]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/shmem.c
bdi: Fix use after free bug in debugfs_remove()
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static int shmem_default_max_inodes(void)
115 {
116 unsigned long ul;
117
118 ul = INT_MAX;
119 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
120 return ul;
121 }
122 #endif
123
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 struct vm_fault *vmf, int *fault_type);
131
132 int shmem_getpage(struct inode *inode, pgoff_t index,
133 struct page **pagep, enum sgp_type sgp)
134 {
135 return shmem_getpage_gfp(inode, index, pagep, sgp,
136 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
137 }
138
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140 {
141 return sb->s_fs_info;
142 }
143
144 /*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
151 {
152 return (flags & VM_NORESERVE) ?
153 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
154 }
155
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157 {
158 if (!(flags & VM_NORESERVE))
159 vm_unacct_memory(VM_ACCT(size));
160 }
161
162 static inline int shmem_reacct_size(unsigned long flags,
163 loff_t oldsize, loff_t newsize)
164 {
165 if (!(flags & VM_NORESERVE)) {
166 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
167 return security_vm_enough_memory_mm(current->mm,
168 VM_ACCT(newsize) - VM_ACCT(oldsize));
169 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
170 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 }
172 return 0;
173 }
174
175 /*
176 * ... whereas tmpfs objects are accounted incrementally as
177 * pages are allocated, in order to allow large sparse files.
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
181 static inline int shmem_acct_block(unsigned long flags, long pages)
182 {
183 if (!(flags & VM_NORESERVE))
184 return 0;
185
186 return security_vm_enough_memory_mm(current->mm,
187 pages * VM_ACCT(PAGE_SIZE));
188 }
189
190 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
191 {
192 if (flags & VM_NORESERVE)
193 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
194 }
195
196 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
197 {
198 struct shmem_inode_info *info = SHMEM_I(inode);
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200
201 if (shmem_acct_block(info->flags, pages))
202 return false;
203
204 if (sbinfo->max_blocks) {
205 if (percpu_counter_compare(&sbinfo->used_blocks,
206 sbinfo->max_blocks - pages) > 0)
207 goto unacct;
208 percpu_counter_add(&sbinfo->used_blocks, pages);
209 }
210
211 return true;
212
213 unacct:
214 shmem_unacct_blocks(info->flags, pages);
215 return false;
216 }
217
218 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
219 {
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (sbinfo->max_blocks)
224 percpu_counter_sub(&sbinfo->used_blocks, pages);
225 shmem_unacct_blocks(info->flags, pages);
226 }
227
228 static const struct super_operations shmem_ops;
229 static const struct address_space_operations shmem_aops;
230 static const struct file_operations shmem_file_operations;
231 static const struct inode_operations shmem_inode_operations;
232 static const struct inode_operations shmem_dir_inode_operations;
233 static const struct inode_operations shmem_special_inode_operations;
234 static const struct vm_operations_struct shmem_vm_ops;
235 static struct file_system_type shmem_fs_type;
236
237 bool vma_is_shmem(struct vm_area_struct *vma)
238 {
239 return vma->vm_ops == &shmem_vm_ops;
240 }
241
242 static LIST_HEAD(shmem_swaplist);
243 static DEFINE_MUTEX(shmem_swaplist_mutex);
244
245 static int shmem_reserve_inode(struct super_block *sb)
246 {
247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
248 if (sbinfo->max_inodes) {
249 spin_lock(&sbinfo->stat_lock);
250 if (!sbinfo->free_inodes) {
251 spin_unlock(&sbinfo->stat_lock);
252 return -ENOSPC;
253 }
254 sbinfo->free_inodes--;
255 spin_unlock(&sbinfo->stat_lock);
256 }
257 return 0;
258 }
259
260 static void shmem_free_inode(struct super_block *sb)
261 {
262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 if (sbinfo->max_inodes) {
264 spin_lock(&sbinfo->stat_lock);
265 sbinfo->free_inodes++;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268 }
269
270 /**
271 * shmem_recalc_inode - recalculate the block usage of an inode
272 * @inode: inode to recalc
273 *
274 * We have to calculate the free blocks since the mm can drop
275 * undirtied hole pages behind our back.
276 *
277 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
278 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 *
280 * It has to be called with the spinlock held.
281 */
282 static void shmem_recalc_inode(struct inode *inode)
283 {
284 struct shmem_inode_info *info = SHMEM_I(inode);
285 long freed;
286
287 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
288 if (freed > 0) {
289 info->alloced -= freed;
290 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
291 shmem_inode_unacct_blocks(inode, freed);
292 }
293 }
294
295 bool shmem_charge(struct inode *inode, long pages)
296 {
297 struct shmem_inode_info *info = SHMEM_I(inode);
298 unsigned long flags;
299
300 if (!shmem_inode_acct_block(inode, pages))
301 return false;
302
303 spin_lock_irqsave(&info->lock, flags);
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
307 spin_unlock_irqrestore(&info->lock, flags);
308 inode->i_mapping->nrpages += pages;
309
310 return true;
311 }
312
313 void shmem_uncharge(struct inode *inode, long pages)
314 {
315 struct shmem_inode_info *info = SHMEM_I(inode);
316 unsigned long flags;
317
318 spin_lock_irqsave(&info->lock, flags);
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
322 spin_unlock_irqrestore(&info->lock, flags);
323
324 shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332 {
333 struct radix_tree_node *node;
334 void **pslot;
335 void *item;
336
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
341 return -ENOENT;
342 if (item != expected)
343 return -ENOENT;
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL);
346 return 0;
347 }
348
349 /*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358 {
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
385
386 /*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447 LIST_HEAD(list), *pos, *next;
448 LIST_HEAD(to_remove);
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475 list_move(&info->shrinklist, &to_remove);
476 removed++;
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481 next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
502
503 page = find_get_page(inode->i_mapping,
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
507
508 /* No huge page at the end of the file: nothing to split */
509 if (!PageTransHuge(page)) {
510 put_page(page);
511 goto drop;
512 }
513
514 /*
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
517 *
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
520 */
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
524 }
525
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
529
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
533
534 split++;
535 drop:
536 list_del_init(&info->shrinklist);
537 removed++;
538 leave:
539 iput(inode);
540 }
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
546
547 return split;
548 }
549
550 static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
552 {
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
557
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
559 }
560
561 static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
563 {
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
566 }
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 #define shmem_huge SHMEM_HUGE_DENY
570
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
573 {
574 return 0;
575 }
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577
578 /*
579 * Like add_to_page_cache_locked, but error if expected item has gone.
580 */
581 static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
583 pgoff_t index, void *expected)
584 {
585 int error, nr = hpage_nr_pages(page);
586
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591 VM_BUG_ON(expected && PageTransHuge(page));
592
593 page_ref_add(page, nr);
594 page->mapping = mapping;
595 page->index = index;
596
597 spin_lock_irq(&mapping->tree_lock);
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
602
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
608 }
609
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
615 }
616 count_vm_event(THP_FILE_ALLOC);
617 }
618 } else if (!expected) {
619 error = radix_tree_insert(&mapping->page_tree, index, page);
620 } else {
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
623 }
624
625 if (!error) {
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
635 page_ref_sub(page, nr);
636 }
637 return error;
638 }
639
640 /*
641 * Like delete_from_page_cache, but substitutes swap for page.
642 */
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644 {
645 struct address_space *mapping = page->mapping;
646 int error;
647
648 VM_BUG_ON_PAGE(PageCompound(page), page);
649
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
656 spin_unlock_irq(&mapping->tree_lock);
657 put_page(page);
658 BUG_ON(error);
659 }
660
661 /*
662 * Remove swap entry from radix tree, free the swap and its page cache.
663 */
664 static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
666 {
667 void *old;
668
669 spin_lock_irq(&mapping->tree_lock);
670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671 spin_unlock_irq(&mapping->tree_lock);
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
676 }
677
678 /*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
681 *
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
687 {
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
691 unsigned long swapped = 0;
692
693 rcu_read_lock();
694
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
698
699 page = radix_tree_deref_slot(slot);
700
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
704 }
705
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
708
709 if (need_resched()) {
710 slot = radix_tree_iter_resume(slot, &iter);
711 cond_resched_rcu();
712 }
713 }
714
715 rcu_read_unlock();
716
717 return swapped << PAGE_SHIFT;
718 }
719
720 /*
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
723 *
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
726 */
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728 {
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
733
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
736
737 /*
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
741 */
742 if (!swapped)
743 return 0;
744
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
747
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
752 }
753
754 /*
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756 */
757 void shmem_unlock_mapping(struct address_space *mapping)
758 {
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
762
763 pagevec_init(&pvec);
764 /*
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766 */
767 while (!mapping_unevictable(mapping)) {
768 /*
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771 */
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
777 pagevec_remove_exceptionals(&pvec);
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
781 }
782 }
783
784 /*
785 * Remove range of pages and swap entries from radix tree, and free them.
786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
787 */
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
790 {
791 struct address_space *mapping = inode->i_mapping;
792 struct shmem_inode_info *info = SHMEM_I(inode);
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797 struct pagevec pvec;
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
800 pgoff_t index;
801 int i;
802
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
805
806 pagevec_init(&pvec);
807 index = start;
808 while (index < end) {
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
812 if (!pvec.nr)
813 break;
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
816
817 index = indices[i];
818 if (index >= end)
819 break;
820
821 if (radix_tree_exceptional_entry(page)) {
822 if (unfalloc)
823 continue;
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
826 continue;
827 }
828
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
831 if (!trylock_page(page))
832 continue;
833
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
841 /*
842 * Range ends in the middle of THP:
843 * zero out the page
844 */
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
848 }
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
851 }
852
853 if (!unfalloc || !PageUptodate(page)) {
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
856 VM_BUG_ON_PAGE(PageWriteback(page), page);
857 truncate_inode_page(mapping, page);
858 }
859 }
860 unlock_page(page);
861 }
862 pagevec_remove_exceptionals(&pvec);
863 pagevec_release(&pvec);
864 cond_resched();
865 index++;
866 }
867
868 if (partial_start) {
869 struct page *page = NULL;
870 shmem_getpage(inode, start - 1, &page, SGP_READ);
871 if (page) {
872 unsigned int top = PAGE_SIZE;
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
876 }
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
880 put_page(page);
881 }
882 }
883 if (partial_end) {
884 struct page *page = NULL;
885 shmem_getpage(inode, end, &page, SGP_READ);
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 }
893 if (start >= end)
894 return;
895
896 index = start;
897 while (index < end) {
898 cond_resched();
899
900 pvec.nr = find_get_entries(mapping, index,
901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902 pvec.pages, indices);
903 if (!pvec.nr) {
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
906 break;
907 /* But if truncating, restart to make sure all gone */
908 index = start;
909 continue;
910 }
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
913
914 index = indices[i];
915 if (index >= end)
916 break;
917
918 if (radix_tree_exceptional_entry(page)) {
919 if (unfalloc)
920 continue;
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
925 }
926 nr_swaps_freed++;
927 continue;
928 }
929
930 lock_page(page);
931
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
936 /*
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
940 */
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
946 /*
947 * Range ends in the middle of THP:
948 * zero out the page
949 */
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
953 }
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
956 }
957
958 if (!unfalloc || !PageUptodate(page)) {
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
961 VM_BUG_ON_PAGE(PageWriteback(page), page);
962 truncate_inode_page(mapping, page);
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
968 }
969 }
970 unlock_page(page);
971 }
972 pagevec_remove_exceptionals(&pvec);
973 pagevec_release(&pvec);
974 index++;
975 }
976
977 spin_lock_irq(&info->lock);
978 info->swapped -= nr_swaps_freed;
979 shmem_recalc_inode(inode);
980 spin_unlock_irq(&info->lock);
981 }
982
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984 {
985 shmem_undo_range(inode, lstart, lend, false);
986 inode->i_ctime = inode->i_mtime = current_time(inode);
987 }
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
989
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
992 {
993 struct inode *inode = path->dentry->d_inode;
994 struct shmem_inode_info *info = SHMEM_I(inode);
995
996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997 spin_lock_irq(&info->lock);
998 shmem_recalc_inode(inode);
999 spin_unlock_irq(&info->lock);
1000 }
1001 generic_fillattr(inode, stat);
1002 return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007 struct inode *inode = d_inode(dentry);
1008 struct shmem_inode_info *info = SHMEM_I(inode);
1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 int error;
1011
1012 error = setattr_prepare(dentry, attr);
1013 if (error)
1014 return error;
1015
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
1019
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
1025 if (newsize != oldsize) {
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
1030 i_size_write(inode, newsize);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 if (newsize <= oldsize) {
1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
1063 }
1064 }
1065
1066 setattr_copy(inode, attr);
1067 if (attr->ia_valid & ATTR_MODE)
1068 error = posix_acl_chmod(inode, inode->i_mode);
1069 return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
1080 shmem_truncate_range(inode, 0, (loff_t)-1);
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1089 if (!list_empty(&info->swaplist)) {
1090 mutex_lock(&shmem_swaplist_mutex);
1091 list_del_init(&info->swaplist);
1092 mutex_unlock(&shmem_swaplist_mutex);
1093 }
1094 }
1095
1096 simple_xattrs_free(&info->xattrs);
1097 WARN_ON(inode->i_blocks);
1098 if (!sbinfo->idr_nouse && inode->i_ino) {
1099 mutex_lock(&sbinfo->idr_lock);
1100 idr_remove(&sbinfo->idr, inode->i_ino);
1101 mutex_unlock(&sbinfo->idr_lock);
1102 }
1103 shmem_free_inode(inode->i_sb);
1104 clear_inode(inode);
1105 }
1106
1107 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1108 {
1109 struct radix_tree_iter iter;
1110 void **slot;
1111 unsigned long found = -1;
1112 unsigned int checked = 0;
1113
1114 rcu_read_lock();
1115 radix_tree_for_each_slot(slot, root, &iter, 0) {
1116 if (*slot == item) {
1117 found = iter.index;
1118 break;
1119 }
1120 checked++;
1121 if ((checked % 4096) != 0)
1122 continue;
1123 slot = radix_tree_iter_resume(slot, &iter);
1124 cond_resched_rcu();
1125 }
1126
1127 rcu_read_unlock();
1128 return found;
1129 }
1130
1131 /*
1132 * If swap found in inode, free it and move page from swapcache to filecache.
1133 */
1134 static int shmem_unuse_inode(struct shmem_inode_info *info,
1135 swp_entry_t swap, struct page **pagep)
1136 {
1137 struct address_space *mapping = info->vfs_inode.i_mapping;
1138 void *radswap;
1139 pgoff_t index;
1140 gfp_t gfp;
1141 int error = 0;
1142
1143 radswap = swp_to_radix_entry(swap);
1144 index = find_swap_entry(&mapping->page_tree, radswap);
1145 if (index == -1)
1146 return -EAGAIN; /* tell shmem_unuse we found nothing */
1147
1148 /*
1149 * Move _head_ to start search for next from here.
1150 * But be careful: shmem_evict_inode checks list_empty without taking
1151 * mutex, and there's an instant in list_move_tail when info->swaplist
1152 * would appear empty, if it were the only one on shmem_swaplist.
1153 */
1154 if (shmem_swaplist.next != &info->swaplist)
1155 list_move_tail(&shmem_swaplist, &info->swaplist);
1156
1157 gfp = mapping_gfp_mask(mapping);
1158 if (shmem_should_replace_page(*pagep, gfp)) {
1159 mutex_unlock(&shmem_swaplist_mutex);
1160 error = shmem_replace_page(pagep, gfp, info, index);
1161 mutex_lock(&shmem_swaplist_mutex);
1162 /*
1163 * We needed to drop mutex to make that restrictive page
1164 * allocation, but the inode might have been freed while we
1165 * dropped it: although a racing shmem_evict_inode() cannot
1166 * complete without emptying the radix_tree, our page lock
1167 * on this swapcache page is not enough to prevent that -
1168 * free_swap_and_cache() of our swap entry will only
1169 * trylock_page(), removing swap from radix_tree whatever.
1170 *
1171 * We must not proceed to shmem_add_to_page_cache() if the
1172 * inode has been freed, but of course we cannot rely on
1173 * inode or mapping or info to check that. However, we can
1174 * safely check if our swap entry is still in use (and here
1175 * it can't have got reused for another page): if it's still
1176 * in use, then the inode cannot have been freed yet, and we
1177 * can safely proceed (if it's no longer in use, that tells
1178 * nothing about the inode, but we don't need to unuse swap).
1179 */
1180 if (!page_swapcount(*pagep))
1181 error = -ENOENT;
1182 }
1183
1184 /*
1185 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1186 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1187 * beneath us (pagelock doesn't help until the page is in pagecache).
1188 */
1189 if (!error)
1190 error = shmem_add_to_page_cache(*pagep, mapping, index,
1191 radswap);
1192 if (error != -ENOMEM) {
1193 /*
1194 * Truncation and eviction use free_swap_and_cache(), which
1195 * only does trylock page: if we raced, best clean up here.
1196 */
1197 delete_from_swap_cache(*pagep);
1198 set_page_dirty(*pagep);
1199 if (!error) {
1200 spin_lock_irq(&info->lock);
1201 info->swapped--;
1202 spin_unlock_irq(&info->lock);
1203 swap_free(swap);
1204 }
1205 }
1206 return error;
1207 }
1208
1209 /*
1210 * Search through swapped inodes to find and replace swap by page.
1211 */
1212 int shmem_unuse(swp_entry_t swap, struct page *page)
1213 {
1214 struct list_head *this, *next;
1215 struct shmem_inode_info *info;
1216 struct mem_cgroup *memcg;
1217 int error = 0;
1218
1219 /*
1220 * There's a faint possibility that swap page was replaced before
1221 * caller locked it: caller will come back later with the right page.
1222 */
1223 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1224 goto out;
1225
1226 /*
1227 * Charge page using GFP_KERNEL while we can wait, before taking
1228 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1229 * Charged back to the user (not to caller) when swap account is used.
1230 */
1231 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1232 false);
1233 if (error)
1234 goto out;
1235 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1236 error = -EAGAIN;
1237
1238 mutex_lock(&shmem_swaplist_mutex);
1239 list_for_each_safe(this, next, &shmem_swaplist) {
1240 info = list_entry(this, struct shmem_inode_info, swaplist);
1241 if (info->swapped)
1242 error = shmem_unuse_inode(info, swap, &page);
1243 else
1244 list_del_init(&info->swaplist);
1245 cond_resched();
1246 if (error != -EAGAIN)
1247 break;
1248 /* found nothing in this: move on to search the next */
1249 }
1250 mutex_unlock(&shmem_swaplist_mutex);
1251
1252 if (error) {
1253 if (error != -ENOMEM)
1254 error = 0;
1255 mem_cgroup_cancel_charge(page, memcg, false);
1256 } else
1257 mem_cgroup_commit_charge(page, memcg, true, false);
1258 out:
1259 unlock_page(page);
1260 put_page(page);
1261 return error;
1262 }
1263
1264 /*
1265 * Move the page from the page cache to the swap cache.
1266 */
1267 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1268 {
1269 struct shmem_inode_info *info;
1270 struct address_space *mapping;
1271 struct inode *inode;
1272 swp_entry_t swap;
1273 pgoff_t index;
1274
1275 VM_BUG_ON_PAGE(PageCompound(page), page);
1276 BUG_ON(!PageLocked(page));
1277 mapping = page->mapping;
1278 index = page->index;
1279 inode = mapping->host;
1280 info = SHMEM_I(inode);
1281 if (info->flags & VM_LOCKED)
1282 goto redirty;
1283 if (!total_swap_pages)
1284 goto redirty;
1285
1286 /*
1287 * Our capabilities prevent regular writeback or sync from ever calling
1288 * shmem_writepage; but a stacking filesystem might use ->writepage of
1289 * its underlying filesystem, in which case tmpfs should write out to
1290 * swap only in response to memory pressure, and not for the writeback
1291 * threads or sync.
1292 */
1293 if (!wbc->for_reclaim) {
1294 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1295 goto redirty;
1296 }
1297
1298 /*
1299 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1300 * value into swapfile.c, the only way we can correctly account for a
1301 * fallocated page arriving here is now to initialize it and write it.
1302 *
1303 * That's okay for a page already fallocated earlier, but if we have
1304 * not yet completed the fallocation, then (a) we want to keep track
1305 * of this page in case we have to undo it, and (b) it may not be a
1306 * good idea to continue anyway, once we're pushing into swap. So
1307 * reactivate the page, and let shmem_fallocate() quit when too many.
1308 */
1309 if (!PageUptodate(page)) {
1310 if (inode->i_private) {
1311 struct shmem_falloc *shmem_falloc;
1312 spin_lock(&inode->i_lock);
1313 shmem_falloc = inode->i_private;
1314 if (shmem_falloc &&
1315 !shmem_falloc->waitq &&
1316 index >= shmem_falloc->start &&
1317 index < shmem_falloc->next)
1318 shmem_falloc->nr_unswapped++;
1319 else
1320 shmem_falloc = NULL;
1321 spin_unlock(&inode->i_lock);
1322 if (shmem_falloc)
1323 goto redirty;
1324 }
1325 clear_highpage(page);
1326 flush_dcache_page(page);
1327 SetPageUptodate(page);
1328 }
1329
1330 swap = get_swap_page(page);
1331 if (!swap.val)
1332 goto redirty;
1333
1334 if (mem_cgroup_try_charge_swap(page, swap))
1335 goto free_swap;
1336
1337 /*
1338 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1339 * if it's not already there. Do it now before the page is
1340 * moved to swap cache, when its pagelock no longer protects
1341 * the inode from eviction. But don't unlock the mutex until
1342 * we've incremented swapped, because shmem_unuse_inode() will
1343 * prune a !swapped inode from the swaplist under this mutex.
1344 */
1345 mutex_lock(&shmem_swaplist_mutex);
1346 if (list_empty(&info->swaplist))
1347 list_add_tail(&info->swaplist, &shmem_swaplist);
1348
1349 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1350 spin_lock_irq(&info->lock);
1351 shmem_recalc_inode(inode);
1352 info->swapped++;
1353 spin_unlock_irq(&info->lock);
1354
1355 swap_shmem_alloc(swap);
1356 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1357
1358 mutex_unlock(&shmem_swaplist_mutex);
1359 BUG_ON(page_mapped(page));
1360 swap_writepage(page, wbc);
1361 return 0;
1362 }
1363
1364 mutex_unlock(&shmem_swaplist_mutex);
1365 free_swap:
1366 put_swap_page(page, swap);
1367 redirty:
1368 set_page_dirty(page);
1369 if (wbc->for_reclaim)
1370 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1371 unlock_page(page);
1372 return 0;
1373 }
1374
1375 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1376 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1377 {
1378 char buffer[64];
1379
1380 if (!mpol || mpol->mode == MPOL_DEFAULT)
1381 return; /* show nothing */
1382
1383 mpol_to_str(buffer, sizeof(buffer), mpol);
1384
1385 seq_printf(seq, ",mpol=%s", buffer);
1386 }
1387
1388 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1389 {
1390 struct mempolicy *mpol = NULL;
1391 if (sbinfo->mpol) {
1392 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1393 mpol = sbinfo->mpol;
1394 mpol_get(mpol);
1395 spin_unlock(&sbinfo->stat_lock);
1396 }
1397 return mpol;
1398 }
1399 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1400 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1401 {
1402 }
1403 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1404 {
1405 return NULL;
1406 }
1407 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1408 #ifndef CONFIG_NUMA
1409 #define vm_policy vm_private_data
1410 #endif
1411
1412 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1413 struct shmem_inode_info *info, pgoff_t index)
1414 {
1415 /* Create a pseudo vma that just contains the policy */
1416 vma->vm_start = 0;
1417 /* Bias interleave by inode number to distribute better across nodes */
1418 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1419 vma->vm_ops = NULL;
1420 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1421 }
1422
1423 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1424 {
1425 /* Drop reference taken by mpol_shared_policy_lookup() */
1426 mpol_cond_put(vma->vm_policy);
1427 }
1428
1429 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1430 struct shmem_inode_info *info, pgoff_t index)
1431 {
1432 struct vm_area_struct pvma;
1433 struct page *page;
1434
1435 shmem_pseudo_vma_init(&pvma, info, index);
1436 page = swapin_readahead(swap, gfp, &pvma, 0);
1437 shmem_pseudo_vma_destroy(&pvma);
1438
1439 return page;
1440 }
1441
1442 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1443 struct shmem_inode_info *info, pgoff_t index)
1444 {
1445 struct vm_area_struct pvma;
1446 struct inode *inode = &info->vfs_inode;
1447 struct address_space *mapping = inode->i_mapping;
1448 pgoff_t idx, hindex;
1449 void __rcu **results;
1450 struct page *page;
1451
1452 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1453 return NULL;
1454
1455 hindex = round_down(index, HPAGE_PMD_NR);
1456 rcu_read_lock();
1457 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1458 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1459 rcu_read_unlock();
1460 return NULL;
1461 }
1462 rcu_read_unlock();
1463
1464 shmem_pseudo_vma_init(&pvma, info, hindex);
1465 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1466 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1467 shmem_pseudo_vma_destroy(&pvma);
1468 if (page)
1469 prep_transhuge_page(page);
1470 return page;
1471 }
1472
1473 static struct page *shmem_alloc_page(gfp_t gfp,
1474 struct shmem_inode_info *info, pgoff_t index)
1475 {
1476 struct vm_area_struct pvma;
1477 struct page *page;
1478
1479 shmem_pseudo_vma_init(&pvma, info, index);
1480 page = alloc_page_vma(gfp, &pvma, 0);
1481 shmem_pseudo_vma_destroy(&pvma);
1482
1483 return page;
1484 }
1485
1486 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1487 struct inode *inode,
1488 pgoff_t index, bool huge)
1489 {
1490 struct shmem_inode_info *info = SHMEM_I(inode);
1491 struct page *page;
1492 int nr;
1493 int err = -ENOSPC;
1494
1495 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1496 huge = false;
1497 nr = huge ? HPAGE_PMD_NR : 1;
1498
1499 if (!shmem_inode_acct_block(inode, nr))
1500 goto failed;
1501
1502 if (huge)
1503 page = shmem_alloc_hugepage(gfp, info, index);
1504 else
1505 page = shmem_alloc_page(gfp, info, index);
1506 if (page) {
1507 __SetPageLocked(page);
1508 __SetPageSwapBacked(page);
1509 return page;
1510 }
1511
1512 err = -ENOMEM;
1513 shmem_inode_unacct_blocks(inode, nr);
1514 failed:
1515 return ERR_PTR(err);
1516 }
1517
1518 /*
1519 * When a page is moved from swapcache to shmem filecache (either by the
1520 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1521 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1522 * ignorance of the mapping it belongs to. If that mapping has special
1523 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1524 * we may need to copy to a suitable page before moving to filecache.
1525 *
1526 * In a future release, this may well be extended to respect cpuset and
1527 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1528 * but for now it is a simple matter of zone.
1529 */
1530 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1531 {
1532 return page_zonenum(page) > gfp_zone(gfp);
1533 }
1534
1535 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1536 struct shmem_inode_info *info, pgoff_t index)
1537 {
1538 struct page *oldpage, *newpage;
1539 struct address_space *swap_mapping;
1540 pgoff_t swap_index;
1541 int error;
1542
1543 oldpage = *pagep;
1544 swap_index = page_private(oldpage);
1545 swap_mapping = page_mapping(oldpage);
1546
1547 /*
1548 * We have arrived here because our zones are constrained, so don't
1549 * limit chance of success by further cpuset and node constraints.
1550 */
1551 gfp &= ~GFP_CONSTRAINT_MASK;
1552 newpage = shmem_alloc_page(gfp, info, index);
1553 if (!newpage)
1554 return -ENOMEM;
1555
1556 get_page(newpage);
1557 copy_highpage(newpage, oldpage);
1558 flush_dcache_page(newpage);
1559
1560 __SetPageLocked(newpage);
1561 __SetPageSwapBacked(newpage);
1562 SetPageUptodate(newpage);
1563 set_page_private(newpage, swap_index);
1564 SetPageSwapCache(newpage);
1565
1566 /*
1567 * Our caller will very soon move newpage out of swapcache, but it's
1568 * a nice clean interface for us to replace oldpage by newpage there.
1569 */
1570 spin_lock_irq(&swap_mapping->tree_lock);
1571 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1572 newpage);
1573 if (!error) {
1574 __inc_node_page_state(newpage, NR_FILE_PAGES);
1575 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1576 }
1577 spin_unlock_irq(&swap_mapping->tree_lock);
1578
1579 if (unlikely(error)) {
1580 /*
1581 * Is this possible? I think not, now that our callers check
1582 * both PageSwapCache and page_private after getting page lock;
1583 * but be defensive. Reverse old to newpage for clear and free.
1584 */
1585 oldpage = newpage;
1586 } else {
1587 mem_cgroup_migrate(oldpage, newpage);
1588 lru_cache_add_anon(newpage);
1589 *pagep = newpage;
1590 }
1591
1592 ClearPageSwapCache(oldpage);
1593 set_page_private(oldpage, 0);
1594
1595 unlock_page(oldpage);
1596 put_page(oldpage);
1597 put_page(oldpage);
1598 return error;
1599 }
1600
1601 /*
1602 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1603 *
1604 * If we allocate a new one we do not mark it dirty. That's up to the
1605 * vm. If we swap it in we mark it dirty since we also free the swap
1606 * entry since a page cannot live in both the swap and page cache.
1607 *
1608 * fault_mm and fault_type are only supplied by shmem_fault:
1609 * otherwise they are NULL.
1610 */
1611 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1612 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1613 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1614 {
1615 struct address_space *mapping = inode->i_mapping;
1616 struct shmem_inode_info *info = SHMEM_I(inode);
1617 struct shmem_sb_info *sbinfo;
1618 struct mm_struct *charge_mm;
1619 struct mem_cgroup *memcg;
1620 struct page *page;
1621 swp_entry_t swap;
1622 enum sgp_type sgp_huge = sgp;
1623 pgoff_t hindex = index;
1624 int error;
1625 int once = 0;
1626 int alloced = 0;
1627
1628 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1629 return -EFBIG;
1630 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1631 sgp = SGP_CACHE;
1632 repeat:
1633 swap.val = 0;
1634 page = find_lock_entry(mapping, index);
1635 if (radix_tree_exceptional_entry(page)) {
1636 swap = radix_to_swp_entry(page);
1637 page = NULL;
1638 }
1639
1640 if (sgp <= SGP_CACHE &&
1641 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1642 error = -EINVAL;
1643 goto unlock;
1644 }
1645
1646 if (page && sgp == SGP_WRITE)
1647 mark_page_accessed(page);
1648
1649 /* fallocated page? */
1650 if (page && !PageUptodate(page)) {
1651 if (sgp != SGP_READ)
1652 goto clear;
1653 unlock_page(page);
1654 put_page(page);
1655 page = NULL;
1656 }
1657 if (page || (sgp == SGP_READ && !swap.val)) {
1658 *pagep = page;
1659 return 0;
1660 }
1661
1662 /*
1663 * Fast cache lookup did not find it:
1664 * bring it back from swap or allocate.
1665 */
1666 sbinfo = SHMEM_SB(inode->i_sb);
1667 charge_mm = vma ? vma->vm_mm : current->mm;
1668
1669 if (swap.val) {
1670 /* Look it up and read it in.. */
1671 page = lookup_swap_cache(swap, NULL, 0);
1672 if (!page) {
1673 /* Or update major stats only when swapin succeeds?? */
1674 if (fault_type) {
1675 *fault_type |= VM_FAULT_MAJOR;
1676 count_vm_event(PGMAJFAULT);
1677 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1678 }
1679 /* Here we actually start the io */
1680 page = shmem_swapin(swap, gfp, info, index);
1681 if (!page) {
1682 error = -ENOMEM;
1683 goto failed;
1684 }
1685 }
1686
1687 /* We have to do this with page locked to prevent races */
1688 lock_page(page);
1689 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1690 !shmem_confirm_swap(mapping, index, swap)) {
1691 error = -EEXIST; /* try again */
1692 goto unlock;
1693 }
1694 if (!PageUptodate(page)) {
1695 error = -EIO;
1696 goto failed;
1697 }
1698 wait_on_page_writeback(page);
1699
1700 if (shmem_should_replace_page(page, gfp)) {
1701 error = shmem_replace_page(&page, gfp, info, index);
1702 if (error)
1703 goto failed;
1704 }
1705
1706 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1707 false);
1708 if (!error) {
1709 error = shmem_add_to_page_cache(page, mapping, index,
1710 swp_to_radix_entry(swap));
1711 /*
1712 * We already confirmed swap under page lock, and make
1713 * no memory allocation here, so usually no possibility
1714 * of error; but free_swap_and_cache() only trylocks a
1715 * page, so it is just possible that the entry has been
1716 * truncated or holepunched since swap was confirmed.
1717 * shmem_undo_range() will have done some of the
1718 * unaccounting, now delete_from_swap_cache() will do
1719 * the rest.
1720 * Reset swap.val? No, leave it so "failed" goes back to
1721 * "repeat": reading a hole and writing should succeed.
1722 */
1723 if (error) {
1724 mem_cgroup_cancel_charge(page, memcg, false);
1725 delete_from_swap_cache(page);
1726 }
1727 }
1728 if (error)
1729 goto failed;
1730
1731 mem_cgroup_commit_charge(page, memcg, true, false);
1732
1733 spin_lock_irq(&info->lock);
1734 info->swapped--;
1735 shmem_recalc_inode(inode);
1736 spin_unlock_irq(&info->lock);
1737
1738 if (sgp == SGP_WRITE)
1739 mark_page_accessed(page);
1740
1741 delete_from_swap_cache(page);
1742 set_page_dirty(page);
1743 swap_free(swap);
1744
1745 } else {
1746 if (vma && userfaultfd_missing(vma)) {
1747 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1748 return 0;
1749 }
1750
1751 /* shmem_symlink() */
1752 if (mapping->a_ops != &shmem_aops)
1753 goto alloc_nohuge;
1754 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1755 goto alloc_nohuge;
1756 if (shmem_huge == SHMEM_HUGE_FORCE)
1757 goto alloc_huge;
1758 switch (sbinfo->huge) {
1759 loff_t i_size;
1760 pgoff_t off;
1761 case SHMEM_HUGE_NEVER:
1762 goto alloc_nohuge;
1763 case SHMEM_HUGE_WITHIN_SIZE:
1764 off = round_up(index, HPAGE_PMD_NR);
1765 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1766 if (i_size >= HPAGE_PMD_SIZE &&
1767 i_size >> PAGE_SHIFT >= off)
1768 goto alloc_huge;
1769 /* fallthrough */
1770 case SHMEM_HUGE_ADVISE:
1771 if (sgp_huge == SGP_HUGE)
1772 goto alloc_huge;
1773 /* TODO: implement fadvise() hints */
1774 goto alloc_nohuge;
1775 }
1776
1777 alloc_huge:
1778 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1779 if (IS_ERR(page)) {
1780 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1781 index, false);
1782 }
1783 if (IS_ERR(page)) {
1784 int retry = 5;
1785 error = PTR_ERR(page);
1786 page = NULL;
1787 if (error != -ENOSPC)
1788 goto failed;
1789 /*
1790 * Try to reclaim some spece by splitting a huge page
1791 * beyond i_size on the filesystem.
1792 */
1793 while (retry--) {
1794 int ret;
1795 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1796 if (ret == SHRINK_STOP)
1797 break;
1798 if (ret)
1799 goto alloc_nohuge;
1800 }
1801 goto failed;
1802 }
1803
1804 if (PageTransHuge(page))
1805 hindex = round_down(index, HPAGE_PMD_NR);
1806 else
1807 hindex = index;
1808
1809 if (sgp == SGP_WRITE)
1810 __SetPageReferenced(page);
1811
1812 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1813 PageTransHuge(page));
1814 if (error)
1815 goto unacct;
1816 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1817 compound_order(page));
1818 if (!error) {
1819 error = shmem_add_to_page_cache(page, mapping, hindex,
1820 NULL);
1821 radix_tree_preload_end();
1822 }
1823 if (error) {
1824 mem_cgroup_cancel_charge(page, memcg,
1825 PageTransHuge(page));
1826 goto unacct;
1827 }
1828 mem_cgroup_commit_charge(page, memcg, false,
1829 PageTransHuge(page));
1830 lru_cache_add_anon(page);
1831
1832 spin_lock_irq(&info->lock);
1833 info->alloced += 1 << compound_order(page);
1834 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1835 shmem_recalc_inode(inode);
1836 spin_unlock_irq(&info->lock);
1837 alloced = true;
1838
1839 if (PageTransHuge(page) &&
1840 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1841 hindex + HPAGE_PMD_NR - 1) {
1842 /*
1843 * Part of the huge page is beyond i_size: subject
1844 * to shrink under memory pressure.
1845 */
1846 spin_lock(&sbinfo->shrinklist_lock);
1847 /*
1848 * _careful to defend against unlocked access to
1849 * ->shrink_list in shmem_unused_huge_shrink()
1850 */
1851 if (list_empty_careful(&info->shrinklist)) {
1852 list_add_tail(&info->shrinklist,
1853 &sbinfo->shrinklist);
1854 sbinfo->shrinklist_len++;
1855 }
1856 spin_unlock(&sbinfo->shrinklist_lock);
1857 }
1858
1859 /*
1860 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1861 */
1862 if (sgp == SGP_FALLOC)
1863 sgp = SGP_WRITE;
1864 clear:
1865 /*
1866 * Let SGP_WRITE caller clear ends if write does not fill page;
1867 * but SGP_FALLOC on a page fallocated earlier must initialize
1868 * it now, lest undo on failure cancel our earlier guarantee.
1869 */
1870 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1871 struct page *head = compound_head(page);
1872 int i;
1873
1874 for (i = 0; i < (1 << compound_order(head)); i++) {
1875 clear_highpage(head + i);
1876 flush_dcache_page(head + i);
1877 }
1878 SetPageUptodate(head);
1879 }
1880 }
1881
1882 /* Perhaps the file has been truncated since we checked */
1883 if (sgp <= SGP_CACHE &&
1884 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1885 if (alloced) {
1886 ClearPageDirty(page);
1887 delete_from_page_cache(page);
1888 spin_lock_irq(&info->lock);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 }
1892 error = -EINVAL;
1893 goto unlock;
1894 }
1895 *pagep = page + index - hindex;
1896 return 0;
1897
1898 /*
1899 * Error recovery.
1900 */
1901 unacct:
1902 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1903
1904 if (PageTransHuge(page)) {
1905 unlock_page(page);
1906 put_page(page);
1907 goto alloc_nohuge;
1908 }
1909 failed:
1910 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1911 error = -EEXIST;
1912 unlock:
1913 if (page) {
1914 unlock_page(page);
1915 put_page(page);
1916 }
1917 if (error == -ENOSPC && !once++) {
1918 spin_lock_irq(&info->lock);
1919 shmem_recalc_inode(inode);
1920 spin_unlock_irq(&info->lock);
1921 goto repeat;
1922 }
1923 if (error == -EEXIST) /* from above or from radix_tree_insert */
1924 goto repeat;
1925 return error;
1926 }
1927
1928 /*
1929 * This is like autoremove_wake_function, but it removes the wait queue
1930 * entry unconditionally - even if something else had already woken the
1931 * target.
1932 */
1933 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1934 {
1935 int ret = default_wake_function(wait, mode, sync, key);
1936 list_del_init(&wait->entry);
1937 return ret;
1938 }
1939
1940 static int shmem_fault(struct vm_fault *vmf)
1941 {
1942 struct vm_area_struct *vma = vmf->vma;
1943 struct inode *inode = file_inode(vma->vm_file);
1944 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1945 enum sgp_type sgp;
1946 int error;
1947 int ret = VM_FAULT_LOCKED;
1948
1949 /*
1950 * Trinity finds that probing a hole which tmpfs is punching can
1951 * prevent the hole-punch from ever completing: which in turn
1952 * locks writers out with its hold on i_mutex. So refrain from
1953 * faulting pages into the hole while it's being punched. Although
1954 * shmem_undo_range() does remove the additions, it may be unable to
1955 * keep up, as each new page needs its own unmap_mapping_range() call,
1956 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1957 *
1958 * It does not matter if we sometimes reach this check just before the
1959 * hole-punch begins, so that one fault then races with the punch:
1960 * we just need to make racing faults a rare case.
1961 *
1962 * The implementation below would be much simpler if we just used a
1963 * standard mutex or completion: but we cannot take i_mutex in fault,
1964 * and bloating every shmem inode for this unlikely case would be sad.
1965 */
1966 if (unlikely(inode->i_private)) {
1967 struct shmem_falloc *shmem_falloc;
1968
1969 spin_lock(&inode->i_lock);
1970 shmem_falloc = inode->i_private;
1971 if (shmem_falloc &&
1972 shmem_falloc->waitq &&
1973 vmf->pgoff >= shmem_falloc->start &&
1974 vmf->pgoff < shmem_falloc->next) {
1975 wait_queue_head_t *shmem_falloc_waitq;
1976 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1977
1978 ret = VM_FAULT_NOPAGE;
1979 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1980 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1981 /* It's polite to up mmap_sem if we can */
1982 up_read(&vma->vm_mm->mmap_sem);
1983 ret = VM_FAULT_RETRY;
1984 }
1985
1986 shmem_falloc_waitq = shmem_falloc->waitq;
1987 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1988 TASK_UNINTERRUPTIBLE);
1989 spin_unlock(&inode->i_lock);
1990 schedule();
1991
1992 /*
1993 * shmem_falloc_waitq points into the shmem_fallocate()
1994 * stack of the hole-punching task: shmem_falloc_waitq
1995 * is usually invalid by the time we reach here, but
1996 * finish_wait() does not dereference it in that case;
1997 * though i_lock needed lest racing with wake_up_all().
1998 */
1999 spin_lock(&inode->i_lock);
2000 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2001 spin_unlock(&inode->i_lock);
2002 return ret;
2003 }
2004 spin_unlock(&inode->i_lock);
2005 }
2006
2007 sgp = SGP_CACHE;
2008
2009 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2010 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2011 sgp = SGP_NOHUGE;
2012 else if (vma->vm_flags & VM_HUGEPAGE)
2013 sgp = SGP_HUGE;
2014
2015 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2016 gfp, vma, vmf, &ret);
2017 if (error)
2018 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2019 return ret;
2020 }
2021
2022 unsigned long shmem_get_unmapped_area(struct file *file,
2023 unsigned long uaddr, unsigned long len,
2024 unsigned long pgoff, unsigned long flags)
2025 {
2026 unsigned long (*get_area)(struct file *,
2027 unsigned long, unsigned long, unsigned long, unsigned long);
2028 unsigned long addr;
2029 unsigned long offset;
2030 unsigned long inflated_len;
2031 unsigned long inflated_addr;
2032 unsigned long inflated_offset;
2033
2034 if (len > TASK_SIZE)
2035 return -ENOMEM;
2036
2037 get_area = current->mm->get_unmapped_area;
2038 addr = get_area(file, uaddr, len, pgoff, flags);
2039
2040 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2041 return addr;
2042 if (IS_ERR_VALUE(addr))
2043 return addr;
2044 if (addr & ~PAGE_MASK)
2045 return addr;
2046 if (addr > TASK_SIZE - len)
2047 return addr;
2048
2049 if (shmem_huge == SHMEM_HUGE_DENY)
2050 return addr;
2051 if (len < HPAGE_PMD_SIZE)
2052 return addr;
2053 if (flags & MAP_FIXED)
2054 return addr;
2055 /*
2056 * Our priority is to support MAP_SHARED mapped hugely;
2057 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2058 * But if caller specified an address hint, respect that as before.
2059 */
2060 if (uaddr)
2061 return addr;
2062
2063 if (shmem_huge != SHMEM_HUGE_FORCE) {
2064 struct super_block *sb;
2065
2066 if (file) {
2067 VM_BUG_ON(file->f_op != &shmem_file_operations);
2068 sb = file_inode(file)->i_sb;
2069 } else {
2070 /*
2071 * Called directly from mm/mmap.c, or drivers/char/mem.c
2072 * for "/dev/zero", to create a shared anonymous object.
2073 */
2074 if (IS_ERR(shm_mnt))
2075 return addr;
2076 sb = shm_mnt->mnt_sb;
2077 }
2078 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2079 return addr;
2080 }
2081
2082 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2083 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2084 return addr;
2085 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2086 return addr;
2087
2088 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2089 if (inflated_len > TASK_SIZE)
2090 return addr;
2091 if (inflated_len < len)
2092 return addr;
2093
2094 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2095 if (IS_ERR_VALUE(inflated_addr))
2096 return addr;
2097 if (inflated_addr & ~PAGE_MASK)
2098 return addr;
2099
2100 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2101 inflated_addr += offset - inflated_offset;
2102 if (inflated_offset > offset)
2103 inflated_addr += HPAGE_PMD_SIZE;
2104
2105 if (inflated_addr > TASK_SIZE - len)
2106 return addr;
2107 return inflated_addr;
2108 }
2109
2110 #ifdef CONFIG_NUMA
2111 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2112 {
2113 struct inode *inode = file_inode(vma->vm_file);
2114 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2115 }
2116
2117 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2118 unsigned long addr)
2119 {
2120 struct inode *inode = file_inode(vma->vm_file);
2121 pgoff_t index;
2122
2123 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2124 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2125 }
2126 #endif
2127
2128 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2129 {
2130 struct inode *inode = file_inode(file);
2131 struct shmem_inode_info *info = SHMEM_I(inode);
2132 int retval = -ENOMEM;
2133
2134 spin_lock_irq(&info->lock);
2135 if (lock && !(info->flags & VM_LOCKED)) {
2136 if (!user_shm_lock(inode->i_size, user))
2137 goto out_nomem;
2138 info->flags |= VM_LOCKED;
2139 mapping_set_unevictable(file->f_mapping);
2140 }
2141 if (!lock && (info->flags & VM_LOCKED) && user) {
2142 user_shm_unlock(inode->i_size, user);
2143 info->flags &= ~VM_LOCKED;
2144 mapping_clear_unevictable(file->f_mapping);
2145 }
2146 retval = 0;
2147
2148 out_nomem:
2149 spin_unlock_irq(&info->lock);
2150 return retval;
2151 }
2152
2153 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2154 {
2155 file_accessed(file);
2156 vma->vm_ops = &shmem_vm_ops;
2157 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2158 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2159 (vma->vm_end & HPAGE_PMD_MASK)) {
2160 khugepaged_enter(vma, vma->vm_flags);
2161 }
2162 return 0;
2163 }
2164
2165 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2166 umode_t mode, dev_t dev, unsigned long flags)
2167 {
2168 struct inode *inode;
2169 struct shmem_inode_info *info;
2170 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2171 int ino;
2172
2173 if (shmem_reserve_inode(sb))
2174 return NULL;
2175
2176 inode = new_inode(sb);
2177 if (inode) {
2178 inode_init_owner(inode, dir, mode);
2179 inode->i_blocks = 0;
2180 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2181 inode->i_generation = get_seconds();
2182 info = SHMEM_I(inode);
2183 memset(info, 0, (char *)inode - (char *)info);
2184 spin_lock_init(&info->lock);
2185 info->seals = F_SEAL_SEAL;
2186 info->flags = flags & VM_NORESERVE;
2187 INIT_LIST_HEAD(&info->shrinklist);
2188 INIT_LIST_HEAD(&info->swaplist);
2189 simple_xattrs_init(&info->xattrs);
2190 cache_no_acl(inode);
2191
2192 switch (mode & S_IFMT) {
2193 default:
2194 inode->i_op = &shmem_special_inode_operations;
2195 init_special_inode(inode, mode, dev);
2196 break;
2197 case S_IFREG:
2198 inode->i_mapping->a_ops = &shmem_aops;
2199 inode->i_op = &shmem_inode_operations;
2200 inode->i_fop = &shmem_file_operations;
2201 mpol_shared_policy_init(&info->policy,
2202 shmem_get_sbmpol(sbinfo));
2203 break;
2204 case S_IFDIR:
2205 inc_nlink(inode);
2206 /* Some things misbehave if size == 0 on a directory */
2207 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2208 inode->i_op = &shmem_dir_inode_operations;
2209 inode->i_fop = &simple_dir_operations;
2210 break;
2211 case S_IFLNK:
2212 /*
2213 * Must not load anything in the rbtree,
2214 * mpol_free_shared_policy will not be called.
2215 */
2216 mpol_shared_policy_init(&info->policy, NULL);
2217 break;
2218 }
2219
2220 if (!sbinfo->idr_nouse) {
2221 /* inum 0 and 1 are unused */
2222 mutex_lock(&sbinfo->idr_lock);
2223 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2224 GFP_NOFS);
2225 if (ino > 0) {
2226 inode->i_ino = ino;
2227 mutex_unlock(&sbinfo->idr_lock);
2228 __insert_inode_hash(inode, inode->i_ino);
2229 } else {
2230 inode->i_ino = 0;
2231 mutex_unlock(&sbinfo->idr_lock);
2232 iput(inode);
2233 /* shmem_free_inode() will be called */
2234 inode = NULL;
2235 }
2236 } else
2237 inode->i_ino = get_next_ino();
2238 } else
2239 shmem_free_inode(sb);
2240 return inode;
2241 }
2242
2243 bool shmem_mapping(struct address_space *mapping)
2244 {
2245 return mapping->a_ops == &shmem_aops;
2246 }
2247
2248 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2249 pmd_t *dst_pmd,
2250 struct vm_area_struct *dst_vma,
2251 unsigned long dst_addr,
2252 unsigned long src_addr,
2253 bool zeropage,
2254 struct page **pagep)
2255 {
2256 struct inode *inode = file_inode(dst_vma->vm_file);
2257 struct shmem_inode_info *info = SHMEM_I(inode);
2258 struct address_space *mapping = inode->i_mapping;
2259 gfp_t gfp = mapping_gfp_mask(mapping);
2260 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2261 struct mem_cgroup *memcg;
2262 spinlock_t *ptl;
2263 void *page_kaddr;
2264 struct page *page;
2265 pte_t _dst_pte, *dst_pte;
2266 int ret;
2267
2268 ret = -ENOMEM;
2269 if (!shmem_inode_acct_block(inode, 1))
2270 goto out;
2271
2272 if (!*pagep) {
2273 page = shmem_alloc_page(gfp, info, pgoff);
2274 if (!page)
2275 goto out_unacct_blocks;
2276
2277 if (!zeropage) { /* mcopy_atomic */
2278 page_kaddr = kmap_atomic(page);
2279 ret = copy_from_user(page_kaddr,
2280 (const void __user *)src_addr,
2281 PAGE_SIZE);
2282 kunmap_atomic(page_kaddr);
2283
2284 /* fallback to copy_from_user outside mmap_sem */
2285 if (unlikely(ret)) {
2286 *pagep = page;
2287 shmem_inode_unacct_blocks(inode, 1);
2288 /* don't free the page */
2289 return -EFAULT;
2290 }
2291 } else { /* mfill_zeropage_atomic */
2292 clear_highpage(page);
2293 }
2294 } else {
2295 page = *pagep;
2296 *pagep = NULL;
2297 }
2298
2299 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2300 __SetPageLocked(page);
2301 __SetPageSwapBacked(page);
2302 __SetPageUptodate(page);
2303
2304 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2305 if (ret)
2306 goto out_release;
2307
2308 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2309 if (!ret) {
2310 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2311 radix_tree_preload_end();
2312 }
2313 if (ret)
2314 goto out_release_uncharge;
2315
2316 mem_cgroup_commit_charge(page, memcg, false, false);
2317
2318 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2319 if (dst_vma->vm_flags & VM_WRITE)
2320 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2321
2322 ret = -EEXIST;
2323 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2324 if (!pte_none(*dst_pte))
2325 goto out_release_uncharge_unlock;
2326
2327 lru_cache_add_anon(page);
2328
2329 spin_lock(&info->lock);
2330 info->alloced++;
2331 inode->i_blocks += BLOCKS_PER_PAGE;
2332 shmem_recalc_inode(inode);
2333 spin_unlock(&info->lock);
2334
2335 inc_mm_counter(dst_mm, mm_counter_file(page));
2336 page_add_file_rmap(page, false);
2337 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2338
2339 /* No need to invalidate - it was non-present before */
2340 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2341 unlock_page(page);
2342 pte_unmap_unlock(dst_pte, ptl);
2343 ret = 0;
2344 out:
2345 return ret;
2346 out_release_uncharge_unlock:
2347 pte_unmap_unlock(dst_pte, ptl);
2348 out_release_uncharge:
2349 mem_cgroup_cancel_charge(page, memcg, false);
2350 out_release:
2351 unlock_page(page);
2352 put_page(page);
2353 out_unacct_blocks:
2354 shmem_inode_unacct_blocks(inode, 1);
2355 goto out;
2356 }
2357
2358 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2359 pmd_t *dst_pmd,
2360 struct vm_area_struct *dst_vma,
2361 unsigned long dst_addr,
2362 unsigned long src_addr,
2363 struct page **pagep)
2364 {
2365 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2366 dst_addr, src_addr, false, pagep);
2367 }
2368
2369 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2370 pmd_t *dst_pmd,
2371 struct vm_area_struct *dst_vma,
2372 unsigned long dst_addr)
2373 {
2374 struct page *page = NULL;
2375
2376 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2377 dst_addr, 0, true, &page);
2378 }
2379
2380 #ifdef CONFIG_TMPFS
2381 static const struct inode_operations shmem_symlink_inode_operations;
2382 static const struct inode_operations shmem_short_symlink_operations;
2383
2384 #ifdef CONFIG_TMPFS_XATTR
2385 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2386 #else
2387 #define shmem_initxattrs NULL
2388 #endif
2389
2390 static int
2391 shmem_write_begin(struct file *file, struct address_space *mapping,
2392 loff_t pos, unsigned len, unsigned flags,
2393 struct page **pagep, void **fsdata)
2394 {
2395 struct inode *inode = mapping->host;
2396 struct shmem_inode_info *info = SHMEM_I(inode);
2397 pgoff_t index = pos >> PAGE_SHIFT;
2398
2399 /* i_mutex is held by caller */
2400 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2401 if (info->seals & F_SEAL_WRITE)
2402 return -EPERM;
2403 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2404 return -EPERM;
2405 }
2406
2407 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2408 }
2409
2410 static int
2411 shmem_write_end(struct file *file, struct address_space *mapping,
2412 loff_t pos, unsigned len, unsigned copied,
2413 struct page *page, void *fsdata)
2414 {
2415 struct inode *inode = mapping->host;
2416
2417 if (pos + copied > inode->i_size)
2418 i_size_write(inode, pos + copied);
2419
2420 if (!PageUptodate(page)) {
2421 struct page *head = compound_head(page);
2422 if (PageTransCompound(page)) {
2423 int i;
2424
2425 for (i = 0; i < HPAGE_PMD_NR; i++) {
2426 if (head + i == page)
2427 continue;
2428 clear_highpage(head + i);
2429 flush_dcache_page(head + i);
2430 }
2431 }
2432 if (copied < PAGE_SIZE) {
2433 unsigned from = pos & (PAGE_SIZE - 1);
2434 zero_user_segments(page, 0, from,
2435 from + copied, PAGE_SIZE);
2436 }
2437 SetPageUptodate(head);
2438 }
2439 set_page_dirty(page);
2440 unlock_page(page);
2441 put_page(page);
2442
2443 return copied;
2444 }
2445
2446 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2447 {
2448 struct file *file = iocb->ki_filp;
2449 struct inode *inode = file_inode(file);
2450 struct address_space *mapping = inode->i_mapping;
2451 pgoff_t index;
2452 unsigned long offset;
2453 enum sgp_type sgp = SGP_READ;
2454 int error = 0;
2455 ssize_t retval = 0;
2456 loff_t *ppos = &iocb->ki_pos;
2457
2458 /*
2459 * Might this read be for a stacking filesystem? Then when reading
2460 * holes of a sparse file, we actually need to allocate those pages,
2461 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2462 */
2463 if (!iter_is_iovec(to))
2464 sgp = SGP_CACHE;
2465
2466 index = *ppos >> PAGE_SHIFT;
2467 offset = *ppos & ~PAGE_MASK;
2468
2469 for (;;) {
2470 struct page *page = NULL;
2471 pgoff_t end_index;
2472 unsigned long nr, ret;
2473 loff_t i_size = i_size_read(inode);
2474
2475 end_index = i_size >> PAGE_SHIFT;
2476 if (index > end_index)
2477 break;
2478 if (index == end_index) {
2479 nr = i_size & ~PAGE_MASK;
2480 if (nr <= offset)
2481 break;
2482 }
2483
2484 error = shmem_getpage(inode, index, &page, sgp);
2485 if (error) {
2486 if (error == -EINVAL)
2487 error = 0;
2488 break;
2489 }
2490 if (page) {
2491 if (sgp == SGP_CACHE)
2492 set_page_dirty(page);
2493 unlock_page(page);
2494 }
2495
2496 /*
2497 * We must evaluate after, since reads (unlike writes)
2498 * are called without i_mutex protection against truncate
2499 */
2500 nr = PAGE_SIZE;
2501 i_size = i_size_read(inode);
2502 end_index = i_size >> PAGE_SHIFT;
2503 if (index == end_index) {
2504 nr = i_size & ~PAGE_MASK;
2505 if (nr <= offset) {
2506 if (page)
2507 put_page(page);
2508 break;
2509 }
2510 }
2511 nr -= offset;
2512
2513 if (page) {
2514 /*
2515 * If users can be writing to this page using arbitrary
2516 * virtual addresses, take care about potential aliasing
2517 * before reading the page on the kernel side.
2518 */
2519 if (mapping_writably_mapped(mapping))
2520 flush_dcache_page(page);
2521 /*
2522 * Mark the page accessed if we read the beginning.
2523 */
2524 if (!offset)
2525 mark_page_accessed(page);
2526 } else {
2527 page = ZERO_PAGE(0);
2528 get_page(page);
2529 }
2530
2531 /*
2532 * Ok, we have the page, and it's up-to-date, so
2533 * now we can copy it to user space...
2534 */
2535 ret = copy_page_to_iter(page, offset, nr, to);
2536 retval += ret;
2537 offset += ret;
2538 index += offset >> PAGE_SHIFT;
2539 offset &= ~PAGE_MASK;
2540
2541 put_page(page);
2542 if (!iov_iter_count(to))
2543 break;
2544 if (ret < nr) {
2545 error = -EFAULT;
2546 break;
2547 }
2548 cond_resched();
2549 }
2550
2551 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2552 file_accessed(file);
2553 return retval ? retval : error;
2554 }
2555
2556 /*
2557 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2558 */
2559 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2560 pgoff_t index, pgoff_t end, int whence)
2561 {
2562 struct page *page;
2563 struct pagevec pvec;
2564 pgoff_t indices[PAGEVEC_SIZE];
2565 bool done = false;
2566 int i;
2567
2568 pagevec_init(&pvec);
2569 pvec.nr = 1; /* start small: we may be there already */
2570 while (!done) {
2571 pvec.nr = find_get_entries(mapping, index,
2572 pvec.nr, pvec.pages, indices);
2573 if (!pvec.nr) {
2574 if (whence == SEEK_DATA)
2575 index = end;
2576 break;
2577 }
2578 for (i = 0; i < pvec.nr; i++, index++) {
2579 if (index < indices[i]) {
2580 if (whence == SEEK_HOLE) {
2581 done = true;
2582 break;
2583 }
2584 index = indices[i];
2585 }
2586 page = pvec.pages[i];
2587 if (page && !radix_tree_exceptional_entry(page)) {
2588 if (!PageUptodate(page))
2589 page = NULL;
2590 }
2591 if (index >= end ||
2592 (page && whence == SEEK_DATA) ||
2593 (!page && whence == SEEK_HOLE)) {
2594 done = true;
2595 break;
2596 }
2597 }
2598 pagevec_remove_exceptionals(&pvec);
2599 pagevec_release(&pvec);
2600 pvec.nr = PAGEVEC_SIZE;
2601 cond_resched();
2602 }
2603 return index;
2604 }
2605
2606 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2607 {
2608 struct address_space *mapping = file->f_mapping;
2609 struct inode *inode = mapping->host;
2610 pgoff_t start, end;
2611 loff_t new_offset;
2612
2613 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2614 return generic_file_llseek_size(file, offset, whence,
2615 MAX_LFS_FILESIZE, i_size_read(inode));
2616 inode_lock(inode);
2617 /* We're holding i_mutex so we can access i_size directly */
2618
2619 if (offset < 0)
2620 offset = -EINVAL;
2621 else if (offset >= inode->i_size)
2622 offset = -ENXIO;
2623 else {
2624 start = offset >> PAGE_SHIFT;
2625 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2626 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2627 new_offset <<= PAGE_SHIFT;
2628 if (new_offset > offset) {
2629 if (new_offset < inode->i_size)
2630 offset = new_offset;
2631 else if (whence == SEEK_DATA)
2632 offset = -ENXIO;
2633 else
2634 offset = inode->i_size;
2635 }
2636 }
2637
2638 if (offset >= 0)
2639 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2640 inode_unlock(inode);
2641 return offset;
2642 }
2643
2644 /*
2645 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2646 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2647 */
2648 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2649 #define LAST_SCAN 4 /* about 150ms max */
2650
2651 static void shmem_tag_pins(struct address_space *mapping)
2652 {
2653 struct radix_tree_iter iter;
2654 void **slot;
2655 pgoff_t start;
2656 struct page *page;
2657
2658 lru_add_drain();
2659 start = 0;
2660 rcu_read_lock();
2661
2662 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2663 page = radix_tree_deref_slot(slot);
2664 if (!page || radix_tree_exception(page)) {
2665 if (radix_tree_deref_retry(page)) {
2666 slot = radix_tree_iter_retry(&iter);
2667 continue;
2668 }
2669 } else if (page_count(page) - page_mapcount(page) > 1) {
2670 spin_lock_irq(&mapping->tree_lock);
2671 radix_tree_tag_set(&mapping->page_tree, iter.index,
2672 SHMEM_TAG_PINNED);
2673 spin_unlock_irq(&mapping->tree_lock);
2674 }
2675
2676 if (need_resched()) {
2677 slot = radix_tree_iter_resume(slot, &iter);
2678 cond_resched_rcu();
2679 }
2680 }
2681 rcu_read_unlock();
2682 }
2683
2684 /*
2685 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2686 * via get_user_pages(), drivers might have some pending I/O without any active
2687 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2688 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2689 * them to be dropped.
2690 * The caller must guarantee that no new user will acquire writable references
2691 * to those pages to avoid races.
2692 */
2693 static int shmem_wait_for_pins(struct address_space *mapping)
2694 {
2695 struct radix_tree_iter iter;
2696 void **slot;
2697 pgoff_t start;
2698 struct page *page;
2699 int error, scan;
2700
2701 shmem_tag_pins(mapping);
2702
2703 error = 0;
2704 for (scan = 0; scan <= LAST_SCAN; scan++) {
2705 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2706 break;
2707
2708 if (!scan)
2709 lru_add_drain_all();
2710 else if (schedule_timeout_killable((HZ << scan) / 200))
2711 scan = LAST_SCAN;
2712
2713 start = 0;
2714 rcu_read_lock();
2715 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2716 start, SHMEM_TAG_PINNED) {
2717
2718 page = radix_tree_deref_slot(slot);
2719 if (radix_tree_exception(page)) {
2720 if (radix_tree_deref_retry(page)) {
2721 slot = radix_tree_iter_retry(&iter);
2722 continue;
2723 }
2724
2725 page = NULL;
2726 }
2727
2728 if (page &&
2729 page_count(page) - page_mapcount(page) != 1) {
2730 if (scan < LAST_SCAN)
2731 goto continue_resched;
2732
2733 /*
2734 * On the last scan, we clean up all those tags
2735 * we inserted; but make a note that we still
2736 * found pages pinned.
2737 */
2738 error = -EBUSY;
2739 }
2740
2741 spin_lock_irq(&mapping->tree_lock);
2742 radix_tree_tag_clear(&mapping->page_tree,
2743 iter.index, SHMEM_TAG_PINNED);
2744 spin_unlock_irq(&mapping->tree_lock);
2745 continue_resched:
2746 if (need_resched()) {
2747 slot = radix_tree_iter_resume(slot, &iter);
2748 cond_resched_rcu();
2749 }
2750 }
2751 rcu_read_unlock();
2752 }
2753
2754 return error;
2755 }
2756
2757 #define F_ALL_SEALS (F_SEAL_SEAL | \
2758 F_SEAL_SHRINK | \
2759 F_SEAL_GROW | \
2760 F_SEAL_WRITE)
2761
2762 int shmem_add_seals(struct file *file, unsigned int seals)
2763 {
2764 struct inode *inode = file_inode(file);
2765 struct shmem_inode_info *info = SHMEM_I(inode);
2766 int error;
2767
2768 /*
2769 * SEALING
2770 * Sealing allows multiple parties to share a shmem-file but restrict
2771 * access to a specific subset of file operations. Seals can only be
2772 * added, but never removed. This way, mutually untrusted parties can
2773 * share common memory regions with a well-defined policy. A malicious
2774 * peer can thus never perform unwanted operations on a shared object.
2775 *
2776 * Seals are only supported on special shmem-files and always affect
2777 * the whole underlying inode. Once a seal is set, it may prevent some
2778 * kinds of access to the file. Currently, the following seals are
2779 * defined:
2780 * SEAL_SEAL: Prevent further seals from being set on this file
2781 * SEAL_SHRINK: Prevent the file from shrinking
2782 * SEAL_GROW: Prevent the file from growing
2783 * SEAL_WRITE: Prevent write access to the file
2784 *
2785 * As we don't require any trust relationship between two parties, we
2786 * must prevent seals from being removed. Therefore, sealing a file
2787 * only adds a given set of seals to the file, it never touches
2788 * existing seals. Furthermore, the "setting seals"-operation can be
2789 * sealed itself, which basically prevents any further seal from being
2790 * added.
2791 *
2792 * Semantics of sealing are only defined on volatile files. Only
2793 * anonymous shmem files support sealing. More importantly, seals are
2794 * never written to disk. Therefore, there's no plan to support it on
2795 * other file types.
2796 */
2797
2798 if (file->f_op != &shmem_file_operations)
2799 return -EINVAL;
2800 if (!(file->f_mode & FMODE_WRITE))
2801 return -EPERM;
2802 if (seals & ~(unsigned int)F_ALL_SEALS)
2803 return -EINVAL;
2804
2805 inode_lock(inode);
2806
2807 if (info->seals & F_SEAL_SEAL) {
2808 error = -EPERM;
2809 goto unlock;
2810 }
2811
2812 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2813 error = mapping_deny_writable(file->f_mapping);
2814 if (error)
2815 goto unlock;
2816
2817 error = shmem_wait_for_pins(file->f_mapping);
2818 if (error) {
2819 mapping_allow_writable(file->f_mapping);
2820 goto unlock;
2821 }
2822 }
2823
2824 info->seals |= seals;
2825 error = 0;
2826
2827 unlock:
2828 inode_unlock(inode);
2829 return error;
2830 }
2831 EXPORT_SYMBOL_GPL(shmem_add_seals);
2832
2833 int shmem_get_seals(struct file *file)
2834 {
2835 if (file->f_op != &shmem_file_operations)
2836 return -EINVAL;
2837
2838 return SHMEM_I(file_inode(file))->seals;
2839 }
2840 EXPORT_SYMBOL_GPL(shmem_get_seals);
2841
2842 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2843 {
2844 long error;
2845
2846 switch (cmd) {
2847 case F_ADD_SEALS:
2848 /* disallow upper 32bit */
2849 if (arg > UINT_MAX)
2850 return -EINVAL;
2851
2852 error = shmem_add_seals(file, arg);
2853 break;
2854 case F_GET_SEALS:
2855 error = shmem_get_seals(file);
2856 break;
2857 default:
2858 error = -EINVAL;
2859 break;
2860 }
2861
2862 return error;
2863 }
2864
2865 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2866 loff_t len)
2867 {
2868 struct inode *inode = file_inode(file);
2869 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2870 struct shmem_inode_info *info = SHMEM_I(inode);
2871 struct shmem_falloc shmem_falloc;
2872 pgoff_t start, index, end;
2873 int error;
2874
2875 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2876 return -EOPNOTSUPP;
2877
2878 inode_lock(inode);
2879
2880 if (mode & FALLOC_FL_PUNCH_HOLE) {
2881 struct address_space *mapping = file->f_mapping;
2882 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2883 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2884 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2885
2886 /* protected by i_mutex */
2887 if (info->seals & F_SEAL_WRITE) {
2888 error = -EPERM;
2889 goto out;
2890 }
2891
2892 shmem_falloc.waitq = &shmem_falloc_waitq;
2893 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2894 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2895 spin_lock(&inode->i_lock);
2896 inode->i_private = &shmem_falloc;
2897 spin_unlock(&inode->i_lock);
2898
2899 if ((u64)unmap_end > (u64)unmap_start)
2900 unmap_mapping_range(mapping, unmap_start,
2901 1 + unmap_end - unmap_start, 0);
2902 shmem_truncate_range(inode, offset, offset + len - 1);
2903 /* No need to unmap again: hole-punching leaves COWed pages */
2904
2905 spin_lock(&inode->i_lock);
2906 inode->i_private = NULL;
2907 wake_up_all(&shmem_falloc_waitq);
2908 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2909 spin_unlock(&inode->i_lock);
2910 error = 0;
2911 goto out;
2912 }
2913
2914 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2915 error = inode_newsize_ok(inode, offset + len);
2916 if (error)
2917 goto out;
2918
2919 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2920 error = -EPERM;
2921 goto out;
2922 }
2923
2924 start = offset >> PAGE_SHIFT;
2925 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2926 /* Try to avoid a swapstorm if len is impossible to satisfy */
2927 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2928 error = -ENOSPC;
2929 goto out;
2930 }
2931
2932 shmem_falloc.waitq = NULL;
2933 shmem_falloc.start = start;
2934 shmem_falloc.next = start;
2935 shmem_falloc.nr_falloced = 0;
2936 shmem_falloc.nr_unswapped = 0;
2937 spin_lock(&inode->i_lock);
2938 inode->i_private = &shmem_falloc;
2939 spin_unlock(&inode->i_lock);
2940
2941 for (index = start; index < end; index++) {
2942 struct page *page;
2943
2944 /*
2945 * Good, the fallocate(2) manpage permits EINTR: we may have
2946 * been interrupted because we are using up too much memory.
2947 */
2948 if (signal_pending(current))
2949 error = -EINTR;
2950 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2951 error = -ENOMEM;
2952 else
2953 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2954 if (error) {
2955 /* Remove the !PageUptodate pages we added */
2956 if (index > start) {
2957 shmem_undo_range(inode,
2958 (loff_t)start << PAGE_SHIFT,
2959 ((loff_t)index << PAGE_SHIFT) - 1, true);
2960 }
2961 goto undone;
2962 }
2963
2964 /*
2965 * Inform shmem_writepage() how far we have reached.
2966 * No need for lock or barrier: we have the page lock.
2967 */
2968 shmem_falloc.next++;
2969 if (!PageUptodate(page))
2970 shmem_falloc.nr_falloced++;
2971
2972 /*
2973 * If !PageUptodate, leave it that way so that freeable pages
2974 * can be recognized if we need to rollback on error later.
2975 * But set_page_dirty so that memory pressure will swap rather
2976 * than free the pages we are allocating (and SGP_CACHE pages
2977 * might still be clean: we now need to mark those dirty too).
2978 */
2979 set_page_dirty(page);
2980 unlock_page(page);
2981 put_page(page);
2982 cond_resched();
2983 }
2984
2985 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2986 i_size_write(inode, offset + len);
2987 inode->i_ctime = current_time(inode);
2988 undone:
2989 spin_lock(&inode->i_lock);
2990 inode->i_private = NULL;
2991 spin_unlock(&inode->i_lock);
2992 out:
2993 inode_unlock(inode);
2994 return error;
2995 }
2996
2997 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2998 {
2999 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3000
3001 buf->f_type = TMPFS_MAGIC;
3002 buf->f_bsize = PAGE_SIZE;
3003 buf->f_namelen = NAME_MAX;
3004 if (sbinfo->max_blocks) {
3005 buf->f_blocks = sbinfo->max_blocks;
3006 buf->f_bavail =
3007 buf->f_bfree = sbinfo->max_blocks -
3008 percpu_counter_sum(&sbinfo->used_blocks);
3009 }
3010 if (sbinfo->max_inodes) {
3011 buf->f_files = sbinfo->max_inodes;
3012 buf->f_ffree = sbinfo->free_inodes;
3013 }
3014 /* else leave those fields 0 like simple_statfs */
3015 return 0;
3016 }
3017
3018 /*
3019 * File creation. Allocate an inode, and we're done..
3020 */
3021 static int
3022 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3023 {
3024 struct inode *inode;
3025 int error = -ENOSPC;
3026
3027 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3028 if (inode) {
3029 error = simple_acl_create(dir, inode);
3030 if (error)
3031 goto out_iput;
3032 error = security_inode_init_security(inode, dir,
3033 &dentry->d_name,
3034 shmem_initxattrs, NULL);
3035 if (error && error != -EOPNOTSUPP)
3036 goto out_iput;
3037
3038 error = 0;
3039 dir->i_size += BOGO_DIRENT_SIZE;
3040 dir->i_ctime = dir->i_mtime = current_time(dir);
3041 d_instantiate(dentry, inode);
3042 dget(dentry); /* Extra count - pin the dentry in core */
3043 }
3044 return error;
3045 out_iput:
3046 iput(inode);
3047 return error;
3048 }
3049
3050 static int
3051 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3052 {
3053 struct inode *inode;
3054 int error = -ENOSPC;
3055
3056 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3057 if (inode) {
3058 error = security_inode_init_security(inode, dir,
3059 NULL,
3060 shmem_initxattrs, NULL);
3061 if (error && error != -EOPNOTSUPP)
3062 goto out_iput;
3063 error = simple_acl_create(dir, inode);
3064 if (error)
3065 goto out_iput;
3066 d_tmpfile(dentry, inode);
3067 }
3068 return error;
3069 out_iput:
3070 iput(inode);
3071 return error;
3072 }
3073
3074 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3075 {
3076 int error;
3077
3078 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3079 return error;
3080 inc_nlink(dir);
3081 return 0;
3082 }
3083
3084 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3085 bool excl)
3086 {
3087 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3088 }
3089
3090 /*
3091 * Link a file..
3092 */
3093 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3094 {
3095 struct inode *inode = d_inode(old_dentry);
3096 int ret;
3097
3098 /*
3099 * No ordinary (disk based) filesystem counts links as inodes;
3100 * but each new link needs a new dentry, pinning lowmem, and
3101 * tmpfs dentries cannot be pruned until they are unlinked.
3102 */
3103 ret = shmem_reserve_inode(inode->i_sb);
3104 if (ret)
3105 goto out;
3106
3107 dir->i_size += BOGO_DIRENT_SIZE;
3108 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3109 inc_nlink(inode);
3110 ihold(inode); /* New dentry reference */
3111 dget(dentry); /* Extra pinning count for the created dentry */
3112 d_instantiate(dentry, inode);
3113 out:
3114 return ret;
3115 }
3116
3117 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3118 {
3119 struct inode *inode = d_inode(dentry);
3120
3121 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3122 shmem_free_inode(inode->i_sb);
3123
3124 dir->i_size -= BOGO_DIRENT_SIZE;
3125 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3126 drop_nlink(inode);
3127 dput(dentry); /* Undo the count from "create" - this does all the work */
3128 return 0;
3129 }
3130
3131 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3132 {
3133 if (!simple_empty(dentry))
3134 return -ENOTEMPTY;
3135
3136 drop_nlink(d_inode(dentry));
3137 drop_nlink(dir);
3138 return shmem_unlink(dir, dentry);
3139 }
3140
3141 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3142 {
3143 bool old_is_dir = d_is_dir(old_dentry);
3144 bool new_is_dir = d_is_dir(new_dentry);
3145
3146 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3147 if (old_is_dir) {
3148 drop_nlink(old_dir);
3149 inc_nlink(new_dir);
3150 } else {
3151 drop_nlink(new_dir);
3152 inc_nlink(old_dir);
3153 }
3154 }
3155 old_dir->i_ctime = old_dir->i_mtime =
3156 new_dir->i_ctime = new_dir->i_mtime =
3157 d_inode(old_dentry)->i_ctime =
3158 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3159
3160 return 0;
3161 }
3162
3163 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3164 {
3165 struct dentry *whiteout;
3166 int error;
3167
3168 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3169 if (!whiteout)
3170 return -ENOMEM;
3171
3172 error = shmem_mknod(old_dir, whiteout,
3173 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3174 dput(whiteout);
3175 if (error)
3176 return error;
3177
3178 /*
3179 * Cheat and hash the whiteout while the old dentry is still in
3180 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3181 *
3182 * d_lookup() will consistently find one of them at this point,
3183 * not sure which one, but that isn't even important.
3184 */
3185 d_rehash(whiteout);
3186 return 0;
3187 }
3188
3189 /*
3190 * The VFS layer already does all the dentry stuff for rename,
3191 * we just have to decrement the usage count for the target if
3192 * it exists so that the VFS layer correctly free's it when it
3193 * gets overwritten.
3194 */
3195 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3196 {
3197 struct inode *inode = d_inode(old_dentry);
3198 int they_are_dirs = S_ISDIR(inode->i_mode);
3199
3200 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3201 return -EINVAL;
3202
3203 if (flags & RENAME_EXCHANGE)
3204 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3205
3206 if (!simple_empty(new_dentry))
3207 return -ENOTEMPTY;
3208
3209 if (flags & RENAME_WHITEOUT) {
3210 int error;
3211
3212 error = shmem_whiteout(old_dir, old_dentry);
3213 if (error)
3214 return error;
3215 }
3216
3217 if (d_really_is_positive(new_dentry)) {
3218 (void) shmem_unlink(new_dir, new_dentry);
3219 if (they_are_dirs) {
3220 drop_nlink(d_inode(new_dentry));
3221 drop_nlink(old_dir);
3222 }
3223 } else if (they_are_dirs) {
3224 drop_nlink(old_dir);
3225 inc_nlink(new_dir);
3226 }
3227
3228 old_dir->i_size -= BOGO_DIRENT_SIZE;
3229 new_dir->i_size += BOGO_DIRENT_SIZE;
3230 old_dir->i_ctime = old_dir->i_mtime =
3231 new_dir->i_ctime = new_dir->i_mtime =
3232 inode->i_ctime = current_time(old_dir);
3233 return 0;
3234 }
3235
3236 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3237 {
3238 int error;
3239 int len;
3240 struct inode *inode;
3241 struct page *page;
3242
3243 len = strlen(symname) + 1;
3244 if (len > PAGE_SIZE)
3245 return -ENAMETOOLONG;
3246
3247 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3248 if (!inode)
3249 return -ENOSPC;
3250
3251 error = security_inode_init_security(inode, dir, &dentry->d_name,
3252 shmem_initxattrs, NULL);
3253 if (error) {
3254 if (error != -EOPNOTSUPP) {
3255 iput(inode);
3256 return error;
3257 }
3258 error = 0;
3259 }
3260
3261 inode->i_size = len-1;
3262 if (len <= SHORT_SYMLINK_LEN) {
3263 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3264 if (!inode->i_link) {
3265 iput(inode);
3266 return -ENOMEM;
3267 }
3268 inode->i_op = &shmem_short_symlink_operations;
3269 } else {
3270 inode_nohighmem(inode);
3271 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3272 if (error) {
3273 iput(inode);
3274 return error;
3275 }
3276 inode->i_mapping->a_ops = &shmem_aops;
3277 inode->i_op = &shmem_symlink_inode_operations;
3278 memcpy(page_address(page), symname, len);
3279 SetPageUptodate(page);
3280 set_page_dirty(page);
3281 unlock_page(page);
3282 put_page(page);
3283 }
3284 dir->i_size += BOGO_DIRENT_SIZE;
3285 dir->i_ctime = dir->i_mtime = current_time(dir);
3286 d_instantiate(dentry, inode);
3287 dget(dentry);
3288 return 0;
3289 }
3290
3291 static void shmem_put_link(void *arg)
3292 {
3293 mark_page_accessed(arg);
3294 put_page(arg);
3295 }
3296
3297 static const char *shmem_get_link(struct dentry *dentry,
3298 struct inode *inode,
3299 struct delayed_call *done)
3300 {
3301 struct page *page = NULL;
3302 int error;
3303 if (!dentry) {
3304 page = find_get_page(inode->i_mapping, 0);
3305 if (!page)
3306 return ERR_PTR(-ECHILD);
3307 if (!PageUptodate(page)) {
3308 put_page(page);
3309 return ERR_PTR(-ECHILD);
3310 }
3311 } else {
3312 error = shmem_getpage(inode, 0, &page, SGP_READ);
3313 if (error)
3314 return ERR_PTR(error);
3315 unlock_page(page);
3316 }
3317 set_delayed_call(done, shmem_put_link, page);
3318 return page_address(page);
3319 }
3320
3321 #ifdef CONFIG_TMPFS_XATTR
3322 /*
3323 * Superblocks without xattr inode operations may get some security.* xattr
3324 * support from the LSM "for free". As soon as we have any other xattrs
3325 * like ACLs, we also need to implement the security.* handlers at
3326 * filesystem level, though.
3327 */
3328
3329 /*
3330 * Callback for security_inode_init_security() for acquiring xattrs.
3331 */
3332 static int shmem_initxattrs(struct inode *inode,
3333 const struct xattr *xattr_array,
3334 void *fs_info)
3335 {
3336 struct shmem_inode_info *info = SHMEM_I(inode);
3337 const struct xattr *xattr;
3338 struct simple_xattr *new_xattr;
3339 size_t len;
3340
3341 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3342 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3343 if (!new_xattr)
3344 return -ENOMEM;
3345
3346 len = strlen(xattr->name) + 1;
3347 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3348 GFP_KERNEL);
3349 if (!new_xattr->name) {
3350 kfree(new_xattr);
3351 return -ENOMEM;
3352 }
3353
3354 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3355 XATTR_SECURITY_PREFIX_LEN);
3356 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3357 xattr->name, len);
3358
3359 simple_xattr_list_add(&info->xattrs, new_xattr);
3360 }
3361
3362 return 0;
3363 }
3364
3365 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3366 struct dentry *unused, struct inode *inode,
3367 const char *name, void *buffer, size_t size)
3368 {
3369 struct shmem_inode_info *info = SHMEM_I(inode);
3370
3371 name = xattr_full_name(handler, name);
3372 return simple_xattr_get(&info->xattrs, name, buffer, size);
3373 }
3374
3375 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3376 struct dentry *unused, struct inode *inode,
3377 const char *name, const void *value,
3378 size_t size, int flags)
3379 {
3380 struct shmem_inode_info *info = SHMEM_I(inode);
3381
3382 name = xattr_full_name(handler, name);
3383 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3384 }
3385
3386 static const struct xattr_handler shmem_security_xattr_handler = {
3387 .prefix = XATTR_SECURITY_PREFIX,
3388 .get = shmem_xattr_handler_get,
3389 .set = shmem_xattr_handler_set,
3390 };
3391
3392 static const struct xattr_handler shmem_trusted_xattr_handler = {
3393 .prefix = XATTR_TRUSTED_PREFIX,
3394 .get = shmem_xattr_handler_get,
3395 .set = shmem_xattr_handler_set,
3396 };
3397
3398 static const struct xattr_handler *shmem_xattr_handlers[] = {
3399 #ifdef CONFIG_TMPFS_POSIX_ACL
3400 &posix_acl_access_xattr_handler,
3401 &posix_acl_default_xattr_handler,
3402 #endif
3403 &shmem_security_xattr_handler,
3404 &shmem_trusted_xattr_handler,
3405 NULL
3406 };
3407
3408 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3409 {
3410 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3411 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3412 }
3413 #endif /* CONFIG_TMPFS_XATTR */
3414
3415 static const struct inode_operations shmem_short_symlink_operations = {
3416 .get_link = simple_get_link,
3417 #ifdef CONFIG_TMPFS_XATTR
3418 .listxattr = shmem_listxattr,
3419 #endif
3420 };
3421
3422 static const struct inode_operations shmem_symlink_inode_operations = {
3423 .get_link = shmem_get_link,
3424 #ifdef CONFIG_TMPFS_XATTR
3425 .listxattr = shmem_listxattr,
3426 #endif
3427 };
3428
3429 static struct dentry *shmem_get_parent(struct dentry *child)
3430 {
3431 return ERR_PTR(-ESTALE);
3432 }
3433
3434 static int shmem_match(struct inode *ino, void *vfh)
3435 {
3436 __u32 *fh = vfh;
3437 __u64 inum = fh[1];
3438 return ino->i_ino == inum && fh[0] == ino->i_generation;
3439 }
3440
3441 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3442 struct fid *fid, int fh_len, int fh_type)
3443 {
3444 struct inode *inode;
3445 struct dentry *dentry = NULL;
3446 u64 inum;
3447
3448 if (fh_len < 2)
3449 return NULL;
3450
3451 inum = fid->raw[1];
3452 inode = ilookup5(sb, inum, shmem_match, fid->raw);
3453 if (inode) {
3454 dentry = d_find_alias(inode);
3455 iput(inode);
3456 }
3457
3458 return dentry;
3459 }
3460
3461 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3462 struct inode *parent)
3463 {
3464 if (*len < 2) {
3465 *len = 2;
3466 return FILEID_INVALID;
3467 }
3468
3469 fh[0] = inode->i_generation;
3470 fh[1] = inode->i_ino;
3471
3472 *len = 2;
3473 return 1;
3474 }
3475
3476 static const struct export_operations shmem_export_ops = {
3477 .get_parent = shmem_get_parent,
3478 .encode_fh = shmem_encode_fh,
3479 .fh_to_dentry = shmem_fh_to_dentry,
3480 };
3481
3482 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3483 bool remount)
3484 {
3485 char *this_char, *value, *rest;
3486 struct mempolicy *mpol = NULL;
3487 uid_t uid;
3488 gid_t gid;
3489
3490 while (options != NULL) {
3491 this_char = options;
3492 for (;;) {
3493 /*
3494 * NUL-terminate this option: unfortunately,
3495 * mount options form a comma-separated list,
3496 * but mpol's nodelist may also contain commas.
3497 */
3498 options = strchr(options, ',');
3499 if (options == NULL)
3500 break;
3501 options++;
3502 if (!isdigit(*options)) {
3503 options[-1] = '\0';
3504 break;
3505 }
3506 }
3507 if (!*this_char)
3508 continue;
3509 if ((value = strchr(this_char,'=')) != NULL) {
3510 *value++ = 0;
3511 } else {
3512 pr_err("tmpfs: No value for mount option '%s'\n",
3513 this_char);
3514 goto error;
3515 }
3516
3517 if (!strcmp(this_char,"size")) {
3518 unsigned long long size;
3519 size = memparse(value,&rest);
3520 if (*rest == '%') {
3521 size <<= PAGE_SHIFT;
3522 size *= totalram_pages;
3523 do_div(size, 100);
3524 rest++;
3525 }
3526 if (*rest)
3527 goto bad_val;
3528 sbinfo->max_blocks =
3529 DIV_ROUND_UP(size, PAGE_SIZE);
3530 } else if (!strcmp(this_char,"nr_blocks")) {
3531 sbinfo->max_blocks = memparse(value, &rest);
3532 if (*rest)
3533 goto bad_val;
3534 } else if (!strcmp(this_char,"nr_inodes")) {
3535 sbinfo->max_inodes = memparse(value, &rest);
3536 if (*rest || sbinfo->max_inodes < 2)
3537 goto bad_val;
3538 } else if (!strcmp(this_char,"mode")) {
3539 if (remount)
3540 continue;
3541 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3542 if (*rest)
3543 goto bad_val;
3544 } else if (!strcmp(this_char,"uid")) {
3545 if (remount)
3546 continue;
3547 uid = simple_strtoul(value, &rest, 0);
3548 if (*rest)
3549 goto bad_val;
3550 sbinfo->uid = make_kuid(current_user_ns(), uid);
3551 if (!uid_valid(sbinfo->uid))
3552 goto bad_val;
3553 } else if (!strcmp(this_char,"gid")) {
3554 if (remount)
3555 continue;
3556 gid = simple_strtoul(value, &rest, 0);
3557 if (*rest)
3558 goto bad_val;
3559 sbinfo->gid = make_kgid(current_user_ns(), gid);
3560 if (!gid_valid(sbinfo->gid))
3561 goto bad_val;
3562 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3563 } else if (!strcmp(this_char, "huge")) {
3564 int huge;
3565 huge = shmem_parse_huge(value);
3566 if (huge < 0)
3567 goto bad_val;
3568 if (!has_transparent_hugepage() &&
3569 huge != SHMEM_HUGE_NEVER)
3570 goto bad_val;
3571 sbinfo->huge = huge;
3572 #endif
3573 #ifdef CONFIG_NUMA
3574 } else if (!strcmp(this_char,"mpol")) {
3575 mpol_put(mpol);
3576 mpol = NULL;
3577 if (mpol_parse_str(value, &mpol))
3578 goto bad_val;
3579 #endif
3580 } else {
3581 pr_err("tmpfs: Bad mount option %s\n", this_char);
3582 goto error;
3583 }
3584 }
3585 sbinfo->mpol = mpol;
3586 return 0;
3587
3588 bad_val:
3589 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3590 value, this_char);
3591 error:
3592 mpol_put(mpol);
3593 return 1;
3594
3595 }
3596
3597 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3598 {
3599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3600 struct shmem_sb_info config = *sbinfo;
3601 int inodes;
3602 int error = -EINVAL;
3603
3604 config.mpol = NULL;
3605 if (shmem_parse_options(data, &config, true))
3606 return error;
3607
3608 spin_lock(&sbinfo->stat_lock);
3609 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3610 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3611 goto out;
3612 if (config.max_inodes < inodes)
3613 goto out;
3614 /*
3615 * Those tests disallow limited->unlimited while any are in use;
3616 * but we must separately disallow unlimited->limited, because
3617 * in that case we have no record of how much is already in use.
3618 */
3619 if (config.max_blocks && !sbinfo->max_blocks)
3620 goto out;
3621 if (config.max_inodes && !sbinfo->max_inodes)
3622 goto out;
3623
3624 error = 0;
3625 sbinfo->huge = config.huge;
3626 sbinfo->max_blocks = config.max_blocks;
3627 sbinfo->max_inodes = config.max_inodes;
3628 sbinfo->free_inodes = config.max_inodes - inodes;
3629
3630 /*
3631 * Preserve previous mempolicy unless mpol remount option was specified.
3632 */
3633 if (config.mpol) {
3634 mpol_put(sbinfo->mpol);
3635 sbinfo->mpol = config.mpol; /* transfers initial ref */
3636 }
3637 out:
3638 spin_unlock(&sbinfo->stat_lock);
3639 return error;
3640 }
3641
3642 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3643 {
3644 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3645
3646 if (sbinfo->max_blocks != shmem_default_max_blocks())
3647 seq_printf(seq, ",size=%luk",
3648 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3649 if (sbinfo->max_inodes != shmem_default_max_inodes())
3650 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
3651 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3652 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3653 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3654 seq_printf(seq, ",uid=%u",
3655 from_kuid_munged(&init_user_ns, sbinfo->uid));
3656 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3657 seq_printf(seq, ",gid=%u",
3658 from_kgid_munged(&init_user_ns, sbinfo->gid));
3659 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3660 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3661 if (sbinfo->huge)
3662 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3663 #endif
3664 shmem_show_mpol(seq, sbinfo->mpol);
3665 return 0;
3666 }
3667
3668 #define MFD_NAME_PREFIX "memfd:"
3669 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3670 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3671
3672 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3673
3674 SYSCALL_DEFINE2(memfd_create,
3675 const char __user *, uname,
3676 unsigned int, flags)
3677 {
3678 struct shmem_inode_info *info;
3679 struct file *file;
3680 int fd, error;
3681 char *name;
3682 long len;
3683
3684 if (!(flags & MFD_HUGETLB)) {
3685 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3686 return -EINVAL;
3687 } else {
3688 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3689 if (flags & MFD_ALLOW_SEALING)
3690 return -EINVAL;
3691 /* Allow huge page size encoding in flags. */
3692 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3693 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3694 return -EINVAL;
3695 }
3696
3697 /* length includes terminating zero */
3698 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3699 if (len <= 0)
3700 return -EFAULT;
3701 if (len > MFD_NAME_MAX_LEN + 1)
3702 return -EINVAL;
3703
3704 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3705 if (!name)
3706 return -ENOMEM;
3707
3708 strcpy(name, MFD_NAME_PREFIX);
3709 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3710 error = -EFAULT;
3711 goto err_name;
3712 }
3713
3714 /* terminating-zero may have changed after strnlen_user() returned */
3715 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3716 error = -EFAULT;
3717 goto err_name;
3718 }
3719
3720 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3721 if (fd < 0) {
3722 error = fd;
3723 goto err_name;
3724 }
3725
3726 if (flags & MFD_HUGETLB) {
3727 struct user_struct *user = NULL;
3728
3729 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3730 HUGETLB_ANONHUGE_INODE,
3731 (flags >> MFD_HUGE_SHIFT) &
3732 MFD_HUGE_MASK);
3733 } else
3734 file = shmem_file_setup(name, 0, VM_NORESERVE);
3735 if (IS_ERR(file)) {
3736 error = PTR_ERR(file);
3737 goto err_fd;
3738 }
3739 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3740 file->f_flags |= O_RDWR | O_LARGEFILE;
3741
3742 if (flags & MFD_ALLOW_SEALING) {
3743 /*
3744 * flags check at beginning of function ensures
3745 * this is not a hugetlbfs (MFD_HUGETLB) file.
3746 */
3747 info = SHMEM_I(file_inode(file));
3748 info->seals &= ~F_SEAL_SEAL;
3749 }
3750
3751 fd_install(fd, file);
3752 kfree(name);
3753 return fd;
3754
3755 err_fd:
3756 put_unused_fd(fd);
3757 err_name:
3758 kfree(name);
3759 return error;
3760 }
3761
3762 #endif /* CONFIG_TMPFS */
3763
3764 static void shmem_put_super(struct super_block *sb)
3765 {
3766 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3767
3768 if (!sbinfo->idr_nouse)
3769 idr_destroy(&sbinfo->idr);
3770 percpu_counter_destroy(&sbinfo->used_blocks);
3771 mpol_put(sbinfo->mpol);
3772 kfree(sbinfo);
3773 sb->s_fs_info = NULL;
3774 }
3775
3776 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3777 {
3778 struct inode *inode;
3779 struct shmem_sb_info *sbinfo;
3780 int err = -ENOMEM;
3781
3782 /* Round up to L1_CACHE_BYTES to resist false sharing */
3783 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3784 L1_CACHE_BYTES), GFP_KERNEL);
3785 if (!sbinfo)
3786 return -ENOMEM;
3787
3788 mutex_init(&sbinfo->idr_lock);
3789 idr_init(&sbinfo->idr);
3790 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3791 sbinfo->uid = current_fsuid();
3792 sbinfo->gid = current_fsgid();
3793 sb->s_fs_info = sbinfo;
3794
3795 #ifdef CONFIG_TMPFS
3796 /*
3797 * Per default we only allow half of the physical ram per
3798 * tmpfs instance, limiting inodes to one per page of lowmem;
3799 * but the internal instance is left unlimited.
3800 */
3801 if (!(sb->s_flags & SB_KERNMOUNT)) {
3802 sbinfo->max_blocks = shmem_default_max_blocks();
3803 sbinfo->max_inodes = shmem_default_max_inodes();
3804 if (shmem_parse_options(data, sbinfo, false)) {
3805 err = -EINVAL;
3806 goto failed;
3807 }
3808 } else {
3809 sb->s_flags |= SB_NOUSER;
3810 }
3811 sb->s_export_op = &shmem_export_ops;
3812 sb->s_flags |= SB_NOSEC;
3813 #else
3814 sb->s_flags |= SB_NOUSER;
3815 #endif
3816
3817 spin_lock_init(&sbinfo->stat_lock);
3818 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3819 goto failed;
3820 sbinfo->free_inodes = sbinfo->max_inodes;
3821 spin_lock_init(&sbinfo->shrinklist_lock);
3822 INIT_LIST_HEAD(&sbinfo->shrinklist);
3823
3824 sb->s_maxbytes = MAX_LFS_FILESIZE;
3825 sb->s_blocksize = PAGE_SIZE;
3826 sb->s_blocksize_bits = PAGE_SHIFT;
3827 sb->s_magic = TMPFS_MAGIC;
3828 sb->s_op = &shmem_ops;
3829 sb->s_time_gran = 1;
3830 #ifdef CONFIG_TMPFS_XATTR
3831 sb->s_xattr = shmem_xattr_handlers;
3832 #endif
3833 #ifdef CONFIG_TMPFS_POSIX_ACL
3834 sb->s_flags |= SB_POSIXACL;
3835 #endif
3836 uuid_gen(&sb->s_uuid);
3837
3838 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3839 if (!inode)
3840 goto failed;
3841 inode->i_uid = sbinfo->uid;
3842 inode->i_gid = sbinfo->gid;
3843 sb->s_root = d_make_root(inode);
3844 if (!sb->s_root)
3845 goto failed;
3846 return 0;
3847
3848 failed:
3849 shmem_put_super(sb);
3850 return err;
3851 }
3852
3853 static struct kmem_cache *shmem_inode_cachep;
3854
3855 static struct inode *shmem_alloc_inode(struct super_block *sb)
3856 {
3857 struct shmem_inode_info *info;
3858 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3859 if (!info)
3860 return NULL;
3861 return &info->vfs_inode;
3862 }
3863
3864 static void shmem_destroy_callback(struct rcu_head *head)
3865 {
3866 struct inode *inode = container_of(head, struct inode, i_rcu);
3867 if (S_ISLNK(inode->i_mode))
3868 kfree(inode->i_link);
3869 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3870 }
3871
3872 static void shmem_destroy_inode(struct inode *inode)
3873 {
3874 if (S_ISREG(inode->i_mode))
3875 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3876 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3877 }
3878
3879 static void shmem_init_inode(void *foo)
3880 {
3881 struct shmem_inode_info *info = foo;
3882 inode_init_once(&info->vfs_inode);
3883 }
3884
3885 static void shmem_init_inodecache(void)
3886 {
3887 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3888 sizeof(struct shmem_inode_info),
3889 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3890 }
3891
3892 static void shmem_destroy_inodecache(void)
3893 {
3894 kmem_cache_destroy(shmem_inode_cachep);
3895 }
3896
3897 static __init void shmem_no_idr(struct super_block *sb)
3898 {
3899 struct shmem_sb_info *sbinfo;
3900
3901 sbinfo = SHMEM_SB(sb);
3902 sbinfo->idr_nouse = true;
3903 idr_destroy(&sbinfo->idr);
3904 }
3905
3906 static const struct address_space_operations shmem_aops = {
3907 .writepage = shmem_writepage,
3908 .set_page_dirty = __set_page_dirty_no_writeback,
3909 #ifdef CONFIG_TMPFS
3910 .write_begin = shmem_write_begin,
3911 .write_end = shmem_write_end,
3912 #endif
3913 #ifdef CONFIG_MIGRATION
3914 .migratepage = migrate_page,
3915 #endif
3916 .error_remove_page = generic_error_remove_page,
3917 };
3918
3919 static const struct file_operations shmem_file_operations = {
3920 .mmap = shmem_mmap,
3921 .get_unmapped_area = shmem_get_unmapped_area,
3922 #ifdef CONFIG_TMPFS
3923 .llseek = shmem_file_llseek,
3924 .read_iter = shmem_file_read_iter,
3925 .write_iter = generic_file_write_iter,
3926 .fsync = noop_fsync,
3927 .splice_read = generic_file_splice_read,
3928 .splice_write = iter_file_splice_write,
3929 .fallocate = shmem_fallocate,
3930 #endif
3931 };
3932
3933 static const struct inode_operations shmem_inode_operations = {
3934 .getattr = shmem_getattr,
3935 .setattr = shmem_setattr,
3936 #ifdef CONFIG_TMPFS_XATTR
3937 .listxattr = shmem_listxattr,
3938 .set_acl = simple_set_acl,
3939 #endif
3940 };
3941
3942 static const struct inode_operations shmem_dir_inode_operations = {
3943 #ifdef CONFIG_TMPFS
3944 .create = shmem_create,
3945 .lookup = simple_lookup,
3946 .link = shmem_link,
3947 .unlink = shmem_unlink,
3948 .symlink = shmem_symlink,
3949 .mkdir = shmem_mkdir,
3950 .rmdir = shmem_rmdir,
3951 .mknod = shmem_mknod,
3952 .rename = shmem_rename2,
3953 .tmpfile = shmem_tmpfile,
3954 #endif
3955 #ifdef CONFIG_TMPFS_XATTR
3956 .listxattr = shmem_listxattr,
3957 #endif
3958 #ifdef CONFIG_TMPFS_POSIX_ACL
3959 .setattr = shmem_setattr,
3960 .set_acl = simple_set_acl,
3961 #endif
3962 };
3963
3964 static const struct inode_operations shmem_special_inode_operations = {
3965 #ifdef CONFIG_TMPFS_XATTR
3966 .listxattr = shmem_listxattr,
3967 #endif
3968 #ifdef CONFIG_TMPFS_POSIX_ACL
3969 .setattr = shmem_setattr,
3970 .set_acl = simple_set_acl,
3971 #endif
3972 };
3973
3974 static const struct super_operations shmem_ops = {
3975 .alloc_inode = shmem_alloc_inode,
3976 .destroy_inode = shmem_destroy_inode,
3977 #ifdef CONFIG_TMPFS
3978 .statfs = shmem_statfs,
3979 .remount_fs = shmem_remount_fs,
3980 .show_options = shmem_show_options,
3981 #endif
3982 .evict_inode = shmem_evict_inode,
3983 .drop_inode = generic_delete_inode,
3984 .put_super = shmem_put_super,
3985 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3986 .nr_cached_objects = shmem_unused_huge_count,
3987 .free_cached_objects = shmem_unused_huge_scan,
3988 #endif
3989 };
3990
3991 static const struct vm_operations_struct shmem_vm_ops = {
3992 .fault = shmem_fault,
3993 .map_pages = filemap_map_pages,
3994 #ifdef CONFIG_NUMA
3995 .set_policy = shmem_set_policy,
3996 .get_policy = shmem_get_policy,
3997 #endif
3998 };
3999
4000 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4001 int flags, const char *dev_name, void *data)
4002 {
4003 return mount_nodev(fs_type, flags, data, shmem_fill_super);
4004 }
4005
4006 static struct file_system_type shmem_fs_type = {
4007 .owner = THIS_MODULE,
4008 .name = "tmpfs",
4009 .mount = shmem_mount,
4010 .kill_sb = kill_litter_super,
4011 .fs_flags = FS_USERNS_MOUNT,
4012 };
4013
4014 int __init shmem_init(void)
4015 {
4016 int error;
4017
4018 /* If rootfs called this, don't re-init */
4019 if (shmem_inode_cachep)
4020 return 0;
4021
4022 shmem_init_inodecache();
4023
4024 error = register_filesystem(&shmem_fs_type);
4025 if (error) {
4026 pr_err("Could not register tmpfs\n");
4027 goto out2;
4028 }
4029
4030 shm_mnt = kern_mount(&shmem_fs_type);
4031 if (IS_ERR(shm_mnt)) {
4032 error = PTR_ERR(shm_mnt);
4033 pr_err("Could not kern_mount tmpfs\n");
4034 goto out1;
4035 }
4036 shmem_no_idr(shm_mnt->mnt_sb);
4037
4038 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4039 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4040 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4041 else
4042 shmem_huge = 0; /* just in case it was patched */
4043 #endif
4044 return 0;
4045
4046 out1:
4047 unregister_filesystem(&shmem_fs_type);
4048 out2:
4049 shmem_destroy_inodecache();
4050 shm_mnt = ERR_PTR(error);
4051 return error;
4052 }
4053
4054 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4055 static ssize_t shmem_enabled_show(struct kobject *kobj,
4056 struct kobj_attribute *attr, char *buf)
4057 {
4058 int values[] = {
4059 SHMEM_HUGE_ALWAYS,
4060 SHMEM_HUGE_WITHIN_SIZE,
4061 SHMEM_HUGE_ADVISE,
4062 SHMEM_HUGE_NEVER,
4063 SHMEM_HUGE_DENY,
4064 SHMEM_HUGE_FORCE,
4065 };
4066 int i, count;
4067
4068 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4069 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4070
4071 count += sprintf(buf + count, fmt,
4072 shmem_format_huge(values[i]));
4073 }
4074 buf[count - 1] = '\n';
4075 return count;
4076 }
4077
4078 static ssize_t shmem_enabled_store(struct kobject *kobj,
4079 struct kobj_attribute *attr, const char *buf, size_t count)
4080 {
4081 char tmp[16];
4082 int huge;
4083
4084 if (count + 1 > sizeof(tmp))
4085 return -EINVAL;
4086 memcpy(tmp, buf, count);
4087 tmp[count] = '\0';
4088 if (count && tmp[count - 1] == '\n')
4089 tmp[count - 1] = '\0';
4090
4091 huge = shmem_parse_huge(tmp);
4092 if (huge == -EINVAL)
4093 return -EINVAL;
4094 if (!has_transparent_hugepage() &&
4095 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4096 return -EINVAL;
4097
4098 shmem_huge = huge;
4099 if (shmem_huge > SHMEM_HUGE_DENY)
4100 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4101 return count;
4102 }
4103
4104 struct kobj_attribute shmem_enabled_attr =
4105 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4106 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4107
4108 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4109 bool shmem_huge_enabled(struct vm_area_struct *vma)
4110 {
4111 struct inode *inode = file_inode(vma->vm_file);
4112 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4113 loff_t i_size;
4114 pgoff_t off;
4115
4116 if (shmem_huge == SHMEM_HUGE_FORCE)
4117 return true;
4118 if (shmem_huge == SHMEM_HUGE_DENY)
4119 return false;
4120 switch (sbinfo->huge) {
4121 case SHMEM_HUGE_NEVER:
4122 return false;
4123 case SHMEM_HUGE_ALWAYS:
4124 return true;
4125 case SHMEM_HUGE_WITHIN_SIZE:
4126 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4127 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4128 if (i_size >= HPAGE_PMD_SIZE &&
4129 i_size >> PAGE_SHIFT >= off)
4130 return true;
4131 /* fall through */
4132 case SHMEM_HUGE_ADVISE:
4133 /* TODO: implement fadvise() hints */
4134 return (vma->vm_flags & VM_HUGEPAGE);
4135 default:
4136 VM_BUG_ON(1);
4137 return false;
4138 }
4139 }
4140 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4141
4142 #else /* !CONFIG_SHMEM */
4143
4144 /*
4145 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4146 *
4147 * This is intended for small system where the benefits of the full
4148 * shmem code (swap-backed and resource-limited) are outweighed by
4149 * their complexity. On systems without swap this code should be
4150 * effectively equivalent, but much lighter weight.
4151 */
4152
4153 static struct file_system_type shmem_fs_type = {
4154 .name = "tmpfs",
4155 .mount = ramfs_mount,
4156 .kill_sb = kill_litter_super,
4157 .fs_flags = FS_USERNS_MOUNT,
4158 };
4159
4160 int __init shmem_init(void)
4161 {
4162 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4163
4164 shm_mnt = kern_mount(&shmem_fs_type);
4165 BUG_ON(IS_ERR(shm_mnt));
4166
4167 return 0;
4168 }
4169
4170 int shmem_unuse(swp_entry_t swap, struct page *page)
4171 {
4172 return 0;
4173 }
4174
4175 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4176 {
4177 return 0;
4178 }
4179
4180 void shmem_unlock_mapping(struct address_space *mapping)
4181 {
4182 }
4183
4184 #ifdef CONFIG_MMU
4185 unsigned long shmem_get_unmapped_area(struct file *file,
4186 unsigned long addr, unsigned long len,
4187 unsigned long pgoff, unsigned long flags)
4188 {
4189 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4190 }
4191 #endif
4192
4193 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4194 {
4195 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4196 }
4197 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4198
4199 #define shmem_vm_ops generic_file_vm_ops
4200 #define shmem_file_operations ramfs_file_operations
4201 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4202 #define shmem_acct_size(flags, size) 0
4203 #define shmem_unacct_size(flags, size) do {} while (0)
4204
4205 #endif /* CONFIG_SHMEM */
4206
4207 /* common code */
4208
4209 static const struct dentry_operations anon_ops = {
4210 .d_dname = simple_dname
4211 };
4212
4213 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4214 unsigned long flags, unsigned int i_flags)
4215 {
4216 struct file *res;
4217 struct inode *inode;
4218 struct path path;
4219 struct super_block *sb;
4220 struct qstr this;
4221
4222 if (IS_ERR(mnt))
4223 return ERR_CAST(mnt);
4224
4225 if (size < 0 || size > MAX_LFS_FILESIZE)
4226 return ERR_PTR(-EINVAL);
4227
4228 if (shmem_acct_size(flags, size))
4229 return ERR_PTR(-ENOMEM);
4230
4231 res = ERR_PTR(-ENOMEM);
4232 this.name = name;
4233 this.len = strlen(name);
4234 this.hash = 0; /* will go */
4235 sb = mnt->mnt_sb;
4236 path.mnt = mntget(mnt);
4237 path.dentry = d_alloc_pseudo(sb, &this);
4238 if (!path.dentry)
4239 goto put_memory;
4240 d_set_d_op(path.dentry, &anon_ops);
4241
4242 res = ERR_PTR(-ENOSPC);
4243 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4244 if (!inode)
4245 goto put_memory;
4246
4247 inode->i_flags |= i_flags;
4248 d_instantiate(path.dentry, inode);
4249 inode->i_size = size;
4250 clear_nlink(inode); /* It is unlinked */
4251 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4252 if (IS_ERR(res))
4253 goto put_path;
4254
4255 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4256 &shmem_file_operations);
4257 if (IS_ERR(res))
4258 goto put_path;
4259
4260 return res;
4261
4262 put_memory:
4263 shmem_unacct_size(flags, size);
4264 put_path:
4265 path_put(&path);
4266 return res;
4267 }
4268
4269 /**
4270 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4271 * kernel internal. There will be NO LSM permission checks against the
4272 * underlying inode. So users of this interface must do LSM checks at a
4273 * higher layer. The users are the big_key and shm implementations. LSM
4274 * checks are provided at the key or shm level rather than the inode.
4275 * @name: name for dentry (to be seen in /proc/<pid>/maps
4276 * @size: size to be set for the file
4277 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4278 */
4279 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4280 {
4281 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4282 }
4283
4284 /**
4285 * shmem_file_setup - get an unlinked file living in tmpfs
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4289 */
4290 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4291 {
4292 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4293 }
4294 EXPORT_SYMBOL_GPL(shmem_file_setup);
4295
4296 /**
4297 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4298 * @mnt: the tmpfs mount where the file will be created
4299 * @name: name for dentry (to be seen in /proc/<pid>/maps
4300 * @size: size to be set for the file
4301 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4302 */
4303 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4304 loff_t size, unsigned long flags)
4305 {
4306 return __shmem_file_setup(mnt, name, size, flags, 0);
4307 }
4308 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4309
4310 /**
4311 * shmem_zero_setup - setup a shared anonymous mapping
4312 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4313 */
4314 int shmem_zero_setup(struct vm_area_struct *vma)
4315 {
4316 struct file *file;
4317 loff_t size = vma->vm_end - vma->vm_start;
4318
4319 /*
4320 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4321 * between XFS directory reading and selinux: since this file is only
4322 * accessible to the user through its mapping, use S_PRIVATE flag to
4323 * bypass file security, in the same way as shmem_kernel_file_setup().
4324 */
4325 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4326 if (IS_ERR(file))
4327 return PTR_ERR(file);
4328
4329 if (vma->vm_file)
4330 fput(vma->vm_file);
4331 vma->vm_file = file;
4332 vma->vm_ops = &shmem_vm_ops;
4333
4334 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4335 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4336 (vma->vm_end & HPAGE_PMD_MASK)) {
4337 khugepaged_enter(vma, vma->vm_flags);
4338 }
4339
4340 return 0;
4341 }
4342
4343 /**
4344 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4345 * @mapping: the page's address_space
4346 * @index: the page index
4347 * @gfp: the page allocator flags to use if allocating
4348 *
4349 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4350 * with any new page allocations done using the specified allocation flags.
4351 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4352 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4353 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4354 *
4355 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4356 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4357 */
4358 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4359 pgoff_t index, gfp_t gfp)
4360 {
4361 #ifdef CONFIG_SHMEM
4362 struct inode *inode = mapping->host;
4363 struct page *page;
4364 int error;
4365
4366 BUG_ON(mapping->a_ops != &shmem_aops);
4367 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4368 gfp, NULL, NULL, NULL);
4369 if (error)
4370 page = ERR_PTR(error);
4371 else
4372 unlock_page(page);
4373 return page;
4374 #else
4375 /*
4376 * The tiny !SHMEM case uses ramfs without swap
4377 */
4378 return read_cache_page_gfp(mapping, index, gfp);
4379 #endif
4380 }
4381 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);