking mm->mmap_sem for
3057 * write after setting MMF_OOM_SKIP will guarantee that the oom
3058 * reaper will not run on this mm again after mmap_sem is
3059 * dropped.
3060 *
3061 * Nothing can be holding mm->mmap_sem here and the above call
3062 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3063 * __oom_reap_task_mm() will not block.
3064 *
3065 * This needs to be done before calling munlock_vma_pages_all(),
3066 * which clears VM_LOCKED, otherwise the oom reaper cannot
3067 * reliably test it.
3068 */
3069 mutex_lock(&oom_lock);
3070 __oom_reap_task_mm(mm);
3071 mutex_unlock(&oom_lock);
3072
3073 set_bit(MMF_OOM_SKIP, &mm->flags);
3074 down_write(&mm->mmap_sem);
3075 up_write(&mm->mmap_sem);
3076 }
3077
3078 if (mm->locked_vm) {
3079 vma = mm->mmap;
3080 while (vma) {
3081 if (vma->vm_flags & VM_LOCKED)
3082 munlock_vma_pages_all(vma);
3083 vma = vma->vm_next;
3084 }
3085 }
3086
3087 arch_exit_mmap(mm);
3088
3089 vma = mm->mmap;
3090 if (!vma) /* Can happen if dup_mmap() received an OOM */
3091 return;
3092
3093 lru_add_drain();
3094 flush_cache_mm(mm);
3095 tlb_gather_mmu(&tlb, mm, 0, -1);
3096 /* update_hiwater_rss(mm) here? but nobody should be looking */
3097 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3098 unmap_vmas(&tlb, vma, 0, -1);
3099 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3100 tlb_finish_mmu(&tlb, 0, -1);
3101
3102 /*
3103 * Walk the list again, actually closing and freeing it,
3104 * with preemption enabled, without holding any MM locks.
3105 */
3106 while (vma) {
3107 if (vma->vm_flags & VM_ACCOUNT)
3108 nr_accounted += vma_pages(vma);
3109 vma = remove_vma(vma);
3110 }
3111 vm_unacct_memory(nr_accounted);
3112 }
3113
3114 /* Insert vm structure into process list sorted by address
3115 * and into the inode's i_mmap tree. If vm_file is non-NULL
3116 * then i_mmap_rwsem is taken here.
3117 */
3118 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3119 {
3120 struct vm_area_struct *prev;
3121 struct rb_node **rb_link, *rb_parent;
3122
3123 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3124 &prev, &rb_link, &rb_parent))
3125 return -ENOMEM;
3126 if ((vma->vm_flags & VM_ACCOUNT) &&
3127 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3128 return -ENOMEM;
3129
3130 /*
3131 * The vm_pgoff of a purely anonymous vma should be irrelevant
3132 * until its first write fault, when page's anon_vma and index
3133 * are set. But now set the vm_pgoff it will almost certainly
3134 * end up with (unless mremap moves it elsewhere before that
3135 * first wfault), so /proc/pid/maps tells a consistent story.
3136 *
3137 * By setting it to reflect the virtual start address of the
3138 * vma, merges and splits can happen in a seamless way, just
3139 * using the existing file pgoff checks and manipulations.
3140 * Similarly in do_mmap_pgoff and in do_brk.
3141 */
3142 if (vma_is_anonymous(vma)) {
3143 BUG_ON(vma->anon_vma);
3144 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3145 }
3146
3147 vma_link(mm, vma, prev, rb_link, rb_parent);
3148 return 0;
3149 }
3150
3151 /*
3152 * Copy the vma structure to a new location in the same mm,
3153 * prior to moving page table entries, to effect an mremap move.
3154 */
3155 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3156 unsigned long addr, unsigned long len, pgoff_t pgoff,
3157 bool *need_rmap_locks)
3158 {
3159 struct vm_area_struct *vma = *vmap;
3160 unsigned long vma_start = vma->vm_start;
3161 struct mm_struct *mm = vma->vm_mm;
3162 struct vm_area_struct *new_vma, *prev;
3163 struct rb_node **rb_link, *rb_parent;
3164 bool faulted_in_anon_vma = true;
3165
3166 /*
3167 * If anonymous vma has not yet been faulted, update new pgoff
3168 * to match new location, to increase its chance of merging.
3169 */
3170 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3171 pgoff = addr >> PAGE_SHIFT;
3172 faulted_in_anon_vma = false;
3173 }
3174
3175 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3176 return NULL; /* should never get here */
3177 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3178 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3179 vma->vm_userfaultfd_ctx);
3180 if (new_vma) {
3181 /*
3182 * Source vma may have been merged into new_vma
3183 */
3184 if (unlikely(vma_start >= new_vma->vm_start &&
3185 vma_start < new_vma->vm_end)) {
3186 /*
3187 * The only way we can get a vma_merge with
3188 * self during an mremap is if the vma hasn't
3189 * been faulted in yet and we were allowed to
3190 * reset the dst vma->vm_pgoff to the
3191 * destination address of the mremap to allow
3192 * the merge to happen. mremap must change the
3193 * vm_pgoff linearity between src and dst vmas
3194 * (in turn preventing a vma_merge) to be
3195 * safe. It is only safe to keep the vm_pgoff
3196 * linear if there are no pages mapped yet.
3197 */
3198 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3199 *vmap = vma = new_vma;
3200 }
3201 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3202 } else {
3203 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3204 if (!new_vma)
3205 goto out;
3206 *new_vma = *vma;
3207 new_vma->vm_start = addr;
3208 new_vma->vm_end = addr + len;
3209 new_vma->vm_pgoff = pgoff;
3210 if (vma_dup_policy(vma, new_vma))
3211 goto out_free_vma;
3212 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3213 if (anon_vma_clone(new_vma, vma))
3214 goto out_free_mempol;
3215 if (new_vma->vm_file)
3216 vma_get_file(new_vma);
3217 if (new_vma->vm_ops && new_vma->vm_ops->open)
3218 new_vma->vm_ops->open(new_vma);
3219 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3220 *need_rmap_locks = false;
3221 }
3222 return new_vma;
3223
3224 out_free_mempol:
3225 mpol_put(vma_policy(new_vma));
3226 out_free_vma:
3227 kmem_cache_free(vm_area_cachep, new_vma);
3228 out:
3229 return NULL;
3230 }
3231
3232 /*
3233 * Return true if the calling process may expand its vm space by the passed
3234 * number of pages
3235 */
3236 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3237 {
3238 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3239 return false;
3240
3241 if (is_data_mapping(flags) &&
3242 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3243 /* Workaround for Valgrind */
3244 if (rlimit(RLIMIT_DATA) == 0 &&
3245 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3246 return true;
3247 if (!ignore_rlimit_data) {
3248 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3249 current->comm, current->pid,
3250 (mm->data_vm + npages) << PAGE_SHIFT,
3251 rlimit(RLIMIT_DATA));
3252 return false;
3253 }
3254 }
3255
3256 return true;
3257 }
3258
3259 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3260 {
3261 mm->total_vm += npages;
3262
3263 if (is_exec_mapping(flags))
3264 mm->exec_vm += npages;
3265 else if (is_stack_mapping(flags))
3266 mm->stack_vm += npages;
3267 else if (is_data_mapping(flags))
3268 mm->data_vm += npages;
3269 }
3270
3271 static int special_mapping_fault(struct vm_fault *vmf);
3272
3273 /*
3274 * Having a close hook prevents vma merging regardless of flags.
3275 */
3276 static void special_mapping_close(struct vm_area_struct *vma)
3277 {
3278 }
3279
3280 static const char *special_mapping_name(struct vm_area_struct *vma)
3281 {
3282 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3283 }
3284
3285 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3286 {
3287 struct vm_special_mapping *sm = new_vma->vm_private_data;
3288
3289 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3290 return -EFAULT;
3291
3292 if (sm->mremap)
3293 return sm->mremap(sm, new_vma);
3294
3295 return 0;
3296 }
3297
3298 static const struct vm_operations_struct special_mapping_vmops = {
3299 .close = special_mapping_close,
3300 .fault = special_mapping_fault,
3301 .mremap = special_mapping_mremap,
3302 .name = special_mapping_name,
3303 };
3304
3305 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3306 .close = special_mapping_close,
3307 .fault = special_mapping_fault,
3308 };
3309
3310 static int special_mapping_fault(struct vm_fault *vmf)
3311 {
3312 struct vm_area_struct *vma = vmf->vma;
3313 pgoff_t pgoff;
3314 struct page **pages;
3315
3316 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3317 pages = vma->vm_private_data;
3318 } else {
3319 struct vm_special_mapping *sm = vma->vm_private_data;
3320
3321 if (sm->fault)
3322 return sm->fault(sm, vmf->vma, vmf);
3323
3324 pages = sm->pages;
3325 }
3326
3327 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3328 pgoff--;
3329
3330 if (*pages) {
3331 struct page *page = *pages;
3332 get_page(page);
3333 vmf->page = page;
3334 return 0;
3335 }
3336
3337 return VM_FAULT_SIGBUS;
3338 }
3339
3340 static struct vm_area_struct *__install_special_mapping(
3341 struct mm_struct *mm,
3342 unsigned long addr, unsigned long len,
3343 unsigned long vm_flags, void *priv,
3344 const struct vm_operations_struct *ops)
3345 {
3346 int ret;
3347 struct vm_area_struct *vma;
3348
3349 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3350 if (unlikely(vma == NULL))
3351 return ERR_PTR(-ENOMEM);
3352
3353 INIT_LIST_HEAD(&vma->anon_vma_chain);
3354 vma->vm_mm = mm;
3355 vma->vm_start = addr;
3356 vma->vm_end = addr + len;
3357
3358 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3359 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3360
3361 vma->vm_ops = ops;
3362 vma->vm_private_data = priv;
3363
3364 ret = insert_vm_struct(mm, vma);
3365 if (ret)
3366 goto out;
3367
3368 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3369
3370 perf_event_mmap(vma);
3371
3372 return vma;
3373
3374 out:
3375 kmem_cache_free(vm_area_cachep, vma);
3376 return ERR_PTR(ret);
3377 }
3378
3379 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3380 const struct vm_special_mapping *sm)
3381 {
3382 return vma->vm_private_data == sm &&
3383 (vma->vm_ops == &special_mapping_vmops ||
3384 vma->vm_ops == &legacy_special_mapping_vmops);
3385 }
3386
3387 /*
3388 * Called with mm->mmap_sem held for writing.
3389 * Insert a new vma covering the given region, with the given flags.
3390 * Its pages are supplied by the given array of struct page *.
3391 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3392 * The region past the last page supplied will always produce SIGBUS.
3393 * The array pointer and the pages it points to are assumed to stay alive
3394 * for as long as this mapping might exist.
3395 */
3396 struct vm_area_struct *_install_special_mapping(
3397 struct mm_struct *mm,
3398 unsigned long addr, unsigned long len,
3399 unsigned long vm_flags, const struct vm_special_mapping *spec)
3400 {
3401 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3402 &special_mapping_vmops);
3403 }
3404
3405 int install_special_mapping(struct mm_struct *mm,
3406 unsigned long addr, unsigned long len,
3407 unsigned long vm_flags, struct page **pages)
3408 {
3409 struct vm_area_struct *vma = __install_special_mapping(
3410 mm, addr, len, vm_flags, (void *)pages,
3411 &legacy_special_mapping_vmops);
3412
3413 return PTR_ERR_OR_ZERO(vma);
3414 }
3415
3416 static DEFINE_MUTEX(mm_all_locks_mutex);
3417
3418 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3419 {
3420 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3421 /*
3422 * The LSB of head.next can't change from under us
3423 * because we hold the mm_all_locks_mutex.
3424 */
3425 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3426 /*
3427 * We can safely modify head.next after taking the
3428 * anon_vma->root->rwsem. If some other vma in this mm shares
3429 * the same anon_vma we won't take it again.
3430 *
3431 * No need of atomic instructions here, head.next
3432 * can't change from under us thanks to the
3433 * anon_vma->root->rwsem.
3434 */
3435 if (__test_and_set_bit(0, (unsigned long *)
3436 &anon_vma->root->rb_root.rb_root.rb_node))
3437 BUG();
3438 }
3439 }
3440
3441 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3442 {
3443 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3444 /*
3445 * AS_MM_ALL_LOCKS can't change from under us because
3446 * we hold the mm_all_locks_mutex.
3447 *
3448 * Operations on ->flags have to be atomic because
3449 * even if AS_MM_ALL_LOCKS is stable thanks to the
3450 * mm_all_locks_mutex, there may be other cpus
3451 * changing other bitflags in parallel to us.
3452 */
3453 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3454 BUG();
3455 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3456 }
3457 }
3458
3459 /*
3460 * This operation locks against the VM for all pte/vma/mm related
3461 * operations that could ever happen on a certain mm. This includes
3462 * vmtruncate, try_to_unmap, and all page faults.
3463 *
3464 * The caller must take the mmap_sem in write mode before calling
3465 * mm_take_all_locks(). The caller isn't allowed to release the
3466 * mmap_sem until mm_drop_all_locks() returns.
3467 *
3468 * mmap_sem in write mode is required in order to block all operations
3469 * that could modify pagetables and free pages without need of
3470 * altering the vma layout. It's also needed in write mode to avoid new
3471 * anon_vmas to be associated with existing vmas.
3472 *
3473 * A single task can't take more than one mm_take_all_locks() in a row
3474 * or it would deadlock.
3475 *
3476 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3477 * mapping->flags avoid to take the same lock twice, if more than one
3478 * vma in this mm is backed by the same anon_vma or address_space.
3479 *
3480 * We take locks in following order, accordingly to comment at beginning
3481 * of mm/rmap.c:
3482 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3483 * hugetlb mapping);
3484 * - all i_mmap_rwsem locks;
3485 * - all anon_vma->rwseml
3486 *
3487 * We can take all locks within these types randomly because the VM code
3488 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3489 * mm_all_locks_mutex.
3490 *
3491 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3492 * that may have to take thousand of locks.
3493 *
3494 * mm_take_all_locks() can fail if it's interrupted by signals.
3495 */
3496 int mm_take_all_locks(struct mm_struct *mm)
3497 {
3498 struct vm_area_struct *vma;
3499 struct anon_vma_chain *avc;
3500
3501 BUG_ON(down_read_trylock(&mm->mmap_sem));
3502
3503 mutex_lock(&mm_all_locks_mutex);
3504
3505 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3506 if (signal_pending(current))
3507 goto out_unlock;
3508 if (vma->vm_file && vma->vm_file->f_mapping &&
3509 is_vm_hugetlb_page(vma))
3510 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3511 }
3512
3513 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3514 if (signal_pending(current))
3515 goto out_unlock;
3516 if (vma->vm_file && vma->vm_file->f_mapping &&
3517 !is_vm_hugetlb_page(vma))
3518 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3519 }
3520
3521 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3522 if (signal_pending(current))
3523 goto out_unlock;
3524 if (vma->anon_vma)
3525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3526 vm_lock_anon_vma(mm, avc->anon_vma);
3527 }
3528
3529 return 0;
3530
3531 out_unlock:
3532 mm_drop_all_locks(mm);
3533 return -EINTR;
3534 }
3535
3536 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3537 {
3538 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3539 /*
3540 * The LSB of head.next can't change to 0 from under
3541 * us because we hold the mm_all_locks_mutex.
3542 *
3543 * We must however clear the bitflag before unlocking
3544 * the vma so the users using the anon_vma->rb_root will
3545 * never see our bitflag.
3546 *
3547 * No need of atomic instructions here, head.next
3548 * can't change from under us until we release the
3549 * anon_vma->root->rwsem.
3550 */
3551 if (!__test_and_clear_bit(0, (unsigned long *)
3552 &anon_vma->root->rb_root.rb_root.rb_node))
3553 BUG();
3554 anon_vma_unlock_write(anon_vma);
3555 }
3556 }
3557
3558 static void vm_unlock_mapping(struct address_space *mapping)
3559 {
3560 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3561 /*
3562 * AS_MM_ALL_LOCKS can't change to 0 from under us
3563 * because we hold the mm_all_locks_mutex.
3564 */
3565 i_mmap_unlock_write(mapping);
3566 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3567 &mapping->flags))
3568 BUG();
3569 }
3570 }
3571
3572 /*
3573 * The mmap_sem cannot be released by the caller until
3574 * mm_drop_all_locks() returns.
3575 */
3576 void mm_drop_all_locks(struct mm_struct *mm)
3577 {
3578 struct vm_area_struct *vma;
3579 struct anon_vma_chain *avc;
3580
3581 BUG_ON(down_read_trylock(&mm->mmap_sem));
3582 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3583
3584 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3585 if (vma->anon_vma)
3586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587 vm_unlock_anon_vma(avc->anon_vma);
3588 if (vma->vm_file && vma->vm_file->f_mapping)
3589 vm_unlock_mapping(vma->vm_file->f_mapping);
3590 }
3591
3592 mutex_unlock(&mm_all_locks_mutex);
3593 }
3594
3595 /*
3596 * initialise the percpu counter for VM
3597 */
3598 void __init mmap_init(void)
3599 {
3600 int ret;
3601
3602 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3603 VM_BUG_ON(ret);
3604 }
3605
3606 /*
3607 * Initialise sysctl_user_reserve_kbytes.
3608 *
3609 * This is intended to prevent a user from starting a single memory hogging
3610 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3611 * mode.
3612 *
3613 * The default value is min(3% of free memory, 128MB)
3614 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3615 */
3616 static int init_user_reserve(void)
3617 {
3618 unsigned long free_kbytes;
3619
3620 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3621
3622 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3623 return 0;
3624 }
3625 subsys_initcall(init_user_reserve);
3626
3627 /*
3628 * Initialise sysctl_admin_reserve_kbytes.
3629 *
3630 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3631 * to log in and kill a memory hogging process.
3632 *
3633 * Systems with more than 256MB will reserve 8MB, enough to recover
3634 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3635 * only reserve 3% of free pages by default.
3636 */
3637 static int init_admin_reserve(void)
3638 {
3639 unsigned long free_kbytes;
3640
3641 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3642
3643 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3644 return 0;
3645 }
3646 subsys_initcall(init_admin_reserve);
3647
3648 /*
3649 * Reinititalise user and admin reserves if memory is added or removed.
3650 *
3651 * The default user reserve max is 128MB, and the default max for the
3652 * admin reserve is 8MB. These are usually, but not always, enough to
3653 * enable recovery from a memory hogging process using login/sshd, a shell,
3654 * and tools like top. It may make sense to increase or even disable the
3655 * reserve depending on the existence of swap or variations in the recovery
3656 * tools. So, the admin may have changed them.
3657 *
3658 * If memory is added and the reserves have been eliminated or increased above
3659 * the default max, then we'll trust the admin.
3660 *
3661 * If memory is removed and there isn't enough free memory, then we
3662 * need to reset the reserves.
3663 *
3664 * Otherwise keep the reserve set by the admin.
3665 */
3666 static int reserve_mem_notifier(struct notifier_block *nb,
3667 unsigned long action, void *data)
3668 {
3669 unsigned long tmp, free_kbytes;
3670
3671 switch (action) {
3672 case MEM_ONLINE:
3673 /* Default max is 128MB. Leave alone if modified by operator. */
3674 tmp = sysctl_user_reserve_kbytes;
3675 if (0 < tmp && tmp < (1UL << 17))
3676 init_user_reserve();
3677
3678 /* Default max is 8MB. Leave alone if modified by operator. */
3679 tmp = sysctl_admin_reserve_kbytes;
3680 if (0 < tmp && tmp < (1UL << 13))
3681 init_admin_reserve();
3682
3683 break;
3684 case MEM_OFFLINE:
3685 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3686
3687 if (sysctl_user_reserve_kbytes > free_kbytes) {
3688 init_user_reserve();
3689 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3690 sysctl_user_reserve_kbytes);
3691 }
3692
3693 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3694 init_admin_reserve();
3695 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3696 sysctl_admin_reserve_kbytes);
3697 }
3698 break;
3699 default:
3700 break;
3701 }
3702 return NOTIFY_OK;
3703 }
3704
3705 static struct notifier_block reserve_mem_nb = {
3706 .notifier_call = reserve_mem_notifier,
3707 };
3708
3709 static int __meminit init_reserve_notifier(void)
3710 {
3711 if (register_hotmemory_notifier(&reserve_mem_nb))
3712 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3713
3714 return 0;
3715 }
3716 subsys_initcall(init_reserve_notifier);