]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/shmem.c
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static int shmem_default_max_inodes(void)
115 {
116 unsigned long ul;
117
118 ul = INT_MAX;
119 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
120 return ul;
121 }
122 #endif
123
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 struct vm_fault *vmf, int *fault_type);
131
132 int shmem_getpage(struct inode *inode, pgoff_t index,
133 struct page **pagep, enum sgp_type sgp)
134 {
135 return shmem_getpage_gfp(inode, index, pagep, sgp,
136 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
137 }
138
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140 {
141 return sb->s_fs_info;
142 }
143
144 /*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
151 {
152 return (flags & VM_NORESERVE) ?
153 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
154 }
155
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157 {
158 if (!(flags & VM_NORESERVE))
159 vm_unacct_memory(VM_ACCT(size));
160 }
161
162 static inline int shmem_reacct_size(unsigned long flags,
163 loff_t oldsize, loff_t newsize)
164 {
165 if (!(flags & VM_NORESERVE)) {
166 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
167 return security_vm_enough_memory_mm(current->mm,
168 VM_ACCT(newsize) - VM_ACCT(oldsize));
169 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
170 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 }
172 return 0;
173 }
174
175 /*
176 * ... whereas tmpfs objects are accounted incrementally as
177 * pages are allocated, in order to allow large sparse files.
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
181 static inline int shmem_acct_block(unsigned long flags, long pages)
182 {
183 if (!(flags & VM_NORESERVE))
184 return 0;
185
186 return security_vm_enough_memory_mm(current->mm,
187 pages * VM_ACCT(PAGE_SIZE));
188 }
189
190 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
191 {
192 if (flags & VM_NORESERVE)
193 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
194 }
195
196 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
197 {
198 struct shmem_inode_info *info = SHMEM_I(inode);
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200
201 if (shmem_acct_block(info->flags, pages))
202 return false;
203
204 if (sbinfo->max_blocks) {
205 if (percpu_counter_compare(&sbinfo->used_blocks,
206 sbinfo->max_blocks - pages) > 0)
207 goto unacct;
208 percpu_counter_add(&sbinfo->used_blocks, pages);
209 }
210
211 return true;
212
213 unacct:
214 shmem_unacct_blocks(info->flags, pages);
215 return false;
216 }
217
218 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
219 {
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (sbinfo->max_blocks)
224 percpu_counter_sub(&sbinfo->used_blocks, pages);
225 shmem_unacct_blocks(info->flags, pages);
226 }
227
228 static const struct super_operations shmem_ops;
229 static const struct address_space_operations shmem_aops;
230 static const struct file_operations shmem_file_operations;
231 static const struct inode_operations shmem_inode_operations;
232 static const struct inode_operations shmem_dir_inode_operations;
233 static const struct inode_operations shmem_special_inode_operations;
234 static const struct vm_operations_struct shmem_vm_ops;
235 static struct file_system_type shmem_fs_type;
236
237 bool vma_is_shmem(struct vm_area_struct *vma)
238 {
239 return vma->vm_ops == &shmem_vm_ops;
240 }
241
242 static LIST_HEAD(shmem_swaplist);
243 static DEFINE_MUTEX(shmem_swaplist_mutex);
244
245 static int shmem_reserve_inode(struct super_block *sb)
246 {
247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
248 if (sbinfo->max_inodes) {
249 spin_lock(&sbinfo->stat_lock);
250 if (!sbinfo->free_inodes) {
251 spin_unlock(&sbinfo->stat_lock);
252 return -ENOSPC;
253 }
254 sbinfo->free_inodes--;
255 spin_unlock(&sbinfo->stat_lock);
256 }
257 return 0;
258 }
259
260 static void shmem_free_inode(struct super_block *sb)
261 {
262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 if (sbinfo->max_inodes) {
264 spin_lock(&sbinfo->stat_lock);
265 sbinfo->free_inodes++;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268 }
269
270 /**
271 * shmem_recalc_inode - recalculate the block usage of an inode
272 * @inode: inode to recalc
273 *
274 * We have to calculate the free blocks since the mm can drop
275 * undirtied hole pages behind our back.
276 *
277 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
278 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 *
280 * It has to be called with the spinlock held.
281 */
282 static void shmem_recalc_inode(struct inode *inode)
283 {
284 struct shmem_inode_info *info = SHMEM_I(inode);
285 long freed;
286
287 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
288 if (freed > 0) {
289 info->alloced -= freed;
290 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
291 shmem_inode_unacct_blocks(inode, freed);
292 }
293 }
294
295 bool shmem_charge(struct inode *inode, long pages)
296 {
297 struct shmem_inode_info *info = SHMEM_I(inode);
298 unsigned long flags;
299
300 if (!shmem_inode_acct_block(inode, pages))
301 return false;
302
303 spin_lock_irqsave(&info->lock, flags);
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
307 spin_unlock_irqrestore(&info->lock, flags);
308 inode->i_mapping->nrpages += pages;
309
310 return true;
311 }
312
313 void shmem_uncharge(struct inode *inode, long pages)
314 {
315 struct shmem_inode_info *info = SHMEM_I(inode);
316 unsigned long flags;
317
318 spin_lock_irqsave(&info->lock, flags);
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
322 spin_unlock_irqrestore(&info->lock, flags);
323
324 shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332 {
333 struct radix_tree_node *node;
334 void **pslot;
335 void *item;
336
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
341 return -ENOENT;
342 if (item != expected)
343 return -ENOENT;
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL);
346 return 0;
347 }
348
349 /*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358 {
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
385
386 /*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447 LIST_HEAD(list), *pos, *next;
448 LIST_HEAD(to_remove);
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475 list_move(&info->shrinklist, &to_remove);
476 removed++;
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481 next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
500 if (nr_to_split && split >= nr_to_split) {
501 iput(inode);
502 continue;
503 }
504
505 page = find_lock_page(inode->i_mapping,
506 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
507 if (!page)
508 goto drop;
509
510 if (!PageTransHuge(page)) {
511 unlock_page(page);
512 put_page(page);
513 goto drop;
514 }
515
516 ret = split_huge_page(page);
517 unlock_page(page);
518 put_page(page);
519
520 if (ret) {
521 /* split failed: leave it on the list */
522 iput(inode);
523 continue;
524 }
525
526 split++;
527 drop:
528 list_del_init(&info->shrinklist);
529 removed++;
530 iput(inode);
531 }
532
533 spin_lock(&sbinfo->shrinklist_lock);
534 list_splice_tail(&list, &sbinfo->shrinklist);
535 sbinfo->shrinklist_len -= removed;
536 spin_unlock(&sbinfo->shrinklist_lock);
537
538 return split;
539 }
540
541 static long shmem_unused_huge_scan(struct super_block *sb,
542 struct shrink_control *sc)
543 {
544 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
545
546 if (!READ_ONCE(sbinfo->shrinklist_len))
547 return SHRINK_STOP;
548
549 return shmem_unused_huge_shrink(sbinfo, sc, 0);
550 }
551
552 static long shmem_unused_huge_count(struct super_block *sb,
553 struct shrink_control *sc)
554 {
555 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
556 return READ_ONCE(sbinfo->shrinklist_len);
557 }
558 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
559
560 #define shmem_huge SHMEM_HUGE_DENY
561
562 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
563 struct shrink_control *sc, unsigned long nr_to_split)
564 {
565 return 0;
566 }
567 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 /*
570 * Like add_to_page_cache_locked, but error if expected item has gone.
571 */
572 static int shmem_add_to_page_cache(struct page *page,
573 struct address_space *mapping,
574 pgoff_t index, void *expected)
575 {
576 int error, nr = hpage_nr_pages(page);
577
578 VM_BUG_ON_PAGE(PageTail(page), page);
579 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
580 VM_BUG_ON_PAGE(!PageLocked(page), page);
581 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
582 VM_BUG_ON(expected && PageTransHuge(page));
583
584 page_ref_add(page, nr);
585 page->mapping = mapping;
586 page->index = index;
587
588 spin_lock_irq(&mapping->tree_lock);
589 if (PageTransHuge(page)) {
590 void __rcu **results;
591 pgoff_t idx;
592 int i;
593
594 error = 0;
595 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
596 &results, &idx, index, 1) &&
597 idx < index + HPAGE_PMD_NR) {
598 error = -EEXIST;
599 }
600
601 if (!error) {
602 for (i = 0; i < HPAGE_PMD_NR; i++) {
603 error = radix_tree_insert(&mapping->page_tree,
604 index + i, page + i);
605 VM_BUG_ON(error);
606 }
607 count_vm_event(THP_FILE_ALLOC);
608 }
609 } else if (!expected) {
610 error = radix_tree_insert(&mapping->page_tree, index, page);
611 } else {
612 error = shmem_radix_tree_replace(mapping, index, expected,
613 page);
614 }
615
616 if (!error) {
617 mapping->nrpages += nr;
618 if (PageTransHuge(page))
619 __inc_node_page_state(page, NR_SHMEM_THPS);
620 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
621 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
622 spin_unlock_irq(&mapping->tree_lock);
623 } else {
624 page->mapping = NULL;
625 spin_unlock_irq(&mapping->tree_lock);
626 page_ref_sub(page, nr);
627 }
628 return error;
629 }
630
631 /*
632 * Like delete_from_page_cache, but substitutes swap for page.
633 */
634 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
635 {
636 struct address_space *mapping = page->mapping;
637 int error;
638
639 VM_BUG_ON_PAGE(PageCompound(page), page);
640
641 spin_lock_irq(&mapping->tree_lock);
642 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
643 page->mapping = NULL;
644 mapping->nrpages--;
645 __dec_node_page_state(page, NR_FILE_PAGES);
646 __dec_node_page_state(page, NR_SHMEM);
647 spin_unlock_irq(&mapping->tree_lock);
648 put_page(page);
649 BUG_ON(error);
650 }
651
652 /*
653 * Remove swap entry from radix tree, free the swap and its page cache.
654 */
655 static int shmem_free_swap(struct address_space *mapping,
656 pgoff_t index, void *radswap)
657 {
658 void *old;
659
660 spin_lock_irq(&mapping->tree_lock);
661 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
662 spin_unlock_irq(&mapping->tree_lock);
663 if (old != radswap)
664 return -ENOENT;
665 free_swap_and_cache(radix_to_swp_entry(radswap));
666 return 0;
667 }
668
669 /*
670 * Determine (in bytes) how many of the shmem object's pages mapped by the
671 * given offsets are swapped out.
672 *
673 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
674 * as long as the inode doesn't go away and racy results are not a problem.
675 */
676 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
677 pgoff_t start, pgoff_t end)
678 {
679 struct radix_tree_iter iter;
680 void **slot;
681 struct page *page;
682 unsigned long swapped = 0;
683
684 rcu_read_lock();
685
686 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
687 if (iter.index >= end)
688 break;
689
690 page = radix_tree_deref_slot(slot);
691
692 if (radix_tree_deref_retry(page)) {
693 slot = radix_tree_iter_retry(&iter);
694 continue;
695 }
696
697 if (radix_tree_exceptional_entry(page))
698 swapped++;
699
700 if (need_resched()) {
701 slot = radix_tree_iter_resume(slot, &iter);
702 cond_resched_rcu();
703 }
704 }
705
706 rcu_read_unlock();
707
708 return swapped << PAGE_SHIFT;
709 }
710
711 /*
712 * Determine (in bytes) how many of the shmem object's pages mapped by the
713 * given vma is swapped out.
714 *
715 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
716 * as long as the inode doesn't go away and racy results are not a problem.
717 */
718 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
719 {
720 struct inode *inode = file_inode(vma->vm_file);
721 struct shmem_inode_info *info = SHMEM_I(inode);
722 struct address_space *mapping = inode->i_mapping;
723 unsigned long swapped;
724
725 /* Be careful as we don't hold info->lock */
726 swapped = READ_ONCE(info->swapped);
727
728 /*
729 * The easier cases are when the shmem object has nothing in swap, or
730 * the vma maps it whole. Then we can simply use the stats that we
731 * already track.
732 */
733 if (!swapped)
734 return 0;
735
736 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
737 return swapped << PAGE_SHIFT;
738
739 /* Here comes the more involved part */
740 return shmem_partial_swap_usage(mapping,
741 linear_page_index(vma, vma->vm_start),
742 linear_page_index(vma, vma->vm_end));
743 }
744
745 /*
746 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
747 */
748 void shmem_unlock_mapping(struct address_space *mapping)
749 {
750 struct pagevec pvec;
751 pgoff_t indices[PAGEVEC_SIZE];
752 pgoff_t index = 0;
753
754 pagevec_init(&pvec);
755 /*
756 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
757 */
758 while (!mapping_unevictable(mapping)) {
759 /*
760 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
761 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
762 */
763 pvec.nr = find_get_entries(mapping, index,
764 PAGEVEC_SIZE, pvec.pages, indices);
765 if (!pvec.nr)
766 break;
767 index = indices[pvec.nr - 1] + 1;
768 pagevec_remove_exceptionals(&pvec);
769 check_move_unevictable_pages(pvec.pages, pvec.nr);
770 pagevec_release(&pvec);
771 cond_resched();
772 }
773 }
774
775 /*
776 * Remove range of pages and swap entries from radix tree, and free them.
777 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
778 */
779 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
780 bool unfalloc)
781 {
782 struct address_space *mapping = inode->i_mapping;
783 struct shmem_inode_info *info = SHMEM_I(inode);
784 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
785 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
786 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
787 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
788 struct pagevec pvec;
789 pgoff_t indices[PAGEVEC_SIZE];
790 long nr_swaps_freed = 0;
791 pgoff_t index;
792 int i;
793
794 if (lend == -1)
795 end = -1; /* unsigned, so actually very big */
796
797 pagevec_init(&pvec);
798 index = start;
799 while (index < end) {
800 pvec.nr = find_get_entries(mapping, index,
801 min(end - index, (pgoff_t)PAGEVEC_SIZE),
802 pvec.pages, indices);
803 if (!pvec.nr)
804 break;
805 for (i = 0; i < pagevec_count(&pvec); i++) {
806 struct page *page = pvec.pages[i];
807
808 index = indices[i];
809 if (index >= end)
810 break;
811
812 if (radix_tree_exceptional_entry(page)) {
813 if (unfalloc)
814 continue;
815 nr_swaps_freed += !shmem_free_swap(mapping,
816 index, page);
817 continue;
818 }
819
820 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
821
822 if (!trylock_page(page))
823 continue;
824
825 if (PageTransTail(page)) {
826 /* Middle of THP: zero out the page */
827 clear_highpage(page);
828 unlock_page(page);
829 continue;
830 } else if (PageTransHuge(page)) {
831 if (index == round_down(end, HPAGE_PMD_NR)) {
832 /*
833 * Range ends in the middle of THP:
834 * zero out the page
835 */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 }
840 index += HPAGE_PMD_NR - 1;
841 i += HPAGE_PMD_NR - 1;
842 }
843
844 if (!unfalloc || !PageUptodate(page)) {
845 VM_BUG_ON_PAGE(PageTail(page), page);
846 if (page_mapping(page) == mapping) {
847 VM_BUG_ON_PAGE(PageWriteback(page), page);
848 truncate_inode_page(mapping, page);
849 }
850 }
851 unlock_page(page);
852 }
853 pagevec_remove_exceptionals(&pvec);
854 pagevec_release(&pvec);
855 cond_resched();
856 index++;
857 }
858
859 if (partial_start) {
860 struct page *page = NULL;
861 shmem_getpage(inode, start - 1, &page, SGP_READ);
862 if (page) {
863 unsigned int top = PAGE_SIZE;
864 if (start > end) {
865 top = partial_end;
866 partial_end = 0;
867 }
868 zero_user_segment(page, partial_start, top);
869 set_page_dirty(page);
870 unlock_page(page);
871 put_page(page);
872 }
873 }
874 if (partial_end) {
875 struct page *page = NULL;
876 shmem_getpage(inode, end, &page, SGP_READ);
877 if (page) {
878 zero_user_segment(page, 0, partial_end);
879 set_page_dirty(page);
880 unlock_page(page);
881 put_page(page);
882 }
883 }
884 if (start >= end)
885 return;
886
887 index = start;
888 while (index < end) {
889 cond_resched();
890
891 pvec.nr = find_get_entries(mapping, index,
892 min(end - index, (pgoff_t)PAGEVEC_SIZE),
893 pvec.pages, indices);
894 if (!pvec.nr) {
895 /* If all gone or hole-punch or unfalloc, we're done */
896 if (index == start || end != -1)
897 break;
898 /* But if truncating, restart to make sure all gone */
899 index = start;
900 continue;
901 }
902 for (i = 0; i < pagevec_count(&pvec); i++) {
903 struct page *page = pvec.pages[i];
904
905 index = indices[i];
906 if (index >= end)
907 break;
908
909 if (radix_tree_exceptional_entry(page)) {
910 if (unfalloc)
911 continue;
912 if (shmem_free_swap(mapping, index, page)) {
913 /* Swap was replaced by page: retry */
914 index--;
915 break;
916 }
917 nr_swaps_freed++;
918 continue;
919 }
920
921 lock_page(page);
922
923 if (PageTransTail(page)) {
924 /* Middle of THP: zero out the page */
925 clear_highpage(page);
926 unlock_page(page);
927 /*
928 * Partial thp truncate due 'start' in middle
929 * of THP: don't need to look on these pages
930 * again on !pvec.nr restart.
931 */
932 if (index != round_down(end, HPAGE_PMD_NR))
933 start++;
934 continue;
935 } else if (PageTransHuge(page)) {
936 if (index == round_down(end, HPAGE_PMD_NR)) {
937 /*
938 * Range ends in the middle of THP:
939 * zero out the page
940 */
941 clear_highpage(page);
942 unlock_page(page);
943 continue;
944 }
945 index += HPAGE_PMD_NR - 1;
946 i += HPAGE_PMD_NR - 1;
947 }
948
949 if (!unfalloc || !PageUptodate(page)) {
950 VM_BUG_ON_PAGE(PageTail(page), page);
951 if (page_mapping(page) == mapping) {
952 VM_BUG_ON_PAGE(PageWriteback(page), page);
953 truncate_inode_page(mapping, page);
954 } else {
955 /* Page was replaced by swap: retry */
956 unlock_page(page);
957 index--;
958 break;
959 }
960 }
961 unlock_page(page);
962 }
963 pagevec_remove_exceptionals(&pvec);
964 pagevec_release(&pvec);
965 index++;
966 }
967
968 spin_lock_irq(&info->lock);
969 info->swapped -= nr_swaps_freed;
970 shmem_recalc_inode(inode);
971 spin_unlock_irq(&info->lock);
972 }
973
974 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
975 {
976 shmem_undo_range(inode, lstart, lend, false);
977 inode->i_ctime = inode->i_mtime = current_time(inode);
978 }
979 EXPORT_SYMBOL_GPL(shmem_truncate_range);
980
981 static int shmem_getattr(const struct path *path, struct kstat *stat,
982 u32 request_mask, unsigned int query_flags)
983 {
984 struct inode *inode = path->dentry->d_inode;
985 struct shmem_inode_info *info = SHMEM_I(inode);
986
987 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
988 spin_lock_irq(&info->lock);
989 shmem_recalc_inode(inode);
990 spin_unlock_irq(&info->lock);
991 }
992 generic_fillattr(inode, stat);
993 return 0;
994 }
995
996 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
997 {
998 struct inode *inode = d_inode(dentry);
999 struct shmem_inode_info *info = SHMEM_I(inode);
1000 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1001 int error;
1002
1003 error = setattr_prepare(dentry, attr);
1004 if (error)
1005 return error;
1006
1007 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1008 loff_t oldsize = inode->i_size;
1009 loff_t newsize = attr->ia_size;
1010
1011 /* protected by i_mutex */
1012 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1013 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1014 return -EPERM;
1015
1016 if (newsize != oldsize) {
1017 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1018 oldsize, newsize);
1019 if (error)
1020 return error;
1021 i_size_write(inode, newsize);
1022 inode->i_ctime = inode->i_mtime = current_time(inode);
1023 }
1024 if (newsize <= oldsize) {
1025 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1026 if (oldsize > holebegin)
1027 unmap_mapping_range(inode->i_mapping,
1028 holebegin, 0, 1);
1029 if (info->alloced)
1030 shmem_truncate_range(inode,
1031 newsize, (loff_t)-1);
1032 /* unmap again to remove racily COWed private pages */
1033 if (oldsize > holebegin)
1034 unmap_mapping_range(inode->i_mapping,
1035 holebegin, 0, 1);
1036
1037 /*
1038 * Part of the huge page can be beyond i_size: subject
1039 * to shrink under memory pressure.
1040 */
1041 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1042 spin_lock(&sbinfo->shrinklist_lock);
1043 /*
1044 * _careful to defend against unlocked access to
1045 * ->shrink_list in shmem_unused_huge_shrink()
1046 */
1047 if (list_empty_careful(&info->shrinklist)) {
1048 list_add_tail(&info->shrinklist,
1049 &sbinfo->shrinklist);
1050 sbinfo->shrinklist_len++;
1051 }
1052 spin_unlock(&sbinfo->shrinklist_lock);
1053 }
1054 }
1055 }
1056
1057 setattr_copy(inode, attr);
1058 if (attr->ia_valid & ATTR_MODE)
1059 error = posix_acl_chmod(inode, inode->i_mode);
1060 return error;
1061 }
1062
1063 static void shmem_evict_inode(struct inode *inode)
1064 {
1065 struct shmem_inode_info *info = SHMEM_I(inode);
1066 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1067
1068 if (inode->i_mapping->a_ops == &shmem_aops) {
1069 shmem_unacct_size(info->flags, inode->i_size);
1070 inode->i_size = 0;
1071 shmem_truncate_range(inode, 0, (loff_t)-1);
1072 if (!list_empty(&info->shrinklist)) {
1073 spin_lock(&sbinfo->shrinklist_lock);
1074 if (!list_empty(&info->shrinklist)) {
1075 list_del_init(&info->shrinklist);
1076 sbinfo->shrinklist_len--;
1077 }
1078 spin_unlock(&sbinfo->shrinklist_lock);
1079 }
1080 if (!list_empty(&info->swaplist)) {
1081 mutex_lock(&shmem_swaplist_mutex);
1082 list_del_init(&info->swaplist);
1083 mutex_unlock(&shmem_swaplist_mutex);
1084 }
1085 }
1086
1087 simple_xattrs_free(&info->xattrs);
1088 WARN_ON(inode->i_blocks);
1089 if (!sbinfo->idr_nouse && inode->i_ino) {
1090 mutex_lock(&sbinfo->idr_lock);
1091 idr_remove(&sbinfo->idr, inode->i_ino);
1092 mutex_unlock(&sbinfo->idr_lock);
1093 }
1094 shmem_free_inode(inode->i_sb);
1095 clear_inode(inode);
1096 }
1097
1098 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1099 {
1100 struct radix_tree_iter iter;
1101 void **slot;
1102 unsigned long found = -1;
1103 unsigned int checked = 0;
1104
1105 rcu_read_lock();
1106 radix_tree_for_each_slot(slot, root, &iter, 0) {
1107 if (*slot == item) {
1108 found = iter.index;
1109 break;
1110 }
1111 checked++;
1112 if ((checked % 4096) != 0)
1113 continue;
1114 slot = radix_tree_iter_resume(slot, &iter);
1115 cond_resched_rcu();
1116 }
1117
1118 rcu_read_unlock();
1119 return found;
1120 }
1121
1122 /*
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1124 */
1125 static int shmem_unuse_inode(struct shmem_inode_info *info,
1126 swp_entry_t swap, struct page **pagep)
1127 {
1128 struct address_space *mapping = info->vfs_inode.i_mapping;
1129 void *radswap;
1130 pgoff_t index;
1131 gfp_t gfp;
1132 int error = 0;
1133
1134 radswap = swp_to_radix_entry(swap);
1135 index = find_swap_entry(&mapping->page_tree, radswap);
1136 if (index == -1)
1137 return -EAGAIN; /* tell shmem_unuse we found nothing */
1138
1139 /*
1140 * Move _head_ to start search for next from here.
1141 * But be careful: shmem_evict_inode checks list_empty without taking
1142 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 * would appear empty, if it were the only one on shmem_swaplist.
1144 */
1145 if (shmem_swaplist.next != &info->swaplist)
1146 list_move_tail(&shmem_swaplist, &info->swaplist);
1147
1148 gfp = mapping_gfp_mask(mapping);
1149 if (shmem_should_replace_page(*pagep, gfp)) {
1150 mutex_unlock(&shmem_swaplist_mutex);
1151 error = shmem_replace_page(pagep, gfp, info, index);
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /*
1154 * We needed to drop mutex to make that restrictive page
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1161 *
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
1170 */
1171 if (!page_swapcount(*pagep))
1172 error = -ENOENT;
1173 }
1174
1175 /*
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
1179 */
1180 if (!error)
1181 error = shmem_add_to_page_cache(*pagep, mapping, index,
1182 radswap);
1183 if (error != -ENOMEM) {
1184 /*
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1187 */
1188 delete_from_swap_cache(*pagep);
1189 set_page_dirty(*pagep);
1190 if (!error) {
1191 spin_lock_irq(&info->lock);
1192 info->swapped--;
1193 spin_unlock_irq(&info->lock);
1194 swap_free(swap);
1195 }
1196 }
1197 return error;
1198 }
1199
1200 /*
1201 * Search through swapped inodes to find and replace swap by page.
1202 */
1203 int shmem_unuse(swp_entry_t swap, struct page *page)
1204 {
1205 struct list_head *this, *next;
1206 struct shmem_inode_info *info;
1207 struct mem_cgroup *memcg;
1208 int error = 0;
1209
1210 /*
1211 * There's a faint possibility that swap page was replaced before
1212 * caller locked it: caller will come back later with the right page.
1213 */
1214 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1215 goto out;
1216
1217 /*
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
1221 */
1222 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1223 false);
1224 if (error)
1225 goto out;
1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1227 error = -EAGAIN;
1228
1229 mutex_lock(&shmem_swaplist_mutex);
1230 list_for_each_safe(this, next, &shmem_swaplist) {
1231 info = list_entry(this, struct shmem_inode_info, swaplist);
1232 if (info->swapped)
1233 error = shmem_unuse_inode(info, swap, &page);
1234 else
1235 list_del_init(&info->swaplist);
1236 cond_resched();
1237 if (error != -EAGAIN)
1238 break;
1239 /* found nothing in this: move on to search the next */
1240 }
1241 mutex_unlock(&shmem_swaplist_mutex);
1242
1243 if (error) {
1244 if (error != -ENOMEM)
1245 error = 0;
1246 mem_cgroup_cancel_charge(page, memcg, false);
1247 } else
1248 mem_cgroup_commit_charge(page, memcg, true, false);
1249 out:
1250 unlock_page(page);
1251 put_page(page);
1252 return error;
1253 }
1254
1255 /*
1256 * Move the page from the page cache to the swap cache.
1257 */
1258 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1259 {
1260 struct shmem_inode_info *info;
1261 struct address_space *mapping;
1262 struct inode *inode;
1263 swp_entry_t swap;
1264 pgoff_t index;
1265
1266 VM_BUG_ON_PAGE(PageCompound(page), page);
1267 BUG_ON(!PageLocked(page));
1268 mapping = page->mapping;
1269 index = page->index;
1270 inode = mapping->host;
1271 info = SHMEM_I(inode);
1272 if (info->flags & VM_LOCKED)
1273 goto redirty;
1274 if (!total_swap_pages)
1275 goto redirty;
1276
1277 /*
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1282 * threads or sync.
1283 */
1284 if (!wbc->for_reclaim) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1286 goto redirty;
1287 }
1288
1289 /*
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1293 *
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1299 */
1300 if (!PageUptodate(page)) {
1301 if (inode->i_private) {
1302 struct shmem_falloc *shmem_falloc;
1303 spin_lock(&inode->i_lock);
1304 shmem_falloc = inode->i_private;
1305 if (shmem_falloc &&
1306 !shmem_falloc->waitq &&
1307 index >= shmem_falloc->start &&
1308 index < shmem_falloc->next)
1309 shmem_falloc->nr_unswapped++;
1310 else
1311 shmem_falloc = NULL;
1312 spin_unlock(&inode->i_lock);
1313 if (shmem_falloc)
1314 goto redirty;
1315 }
1316 clear_highpage(page);
1317 flush_dcache_page(page);
1318 SetPageUptodate(page);
1319 }
1320
1321 swap = get_swap_page(page);
1322 if (!swap.val)
1323 goto redirty;
1324
1325 if (mem_cgroup_try_charge_swap(page, swap))
1326 goto free_swap;
1327
1328 /*
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
1332 * the inode from eviction. But don't unlock the mutex until
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
1335 */
1336 mutex_lock(&shmem_swaplist_mutex);
1337 if (list_empty(&info->swaplist))
1338 list_add_tail(&info->swaplist, &shmem_swaplist);
1339
1340 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1341 spin_lock_irq(&info->lock);
1342 shmem_recalc_inode(inode);
1343 info->swapped++;
1344 spin_unlock_irq(&info->lock);
1345
1346 swap_shmem_alloc(swap);
1347 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1348
1349 mutex_unlock(&shmem_swaplist_mutex);
1350 BUG_ON(page_mapped(page));
1351 swap_writepage(page, wbc);
1352 return 0;
1353 }
1354
1355 mutex_unlock(&shmem_swaplist_mutex);
1356 free_swap:
1357 put_swap_page(page, swap);
1358 redirty:
1359 set_page_dirty(page);
1360 if (wbc->for_reclaim)
1361 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1362 unlock_page(page);
1363 return 0;
1364 }
1365
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1368 {
1369 char buffer[64];
1370
1371 if (!mpol || mpol->mode == MPOL_DEFAULT)
1372 return; /* show nothing */
1373
1374 mpol_to_str(buffer, sizeof(buffer), mpol);
1375
1376 seq_printf(seq, ",mpol=%s", buffer);
1377 }
1378
1379 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 struct mempolicy *mpol = NULL;
1382 if (sbinfo->mpol) {
1383 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1384 mpol = sbinfo->mpol;
1385 mpol_get(mpol);
1386 spin_unlock(&sbinfo->stat_lock);
1387 }
1388 return mpol;
1389 }
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1392 {
1393 }
1394 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1395 {
1396 return NULL;
1397 }
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1399 #ifndef CONFIG_NUMA
1400 #define vm_policy vm_private_data
1401 #endif
1402
1403 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1404 struct shmem_inode_info *info, pgoff_t index)
1405 {
1406 /* Create a pseudo vma that just contains the policy */
1407 vma->vm_start = 0;
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1410 vma->vm_ops = NULL;
1411 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1412 }
1413
1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1415 {
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma->vm_policy);
1418 }
1419
1420 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1421 struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 struct vm_area_struct pvma;
1424 struct page *page;
1425
1426 shmem_pseudo_vma_init(&pvma, info, index);
1427 page = swapin_readahead(swap, gfp, &pvma, 0);
1428 shmem_pseudo_vma_destroy(&pvma);
1429
1430 return page;
1431 }
1432
1433 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1434 struct shmem_inode_info *info, pgoff_t index)
1435 {
1436 struct vm_area_struct pvma;
1437 struct inode *inode = &info->vfs_inode;
1438 struct address_space *mapping = inode->i_mapping;
1439 pgoff_t idx, hindex;
1440 void __rcu **results;
1441 struct page *page;
1442
1443 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1444 return NULL;
1445
1446 hindex = round_down(index, HPAGE_PMD_NR);
1447 rcu_read_lock();
1448 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1449 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1450 rcu_read_unlock();
1451 return NULL;
1452 }
1453 rcu_read_unlock();
1454
1455 shmem_pseudo_vma_init(&pvma, info, hindex);
1456 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1457 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1458 shmem_pseudo_vma_destroy(&pvma);
1459 if (page)
1460 prep_transhuge_page(page);
1461 return page;
1462 }
1463
1464 static struct page *shmem_alloc_page(gfp_t gfp,
1465 struct shmem_inode_info *info, pgoff_t index)
1466 {
1467 struct vm_area_struct pvma;
1468 struct page *page;
1469
1470 shmem_pseudo_vma_init(&pvma, info, index);
1471 page = alloc_page_vma(gfp, &pvma, 0);
1472 shmem_pseudo_vma_destroy(&pvma);
1473
1474 return page;
1475 }
1476
1477 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1478 struct inode *inode,
1479 pgoff_t index, bool huge)
1480 {
1481 struct shmem_inode_info *info = SHMEM_I(inode);
1482 struct page *page;
1483 int nr;
1484 int err = -ENOSPC;
1485
1486 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1487 huge = false;
1488 nr = huge ? HPAGE_PMD_NR : 1;
1489
1490 if (!shmem_inode_acct_block(inode, nr))
1491 goto failed;
1492
1493 if (huge)
1494 page = shmem_alloc_hugepage(gfp, info, index);
1495 else
1496 page = shmem_alloc_page(gfp, info, index);
1497 if (page) {
1498 __SetPageLocked(page);
1499 __SetPageSwapBacked(page);
1500 return page;
1501 }
1502
1503 err = -ENOMEM;
1504 shmem_inode_unacct_blocks(inode, nr);
1505 failed:
1506 return ERR_PTR(err);
1507 }
1508
1509 /*
1510 * When a page is moved from swapcache to shmem filecache (either by the
1511 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1512 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1513 * ignorance of the mapping it belongs to. If that mapping has special
1514 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1515 * we may need to copy to a suitable page before moving to filecache.
1516 *
1517 * In a future release, this may well be extended to respect cpuset and
1518 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1519 * but for now it is a simple matter of zone.
1520 */
1521 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1522 {
1523 return page_zonenum(page) > gfp_zone(gfp);
1524 }
1525
1526 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1527 struct shmem_inode_info *info, pgoff_t index)
1528 {
1529 struct page *oldpage, *newpage;
1530 struct address_space *swap_mapping;
1531 pgoff_t swap_index;
1532 int error;
1533
1534 oldpage = *pagep;
1535 swap_index = page_private(oldpage);
1536 swap_mapping = page_mapping(oldpage);
1537
1538 /*
1539 * We have arrived here because our zones are constrained, so don't
1540 * limit chance of success by further cpuset and node constraints.
1541 */
1542 gfp &= ~GFP_CONSTRAINT_MASK;
1543 newpage = shmem_alloc_page(gfp, info, index);
1544 if (!newpage)
1545 return -ENOMEM;
1546
1547 get_page(newpage);
1548 copy_highpage(newpage, oldpage);
1549 flush_dcache_page(newpage);
1550
1551 __SetPageLocked(newpage);
1552 __SetPageSwapBacked(newpage);
1553 SetPageUptodate(newpage);
1554 set_page_private(newpage, swap_index);
1555 SetPageSwapCache(newpage);
1556
1557 /*
1558 * Our caller will very soon move newpage out of swapcache, but it's
1559 * a nice clean interface for us to replace oldpage by newpage there.
1560 */
1561 spin_lock_irq(&swap_mapping->tree_lock);
1562 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1563 newpage);
1564 if (!error) {
1565 __inc_node_page_state(newpage, NR_FILE_PAGES);
1566 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1567 }
1568 spin_unlock_irq(&swap_mapping->tree_lock);
1569
1570 if (unlikely(error)) {
1571 /*
1572 * Is this possible? I think not, now that our callers check
1573 * both PageSwapCache and page_private after getting page lock;
1574 * but be defensive. Reverse old to newpage for clear and free.
1575 */
1576 oldpage = newpage;
1577 } else {
1578 mem_cgroup_migrate(oldpage, newpage);
1579 lru_cache_add_anon(newpage);
1580 *pagep = newpage;
1581 }
1582
1583 ClearPageSwapCache(oldpage);
1584 set_page_private(oldpage, 0);
1585
1586 unlock_page(oldpage);
1587 put_page(oldpage);
1588 put_page(oldpage);
1589 return error;
1590 }
1591
1592 /*
1593 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1594 *
1595 * If we allocate a new one we do not mark it dirty. That's up to the
1596 * vm. If we swap it in we mark it dirty since we also free the swap
1597 * entry since a page cannot live in both the swap and page cache.
1598 *
1599 * fault_mm and fault_type are only supplied by shmem_fault:
1600 * otherwise they are NULL.
1601 */
1602 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1603 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1604 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1605 {
1606 struct address_space *mapping = inode->i_mapping;
1607 struct shmem_inode_info *info = SHMEM_I(inode);
1608 struct shmem_sb_info *sbinfo;
1609 struct mm_struct *charge_mm;
1610 struct mem_cgroup *memcg;
1611 struct page *page;
1612 swp_entry_t swap;
1613 enum sgp_type sgp_huge = sgp;
1614 pgoff_t hindex = index;
1615 int error;
1616 int once = 0;
1617 int alloced = 0;
1618
1619 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1620 return -EFBIG;
1621 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1622 sgp = SGP_CACHE;
1623 repeat:
1624 swap.val = 0;
1625 page = find_lock_entry(mapping, index);
1626 if (radix_tree_exceptional_entry(page)) {
1627 swap = radix_to_swp_entry(page);
1628 page = NULL;
1629 }
1630
1631 if (sgp <= SGP_CACHE &&
1632 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1633 error = -EINVAL;
1634 goto unlock;
1635 }
1636
1637 if (page && sgp == SGP_WRITE)
1638 mark_page_accessed(page);
1639
1640 /* fallocated page? */
1641 if (page && !PageUptodate(page)) {
1642 if (sgp != SGP_READ)
1643 goto clear;
1644 unlock_page(page);
1645 put_page(page);
1646 page = NULL;
1647 }
1648 if (page || (sgp == SGP_READ && !swap.val)) {
1649 *pagep = page;
1650 return 0;
1651 }
1652
1653 /*
1654 * Fast cache lookup did not find it:
1655 * bring it back from swap or allocate.
1656 */
1657 sbinfo = SHMEM_SB(inode->i_sb);
1658 charge_mm = vma ? vma->vm_mm : current->mm;
1659
1660 if (swap.val) {
1661 /* Look it up and read it in.. */
1662 page = lookup_swap_cache(swap, NULL, 0);
1663 if (!page) {
1664 /* Or update major stats only when swapin succeeds?? */
1665 if (fault_type) {
1666 *fault_type |= VM_FAULT_MAJOR;
1667 count_vm_event(PGMAJFAULT);
1668 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1669 }
1670 /* Here we actually start the io */
1671 page = shmem_swapin(swap, gfp, info, index);
1672 if (!page) {
1673 error = -ENOMEM;
1674 goto failed;
1675 }
1676 }
1677
1678 /* We have to do this with page locked to prevent races */
1679 lock_page(page);
1680 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1681 !shmem_confirm_swap(mapping, index, swap)) {
1682 error = -EEXIST; /* try again */
1683 goto unlock;
1684 }
1685 if (!PageUptodate(page)) {
1686 error = -EIO;
1687 goto failed;
1688 }
1689 wait_on_page_writeback(page);
1690
1691 if (shmem_should_replace_page(page, gfp)) {
1692 error = shmem_replace_page(&page, gfp, info, index);
1693 if (error)
1694 goto failed;
1695 }
1696
1697 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1698 false);
1699 if (!error) {
1700 error = shmem_add_to_page_cache(page, mapping, index,
1701 swp_to_radix_entry(swap));
1702 /*
1703 * We already confirmed swap under page lock, and make
1704 * no memory allocation here, so usually no possibility
1705 * of error; but free_swap_and_cache() only trylocks a
1706 * page, so it is just possible that the entry has been
1707 * truncated or holepunched since swap was confirmed.
1708 * shmem_undo_range() will have done some of the
1709 * unaccounting, now delete_from_swap_cache() will do
1710 * the rest.
1711 * Reset swap.val? No, leave it so "failed" goes back to
1712 * "repeat": reading a hole and writing should succeed.
1713 */
1714 if (error) {
1715 mem_cgroup_cancel_charge(page, memcg, false);
1716 delete_from_swap_cache(page);
1717 }
1718 }
1719 if (error)
1720 goto failed;
1721
1722 mem_cgroup_commit_charge(page, memcg, true, false);
1723
1724 spin_lock_irq(&info->lock);
1725 info->swapped--;
1726 shmem_recalc_inode(inode);
1727 spin_unlock_irq(&info->lock);
1728
1729 if (sgp == SGP_WRITE)
1730 mark_page_accessed(page);
1731
1732 delete_from_swap_cache(page);
1733 set_page_dirty(page);
1734 swap_free(swap);
1735
1736 } else {
1737 if (vma && userfaultfd_missing(vma)) {
1738 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1739 return 0;
1740 }
1741
1742 /* shmem_symlink() */
1743 if (mapping->a_ops != &shmem_aops)
1744 goto alloc_nohuge;
1745 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1746 goto alloc_nohuge;
1747 if (shmem_huge == SHMEM_HUGE_FORCE)
1748 goto alloc_huge;
1749 switch (sbinfo->huge) {
1750 loff_t i_size;
1751 pgoff_t off;
1752 case SHMEM_HUGE_NEVER:
1753 goto alloc_nohuge;
1754 case SHMEM_HUGE_WITHIN_SIZE:
1755 off = round_up(index, HPAGE_PMD_NR);
1756 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1757 if (i_size >= HPAGE_PMD_SIZE &&
1758 i_size >> PAGE_SHIFT >= off)
1759 goto alloc_huge;
1760 /* fallthrough */
1761 case SHMEM_HUGE_ADVISE:
1762 if (sgp_huge == SGP_HUGE)
1763 goto alloc_huge;
1764 /* TODO: implement fadvise() hints */
1765 goto alloc_nohuge;
1766 }
1767
1768 alloc_huge:
1769 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1770 if (IS_ERR(page)) {
1771 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1772 index, false);
1773 }
1774 if (IS_ERR(page)) {
1775 int retry = 5;
1776 error = PTR_ERR(page);
1777 page = NULL;
1778 if (error != -ENOSPC)
1779 goto failed;
1780 /*
1781 * Try to reclaim some spece by splitting a huge page
1782 * beyond i_size on the filesystem.
1783 */
1784 while (retry--) {
1785 int ret;
1786 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1787 if (ret == SHRINK_STOP)
1788 break;
1789 if (ret)
1790 goto alloc_nohuge;
1791 }
1792 goto failed;
1793 }
1794
1795 if (PageTransHuge(page))
1796 hindex = round_down(index, HPAGE_PMD_NR);
1797 else
1798 hindex = index;
1799
1800 if (sgp == SGP_WRITE)
1801 __SetPageReferenced(page);
1802
1803 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1804 PageTransHuge(page));
1805 if (error)
1806 goto unacct;
1807 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1808 compound_order(page));
1809 if (!error) {
1810 error = shmem_add_to_page_cache(page, mapping, hindex,
1811 NULL);
1812 radix_tree_preload_end();
1813 }
1814 if (error) {
1815 mem_cgroup_cancel_charge(page, memcg,
1816 PageTransHuge(page));
1817 goto unacct;
1818 }
1819 mem_cgroup_commit_charge(page, memcg, false,
1820 PageTransHuge(page));
1821 lru_cache_add_anon(page);
1822
1823 spin_lock_irq(&info->lock);
1824 info->alloced += 1 << compound_order(page);
1825 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1826 shmem_recalc_inode(inode);
1827 spin_unlock_irq(&info->lock);
1828 alloced = true;
1829
1830 if (PageTransHuge(page) &&
1831 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1832 hindex + HPAGE_PMD_NR - 1) {
1833 /*
1834 * Part of the huge page is beyond i_size: subject
1835 * to shrink under memory pressure.
1836 */
1837 spin_lock(&sbinfo->shrinklist_lock);
1838 /*
1839 * _careful to defend against unlocked access to
1840 * ->shrink_list in shmem_unused_huge_shrink()
1841 */
1842 if (list_empty_careful(&info->shrinklist)) {
1843 list_add_tail(&info->shrinklist,
1844 &sbinfo->shrinklist);
1845 sbinfo->shrinklist_len++;
1846 }
1847 spin_unlock(&sbinfo->shrinklist_lock);
1848 }
1849
1850 /*
1851 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1852 */
1853 if (sgp == SGP_FALLOC)
1854 sgp = SGP_WRITE;
1855 clear:
1856 /*
1857 * Let SGP_WRITE caller clear ends if write does not fill page;
1858 * but SGP_FALLOC on a page fallocated earlier must initialize
1859 * it now, lest undo on failure cancel our earlier guarantee.
1860 */
1861 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1862 struct page *head = compound_head(page);
1863 int i;
1864
1865 for (i = 0; i < (1 << compound_order(head)); i++) {
1866 clear_highpage(head + i);
1867 flush_dcache_page(head + i);
1868 }
1869 SetPageUptodate(head);
1870 }
1871 }
1872
1873 /* Perhaps the file has been truncated since we checked */
1874 if (sgp <= SGP_CACHE &&
1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1876 if (alloced) {
1877 ClearPageDirty(page);
1878 delete_from_page_cache(page);
1879 spin_lock_irq(&info->lock);
1880 shmem_recalc_inode(inode);
1881 spin_unlock_irq(&info->lock);
1882 }
1883 error = -EINVAL;
1884 goto unlock;
1885 }
1886 *pagep = page + index - hindex;
1887 return 0;
1888
1889 /*
1890 * Error recovery.
1891 */
1892 unacct:
1893 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1894
1895 if (PageTransHuge(page)) {
1896 unlock_page(page);
1897 put_page(page);
1898 goto alloc_nohuge;
1899 }
1900 failed:
1901 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1902 error = -EEXIST;
1903 unlock:
1904 if (page) {
1905 unlock_page(page);
1906 put_page(page);
1907 }
1908 if (error == -ENOSPC && !once++) {
1909 spin_lock_irq(&info->lock);
1910 shmem_recalc_inode(inode);
1911 spin_unlock_irq(&info->lock);
1912 goto repeat;
1913 }
1914 if (error == -EEXIST) /* from above or from radix_tree_insert */
1915 goto repeat;
1916 return error;
1917 }
1918
1919 /*
1920 * This is like autoremove_wake_function, but it removes the wait queue
1921 * entry unconditionally - even if something else had already woken the
1922 * target.
1923 */
1924 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1925 {
1926 int ret = default_wake_function(wait, mode, sync, key);
1927 list_del_init(&wait->entry);
1928 return ret;
1929 }
1930
1931 static int shmem_fault(struct vm_fault *vmf)
1932 {
1933 struct vm_area_struct *vma = vmf->vma;
1934 struct inode *inode = file_inode(vma->vm_file);
1935 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1936 enum sgp_type sgp;
1937 int error;
1938 int ret = VM_FAULT_LOCKED;
1939
1940 /*
1941 * Trinity finds that probing a hole which tmpfs is punching can
1942 * prevent the hole-punch from ever completing: which in turn
1943 * locks writers out with its hold on i_mutex. So refrain from
1944 * faulting pages into the hole while it's being punched. Although
1945 * shmem_undo_range() does remove the additions, it may be unable to
1946 * keep up, as each new page needs its own unmap_mapping_range() call,
1947 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1948 *
1949 * It does not matter if we sometimes reach this check just before the
1950 * hole-punch begins, so that one fault then races with the punch:
1951 * we just need to make racing faults a rare case.
1952 *
1953 * The implementation below would be much simpler if we just used a
1954 * standard mutex or completion: but we cannot take i_mutex in fault,
1955 * and bloating every shmem inode for this unlikely case would be sad.
1956 */
1957 if (unlikely(inode->i_private)) {
1958 struct shmem_falloc *shmem_falloc;
1959
1960 spin_lock(&inode->i_lock);
1961 shmem_falloc = inode->i_private;
1962 if (shmem_falloc &&
1963 shmem_falloc->waitq &&
1964 vmf->pgoff >= shmem_falloc->start &&
1965 vmf->pgoff < shmem_falloc->next) {
1966 wait_queue_head_t *shmem_falloc_waitq;
1967 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1968
1969 ret = VM_FAULT_NOPAGE;
1970 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1971 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1972 /* It's polite to up mmap_sem if we can */
1973 up_read(&vma->vm_mm->mmap_sem);
1974 ret = VM_FAULT_RETRY;
1975 }
1976
1977 shmem_falloc_waitq = shmem_falloc->waitq;
1978 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1979 TASK_UNINTERRUPTIBLE);
1980 spin_unlock(&inode->i_lock);
1981 schedule();
1982
1983 /*
1984 * shmem_falloc_waitq points into the shmem_fallocate()
1985 * stack of the hole-punching task: shmem_falloc_waitq
1986 * is usually invalid by the time we reach here, but
1987 * finish_wait() does not dereference it in that case;
1988 * though i_lock needed lest racing with wake_up_all().
1989 */
1990 spin_lock(&inode->i_lock);
1991 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1992 spin_unlock(&inode->i_lock);
1993 return ret;
1994 }
1995 spin_unlock(&inode->i_lock);
1996 }
1997
1998 sgp = SGP_CACHE;
1999
2000 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2001 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2002 sgp = SGP_NOHUGE;
2003 else if (vma->vm_flags & VM_HUGEPAGE)
2004 sgp = SGP_HUGE;
2005
2006 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2007 gfp, vma, vmf, &ret);
2008 if (error)
2009 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2010 return ret;
2011 }
2012
2013 unsigned long shmem_get_unmapped_area(struct file *file,
2014 unsigned long uaddr, unsigned long len,
2015 unsigned long pgoff, unsigned long flags)
2016 {
2017 unsigned long (*get_area)(struct file *,
2018 unsigned long, unsigned long, unsigned long, unsigned long);
2019 unsigned long addr;
2020 unsigned long offset;
2021 unsigned long inflated_len;
2022 unsigned long inflated_addr;
2023 unsigned long inflated_offset;
2024
2025 if (len > TASK_SIZE)
2026 return -ENOMEM;
2027
2028 get_area = current->mm->get_unmapped_area;
2029 addr = get_area(file, uaddr, len, pgoff, flags);
2030
2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2032 return addr;
2033 if (IS_ERR_VALUE(addr))
2034 return addr;
2035 if (addr & ~PAGE_MASK)
2036 return addr;
2037 if (addr > TASK_SIZE - len)
2038 return addr;
2039
2040 if (shmem_huge == SHMEM_HUGE_DENY)
2041 return addr;
2042 if (len < HPAGE_PMD_SIZE)
2043 return addr;
2044 if (flags & MAP_FIXED)
2045 return addr;
2046 /*
2047 * Our priority is to support MAP_SHARED mapped hugely;
2048 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2049 * But if caller specified an address hint, respect that as before.
2050 */
2051 if (uaddr)
2052 return addr;
2053
2054 if (shmem_huge != SHMEM_HUGE_FORCE) {
2055 struct super_block *sb;
2056
2057 if (file) {
2058 VM_BUG_ON(file->f_op != &shmem_file_operations);
2059 sb = file_inode(file)->i_sb;
2060 } else {
2061 /*
2062 * Called directly from mm/mmap.c, or drivers/char/mem.c
2063 * for "/dev/zero", to create a shared anonymous object.
2064 */
2065 if (IS_ERR(shm_mnt))
2066 return addr;
2067 sb = shm_mnt->mnt_sb;
2068 }
2069 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2070 return addr;
2071 }
2072
2073 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2074 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2075 return addr;
2076 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2077 return addr;
2078
2079 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2080 if (inflated_len > TASK_SIZE)
2081 return addr;
2082 if (inflated_len < len)
2083 return addr;
2084
2085 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2086 if (IS_ERR_VALUE(inflated_addr))
2087 return addr;
2088 if (inflated_addr & ~PAGE_MASK)
2089 return addr;
2090
2091 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2092 inflated_addr += offset - inflated_offset;
2093 if (inflated_offset > offset)
2094 inflated_addr += HPAGE_PMD_SIZE;
2095
2096 if (inflated_addr > TASK_SIZE - len)
2097 return addr;
2098 return inflated_addr;
2099 }
2100
2101 #ifdef CONFIG_NUMA
2102 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2103 {
2104 struct inode *inode = file_inode(vma->vm_file);
2105 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2106 }
2107
2108 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2109 unsigned long addr)
2110 {
2111 struct inode *inode = file_inode(vma->vm_file);
2112 pgoff_t index;
2113
2114 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2115 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2116 }
2117 #endif
2118
2119 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2120 {
2121 struct inode *inode = file_inode(file);
2122 struct shmem_inode_info *info = SHMEM_I(inode);
2123 int retval = -ENOMEM;
2124
2125 spin_lock_irq(&info->lock);
2126 if (lock && !(info->flags & VM_LOCKED)) {
2127 if (!user_shm_lock(inode->i_size, user))
2128 goto out_nomem;
2129 info->flags |= VM_LOCKED;
2130 mapping_set_unevictable(file->f_mapping);
2131 }
2132 if (!lock && (info->flags & VM_LOCKED) && user) {
2133 user_shm_unlock(inode->i_size, user);
2134 info->flags &= ~VM_LOCKED;
2135 mapping_clear_unevictable(file->f_mapping);
2136 }
2137 retval = 0;
2138
2139 out_nomem:
2140 spin_unlock_irq(&info->lock);
2141 return retval;
2142 }
2143
2144 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2145 {
2146 file_accessed(file);
2147 vma->vm_ops = &shmem_vm_ops;
2148 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2149 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2150 (vma->vm_end & HPAGE_PMD_MASK)) {
2151 khugepaged_enter(vma, vma->vm_flags);
2152 }
2153 return 0;
2154 }
2155
2156 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2157 umode_t mode, dev_t dev, unsigned long flags)
2158 {
2159 struct inode *inode;
2160 struct shmem_inode_info *info;
2161 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2162 int ino;
2163
2164 if (shmem_reserve_inode(sb))
2165 return NULL;
2166
2167 inode = new_inode(sb);
2168 if (inode) {
2169 inode_init_owner(inode, dir, mode);
2170 inode->i_blocks = 0;
2171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2172 inode->i_generation = get_seconds();
2173 info = SHMEM_I(inode);
2174 memset(info, 0, (char *)inode - (char *)info);
2175 spin_lock_init(&info->lock);
2176 info->seals = F_SEAL_SEAL;
2177 info->flags = flags & VM_NORESERVE;
2178 INIT_LIST_HEAD(&info->shrinklist);
2179 INIT_LIST_HEAD(&info->swaplist);
2180 simple_xattrs_init(&info->xattrs);
2181 cache_no_acl(inode);
2182
2183 switch (mode & S_IFMT) {
2184 default:
2185 inode->i_op = &shmem_special_inode_operations;
2186 init_special_inode(inode, mode, dev);
2187 break;
2188 case S_IFREG:
2189 inode->i_mapping->a_ops = &shmem_aops;
2190 inode->i_op = &shmem_inode_operations;
2191 inode->i_fop = &shmem_file_operations;
2192 mpol_shared_policy_init(&info->policy,
2193 shmem_get_sbmpol(sbinfo));
2194 break;
2195 case S_IFDIR:
2196 inc_nlink(inode);
2197 /* Some things misbehave if size == 0 on a directory */
2198 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2199 inode->i_op = &shmem_dir_inode_operations;
2200 inode->i_fop = &simple_dir_operations;
2201 break;
2202 case S_IFLNK:
2203 /*
2204 * Must not load anything in the rbtree,
2205 * mpol_free_shared_policy will not be called.
2206 */
2207 mpol_shared_policy_init(&info->policy, NULL);
2208 break;
2209 }
2210
2211 if (!sbinfo->idr_nouse) {
2212 /* inum 0 and 1 are unused */
2213 mutex_lock(&sbinfo->idr_lock);
2214 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2215 GFP_NOFS);
2216 if (ino > 0) {
2217 inode->i_ino = ino;
2218 mutex_unlock(&sbinfo->idr_lock);
2219 __insert_inode_hash(inode, inode->i_ino);
2220 } else {
2221 inode->i_ino = 0;
2222 mutex_unlock(&sbinfo->idr_lock);
2223 iput(inode);
2224 /* shmem_free_inode() will be called */
2225 inode = NULL;
2226 }
2227 } else
2228 inode->i_ino = get_next_ino();
2229 } else
2230 shmem_free_inode(sb);
2231 return inode;
2232 }
2233
2234 bool shmem_mapping(struct address_space *mapping)
2235 {
2236 return mapping->a_ops == &shmem_aops;
2237 }
2238
2239 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2240 pmd_t *dst_pmd,
2241 struct vm_area_struct *dst_vma,
2242 unsigned long dst_addr,
2243 unsigned long src_addr,
2244 bool zeropage,
2245 struct page **pagep)
2246 {
2247 struct inode *inode = file_inode(dst_vma->vm_file);
2248 struct shmem_inode_info *info = SHMEM_I(inode);
2249 struct address_space *mapping = inode->i_mapping;
2250 gfp_t gfp = mapping_gfp_mask(mapping);
2251 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2252 struct mem_cgroup *memcg;
2253 spinlock_t *ptl;
2254 void *page_kaddr;
2255 struct page *page;
2256 pte_t _dst_pte, *dst_pte;
2257 int ret;
2258
2259 ret = -ENOMEM;
2260 if (!shmem_inode_acct_block(inode, 1))
2261 goto out;
2262
2263 if (!*pagep) {
2264 page = shmem_alloc_page(gfp, info, pgoff);
2265 if (!page)
2266 goto out_unacct_blocks;
2267
2268 if (!zeropage) { /* mcopy_atomic */
2269 page_kaddr = kmap_atomic(page);
2270 ret = copy_from_user(page_kaddr,
2271 (const void __user *)src_addr,
2272 PAGE_SIZE);
2273 kunmap_atomic(page_kaddr);
2274
2275 /* fallback to copy_from_user outside mmap_sem */
2276 if (unlikely(ret)) {
2277 *pagep = page;
2278 shmem_inode_unacct_blocks(inode, 1);
2279 /* don't free the page */
2280 return -EFAULT;
2281 }
2282 } else { /* mfill_zeropage_atomic */
2283 clear_highpage(page);
2284 }
2285 } else {
2286 page = *pagep;
2287 *pagep = NULL;
2288 }
2289
2290 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2291 __SetPageLocked(page);
2292 __SetPageSwapBacked(page);
2293 __SetPageUptodate(page);
2294
2295 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2296 if (ret)
2297 goto out_release;
2298
2299 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2300 if (!ret) {
2301 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2302 radix_tree_preload_end();
2303 }
2304 if (ret)
2305 goto out_release_uncharge;
2306
2307 mem_cgroup_commit_charge(page, memcg, false, false);
2308
2309 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2310 if (dst_vma->vm_flags & VM_WRITE)
2311 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2312
2313 ret = -EEXIST;
2314 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2315 if (!pte_none(*dst_pte))
2316 goto out_release_uncharge_unlock;
2317
2318 lru_cache_add_anon(page);
2319
2320 spin_lock(&info->lock);
2321 info->alloced++;
2322 inode->i_blocks += BLOCKS_PER_PAGE;
2323 shmem_recalc_inode(inode);
2324 spin_unlock(&info->lock);
2325
2326 inc_mm_counter(dst_mm, mm_counter_file(page));
2327 page_add_file_rmap(page, false);
2328 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2329
2330 /* No need to invalidate - it was non-present before */
2331 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2332 unlock_page(page);
2333 pte_unmap_unlock(dst_pte, ptl);
2334 ret = 0;
2335 out:
2336 return ret;
2337 out_release_uncharge_unlock:
2338 pte_unmap_unlock(dst_pte, ptl);
2339 out_release_uncharge:
2340 mem_cgroup_cancel_charge(page, memcg, false);
2341 out_release:
2342 unlock_page(page);
2343 put_page(page);
2344 out_unacct_blocks:
2345 shmem_inode_unacct_blocks(inode, 1);
2346 goto out;
2347 }
2348
2349 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2350 pmd_t *dst_pmd,
2351 struct vm_area_struct *dst_vma,
2352 unsigned long dst_addr,
2353 unsigned long src_addr,
2354 struct page **pagep)
2355 {
2356 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2357 dst_addr, src_addr, false, pagep);
2358 }
2359
2360 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2361 pmd_t *dst_pmd,
2362 struct vm_area_struct *dst_vma,
2363 unsigned long dst_addr)
2364 {
2365 struct page *page = NULL;
2366
2367 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2368 dst_addr, 0, true, &page);
2369 }
2370
2371 #ifdef CONFIG_TMPFS
2372 static const struct inode_operations shmem_symlink_inode_operations;
2373 static const struct inode_operations shmem_short_symlink_operations;
2374
2375 #ifdef CONFIG_TMPFS_XATTR
2376 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2377 #else
2378 #define shmem_initxattrs NULL
2379 #endif
2380
2381 static int
2382 shmem_write_begin(struct file *file, struct address_space *mapping,
2383 loff_t pos, unsigned len, unsigned flags,
2384 struct page **pagep, void **fsdata)
2385 {
2386 struct inode *inode = mapping->host;
2387 struct shmem_inode_info *info = SHMEM_I(inode);
2388 pgoff_t index = pos >> PAGE_SHIFT;
2389
2390 /* i_mutex is held by caller */
2391 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2392 if (info->seals & F_SEAL_WRITE)
2393 return -EPERM;
2394 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2395 return -EPERM;
2396 }
2397
2398 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2399 }
2400
2401 static int
2402 shmem_write_end(struct file *file, struct address_space *mapping,
2403 loff_t pos, unsigned len, unsigned copied,
2404 struct page *page, void *fsdata)
2405 {
2406 struct inode *inode = mapping->host;
2407
2408 if (pos + copied > inode->i_size)
2409 i_size_write(inode, pos + copied);
2410
2411 if (!PageUptodate(page)) {
2412 struct page *head = compound_head(page);
2413 if (PageTransCompound(page)) {
2414 int i;
2415
2416 for (i = 0; i < HPAGE_PMD_NR; i++) {
2417 if (head + i == page)
2418 continue;
2419 clear_highpage(head + i);
2420 flush_dcache_page(head + i);
2421 }
2422 }
2423 if (copied < PAGE_SIZE) {
2424 unsigned from = pos & (PAGE_SIZE - 1);
2425 zero_user_segments(page, 0, from,
2426 from + copied, PAGE_SIZE);
2427 }
2428 SetPageUptodate(head);
2429 }
2430 set_page_dirty(page);
2431 unlock_page(page);
2432 put_page(page);
2433
2434 return copied;
2435 }
2436
2437 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2438 {
2439 struct file *file = iocb->ki_filp;
2440 struct inode *inode = file_inode(file);
2441 struct address_space *mapping = inode->i_mapping;
2442 pgoff_t index;
2443 unsigned long offset;
2444 enum sgp_type sgp = SGP_READ;
2445 int error = 0;
2446 ssize_t retval = 0;
2447 loff_t *ppos = &iocb->ki_pos;
2448
2449 /*
2450 * Might this read be for a stacking filesystem? Then when reading
2451 * holes of a sparse file, we actually need to allocate those pages,
2452 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2453 */
2454 if (!iter_is_iovec(to))
2455 sgp = SGP_CACHE;
2456
2457 index = *ppos >> PAGE_SHIFT;
2458 offset = *ppos & ~PAGE_MASK;
2459
2460 for (;;) {
2461 struct page *page = NULL;
2462 pgoff_t end_index;
2463 unsigned long nr, ret;
2464 loff_t i_size = i_size_read(inode);
2465
2466 end_index = i_size >> PAGE_SHIFT;
2467 if (index > end_index)
2468 break;
2469 if (index == end_index) {
2470 nr = i_size & ~PAGE_MASK;
2471 if (nr <= offset)
2472 break;
2473 }
2474
2475 error = shmem_getpage(inode, index, &page, sgp);
2476 if (error) {
2477 if (error == -EINVAL)
2478 error = 0;
2479 break;
2480 }
2481 if (page) {
2482 if (sgp == SGP_CACHE)
2483 set_page_dirty(page);
2484 unlock_page(page);
2485 }
2486
2487 /*
2488 * We must evaluate after, since reads (unlike writes)
2489 * are called without i_mutex protection against truncate
2490 */
2491 nr = PAGE_SIZE;
2492 i_size = i_size_read(inode);
2493 end_index = i_size >> PAGE_SHIFT;
2494 if (index == end_index) {
2495 nr = i_size & ~PAGE_MASK;
2496 if (nr <= offset) {
2497 if (page)
2498 put_page(page);
2499 break;
2500 }
2501 }
2502 nr -= offset;
2503
2504 if (page) {
2505 /*
2506 * If users can be writing to this page using arbitrary
2507 * virtual addresses, take care about potential aliasing
2508 * before reading the page on the kernel side.
2509 */
2510 if (mapping_writably_mapped(mapping))
2511 flush_dcache_page(page);
2512 /*
2513 * Mark the page accessed if we read the beginning.
2514 */
2515 if (!offset)
2516 mark_page_accessed(page);
2517 } else {
2518 page = ZERO_PAGE(0);
2519 get_page(page);
2520 }
2521
2522 /*
2523 * Ok, we have the page, and it's up-to-date, so
2524 * now we can copy it to user space...
2525 */
2526 ret = copy_page_to_iter(page, offset, nr, to);
2527 retval += ret;
2528 offset += ret;
2529 index += offset >> PAGE_SHIFT;
2530 offset &= ~PAGE_MASK;
2531
2532 put_page(page);
2533 if (!iov_iter_count(to))
2534 break;
2535 if (ret < nr) {
2536 error = -EFAULT;
2537 break;
2538 }
2539 cond_resched();
2540 }
2541
2542 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2543 file_accessed(file);
2544 return retval ? retval : error;
2545 }
2546
2547 /*
2548 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2549 */
2550 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2551 pgoff_t index, pgoff_t end, int whence)
2552 {
2553 struct page *page;
2554 struct pagevec pvec;
2555 pgoff_t indices[PAGEVEC_SIZE];
2556 bool done = false;
2557 int i;
2558
2559 pagevec_init(&pvec);
2560 pvec.nr = 1; /* start small: we may be there already */
2561 while (!done) {
2562 pvec.nr = find_get_entries(mapping, index,
2563 pvec.nr, pvec.pages, indices);
2564 if (!pvec.nr) {
2565 if (whence == SEEK_DATA)
2566 index = end;
2567 break;
2568 }
2569 for (i = 0; i < pvec.nr; i++, index++) {
2570 if (index < indices[i]) {
2571 if (whence == SEEK_HOLE) {
2572 done = true;
2573 break;
2574 }
2575 index = indices[i];
2576 }
2577 page = pvec.pages[i];
2578 if (page && !radix_tree_exceptional_entry(page)) {
2579 if (!PageUptodate(page))
2580 page = NULL;
2581 }
2582 if (index >= end ||
2583 (page && whence == SEEK_DATA) ||
2584 (!page && whence == SEEK_HOLE)) {
2585 done = true;
2586 break;
2587 }
2588 }
2589 pagevec_remove_exceptionals(&pvec);
2590 pagevec_release(&pvec);
2591 pvec.nr = PAGEVEC_SIZE;
2592 cond_resched();
2593 }
2594 return index;
2595 }
2596
2597 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2598 {
2599 struct address_space *mapping = file->f_mapping;
2600 struct inode *inode = mapping->host;
2601 pgoff_t start, end;
2602 loff_t new_offset;
2603
2604 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2605 return generic_file_llseek_size(file, offset, whence,
2606 MAX_LFS_FILESIZE, i_size_read(inode));
2607 inode_lock(inode);
2608 /* We're holding i_mutex so we can access i_size directly */
2609
2610 if (offset < 0)
2611 offset = -EINVAL;
2612 else if (offset >= inode->i_size)
2613 offset = -ENXIO;
2614 else {
2615 start = offset >> PAGE_SHIFT;
2616 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2617 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2618 new_offset <<= PAGE_SHIFT;
2619 if (new_offset > offset) {
2620 if (new_offset < inode->i_size)
2621 offset = new_offset;
2622 else if (whence == SEEK_DATA)
2623 offset = -ENXIO;
2624 else
2625 offset = inode->i_size;
2626 }
2627 }
2628
2629 if (offset >= 0)
2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2631 inode_unlock(inode);
2632 return offset;
2633 }
2634
2635 /*
2636 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2637 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2638 */
2639 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2640 #define LAST_SCAN 4 /* about 150ms max */
2641
2642 static void shmem_tag_pins(struct address_space *mapping)
2643 {
2644 struct radix_tree_iter iter;
2645 void **slot;
2646 pgoff_t start;
2647 struct page *page;
2648
2649 lru_add_drain();
2650 start = 0;
2651 rcu_read_lock();
2652
2653 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2654 page = radix_tree_deref_slot(slot);
2655 if (!page || radix_tree_exception(page)) {
2656 if (radix_tree_deref_retry(page)) {
2657 slot = radix_tree_iter_retry(&iter);
2658 continue;
2659 }
2660 } else if (page_count(page) - page_mapcount(page) > 1) {
2661 spin_lock_irq(&mapping->tree_lock);
2662 radix_tree_tag_set(&mapping->page_tree, iter.index,
2663 SHMEM_TAG_PINNED);
2664 spin_unlock_irq(&mapping->tree_lock);
2665 }
2666
2667 if (need_resched()) {
2668 slot = radix_tree_iter_resume(slot, &iter);
2669 cond_resched_rcu();
2670 }
2671 }
2672 rcu_read_unlock();
2673 }
2674
2675 /*
2676 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2677 * via get_user_pages(), drivers might have some pending I/O without any active
2678 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2679 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2680 * them to be dropped.
2681 * The caller must guarantee that no new user will acquire writable references
2682 * to those pages to avoid races.
2683 */
2684 static int shmem_wait_for_pins(struct address_space *mapping)
2685 {
2686 struct radix_tree_iter iter;
2687 void **slot;
2688 pgoff_t start;
2689 struct page *page;
2690 int error, scan;
2691
2692 shmem_tag_pins(mapping);
2693
2694 error = 0;
2695 for (scan = 0; scan <= LAST_SCAN; scan++) {
2696 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2697 break;
2698
2699 if (!scan)
2700 lru_add_drain_all();
2701 else if (schedule_timeout_killable((HZ << scan) / 200))
2702 scan = LAST_SCAN;
2703
2704 start = 0;
2705 rcu_read_lock();
2706 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2707 start, SHMEM_TAG_PINNED) {
2708
2709 page = radix_tree_deref_slot(slot);
2710 if (radix_tree_exception(page)) {
2711 if (radix_tree_deref_retry(page)) {
2712 slot = radix_tree_iter_retry(&iter);
2713 continue;
2714 }
2715
2716 page = NULL;
2717 }
2718
2719 if (page &&
2720 page_count(page) - page_mapcount(page) != 1) {
2721 if (scan < LAST_SCAN)
2722 goto continue_resched;
2723
2724 /*
2725 * On the last scan, we clean up all those tags
2726 * we inserted; but make a note that we still
2727 * found pages pinned.
2728 */
2729 error = -EBUSY;
2730 }
2731
2732 spin_lock_irq(&mapping->tree_lock);
2733 radix_tree_tag_clear(&mapping->page_tree,
2734 iter.index, SHMEM_TAG_PINNED);
2735 spin_unlock_irq(&mapping->tree_lock);
2736 continue_resched:
2737 if (need_resched()) {
2738 slot = radix_tree_iter_resume(slot, &iter);
2739 cond_resched_rcu();
2740 }
2741 }
2742 rcu_read_unlock();
2743 }
2744
2745 return error;
2746 }
2747
2748 #define F_ALL_SEALS (F_SEAL_SEAL | \
2749 F_SEAL_SHRINK | \
2750 F_SEAL_GROW | \
2751 F_SEAL_WRITE)
2752
2753 int shmem_add_seals(struct file *file, unsigned int seals)
2754 {
2755 struct inode *inode = file_inode(file);
2756 struct shmem_inode_info *info = SHMEM_I(inode);
2757 int error;
2758
2759 /*
2760 * SEALING
2761 * Sealing allows multiple parties to share a shmem-file but restrict
2762 * access to a specific subset of file operations. Seals can only be
2763 * added, but never removed. This way, mutually untrusted parties can
2764 * share common memory regions with a well-defined policy. A malicious
2765 * peer can thus never perform unwanted operations on a shared object.
2766 *
2767 * Seals are only supported on special shmem-files and always affect
2768 * the whole underlying inode. Once a seal is set, it may prevent some
2769 * kinds of access to the file. Currently, the following seals are
2770 * defined:
2771 * SEAL_SEAL: Prevent further seals from being set on this file
2772 * SEAL_SHRINK: Prevent the file from shrinking
2773 * SEAL_GROW: Prevent the file from growing
2774 * SEAL_WRITE: Prevent write access to the file
2775 *
2776 * As we don't require any trust relationship between two parties, we
2777 * must prevent seals from being removed. Therefore, sealing a file
2778 * only adds a given set of seals to the file, it never touches
2779 * existing seals. Furthermore, the "setting seals"-operation can be
2780 * sealed itself, which basically prevents any further seal from being
2781 * added.
2782 *
2783 * Semantics of sealing are only defined on volatile files. Only
2784 * anonymous shmem files support sealing. More importantly, seals are
2785 * never written to disk. Therefore, there's no plan to support it on
2786 * other file types.
2787 */
2788
2789 if (file->f_op != &shmem_file_operations)
2790 return -EINVAL;
2791 if (!(file->f_mode & FMODE_WRITE))
2792 return -EPERM;
2793 if (seals & ~(unsigned int)F_ALL_SEALS)
2794 return -EINVAL;
2795
2796 inode_lock(inode);
2797
2798 if (info->seals & F_SEAL_SEAL) {
2799 error = -EPERM;
2800 goto unlock;
2801 }
2802
2803 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2804 error = mapping_deny_writable(file->f_mapping);
2805 if (error)
2806 goto unlock;
2807
2808 error = shmem_wait_for_pins(file->f_mapping);
2809 if (error) {
2810 mapping_allow_writable(file->f_mapping);
2811 goto unlock;
2812 }
2813 }
2814
2815 info->seals |= seals;
2816 error = 0;
2817
2818 unlock:
2819 inode_unlock(inode);
2820 return error;
2821 }
2822 EXPORT_SYMBOL_GPL(shmem_add_seals);
2823
2824 int shmem_get_seals(struct file *file)
2825 {
2826 if (file->f_op != &shmem_file_operations)
2827 return -EINVAL;
2828
2829 return SHMEM_I(file_inode(file))->seals;
2830 }
2831 EXPORT_SYMBOL_GPL(shmem_get_seals);
2832
2833 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2834 {
2835 long error;
2836
2837 switch (cmd) {
2838 case F_ADD_SEALS:
2839 /* disallow upper 32bit */
2840 if (arg > UINT_MAX)
2841 return -EINVAL;
2842
2843 error = shmem_add_seals(file, arg);
2844 break;
2845 case F_GET_SEALS:
2846 error = shmem_get_seals(file);
2847 break;
2848 default:
2849 error = -EINVAL;
2850 break;
2851 }
2852
2853 return error;
2854 }
2855
2856 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2857 loff_t len)
2858 {
2859 struct inode *inode = file_inode(file);
2860 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2861 struct shmem_inode_info *info = SHMEM_I(inode);
2862 struct shmem_falloc shmem_falloc;
2863 pgoff_t start, index, end;
2864 int error;
2865
2866 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2867 return -EOPNOTSUPP;
2868
2869 inode_lock(inode);
2870
2871 if (mode & FALLOC_FL_PUNCH_HOLE) {
2872 struct address_space *mapping = file->f_mapping;
2873 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2874 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2875 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2876
2877 /* protected by i_mutex */
2878 if (info->seals & F_SEAL_WRITE) {
2879 error = -EPERM;
2880 goto out;
2881 }
2882
2883 shmem_falloc.waitq = &shmem_falloc_waitq;
2884 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2885 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2886 spin_lock(&inode->i_lock);
2887 inode->i_private = &shmem_falloc;
2888 spin_unlock(&inode->i_lock);
2889
2890 if ((u64)unmap_end > (u64)unmap_start)
2891 unmap_mapping_range(mapping, unmap_start,
2892 1 + unmap_end - unmap_start, 0);
2893 shmem_truncate_range(inode, offset, offset + len - 1);
2894 /* No need to unmap again: hole-punching leaves COWed pages */
2895
2896 spin_lock(&inode->i_lock);
2897 inode->i_private = NULL;
2898 wake_up_all(&shmem_falloc_waitq);
2899 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2900 spin_unlock(&inode->i_lock);
2901 error = 0;
2902 goto out;
2903 }
2904
2905 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2906 error = inode_newsize_ok(inode, offset + len);
2907 if (error)
2908 goto out;
2909
2910 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2911 error = -EPERM;
2912 goto out;
2913 }
2914
2915 start = offset >> PAGE_SHIFT;
2916 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2917 /* Try to avoid a swapstorm if len is impossible to satisfy */
2918 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2919 error = -ENOSPC;
2920 goto out;
2921 }
2922
2923 shmem_falloc.waitq = NULL;
2924 shmem_falloc.start = start;
2925 shmem_falloc.next = start;
2926 shmem_falloc.nr_falloced = 0;
2927 shmem_falloc.nr_unswapped = 0;
2928 spin_lock(&inode->i_lock);
2929 inode->i_private = &shmem_falloc;
2930 spin_unlock(&inode->i_lock);
2931
2932 for (index = start; index < end; index++) {
2933 struct page *page;
2934
2935 /*
2936 * Good, the fallocate(2) manpage permits EINTR: we may have
2937 * been interrupted because we are using up too much memory.
2938 */
2939 if (signal_pending(current))
2940 error = -EINTR;
2941 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2942 error = -ENOMEM;
2943 else
2944 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2945 if (error) {
2946 /* Remove the !PageUptodate pages we added */
2947 if (index > start) {
2948 shmem_undo_range(inode,
2949 (loff_t)start << PAGE_SHIFT,
2950 ((loff_t)index << PAGE_SHIFT) - 1, true);
2951 }
2952 goto undone;
2953 }
2954
2955 /*
2956 * Inform shmem_writepage() how far we have reached.
2957 * No need for lock or barrier: we have the page lock.
2958 */
2959 shmem_falloc.next++;
2960 if (!PageUptodate(page))
2961 shmem_falloc.nr_falloced++;
2962
2963 /*
2964 * If !PageUptodate, leave it that way so that freeable pages
2965 * can be recognized if we need to rollback on error later.
2966 * But set_page_dirty so that memory pressure will swap rather
2967 * than free the pages we are allocating (and SGP_CACHE pages
2968 * might still be clean: we now need to mark those dirty too).
2969 */
2970 set_page_dirty(page);
2971 unlock_page(page);
2972 put_page(page);
2973 cond_resched();
2974 }
2975
2976 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2977 i_size_write(inode, offset + len);
2978 inode->i_ctime = current_time(inode);
2979 undone:
2980 spin_lock(&inode->i_lock);
2981 inode->i_private = NULL;
2982 spin_unlock(&inode->i_lock);
2983 out:
2984 inode_unlock(inode);
2985 return error;
2986 }
2987
2988 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2989 {
2990 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2991
2992 buf->f_type = TMPFS_MAGIC;
2993 buf->f_bsize = PAGE_SIZE;
2994 buf->f_namelen = NAME_MAX;
2995 if (sbinfo->max_blocks) {
2996 buf->f_blocks = sbinfo->max_blocks;
2997 buf->f_bavail =
2998 buf->f_bfree = sbinfo->max_blocks -
2999 percpu_counter_sum(&sbinfo->used_blocks);
3000 }
3001 if (sbinfo->max_inodes) {
3002 buf->f_files = sbinfo->max_inodes;
3003 buf->f_ffree = sbinfo->free_inodes;
3004 }
3005 /* else leave those fields 0 like simple_statfs */
3006 return 0;
3007 }
3008
3009 /*
3010 * File creation. Allocate an inode, and we're done..
3011 */
3012 static int
3013 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3014 {
3015 struct inode *inode;
3016 int error = -ENOSPC;
3017
3018 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3019 if (inode) {
3020 error = simple_acl_create(dir, inode);
3021 if (error)
3022 goto out_iput;
3023 error = security_inode_init_security(inode, dir,
3024 &dentry->d_name,
3025 shmem_initxattrs, NULL);
3026 if (error && error != -EOPNOTSUPP)
3027 goto out_iput;
3028
3029 error = 0;
3030 dir->i_size += BOGO_DIRENT_SIZE;
3031 dir->i_ctime = dir->i_mtime = current_time(dir);
3032 d_instantiate(dentry, inode);
3033 dget(dentry); /* Extra count - pin the dentry in core */
3034 }
3035 return error;
3036 out_iput:
3037 iput(inode);
3038 return error;
3039 }
3040
3041 static int
3042 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3043 {
3044 struct inode *inode;
3045 int error = -ENOSPC;
3046
3047 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3048 if (inode) {
3049 error = security_inode_init_security(inode, dir,
3050 NULL,
3051 shmem_initxattrs, NULL);
3052 if (error && error != -EOPNOTSUPP)
3053 goto out_iput;
3054 error = simple_acl_create(dir, inode);
3055 if (error)
3056 goto out_iput;
3057 d_tmpfile(dentry, inode);
3058 }
3059 return error;
3060 out_iput:
3061 iput(inode);
3062 return error;
3063 }
3064
3065 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3066 {
3067 int error;
3068
3069 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3070 return error;
3071 inc_nlink(dir);
3072 return 0;
3073 }
3074
3075 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3076 bool excl)
3077 {
3078 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3079 }
3080
3081 /*
3082 * Link a file..
3083 */
3084 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3085 {
3086 struct inode *inode = d_inode(old_dentry);
3087 int ret;
3088
3089 /*
3090 * No ordinary (disk based) filesystem counts links as inodes;
3091 * but each new link needs a new dentry, pinning lowmem, and
3092 * tmpfs dentries cannot be pruned until they are unlinked.
3093 */
3094 ret = shmem_reserve_inode(inode->i_sb);
3095 if (ret)
3096 goto out;
3097
3098 dir->i_size += BOGO_DIRENT_SIZE;
3099 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3100 inc_nlink(inode);
3101 ihold(inode); /* New dentry reference */
3102 dget(dentry); /* Extra pinning count for the created dentry */
3103 d_instantiate(dentry, inode);
3104 out:
3105 return ret;
3106 }
3107
3108 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3109 {
3110 struct inode *inode = d_inode(dentry);
3111
3112 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3113 shmem_free_inode(inode->i_sb);
3114
3115 dir->i_size -= BOGO_DIRENT_SIZE;
3116 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3117 drop_nlink(inode);
3118 dput(dentry); /* Undo the count from "create" - this does all the work */
3119 return 0;
3120 }
3121
3122 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3123 {
3124 if (!simple_empty(dentry))
3125 return -ENOTEMPTY;
3126
3127 drop_nlink(d_inode(dentry));
3128 drop_nlink(dir);
3129 return shmem_unlink(dir, dentry);
3130 }
3131
3132 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3133 {
3134 bool old_is_dir = d_is_dir(old_dentry);
3135 bool new_is_dir = d_is_dir(new_dentry);
3136
3137 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3138 if (old_is_dir) {
3139 drop_nlink(old_dir);
3140 inc_nlink(new_dir);
3141 } else {
3142 drop_nlink(new_dir);
3143 inc_nlink(old_dir);
3144 }
3145 }
3146 old_dir->i_ctime = old_dir->i_mtime =
3147 new_dir->i_ctime = new_dir->i_mtime =
3148 d_inode(old_dentry)->i_ctime =
3149 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3150
3151 return 0;
3152 }
3153
3154 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3155 {
3156 struct dentry *whiteout;
3157 int error;
3158
3159 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3160 if (!whiteout)
3161 return -ENOMEM;
3162
3163 error = shmem_mknod(old_dir, whiteout,
3164 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3165 dput(whiteout);
3166 if (error)
3167 return error;
3168
3169 /*
3170 * Cheat and hash the whiteout while the old dentry is still in
3171 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3172 *
3173 * d_lookup() will consistently find one of them at this point,
3174 * not sure which one, but that isn't even important.
3175 */
3176 d_rehash(whiteout);
3177 return 0;
3178 }
3179
3180 /*
3181 * The VFS layer already does all the dentry stuff for rename,
3182 * we just have to decrement the usage count for the target if
3183 * it exists so that the VFS layer correctly free's it when it
3184 * gets overwritten.
3185 */
3186 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3187 {
3188 struct inode *inode = d_inode(old_dentry);
3189 int they_are_dirs = S_ISDIR(inode->i_mode);
3190
3191 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3192 return -EINVAL;
3193
3194 if (flags & RENAME_EXCHANGE)
3195 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3196
3197 if (!simple_empty(new_dentry))
3198 return -ENOTEMPTY;
3199
3200 if (flags & RENAME_WHITEOUT) {
3201 int error;
3202
3203 error = shmem_whiteout(old_dir, old_dentry);
3204 if (error)
3205 return error;
3206 }
3207
3208 if (d_really_is_positive(new_dentry)) {
3209 (void) shmem_unlink(new_dir, new_dentry);
3210 if (they_are_dirs) {
3211 drop_nlink(d_inode(new_dentry));
3212 drop_nlink(old_dir);
3213 }
3214 } else if (they_are_dirs) {
3215 drop_nlink(old_dir);
3216 inc_nlink(new_dir);
3217 }
3218
3219 old_dir->i_size -= BOGO_DIRENT_SIZE;
3220 new_dir->i_size += BOGO_DIRENT_SIZE;
3221 old_dir->i_ctime = old_dir->i_mtime =
3222 new_dir->i_ctime = new_dir->i_mtime =
3223 inode->i_ctime = current_time(old_dir);
3224 return 0;
3225 }
3226
3227 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3228 {
3229 int error;
3230 int len;
3231 struct inode *inode;
3232 struct page *page;
3233
3234 len = strlen(symname) + 1;
3235 if (len > PAGE_SIZE)
3236 return -ENAMETOOLONG;
3237
3238 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3239 if (!inode)
3240 return -ENOSPC;
3241
3242 error = security_inode_init_security(inode, dir, &dentry->d_name,
3243 shmem_initxattrs, NULL);
3244 if (error) {
3245 if (error != -EOPNOTSUPP) {
3246 iput(inode);
3247 return error;
3248 }
3249 error = 0;
3250 }
3251
3252 inode->i_size = len-1;
3253 if (len <= SHORT_SYMLINK_LEN) {
3254 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3255 if (!inode->i_link) {
3256 iput(inode);
3257 return -ENOMEM;
3258 }
3259 inode->i_op = &shmem_short_symlink_operations;
3260 } else {
3261 inode_nohighmem(inode);
3262 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3263 if (error) {
3264 iput(inode);
3265 return error;
3266 }
3267 inode->i_mapping->a_ops = &shmem_aops;
3268 inode->i_op = &shmem_symlink_inode_operations;
3269 memcpy(page_address(page), symname, len);
3270 SetPageUptodate(page);
3271 set_page_dirty(page);
3272 unlock_page(page);
3273 put_page(page);
3274 }
3275 dir->i_size += BOGO_DIRENT_SIZE;
3276 dir->i_ctime = dir->i_mtime = current_time(dir);
3277 d_instantiate(dentry, inode);
3278 dget(dentry);
3279 return 0;
3280 }
3281
3282 static void shmem_put_link(void *arg)
3283 {
3284 mark_page_accessed(arg);
3285 put_page(arg);
3286 }
3287
3288 static const char *shmem_get_link(struct dentry *dentry,
3289 struct inode *inode,
3290 struct delayed_call *done)
3291 {
3292 struct page *page = NULL;
3293 int error;
3294 if (!dentry) {
3295 page = find_get_page(inode->i_mapping, 0);
3296 if (!page)
3297 return ERR_PTR(-ECHILD);
3298 if (!PageUptodate(page)) {
3299 put_page(page);
3300 return ERR_PTR(-ECHILD);
3301 }
3302 } else {
3303 error = shmem_getpage(inode, 0, &page, SGP_READ);
3304 if (error)
3305 return ERR_PTR(error);
3306 unlock_page(page);
3307 }
3308 set_delayed_call(done, shmem_put_link, page);
3309 return page_address(page);
3310 }
3311
3312 #ifdef CONFIG_TMPFS_XATTR
3313 /*
3314 * Superblocks without xattr inode operations may get some security.* xattr
3315 * support from the LSM "for free". As soon as we have any other xattrs
3316 * like ACLs, we also need to implement the security.* handlers at
3317 * filesystem level, though.
3318 */
3319
3320 /*
3321 * Callback for security_inode_init_security() for acquiring xattrs.
3322 */
3323 static int shmem_initxattrs(struct inode *inode,
3324 const struct xattr *xattr_array,
3325 void *fs_info)
3326 {
3327 struct shmem_inode_info *info = SHMEM_I(inode);
3328 const struct xattr *xattr;
3329 struct simple_xattr *new_xattr;
3330 size_t len;
3331
3332 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3333 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3334 if (!new_xattr)
3335 return -ENOMEM;
3336
3337 len = strlen(xattr->name) + 1;
3338 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3339 GFP_KERNEL);
3340 if (!new_xattr->name) {
3341 kfree(new_xattr);
3342 return -ENOMEM;
3343 }
3344
3345 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3346 XATTR_SECURITY_PREFIX_LEN);
3347 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3348 xattr->name, len);
3349
3350 simple_xattr_list_add(&info->xattrs, new_xattr);
3351 }
3352
3353 return 0;
3354 }
3355
3356 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3357 struct dentry *unused, struct inode *inode,
3358 const char *name, void *buffer, size_t size)
3359 {
3360 struct shmem_inode_info *info = SHMEM_I(inode);
3361
3362 name = xattr_full_name(handler, name);
3363 return simple_xattr_get(&info->xattrs, name, buffer, size);
3364 }
3365
3366 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3367 struct dentry *unused, struct inode *inode,
3368 const char *name, const void *value,
3369 size_t size, int flags)
3370 {
3371 struct shmem_inode_info *info = SHMEM_I(inode);
3372
3373 name = xattr_full_name(handler, name);
3374 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3375 }
3376
3377 static const struct xattr_handler shmem_security_xattr_handler = {
3378 .prefix = XATTR_SECURITY_PREFIX,
3379 .get = shmem_xattr_handler_get,
3380 .set = shmem_xattr_handler_set,
3381 };
3382
3383 static const struct xattr_handler shmem_trusted_xattr_handler = {
3384 .prefix = XATTR_TRUSTED_PREFIX,
3385 .get = shmem_xattr_handler_get,
3386 .set = shmem_xattr_handler_set,
3387 };
3388
3389 static const struct xattr_handler *shmem_xattr_handlers[] = {
3390 #ifdef CONFIG_TMPFS_POSIX_ACL
3391 &posix_acl_access_xattr_handler,
3392 &posix_acl_default_xattr_handler,
3393 #endif
3394 &shmem_security_xattr_handler,
3395 &shmem_trusted_xattr_handler,
3396 NULL
3397 };
3398
3399 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3400 {
3401 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3402 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3403 }
3404 #endif /* CONFIG_TMPFS_XATTR */
3405
3406 static const struct inode_operations shmem_short_symlink_operations = {
3407 .get_link = simple_get_link,
3408 #ifdef CONFIG_TMPFS_XATTR
3409 .listxattr = shmem_listxattr,
3410 #endif
3411 };
3412
3413 static const struct inode_operations shmem_symlink_inode_operations = {
3414 .get_link = shmem_get_link,
3415 #ifdef CONFIG_TMPFS_XATTR
3416 .listxattr = shmem_listxattr,
3417 #endif
3418 };
3419
3420 static struct dentry *shmem_get_parent(struct dentry *child)
3421 {
3422 return ERR_PTR(-ESTALE);
3423 }
3424
3425 static int shmem_match(struct inode *ino, void *vfh)
3426 {
3427 __u32 *fh = vfh;
3428 __u64 inum = fh[1];
3429 return ino->i_ino == inum && fh[0] == ino->i_generation;
3430 }
3431
3432 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3433 struct fid *fid, int fh_len, int fh_type)
3434 {
3435 struct inode *inode;
3436 struct dentry *dentry = NULL;
3437 u64 inum;
3438
3439 if (fh_len < 2)
3440 return NULL;
3441
3442 inum = fid->raw[1];
3443 inode = ilookup5(sb, inum, shmem_match, fid->raw);
3444 if (inode) {
3445 dentry = d_find_alias(inode);
3446 iput(inode);
3447 }
3448
3449 return dentry;
3450 }
3451
3452 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3453 struct inode *parent)
3454 {
3455 if (*len < 2) {
3456 *len = 2;
3457 return FILEID_INVALID;
3458 }
3459
3460 fh[0] = inode->i_generation;
3461 fh[1] = inode->i_ino;
3462
3463 *len = 2;
3464 return 1;
3465 }
3466
3467 static const struct export_operations shmem_export_ops = {
3468 .get_parent = shmem_get_parent,
3469 .encode_fh = shmem_encode_fh,
3470 .fh_to_dentry = shmem_fh_to_dentry,
3471 };
3472
3473 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3474 bool remount)
3475 {
3476 char *this_char, *value, *rest;
3477 struct mempolicy *mpol = NULL;
3478 uid_t uid;
3479 gid_t gid;
3480
3481 while (options != NULL) {
3482 this_char = options;
3483 for (;;) {
3484 /*
3485 * NUL-terminate this option: unfortunately,
3486 * mount options form a comma-separated list,
3487 * but mpol's nodelist may also contain commas.
3488 */
3489 options = strchr(options, ',');
3490 if (options == NULL)
3491 break;
3492 options++;
3493 if (!isdigit(*options)) {
3494 options[-1] = '\0';
3495 break;
3496 }
3497 }
3498 if (!*this_char)
3499 continue;
3500 if ((value = strchr(this_char,'=')) != NULL) {
3501 *value++ = 0;
3502 } else {
3503 pr_err("tmpfs: No value for mount option '%s'\n",
3504 this_char);
3505 goto error;
3506 }
3507
3508 if (!strcmp(this_char,"size")) {
3509 unsigned long long size;
3510 size = memparse(value,&rest);
3511 if (*rest == '%') {
3512 size <<= PAGE_SHIFT;
3513 size *= totalram_pages;
3514 do_div(size, 100);
3515 rest++;
3516 }
3517 if (*rest)
3518 goto bad_val;
3519 sbinfo->max_blocks =
3520 DIV_ROUND_UP(size, PAGE_SIZE);
3521 } else if (!strcmp(this_char,"nr_blocks")) {
3522 sbinfo->max_blocks = memparse(value, &rest);
3523 if (*rest)
3524 goto bad_val;
3525 } else if (!strcmp(this_char,"nr_inodes")) {
3526 sbinfo->max_inodes = memparse(value, &rest);
3527 if (*rest || sbinfo->max_inodes < 2)
3528 goto bad_val;
3529 } else if (!strcmp(this_char,"mode")) {
3530 if (remount)
3531 continue;
3532 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3533 if (*rest)
3534 goto bad_val;
3535 } else if (!strcmp(this_char,"uid")) {
3536 if (remount)
3537 continue;
3538 uid = simple_strtoul(value, &rest, 0);
3539 if (*rest)
3540 goto bad_val;
3541 sbinfo->uid = make_kuid(current_user_ns(), uid);
3542 if (!uid_valid(sbinfo->uid))
3543 goto bad_val;
3544 } else if (!strcmp(this_char,"gid")) {
3545 if (remount)
3546 continue;
3547 gid = simple_strtoul(value, &rest, 0);
3548 if (*rest)
3549 goto bad_val;
3550 sbinfo->gid = make_kgid(current_user_ns(), gid);
3551 if (!gid_valid(sbinfo->gid))
3552 goto bad_val;
3553 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3554 } else if (!strcmp(this_char, "huge")) {
3555 int huge;
3556 huge = shmem_parse_huge(value);
3557 if (huge < 0)
3558 goto bad_val;
3559 if (!has_transparent_hugepage() &&
3560 huge != SHMEM_HUGE_NEVER)
3561 goto bad_val;
3562 sbinfo->huge = huge;
3563 #endif
3564 #ifdef CONFIG_NUMA
3565 } else if (!strcmp(this_char,"mpol")) {
3566 mpol_put(mpol);
3567 mpol = NULL;
3568 if (mpol_parse_str(value, &mpol))
3569 goto bad_val;
3570 #endif
3571 } else {
3572 pr_err("tmpfs: Bad mount option %s\n", this_char);
3573 goto error;
3574 }
3575 }
3576 sbinfo->mpol = mpol;
3577 return 0;
3578
3579 bad_val:
3580 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3581 value, this_char);
3582 error:
3583 mpol_put(mpol);
3584 return 1;
3585
3586 }
3587
3588 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3589 {
3590 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3591 struct shmem_sb_info config = *sbinfo;
3592 int inodes;
3593 int error = -EINVAL;
3594
3595 config.mpol = NULL;
3596 if (shmem_parse_options(data, &config, true))
3597 return error;
3598
3599 spin_lock(&sbinfo->stat_lock);
3600 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3601 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3602 goto out;
3603 if (config.max_inodes < inodes)
3604 goto out;
3605 /*
3606 * Those tests disallow limited->unlimited while any are in use;
3607 * but we must separately disallow unlimited->limited, because
3608 * in that case we have no record of how much is already in use.
3609 */
3610 if (config.max_blocks && !sbinfo->max_blocks)
3611 goto out;
3612 if (config.max_inodes && !sbinfo->max_inodes)
3613 goto out;
3614
3615 error = 0;
3616 sbinfo->huge = config.huge;
3617 sbinfo->max_blocks = config.max_blocks;
3618 sbinfo->max_inodes = config.max_inodes;
3619 sbinfo->free_inodes = config.max_inodes - inodes;
3620
3621 /*
3622 * Preserve previous mempolicy unless mpol remount option was specified.
3623 */
3624 if (config.mpol) {
3625 mpol_put(sbinfo->mpol);
3626 sbinfo->mpol = config.mpol; /* transfers initial ref */
3627 }
3628 out:
3629 spin_unlock(&sbinfo->stat_lock);
3630 return error;
3631 }
3632
3633 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3634 {
3635 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3636
3637 if (sbinfo->max_blocks != shmem_default_max_blocks())
3638 seq_printf(seq, ",size=%luk",
3639 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3640 if (sbinfo->max_inodes != shmem_default_max_inodes())
3641 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
3642 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3643 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3644 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3645 seq_printf(seq, ",uid=%u",
3646 from_kuid_munged(&init_user_ns, sbinfo->uid));
3647 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3648 seq_printf(seq, ",gid=%u",
3649 from_kgid_munged(&init_user_ns, sbinfo->gid));
3650 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3651 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3652 if (sbinfo->huge)
3653 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3654 #endif
3655 shmem_show_mpol(seq, sbinfo->mpol);
3656 return 0;
3657 }
3658
3659 #define MFD_NAME_PREFIX "memfd:"
3660 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3661 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3662
3663 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3664
3665 SYSCALL_DEFINE2(memfd_create,
3666 const char __user *, uname,
3667 unsigned int, flags)
3668 {
3669 struct shmem_inode_info *info;
3670 struct file *file;
3671 int fd, error;
3672 char *name;
3673 long len;
3674
3675 if (!(flags & MFD_HUGETLB)) {
3676 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3677 return -EINVAL;
3678 } else {
3679 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3680 if (flags & MFD_ALLOW_SEALING)
3681 return -EINVAL;
3682 /* Allow huge page size encoding in flags. */
3683 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3684 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3685 return -EINVAL;
3686 }
3687
3688 /* length includes terminating zero */
3689 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3690 if (len <= 0)
3691 return -EFAULT;
3692 if (len > MFD_NAME_MAX_LEN + 1)
3693 return -EINVAL;
3694
3695 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3696 if (!name)
3697 return -ENOMEM;
3698
3699 strcpy(name, MFD_NAME_PREFIX);
3700 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3701 error = -EFAULT;
3702 goto err_name;
3703 }
3704
3705 /* terminating-zero may have changed after strnlen_user() returned */
3706 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3707 error = -EFAULT;
3708 goto err_name;
3709 }
3710
3711 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3712 if (fd < 0) {
3713 error = fd;
3714 goto err_name;
3715 }
3716
3717 if (flags & MFD_HUGETLB) {
3718 struct user_struct *user = NULL;
3719
3720 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3721 HUGETLB_ANONHUGE_INODE,
3722 (flags >> MFD_HUGE_SHIFT) &
3723 MFD_HUGE_MASK);
3724 } else
3725 file = shmem_file_setup(name, 0, VM_NORESERVE);
3726 if (IS_ERR(file)) {
3727 error = PTR_ERR(file);
3728 goto err_fd;
3729 }
3730 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3731 file->f_flags |= O_RDWR | O_LARGEFILE;
3732
3733 if (flags & MFD_ALLOW_SEALING) {
3734 /*
3735 * flags check at beginning of function ensures
3736 * this is not a hugetlbfs (MFD_HUGETLB) file.
3737 */
3738 info = SHMEM_I(file_inode(file));
3739 info->seals &= ~F_SEAL_SEAL;
3740 }
3741
3742 fd_install(fd, file);
3743 kfree(name);
3744 return fd;
3745
3746 err_fd:
3747 put_unused_fd(fd);
3748 err_name:
3749 kfree(name);
3750 return error;
3751 }
3752
3753 #endif /* CONFIG_TMPFS */
3754
3755 static void shmem_put_super(struct super_block *sb)
3756 {
3757 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3758
3759 if (!sbinfo->idr_nouse)
3760 idr_destroy(&sbinfo->idr);
3761 percpu_counter_destroy(&sbinfo->used_blocks);
3762 mpol_put(sbinfo->mpol);
3763 kfree(sbinfo);
3764 sb->s_fs_info = NULL;
3765 }
3766
3767 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3768 {
3769 struct inode *inode;
3770 struct shmem_sb_info *sbinfo;
3771 int err = -ENOMEM;
3772
3773 /* Round up to L1_CACHE_BYTES to resist false sharing */
3774 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3775 L1_CACHE_BYTES), GFP_KERNEL);
3776 if (!sbinfo)
3777 return -ENOMEM;
3778
3779 mutex_init(&sbinfo->idr_lock);
3780 idr_init(&sbinfo->idr);
3781 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3782 sbinfo->uid = current_fsuid();
3783 sbinfo->gid = current_fsgid();
3784 sb->s_fs_info = sbinfo;
3785
3786 #ifdef CONFIG_TMPFS
3787 /*
3788 * Per default we only allow half of the physical ram per
3789 * tmpfs instance, limiting inodes to one per page of lowmem;
3790 * but the internal instance is left unlimited.
3791 */
3792 if (!(sb->s_flags & SB_KERNMOUNT)) {
3793 sbinfo->max_blocks = shmem_default_max_blocks();
3794 sbinfo->max_inodes = shmem_default_max_inodes();
3795 if (shmem_parse_options(data, sbinfo, false)) {
3796 err = -EINVAL;
3797 goto failed;
3798 }
3799 } else {
3800 sb->s_flags |= SB_NOUSER;
3801 }
3802 sb->s_export_op = &shmem_export_ops;
3803 sb->s_flags |= SB_NOSEC;
3804 #else
3805 sb->s_flags |= SB_NOUSER;
3806 #endif
3807
3808 spin_lock_init(&sbinfo->stat_lock);
3809 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3810 goto failed;
3811 sbinfo->free_inodes = sbinfo->max_inodes;
3812 spin_lock_init(&sbinfo->shrinklist_lock);
3813 INIT_LIST_HEAD(&sbinfo->shrinklist);
3814
3815 sb->s_maxbytes = MAX_LFS_FILESIZE;
3816 sb->s_blocksize = PAGE_SIZE;
3817 sb->s_blocksize_bits = PAGE_SHIFT;
3818 sb->s_magic = TMPFS_MAGIC;
3819 sb->s_op = &shmem_ops;
3820 sb->s_time_gran = 1;
3821 #ifdef CONFIG_TMPFS_XATTR
3822 sb->s_xattr = shmem_xattr_handlers;
3823 #endif
3824 #ifdef CONFIG_TMPFS_POSIX_ACL
3825 sb->s_flags |= SB_POSIXACL;
3826 #endif
3827 uuid_gen(&sb->s_uuid);
3828
3829 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3830 if (!inode)
3831 goto failed;
3832 inode->i_uid = sbinfo->uid;
3833 inode->i_gid = sbinfo->gid;
3834 sb->s_root = d_make_root(inode);
3835 if (!sb->s_root)
3836 goto failed;
3837 return 0;
3838
3839 failed:
3840 shmem_put_super(sb);
3841 return err;
3842 }
3843
3844 static struct kmem_cache *shmem_inode_cachep;
3845
3846 static struct inode *shmem_alloc_inode(struct super_block *sb)
3847 {
3848 struct shmem_inode_info *info;
3849 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3850 if (!info)
3851 return NULL;
3852 return &info->vfs_inode;
3853 }
3854
3855 static void shmem_destroy_callback(struct rcu_head *head)
3856 {
3857 struct inode *inode = container_of(head, struct inode, i_rcu);
3858 if (S_ISLNK(inode->i_mode))
3859 kfree(inode->i_link);
3860 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3861 }
3862
3863 static void shmem_destroy_inode(struct inode *inode)
3864 {
3865 if (S_ISREG(inode->i_mode))
3866 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3867 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3868 }
3869
3870 static void shmem_init_inode(void *foo)
3871 {
3872 struct shmem_inode_info *info = foo;
3873 inode_init_once(&info->vfs_inode);
3874 }
3875
3876 static void shmem_init_inodecache(void)
3877 {
3878 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3879 sizeof(struct shmem_inode_info),
3880 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3881 }
3882
3883 static void shmem_destroy_inodecache(void)
3884 {
3885 kmem_cache_destroy(shmem_inode_cachep);
3886 }
3887
3888 static __init void shmem_no_idr(struct super_block *sb)
3889 {
3890 struct shmem_sb_info *sbinfo;
3891
3892 sbinfo = SHMEM_SB(sb);
3893 sbinfo->idr_nouse = true;
3894 idr_destroy(&sbinfo->idr);
3895 }
3896
3897 static const struct address_space_operations shmem_aops = {
3898 .writepage = shmem_writepage,
3899 .set_page_dirty = __set_page_dirty_no_writeback,
3900 #ifdef CONFIG_TMPFS
3901 .write_begin = shmem_write_begin,
3902 .write_end = shmem_write_end,
3903 #endif
3904 #ifdef CONFIG_MIGRATION
3905 .migratepage = migrate_page,
3906 #endif
3907 .error_remove_page = generic_error_remove_page,
3908 };
3909
3910 static const struct file_operations shmem_file_operations = {
3911 .mmap = shmem_mmap,
3912 .get_unmapped_area = shmem_get_unmapped_area,
3913 #ifdef CONFIG_TMPFS
3914 .llseek = shmem_file_llseek,
3915 .read_iter = shmem_file_read_iter,
3916 .write_iter = generic_file_write_iter,
3917 .fsync = noop_fsync,
3918 .splice_read = generic_file_splice_read,
3919 .splice_write = iter_file_splice_write,
3920 .fallocate = shmem_fallocate,
3921 #endif
3922 };
3923
3924 static const struct inode_operations shmem_inode_operations = {
3925 .getattr = shmem_getattr,
3926 .setattr = shmem_setattr,
3927 #ifdef CONFIG_TMPFS_XATTR
3928 .listxattr = shmem_listxattr,
3929 .set_acl = simple_set_acl,
3930 #endif
3931 };
3932
3933 static const struct inode_operations shmem_dir_inode_operations = {
3934 #ifdef CONFIG_TMPFS
3935 .create = shmem_create,
3936 .lookup = simple_lookup,
3937 .link = shmem_link,
3938 .unlink = shmem_unlink,
3939 .symlink = shmem_symlink,
3940 .mkdir = shmem_mkdir,
3941 .rmdir = shmem_rmdir,
3942 .mknod = shmem_mknod,
3943 .rename = shmem_rename2,
3944 .tmpfile = shmem_tmpfile,
3945 #endif
3946 #ifdef CONFIG_TMPFS_XATTR
3947 .listxattr = shmem_listxattr,
3948 #endif
3949 #ifdef CONFIG_TMPFS_POSIX_ACL
3950 .setattr = shmem_setattr,
3951 .set_acl = simple_set_acl,
3952 #endif
3953 };
3954
3955 static const struct inode_operations shmem_special_inode_operations = {
3956 #ifdef CONFIG_TMPFS_XATTR
3957 .listxattr = shmem_listxattr,
3958 #endif
3959 #ifdef CONFIG_TMPFS_POSIX_ACL
3960 .setattr = shmem_setattr,
3961 .set_acl = simple_set_acl,
3962 #endif
3963 };
3964
3965 static const struct super_operations shmem_ops = {
3966 .alloc_inode = shmem_alloc_inode,
3967 .destroy_inode = shmem_destroy_inode,
3968 #ifdef CONFIG_TMPFS
3969 .statfs = shmem_statfs,
3970 .remount_fs = shmem_remount_fs,
3971 .show_options = shmem_show_options,
3972 #endif
3973 .evict_inode = shmem_evict_inode,
3974 .drop_inode = generic_delete_inode,
3975 .put_super = shmem_put_super,
3976 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3977 .nr_cached_objects = shmem_unused_huge_count,
3978 .free_cached_objects = shmem_unused_huge_scan,
3979 #endif
3980 };
3981
3982 static const struct vm_operations_struct shmem_vm_ops = {
3983 .fault = shmem_fault,
3984 .map_pages = filemap_map_pages,
3985 #ifdef CONFIG_NUMA
3986 .set_policy = shmem_set_policy,
3987 .get_policy = shmem_get_policy,
3988 #endif
3989 };
3990
3991 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3992 int flags, const char *dev_name, void *data)
3993 {
3994 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3995 }
3996
3997 static struct file_system_type shmem_fs_type = {
3998 .owner = THIS_MODULE,
3999 .name = "tmpfs",
4000 .mount = shmem_mount,
4001 .kill_sb = kill_litter_super,
4002 .fs_flags = FS_USERNS_MOUNT,
4003 };
4004
4005 int __init shmem_init(void)
4006 {
4007 int error;
4008
4009 /* If rootfs called this, don't re-init */
4010 if (shmem_inode_cachep)
4011 return 0;
4012
4013 shmem_init_inodecache();
4014
4015 error = register_filesystem(&shmem_fs_type);
4016 if (error) {
4017 pr_err("Could not register tmpfs\n");
4018 goto out2;
4019 }
4020
4021 shm_mnt = kern_mount(&shmem_fs_type);
4022 if (IS_ERR(shm_mnt)) {
4023 error = PTR_ERR(shm_mnt);
4024 pr_err("Could not kern_mount tmpfs\n");
4025 goto out1;
4026 }
4027 shmem_no_idr(shm_mnt->mnt_sb);
4028
4029 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4030 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4031 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4032 else
4033 shmem_huge = 0; /* just in case it was patched */
4034 #endif
4035 return 0;
4036
4037 out1:
4038 unregister_filesystem(&shmem_fs_type);
4039 out2:
4040 shmem_destroy_inodecache();
4041 shm_mnt = ERR_PTR(error);
4042 return error;
4043 }
4044
4045 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4046 static ssize_t shmem_enabled_show(struct kobject *kobj,
4047 struct kobj_attribute *attr, char *buf)
4048 {
4049 int values[] = {
4050 SHMEM_HUGE_ALWAYS,
4051 SHMEM_HUGE_WITHIN_SIZE,
4052 SHMEM_HUGE_ADVISE,
4053 SHMEM_HUGE_NEVER,
4054 SHMEM_HUGE_DENY,
4055 SHMEM_HUGE_FORCE,
4056 };
4057 int i, count;
4058
4059 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4060 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4061
4062 count += sprintf(buf + count, fmt,
4063 shmem_format_huge(values[i]));
4064 }
4065 buf[count - 1] = '\n';
4066 return count;
4067 }
4068
4069 static ssize_t shmem_enabled_store(struct kobject *kobj,
4070 struct kobj_attribute *attr, const char *buf, size_t count)
4071 {
4072 char tmp[16];
4073 int huge;
4074
4075 if (count + 1 > sizeof(tmp))
4076 return -EINVAL;
4077 memcpy(tmp, buf, count);
4078 tmp[count] = '\0';
4079 if (count && tmp[count - 1] == '\n')
4080 tmp[count - 1] = '\0';
4081
4082 huge = shmem_parse_huge(tmp);
4083 if (huge == -EINVAL)
4084 return -EINVAL;
4085 if (!has_transparent_hugepage() &&
4086 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4087 return -EINVAL;
4088
4089 shmem_huge = huge;
4090 if (shmem_huge > SHMEM_HUGE_DENY)
4091 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4092 return count;
4093 }
4094
4095 struct kobj_attribute shmem_enabled_attr =
4096 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4097 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4098
4099 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4100 bool shmem_huge_enabled(struct vm_area_struct *vma)
4101 {
4102 struct inode *inode = file_inode(vma->vm_file);
4103 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4104 loff_t i_size;
4105 pgoff_t off;
4106
4107 if (shmem_huge == SHMEM_HUGE_FORCE)
4108 return true;
4109 if (shmem_huge == SHMEM_HUGE_DENY)
4110 return false;
4111 switch (sbinfo->huge) {
4112 case SHMEM_HUGE_NEVER:
4113 return false;
4114 case SHMEM_HUGE_ALWAYS:
4115 return true;
4116 case SHMEM_HUGE_WITHIN_SIZE:
4117 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4118 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4119 if (i_size >= HPAGE_PMD_SIZE &&
4120 i_size >> PAGE_SHIFT >= off)
4121 return true;
4122 /* fall through */
4123 case SHMEM_HUGE_ADVISE:
4124 /* TODO: implement fadvise() hints */
4125 return (vma->vm_flags & VM_HUGEPAGE);
4126 default:
4127 VM_BUG_ON(1);
4128 return false;
4129 }
4130 }
4131 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4132
4133 #else /* !CONFIG_SHMEM */
4134
4135 /*
4136 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4137 *
4138 * This is intended for small system where the benefits of the full
4139 * shmem code (swap-backed and resource-limited) are outweighed by
4140 * their complexity. On systems without swap this code should be
4141 * effectively equivalent, but much lighter weight.
4142 */
4143
4144 static struct file_system_type shmem_fs_type = {
4145 .name = "tmpfs",
4146 .mount = ramfs_mount,
4147 .kill_sb = kill_litter_super,
4148 .fs_flags = FS_USERNS_MOUNT,
4149 };
4150
4151 int __init shmem_init(void)
4152 {
4153 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4154
4155 shm_mnt = kern_mount(&shmem_fs_type);
4156 BUG_ON(IS_ERR(shm_mnt));
4157
4158 return 0;
4159 }
4160
4161 int shmem_unuse(swp_entry_t swap, struct page *page)
4162 {
4163 return 0;
4164 }
4165
4166 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4167 {
4168 return 0;
4169 }
4170
4171 void shmem_unlock_mapping(struct address_space *mapping)
4172 {
4173 }
4174
4175 #ifdef CONFIG_MMU
4176 unsigned long shmem_get_unmapped_area(struct file *file,
4177 unsigned long addr, unsigned long len,
4178 unsigned long pgoff, unsigned long flags)
4179 {
4180 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4181 }
4182 #endif
4183
4184 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4185 {
4186 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4187 }
4188 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4189
4190 #define shmem_vm_ops generic_file_vm_ops
4191 #define shmem_file_operations ramfs_file_operations
4192 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4193 #define shmem_acct_size(flags, size) 0
4194 #define shmem_unacct_size(flags, size) do {} while (0)
4195
4196 #endif /* CONFIG_SHMEM */
4197
4198 /* common code */
4199
4200 static const struct dentry_operations anon_ops = {
4201 .d_dname = simple_dname
4202 };
4203
4204 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4205 unsigned long flags, unsigned int i_flags)
4206 {
4207 struct file *res;
4208 struct inode *inode;
4209 struct path path;
4210 struct super_block *sb;
4211 struct qstr this;
4212
4213 if (IS_ERR(mnt))
4214 return ERR_CAST(mnt);
4215
4216 if (size < 0 || size > MAX_LFS_FILESIZE)
4217 return ERR_PTR(-EINVAL);
4218
4219 if (shmem_acct_size(flags, size))
4220 return ERR_PTR(-ENOMEM);
4221
4222 res = ERR_PTR(-ENOMEM);
4223 this.name = name;
4224 this.len = strlen(name);
4225 this.hash = 0; /* will go */
4226 sb = mnt->mnt_sb;
4227 path.mnt = mntget(mnt);
4228 path.dentry = d_alloc_pseudo(sb, &this);
4229 if (!path.dentry)
4230 goto put_memory;
4231 d_set_d_op(path.dentry, &anon_ops);
4232
4233 res = ERR_PTR(-ENOSPC);
4234 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4235 if (!inode)
4236 goto put_memory;
4237
4238 inode->i_flags |= i_flags;
4239 d_instantiate(path.dentry, inode);
4240 inode->i_size = size;
4241 clear_nlink(inode); /* It is unlinked */
4242 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4243 if (IS_ERR(res))
4244 goto put_path;
4245
4246 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4247 &shmem_file_operations);
4248 if (IS_ERR(res))
4249 goto put_path;
4250
4251 return res;
4252
4253 put_memory:
4254 shmem_unacct_size(flags, size);
4255 put_path:
4256 path_put(&path);
4257 return res;
4258 }
4259
4260 /**
4261 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4262 * kernel internal. There will be NO LSM permission checks against the
4263 * underlying inode. So users of this interface must do LSM checks at a
4264 * higher layer. The users are the big_key and shm implementations. LSM
4265 * checks are provided at the key or shm level rather than the inode.
4266 * @name: name for dentry (to be seen in /proc/<pid>/maps
4267 * @size: size to be set for the file
4268 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4269 */
4270 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4271 {
4272 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4273 }
4274
4275 /**
4276 * shmem_file_setup - get an unlinked file living in tmpfs
4277 * @name: name for dentry (to be seen in /proc/<pid>/maps
4278 * @size: size to be set for the file
4279 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4280 */
4281 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4282 {
4283 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4284 }
4285 EXPORT_SYMBOL_GPL(shmem_file_setup);
4286
4287 /**
4288 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4289 * @mnt: the tmpfs mount where the file will be created
4290 * @name: name for dentry (to be seen in /proc/<pid>/maps
4291 * @size: size to be set for the file
4292 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4293 */
4294 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4295 loff_t size, unsigned long flags)
4296 {
4297 return __shmem_file_setup(mnt, name, size, flags, 0);
4298 }
4299 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4300
4301 /**
4302 * shmem_zero_setup - setup a shared anonymous mapping
4303 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4304 */
4305 int shmem_zero_setup(struct vm_area_struct *vma)
4306 {
4307 struct file *file;
4308 loff_t size = vma->vm_end - vma->vm_start;
4309
4310 /*
4311 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4312 * between XFS directory reading and selinux: since this file is only
4313 * accessible to the user through its mapping, use S_PRIVATE flag to
4314 * bypass file security, in the same way as shmem_kernel_file_setup().
4315 */
4316 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4317 if (IS_ERR(file))
4318 return PTR_ERR(file);
4319
4320 if (vma->vm_file)
4321 fput(vma->vm_file);
4322 vma->vm_file = file;
4323 vma->vm_ops = &shmem_vm_ops;
4324
4325 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4326 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4327 (vma->vm_end & HPAGE_PMD_MASK)) {
4328 khugepaged_enter(vma, vma->vm_flags);
4329 }
4330
4331 return 0;
4332 }
4333
4334 /**
4335 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4336 * @mapping: the page's address_space
4337 * @index: the page index
4338 * @gfp: the page allocator flags to use if allocating
4339 *
4340 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4341 * with any new page allocations done using the specified allocation flags.
4342 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4343 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4344 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4345 *
4346 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4347 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4348 */
4349 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4350 pgoff_t index, gfp_t gfp)
4351 {
4352 #ifdef CONFIG_SHMEM
4353 struct inode *inode = mapping->host;
4354 struct page *page;
4355 int error;
4356
4357 BUG_ON(mapping->a_ops != &shmem_aops);
4358 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4359 gfp, NULL, NULL, NULL);
4360 if (error)
4361 page = ERR_PTR(error);
4362 else
4363 unlock_page(page);
4364 return page;
4365 #else
4366 /*
4367 * The tiny !SHMEM case uses ramfs without swap
4368 */
4369 return read_cache_page_gfp(mapping, index, gfp);
4370 #endif
4371 }
4372 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);