]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mmap.c
bdi: Fix use after free bug in debugfs_remove()
[mirror_ubuntu-bionic-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 return prot;
107 }
108 #endif
109
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139
140 /*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145 {
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154 }
155
156 /*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170 }
171
172 /*
173 * Close a vm structure and free it, returning the next.
174 */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 struct vm_area_struct *next = vma->vm_next;
178
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 vma_fput(vma);
184 mpol_put(vma_policy(vma));
185 kmem_cache_free(vm_area_cachep, vma);
186 return next;
187 }
188
189 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
190
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 unsigned long retval;
194 unsigned long newbrk, oldbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 LIST_HEAD(uf);
200
201 if (down_write_killable(&mm->mmap_sem))
202 return -EINTR;
203
204 #ifdef CONFIG_COMPAT_BRK
205 /*
206 * CONFIG_COMPAT_BRK can still be overridden by setting
207 * randomize_va_space to 2, which will still cause mm->start_brk
208 * to be arbitrarily shifted
209 */
210 if (current->brk_randomized)
211 min_brk = mm->start_brk;
212 else
213 min_brk = mm->end_data;
214 #else
215 min_brk = mm->start_brk;
216 #endif
217 if (brk < min_brk)
218 goto out;
219
220 /*
221 * Check against rlimit here. If this check is done later after the test
222 * of oldbrk with newbrk then it can escape the test and let the data
223 * segment grow beyond its set limit the in case where the limit is
224 * not page aligned -Ram Gupta
225 */
226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 mm->end_data, mm->start_data))
228 goto out;
229
230 newbrk = PAGE_ALIGN(brk);
231 oldbrk = PAGE_ALIGN(mm->brk);
232 if (oldbrk == newbrk)
233 goto set_brk;
234
235 /* Always allow shrinking brk. */
236 if (brk <= mm->brk) {
237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
238 goto set_brk;
239 goto out;
240 }
241
242 /* Check against existing mmap mappings. */
243 next = find_vma(mm, oldbrk);
244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
245 goto out;
246
247 /* Ok, looks good - let it rip. */
248 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
249 goto out;
250
251 set_brk:
252 mm->brk = brk;
253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 up_write(&mm->mmap_sem);
255 userfaultfd_unmap_complete(mm, &uf);
256 if (populate)
257 mm_populate(oldbrk, newbrk - oldbrk);
258 return brk;
259
260 out:
261 retval = mm->brk;
262 up_write(&mm->mmap_sem);
263 return retval;
264 }
265
266 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
267 {
268 unsigned long max, prev_end, subtree_gap;
269
270 /*
271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 * allow two stack_guard_gaps between them here, and when choosing
273 * an unmapped area; whereas when expanding we only require one.
274 * That's a little inconsistent, but keeps the code here simpler.
275 */
276 max = vm_start_gap(vma);
277 if (vma->vm_prev) {
278 prev_end = vm_end_gap(vma->vm_prev);
279 if (max > prev_end)
280 max -= prev_end;
281 else
282 max = 0;
283 }
284 if (vma->vm_rb.rb_left) {
285 subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 if (subtree_gap > max)
288 max = subtree_gap;
289 }
290 if (vma->vm_rb.rb_right) {
291 subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 if (subtree_gap > max)
294 max = subtree_gap;
295 }
296 return max;
297 }
298
299 #ifdef CONFIG_DEBUG_VM_RB
300 static int browse_rb(struct mm_struct *mm)
301 {
302 struct rb_root *root = &mm->mm_rb;
303 int i = 0, j, bug = 0;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev) {
311 pr_emerg("vm_start %lx < prev %lx\n",
312 vma->vm_start, prev);
313 bug = 1;
314 }
315 if (vma->vm_start < pend) {
316 pr_emerg("vm_start %lx < pend %lx\n",
317 vma->vm_start, pend);
318 bug = 1;
319 }
320 if (vma->vm_start > vma->vm_end) {
321 pr_emerg("vm_start %lx > vm_end %lx\n",
322 vma->vm_start, vma->vm_end);
323 bug = 1;
324 }
325 spin_lock(&mm->page_table_lock);
326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 pr_emerg("free gap %lx, correct %lx\n",
328 vma->rb_subtree_gap,
329 vma_compute_subtree_gap(vma));
330 bug = 1;
331 }
332 spin_unlock(&mm->page_table_lock);
333 i++;
334 pn = nd;
335 prev = vma->vm_start;
336 pend = vma->vm_end;
337 }
338 j = 0;
339 for (nd = pn; nd; nd = rb_prev(nd))
340 j++;
341 if (i != j) {
342 pr_emerg("backwards %d, forwards %d\n", j, i);
343 bug = 1;
344 }
345 return bug ? -1 : i;
346 }
347
348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
349 {
350 struct rb_node *nd;
351
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 VM_BUG_ON_VMA(vma != ignore &&
356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
357 vma);
358 }
359 }
360
361 static void validate_mm(struct mm_struct *mm)
362 {
363 int bug = 0;
364 int i = 0;
365 unsigned long highest_address = 0;
366 struct vm_area_struct *vma = mm->mmap;
367
368 while (vma) {
369 struct anon_vma *anon_vma = vma->anon_vma;
370 struct anon_vma_chain *avc;
371
372 if (anon_vma) {
373 anon_vma_lock_read(anon_vma);
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_verify(avc);
376 anon_vma_unlock_read(anon_vma);
377 }
378
379 highest_address = vm_end_gap(vma);
380 vma = vma->vm_next;
381 i++;
382 }
383 if (i != mm->map_count) {
384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
385 bug = 1;
386 }
387 if (highest_address != mm->highest_vm_end) {
388 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 mm->highest_vm_end, highest_address);
390 bug = 1;
391 }
392 i = browse_rb(mm);
393 if (i != mm->map_count) {
394 if (i != -1)
395 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
396 bug = 1;
397 }
398 VM_BUG_ON_MM(bug, mm);
399 }
400 #else
401 #define validate_mm_rb(root, ignore) do { } while (0)
402 #define validate_mm(mm) do { } while (0)
403 #endif
404
405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
407
408 /*
409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
411 * in the rbtree.
412 */
413 static void vma_gap_update(struct vm_area_struct *vma)
414 {
415 /*
416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 * function that does exacltly what we want.
418 */
419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
420 }
421
422 static inline void vma_rb_insert(struct vm_area_struct *vma,
423 struct rb_root *root)
424 {
425 /* All rb_subtree_gap values must be consistent prior to insertion */
426 validate_mm_rb(root, NULL);
427
428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430
431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
432 {
433 /*
434 * Note rb_erase_augmented is a fairly large inline function,
435 * so make sure we instantiate it only once with our desired
436 * augmented rbtree callbacks.
437 */
438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
439 }
440
441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 struct rb_root *root,
443 struct vm_area_struct *ignore)
444 {
445 /*
446 * All rb_subtree_gap values must be consistent prior to erase,
447 * with the possible exception of the "next" vma being erased if
448 * next->vm_start was reduced.
449 */
450 validate_mm_rb(root, ignore);
451
452 __vma_rb_erase(vma, root);
453 }
454
455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 struct rb_root *root)
457 {
458 /*
459 * All rb_subtree_gap values must be consistent prior to erase,
460 * with the possible exception of the vma being erased.
461 */
462 validate_mm_rb(root, vma);
463
464 __vma_rb_erase(vma, root);
465 }
466
467 /*
468 * vma has some anon_vma assigned, and is already inserted on that
469 * anon_vma's interval trees.
470 *
471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472 * vma must be removed from the anon_vma's interval trees using
473 * anon_vma_interval_tree_pre_update_vma().
474 *
475 * After the update, the vma will be reinserted using
476 * anon_vma_interval_tree_post_update_vma().
477 *
478 * The entire update must be protected by exclusive mmap_sem and by
479 * the root anon_vma's mutex.
480 */
481 static inline void
482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
483 {
484 struct anon_vma_chain *avc;
485
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
488 }
489
490 static inline void
491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
492 {
493 struct anon_vma_chain *avc;
494
495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
497 }
498
499 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 unsigned long end, struct vm_area_struct **pprev,
501 struct rb_node ***rb_link, struct rb_node **rb_parent)
502 {
503 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
504
505 __rb_link = &mm->mm_rb.rb_node;
506 rb_prev = __rb_parent = NULL;
507
508 while (*__rb_link) {
509 struct vm_area_struct *vma_tmp;
510
511 __rb_parent = *__rb_link;
512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
513
514 if (vma_tmp->vm_end > addr) {
515 /* Fail if an existing vma overlaps the area */
516 if (vma_tmp->vm_start < end)
517 return -ENOMEM;
518 __rb_link = &__rb_parent->rb_left;
519 } else {
520 rb_prev = __rb_parent;
521 __rb_link = &__rb_parent->rb_right;
522 }
523 }
524
525 *pprev = NULL;
526 if (rb_prev)
527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 *rb_link = __rb_link;
529 *rb_parent = __rb_parent;
530 return 0;
531 }
532
533 static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 unsigned long addr, unsigned long end)
535 {
536 unsigned long nr_pages = 0;
537 struct vm_area_struct *vma;
538
539 /* Find first overlaping mapping */
540 vma = find_vma_intersection(mm, addr, end);
541 if (!vma)
542 return 0;
543
544 nr_pages = (min(end, vma->vm_end) -
545 max(addr, vma->vm_start)) >> PAGE_SHIFT;
546
547 /* Iterate over the rest of the overlaps */
548 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 unsigned long overlap_len;
550
551 if (vma->vm_start > end)
552 break;
553
554 overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 nr_pages += overlap_len >> PAGE_SHIFT;
556 }
557
558 return nr_pages;
559 }
560
561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 struct rb_node **rb_link, struct rb_node *rb_parent)
563 {
564 /* Update tracking information for the gap following the new vma. */
565 if (vma->vm_next)
566 vma_gap_update(vma->vm_next);
567 else
568 mm->highest_vm_end = vm_end_gap(vma);
569
570 /*
571 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 * correct insertion point for that vma. As a result, we could not
573 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 * So, we first insert the vma with a zero rb_subtree_gap value
575 * (to be consistent with what we did on the way down), and then
576 * immediately update the gap to the correct value. Finally we
577 * rebalance the rbtree after all augmented values have been set.
578 */
579 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 vma->rb_subtree_gap = 0;
581 vma_gap_update(vma);
582 vma_rb_insert(vma, &mm->mm_rb);
583 }
584
585 static void __vma_link_file(struct vm_area_struct *vma)
586 {
587 struct file *file;
588
589 file = vma->vm_file;
590 if (file) {
591 struct address_space *mapping = file->f_mapping;
592
593 if (vma->vm_flags & VM_DENYWRITE)
594 atomic_dec(&file_inode(file)->i_writecount);
595 if (vma->vm_flags & VM_SHARED)
596 atomic_inc(&mapping->i_mmap_writable);
597
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 }
602 }
603
604 static void
605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
608 {
609 __vma_link_list(mm, vma, prev, rb_parent);
610 __vma_link_rb(mm, vma, rb_link, rb_parent);
611 }
612
613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 struct vm_area_struct *prev, struct rb_node **rb_link,
615 struct rb_node *rb_parent)
616 {
617 struct address_space *mapping = NULL;
618
619 if (vma->vm_file) {
620 mapping = vma->vm_file->f_mapping;
621 i_mmap_lock_write(mapping);
622 }
623
624 __vma_link(mm, vma, prev, rb_link, rb_parent);
625 __vma_link_file(vma);
626
627 if (mapping)
628 i_mmap_unlock_write(mapping);
629
630 mm->map_count++;
631 validate_mm(mm);
632 }
633
634 /*
635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636 * mm's list and rbtree. It has already been inserted into the interval tree.
637 */
638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
639 {
640 struct vm_area_struct *prev;
641 struct rb_node **rb_link, *rb_parent;
642
643 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 &prev, &rb_link, &rb_parent))
645 BUG();
646 __vma_link(mm, vma, prev, rb_link, rb_parent);
647 mm->map_count++;
648 }
649
650 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev,
653 bool has_prev,
654 struct vm_area_struct *ignore)
655 {
656 struct vm_area_struct *next;
657
658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
659 next = vma->vm_next;
660 if (has_prev)
661 prev->vm_next = next;
662 else {
663 prev = vma->vm_prev;
664 if (prev)
665 prev->vm_next = next;
666 else
667 mm->mmap = next;
668 }
669 if (next)
670 next->vm_prev = prev;
671
672 /* Kill the cache */
673 vmacache_invalidate(mm);
674 }
675
676 static inline void __vma_unlink_prev(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev)
679 {
680 __vma_unlink_common(mm, vma, prev, true, vma);
681 }
682
683 /*
684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685 * is already present in an i_mmap tree without adjusting the tree.
686 * The following helper function should be used when such adjustments
687 * are necessary. The "insert" vma (if any) is to be inserted
688 * before we drop the necessary locks.
689 */
690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 struct vm_area_struct *expand)
693 {
694 struct mm_struct *mm = vma->vm_mm;
695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 struct address_space *mapping = NULL;
697 struct rb_root_cached *root = NULL;
698 struct anon_vma *anon_vma = NULL;
699 struct file *file = vma->vm_file;
700 bool start_changed = false, end_changed = false;
701 long adjust_next = 0;
702 int remove_next = 0;
703
704 if (next && !insert) {
705 struct vm_area_struct *exporter = NULL, *importer = NULL;
706
707 if (end >= next->vm_end) {
708 /*
709 * vma expands, overlapping all the next, and
710 * perhaps the one after too (mprotect case 6).
711 * The only other cases that gets here are
712 * case 1, case 7 and case 8.
713 */
714 if (next == expand) {
715 /*
716 * The only case where we don't expand "vma"
717 * and we expand "next" instead is case 8.
718 */
719 VM_WARN_ON(end != next->vm_end);
720 /*
721 * remove_next == 3 means we're
722 * removing "vma" and that to do so we
723 * swapped "vma" and "next".
724 */
725 remove_next = 3;
726 VM_WARN_ON(file != next->vm_file);
727 swap(vma, next);
728 } else {
729 VM_WARN_ON(expand != vma);
730 /*
731 * case 1, 6, 7, remove_next == 2 is case 6,
732 * remove_next == 1 is case 1 or 7.
733 */
734 remove_next = 1 + (end > next->vm_end);
735 VM_WARN_ON(remove_next == 2 &&
736 end != next->vm_next->vm_end);
737 VM_WARN_ON(remove_next == 1 &&
738 end != next->vm_end);
739 /* trim end to next, for case 6 first pass */
740 end = next->vm_end;
741 }
742
743 exporter = next;
744 importer = vma;
745
746 /*
747 * If next doesn't have anon_vma, import from vma after
748 * next, if the vma overlaps with it.
749 */
750 if (remove_next == 2 && !next->anon_vma)
751 exporter = next->vm_next;
752
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 VM_WARN_ON(expand != importer);
762 } else if (end < vma->vm_end) {
763 /*
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
767 */
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
771 VM_WARN_ON(expand != importer);
772 }
773
774 /*
775 * Easily overlooked: when mprotect shifts the boundary,
776 * make sure the expanding vma has anon_vma set if the
777 * shrinking vma had, to cover any anon pages imported.
778 */
779 if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 int error;
781
782 importer->anon_vma = exporter->anon_vma;
783 error = anon_vma_clone(importer, exporter);
784 if (error)
785 return error;
786 }
787 }
788 again:
789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
790
791 if (file) {
792 mapping = file->f_mapping;
793 root = &mapping->i_mmap;
794 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795
796 if (adjust_next)
797 uprobe_munmap(next, next->vm_start, next->vm_end);
798
799 i_mmap_lock_write(mapping);
800 if (insert) {
801 /*
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
806 */
807 __vma_link_file(insert);
808 }
809 }
810
811 anon_vma = vma->anon_vma;
812 if (!anon_vma && adjust_next)
813 anon_vma = next->anon_vma;
814 if (anon_vma) {
815 VM_WARN_ON(adjust_next && next->anon_vma &&
816 anon_vma != next->anon_vma);
817 anon_vma_lock_write(anon_vma);
818 anon_vma_interval_tree_pre_update_vma(vma);
819 if (adjust_next)
820 anon_vma_interval_tree_pre_update_vma(next);
821 }
822
823 if (root) {
824 flush_dcache_mmap_lock(mapping);
825 vma_interval_tree_remove(vma, root);
826 if (adjust_next)
827 vma_interval_tree_remove(next, root);
828 }
829
830 if (start != vma->vm_start) {
831 vma->vm_start = start;
832 start_changed = true;
833 }
834 if (end != vma->vm_end) {
835 vma->vm_end = end;
836 end_changed = true;
837 }
838 vma->vm_pgoff = pgoff;
839 if (adjust_next) {
840 next->vm_start += adjust_next << PAGE_SHIFT;
841 next->vm_pgoff += adjust_next;
842 }
843
844 if (root) {
845 if (adjust_next)
846 vma_interval_tree_insert(next, root);
847 vma_interval_tree_insert(vma, root);
848 flush_dcache_mmap_unlock(mapping);
849 }
850
851 if (remove_next) {
852 /*
853 * vma_merge has merged next into vma, and needs
854 * us to remove next before dropping the locks.
855 */
856 if (remove_next != 3)
857 __vma_unlink_prev(mm, next, vma);
858 else
859 /*
860 * vma is not before next if they've been
861 * swapped.
862 *
863 * pre-swap() next->vm_start was reduced so
864 * tell validate_mm_rb to ignore pre-swap()
865 * "next" (which is stored in post-swap()
866 * "vma").
867 */
868 __vma_unlink_common(mm, next, NULL, false, vma);
869 if (file)
870 __remove_shared_vm_struct(next, file, mapping);
871 } else if (insert) {
872 /*
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
876 */
877 __insert_vm_struct(mm, insert);
878 } else {
879 if (start_changed)
880 vma_gap_update(vma);
881 if (end_changed) {
882 if (!next)
883 mm->highest_vm_end = vm_end_gap(vma);
884 else if (!adjust_next)
885 vma_gap_update(next);
886 }
887 }
888
889 if (anon_vma) {
890 anon_vma_interval_tree_post_update_vma(vma);
891 if (adjust_next)
892 anon_vma_interval_tree_post_update_vma(next);
893 anon_vma_unlock_write(anon_vma);
894 }
895 if (mapping)
896 i_mmap_unlock_write(mapping);
897
898 if (root) {
899 uprobe_mmap(vma);
900
901 if (adjust_next)
902 uprobe_mmap(next);
903 }
904
905 if (remove_next) {
906 if (file) {
907 uprobe_munmap(next, next->vm_start, next->vm_end);
908 vma_fput(vma);
909 }
910 if (next->anon_vma)
911 anon_vma_merge(vma, next);
912 mm->map_count--;
913 mpol_put(vma_policy(next));
914 kmem_cache_free(vm_area_cachep, next);
915 /*
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
919 */
920 if (remove_next != 3) {
921 /*
922 * If "next" was removed and vma->vm_end was
923 * expanded (up) over it, in turn
924 * "next->vm_prev->vm_end" changed and the
925 * "vma->vm_next" gap must be updated.
926 */
927 next = vma->vm_next;
928 } else {
929 /*
930 * For the scope of the comment "next" and
931 * "vma" considered pre-swap(): if "vma" was
932 * removed, next->vm_start was expanded (down)
933 * over it and the "next" gap must be updated.
934 * Because of the swap() the post-swap() "vma"
935 * actually points to pre-swap() "next"
936 * (post-swap() "next" as opposed is now a
937 * dangling pointer).
938 */
939 next = vma;
940 }
941 if (remove_next == 2) {
942 remove_next = 1;
943 end = next->vm_end;
944 goto again;
945 }
946 else if (next)
947 vma_gap_update(next);
948 else {
949 /*
950 * If remove_next == 2 we obviously can't
951 * reach this path.
952 *
953 * If remove_next == 3 we can't reach this
954 * path because pre-swap() next is always not
955 * NULL. pre-swap() "next" is not being
956 * removed and its next->vm_end is not altered
957 * (and furthermore "end" already matches
958 * next->vm_end in remove_next == 3).
959 *
960 * We reach this only in the remove_next == 1
961 * case if the "next" vma that was removed was
962 * the highest vma of the mm. However in such
963 * case next->vm_end == "end" and the extended
964 * "vma" has vma->vm_end == next->vm_end so
965 * mm->highest_vm_end doesn't need any update
966 * in remove_next == 1 case.
967 */
968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
969 }
970 }
971 if (insert && file)
972 uprobe_mmap(insert);
973
974 validate_mm(mm);
975
976 return 0;
977 }
978
979 /*
980 * If the vma has a ->close operation then the driver probably needs to release
981 * per-vma resources, so we don't attempt to merge those.
982 */
983 static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 struct file *file, unsigned long vm_flags,
985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
986 {
987 /*
988 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 * match the flags but dirty bit -- the caller should mark
990 * merged VMA as dirty. If dirty bit won't be excluded from
991 * comparison, we increase pressue on the memory system forcing
992 * the kernel to generate new VMAs when old one could be
993 * extended instead.
994 */
995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
996 return 0;
997 if (vma->vm_file != file)
998 return 0;
999 if (vma->vm_ops && vma->vm_ops->close)
1000 return 0;
1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002 return 0;
1003 return 1;
1004 }
1005
1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 struct anon_vma *anon_vma2,
1008 struct vm_area_struct *vma)
1009 {
1010 /*
1011 * The list_is_singular() test is to avoid merging VMA cloned from
1012 * parents. This can improve scalability caused by anon_vma lock.
1013 */
1014 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 list_is_singular(&vma->anon_vma_chain)))
1016 return 1;
1017 return anon_vma1 == anon_vma2;
1018 }
1019
1020 /*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031 static int
1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1034 pgoff_t vm_pgoff,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 if (vma->vm_pgoff == vm_pgoff)
1040 return 1;
1041 }
1042 return 0;
1043 }
1044
1045 /*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052 static int
1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1055 pgoff_t vm_pgoff,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060 pgoff_t vm_pglen;
1061 vm_pglen = vma_pages(vma);
1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 * AAAA AAAA AAAA AAAA
1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1086 * cannot merge might become might become might become
1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1089 * mremap move: PPPPXXXXXXXX 8
1090 * AAAA
1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1092 * might become case 1 below case 2 below case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 struct vm_area_struct *prev, unsigned long addr,
1110 unsigned long end, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t pgoff, struct mempolicy *policy,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114 {
1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 struct vm_area_struct *area, *next;
1117 int err;
1118
1119 /*
1120 * We later require that vma->vm_flags == vm_flags,
1121 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122 */
1123 if (vm_flags & VM_SPECIAL)
1124 return NULL;
1125
1126 if (prev)
1127 next = prev->vm_next;
1128 else
1129 next = mm->mmap;
1130 area = next;
1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1132 next = next->vm_next;
1133
1134 /* verify some invariant that must be enforced by the caller */
1135 VM_WARN_ON(prev && addr <= prev->vm_start);
1136 VM_WARN_ON(area && end > area->vm_end);
1137 VM_WARN_ON(addr >= end);
1138
1139 /*
1140 * Can it merge with the predecessor?
1141 */
1142 if (prev && prev->vm_end == addr &&
1143 mpol_equal(vma_policy(prev), policy) &&
1144 can_vma_merge_after(prev, vm_flags,
1145 anon_vma, file, pgoff,
1146 vm_userfaultfd_ctx)) {
1147 /*
1148 * OK, it can. Can we now merge in the successor as well?
1149 */
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1153 anon_vma, file,
1154 pgoff+pglen,
1155 vm_userfaultfd_ctx) &&
1156 is_mergeable_anon_vma(prev->anon_vma,
1157 next->anon_vma, NULL)) {
1158 /* cases 1, 6 */
1159 err = __vma_adjust(prev, prev->vm_start,
1160 next->vm_end, prev->vm_pgoff, NULL,
1161 prev);
1162 } else /* cases 2, 5, 7 */
1163 err = __vma_adjust(prev, prev->vm_start,
1164 end, prev->vm_pgoff, NULL, prev);
1165 if (err)
1166 return NULL;
1167 khugepaged_enter_vma_merge(prev, vm_flags);
1168 return prev;
1169 }
1170
1171 /*
1172 * Can this new request be merged in front of next?
1173 */
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file, pgoff+pglen,
1178 vm_userfaultfd_ctx)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1185 /*
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1189 */
1190 area = next;
1191 }
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(area, vm_flags);
1195 return area;
1196 }
1197
1198 return NULL;
1199 }
1200
1201 /*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215 {
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221 }
1222
1223 /*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246 {
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 return anon_vma;
1252 }
1253 return NULL;
1254 }
1255
1256 /*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265 {
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1268
1269 near = vma->vm_next;
1270 if (!near)
1271 goto try_prev;
1272
1273 anon_vma = reusable_anon_vma(near, vma, near);
1274 if (anon_vma)
1275 return anon_vma;
1276 try_prev:
1277 near = vma->vm_prev;
1278 if (!near)
1279 goto none;
1280
1281 anon_vma = reusable_anon_vma(near, near, vma);
1282 if (anon_vma)
1283 return anon_vma;
1284 none:
1285 /*
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1292 */
1293 return NULL;
1294 }
1295
1296 /*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1301 {
1302 hint &= PAGE_MASK;
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1306 return hint;
1307 }
1308
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1311 unsigned long len)
1312 {
1313 unsigned long locked, lock_limit;
1314
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 return -EAGAIN;
1323 }
1324 return 0;
1325 }
1326
1327 /*
1328 * The caller must hold down_write(&current->mm->mmap_sem).
1329 */
1330 unsigned long do_mmap(struct file *file, unsigned long addr,
1331 unsigned long len, unsigned long prot,
1332 unsigned long flags, vm_flags_t vm_flags,
1333 unsigned long pgoff, unsigned long *populate,
1334 struct list_head *uf)
1335 {
1336 struct mm_struct *mm = current->mm;
1337 int pkey = 0;
1338
1339 *populate = 0;
1340
1341 if (!len)
1342 return -EINVAL;
1343
1344 /*
1345 * Does the application expect PROT_READ to imply PROT_EXEC?
1346 *
1347 * (the exception is when the underlying filesystem is noexec
1348 * mounted, in which case we dont add PROT_EXEC.)
1349 */
1350 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1351 if (!(file && path_noexec(&file->f_path)))
1352 prot |= PROT_EXEC;
1353
1354 if (!(flags & MAP_FIXED))
1355 addr = round_hint_to_min(addr);
1356
1357 /* Careful about overflows.. */
1358 len = PAGE_ALIGN(len);
1359 if (!len)
1360 return -ENOMEM;
1361
1362 /* offset overflow? */
1363 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1364 return -EOVERFLOW;
1365
1366 /* Too many mappings? */
1367 if (mm->map_count > sysctl_max_map_count)
1368 return -ENOMEM;
1369
1370 /* Obtain the address to map to. we verify (or select) it and ensure
1371 * that it represents a valid section of the address space.
1372 */
1373 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1374 if (offset_in_page(addr))
1375 return addr;
1376
1377 if (prot == PROT_EXEC) {
1378 pkey = execute_only_pkey(mm);
1379 if (pkey < 0)
1380 pkey = 0;
1381 }
1382
1383 /* Do simple checking here so the lower-level routines won't have
1384 * to. we assume access permissions have been handled by the open
1385 * of the memory object, so we don't do any here.
1386 */
1387 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1388 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1389
1390 if (flags & MAP_LOCKED)
1391 if (!can_do_mlock())
1392 return -EPERM;
1393
1394 if (mlock_future_check(mm, vm_flags, len))
1395 return -EAGAIN;
1396
1397 if (file) {
1398 struct inode *inode = file_inode(file);
1399 unsigned long flags_mask;
1400
1401 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1402
1403 switch (flags & MAP_TYPE) {
1404 case MAP_SHARED:
1405 /*
1406 * Force use of MAP_SHARED_VALIDATE with non-legacy
1407 * flags. E.g. MAP_SYNC is dangerous to use with
1408 * MAP_SHARED as you don't know which consistency model
1409 * you will get. We silently ignore unsupported flags
1410 * with MAP_SHARED to preserve backward compatibility.
1411 */
1412 flags &= LEGACY_MAP_MASK;
1413 /* fall through */
1414 case MAP_SHARED_VALIDATE:
1415 if (flags & ~flags_mask)
1416 return -EOPNOTSUPP;
1417 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1418 return -EACCES;
1419
1420 /*
1421 * Make sure we don't allow writing to an append-only
1422 * file..
1423 */
1424 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1425 return -EACCES;
1426
1427 /*
1428 * Make sure there are no mandatory locks on the file.
1429 */
1430 if (locks_verify_locked(file))
1431 return -EAGAIN;
1432
1433 vm_flags |= VM_SHARED | VM_MAYSHARE;
1434 if (!(file->f_mode & FMODE_WRITE))
1435 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1436
1437 /* fall through */
1438 case MAP_PRIVATE:
1439 if (!(file->f_mode & FMODE_READ))
1440 return -EACCES;
1441 if (path_noexec(&file->f_path)) {
1442 if (vm_flags & VM_EXEC)
1443 return -EPERM;
1444 vm_flags &= ~VM_MAYEXEC;
1445 }
1446
1447 if (!file->f_op->mmap)
1448 return -ENODEV;
1449 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1450 return -EINVAL;
1451 break;
1452
1453 default:
1454 return -EINVAL;
1455 }
1456 } else {
1457 switch (flags & MAP_TYPE) {
1458 case MAP_SHARED:
1459 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1460 return -EINVAL;
1461 /*
1462 * Ignore pgoff.
1463 */
1464 pgoff = 0;
1465 vm_flags |= VM_SHARED | VM_MAYSHARE;
1466 break;
1467 case MAP_PRIVATE:
1468 /*
1469 * Set pgoff according to addr for anon_vma.
1470 */
1471 pgoff = addr >> PAGE_SHIFT;
1472 break;
1473 default:
1474 return -EINVAL;
1475 }
1476 }
1477
1478 /*
1479 * Set 'VM_NORESERVE' if we should not account for the
1480 * memory use of this mapping.
1481 */
1482 if (flags & MAP_NORESERVE) {
1483 /* We honor MAP_NORESERVE if allowed to overcommit */
1484 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1485 vm_flags |= VM_NORESERVE;
1486
1487 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1488 if (file && is_file_hugepages(file))
1489 vm_flags |= VM_NORESERVE;
1490 }
1491
1492 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1493 if (!IS_ERR_VALUE(addr) &&
1494 ((vm_flags & VM_LOCKED) ||
1495 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1496 *populate = len;
1497 return addr;
1498 }
1499
1500 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1501 unsigned long, prot, unsigned long, flags,
1502 unsigned long, fd, unsigned long, pgoff)
1503 {
1504 struct file *file = NULL;
1505 unsigned long retval;
1506
1507 if (!(flags & MAP_ANONYMOUS)) {
1508 audit_mmap_fd(fd, flags);
1509 file = fget(fd);
1510 if (!file)
1511 return -EBADF;
1512 if (is_file_hugepages(file))
1513 len = ALIGN(len, huge_page_size(hstate_file(file)));
1514 retval = -EINVAL;
1515 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1516 goto out_fput;
1517 } else if (flags & MAP_HUGETLB) {
1518 struct user_struct *user = NULL;
1519 struct hstate *hs;
1520
1521 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1522 if (!hs)
1523 return -EINVAL;
1524
1525 len = ALIGN(len, huge_page_size(hs));
1526 /*
1527 * VM_NORESERVE is used because the reservations will be
1528 * taken when vm_ops->mmap() is called
1529 * A dummy user value is used because we are not locking
1530 * memory so no accounting is necessary
1531 */
1532 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1533 VM_NORESERVE,
1534 &user, HUGETLB_ANONHUGE_INODE,
1535 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1536 if (IS_ERR(file))
1537 return PTR_ERR(file);
1538 }
1539
1540 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1541
1542 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1543 out_fput:
1544 if (file)
1545 fput(file);
1546 return retval;
1547 }
1548
1549 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1550 struct mmap_arg_struct {
1551 unsigned long addr;
1552 unsigned long len;
1553 unsigned long prot;
1554 unsigned long flags;
1555 unsigned long fd;
1556 unsigned long offset;
1557 };
1558
1559 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1560 {
1561 struct mmap_arg_struct a;
1562
1563 if (copy_from_user(&a, arg, sizeof(a)))
1564 return -EFAULT;
1565 if (offset_in_page(a.offset))
1566 return -EINVAL;
1567
1568 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1569 a.offset >> PAGE_SHIFT);
1570 }
1571 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1572
1573 /*
1574 * Some shared mappigns will want the pages marked read-only
1575 * to track write events. If so, we'll downgrade vm_page_prot
1576 * to the private version (using protection_map[] without the
1577 * VM_SHARED bit).
1578 */
1579 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1580 {
1581 vm_flags_t vm_flags = vma->vm_flags;
1582 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1583
1584 /* If it was private or non-writable, the write bit is already clear */
1585 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1586 return 0;
1587
1588 /* The backer wishes to know when pages are first written to? */
1589 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1590 return 1;
1591
1592 /* The open routine did something to the protections that pgprot_modify
1593 * won't preserve? */
1594 if (pgprot_val(vm_page_prot) !=
1595 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1596 return 0;
1597
1598 /* Do we need to track softdirty? */
1599 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1600 return 1;
1601
1602 /* Specialty mapping? */
1603 if (vm_flags & VM_PFNMAP)
1604 return 0;
1605
1606 /* Can the mapping track the dirty pages? */
1607 return vma->vm_file && vma->vm_file->f_mapping &&
1608 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1609 }
1610
1611 /*
1612 * We account for memory if it's a private writeable mapping,
1613 * not hugepages and VM_NORESERVE wasn't set.
1614 */
1615 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1616 {
1617 /*
1618 * hugetlb has its own accounting separate from the core VM
1619 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1620 */
1621 if (file && is_file_hugepages(file))
1622 return 0;
1623
1624 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1625 }
1626
1627 unsigned long mmap_region(struct file *file, unsigned long addr,
1628 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1629 struct list_head *uf)
1630 {
1631 struct mm_struct *mm = current->mm;
1632 struct vm_area_struct *vma, *prev;
1633 int error;
1634 struct rb_node **rb_link, *rb_parent;
1635 unsigned long charged = 0;
1636
1637 /* Check against address space limit. */
1638 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1639 unsigned long nr_pages;
1640
1641 /*
1642 * MAP_FIXED may remove pages of mappings that intersects with
1643 * requested mapping. Account for the pages it would unmap.
1644 */
1645 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1646
1647 if (!may_expand_vm(mm, vm_flags,
1648 (len >> PAGE_SHIFT) - nr_pages))
1649 return -ENOMEM;
1650 }
1651
1652 /* Clear old maps */
1653 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1654 &rb_parent)) {
1655 if (do_munmap(mm, addr, len, uf))
1656 return -ENOMEM;
1657 }
1658
1659 /*
1660 * Private writable mapping: check memory availability
1661 */
1662 if (accountable_mapping(file, vm_flags)) {
1663 charged = len >> PAGE_SHIFT;
1664 if (security_vm_enough_memory_mm(mm, charged))
1665 return -ENOMEM;
1666 vm_flags |= VM_ACCOUNT;
1667 }
1668
1669 /*
1670 * Can we just expand an old mapping?
1671 */
1672 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1673 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1674 if (vma)
1675 goto out;
1676
1677 /*
1678 * Determine the object being mapped and call the appropriate
1679 * specific mapper. the address has already been validated, but
1680 * not unmapped, but the maps are removed from the list.
1681 */
1682 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1683 if (!vma) {
1684 error = -ENOMEM;
1685 goto unacct_error;
1686 }
1687
1688 vma->vm_mm = mm;
1689 vma->vm_start = addr;
1690 vma->vm_end = addr + len;
1691 vma->vm_flags = vm_flags;
1692 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1693 vma->vm_pgoff = pgoff;
1694 INIT_LIST_HEAD(&vma->anon_vma_chain);
1695
1696 if (file) {
1697 if (vm_flags & VM_DENYWRITE) {
1698 error = deny_write_access(file);
1699 if (error)
1700 goto free_vma;
1701 }
1702 if (vm_flags & VM_SHARED) {
1703 error = mapping_map_writable(file->f_mapping);
1704 if (error)
1705 goto allow_write_and_free_vma;
1706 }
1707
1708 /* ->mmap() can change vma->vm_file, but must guarantee that
1709 * vma_link() below can deny write-access if VM_DENYWRITE is set
1710 * and map writably if VM_SHARED is set. This usually means the
1711 * new file must not have been exposed to user-space, yet.
1712 */
1713 vma->vm_file = get_file(file);
1714 error = call_mmap(file, vma);
1715 if (error)
1716 goto unmap_and_free_vma;
1717
1718 /* Can addr have changed??
1719 *
1720 * Answer: Yes, several device drivers can do it in their
1721 * f_op->mmap method. -DaveM
1722 * Bug: If addr is changed, prev, rb_link, rb_parent should
1723 * be updated for vma_link()
1724 */
1725 WARN_ON_ONCE(addr != vma->vm_start);
1726
1727 addr = vma->vm_start;
1728 vm_flags = vma->vm_flags;
1729 } else if (vm_flags & VM_SHARED) {
1730 error = shmem_zero_setup(vma);
1731 if (error)
1732 goto free_vma;
1733 }
1734
1735 vma_link(mm, vma, prev, rb_link, rb_parent);
1736 /* Once vma denies write, undo our temporary denial count */
1737 if (file) {
1738 if (vm_flags & VM_SHARED)
1739 mapping_unmap_writable(file->f_mapping);
1740 if (vm_flags & VM_DENYWRITE)
1741 allow_write_access(file);
1742 }
1743 file = vma->vm_file;
1744 out:
1745 perf_event_mmap(vma);
1746
1747 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1748 if (vm_flags & VM_LOCKED) {
1749 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1750 vma == get_gate_vma(current->mm)))
1751 mm->locked_vm += (len >> PAGE_SHIFT);
1752 else
1753 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1754 }
1755
1756 if (file)
1757 uprobe_mmap(vma);
1758
1759 /*
1760 * New (or expanded) vma always get soft dirty status.
1761 * Otherwise user-space soft-dirty page tracker won't
1762 * be able to distinguish situation when vma area unmapped,
1763 * then new mapped in-place (which must be aimed as
1764 * a completely new data area).
1765 */
1766 vma->vm_flags |= VM_SOFTDIRTY;
1767
1768 vma_set_page_prot(vma);
1769
1770 return addr;
1771
1772 unmap_and_free_vma:
1773 vma_fput(vma);
1774 vma->vm_file = NULL;
1775
1776 /* Undo any partial mapping done by a device driver. */
1777 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1778 charged = 0;
1779 if (vm_flags & VM_SHARED)
1780 mapping_unmap_writable(file->f_mapping);
1781 allow_write_and_free_vma:
1782 if (vm_flags & VM_DENYWRITE)
1783 allow_write_access(file);
1784 free_vma:
1785 kmem_cache_free(vm_area_cachep, vma);
1786 unacct_error:
1787 if (charged)
1788 vm_unacct_memory(charged);
1789 return error;
1790 }
1791
1792 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1793 {
1794 /*
1795 * We implement the search by looking for an rbtree node that
1796 * immediately follows a suitable gap. That is,
1797 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1798 * - gap_end = vma->vm_start >= info->low_limit + length;
1799 * - gap_end - gap_start >= length
1800 */
1801
1802 struct mm_struct *mm = current->mm;
1803 struct vm_area_struct *vma;
1804 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1805
1806 /* Adjust search length to account for worst case alignment overhead */
1807 length = info->length + info->align_mask;
1808 if (length < info->length)
1809 return -ENOMEM;
1810
1811 /* Adjust search limits by the desired length */
1812 if (info->high_limit < length)
1813 return -ENOMEM;
1814 high_limit = info->high_limit - length;
1815
1816 if (info->low_limit > high_limit)
1817 return -ENOMEM;
1818 low_limit = info->low_limit + length;
1819
1820 /* Check if rbtree root looks promising */
1821 if (RB_EMPTY_ROOT(&mm->mm_rb))
1822 goto check_highest;
1823 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1824 if (vma->rb_subtree_gap < length)
1825 goto check_highest;
1826
1827 while (true) {
1828 /* Visit left subtree if it looks promising */
1829 gap_end = vm_start_gap(vma);
1830 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1831 struct vm_area_struct *left =
1832 rb_entry(vma->vm_rb.rb_left,
1833 struct vm_area_struct, vm_rb);
1834 if (left->rb_subtree_gap >= length) {
1835 vma = left;
1836 continue;
1837 }
1838 }
1839
1840 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1841 check_current:
1842 /* Check if current node has a suitable gap */
1843 if (gap_start > high_limit)
1844 return -ENOMEM;
1845 if (gap_end >= low_limit &&
1846 gap_end > gap_start && gap_end - gap_start >= length)
1847 goto found;
1848
1849 /* Visit right subtree if it looks promising */
1850 if (vma->vm_rb.rb_right) {
1851 struct vm_area_struct *right =
1852 rb_entry(vma->vm_rb.rb_right,
1853 struct vm_area_struct, vm_rb);
1854 if (right->rb_subtree_gap >= length) {
1855 vma = right;
1856 continue;
1857 }
1858 }
1859
1860 /* Go back up the rbtree to find next candidate node */
1861 while (true) {
1862 struct rb_node *prev = &vma->vm_rb;
1863 if (!rb_parent(prev))
1864 goto check_highest;
1865 vma = rb_entry(rb_parent(prev),
1866 struct vm_area_struct, vm_rb);
1867 if (prev == vma->vm_rb.rb_left) {
1868 gap_start = vm_end_gap(vma->vm_prev);
1869 gap_end = vm_start_gap(vma);
1870 goto check_current;
1871 }
1872 }
1873 }
1874
1875 check_highest:
1876 /* Check highest gap, which does not precede any rbtree node */
1877 gap_start = mm->highest_vm_end;
1878 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1879 if (gap_start > high_limit)
1880 return -ENOMEM;
1881
1882 found:
1883 /* We found a suitable gap. Clip it with the original low_limit. */
1884 if (gap_start < info->low_limit)
1885 gap_start = info->low_limit;
1886
1887 /* Adjust gap address to the desired alignment */
1888 gap_start += (info->align_offset - gap_start) & info->align_mask;
1889
1890 VM_BUG_ON(gap_start + info->length > info->high_limit);
1891 VM_BUG_ON(gap_start + info->length > gap_end);
1892 return gap_start;
1893 }
1894
1895 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1896 {
1897 struct mm_struct *mm = current->mm;
1898 struct vm_area_struct *vma;
1899 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900
1901 /* Adjust search length to account for worst case alignment overhead */
1902 length = info->length + info->align_mask;
1903 if (length < info->length)
1904 return -ENOMEM;
1905
1906 /*
1907 * Adjust search limits by the desired length.
1908 * See implementation comment at top of unmapped_area().
1909 */
1910 gap_end = info->high_limit;
1911 if (gap_end < length)
1912 return -ENOMEM;
1913 high_limit = gap_end - length;
1914
1915 if (info->low_limit > high_limit)
1916 return -ENOMEM;
1917 low_limit = info->low_limit + length;
1918
1919 /* Check highest gap, which does not precede any rbtree node */
1920 gap_start = mm->highest_vm_end;
1921 if (gap_start <= high_limit)
1922 goto found_highest;
1923
1924 /* Check if rbtree root looks promising */
1925 if (RB_EMPTY_ROOT(&mm->mm_rb))
1926 return -ENOMEM;
1927 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1928 if (vma->rb_subtree_gap < length)
1929 return -ENOMEM;
1930
1931 while (true) {
1932 /* Visit right subtree if it looks promising */
1933 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1934 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1935 struct vm_area_struct *right =
1936 rb_entry(vma->vm_rb.rb_right,
1937 struct vm_area_struct, vm_rb);
1938 if (right->rb_subtree_gap >= length) {
1939 vma = right;
1940 continue;
1941 }
1942 }
1943
1944 check_current:
1945 /* Check if current node has a suitable gap */
1946 gap_end = vm_start_gap(vma);
1947 if (gap_end < low_limit)
1948 return -ENOMEM;
1949 if (gap_start <= high_limit &&
1950 gap_end > gap_start && gap_end - gap_start >= length)
1951 goto found;
1952
1953 /* Visit left subtree if it looks promising */
1954 if (vma->vm_rb.rb_left) {
1955 struct vm_area_struct *left =
1956 rb_entry(vma->vm_rb.rb_left,
1957 struct vm_area_struct, vm_rb);
1958 if (left->rb_subtree_gap >= length) {
1959 vma = left;
1960 continue;
1961 }
1962 }
1963
1964 /* Go back up the rbtree to find next candidate node */
1965 while (true) {
1966 struct rb_node *prev = &vma->vm_rb;
1967 if (!rb_parent(prev))
1968 return -ENOMEM;
1969 vma = rb_entry(rb_parent(prev),
1970 struct vm_area_struct, vm_rb);
1971 if (prev == vma->vm_rb.rb_right) {
1972 gap_start = vma->vm_prev ?
1973 vm_end_gap(vma->vm_prev) : 0;
1974 goto check_current;
1975 }
1976 }
1977 }
1978
1979 found:
1980 /* We found a suitable gap. Clip it with the original high_limit. */
1981 if (gap_end > info->high_limit)
1982 gap_end = info->high_limit;
1983
1984 found_highest:
1985 /* Compute highest gap address at the desired alignment */
1986 gap_end -= info->length;
1987 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1988
1989 VM_BUG_ON(gap_end < info->low_limit);
1990 VM_BUG_ON(gap_end < gap_start);
1991 return gap_end;
1992 }
1993
1994 /* Get an address range which is currently unmapped.
1995 * For shmat() with addr=0.
1996 *
1997 * Ugly calling convention alert:
1998 * Return value with the low bits set means error value,
1999 * ie
2000 * if (ret & ~PAGE_MASK)
2001 * error = ret;
2002 *
2003 * This function "knows" that -ENOMEM has the bits set.
2004 */
2005 #ifndef HAVE_ARCH_UNMAPPED_AREA
2006 unsigned long
2007 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2008 unsigned long len, unsigned long pgoff, unsigned long flags)
2009 {
2010 struct mm_struct *mm = current->mm;
2011 struct vm_area_struct *vma, *prev;
2012 struct vm_unmapped_area_info info;
2013
2014 if (len > TASK_SIZE - mmap_min_addr)
2015 return -ENOMEM;
2016
2017 if (flags & MAP_FIXED)
2018 return addr;
2019
2020 if (addr) {
2021 addr = PAGE_ALIGN(addr);
2022 vma = find_vma_prev(mm, addr, &prev);
2023 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2024 (!vma || addr + len <= vm_start_gap(vma)) &&
2025 (!prev || addr >= vm_end_gap(prev)))
2026 return addr;
2027 }
2028
2029 info.flags = 0;
2030 info.length = len;
2031 info.low_limit = mm->mmap_base;
2032 info.high_limit = TASK_SIZE;
2033 info.align_mask = 0;
2034 return vm_unmapped_area(&info);
2035 }
2036 #endif
2037
2038 /*
2039 * This mmap-allocator allocates new areas top-down from below the
2040 * stack's low limit (the base):
2041 */
2042 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2043 unsigned long
2044 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2045 const unsigned long len, const unsigned long pgoff,
2046 const unsigned long flags)
2047 {
2048 struct vm_area_struct *vma, *prev;
2049 struct mm_struct *mm = current->mm;
2050 unsigned long addr = addr0;
2051 struct vm_unmapped_area_info info;
2052
2053 /* requested length too big for entire address space */
2054 if (len > TASK_SIZE - mmap_min_addr)
2055 return -ENOMEM;
2056
2057 if (flags & MAP_FIXED)
2058 return addr;
2059
2060 /* requesting a specific address */
2061 if (addr) {
2062 addr = PAGE_ALIGN(addr);
2063 vma = find_vma_prev(mm, addr, &prev);
2064 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2065 (!vma || addr + len <= vm_start_gap(vma)) &&
2066 (!prev || addr >= vm_end_gap(prev)))
2067 return addr;
2068 }
2069
2070 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2071 info.length = len;
2072 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2073 info.high_limit = mm->mmap_base;
2074 info.align_mask = 0;
2075 addr = vm_unmapped_area(&info);
2076
2077 /*
2078 * A failed mmap() very likely causes application failure,
2079 * so fall back to the bottom-up function here. This scenario
2080 * can happen with large stack limits and large mmap()
2081 * allocations.
2082 */
2083 if (offset_in_page(addr)) {
2084 VM_BUG_ON(addr != -ENOMEM);
2085 info.flags = 0;
2086 info.low_limit = TASK_UNMAPPED_BASE;
2087 info.high_limit = TASK_SIZE;
2088 addr = vm_unmapped_area(&info);
2089 }
2090
2091 return addr;
2092 }
2093 #endif
2094
2095 unsigned long
2096 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2097 unsigned long pgoff, unsigned long flags)
2098 {
2099 unsigned long (*get_area)(struct file *, unsigned long,
2100 unsigned long, unsigned long, unsigned long);
2101
2102 unsigned long error = arch_mmap_check(addr, len, flags);
2103 if (error)
2104 return error;
2105
2106 /* Careful about overflows.. */
2107 if (len > TASK_SIZE)
2108 return -ENOMEM;
2109
2110 get_area = current->mm->get_unmapped_area;
2111 if (file) {
2112 if (file->f_op->get_unmapped_area)
2113 get_area = file->f_op->get_unmapped_area;
2114 } else if (flags & MAP_SHARED) {
2115 /*
2116 * mmap_region() will call shmem_zero_setup() to create a file,
2117 * so use shmem's get_unmapped_area in case it can be huge.
2118 * do_mmap_pgoff() will clear pgoff, so match alignment.
2119 */
2120 pgoff = 0;
2121 get_area = shmem_get_unmapped_area;
2122 }
2123
2124 addr = get_area(file, addr, len, pgoff, flags);
2125 if (IS_ERR_VALUE(addr))
2126 return addr;
2127
2128 if (addr > TASK_SIZE - len)
2129 return -ENOMEM;
2130 if (offset_in_page(addr))
2131 return -EINVAL;
2132
2133 error = security_mmap_addr(addr);
2134 return error ? error : addr;
2135 }
2136
2137 EXPORT_SYMBOL(get_unmapped_area);
2138
2139 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2140 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2141 {
2142 struct rb_node *rb_node;
2143 struct vm_area_struct *vma;
2144
2145 /* Check the cache first. */
2146 vma = vmacache_find(mm, addr);
2147 if (likely(vma))
2148 return vma;
2149
2150 rb_node = mm->mm_rb.rb_node;
2151
2152 while (rb_node) {
2153 struct vm_area_struct *tmp;
2154
2155 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2156
2157 if (tmp->vm_end > addr) {
2158 vma = tmp;
2159 if (tmp->vm_start <= addr)
2160 break;
2161 rb_node = rb_node->rb_left;
2162 } else
2163 rb_node = rb_node->rb_right;
2164 }
2165
2166 if (vma)
2167 vmacache_update(addr, vma);
2168 return vma;
2169 }
2170
2171 EXPORT_SYMBOL(find_vma);
2172
2173 /*
2174 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2175 */
2176 struct vm_area_struct *
2177 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2178 struct vm_area_struct **pprev)
2179 {
2180 struct vm_area_struct *vma;
2181
2182 vma = find_vma(mm, addr);
2183 if (vma) {
2184 *pprev = vma->vm_prev;
2185 } else {
2186 struct rb_node *rb_node = mm->mm_rb.rb_node;
2187 *pprev = NULL;
2188 while (rb_node) {
2189 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2190 rb_node = rb_node->rb_right;
2191 }
2192 }
2193 return vma;
2194 }
2195
2196 /*
2197 * Verify that the stack growth is acceptable and
2198 * update accounting. This is shared with both the
2199 * grow-up and grow-down cases.
2200 */
2201 static int acct_stack_growth(struct vm_area_struct *vma,
2202 unsigned long size, unsigned long grow)
2203 {
2204 struct mm_struct *mm = vma->vm_mm;
2205 unsigned long new_start;
2206
2207 /* address space limit tests */
2208 if (!may_expand_vm(mm, vma->vm_flags, grow))
2209 return -ENOMEM;
2210
2211 /* Stack limit test */
2212 if (size > rlimit(RLIMIT_STACK))
2213 return -ENOMEM;
2214
2215 /* mlock limit tests */
2216 if (vma->vm_flags & VM_LOCKED) {
2217 unsigned long locked;
2218 unsigned long limit;
2219 locked = mm->locked_vm + grow;
2220 limit = rlimit(RLIMIT_MEMLOCK);
2221 limit >>= PAGE_SHIFT;
2222 if (locked > limit && !capable(CAP_IPC_LOCK))
2223 return -ENOMEM;
2224 }
2225
2226 /* Check to ensure the stack will not grow into a hugetlb-only region */
2227 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2228 vma->vm_end - size;
2229 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2230 return -EFAULT;
2231
2232 /*
2233 * Overcommit.. This must be the final test, as it will
2234 * update security statistics.
2235 */
2236 if (security_vm_enough_memory_mm(mm, grow))
2237 return -ENOMEM;
2238
2239 return 0;
2240 }
2241
2242 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2243 /*
2244 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2245 * vma is the last one with address > vma->vm_end. Have to extend vma.
2246 */
2247 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2248 {
2249 struct mm_struct *mm = vma->vm_mm;
2250 struct vm_area_struct *next;
2251 unsigned long gap_addr;
2252 int error = 0;
2253
2254 if (!(vma->vm_flags & VM_GROWSUP))
2255 return -EFAULT;
2256
2257 /* Guard against exceeding limits of the address space. */
2258 address &= PAGE_MASK;
2259 if (address >= (TASK_SIZE & PAGE_MASK))
2260 return -ENOMEM;
2261 address += PAGE_SIZE;
2262
2263 /* Enforce stack_guard_gap */
2264 gap_addr = address + stack_guard_gap;
2265
2266 /* Guard against overflow */
2267 if (gap_addr < address || gap_addr > TASK_SIZE)
2268 gap_addr = TASK_SIZE;
2269
2270 next = vma->vm_next;
2271 if (next && next->vm_start < gap_addr &&
2272 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2273 if (!(next->vm_flags & VM_GROWSUP))
2274 return -ENOMEM;
2275 /* Check that both stack segments have the same anon_vma? */
2276 }
2277
2278 /* We must make sure the anon_vma is allocated. */
2279 if (unlikely(anon_vma_prepare(vma)))
2280 return -ENOMEM;
2281
2282 /*
2283 * vma->vm_start/vm_end cannot change under us because the caller
2284 * is required to hold the mmap_sem in read mode. We need the
2285 * anon_vma lock to serialize against concurrent expand_stacks.
2286 */
2287 anon_vma_lock_write(vma->anon_vma);
2288
2289 /* Somebody else might have raced and expanded it already */
2290 if (address > vma->vm_end) {
2291 unsigned long size, grow;
2292
2293 size = address - vma->vm_start;
2294 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2295
2296 error = -ENOMEM;
2297 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2298 error = acct_stack_growth(vma, size, grow);
2299 if (!error) {
2300 /*
2301 * vma_gap_update() doesn't support concurrent
2302 * updates, but we only hold a shared mmap_sem
2303 * lock here, so we need to protect against
2304 * concurrent vma expansions.
2305 * anon_vma_lock_write() doesn't help here, as
2306 * we don't guarantee that all growable vmas
2307 * in a mm share the same root anon vma.
2308 * So, we reuse mm->page_table_lock to guard
2309 * against concurrent vma expansions.
2310 */
2311 spin_lock(&mm->page_table_lock);
2312 if (vma->vm_flags & VM_LOCKED)
2313 mm->locked_vm += grow;
2314 vm_stat_account(mm, vma->vm_flags, grow);
2315 anon_vma_interval_tree_pre_update_vma(vma);
2316 vma->vm_end = address;
2317 anon_vma_interval_tree_post_update_vma(vma);
2318 if (vma->vm_next)
2319 vma_gap_update(vma->vm_next);
2320 else
2321 mm->highest_vm_end = vm_end_gap(vma);
2322 spin_unlock(&mm->page_table_lock);
2323
2324 perf_event_mmap(vma);
2325 }
2326 }
2327 }
2328 anon_vma_unlock_write(vma->anon_vma);
2329 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2330 validate_mm(mm);
2331 return error;
2332 }
2333 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2334
2335 /*
2336 * vma is the first one with address < vma->vm_start. Have to extend vma.
2337 */
2338 int expand_downwards(struct vm_area_struct *vma,
2339 unsigned long address)
2340 {
2341 struct mm_struct *mm = vma->vm_mm;
2342 struct vm_area_struct *prev;
2343 int error;
2344
2345 address &= PAGE_MASK;
2346 error = security_mmap_addr(address);
2347 if (error)
2348 return error;
2349
2350 /* Enforce stack_guard_gap */
2351 prev = vma->vm_prev;
2352 /* Check that both stack segments have the same anon_vma? */
2353 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2354 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2355 if (address - prev->vm_end < stack_guard_gap)
2356 return -ENOMEM;
2357 }
2358
2359 /* We must make sure the anon_vma is allocated. */
2360 if (unlikely(anon_vma_prepare(vma)))
2361 return -ENOMEM;
2362
2363 /*
2364 * vma->vm_start/vm_end cannot change under us because the caller
2365 * is required to hold the mmap_sem in read mode. We need the
2366 * anon_vma lock to serialize against concurrent expand_stacks.
2367 */
2368 anon_vma_lock_write(vma->anon_vma);
2369
2370 /* Somebody else might have raced and expanded it already */
2371 if (address < vma->vm_start) {
2372 unsigned long size, grow;
2373
2374 size = vma->vm_end - address;
2375 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2376
2377 error = -ENOMEM;
2378 if (grow <= vma->vm_pgoff) {
2379 error = acct_stack_growth(vma, size, grow);
2380 if (!error) {
2381 /*
2382 * vma_gap_update() doesn't support concurrent
2383 * updates, but we only hold a shared mmap_sem
2384 * lock here, so we need to protect against
2385 * concurrent vma expansions.
2386 * anon_vma_lock_write() doesn't help here, as
2387 * we don't guarantee that all growable vmas
2388 * in a mm share the same root anon vma.
2389 * So, we reuse mm->page_table_lock to guard
2390 * against concurrent vma expansions.
2391 */
2392 spin_lock(&mm->page_table_lock);
2393 if (vma->vm_flags & VM_LOCKED)
2394 mm->locked_vm += grow;
2395 vm_stat_account(mm, vma->vm_flags, grow);
2396 anon_vma_interval_tree_pre_update_vma(vma);
2397 vma->vm_start = address;
2398 vma->vm_pgoff -= grow;
2399 anon_vma_interval_tree_post_update_vma(vma);
2400 vma_gap_update(vma);
2401 spin_unlock(&mm->page_table_lock);
2402
2403 perf_event_mmap(vma);
2404 }
2405 }
2406 }
2407 anon_vma_unlock_write(vma->anon_vma);
2408 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2409 validate_mm(mm);
2410 return error;
2411 }
2412
2413 /* enforced gap between the expanding stack and other mappings. */
2414 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2415
2416 static int __init cmdline_parse_stack_guard_gap(char *p)
2417 {
2418 unsigned long val;
2419 char *endptr;
2420
2421 val = simple_strtoul(p, &endptr, 10);
2422 if (!*endptr)
2423 stack_guard_gap = val << PAGE_SHIFT;
2424
2425 return 0;
2426 }
2427 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2428
2429 #ifdef CONFIG_STACK_GROWSUP
2430 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2431 {
2432 return expand_upwards(vma, address);
2433 }
2434
2435 struct vm_area_struct *
2436 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2437 {
2438 struct vm_area_struct *vma, *prev;
2439
2440 addr &= PAGE_MASK;
2441 vma = find_vma_prev(mm, addr, &prev);
2442 if (vma && (vma->vm_start <= addr))
2443 return vma;
2444 if (!prev || expand_stack(prev, addr))
2445 return NULL;
2446 if (prev->vm_flags & VM_LOCKED)
2447 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2448 return prev;
2449 }
2450 #else
2451 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2452 {
2453 return expand_downwards(vma, address);
2454 }
2455
2456 struct vm_area_struct *
2457 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2458 {
2459 struct vm_area_struct *vma;
2460 unsigned long start;
2461
2462 addr &= PAGE_MASK;
2463 vma = find_vma(mm, addr);
2464 if (!vma)
2465 return NULL;
2466 if (vma->vm_start <= addr)
2467 return vma;
2468 if (!(vma->vm_flags & VM_GROWSDOWN))
2469 return NULL;
2470 start = vma->vm_start;
2471 if (expand_stack(vma, addr))
2472 return NULL;
2473 if (vma->vm_flags & VM_LOCKED)
2474 populate_vma_page_range(vma, addr, start, NULL);
2475 return vma;
2476 }
2477 #endif
2478
2479 EXPORT_SYMBOL_GPL(find_extend_vma);
2480
2481 /*
2482 * Ok - we have the memory areas we should free on the vma list,
2483 * so release them, and do the vma updates.
2484 *
2485 * Called with the mm semaphore held.
2486 */
2487 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2488 {
2489 unsigned long nr_accounted = 0;
2490
2491 /* Update high watermark before we lower total_vm */
2492 update_hiwater_vm(mm);
2493 do {
2494 long nrpages = vma_pages(vma);
2495
2496 if (vma->vm_flags & VM_ACCOUNT)
2497 nr_accounted += nrpages;
2498 vm_stat_account(mm, vma->vm_flags, -nrpages);
2499 vma = remove_vma(vma);
2500 } while (vma);
2501 vm_unacct_memory(nr_accounted);
2502 validate_mm(mm);
2503 }
2504
2505 /*
2506 * Get rid of page table information in the indicated region.
2507 *
2508 * Called with the mm semaphore held.
2509 */
2510 static void unmap_region(struct mm_struct *mm,
2511 struct vm_area_struct *vma, struct vm_area_struct *prev,
2512 unsigned long start, unsigned long end)
2513 {
2514 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2515 struct mmu_gather tlb;
2516
2517 lru_add_drain();
2518 tlb_gather_mmu(&tlb, mm, start, end);
2519 update_hiwater_rss(mm);
2520 unmap_vmas(&tlb, vma, start, end);
2521 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2522 next ? next->vm_start : USER_PGTABLES_CEILING);
2523 tlb_finish_mmu(&tlb, start, end);
2524 }
2525
2526 /*
2527 * Create a list of vma's touched by the unmap, removing them from the mm's
2528 * vma list as we go..
2529 */
2530 static void
2531 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2532 struct vm_area_struct *prev, unsigned long end)
2533 {
2534 struct vm_area_struct **insertion_point;
2535 struct vm_area_struct *tail_vma = NULL;
2536
2537 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2538 vma->vm_prev = NULL;
2539 do {
2540 vma_rb_erase(vma, &mm->mm_rb);
2541 mm->map_count--;
2542 tail_vma = vma;
2543 vma = vma->vm_next;
2544 } while (vma && vma->vm_start < end);
2545 *insertion_point = vma;
2546 if (vma) {
2547 vma->vm_prev = prev;
2548 vma_gap_update(vma);
2549 } else
2550 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2551 tail_vma->vm_next = NULL;
2552
2553 /* Kill the cache */
2554 vmacache_invalidate(mm);
2555 }
2556
2557 /*
2558 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2559 * has already been checked or doesn't make sense to fail.
2560 */
2561 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2562 unsigned long addr, int new_below)
2563 {
2564 struct vm_area_struct *new;
2565 int err;
2566
2567 if (vma->vm_ops && vma->vm_ops->split) {
2568 err = vma->vm_ops->split(vma, addr);
2569 if (err)
2570 return err;
2571 }
2572
2573 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2574 if (!new)
2575 return -ENOMEM;
2576
2577 /* most fields are the same, copy all, and then fixup */
2578 *new = *vma;
2579
2580 INIT_LIST_HEAD(&new->anon_vma_chain);
2581
2582 if (new_below)
2583 new->vm_end = addr;
2584 else {
2585 new->vm_start = addr;
2586 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2587 }
2588
2589 err = vma_dup_policy(vma, new);
2590 if (err)
2591 goto out_free_vma;
2592
2593 err = anon_vma_clone(new, vma);
2594 if (err)
2595 goto out_free_mpol;
2596
2597 if (new->vm_file)
2598 vma_get_file(new);
2599
2600 if (new->vm_ops && new->vm_ops->open)
2601 new->vm_ops->open(new);
2602
2603 if (new_below)
2604 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2605 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2606 else
2607 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2608
2609 /* Success. */
2610 if (!err)
2611 return 0;
2612
2613 /* Clean everything up if vma_adjust failed. */
2614 if (new->vm_ops && new->vm_ops->close)
2615 new->vm_ops->close(new);
2616 if (new->vm_file)
2617 vma_fput(new);
2618 unlink_anon_vmas(new);
2619 out_free_mpol:
2620 mpol_put(vma_policy(new));
2621 out_free_vma:
2622 kmem_cache_free(vm_area_cachep, new);
2623 return err;
2624 }
2625
2626 /*
2627 * Split a vma into two pieces at address 'addr', a new vma is allocated
2628 * either for the first part or the tail.
2629 */
2630 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2631 unsigned long addr, int new_below)
2632 {
2633 if (mm->map_count >= sysctl_max_map_count)
2634 return -ENOMEM;
2635
2636 return __split_vma(mm, vma, addr, new_below);
2637 }
2638
2639 /* Munmap is split into 2 main parts -- this part which finds
2640 * what needs doing, and the areas themselves, which do the
2641 * work. This now handles partial unmappings.
2642 * Jeremy Fitzhardinge <jeremy@goop.org>
2643 */
2644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2645 struct list_head *uf)
2646 {
2647 unsigned long end;
2648 struct vm_area_struct *vma, *prev, *last;
2649
2650 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2651 return -EINVAL;
2652
2653 len = PAGE_ALIGN(len);
2654 if (len == 0)
2655 return -EINVAL;
2656
2657 /* Find the first overlapping VMA */
2658 vma = find_vma(mm, start);
2659 if (!vma)
2660 return 0;
2661 prev = vma->vm_prev;
2662 /* we have start < vma->vm_end */
2663
2664 /* if it doesn't overlap, we have nothing.. */
2665 end = start + len;
2666 if (vma->vm_start >= end)
2667 return 0;
2668
2669 /*
2670 * If we need to split any vma, do it now to save pain later.
2671 *
2672 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2673 * unmapped vm_area_struct will remain in use: so lower split_vma
2674 * places tmp vma above, and higher split_vma places tmp vma below.
2675 */
2676 if (start > vma->vm_start) {
2677 int error;
2678
2679 /*
2680 * Make sure that map_count on return from munmap() will
2681 * not exceed its limit; but let map_count go just above
2682 * its limit temporarily, to help free resources as expected.
2683 */
2684 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2685 return -ENOMEM;
2686
2687 error = __split_vma(mm, vma, start, 0);
2688 if (error)
2689 return error;
2690 prev = vma;
2691 }
2692
2693 /* Does it split the last one? */
2694 last = find_vma(mm, end);
2695 if (last && end > last->vm_start) {
2696 int error = __split_vma(mm, last, end, 1);
2697 if (error)
2698 return error;
2699 }
2700 vma = prev ? prev->vm_next : mm->mmap;
2701
2702 if (unlikely(uf)) {
2703 /*
2704 * If userfaultfd_unmap_prep returns an error the vmas
2705 * will remain splitted, but userland will get a
2706 * highly unexpected error anyway. This is no
2707 * different than the case where the first of the two
2708 * __split_vma fails, but we don't undo the first
2709 * split, despite we could. This is unlikely enough
2710 * failure that it's not worth optimizing it for.
2711 */
2712 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2713 if (error)
2714 return error;
2715 }
2716
2717 /*
2718 * unlock any mlock()ed ranges before detaching vmas
2719 */
2720 if (mm->locked_vm) {
2721 struct vm_area_struct *tmp = vma;
2722 while (tmp && tmp->vm_start < end) {
2723 if (tmp->vm_flags & VM_LOCKED) {
2724 mm->locked_vm -= vma_pages(tmp);
2725 munlock_vma_pages_all(tmp);
2726 }
2727 tmp = tmp->vm_next;
2728 }
2729 }
2730
2731 /*
2732 * Remove the vma's, and unmap the actual pages
2733 */
2734 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2735 unmap_region(mm, vma, prev, start, end);
2736
2737 arch_unmap(mm, vma, start, end);
2738
2739 /* Fix up all other VM information */
2740 remove_vma_list(mm, vma);
2741
2742 return 0;
2743 }
2744
2745 int vm_munmap(unsigned long start, size_t len)
2746 {
2747 int ret;
2748 struct mm_struct *mm = current->mm;
2749 LIST_HEAD(uf);
2750
2751 if (down_write_killable(&mm->mmap_sem))
2752 return -EINTR;
2753
2754 ret = do_munmap(mm, start, len, &uf);
2755 up_write(&mm->mmap_sem);
2756 userfaultfd_unmap_complete(mm, &uf);
2757 return ret;
2758 }
2759 EXPORT_SYMBOL(vm_munmap);
2760
2761 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2762 {
2763 profile_munmap(addr);
2764 return vm_munmap(addr, len);
2765 }
2766
2767
2768 /*
2769 * Emulation of deprecated remap_file_pages() syscall.
2770 */
2771 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2772 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2773 {
2774
2775 struct mm_struct *mm = current->mm;
2776 struct vm_area_struct *vma;
2777 unsigned long populate = 0;
2778 unsigned long ret = -EINVAL;
2779 struct file *file, *prfile;
2780
2781 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2782 current->comm, current->pid);
2783
2784 if (prot)
2785 return ret;
2786 start = start & PAGE_MASK;
2787 size = size & PAGE_MASK;
2788
2789 if (start + size <= start)
2790 return ret;
2791
2792 /* Does pgoff wrap? */
2793 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2794 return ret;
2795
2796 if (down_write_killable(&mm->mmap_sem))
2797 return -EINTR;
2798
2799 vma = find_vma(mm, start);
2800
2801 if (!vma || !(vma->vm_flags & VM_SHARED))
2802 goto out;
2803
2804 if (start < vma->vm_start)
2805 goto out;
2806
2807 if (start + size > vma->vm_end) {
2808 struct vm_area_struct *next;
2809
2810 for (next = vma->vm_next; next; next = next->vm_next) {
2811 /* hole between vmas ? */
2812 if (next->vm_start != next->vm_prev->vm_end)
2813 goto out;
2814
2815 if (next->vm_file != vma->vm_file)
2816 goto out;
2817
2818 if (next->vm_flags != vma->vm_flags)
2819 goto out;
2820
2821 if (start + size <= next->vm_end)
2822 break;
2823 }
2824
2825 if (!next)
2826 goto out;
2827 }
2828
2829 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2830 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2831 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2832
2833 flags &= MAP_NONBLOCK;
2834 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2835 if (vma->vm_flags & VM_LOCKED) {
2836 struct vm_area_struct *tmp;
2837 flags |= MAP_LOCKED;
2838
2839 /* drop PG_Mlocked flag for over-mapped range */
2840 for (tmp = vma; tmp->vm_start >= start + size;
2841 tmp = tmp->vm_next) {
2842 /*
2843 * Split pmd and munlock page on the border
2844 * of the range.
2845 */
2846 vma_adjust_trans_huge(tmp, start, start + size, 0);
2847
2848 munlock_vma_pages_range(tmp,
2849 max(tmp->vm_start, start),
2850 min(tmp->vm_end, start + size));
2851 }
2852 }
2853
2854 vma_get_file(vma);
2855 file = vma->vm_file;
2856 prfile = vma->vm_prfile;
2857 ret = do_mmap_pgoff(vma->vm_file, start, size,
2858 prot, flags, pgoff, &populate, NULL);
2859 if (!IS_ERR_VALUE(ret) && file && prfile) {
2860 struct vm_area_struct *new_vma;
2861
2862 new_vma = find_vma(mm, ret);
2863 if (!new_vma->vm_prfile)
2864 new_vma->vm_prfile = prfile;
2865 if (new_vma != vma)
2866 get_file(prfile);
2867 }
2868 /*
2869 * two fput()s instead of vma_fput(vma),
2870 * coz vma may not be available anymore.
2871 */
2872 fput(file);
2873 if (prfile)
2874 fput(prfile);
2875 out:
2876 up_write(&mm->mmap_sem);
2877 if (populate)
2878 mm_populate(ret, populate);
2879 if (!IS_ERR_VALUE(ret))
2880 ret = 0;
2881 return ret;
2882 }
2883
2884 static inline void verify_mm_writelocked(struct mm_struct *mm)
2885 {
2886 #ifdef CONFIG_DEBUG_VM
2887 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2888 WARN_ON(1);
2889 up_read(&mm->mmap_sem);
2890 }
2891 #endif
2892 }
2893
2894 /*
2895 * this is really a simplified "do_mmap". it only handles
2896 * anonymous maps. eventually we may be able to do some
2897 * brk-specific accounting here.
2898 */
2899 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2900 {
2901 struct mm_struct *mm = current->mm;
2902 struct vm_area_struct *vma, *prev;
2903 unsigned long len;
2904 struct rb_node **rb_link, *rb_parent;
2905 pgoff_t pgoff = addr >> PAGE_SHIFT;
2906 int error;
2907
2908 len = PAGE_ALIGN(request);
2909 if (len < request)
2910 return -ENOMEM;
2911 if (!len)
2912 return 0;
2913
2914 /* Until we need other flags, refuse anything except VM_EXEC. */
2915 if ((flags & (~VM_EXEC)) != 0)
2916 return -EINVAL;
2917 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2918
2919 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2920 if (offset_in_page(error))
2921 return error;
2922
2923 error = mlock_future_check(mm, mm->def_flags, len);
2924 if (error)
2925 return error;
2926
2927 /*
2928 * mm->mmap_sem is required to protect against another thread
2929 * changing the mappings in case we sleep.
2930 */
2931 verify_mm_writelocked(mm);
2932
2933 /*
2934 * Clear old maps. this also does some error checking for us
2935 */
2936 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2937 &rb_parent)) {
2938 if (do_munmap(mm, addr, len, uf))
2939 return -ENOMEM;
2940 }
2941
2942 /* Check against address space limits *after* clearing old maps... */
2943 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2944 return -ENOMEM;
2945
2946 if (mm->map_count > sysctl_max_map_count)
2947 return -ENOMEM;
2948
2949 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2950 return -ENOMEM;
2951
2952 /* Can we just expand an old private anonymous mapping? */
2953 vma = vma_merge(mm, prev, addr, addr + len, flags,
2954 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2955 if (vma)
2956 goto out;
2957
2958 /*
2959 * create a vma struct for an anonymous mapping
2960 */
2961 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2962 if (!vma) {
2963 vm_unacct_memory(len >> PAGE_SHIFT);
2964 return -ENOMEM;
2965 }
2966
2967 INIT_LIST_HEAD(&vma->anon_vma_chain);
2968 vma->vm_mm = mm;
2969 vma->vm_start = addr;
2970 vma->vm_end = addr + len;
2971 vma->vm_pgoff = pgoff;
2972 vma->vm_flags = flags;
2973 vma->vm_page_prot = vm_get_page_prot(flags);
2974 vma_link(mm, vma, prev, rb_link, rb_parent);
2975 out:
2976 perf_event_mmap(vma);
2977 mm->total_vm += len >> PAGE_SHIFT;
2978 mm->data_vm += len >> PAGE_SHIFT;
2979 if (flags & VM_LOCKED)
2980 mm->locked_vm += (len >> PAGE_SHIFT);
2981 vma->vm_flags |= VM_SOFTDIRTY;
2982 return 0;
2983 }
2984
2985 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2986 {
2987 return do_brk_flags(addr, len, 0, uf);
2988 }
2989
2990 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2991 {
2992 struct mm_struct *mm = current->mm;
2993 int ret;
2994 bool populate;
2995 LIST_HEAD(uf);
2996
2997 if (down_write_killable(&mm->mmap_sem))
2998 return -EINTR;
2999
3000 ret = do_brk_flags(addr, len, flags, &uf);
3001 populate = ((mm->def_flags & VM_LOCKED) != 0);
3002 up_write(&mm->mmap_sem);
3003 userfaultfd_unmap_complete(mm, &uf);
3004 if (populate && !ret)
3005 mm_populate(addr, len);
3006 return ret;
3007 }
3008 EXPORT_SYMBOL(vm_brk_flags);
3009
3010 int vm_brk(unsigned long addr, unsigned long len)
3011 {
3012 return vm_brk_flags(addr, len, 0);
3013 }
3014 EXPORT_SYMBOL(vm_brk);
3015
3016 /* Release all mmaps. */
3017 void exit_mmap(struct mm_struct *mm)
3018 {
3019 struct mmu_gather tlb;
3020 struct vm_area_struct *vma;
3021 unsigned long nr_accounted = 0;
3022
3023 /* mm's last user has gone, and its about to be pulled down */
3024 mmu_notifier_release(mm);
3025
3026 if (unlikely(mm_is_oom_victim(mm))) {
3027 /*
3028 * Manually reap the mm to free as much memory as possible.
3029 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3030 * this mm from further consideration. Taking mm->mmap_sem for
3031 * write after setting MMF_OOM_SKIP will guarantee that the oom
3032 * reaper will not run on this mm again after mmap_sem is
3033 * dropped.
3034 *
3035 * Nothing can be holding mm->mmap_sem here and the above call
3036 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3037 * __oom_reap_task_mm() will not block.
3038 *
3039 * This needs to be done before calling munlock_vma_pages_all(),
3040 * which clears VM_LOCKED, otherwise the oom reaper cannot
3041 * reliably test it.
3042 */
3043 mutex_lock(&oom_lock);
3044 __oom_reap_task_mm(mm);
3045 mutex_unlock(&oom_lock);
3046
3047 set_bit(MMF_OOM_SKIP, &mm->flags);
3048 down_write(&mm->mmap_sem);
3049 up_write(&mm->mmap_sem);
3050 }
3051
3052 if (mm->locked_vm) {
3053 vma = mm->mmap;
3054 while (vma) {
3055 if (vma->vm_flags & VM_LOCKED)
3056 munlock_vma_pages_all(vma);
3057 vma = vma->vm_next;
3058 }
3059 }
3060
3061 arch_exit_mmap(mm);
3062
3063 vma = mm->mmap;
3064 if (!vma) /* Can happen if dup_mmap() received an OOM */
3065 return;
3066
3067 lru_add_drain();
3068 flush_cache_mm(mm);
3069 tlb_gather_mmu(&tlb, mm, 0, -1);
3070 /* update_hiwater_rss(mm) here? but nobody should be looking */
3071 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3072 unmap_vmas(&tlb, vma, 0, -1);
3073 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3074 tlb_finish_mmu(&tlb, 0, -1);
3075
3076 /*
3077 * Walk the list again, actually closing and freeing it,
3078 * with preemption enabled, without holding any MM locks.
3079 */
3080 while (vma) {
3081 if (vma->vm_flags & VM_ACCOUNT)
3082 nr_accounted += vma_pages(vma);
3083 vma = remove_vma(vma);
3084 }
3085 vm_unacct_memory(nr_accounted);
3086 }
3087
3088 /* Insert vm structure into process list sorted by address
3089 * and into the inode's i_mmap tree. If vm_file is non-NULL
3090 * then i_mmap_rwsem is taken here.
3091 */
3092 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3093 {
3094 struct vm_area_struct *prev;
3095 struct rb_node **rb_link, *rb_parent;
3096
3097 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3098 &prev, &rb_link, &rb_parent))
3099 return -ENOMEM;
3100 if ((vma->vm_flags & VM_ACCOUNT) &&
3101 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3102 return -ENOMEM;
3103
3104 /*
3105 * The vm_pgoff of a purely anonymous vma should be irrelevant
3106 * until its first write fault, when page's anon_vma and index
3107 * are set. But now set the vm_pgoff it will almost certainly
3108 * end up with (unless mremap moves it elsewhere before that
3109 * first wfault), so /proc/pid/maps tells a consistent story.
3110 *
3111 * By setting it to reflect the virtual start address of the
3112 * vma, merges and splits can happen in a seamless way, just
3113 * using the existing file pgoff checks and manipulations.
3114 * Similarly in do_mmap_pgoff and in do_brk.
3115 */
3116 if (vma_is_anonymous(vma)) {
3117 BUG_ON(vma->anon_vma);
3118 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3119 }
3120
3121 vma_link(mm, vma, prev, rb_link, rb_parent);
3122 return 0;
3123 }
3124
3125 /*
3126 * Copy the vma structure to a new location in the same mm,
3127 * prior to moving page table entries, to effect an mremap move.
3128 */
3129 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3130 unsigned long addr, unsigned long len, pgoff_t pgoff,
3131 bool *need_rmap_locks)
3132 {
3133 struct vm_area_struct *vma = *vmap;
3134 unsigned long vma_start = vma->vm_start;
3135 struct mm_struct *mm = vma->vm_mm;
3136 struct vm_area_struct *new_vma, *prev;
3137 struct rb_node **rb_link, *rb_parent;
3138 bool faulted_in_anon_vma = true;
3139
3140 /*
3141 * If anonymous vma has not yet been faulted, update new pgoff
3142 * to match new location, to increase its chance of merging.
3143 */
3144 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3145 pgoff = addr >> PAGE_SHIFT;
3146 faulted_in_anon_vma = false;
3147 }
3148
3149 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3150 return NULL; /* should never get here */
3151 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3152 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3153 vma->vm_userfaultfd_ctx);
3154 if (new_vma) {
3155 /*
3156 * Source vma may have been merged into new_vma
3157 */
3158 if (unlikely(vma_start >= new_vma->vm_start &&
3159 vma_start < new_vma->vm_end)) {
3160 /*
3161 * The only way we can get a vma_merge with
3162 * self during an mremap is if the vma hasn't
3163 * been faulted in yet and we were allowed to
3164 * reset the dst vma->vm_pgoff to the
3165 * destination address of the mremap to allow
3166 * the merge to happen. mremap must change the
3167 * vm_pgoff linearity between src and dst vmas
3168 * (in turn preventing a vma_merge) to be
3169 * safe. It is only safe to keep the vm_pgoff
3170 * linear if there are no pages mapped yet.
3171 */
3172 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3173 *vmap = vma = new_vma;
3174 }
3175 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3176 } else {
3177 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3178 if (!new_vma)
3179 goto out;
3180 *new_vma = *vma;
3181 new_vma->vm_start = addr;
3182 new_vma->vm_end = addr + len;
3183 new_vma->vm_pgoff = pgoff;
3184 if (vma_dup_policy(vma, new_vma))
3185 goto out_free_vma;
3186 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3187 if (anon_vma_clone(new_vma, vma))
3188 goto out_free_mempol;
3189 if (new_vma->vm_file)
3190 vma_get_file(new_vma);
3191 if (new_vma->vm_ops && new_vma->vm_ops->open)
3192 new_vma->vm_ops->open(new_vma);
3193 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3194 *need_rmap_locks = false;
3195 }
3196 return new_vma;
3197
3198 out_free_mempol:
3199 mpol_put(vma_policy(new_vma));
3200 out_free_vma:
3201 kmem_cache_free(vm_area_cachep, new_vma);
3202 out:
3203 return NULL;
3204 }
3205
3206 /*
3207 * Return true if the calling process may expand its vm space by the passed
3208 * number of pages
3209 */
3210 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3211 {
3212 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3213 return false;
3214
3215 if (is_data_mapping(flags) &&
3216 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3217 /* Workaround for Valgrind */
3218 if (rlimit(RLIMIT_DATA) == 0 &&
3219 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3220 return true;
3221 if (!ignore_rlimit_data) {
3222 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3223 current->comm, current->pid,
3224 (mm->data_vm + npages) << PAGE_SHIFT,
3225 rlimit(RLIMIT_DATA));
3226 return false;
3227 }
3228 }
3229
3230 return true;
3231 }
3232
3233 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3234 {
3235 mm->total_vm += npages;
3236
3237 if (is_exec_mapping(flags))
3238 mm->exec_vm += npages;
3239 else if (is_stack_mapping(flags))
3240 mm->stack_vm += npages;
3241 else if (is_data_mapping(flags))
3242 mm->data_vm += npages;
3243 }
3244
3245 static int special_mapping_fault(struct vm_fault *vmf);
3246
3247 /*
3248 * Having a close hook prevents vma merging regardless of flags.
3249 */
3250 static void special_mapping_close(struct vm_area_struct *vma)
3251 {
3252 }
3253
3254 static const char *special_mapping_name(struct vm_area_struct *vma)
3255 {
3256 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3257 }
3258
3259 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3260 {
3261 struct vm_special_mapping *sm = new_vma->vm_private_data;
3262
3263 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3264 return -EFAULT;
3265
3266 if (sm->mremap)
3267 return sm->mremap(sm, new_vma);
3268
3269 return 0;
3270 }
3271
3272 static const struct vm_operations_struct special_mapping_vmops = {
3273 .close = special_mapping_close,
3274 .fault = special_mapping_fault,
3275 .mremap = special_mapping_mremap,
3276 .name = special_mapping_name,
3277 };
3278
3279 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3280 .close = special_mapping_close,
3281 .fault = special_mapping_fault,
3282 };
3283
3284 static int special_mapping_fault(struct vm_fault *vmf)
3285 {
3286 struct vm_area_struct *vma = vmf->vma;
3287 pgoff_t pgoff;
3288 struct page **pages;
3289
3290 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3291 pages = vma->vm_private_data;
3292 } else {
3293 struct vm_special_mapping *sm = vma->vm_private_data;
3294
3295 if (sm->fault)
3296 return sm->fault(sm, vmf->vma, vmf);
3297
3298 pages = sm->pages;
3299 }
3300
3301 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3302 pgoff--;
3303
3304 if (*pages) {
3305 struct page *page = *pages;
3306 get_page(page);
3307 vmf->page = page;
3308 return 0;
3309 }
3310
3311 return VM_FAULT_SIGBUS;
3312 }
3313
3314 static struct vm_area_struct *__install_special_mapping(
3315 struct mm_struct *mm,
3316 unsigned long addr, unsigned long len,
3317 unsigned long vm_flags, void *priv,
3318 const struct vm_operations_struct *ops)
3319 {
3320 int ret;
3321 struct vm_area_struct *vma;
3322
3323 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3324 if (unlikely(vma == NULL))
3325 return ERR_PTR(-ENOMEM);
3326
3327 INIT_LIST_HEAD(&vma->anon_vma_chain);
3328 vma->vm_mm = mm;
3329 vma->vm_start = addr;
3330 vma->vm_end = addr + len;
3331
3332 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3333 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3334
3335 vma->vm_ops = ops;
3336 vma->vm_private_data = priv;
3337
3338 ret = insert_vm_struct(mm, vma);
3339 if (ret)
3340 goto out;
3341
3342 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3343
3344 perf_event_mmap(vma);
3345
3346 return vma;
3347
3348 out:
3349 kmem_cache_free(vm_area_cachep, vma);
3350 return ERR_PTR(ret);
3351 }
3352
3353 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3354 const struct vm_special_mapping *sm)
3355 {
3356 return vma->vm_private_data == sm &&
3357 (vma->vm_ops == &special_mapping_vmops ||
3358 vma->vm_ops == &legacy_special_mapping_vmops);
3359 }
3360
3361 /*
3362 * Called with mm->mmap_sem held for writing.
3363 * Insert a new vma covering the given region, with the given flags.
3364 * Its pages are supplied by the given array of struct page *.
3365 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3366 * The region past the last page supplied will always produce SIGBUS.
3367 * The array pointer and the pages it points to are assumed to stay alive
3368 * for as long as this mapping might exist.
3369 */
3370 struct vm_area_struct *_install_special_mapping(
3371 struct mm_struct *mm,
3372 unsigned long addr, unsigned long len,
3373 unsigned long vm_flags, const struct vm_special_mapping *spec)
3374 {
3375 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3376 &special_mapping_vmops);
3377 }
3378
3379 int install_special_mapping(struct mm_struct *mm,
3380 unsigned long addr, unsigned long len,
3381 unsigned long vm_flags, struct page **pages)
3382 {
3383 struct vm_area_struct *vma = __install_special_mapping(
3384 mm, addr, len, vm_flags, (void *)pages,
3385 &legacy_special_mapping_vmops);
3386
3387 return PTR_ERR_OR_ZERO(vma);
3388 }
3389
3390 static DEFINE_MUTEX(mm_all_locks_mutex);
3391
3392 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3393 {
3394 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3395 /*
3396 * The LSB of head.next can't change from under us
3397 * because we hold the mm_all_locks_mutex.
3398 */
3399 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3400 /*
3401 * We can safely modify head.next after taking the
3402 * anon_vma->root->rwsem. If some other vma in this mm shares
3403 * the same anon_vma we won't take it again.
3404 *
3405 * No need of atomic instructions here, head.next
3406 * can't change from under us thanks to the
3407 * anon_vma->root->rwsem.
3408 */
3409 if (__test_and_set_bit(0, (unsigned long *)
3410 &anon_vma->root->rb_root.rb_root.rb_node))
3411 BUG();
3412 }
3413 }
3414
3415 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3416 {
3417 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3418 /*
3419 * AS_MM_ALL_LOCKS can't change from under us because
3420 * we hold the mm_all_locks_mutex.
3421 *
3422 * Operations on ->flags have to be atomic because
3423 * even if AS_MM_ALL_LOCKS is stable thanks to the
3424 * mm_all_locks_mutex, there may be other cpus
3425 * changing other bitflags in parallel to us.
3426 */
3427 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3428 BUG();
3429 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3430 }
3431 }
3432
3433 /*
3434 * This operation locks against the VM for all pte/vma/mm related
3435 * operations that could ever happen on a certain mm. This includes
3436 * vmtruncate, try_to_unmap, and all page faults.
3437 *
3438 * The caller must take the mmap_sem in write mode before calling
3439 * mm_take_all_locks(). The caller isn't allowed to release the
3440 * mmap_sem until mm_drop_all_locks() returns.
3441 *
3442 * mmap_sem in write mode is required in order to block all operations
3443 * that could modify pagetables and free pages without need of
3444 * altering the vma layout. It's also needed in write mode to avoid new
3445 * anon_vmas to be associated with existing vmas.
3446 *
3447 * A single task can't take more than one mm_take_all_locks() in a row
3448 * or it would deadlock.
3449 *
3450 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3451 * mapping->flags avoid to take the same lock twice, if more than one
3452 * vma in this mm is backed by the same anon_vma or address_space.
3453 *
3454 * We take locks in following order, accordingly to comment at beginning
3455 * of mm/rmap.c:
3456 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3457 * hugetlb mapping);
3458 * - all i_mmap_rwsem locks;
3459 * - all anon_vma->rwseml
3460 *
3461 * We can take all locks within these types randomly because the VM code
3462 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3463 * mm_all_locks_mutex.
3464 *
3465 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3466 * that may have to take thousand of locks.
3467 *
3468 * mm_take_all_locks() can fail if it's interrupted by signals.
3469 */
3470 int mm_take_all_locks(struct mm_struct *mm)
3471 {
3472 struct vm_area_struct *vma;
3473 struct anon_vma_chain *avc;
3474
3475 BUG_ON(down_read_trylock(&mm->mmap_sem));
3476
3477 mutex_lock(&mm_all_locks_mutex);
3478
3479 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3480 if (signal_pending(current))
3481 goto out_unlock;
3482 if (vma->vm_file && vma->vm_file->f_mapping &&
3483 is_vm_hugetlb_page(vma))
3484 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3485 }
3486
3487 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3488 if (signal_pending(current))
3489 goto out_unlock;
3490 if (vma->vm_file && vma->vm_file->f_mapping &&
3491 !is_vm_hugetlb_page(vma))
3492 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3493 }
3494
3495 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3496 if (signal_pending(current))
3497 goto out_unlock;
3498 if (vma->anon_vma)
3499 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3500 vm_lock_anon_vma(mm, avc->anon_vma);
3501 }
3502
3503 return 0;
3504
3505 out_unlock:
3506 mm_drop_all_locks(mm);
3507 return -EINTR;
3508 }
3509
3510 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3511 {
3512 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3513 /*
3514 * The LSB of head.next can't change to 0 from under
3515 * us because we hold the mm_all_locks_mutex.
3516 *
3517 * We must however clear the bitflag before unlocking
3518 * the vma so the users using the anon_vma->rb_root will
3519 * never see our bitflag.
3520 *
3521 * No need of atomic instructions here, head.next
3522 * can't change from under us until we release the
3523 * anon_vma->root->rwsem.
3524 */
3525 if (!__test_and_clear_bit(0, (unsigned long *)
3526 &anon_vma->root->rb_root.rb_root.rb_node))
3527 BUG();
3528 anon_vma_unlock_write(anon_vma);
3529 }
3530 }
3531
3532 static void vm_unlock_mapping(struct address_space *mapping)
3533 {
3534 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3535 /*
3536 * AS_MM_ALL_LOCKS can't change to 0 from under us
3537 * because we hold the mm_all_locks_mutex.
3538 */
3539 i_mmap_unlock_write(mapping);
3540 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3541 &mapping->flags))
3542 BUG();
3543 }
3544 }
3545
3546 /*
3547 * The mmap_sem cannot be released by the caller until
3548 * mm_drop_all_locks() returns.
3549 */
3550 void mm_drop_all_locks(struct mm_struct *mm)
3551 {
3552 struct vm_area_struct *vma;
3553 struct anon_vma_chain *avc;
3554
3555 BUG_ON(down_read_trylock(&mm->mmap_sem));
3556 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3557
3558 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3559 if (vma->anon_vma)
3560 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3561 vm_unlock_anon_vma(avc->anon_vma);
3562 if (vma->vm_file && vma->vm_file->f_mapping)
3563 vm_unlock_mapping(vma->vm_file->f_mapping);
3564 }
3565
3566 mutex_unlock(&mm_all_locks_mutex);
3567 }
3568
3569 /*
3570 * initialise the percpu counter for VM
3571 */
3572 void __init mmap_init(void)
3573 {
3574 int ret;
3575
3576 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3577 VM_BUG_ON(ret);
3578 }
3579
3580 /*
3581 * Initialise sysctl_user_reserve_kbytes.
3582 *
3583 * This is intended to prevent a user from starting a single memory hogging
3584 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3585 * mode.
3586 *
3587 * The default value is min(3% of free memory, 128MB)
3588 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3589 */
3590 static int init_user_reserve(void)
3591 {
3592 unsigned long free_kbytes;
3593
3594 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3595
3596 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3597 return 0;
3598 }
3599 subsys_initcall(init_user_reserve);
3600
3601 /*
3602 * Initialise sysctl_admin_reserve_kbytes.
3603 *
3604 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3605 * to log in and kill a memory hogging process.
3606 *
3607 * Systems with more than 256MB will reserve 8MB, enough to recover
3608 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3609 * only reserve 3% of free pages by default.
3610 */
3611 static int init_admin_reserve(void)
3612 {
3613 unsigned long free_kbytes;
3614
3615 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3616
3617 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3618 return 0;
3619 }
3620 subsys_initcall(init_admin_reserve);
3621
3622 /*
3623 * Reinititalise user and admin reserves if memory is added or removed.
3624 *
3625 * The default user reserve max is 128MB, and the default max for the
3626 * admin reserve is 8MB. These are usually, but not always, enough to
3627 * enable recovery from a memory hogging process using login/sshd, a shell,
3628 * and tools like top. It may make sense to increase or even disable the
3629 * reserve depending on the existence of swap or variations in the recovery
3630 * tools. So, the admin may have changed them.
3631 *
3632 * If memory is added and the reserves have been eliminated or increased above
3633 * the default max, then we'll trust the admin.
3634 *
3635 * If memory is removed and there isn't enough free memory, then we
3636 * need to reset the reserves.
3637 *
3638 * Otherwise keep the reserve set by the admin.
3639 */
3640 static int reserve_mem_notifier(struct notifier_block *nb,
3641 unsigned long action, void *data)
3642 {
3643 unsigned long tmp, free_kbytes;
3644
3645 switch (action) {
3646 case MEM_ONLINE:
3647 /* Default max is 128MB. Leave alone if modified by operator. */
3648 tmp = sysctl_user_reserve_kbytes;
3649 if (0 < tmp && tmp < (1UL << 17))
3650 init_user_reserve();
3651
3652 /* Default max is 8MB. Leave alone if modified by operator. */
3653 tmp = sysctl_admin_reserve_kbytes;
3654 if (0 < tmp && tmp < (1UL << 13))
3655 init_admin_reserve();
3656
3657 break;
3658 case MEM_OFFLINE:
3659 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3660
3661 if (sysctl_user_reserve_kbytes > free_kbytes) {
3662 init_user_reserve();
3663 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3664 sysctl_user_reserve_kbytes);
3665 }
3666
3667 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3668 init_admin_reserve();
3669 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3670 sysctl_admin_reserve_kbytes);
3671 }
3672 break;
3673 default:
3674 break;
3675 }
3676 return NOTIFY_OK;
3677 }
3678
3679 static struct notifier_block reserve_mem_nb = {
3680 .notifier_call = reserve_mem_notifier,
3681 };
3682
3683 static int __meminit init_reserve_notifier(void)
3684 {
3685 if (register_hotmemory_notifier(&reserve_mem_nb))
3686 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3687
3688 return 0;
3689 }
3690 subsys_initcall(init_reserve_notifier);