]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page-writeback.c
block/laptop_mode: Convert timers to use timer_setup()
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48 #define MAX_PAUSE max(HZ/5, 1)
49
50 /*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56 /*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT 10
62
63 /*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74 int dirty_background_ratio = 10;
75
76 /*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80 unsigned long dirty_background_bytes;
81
82 /*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86 int vm_highmem_is_dirtyable;
87
88 /*
89 * The generator of dirty data starts writeback at this percentage
90 */
91 int vm_dirty_ratio = 20;
92
93 /*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97 unsigned long vm_dirty_bytes;
98
99 /*
100 * The interval between `kupdate'-style writebacks
101 */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114 int block_dump;
115
116 /*
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
119 */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 struct wb_domain global_wb_domain;
127
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
133 #endif
134 struct bdi_writeback *wb;
135 struct fprop_local_percpu *wb_completions;
136
137 unsigned long avail; /* dirtyable */
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
144 unsigned long wb_bg_thresh;
145
146 unsigned long pos_ratio;
147 };
148
149 /*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156 #ifdef CONFIG_CGROUP_WRITEBACK
157
158 #define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163
164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
168
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171 return dtc->dom;
172 }
173
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176 return dtc->dom;
177 }
178
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181 return mdtc->gdtc;
182 }
183
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186 return &wb->memcg_completions;
187 }
188
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191 {
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
204 do_div(min, tot_bw);
205 }
206 if (max < 100) {
207 max *= this_bw;
208 do_div(max, tot_bw);
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214 }
215
216 #else /* CONFIG_CGROUP_WRITEBACK */
217
218 #define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225 return false;
226 }
227
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230 return &global_wb_domain;
231 }
232
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235 return NULL;
236 }
237
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240 return NULL;
241 }
242
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245 {
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248 }
249
250 #endif /* CONFIG_CGROUP_WRITEBACK */
251
252 /*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
270 /**
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
273 *
274 * Returns the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
276 */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
290
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300
301 return nr_pages;
302 }
303
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307 int node;
308 unsigned long x = 0;
309 int i;
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
314 unsigned long nr_pages;
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
320 if (!populated_zone(z))
321 continue;
322
323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 /* watch for underflows */
325 nr_pages -= min(nr_pages, high_wmark_pages(z));
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
329 }
330 }
331
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351 #else
352 return 0;
353 #endif
354 }
355
356 /**
357 * global_dirtyable_memory - number of globally dirtyable pages
358 *
359 * Returns the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
361 */
362 static unsigned long global_dirtyable_memory(void)
363 {
364 unsigned long x;
365
366 x = global_zone_page_state(NR_FREE_PAGES);
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
373
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
376
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381 }
382
383 /**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
386 *
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391 * real-time tasks.
392 */
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 {
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 unsigned long thresh;
403 unsigned long bg_thresh;
404 struct task_struct *tsk;
405
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
409
410 /*
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
416 */
417 if (bytes)
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
420 if (bg_bytes)
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
423 bytes = bg_bytes = 0;
424 }
425
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 else
429 thresh = (ratio * available_memory) / PAGE_SIZE;
430
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 else
434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435
436 if (unlikely(bg_thresh >= thresh)) {
437 pr_warn("vm direct limit must be set greater than background limit.\n");
438 bg_thresh = thresh / 2;
439 }
440
441 tsk = current;
442 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
443 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
444 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
445 }
446 dtc->thresh = thresh;
447 dtc->bg_thresh = bg_thresh;
448
449 /* we should eventually report the domain in the TP */
450 if (!gdtc)
451 trace_global_dirty_state(bg_thresh, thresh);
452 }
453
454 /**
455 * global_dirty_limits - background-writeback and dirty-throttling thresholds
456 * @pbackground: out parameter for bg_thresh
457 * @pdirty: out parameter for thresh
458 *
459 * Calculate bg_thresh and thresh for global_wb_domain. See
460 * domain_dirty_limits() for details.
461 */
462 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
463 {
464 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
465
466 gdtc.avail = global_dirtyable_memory();
467 domain_dirty_limits(&gdtc);
468
469 *pbackground = gdtc.bg_thresh;
470 *pdirty = gdtc.thresh;
471 }
472
473 /**
474 * node_dirty_limit - maximum number of dirty pages allowed in a node
475 * @pgdat: the node
476 *
477 * Returns the maximum number of dirty pages allowed in a node, based
478 * on the node's dirtyable memory.
479 */
480 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
481 {
482 unsigned long node_memory = node_dirtyable_memory(pgdat);
483 struct task_struct *tsk = current;
484 unsigned long dirty;
485
486 if (vm_dirty_bytes)
487 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
488 node_memory / global_dirtyable_memory();
489 else
490 dirty = vm_dirty_ratio * node_memory / 100;
491
492 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
493 dirty += dirty / 4;
494
495 return dirty;
496 }
497
498 /**
499 * node_dirty_ok - tells whether a node is within its dirty limits
500 * @pgdat: the node to check
501 *
502 * Returns %true when the dirty pages in @pgdat are within the node's
503 * dirty limit, %false if the limit is exceeded.
504 */
505 bool node_dirty_ok(struct pglist_data *pgdat)
506 {
507 unsigned long limit = node_dirty_limit(pgdat);
508 unsigned long nr_pages = 0;
509
510 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
511 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
512 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
513
514 return nr_pages <= limit;
515 }
516
517 int dirty_background_ratio_handler(struct ctl_table *table, int write,
518 void __user *buffer, size_t *lenp,
519 loff_t *ppos)
520 {
521 int ret;
522
523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
524 if (ret == 0 && write)
525 dirty_background_bytes = 0;
526 return ret;
527 }
528
529 int dirty_background_bytes_handler(struct ctl_table *table, int write,
530 void __user *buffer, size_t *lenp,
531 loff_t *ppos)
532 {
533 int ret;
534
535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
536 if (ret == 0 && write)
537 dirty_background_ratio = 0;
538 return ret;
539 }
540
541 int dirty_ratio_handler(struct ctl_table *table, int write,
542 void __user *buffer, size_t *lenp,
543 loff_t *ppos)
544 {
545 int old_ratio = vm_dirty_ratio;
546 int ret;
547
548 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
549 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
550 writeback_set_ratelimit();
551 vm_dirty_bytes = 0;
552 }
553 return ret;
554 }
555
556 int dirty_bytes_handler(struct ctl_table *table, int write,
557 void __user *buffer, size_t *lenp,
558 loff_t *ppos)
559 {
560 unsigned long old_bytes = vm_dirty_bytes;
561 int ret;
562
563 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
564 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
565 writeback_set_ratelimit();
566 vm_dirty_ratio = 0;
567 }
568 return ret;
569 }
570
571 static unsigned long wp_next_time(unsigned long cur_time)
572 {
573 cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 /* 0 has a special meaning... */
575 if (!cur_time)
576 return 1;
577 return cur_time;
578 }
579
580 static void wb_domain_writeout_inc(struct wb_domain *dom,
581 struct fprop_local_percpu *completions,
582 unsigned int max_prop_frac)
583 {
584 __fprop_inc_percpu_max(&dom->completions, completions,
585 max_prop_frac);
586 /* First event after period switching was turned off? */
587 if (unlikely(!dom->period_time)) {
588 /*
589 * We can race with other __bdi_writeout_inc calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
592 * roughly the same.
593 */
594 dom->period_time = wp_next_time(jiffies);
595 mod_timer(&dom->period_timer, dom->period_time);
596 }
597 }
598
599 /*
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from test_clear_page_writeback().
602 */
603 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
604 {
605 struct wb_domain *cgdom;
606
607 inc_wb_stat(wb, WB_WRITTEN);
608 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
609 wb->bdi->max_prop_frac);
610
611 cgdom = mem_cgroup_wb_domain(wb);
612 if (cgdom)
613 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
614 wb->bdi->max_prop_frac);
615 }
616
617 void wb_writeout_inc(struct bdi_writeback *wb)
618 {
619 unsigned long flags;
620
621 local_irq_save(flags);
622 __wb_writeout_inc(wb);
623 local_irq_restore(flags);
624 }
625 EXPORT_SYMBOL_GPL(wb_writeout_inc);
626
627 /*
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
630 */
631 static void writeout_period(struct timer_list *t)
632 {
633 struct wb_domain *dom = from_timer(dom, t, period_timer);
634 int miss_periods = (jiffies - dom->period_time) /
635 VM_COMPLETIONS_PERIOD_LEN;
636
637 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 dom->period_time = wp_next_time(dom->period_time +
639 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
640 mod_timer(&dom->period_timer, dom->period_time);
641 } else {
642 /*
643 * Aging has zeroed all fractions. Stop wasting CPU on period
644 * updates.
645 */
646 dom->period_time = 0;
647 }
648 }
649
650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651 {
652 memset(dom, 0, sizeof(*dom));
653
654 spin_lock_init(&dom->lock);
655
656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
657
658 dom->dirty_limit_tstamp = jiffies;
659
660 return fprop_global_init(&dom->completions, gfp);
661 }
662
663 #ifdef CONFIG_CGROUP_WRITEBACK
664 void wb_domain_exit(struct wb_domain *dom)
665 {
666 del_timer_sync(&dom->period_timer);
667 fprop_global_destroy(&dom->completions);
668 }
669 #endif
670
671 /*
672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673 * registered backing devices, which, for obvious reasons, can not
674 * exceed 100%.
675 */
676 static unsigned int bdi_min_ratio;
677
678 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
679 {
680 int ret = 0;
681
682 spin_lock_bh(&bdi_lock);
683 if (min_ratio > bdi->max_ratio) {
684 ret = -EINVAL;
685 } else {
686 min_ratio -= bdi->min_ratio;
687 if (bdi_min_ratio + min_ratio < 100) {
688 bdi_min_ratio += min_ratio;
689 bdi->min_ratio += min_ratio;
690 } else {
691 ret = -EINVAL;
692 }
693 }
694 spin_unlock_bh(&bdi_lock);
695
696 return ret;
697 }
698
699 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
700 {
701 int ret = 0;
702
703 if (max_ratio > 100)
704 return -EINVAL;
705
706 spin_lock_bh(&bdi_lock);
707 if (bdi->min_ratio > max_ratio) {
708 ret = -EINVAL;
709 } else {
710 bdi->max_ratio = max_ratio;
711 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
712 }
713 spin_unlock_bh(&bdi_lock);
714
715 return ret;
716 }
717 EXPORT_SYMBOL(bdi_set_max_ratio);
718
719 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
720 unsigned long bg_thresh)
721 {
722 return (thresh + bg_thresh) / 2;
723 }
724
725 static unsigned long hard_dirty_limit(struct wb_domain *dom,
726 unsigned long thresh)
727 {
728 return max(thresh, dom->dirty_limit);
729 }
730
731 /*
732 * Memory which can be further allocated to a memcg domain is capped by
733 * system-wide clean memory excluding the amount being used in the domain.
734 */
735 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
736 unsigned long filepages, unsigned long headroom)
737 {
738 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
739 unsigned long clean = filepages - min(filepages, mdtc->dirty);
740 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
741 unsigned long other_clean = global_clean - min(global_clean, clean);
742
743 mdtc->avail = filepages + min(headroom, other_clean);
744 }
745
746 /**
747 * __wb_calc_thresh - @wb's share of dirty throttling threshold
748 * @dtc: dirty_throttle_context of interest
749 *
750 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
751 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
752 *
753 * Note that balance_dirty_pages() will only seriously take it as a hard limit
754 * when sleeping max_pause per page is not enough to keep the dirty pages under
755 * control. For example, when the device is completely stalled due to some error
756 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
757 * In the other normal situations, it acts more gently by throttling the tasks
758 * more (rather than completely block them) when the wb dirty pages go high.
759 *
760 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
761 * - starving fast devices
762 * - piling up dirty pages (that will take long time to sync) on slow devices
763 *
764 * The wb's share of dirty limit will be adapting to its throughput and
765 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
766 */
767 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
768 {
769 struct wb_domain *dom = dtc_dom(dtc);
770 unsigned long thresh = dtc->thresh;
771 u64 wb_thresh;
772 long numerator, denominator;
773 unsigned long wb_min_ratio, wb_max_ratio;
774
775 /*
776 * Calculate this BDI's share of the thresh ratio.
777 */
778 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
779 &numerator, &denominator);
780
781 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
782 wb_thresh *= numerator;
783 do_div(wb_thresh, denominator);
784
785 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
786
787 wb_thresh += (thresh * wb_min_ratio) / 100;
788 if (wb_thresh > (thresh * wb_max_ratio) / 100)
789 wb_thresh = thresh * wb_max_ratio / 100;
790
791 return wb_thresh;
792 }
793
794 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
795 {
796 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
797 .thresh = thresh };
798 return __wb_calc_thresh(&gdtc);
799 }
800
801 /*
802 * setpoint - dirty 3
803 * f(dirty) := 1.0 + (----------------)
804 * limit - setpoint
805 *
806 * it's a 3rd order polynomial that subjects to
807 *
808 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
809 * (2) f(setpoint) = 1.0 => the balance point
810 * (3) f(limit) = 0 => the hard limit
811 * (4) df/dx <= 0 => negative feedback control
812 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
813 * => fast response on large errors; small oscillation near setpoint
814 */
815 static long long pos_ratio_polynom(unsigned long setpoint,
816 unsigned long dirty,
817 unsigned long limit)
818 {
819 long long pos_ratio;
820 long x;
821
822 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
823 (limit - setpoint) | 1);
824 pos_ratio = x;
825 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
826 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
827 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
828
829 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
830 }
831
832 /*
833 * Dirty position control.
834 *
835 * (o) global/bdi setpoints
836 *
837 * We want the dirty pages be balanced around the global/wb setpoints.
838 * When the number of dirty pages is higher/lower than the setpoint, the
839 * dirty position control ratio (and hence task dirty ratelimit) will be
840 * decreased/increased to bring the dirty pages back to the setpoint.
841 *
842 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
843 *
844 * if (dirty < setpoint) scale up pos_ratio
845 * if (dirty > setpoint) scale down pos_ratio
846 *
847 * if (wb_dirty < wb_setpoint) scale up pos_ratio
848 * if (wb_dirty > wb_setpoint) scale down pos_ratio
849 *
850 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
851 *
852 * (o) global control line
853 *
854 * ^ pos_ratio
855 * |
856 * | |<===== global dirty control scope ======>|
857 * 2.0 .............*
858 * | .*
859 * | . *
860 * | . *
861 * | . *
862 * | . *
863 * | . *
864 * 1.0 ................................*
865 * | . . *
866 * | . . *
867 * | . . *
868 * | . . *
869 * | . . *
870 * 0 +------------.------------------.----------------------*------------->
871 * freerun^ setpoint^ limit^ dirty pages
872 *
873 * (o) wb control line
874 *
875 * ^ pos_ratio
876 * |
877 * | *
878 * | *
879 * | *
880 * | *
881 * | * |<=========== span ============>|
882 * 1.0 .......................*
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * | . *
893 * | . *
894 * 1/4 ...............................................* * * * * * * * * * * *
895 * | . .
896 * | . .
897 * | . .
898 * 0 +----------------------.-------------------------------.------------->
899 * wb_setpoint^ x_intercept^
900 *
901 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
902 * be smoothly throttled down to normal if it starts high in situations like
903 * - start writing to a slow SD card and a fast disk at the same time. The SD
904 * card's wb_dirty may rush to many times higher than wb_setpoint.
905 * - the wb dirty thresh drops quickly due to change of JBOD workload
906 */
907 static void wb_position_ratio(struct dirty_throttle_control *dtc)
908 {
909 struct bdi_writeback *wb = dtc->wb;
910 unsigned long write_bw = wb->avg_write_bandwidth;
911 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
912 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
913 unsigned long wb_thresh = dtc->wb_thresh;
914 unsigned long x_intercept;
915 unsigned long setpoint; /* dirty pages' target balance point */
916 unsigned long wb_setpoint;
917 unsigned long span;
918 long long pos_ratio; /* for scaling up/down the rate limit */
919 long x;
920
921 dtc->pos_ratio = 0;
922
923 if (unlikely(dtc->dirty >= limit))
924 return;
925
926 /*
927 * global setpoint
928 *
929 * See comment for pos_ratio_polynom().
930 */
931 setpoint = (freerun + limit) / 2;
932 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
933
934 /*
935 * The strictlimit feature is a tool preventing mistrusted filesystems
936 * from growing a large number of dirty pages before throttling. For
937 * such filesystems balance_dirty_pages always checks wb counters
938 * against wb limits. Even if global "nr_dirty" is under "freerun".
939 * This is especially important for fuse which sets bdi->max_ratio to
940 * 1% by default. Without strictlimit feature, fuse writeback may
941 * consume arbitrary amount of RAM because it is accounted in
942 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
943 *
944 * Here, in wb_position_ratio(), we calculate pos_ratio based on
945 * two values: wb_dirty and wb_thresh. Let's consider an example:
946 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
947 * limits are set by default to 10% and 20% (background and throttle).
948 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
949 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
950 * about ~6K pages (as the average of background and throttle wb
951 * limits). The 3rd order polynomial will provide positive feedback if
952 * wb_dirty is under wb_setpoint and vice versa.
953 *
954 * Note, that we cannot use global counters in these calculations
955 * because we want to throttle process writing to a strictlimit wb
956 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
957 * in the example above).
958 */
959 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
960 long long wb_pos_ratio;
961
962 if (dtc->wb_dirty < 8) {
963 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
964 2 << RATELIMIT_CALC_SHIFT);
965 return;
966 }
967
968 if (dtc->wb_dirty >= wb_thresh)
969 return;
970
971 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
972 dtc->wb_bg_thresh);
973
974 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
975 return;
976
977 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
978 wb_thresh);
979
980 /*
981 * Typically, for strictlimit case, wb_setpoint << setpoint
982 * and pos_ratio >> wb_pos_ratio. In the other words global
983 * state ("dirty") is not limiting factor and we have to
984 * make decision based on wb counters. But there is an
985 * important case when global pos_ratio should get precedence:
986 * global limits are exceeded (e.g. due to activities on other
987 * wb's) while given strictlimit wb is below limit.
988 *
989 * "pos_ratio * wb_pos_ratio" would work for the case above,
990 * but it would look too non-natural for the case of all
991 * activity in the system coming from a single strictlimit wb
992 * with bdi->max_ratio == 100%.
993 *
994 * Note that min() below somewhat changes the dynamics of the
995 * control system. Normally, pos_ratio value can be well over 3
996 * (when globally we are at freerun and wb is well below wb
997 * setpoint). Now the maximum pos_ratio in the same situation
998 * is 2. We might want to tweak this if we observe the control
999 * system is too slow to adapt.
1000 */
1001 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1002 return;
1003 }
1004
1005 /*
1006 * We have computed basic pos_ratio above based on global situation. If
1007 * the wb is over/under its share of dirty pages, we want to scale
1008 * pos_ratio further down/up. That is done by the following mechanism.
1009 */
1010
1011 /*
1012 * wb setpoint
1013 *
1014 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1015 *
1016 * x_intercept - wb_dirty
1017 * := --------------------------
1018 * x_intercept - wb_setpoint
1019 *
1020 * The main wb control line is a linear function that subjects to
1021 *
1022 * (1) f(wb_setpoint) = 1.0
1023 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1024 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1025 *
1026 * For single wb case, the dirty pages are observed to fluctuate
1027 * regularly within range
1028 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1029 * for various filesystems, where (2) can yield in a reasonable 12.5%
1030 * fluctuation range for pos_ratio.
1031 *
1032 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1033 * own size, so move the slope over accordingly and choose a slope that
1034 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1035 */
1036 if (unlikely(wb_thresh > dtc->thresh))
1037 wb_thresh = dtc->thresh;
1038 /*
1039 * It's very possible that wb_thresh is close to 0 not because the
1040 * device is slow, but that it has remained inactive for long time.
1041 * Honour such devices a reasonable good (hopefully IO efficient)
1042 * threshold, so that the occasional writes won't be blocked and active
1043 * writes can rampup the threshold quickly.
1044 */
1045 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1046 /*
1047 * scale global setpoint to wb's:
1048 * wb_setpoint = setpoint * wb_thresh / thresh
1049 */
1050 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1051 wb_setpoint = setpoint * (u64)x >> 16;
1052 /*
1053 * Use span=(8*write_bw) in single wb case as indicated by
1054 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1055 *
1056 * wb_thresh thresh - wb_thresh
1057 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1058 * thresh thresh
1059 */
1060 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1061 x_intercept = wb_setpoint + span;
1062
1063 if (dtc->wb_dirty < x_intercept - span / 4) {
1064 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1065 (x_intercept - wb_setpoint) | 1);
1066 } else
1067 pos_ratio /= 4;
1068
1069 /*
1070 * wb reserve area, safeguard against dirty pool underrun and disk idle
1071 * It may push the desired control point of global dirty pages higher
1072 * than setpoint.
1073 */
1074 x_intercept = wb_thresh / 2;
1075 if (dtc->wb_dirty < x_intercept) {
1076 if (dtc->wb_dirty > x_intercept / 8)
1077 pos_ratio = div_u64(pos_ratio * x_intercept,
1078 dtc->wb_dirty);
1079 else
1080 pos_ratio *= 8;
1081 }
1082
1083 dtc->pos_ratio = pos_ratio;
1084 }
1085
1086 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1087 unsigned long elapsed,
1088 unsigned long written)
1089 {
1090 const unsigned long period = roundup_pow_of_two(3 * HZ);
1091 unsigned long avg = wb->avg_write_bandwidth;
1092 unsigned long old = wb->write_bandwidth;
1093 u64 bw;
1094
1095 /*
1096 * bw = written * HZ / elapsed
1097 *
1098 * bw * elapsed + write_bandwidth * (period - elapsed)
1099 * write_bandwidth = ---------------------------------------------------
1100 * period
1101 *
1102 * @written may have decreased due to account_page_redirty().
1103 * Avoid underflowing @bw calculation.
1104 */
1105 bw = written - min(written, wb->written_stamp);
1106 bw *= HZ;
1107 if (unlikely(elapsed > period)) {
1108 do_div(bw, elapsed);
1109 avg = bw;
1110 goto out;
1111 }
1112 bw += (u64)wb->write_bandwidth * (period - elapsed);
1113 bw >>= ilog2(period);
1114
1115 /*
1116 * one more level of smoothing, for filtering out sudden spikes
1117 */
1118 if (avg > old && old >= (unsigned long)bw)
1119 avg -= (avg - old) >> 3;
1120
1121 if (avg < old && old <= (unsigned long)bw)
1122 avg += (old - avg) >> 3;
1123
1124 out:
1125 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1126 avg = max(avg, 1LU);
1127 if (wb_has_dirty_io(wb)) {
1128 long delta = avg - wb->avg_write_bandwidth;
1129 WARN_ON_ONCE(atomic_long_add_return(delta,
1130 &wb->bdi->tot_write_bandwidth) <= 0);
1131 }
1132 wb->write_bandwidth = bw;
1133 wb->avg_write_bandwidth = avg;
1134 }
1135
1136 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1137 {
1138 struct wb_domain *dom = dtc_dom(dtc);
1139 unsigned long thresh = dtc->thresh;
1140 unsigned long limit = dom->dirty_limit;
1141
1142 /*
1143 * Follow up in one step.
1144 */
1145 if (limit < thresh) {
1146 limit = thresh;
1147 goto update;
1148 }
1149
1150 /*
1151 * Follow down slowly. Use the higher one as the target, because thresh
1152 * may drop below dirty. This is exactly the reason to introduce
1153 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1154 */
1155 thresh = max(thresh, dtc->dirty);
1156 if (limit > thresh) {
1157 limit -= (limit - thresh) >> 5;
1158 goto update;
1159 }
1160 return;
1161 update:
1162 dom->dirty_limit = limit;
1163 }
1164
1165 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1166 unsigned long now)
1167 {
1168 struct wb_domain *dom = dtc_dom(dtc);
1169
1170 /*
1171 * check locklessly first to optimize away locking for the most time
1172 */
1173 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1174 return;
1175
1176 spin_lock(&dom->lock);
1177 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1178 update_dirty_limit(dtc);
1179 dom->dirty_limit_tstamp = now;
1180 }
1181 spin_unlock(&dom->lock);
1182 }
1183
1184 /*
1185 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1186 *
1187 * Normal wb tasks will be curbed at or below it in long term.
1188 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1189 */
1190 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1191 unsigned long dirtied,
1192 unsigned long elapsed)
1193 {
1194 struct bdi_writeback *wb = dtc->wb;
1195 unsigned long dirty = dtc->dirty;
1196 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1197 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1198 unsigned long setpoint = (freerun + limit) / 2;
1199 unsigned long write_bw = wb->avg_write_bandwidth;
1200 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1201 unsigned long dirty_rate;
1202 unsigned long task_ratelimit;
1203 unsigned long balanced_dirty_ratelimit;
1204 unsigned long step;
1205 unsigned long x;
1206 unsigned long shift;
1207
1208 /*
1209 * The dirty rate will match the writeout rate in long term, except
1210 * when dirty pages are truncated by userspace or re-dirtied by FS.
1211 */
1212 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1213
1214 /*
1215 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1216 */
1217 task_ratelimit = (u64)dirty_ratelimit *
1218 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1219 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1220
1221 /*
1222 * A linear estimation of the "balanced" throttle rate. The theory is,
1223 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1224 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1225 * formula will yield the balanced rate limit (write_bw / N).
1226 *
1227 * Note that the expanded form is not a pure rate feedback:
1228 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1229 * but also takes pos_ratio into account:
1230 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1231 *
1232 * (1) is not realistic because pos_ratio also takes part in balancing
1233 * the dirty rate. Consider the state
1234 * pos_ratio = 0.5 (3)
1235 * rate = 2 * (write_bw / N) (4)
1236 * If (1) is used, it will stuck in that state! Because each dd will
1237 * be throttled at
1238 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1239 * yielding
1240 * dirty_rate = N * task_ratelimit = write_bw (6)
1241 * put (6) into (1) we get
1242 * rate_(i+1) = rate_(i) (7)
1243 *
1244 * So we end up using (2) to always keep
1245 * rate_(i+1) ~= (write_bw / N) (8)
1246 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1247 * pos_ratio is able to drive itself to 1.0, which is not only where
1248 * the dirty count meet the setpoint, but also where the slope of
1249 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1250 */
1251 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1252 dirty_rate | 1);
1253 /*
1254 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1255 */
1256 if (unlikely(balanced_dirty_ratelimit > write_bw))
1257 balanced_dirty_ratelimit = write_bw;
1258
1259 /*
1260 * We could safely do this and return immediately:
1261 *
1262 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1263 *
1264 * However to get a more stable dirty_ratelimit, the below elaborated
1265 * code makes use of task_ratelimit to filter out singular points and
1266 * limit the step size.
1267 *
1268 * The below code essentially only uses the relative value of
1269 *
1270 * task_ratelimit - dirty_ratelimit
1271 * = (pos_ratio - 1) * dirty_ratelimit
1272 *
1273 * which reflects the direction and size of dirty position error.
1274 */
1275
1276 /*
1277 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1278 * task_ratelimit is on the same side of dirty_ratelimit, too.
1279 * For example, when
1280 * - dirty_ratelimit > balanced_dirty_ratelimit
1281 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1282 * lowering dirty_ratelimit will help meet both the position and rate
1283 * control targets. Otherwise, don't update dirty_ratelimit if it will
1284 * only help meet the rate target. After all, what the users ultimately
1285 * feel and care are stable dirty rate and small position error.
1286 *
1287 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1288 * and filter out the singular points of balanced_dirty_ratelimit. Which
1289 * keeps jumping around randomly and can even leap far away at times
1290 * due to the small 200ms estimation period of dirty_rate (we want to
1291 * keep that period small to reduce time lags).
1292 */
1293 step = 0;
1294
1295 /*
1296 * For strictlimit case, calculations above were based on wb counters
1297 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1298 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1299 * Hence, to calculate "step" properly, we have to use wb_dirty as
1300 * "dirty" and wb_setpoint as "setpoint".
1301 *
1302 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1303 * it's possible that wb_thresh is close to zero due to inactivity
1304 * of backing device.
1305 */
1306 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1307 dirty = dtc->wb_dirty;
1308 if (dtc->wb_dirty < 8)
1309 setpoint = dtc->wb_dirty + 1;
1310 else
1311 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1312 }
1313
1314 if (dirty < setpoint) {
1315 x = min3(wb->balanced_dirty_ratelimit,
1316 balanced_dirty_ratelimit, task_ratelimit);
1317 if (dirty_ratelimit < x)
1318 step = x - dirty_ratelimit;
1319 } else {
1320 x = max3(wb->balanced_dirty_ratelimit,
1321 balanced_dirty_ratelimit, task_ratelimit);
1322 if (dirty_ratelimit > x)
1323 step = dirty_ratelimit - x;
1324 }
1325
1326 /*
1327 * Don't pursue 100% rate matching. It's impossible since the balanced
1328 * rate itself is constantly fluctuating. So decrease the track speed
1329 * when it gets close to the target. Helps eliminate pointless tremors.
1330 */
1331 shift = dirty_ratelimit / (2 * step + 1);
1332 if (shift < BITS_PER_LONG)
1333 step = DIV_ROUND_UP(step >> shift, 8);
1334 else
1335 step = 0;
1336
1337 if (dirty_ratelimit < balanced_dirty_ratelimit)
1338 dirty_ratelimit += step;
1339 else
1340 dirty_ratelimit -= step;
1341
1342 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1343 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1344
1345 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1346 }
1347
1348 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1349 struct dirty_throttle_control *mdtc,
1350 unsigned long start_time,
1351 bool update_ratelimit)
1352 {
1353 struct bdi_writeback *wb = gdtc->wb;
1354 unsigned long now = jiffies;
1355 unsigned long elapsed = now - wb->bw_time_stamp;
1356 unsigned long dirtied;
1357 unsigned long written;
1358
1359 lockdep_assert_held(&wb->list_lock);
1360
1361 /*
1362 * rate-limit, only update once every 200ms.
1363 */
1364 if (elapsed < BANDWIDTH_INTERVAL)
1365 return;
1366
1367 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1368 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1369
1370 /*
1371 * Skip quiet periods when disk bandwidth is under-utilized.
1372 * (at least 1s idle time between two flusher runs)
1373 */
1374 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1375 goto snapshot;
1376
1377 if (update_ratelimit) {
1378 domain_update_bandwidth(gdtc, now);
1379 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1380
1381 /*
1382 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1383 * compiler has no way to figure that out. Help it.
1384 */
1385 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1386 domain_update_bandwidth(mdtc, now);
1387 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1388 }
1389 }
1390 wb_update_write_bandwidth(wb, elapsed, written);
1391
1392 snapshot:
1393 wb->dirtied_stamp = dirtied;
1394 wb->written_stamp = written;
1395 wb->bw_time_stamp = now;
1396 }
1397
1398 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1399 {
1400 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1401
1402 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1403 }
1404
1405 /*
1406 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1407 * will look to see if it needs to start dirty throttling.
1408 *
1409 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1410 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1411 * (the number of pages we may dirty without exceeding the dirty limits).
1412 */
1413 static unsigned long dirty_poll_interval(unsigned long dirty,
1414 unsigned long thresh)
1415 {
1416 if (thresh > dirty)
1417 return 1UL << (ilog2(thresh - dirty) >> 1);
1418
1419 return 1;
1420 }
1421
1422 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1423 unsigned long wb_dirty)
1424 {
1425 unsigned long bw = wb->avg_write_bandwidth;
1426 unsigned long t;
1427
1428 /*
1429 * Limit pause time for small memory systems. If sleeping for too long
1430 * time, a small pool of dirty/writeback pages may go empty and disk go
1431 * idle.
1432 *
1433 * 8 serves as the safety ratio.
1434 */
1435 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1436 t++;
1437
1438 return min_t(unsigned long, t, MAX_PAUSE);
1439 }
1440
1441 static long wb_min_pause(struct bdi_writeback *wb,
1442 long max_pause,
1443 unsigned long task_ratelimit,
1444 unsigned long dirty_ratelimit,
1445 int *nr_dirtied_pause)
1446 {
1447 long hi = ilog2(wb->avg_write_bandwidth);
1448 long lo = ilog2(wb->dirty_ratelimit);
1449 long t; /* target pause */
1450 long pause; /* estimated next pause */
1451 int pages; /* target nr_dirtied_pause */
1452
1453 /* target for 10ms pause on 1-dd case */
1454 t = max(1, HZ / 100);
1455
1456 /*
1457 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1458 * overheads.
1459 *
1460 * (N * 10ms) on 2^N concurrent tasks.
1461 */
1462 if (hi > lo)
1463 t += (hi - lo) * (10 * HZ) / 1024;
1464
1465 /*
1466 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1467 * on the much more stable dirty_ratelimit. However the next pause time
1468 * will be computed based on task_ratelimit and the two rate limits may
1469 * depart considerably at some time. Especially if task_ratelimit goes
1470 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1471 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1472 * result task_ratelimit won't be executed faithfully, which could
1473 * eventually bring down dirty_ratelimit.
1474 *
1475 * We apply two rules to fix it up:
1476 * 1) try to estimate the next pause time and if necessary, use a lower
1477 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1478 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1479 * 2) limit the target pause time to max_pause/2, so that the normal
1480 * small fluctuations of task_ratelimit won't trigger rule (1) and
1481 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1482 */
1483 t = min(t, 1 + max_pause / 2);
1484 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1485
1486 /*
1487 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1488 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1489 * When the 16 consecutive reads are often interrupted by some dirty
1490 * throttling pause during the async writes, cfq will go into idles
1491 * (deadline is fine). So push nr_dirtied_pause as high as possible
1492 * until reaches DIRTY_POLL_THRESH=32 pages.
1493 */
1494 if (pages < DIRTY_POLL_THRESH) {
1495 t = max_pause;
1496 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1497 if (pages > DIRTY_POLL_THRESH) {
1498 pages = DIRTY_POLL_THRESH;
1499 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1500 }
1501 }
1502
1503 pause = HZ * pages / (task_ratelimit + 1);
1504 if (pause > max_pause) {
1505 t = max_pause;
1506 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1507 }
1508
1509 *nr_dirtied_pause = pages;
1510 /*
1511 * The minimal pause time will normally be half the target pause time.
1512 */
1513 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1514 }
1515
1516 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1517 {
1518 struct bdi_writeback *wb = dtc->wb;
1519 unsigned long wb_reclaimable;
1520
1521 /*
1522 * wb_thresh is not treated as some limiting factor as
1523 * dirty_thresh, due to reasons
1524 * - in JBOD setup, wb_thresh can fluctuate a lot
1525 * - in a system with HDD and USB key, the USB key may somehow
1526 * go into state (wb_dirty >> wb_thresh) either because
1527 * wb_dirty starts high, or because wb_thresh drops low.
1528 * In this case we don't want to hard throttle the USB key
1529 * dirtiers for 100 seconds until wb_dirty drops under
1530 * wb_thresh. Instead the auxiliary wb control line in
1531 * wb_position_ratio() will let the dirtier task progress
1532 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1533 */
1534 dtc->wb_thresh = __wb_calc_thresh(dtc);
1535 dtc->wb_bg_thresh = dtc->thresh ?
1536 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1537
1538 /*
1539 * In order to avoid the stacked BDI deadlock we need
1540 * to ensure we accurately count the 'dirty' pages when
1541 * the threshold is low.
1542 *
1543 * Otherwise it would be possible to get thresh+n pages
1544 * reported dirty, even though there are thresh-m pages
1545 * actually dirty; with m+n sitting in the percpu
1546 * deltas.
1547 */
1548 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1549 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1550 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1551 } else {
1552 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1553 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1554 }
1555 }
1556
1557 /*
1558 * balance_dirty_pages() must be called by processes which are generating dirty
1559 * data. It looks at the number of dirty pages in the machine and will force
1560 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1561 * If we're over `background_thresh' then the writeback threads are woken to
1562 * perform some writeout.
1563 */
1564 static void balance_dirty_pages(struct bdi_writeback *wb,
1565 unsigned long pages_dirtied)
1566 {
1567 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1568 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1569 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1570 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1571 &mdtc_stor : NULL;
1572 struct dirty_throttle_control *sdtc;
1573 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1574 long period;
1575 long pause;
1576 long max_pause;
1577 long min_pause;
1578 int nr_dirtied_pause;
1579 bool dirty_exceeded = false;
1580 unsigned long task_ratelimit;
1581 unsigned long dirty_ratelimit;
1582 struct backing_dev_info *bdi = wb->bdi;
1583 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1584 unsigned long start_time = jiffies;
1585
1586 for (;;) {
1587 unsigned long now = jiffies;
1588 unsigned long dirty, thresh, bg_thresh;
1589 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1590 unsigned long m_thresh = 0;
1591 unsigned long m_bg_thresh = 0;
1592
1593 /*
1594 * Unstable writes are a feature of certain networked
1595 * filesystems (i.e. NFS) in which data may have been
1596 * written to the server's write cache, but has not yet
1597 * been flushed to permanent storage.
1598 */
1599 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1600 global_node_page_state(NR_UNSTABLE_NFS);
1601 gdtc->avail = global_dirtyable_memory();
1602 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1603
1604 domain_dirty_limits(gdtc);
1605
1606 if (unlikely(strictlimit)) {
1607 wb_dirty_limits(gdtc);
1608
1609 dirty = gdtc->wb_dirty;
1610 thresh = gdtc->wb_thresh;
1611 bg_thresh = gdtc->wb_bg_thresh;
1612 } else {
1613 dirty = gdtc->dirty;
1614 thresh = gdtc->thresh;
1615 bg_thresh = gdtc->bg_thresh;
1616 }
1617
1618 if (mdtc) {
1619 unsigned long filepages, headroom, writeback;
1620
1621 /*
1622 * If @wb belongs to !root memcg, repeat the same
1623 * basic calculations for the memcg domain.
1624 */
1625 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1626 &mdtc->dirty, &writeback);
1627 mdtc->dirty += writeback;
1628 mdtc_calc_avail(mdtc, filepages, headroom);
1629
1630 domain_dirty_limits(mdtc);
1631
1632 if (unlikely(strictlimit)) {
1633 wb_dirty_limits(mdtc);
1634 m_dirty = mdtc->wb_dirty;
1635 m_thresh = mdtc->wb_thresh;
1636 m_bg_thresh = mdtc->wb_bg_thresh;
1637 } else {
1638 m_dirty = mdtc->dirty;
1639 m_thresh = mdtc->thresh;
1640 m_bg_thresh = mdtc->bg_thresh;
1641 }
1642 }
1643
1644 /*
1645 * Throttle it only when the background writeback cannot
1646 * catch-up. This avoids (excessively) small writeouts
1647 * when the wb limits are ramping up in case of !strictlimit.
1648 *
1649 * In strictlimit case make decision based on the wb counters
1650 * and limits. Small writeouts when the wb limits are ramping
1651 * up are the price we consciously pay for strictlimit-ing.
1652 *
1653 * If memcg domain is in effect, @dirty should be under
1654 * both global and memcg freerun ceilings.
1655 */
1656 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657 (!mdtc ||
1658 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659 unsigned long intv = dirty_poll_interval(dirty, thresh);
1660 unsigned long m_intv = ULONG_MAX;
1661
1662 current->dirty_paused_when = now;
1663 current->nr_dirtied = 0;
1664 if (mdtc)
1665 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1666 current->nr_dirtied_pause = min(intv, m_intv);
1667 break;
1668 }
1669
1670 if (unlikely(!writeback_in_progress(wb)))
1671 wb_start_background_writeback(wb);
1672
1673 /*
1674 * Calculate global domain's pos_ratio and select the
1675 * global dtc by default.
1676 */
1677 if (!strictlimit)
1678 wb_dirty_limits(gdtc);
1679
1680 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1682
1683 wb_position_ratio(gdtc);
1684 sdtc = gdtc;
1685
1686 if (mdtc) {
1687 /*
1688 * If memcg domain is in effect, calculate its
1689 * pos_ratio. @wb should satisfy constraints from
1690 * both global and memcg domains. Choose the one
1691 * w/ lower pos_ratio.
1692 */
1693 if (!strictlimit)
1694 wb_dirty_limits(mdtc);
1695
1696 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1697 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1698
1699 wb_position_ratio(mdtc);
1700 if (mdtc->pos_ratio < gdtc->pos_ratio)
1701 sdtc = mdtc;
1702 }
1703
1704 if (dirty_exceeded && !wb->dirty_exceeded)
1705 wb->dirty_exceeded = 1;
1706
1707 if (time_is_before_jiffies(wb->bw_time_stamp +
1708 BANDWIDTH_INTERVAL)) {
1709 spin_lock(&wb->list_lock);
1710 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1711 spin_unlock(&wb->list_lock);
1712 }
1713
1714 /* throttle according to the chosen dtc */
1715 dirty_ratelimit = wb->dirty_ratelimit;
1716 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1717 RATELIMIT_CALC_SHIFT;
1718 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1719 min_pause = wb_min_pause(wb, max_pause,
1720 task_ratelimit, dirty_ratelimit,
1721 &nr_dirtied_pause);
1722
1723 if (unlikely(task_ratelimit == 0)) {
1724 period = max_pause;
1725 pause = max_pause;
1726 goto pause;
1727 }
1728 period = HZ * pages_dirtied / task_ratelimit;
1729 pause = period;
1730 if (current->dirty_paused_when)
1731 pause -= now - current->dirty_paused_when;
1732 /*
1733 * For less than 1s think time (ext3/4 may block the dirtier
1734 * for up to 800ms from time to time on 1-HDD; so does xfs,
1735 * however at much less frequency), try to compensate it in
1736 * future periods by updating the virtual time; otherwise just
1737 * do a reset, as it may be a light dirtier.
1738 */
1739 if (pause < min_pause) {
1740 trace_balance_dirty_pages(wb,
1741 sdtc->thresh,
1742 sdtc->bg_thresh,
1743 sdtc->dirty,
1744 sdtc->wb_thresh,
1745 sdtc->wb_dirty,
1746 dirty_ratelimit,
1747 task_ratelimit,
1748 pages_dirtied,
1749 period,
1750 min(pause, 0L),
1751 start_time);
1752 if (pause < -HZ) {
1753 current->dirty_paused_when = now;
1754 current->nr_dirtied = 0;
1755 } else if (period) {
1756 current->dirty_paused_when += period;
1757 current->nr_dirtied = 0;
1758 } else if (current->nr_dirtied_pause <= pages_dirtied)
1759 current->nr_dirtied_pause += pages_dirtied;
1760 break;
1761 }
1762 if (unlikely(pause > max_pause)) {
1763 /* for occasional dropped task_ratelimit */
1764 now += min(pause - max_pause, max_pause);
1765 pause = max_pause;
1766 }
1767
1768 pause:
1769 trace_balance_dirty_pages(wb,
1770 sdtc->thresh,
1771 sdtc->bg_thresh,
1772 sdtc->dirty,
1773 sdtc->wb_thresh,
1774 sdtc->wb_dirty,
1775 dirty_ratelimit,
1776 task_ratelimit,
1777 pages_dirtied,
1778 period,
1779 pause,
1780 start_time);
1781 __set_current_state(TASK_KILLABLE);
1782 wb->dirty_sleep = now;
1783 io_schedule_timeout(pause);
1784
1785 current->dirty_paused_when = now + pause;
1786 current->nr_dirtied = 0;
1787 current->nr_dirtied_pause = nr_dirtied_pause;
1788
1789 /*
1790 * This is typically equal to (dirty < thresh) and can also
1791 * keep "1000+ dd on a slow USB stick" under control.
1792 */
1793 if (task_ratelimit)
1794 break;
1795
1796 /*
1797 * In the case of an unresponding NFS server and the NFS dirty
1798 * pages exceeds dirty_thresh, give the other good wb's a pipe
1799 * to go through, so that tasks on them still remain responsive.
1800 *
1801 * In theory 1 page is enough to keep the consumer-producer
1802 * pipe going: the flusher cleans 1 page => the task dirties 1
1803 * more page. However wb_dirty has accounting errors. So use
1804 * the larger and more IO friendly wb_stat_error.
1805 */
1806 if (sdtc->wb_dirty <= wb_stat_error())
1807 break;
1808
1809 if (fatal_signal_pending(current))
1810 break;
1811 }
1812
1813 if (!dirty_exceeded && wb->dirty_exceeded)
1814 wb->dirty_exceeded = 0;
1815
1816 if (writeback_in_progress(wb))
1817 return;
1818
1819 /*
1820 * In laptop mode, we wait until hitting the higher threshold before
1821 * starting background writeout, and then write out all the way down
1822 * to the lower threshold. So slow writers cause minimal disk activity.
1823 *
1824 * In normal mode, we start background writeout at the lower
1825 * background_thresh, to keep the amount of dirty memory low.
1826 */
1827 if (laptop_mode)
1828 return;
1829
1830 if (nr_reclaimable > gdtc->bg_thresh)
1831 wb_start_background_writeback(wb);
1832 }
1833
1834 static DEFINE_PER_CPU(int, bdp_ratelimits);
1835
1836 /*
1837 * Normal tasks are throttled by
1838 * loop {
1839 * dirty tsk->nr_dirtied_pause pages;
1840 * take a snap in balance_dirty_pages();
1841 * }
1842 * However there is a worst case. If every task exit immediately when dirtied
1843 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1844 * called to throttle the page dirties. The solution is to save the not yet
1845 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1846 * randomly into the running tasks. This works well for the above worst case,
1847 * as the new task will pick up and accumulate the old task's leaked dirty
1848 * count and eventually get throttled.
1849 */
1850 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1851
1852 /**
1853 * balance_dirty_pages_ratelimited - balance dirty memory state
1854 * @mapping: address_space which was dirtied
1855 *
1856 * Processes which are dirtying memory should call in here once for each page
1857 * which was newly dirtied. The function will periodically check the system's
1858 * dirty state and will initiate writeback if needed.
1859 *
1860 * On really big machines, get_writeback_state is expensive, so try to avoid
1861 * calling it too often (ratelimiting). But once we're over the dirty memory
1862 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1863 * from overshooting the limit by (ratelimit_pages) each.
1864 */
1865 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1866 {
1867 struct inode *inode = mapping->host;
1868 struct backing_dev_info *bdi = inode_to_bdi(inode);
1869 struct bdi_writeback *wb = NULL;
1870 int ratelimit;
1871 int *p;
1872
1873 if (!bdi_cap_account_dirty(bdi))
1874 return;
1875
1876 if (inode_cgwb_enabled(inode))
1877 wb = wb_get_create_current(bdi, GFP_KERNEL);
1878 if (!wb)
1879 wb = &bdi->wb;
1880
1881 ratelimit = current->nr_dirtied_pause;
1882 if (wb->dirty_exceeded)
1883 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1884
1885 preempt_disable();
1886 /*
1887 * This prevents one CPU to accumulate too many dirtied pages without
1888 * calling into balance_dirty_pages(), which can happen when there are
1889 * 1000+ tasks, all of them start dirtying pages at exactly the same
1890 * time, hence all honoured too large initial task->nr_dirtied_pause.
1891 */
1892 p = this_cpu_ptr(&bdp_ratelimits);
1893 if (unlikely(current->nr_dirtied >= ratelimit))
1894 *p = 0;
1895 else if (unlikely(*p >= ratelimit_pages)) {
1896 *p = 0;
1897 ratelimit = 0;
1898 }
1899 /*
1900 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1901 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1902 * the dirty throttling and livelock other long-run dirtiers.
1903 */
1904 p = this_cpu_ptr(&dirty_throttle_leaks);
1905 if (*p > 0 && current->nr_dirtied < ratelimit) {
1906 unsigned long nr_pages_dirtied;
1907 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1908 *p -= nr_pages_dirtied;
1909 current->nr_dirtied += nr_pages_dirtied;
1910 }
1911 preempt_enable();
1912
1913 if (unlikely(current->nr_dirtied >= ratelimit))
1914 balance_dirty_pages(wb, current->nr_dirtied);
1915
1916 wb_put(wb);
1917 }
1918 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1919
1920 /**
1921 * wb_over_bg_thresh - does @wb need to be written back?
1922 * @wb: bdi_writeback of interest
1923 *
1924 * Determines whether background writeback should keep writing @wb or it's
1925 * clean enough. Returns %true if writeback should continue.
1926 */
1927 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1928 {
1929 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1930 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1931 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1932 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1933 &mdtc_stor : NULL;
1934
1935 /*
1936 * Similar to balance_dirty_pages() but ignores pages being written
1937 * as we're trying to decide whether to put more under writeback.
1938 */
1939 gdtc->avail = global_dirtyable_memory();
1940 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1941 global_node_page_state(NR_UNSTABLE_NFS);
1942 domain_dirty_limits(gdtc);
1943
1944 if (gdtc->dirty > gdtc->bg_thresh)
1945 return true;
1946
1947 if (wb_stat(wb, WB_RECLAIMABLE) >
1948 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1949 return true;
1950
1951 if (mdtc) {
1952 unsigned long filepages, headroom, writeback;
1953
1954 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1955 &writeback);
1956 mdtc_calc_avail(mdtc, filepages, headroom);
1957 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1958
1959 if (mdtc->dirty > mdtc->bg_thresh)
1960 return true;
1961
1962 if (wb_stat(wb, WB_RECLAIMABLE) >
1963 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1964 return true;
1965 }
1966
1967 return false;
1968 }
1969
1970 /*
1971 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1972 */
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974 void __user *buffer, size_t *length, loff_t *ppos)
1975 {
1976 unsigned int old_interval = dirty_writeback_interval;
1977 int ret;
1978
1979 ret = proc_dointvec(table, write, buffer, length, ppos);
1980
1981 /*
1982 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1983 * and a different non-zero value will wakeup the writeback threads.
1984 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1985 * iterate over all bdis and wbs.
1986 * The reason we do this is to make the change take effect immediately.
1987 */
1988 if (!ret && write && dirty_writeback_interval &&
1989 dirty_writeback_interval != old_interval)
1990 wakeup_flusher_threads(WB_REASON_PERIODIC);
1991
1992 return ret;
1993 }
1994
1995 #ifdef CONFIG_BLOCK
1996 void laptop_mode_timer_fn(struct timer_list *t)
1997 {
1998 struct backing_dev_info *backing_dev_info =
1999 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2000
2001 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2002 }
2003
2004 /*
2005 * We've spun up the disk and we're in laptop mode: schedule writeback
2006 * of all dirty data a few seconds from now. If the flush is already scheduled
2007 * then push it back - the user is still using the disk.
2008 */
2009 void laptop_io_completion(struct backing_dev_info *info)
2010 {
2011 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2012 }
2013
2014 /*
2015 * We're in laptop mode and we've just synced. The sync's writes will have
2016 * caused another writeback to be scheduled by laptop_io_completion.
2017 * Nothing needs to be written back anymore, so we unschedule the writeback.
2018 */
2019 void laptop_sync_completion(void)
2020 {
2021 struct backing_dev_info *bdi;
2022
2023 rcu_read_lock();
2024
2025 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2026 del_timer(&bdi->laptop_mode_wb_timer);
2027
2028 rcu_read_unlock();
2029 }
2030 #endif
2031
2032 /*
2033 * If ratelimit_pages is too high then we can get into dirty-data overload
2034 * if a large number of processes all perform writes at the same time.
2035 * If it is too low then SMP machines will call the (expensive)
2036 * get_writeback_state too often.
2037 *
2038 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2039 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2040 * thresholds.
2041 */
2042
2043 void writeback_set_ratelimit(void)
2044 {
2045 struct wb_domain *dom = &global_wb_domain;
2046 unsigned long background_thresh;
2047 unsigned long dirty_thresh;
2048
2049 global_dirty_limits(&background_thresh, &dirty_thresh);
2050 dom->dirty_limit = dirty_thresh;
2051 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2052 if (ratelimit_pages < 16)
2053 ratelimit_pages = 16;
2054 }
2055
2056 static int page_writeback_cpu_online(unsigned int cpu)
2057 {
2058 writeback_set_ratelimit();
2059 return 0;
2060 }
2061
2062 /*
2063 * Called early on to tune the page writeback dirty limits.
2064 *
2065 * We used to scale dirty pages according to how total memory
2066 * related to pages that could be allocated for buffers (by
2067 * comparing nr_free_buffer_pages() to vm_total_pages.
2068 *
2069 * However, that was when we used "dirty_ratio" to scale with
2070 * all memory, and we don't do that any more. "dirty_ratio"
2071 * is now applied to total non-HIGHPAGE memory (by subtracting
2072 * totalhigh_pages from vm_total_pages), and as such we can't
2073 * get into the old insane situation any more where we had
2074 * large amounts of dirty pages compared to a small amount of
2075 * non-HIGHMEM memory.
2076 *
2077 * But we might still want to scale the dirty_ratio by how
2078 * much memory the box has..
2079 */
2080 void __init page_writeback_init(void)
2081 {
2082 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2083
2084 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2085 page_writeback_cpu_online, NULL);
2086 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2087 page_writeback_cpu_online);
2088 }
2089
2090 /**
2091 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2092 * @mapping: address space structure to write
2093 * @start: starting page index
2094 * @end: ending page index (inclusive)
2095 *
2096 * This function scans the page range from @start to @end (inclusive) and tags
2097 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2098 * that write_cache_pages (or whoever calls this function) will then use
2099 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2100 * used to avoid livelocking of writeback by a process steadily creating new
2101 * dirty pages in the file (thus it is important for this function to be quick
2102 * so that it can tag pages faster than a dirtying process can create them).
2103 */
2104 /*
2105 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2106 */
2107 void tag_pages_for_writeback(struct address_space *mapping,
2108 pgoff_t start, pgoff_t end)
2109 {
2110 #define WRITEBACK_TAG_BATCH 4096
2111 unsigned long tagged = 0;
2112 struct radix_tree_iter iter;
2113 void **slot;
2114
2115 spin_lock_irq(&mapping->tree_lock);
2116 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2117 PAGECACHE_TAG_DIRTY) {
2118 if (iter.index > end)
2119 break;
2120 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2121 PAGECACHE_TAG_TOWRITE);
2122 tagged++;
2123 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2124 continue;
2125 slot = radix_tree_iter_resume(slot, &iter);
2126 spin_unlock_irq(&mapping->tree_lock);
2127 cond_resched();
2128 spin_lock_irq(&mapping->tree_lock);
2129 }
2130 spin_unlock_irq(&mapping->tree_lock);
2131 }
2132 EXPORT_SYMBOL(tag_pages_for_writeback);
2133
2134 /**
2135 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2136 * @mapping: address space structure to write
2137 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2138 * @writepage: function called for each page
2139 * @data: data passed to writepage function
2140 *
2141 * If a page is already under I/O, write_cache_pages() skips it, even
2142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2144 * and msync() need to guarantee that all the data which was dirty at the time
2145 * the call was made get new I/O started against them. If wbc->sync_mode is
2146 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2147 * existing IO to complete.
2148 *
2149 * To avoid livelocks (when other process dirties new pages), we first tag
2150 * pages which should be written back with TOWRITE tag and only then start
2151 * writing them. For data-integrity sync we have to be careful so that we do
2152 * not miss some pages (e.g., because some other process has cleared TOWRITE
2153 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2154 * by the process clearing the DIRTY tag (and submitting the page for IO).
2155 */
2156 int write_cache_pages(struct address_space *mapping,
2157 struct writeback_control *wbc, writepage_t writepage,
2158 void *data)
2159 {
2160 int ret = 0;
2161 int done = 0;
2162 struct pagevec pvec;
2163 int nr_pages;
2164 pgoff_t uninitialized_var(writeback_index);
2165 pgoff_t index;
2166 pgoff_t end; /* Inclusive */
2167 pgoff_t done_index;
2168 int cycled;
2169 int range_whole = 0;
2170 int tag;
2171
2172 pagevec_init(&pvec);
2173 if (wbc->range_cyclic) {
2174 writeback_index = mapping->writeback_index; /* prev offset */
2175 index = writeback_index;
2176 if (index == 0)
2177 cycled = 1;
2178 else
2179 cycled = 0;
2180 end = -1;
2181 } else {
2182 index = wbc->range_start >> PAGE_SHIFT;
2183 end = wbc->range_end >> PAGE_SHIFT;
2184 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2185 range_whole = 1;
2186 cycled = 1; /* ignore range_cyclic tests */
2187 }
2188 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2189 tag = PAGECACHE_TAG_TOWRITE;
2190 else
2191 tag = PAGECACHE_TAG_DIRTY;
2192 retry:
2193 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2194 tag_pages_for_writeback(mapping, index, end);
2195 done_index = index;
2196 while (!done && (index <= end)) {
2197 int i;
2198
2199 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2200 tag);
2201 if (nr_pages == 0)
2202 break;
2203
2204 for (i = 0; i < nr_pages; i++) {
2205 struct page *page = pvec.pages[i];
2206
2207 done_index = page->index;
2208
2209 lock_page(page);
2210
2211 /*
2212 * Page truncated or invalidated. We can freely skip it
2213 * then, even for data integrity operations: the page
2214 * has disappeared concurrently, so there could be no
2215 * real expectation of this data interity operation
2216 * even if there is now a new, dirty page at the same
2217 * pagecache address.
2218 */
2219 if (unlikely(page->mapping != mapping)) {
2220 continue_unlock:
2221 unlock_page(page);
2222 continue;
2223 }
2224
2225 if (!PageDirty(page)) {
2226 /* someone wrote it for us */
2227 goto continue_unlock;
2228 }
2229
2230 if (PageWriteback(page)) {
2231 if (wbc->sync_mode != WB_SYNC_NONE)
2232 wait_on_page_writeback(page);
2233 else
2234 goto continue_unlock;
2235 }
2236
2237 BUG_ON(PageWriteback(page));
2238 if (!clear_page_dirty_for_io(page))
2239 goto continue_unlock;
2240
2241 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2242 ret = (*writepage)(page, wbc, data);
2243 if (unlikely(ret)) {
2244 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2245 unlock_page(page);
2246 ret = 0;
2247 } else {
2248 /*
2249 * done_index is set past this page,
2250 * so media errors will not choke
2251 * background writeout for the entire
2252 * file. This has consequences for
2253 * range_cyclic semantics (ie. it may
2254 * not be suitable for data integrity
2255 * writeout).
2256 */
2257 done_index = page->index + 1;
2258 done = 1;
2259 break;
2260 }
2261 }
2262
2263 /*
2264 * We stop writing back only if we are not doing
2265 * integrity sync. In case of integrity sync we have to
2266 * keep going until we have written all the pages
2267 * we tagged for writeback prior to entering this loop.
2268 */
2269 if (--wbc->nr_to_write <= 0 &&
2270 wbc->sync_mode == WB_SYNC_NONE) {
2271 done = 1;
2272 break;
2273 }
2274 }
2275 pagevec_release(&pvec);
2276 cond_resched();
2277 }
2278 if (!cycled && !done) {
2279 /*
2280 * range_cyclic:
2281 * We hit the last page and there is more work to be done: wrap
2282 * back to the start of the file
2283 */
2284 cycled = 1;
2285 index = 0;
2286 end = writeback_index - 1;
2287 goto retry;
2288 }
2289 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2290 mapping->writeback_index = done_index;
2291
2292 return ret;
2293 }
2294 EXPORT_SYMBOL(write_cache_pages);
2295
2296 /*
2297 * Function used by generic_writepages to call the real writepage
2298 * function and set the mapping flags on error
2299 */
2300 static int __writepage(struct page *page, struct writeback_control *wbc,
2301 void *data)
2302 {
2303 struct address_space *mapping = data;
2304 int ret = mapping->a_ops->writepage(page, wbc);
2305 mapping_set_error(mapping, ret);
2306 return ret;
2307 }
2308
2309 /**
2310 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2311 * @mapping: address space structure to write
2312 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2313 *
2314 * This is a library function, which implements the writepages()
2315 * address_space_operation.
2316 */
2317 int generic_writepages(struct address_space *mapping,
2318 struct writeback_control *wbc)
2319 {
2320 struct blk_plug plug;
2321 int ret;
2322
2323 /* deal with chardevs and other special file */
2324 if (!mapping->a_ops->writepage)
2325 return 0;
2326
2327 blk_start_plug(&plug);
2328 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2329 blk_finish_plug(&plug);
2330 return ret;
2331 }
2332
2333 EXPORT_SYMBOL(generic_writepages);
2334
2335 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2336 {
2337 int ret;
2338
2339 if (wbc->nr_to_write <= 0)
2340 return 0;
2341 while (1) {
2342 if (mapping->a_ops->writepages)
2343 ret = mapping->a_ops->writepages(mapping, wbc);
2344 else
2345 ret = generic_writepages(mapping, wbc);
2346 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2347 break;
2348 cond_resched();
2349 congestion_wait(BLK_RW_ASYNC, HZ/50);
2350 }
2351 return ret;
2352 }
2353
2354 /**
2355 * write_one_page - write out a single page and wait on I/O
2356 * @page: the page to write
2357 *
2358 * The page must be locked by the caller and will be unlocked upon return.
2359 *
2360 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2361 * function returns.
2362 */
2363 int write_one_page(struct page *page)
2364 {
2365 struct address_space *mapping = page->mapping;
2366 int ret = 0;
2367 struct writeback_control wbc = {
2368 .sync_mode = WB_SYNC_ALL,
2369 .nr_to_write = 1,
2370 };
2371
2372 BUG_ON(!PageLocked(page));
2373
2374 wait_on_page_writeback(page);
2375
2376 if (clear_page_dirty_for_io(page)) {
2377 get_page(page);
2378 ret = mapping->a_ops->writepage(page, &wbc);
2379 if (ret == 0)
2380 wait_on_page_writeback(page);
2381 put_page(page);
2382 } else {
2383 unlock_page(page);
2384 }
2385
2386 if (!ret)
2387 ret = filemap_check_errors(mapping);
2388 return ret;
2389 }
2390 EXPORT_SYMBOL(write_one_page);
2391
2392 /*
2393 * For address_spaces which do not use buffers nor write back.
2394 */
2395 int __set_page_dirty_no_writeback(struct page *page)
2396 {
2397 if (!PageDirty(page))
2398 return !TestSetPageDirty(page);
2399 return 0;
2400 }
2401
2402 /*
2403 * Helper function for set_page_dirty family.
2404 *
2405 * Caller must hold lock_page_memcg().
2406 *
2407 * NOTE: This relies on being atomic wrt interrupts.
2408 */
2409 void account_page_dirtied(struct page *page, struct address_space *mapping)
2410 {
2411 struct inode *inode = mapping->host;
2412
2413 trace_writeback_dirty_page(page, mapping);
2414
2415 if (mapping_cap_account_dirty(mapping)) {
2416 struct bdi_writeback *wb;
2417
2418 inode_attach_wb(inode, page);
2419 wb = inode_to_wb(inode);
2420
2421 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2422 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2423 __inc_node_page_state(page, NR_DIRTIED);
2424 inc_wb_stat(wb, WB_RECLAIMABLE);
2425 inc_wb_stat(wb, WB_DIRTIED);
2426 task_io_account_write(PAGE_SIZE);
2427 current->nr_dirtied++;
2428 this_cpu_inc(bdp_ratelimits);
2429 }
2430 }
2431 EXPORT_SYMBOL(account_page_dirtied);
2432
2433 /*
2434 * Helper function for deaccounting dirty page without writeback.
2435 *
2436 * Caller must hold lock_page_memcg().
2437 */
2438 void account_page_cleaned(struct page *page, struct address_space *mapping,
2439 struct bdi_writeback *wb)
2440 {
2441 if (mapping_cap_account_dirty(mapping)) {
2442 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2443 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2444 dec_wb_stat(wb, WB_RECLAIMABLE);
2445 task_io_account_cancelled_write(PAGE_SIZE);
2446 }
2447 }
2448
2449 /*
2450 * For address_spaces which do not use buffers. Just tag the page as dirty in
2451 * its radix tree.
2452 *
2453 * This is also used when a single buffer is being dirtied: we want to set the
2454 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2455 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2456 *
2457 * The caller must ensure this doesn't race with truncation. Most will simply
2458 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2459 * the pte lock held, which also locks out truncation.
2460 */
2461 int __set_page_dirty_nobuffers(struct page *page)
2462 {
2463 lock_page_memcg(page);
2464 if (!TestSetPageDirty(page)) {
2465 struct address_space *mapping = page_mapping(page);
2466 unsigned long flags;
2467
2468 if (!mapping) {
2469 unlock_page_memcg(page);
2470 return 1;
2471 }
2472
2473 spin_lock_irqsave(&mapping->tree_lock, flags);
2474 BUG_ON(page_mapping(page) != mapping);
2475 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2476 account_page_dirtied(page, mapping);
2477 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2478 PAGECACHE_TAG_DIRTY);
2479 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2480 unlock_page_memcg(page);
2481
2482 if (mapping->host) {
2483 /* !PageAnon && !swapper_space */
2484 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2485 }
2486 return 1;
2487 }
2488 unlock_page_memcg(page);
2489 return 0;
2490 }
2491 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2492
2493 /*
2494 * Call this whenever redirtying a page, to de-account the dirty counters
2495 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2496 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2497 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2498 * control.
2499 */
2500 void account_page_redirty(struct page *page)
2501 {
2502 struct address_space *mapping = page->mapping;
2503
2504 if (mapping && mapping_cap_account_dirty(mapping)) {
2505 struct inode *inode = mapping->host;
2506 struct bdi_writeback *wb;
2507 bool locked;
2508
2509 wb = unlocked_inode_to_wb_begin(inode, &locked);
2510 current->nr_dirtied--;
2511 dec_node_page_state(page, NR_DIRTIED);
2512 dec_wb_stat(wb, WB_DIRTIED);
2513 unlocked_inode_to_wb_end(inode, locked);
2514 }
2515 }
2516 EXPORT_SYMBOL(account_page_redirty);
2517
2518 /*
2519 * When a writepage implementation decides that it doesn't want to write this
2520 * page for some reason, it should redirty the locked page via
2521 * redirty_page_for_writepage() and it should then unlock the page and return 0
2522 */
2523 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2524 {
2525 int ret;
2526
2527 wbc->pages_skipped++;
2528 ret = __set_page_dirty_nobuffers(page);
2529 account_page_redirty(page);
2530 return ret;
2531 }
2532 EXPORT_SYMBOL(redirty_page_for_writepage);
2533
2534 /*
2535 * Dirty a page.
2536 *
2537 * For pages with a mapping this should be done under the page lock
2538 * for the benefit of asynchronous memory errors who prefer a consistent
2539 * dirty state. This rule can be broken in some special cases,
2540 * but should be better not to.
2541 *
2542 * If the mapping doesn't provide a set_page_dirty a_op, then
2543 * just fall through and assume that it wants buffer_heads.
2544 */
2545 int set_page_dirty(struct page *page)
2546 {
2547 struct address_space *mapping = page_mapping(page);
2548
2549 page = compound_head(page);
2550 if (likely(mapping)) {
2551 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2552 /*
2553 * readahead/lru_deactivate_page could remain
2554 * PG_readahead/PG_reclaim due to race with end_page_writeback
2555 * About readahead, if the page is written, the flags would be
2556 * reset. So no problem.
2557 * About lru_deactivate_page, if the page is redirty, the flag
2558 * will be reset. So no problem. but if the page is used by readahead
2559 * it will confuse readahead and make it restart the size rampup
2560 * process. But it's a trivial problem.
2561 */
2562 if (PageReclaim(page))
2563 ClearPageReclaim(page);
2564 #ifdef CONFIG_BLOCK
2565 if (!spd)
2566 spd = __set_page_dirty_buffers;
2567 #endif
2568 return (*spd)(page);
2569 }
2570 if (!PageDirty(page)) {
2571 if (!TestSetPageDirty(page))
2572 return 1;
2573 }
2574 return 0;
2575 }
2576 EXPORT_SYMBOL(set_page_dirty);
2577
2578 /*
2579 * set_page_dirty() is racy if the caller has no reference against
2580 * page->mapping->host, and if the page is unlocked. This is because another
2581 * CPU could truncate the page off the mapping and then free the mapping.
2582 *
2583 * Usually, the page _is_ locked, or the caller is a user-space process which
2584 * holds a reference on the inode by having an open file.
2585 *
2586 * In other cases, the page should be locked before running set_page_dirty().
2587 */
2588 int set_page_dirty_lock(struct page *page)
2589 {
2590 int ret;
2591
2592 lock_page(page);
2593 ret = set_page_dirty(page);
2594 unlock_page(page);
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(set_page_dirty_lock);
2598
2599 /*
2600 * This cancels just the dirty bit on the kernel page itself, it does NOT
2601 * actually remove dirty bits on any mmap's that may be around. It also
2602 * leaves the page tagged dirty, so any sync activity will still find it on
2603 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2604 * look at the dirty bits in the VM.
2605 *
2606 * Doing this should *normally* only ever be done when a page is truncated,
2607 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2608 * this when it notices that somebody has cleaned out all the buffers on a
2609 * page without actually doing it through the VM. Can you say "ext3 is
2610 * horribly ugly"? Thought you could.
2611 */
2612 void __cancel_dirty_page(struct page *page)
2613 {
2614 struct address_space *mapping = page_mapping(page);
2615
2616 if (mapping_cap_account_dirty(mapping)) {
2617 struct inode *inode = mapping->host;
2618 struct bdi_writeback *wb;
2619 bool locked;
2620
2621 lock_page_memcg(page);
2622 wb = unlocked_inode_to_wb_begin(inode, &locked);
2623
2624 if (TestClearPageDirty(page))
2625 account_page_cleaned(page, mapping, wb);
2626
2627 unlocked_inode_to_wb_end(inode, locked);
2628 unlock_page_memcg(page);
2629 } else {
2630 ClearPageDirty(page);
2631 }
2632 }
2633 EXPORT_SYMBOL(__cancel_dirty_page);
2634
2635 /*
2636 * Clear a page's dirty flag, while caring for dirty memory accounting.
2637 * Returns true if the page was previously dirty.
2638 *
2639 * This is for preparing to put the page under writeout. We leave the page
2640 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2641 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2642 * implementation will run either set_page_writeback() or set_page_dirty(),
2643 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2644 * back into sync.
2645 *
2646 * This incoherency between the page's dirty flag and radix-tree tag is
2647 * unfortunate, but it only exists while the page is locked.
2648 */
2649 int clear_page_dirty_for_io(struct page *page)
2650 {
2651 struct address_space *mapping = page_mapping(page);
2652 int ret = 0;
2653
2654 BUG_ON(!PageLocked(page));
2655
2656 if (mapping && mapping_cap_account_dirty(mapping)) {
2657 struct inode *inode = mapping->host;
2658 struct bdi_writeback *wb;
2659 bool locked;
2660
2661 /*
2662 * Yes, Virginia, this is indeed insane.
2663 *
2664 * We use this sequence to make sure that
2665 * (a) we account for dirty stats properly
2666 * (b) we tell the low-level filesystem to
2667 * mark the whole page dirty if it was
2668 * dirty in a pagetable. Only to then
2669 * (c) clean the page again and return 1 to
2670 * cause the writeback.
2671 *
2672 * This way we avoid all nasty races with the
2673 * dirty bit in multiple places and clearing
2674 * them concurrently from different threads.
2675 *
2676 * Note! Normally the "set_page_dirty(page)"
2677 * has no effect on the actual dirty bit - since
2678 * that will already usually be set. But we
2679 * need the side effects, and it can help us
2680 * avoid races.
2681 *
2682 * We basically use the page "master dirty bit"
2683 * as a serialization point for all the different
2684 * threads doing their things.
2685 */
2686 if (page_mkclean(page))
2687 set_page_dirty(page);
2688 /*
2689 * We carefully synchronise fault handlers against
2690 * installing a dirty pte and marking the page dirty
2691 * at this point. We do this by having them hold the
2692 * page lock while dirtying the page, and pages are
2693 * always locked coming in here, so we get the desired
2694 * exclusion.
2695 */
2696 wb = unlocked_inode_to_wb_begin(inode, &locked);
2697 if (TestClearPageDirty(page)) {
2698 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2699 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2700 dec_wb_stat(wb, WB_RECLAIMABLE);
2701 ret = 1;
2702 }
2703 unlocked_inode_to_wb_end(inode, locked);
2704 return ret;
2705 }
2706 return TestClearPageDirty(page);
2707 }
2708 EXPORT_SYMBOL(clear_page_dirty_for_io);
2709
2710 int test_clear_page_writeback(struct page *page)
2711 {
2712 struct address_space *mapping = page_mapping(page);
2713 struct mem_cgroup *memcg;
2714 struct lruvec *lruvec;
2715 int ret;
2716
2717 memcg = lock_page_memcg(page);
2718 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2719 if (mapping && mapping_use_writeback_tags(mapping)) {
2720 struct inode *inode = mapping->host;
2721 struct backing_dev_info *bdi = inode_to_bdi(inode);
2722 unsigned long flags;
2723
2724 spin_lock_irqsave(&mapping->tree_lock, flags);
2725 ret = TestClearPageWriteback(page);
2726 if (ret) {
2727 radix_tree_tag_clear(&mapping->page_tree,
2728 page_index(page),
2729 PAGECACHE_TAG_WRITEBACK);
2730 if (bdi_cap_account_writeback(bdi)) {
2731 struct bdi_writeback *wb = inode_to_wb(inode);
2732
2733 dec_wb_stat(wb, WB_WRITEBACK);
2734 __wb_writeout_inc(wb);
2735 }
2736 }
2737
2738 if (mapping->host && !mapping_tagged(mapping,
2739 PAGECACHE_TAG_WRITEBACK))
2740 sb_clear_inode_writeback(mapping->host);
2741
2742 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2743 } else {
2744 ret = TestClearPageWriteback(page);
2745 }
2746 /*
2747 * NOTE: Page might be free now! Writeback doesn't hold a page
2748 * reference on its own, it relies on truncation to wait for
2749 * the clearing of PG_writeback. The below can only access
2750 * page state that is static across allocation cycles.
2751 */
2752 if (ret) {
2753 dec_lruvec_state(lruvec, NR_WRITEBACK);
2754 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2755 inc_node_page_state(page, NR_WRITTEN);
2756 }
2757 __unlock_page_memcg(memcg);
2758 return ret;
2759 }
2760
2761 int __test_set_page_writeback(struct page *page, bool keep_write)
2762 {
2763 struct address_space *mapping = page_mapping(page);
2764 int ret;
2765
2766 lock_page_memcg(page);
2767 if (mapping && mapping_use_writeback_tags(mapping)) {
2768 struct inode *inode = mapping->host;
2769 struct backing_dev_info *bdi = inode_to_bdi(inode);
2770 unsigned long flags;
2771
2772 spin_lock_irqsave(&mapping->tree_lock, flags);
2773 ret = TestSetPageWriteback(page);
2774 if (!ret) {
2775 bool on_wblist;
2776
2777 on_wblist = mapping_tagged(mapping,
2778 PAGECACHE_TAG_WRITEBACK);
2779
2780 radix_tree_tag_set(&mapping->page_tree,
2781 page_index(page),
2782 PAGECACHE_TAG_WRITEBACK);
2783 if (bdi_cap_account_writeback(bdi))
2784 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2785
2786 /*
2787 * We can come through here when swapping anonymous
2788 * pages, so we don't necessarily have an inode to track
2789 * for sync.
2790 */
2791 if (mapping->host && !on_wblist)
2792 sb_mark_inode_writeback(mapping->host);
2793 }
2794 if (!PageDirty(page))
2795 radix_tree_tag_clear(&mapping->page_tree,
2796 page_index(page),
2797 PAGECACHE_TAG_DIRTY);
2798 if (!keep_write)
2799 radix_tree_tag_clear(&mapping->page_tree,
2800 page_index(page),
2801 PAGECACHE_TAG_TOWRITE);
2802 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2803 } else {
2804 ret = TestSetPageWriteback(page);
2805 }
2806 if (!ret) {
2807 inc_lruvec_page_state(page, NR_WRITEBACK);
2808 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2809 }
2810 unlock_page_memcg(page);
2811 return ret;
2812
2813 }
2814 EXPORT_SYMBOL(__test_set_page_writeback);
2815
2816 /*
2817 * Return true if any of the pages in the mapping are marked with the
2818 * passed tag.
2819 */
2820 int mapping_tagged(struct address_space *mapping, int tag)
2821 {
2822 return radix_tree_tagged(&mapping->page_tree, tag);
2823 }
2824 EXPORT_SYMBOL(mapping_tagged);
2825
2826 /**
2827 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2828 * @page: The page to wait on.
2829 *
2830 * This function determines if the given page is related to a backing device
2831 * that requires page contents to be held stable during writeback. If so, then
2832 * it will wait for any pending writeback to complete.
2833 */
2834 void wait_for_stable_page(struct page *page)
2835 {
2836 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2837 wait_on_page_writeback(page);
2838 }
2839 EXPORT_SYMBOL_GPL(wait_for_stable_page);