]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * struct array_cache
173 *
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183 struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
188 void *entry[]; /*
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
192 */
193 };
194
195 struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198 };
199
200 /*
201 * Need this for bootstrapping a per node allocator.
202 */
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
207
208 static int drain_freelist(struct kmem_cache *cache,
209 struct kmem_cache_node *n, int tofree);
210 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 int node, struct list_head *list);
212 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214 static void cache_reap(struct work_struct *unused);
215
216 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218 static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
221 static int slab_early_init = 1;
222
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
224
225 static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 {
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
232 parent->colour_next = 0;
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236 }
237
238 #define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
242 } while (0)
243
244 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
250
251 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
252 #define CFLGS_OFF_SLAB (0x80000000UL)
253 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
254 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256 #define BATCHREFILL_LIMIT 16
257 /*
258 * Optimization question: fewer reaps means less probability for unnessary
259 * cpucache drain/refill cycles.
260 *
261 * OTOH the cpuarrays can contain lots of objects,
262 * which could lock up otherwise freeable slabs.
263 */
264 #define REAPTIMEOUT_AC (2*HZ)
265 #define REAPTIMEOUT_NODE (4*HZ)
266
267 #if STATS
268 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
269 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271 #define STATS_INC_GROWN(x) ((x)->grown++)
272 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
273 #define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
278 #define STATS_INC_ERR(x) ((x)->errors++)
279 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
280 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
281 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
282 #define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
287 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291 #else
292 #define STATS_INC_ACTIVE(x) do { } while (0)
293 #define STATS_DEC_ACTIVE(x) do { } while (0)
294 #define STATS_INC_ALLOCED(x) do { } while (0)
295 #define STATS_INC_GROWN(x) do { } while (0)
296 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
297 #define STATS_SET_HIGH(x) do { } while (0)
298 #define STATS_INC_ERR(x) do { } while (0)
299 #define STATS_INC_NODEALLOCS(x) do { } while (0)
300 #define STATS_INC_NODEFREES(x) do { } while (0)
301 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
302 #define STATS_SET_FREEABLE(x, i) do { } while (0)
303 #define STATS_INC_ALLOCHIT(x) do { } while (0)
304 #define STATS_INC_ALLOCMISS(x) do { } while (0)
305 #define STATS_INC_FREEHIT(x) do { } while (0)
306 #define STATS_INC_FREEMISS(x) do { } while (0)
307 #endif
308
309 #if DEBUG
310
311 /*
312 * memory layout of objects:
313 * 0 : objp
314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
315 * the end of an object is aligned with the end of the real
316 * allocation. Catches writes behind the end of the allocation.
317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
318 * redzone word.
319 * cachep->obj_offset: The real object.
320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321 * cachep->size - 1* BYTES_PER_WORD: last caller address
322 * [BYTES_PER_WORD long]
323 */
324 static int obj_offset(struct kmem_cache *cachep)
325 {
326 return cachep->obj_offset;
327 }
328
329 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
330 {
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
334 }
335
336 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
337 {
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
340 return (unsigned long long *)(objp + cachep->size -
341 sizeof(unsigned long long) -
342 REDZONE_ALIGN);
343 return (unsigned long long *) (objp + cachep->size -
344 sizeof(unsigned long long));
345 }
346
347 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
348 {
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
351 }
352
353 #else
354
355 #define obj_offset(x) 0
356 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
358 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360 #endif
361
362 #ifdef CONFIG_DEBUG_SLAB_LEAK
363
364 static inline bool is_store_user_clean(struct kmem_cache *cachep)
365 {
366 return atomic_read(&cachep->store_user_clean) == 1;
367 }
368
369 static inline void set_store_user_clean(struct kmem_cache *cachep)
370 {
371 atomic_set(&cachep->store_user_clean, 1);
372 }
373
374 static inline void set_store_user_dirty(struct kmem_cache *cachep)
375 {
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
378 }
379
380 #else
381 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
382
383 #endif
384
385 /*
386 * Do not go above this order unless 0 objects fit into the slab or
387 * overridden on the command line.
388 */
389 #define SLAB_MAX_ORDER_HI 1
390 #define SLAB_MAX_ORDER_LO 0
391 static int slab_max_order = SLAB_MAX_ORDER_LO;
392 static bool slab_max_order_set __initdata;
393
394 static inline struct kmem_cache *virt_to_cache(const void *obj)
395 {
396 struct page *page = virt_to_head_page(obj);
397 return page->slab_cache;
398 }
399
400 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
401 unsigned int idx)
402 {
403 return page->s_mem + cache->size * idx;
404 }
405
406 /*
407 * We want to avoid an expensive divide : (offset / cache->size)
408 * Using the fact that size is a constant for a particular cache,
409 * we can replace (offset / cache->size) by
410 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
411 */
412 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
413 const struct page *page, void *obj)
414 {
415 u32 offset = (obj - page->s_mem);
416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
417 }
418
419 #define BOOT_CPUCACHE_ENTRIES 1
420 /* internal cache of cache description objs */
421 static struct kmem_cache kmem_cache_boot = {
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
425 .size = sizeof(struct kmem_cache),
426 .name = "kmem_cache",
427 };
428
429 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
430
431 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
432 {
433 return this_cpu_ptr(cachep->cpu_cache);
434 }
435
436 /*
437 * Calculate the number of objects and left-over bytes for a given buffer size.
438 */
439 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
441 {
442 unsigned int num;
443 size_t slab_size = PAGE_SIZE << gfporder;
444
445 /*
446 * The slab management structure can be either off the slab or
447 * on it. For the latter case, the memory allocated for a
448 * slab is used for:
449 *
450 * - @buffer_size bytes for each object
451 * - One freelist_idx_t for each object
452 *
453 * We don't need to consider alignment of freelist because
454 * freelist will be at the end of slab page. The objects will be
455 * at the correct alignment.
456 *
457 * If the slab management structure is off the slab, then the
458 * alignment will already be calculated into the size. Because
459 * the slabs are all pages aligned, the objects will be at the
460 * correct alignment when allocated.
461 */
462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
463 num = slab_size / buffer_size;
464 *left_over = slab_size % buffer_size;
465 } else {
466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
469 }
470
471 return num;
472 }
473
474 #if DEBUG
475 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
476
477 static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
479 {
480 pr_err("slab error in %s(): cache `%s': %s\n",
481 function, cachep->name, msg);
482 dump_stack();
483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
484 }
485 #endif
486
487 /*
488 * By default on NUMA we use alien caches to stage the freeing of
489 * objects allocated from other nodes. This causes massive memory
490 * inefficiencies when using fake NUMA setup to split memory into a
491 * large number of small nodes, so it can be disabled on the command
492 * line
493 */
494
495 static int use_alien_caches __read_mostly = 1;
496 static int __init noaliencache_setup(char *s)
497 {
498 use_alien_caches = 0;
499 return 1;
500 }
501 __setup("noaliencache", noaliencache_setup);
502
503 static int __init slab_max_order_setup(char *str)
504 {
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511 }
512 __setup("slab_max_order=", slab_max_order_setup);
513
514 #ifdef CONFIG_NUMA
515 /*
516 * Special reaping functions for NUMA systems called from cache_reap().
517 * These take care of doing round robin flushing of alien caches (containing
518 * objects freed on different nodes from which they were allocated) and the
519 * flushing of remote pcps by calling drain_node_pages.
520 */
521 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
522
523 static void init_reap_node(int cpu)
524 {
525 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
526 node_online_map);
527 }
528
529 static void next_reap_node(void)
530 {
531 int node = __this_cpu_read(slab_reap_node);
532
533 node = next_node_in(node, node_online_map);
534 __this_cpu_write(slab_reap_node, node);
535 }
536
537 #else
538 #define init_reap_node(cpu) do { } while (0)
539 #define next_reap_node(void) do { } while (0)
540 #endif
541
542 /*
543 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
544 * via the workqueue/eventd.
545 * Add the CPU number into the expiration time to minimize the possibility of
546 * the CPUs getting into lockstep and contending for the global cache chain
547 * lock.
548 */
549 static void start_cpu_timer(int cpu)
550 {
551 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
552
553 /*
554 * When this gets called from do_initcalls via cpucache_init(),
555 * init_workqueues() has already run, so keventd will be setup
556 * at that time.
557 */
558 if (keventd_up() && reap_work->work.func == NULL) {
559 init_reap_node(cpu);
560 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
561 schedule_delayed_work_on(cpu, reap_work,
562 __round_jiffies_relative(HZ, cpu));
563 }
564 }
565
566 static void init_arraycache(struct array_cache *ac, int limit, int batch)
567 {
568 /*
569 * The array_cache structures contain pointers to free object.
570 * However, when such objects are allocated or transferred to another
571 * cache the pointers are not cleared and they could be counted as
572 * valid references during a kmemleak scan. Therefore, kmemleak must
573 * not scan such objects.
574 */
575 kmemleak_no_scan(ac);
576 if (ac) {
577 ac->avail = 0;
578 ac->limit = limit;
579 ac->batchcount = batch;
580 ac->touched = 0;
581 }
582 }
583
584 static struct array_cache *alloc_arraycache(int node, int entries,
585 int batchcount, gfp_t gfp)
586 {
587 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
588 struct array_cache *ac = NULL;
589
590 ac = kmalloc_node(memsize, gfp, node);
591 init_arraycache(ac, entries, batchcount);
592 return ac;
593 }
594
595 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
596 struct page *page, void *objp)
597 {
598 struct kmem_cache_node *n;
599 int page_node;
600 LIST_HEAD(list);
601
602 page_node = page_to_nid(page);
603 n = get_node(cachep, page_node);
604
605 spin_lock(&n->list_lock);
606 free_block(cachep, &objp, 1, page_node, &list);
607 spin_unlock(&n->list_lock);
608
609 slabs_destroy(cachep, &list);
610 }
611
612 /*
613 * Transfer objects in one arraycache to another.
614 * Locking must be handled by the caller.
615 *
616 * Return the number of entries transferred.
617 */
618 static int transfer_objects(struct array_cache *to,
619 struct array_cache *from, unsigned int max)
620 {
621 /* Figure out how many entries to transfer */
622 int nr = min3(from->avail, max, to->limit - to->avail);
623
624 if (!nr)
625 return 0;
626
627 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
628 sizeof(void *) *nr);
629
630 from->avail -= nr;
631 to->avail += nr;
632 return nr;
633 }
634
635 #ifndef CONFIG_NUMA
636
637 #define drain_alien_cache(cachep, alien) do { } while (0)
638 #define reap_alien(cachep, n) do { } while (0)
639
640 static inline struct alien_cache **alloc_alien_cache(int node,
641 int limit, gfp_t gfp)
642 {
643 return NULL;
644 }
645
646 static inline void free_alien_cache(struct alien_cache **ac_ptr)
647 {
648 }
649
650 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651 {
652 return 0;
653 }
654
655 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
656 gfp_t flags)
657 {
658 return NULL;
659 }
660
661 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
662 gfp_t flags, int nodeid)
663 {
664 return NULL;
665 }
666
667 static inline gfp_t gfp_exact_node(gfp_t flags)
668 {
669 return flags & ~__GFP_NOFAIL;
670 }
671
672 #else /* CONFIG_NUMA */
673
674 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
675 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676
677 static struct alien_cache *__alloc_alien_cache(int node, int entries,
678 int batch, gfp_t gfp)
679 {
680 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
681 struct alien_cache *alc = NULL;
682
683 alc = kmalloc_node(memsize, gfp, node);
684 init_arraycache(&alc->ac, entries, batch);
685 spin_lock_init(&alc->lock);
686 return alc;
687 }
688
689 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690 {
691 struct alien_cache **alc_ptr;
692 size_t memsize = sizeof(void *) * nr_node_ids;
693 int i;
694
695 if (limit > 1)
696 limit = 12;
697 alc_ptr = kzalloc_node(memsize, gfp, node);
698 if (!alc_ptr)
699 return NULL;
700
701 for_each_node(i) {
702 if (i == node || !node_online(i))
703 continue;
704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 if (!alc_ptr[i]) {
706 for (i--; i >= 0; i--)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 return NULL;
710 }
711 }
712 return alc_ptr;
713 }
714
715 static void free_alien_cache(struct alien_cache **alc_ptr)
716 {
717 int i;
718
719 if (!alc_ptr)
720 return;
721 for_each_node(i)
722 kfree(alc_ptr[i]);
723 kfree(alc_ptr);
724 }
725
726 static void __drain_alien_cache(struct kmem_cache *cachep,
727 struct array_cache *ac, int node,
728 struct list_head *list)
729 {
730 struct kmem_cache_node *n = get_node(cachep, node);
731
732 if (ac->avail) {
733 spin_lock(&n->list_lock);
734 /*
735 * Stuff objects into the remote nodes shared array first.
736 * That way we could avoid the overhead of putting the objects
737 * into the free lists and getting them back later.
738 */
739 if (n->shared)
740 transfer_objects(n->shared, ac, ac->limit);
741
742 free_block(cachep, ac->entry, ac->avail, node, list);
743 ac->avail = 0;
744 spin_unlock(&n->list_lock);
745 }
746 }
747
748 /*
749 * Called from cache_reap() to regularly drain alien caches round robin.
750 */
751 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752 {
753 int node = __this_cpu_read(slab_reap_node);
754
755 if (n->alien) {
756 struct alien_cache *alc = n->alien[node];
757 struct array_cache *ac;
758
759 if (alc) {
760 ac = &alc->ac;
761 if (ac->avail && spin_trylock_irq(&alc->lock)) {
762 LIST_HEAD(list);
763
764 __drain_alien_cache(cachep, ac, node, &list);
765 spin_unlock_irq(&alc->lock);
766 slabs_destroy(cachep, &list);
767 }
768 }
769 }
770 }
771
772 static void drain_alien_cache(struct kmem_cache *cachep,
773 struct alien_cache **alien)
774 {
775 int i = 0;
776 struct alien_cache *alc;
777 struct array_cache *ac;
778 unsigned long flags;
779
780 for_each_online_node(i) {
781 alc = alien[i];
782 if (alc) {
783 LIST_HEAD(list);
784
785 ac = &alc->ac;
786 spin_lock_irqsave(&alc->lock, flags);
787 __drain_alien_cache(cachep, ac, i, &list);
788 spin_unlock_irqrestore(&alc->lock, flags);
789 slabs_destroy(cachep, &list);
790 }
791 }
792 }
793
794 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 int node, int page_node)
796 {
797 struct kmem_cache_node *n;
798 struct alien_cache *alien = NULL;
799 struct array_cache *ac;
800 LIST_HEAD(list);
801
802 n = get_node(cachep, node);
803 STATS_INC_NODEFREES(cachep);
804 if (n->alien && n->alien[page_node]) {
805 alien = n->alien[page_node];
806 ac = &alien->ac;
807 spin_lock(&alien->lock);
808 if (unlikely(ac->avail == ac->limit)) {
809 STATS_INC_ACOVERFLOW(cachep);
810 __drain_alien_cache(cachep, ac, page_node, &list);
811 }
812 ac->entry[ac->avail++] = objp;
813 spin_unlock(&alien->lock);
814 slabs_destroy(cachep, &list);
815 } else {
816 n = get_node(cachep, page_node);
817 spin_lock(&n->list_lock);
818 free_block(cachep, &objp, 1, page_node, &list);
819 spin_unlock(&n->list_lock);
820 slabs_destroy(cachep, &list);
821 }
822 return 1;
823 }
824
825 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826 {
827 int page_node = page_to_nid(virt_to_page(objp));
828 int node = numa_mem_id();
829 /*
830 * Make sure we are not freeing a object from another node to the array
831 * cache on this cpu.
832 */
833 if (likely(node == page_node))
834 return 0;
835
836 return __cache_free_alien(cachep, objp, node, page_node);
837 }
838
839 /*
840 * Construct gfp mask to allocate from a specific node but do not reclaim or
841 * warn about failures.
842 */
843 static inline gfp_t gfp_exact_node(gfp_t flags)
844 {
845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
846 }
847 #endif
848
849 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850 {
851 struct kmem_cache_node *n;
852
853 /*
854 * Set up the kmem_cache_node for cpu before we can
855 * begin anything. Make sure some other cpu on this
856 * node has not already allocated this
857 */
858 n = get_node(cachep, node);
859 if (n) {
860 spin_lock_irq(&n->list_lock);
861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 cachep->num;
863 spin_unlock_irq(&n->list_lock);
864
865 return 0;
866 }
867
868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 if (!n)
870 return -ENOMEM;
871
872 kmem_cache_node_init(n);
873 n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875
876 n->free_limit =
877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878
879 /*
880 * The kmem_cache_nodes don't come and go as CPUs
881 * come and go. slab_mutex is sufficient
882 * protection here.
883 */
884 cachep->node[node] = n;
885
886 return 0;
887 }
888
889 /*
890 * Allocates and initializes node for a node on each slab cache, used for
891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
892 * will be allocated off-node since memory is not yet online for the new node.
893 * When hotplugging memory or a cpu, existing node are not replaced if
894 * already in use.
895 *
896 * Must hold slab_mutex.
897 */
898 static int init_cache_node_node(int node)
899 {
900 int ret;
901 struct kmem_cache *cachep;
902
903 list_for_each_entry(cachep, &slab_caches, list) {
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
907 }
908
909 return 0;
910 }
911
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 static void cpuup_canceled(long cpu)
979 {
980 struct kmem_cache *cachep;
981 struct kmem_cache_node *n = NULL;
982 int node = cpu_to_mem(cpu);
983 const struct cpumask *mask = cpumask_of_node(node);
984
985 list_for_each_entry(cachep, &slab_caches, list) {
986 struct array_cache *nc;
987 struct array_cache *shared;
988 struct alien_cache **alien;
989 LIST_HEAD(list);
990
991 n = get_node(cachep, node);
992 if (!n)
993 continue;
994
995 spin_lock_irq(&n->list_lock);
996
997 /* Free limit for this kmem_cache_node */
998 n->free_limit -= cachep->batchcount;
999
1000 /* cpu is dead; no one can alloc from it. */
1001 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1002 if (nc) {
1003 free_block(cachep, nc->entry, nc->avail, node, &list);
1004 nc->avail = 0;
1005 }
1006
1007 if (!cpumask_empty(mask)) {
1008 spin_unlock_irq(&n->list_lock);
1009 goto free_slab;
1010 }
1011
1012 shared = n->shared;
1013 if (shared) {
1014 free_block(cachep, shared->entry,
1015 shared->avail, node, &list);
1016 n->shared = NULL;
1017 }
1018
1019 alien = n->alien;
1020 n->alien = NULL;
1021
1022 spin_unlock_irq(&n->list_lock);
1023
1024 kfree(shared);
1025 if (alien) {
1026 drain_alien_cache(cachep, alien);
1027 free_alien_cache(alien);
1028 }
1029
1030 free_slab:
1031 slabs_destroy(cachep, &list);
1032 }
1033 /*
1034 * In the previous loop, all the objects were freed to
1035 * the respective cache's slabs, now we can go ahead and
1036 * shrink each nodelist to its limit.
1037 */
1038 list_for_each_entry(cachep, &slab_caches, list) {
1039 n = get_node(cachep, node);
1040 if (!n)
1041 continue;
1042 drain_freelist(cachep, n, INT_MAX);
1043 }
1044 }
1045
1046 static int cpuup_prepare(long cpu)
1047 {
1048 struct kmem_cache *cachep;
1049 int node = cpu_to_mem(cpu);
1050 int err;
1051
1052 /*
1053 * We need to do this right in the beginning since
1054 * alloc_arraycache's are going to use this list.
1055 * kmalloc_node allows us to add the slab to the right
1056 * kmem_cache_node and not this cpu's kmem_cache_node
1057 */
1058 err = init_cache_node_node(node);
1059 if (err < 0)
1060 goto bad;
1061
1062 /*
1063 * Now we can go ahead with allocating the shared arrays and
1064 * array caches
1065 */
1066 list_for_each_entry(cachep, &slab_caches, list) {
1067 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1068 if (err)
1069 goto bad;
1070 }
1071
1072 return 0;
1073 bad:
1074 cpuup_canceled(cpu);
1075 return -ENOMEM;
1076 }
1077
1078 static int cpuup_callback(struct notifier_block *nfb,
1079 unsigned long action, void *hcpu)
1080 {
1081 long cpu = (long)hcpu;
1082 int err = 0;
1083
1084 switch (action) {
1085 case CPU_UP_PREPARE:
1086 case CPU_UP_PREPARE_FROZEN:
1087 mutex_lock(&slab_mutex);
1088 err = cpuup_prepare(cpu);
1089 mutex_unlock(&slab_mutex);
1090 break;
1091 case CPU_ONLINE:
1092 case CPU_ONLINE_FROZEN:
1093 start_cpu_timer(cpu);
1094 break;
1095 #ifdef CONFIG_HOTPLUG_CPU
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1098 /*
1099 * Shutdown cache reaper. Note that the slab_mutex is
1100 * held so that if cache_reap() is invoked it cannot do
1101 * anything expensive but will only modify reap_work
1102 * and reschedule the timer.
1103 */
1104 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1105 /* Now the cache_reaper is guaranteed to be not running. */
1106 per_cpu(slab_reap_work, cpu).work.func = NULL;
1107 break;
1108 case CPU_DOWN_FAILED:
1109 case CPU_DOWN_FAILED_FROZEN:
1110 start_cpu_timer(cpu);
1111 break;
1112 case CPU_DEAD:
1113 case CPU_DEAD_FROZEN:
1114 /*
1115 * Even if all the cpus of a node are down, we don't free the
1116 * kmem_cache_node of any cache. This to avoid a race between
1117 * cpu_down, and a kmalloc allocation from another cpu for
1118 * memory from the node of the cpu going down. The node
1119 * structure is usually allocated from kmem_cache_create() and
1120 * gets destroyed at kmem_cache_destroy().
1121 */
1122 /* fall through */
1123 #endif
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 mutex_lock(&slab_mutex);
1127 cpuup_canceled(cpu);
1128 mutex_unlock(&slab_mutex);
1129 break;
1130 }
1131 return notifier_from_errno(err);
1132 }
1133
1134 static struct notifier_block cpucache_notifier = {
1135 &cpuup_callback, NULL, 0
1136 };
1137
1138 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1139 /*
1140 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1141 * Returns -EBUSY if all objects cannot be drained so that the node is not
1142 * removed.
1143 *
1144 * Must hold slab_mutex.
1145 */
1146 static int __meminit drain_cache_node_node(int node)
1147 {
1148 struct kmem_cache *cachep;
1149 int ret = 0;
1150
1151 list_for_each_entry(cachep, &slab_caches, list) {
1152 struct kmem_cache_node *n;
1153
1154 n = get_node(cachep, node);
1155 if (!n)
1156 continue;
1157
1158 drain_freelist(cachep, n, INT_MAX);
1159
1160 if (!list_empty(&n->slabs_full) ||
1161 !list_empty(&n->slabs_partial)) {
1162 ret = -EBUSY;
1163 break;
1164 }
1165 }
1166 return ret;
1167 }
1168
1169 static int __meminit slab_memory_callback(struct notifier_block *self,
1170 unsigned long action, void *arg)
1171 {
1172 struct memory_notify *mnb = arg;
1173 int ret = 0;
1174 int nid;
1175
1176 nid = mnb->status_change_nid;
1177 if (nid < 0)
1178 goto out;
1179
1180 switch (action) {
1181 case MEM_GOING_ONLINE:
1182 mutex_lock(&slab_mutex);
1183 ret = init_cache_node_node(nid);
1184 mutex_unlock(&slab_mutex);
1185 break;
1186 case MEM_GOING_OFFLINE:
1187 mutex_lock(&slab_mutex);
1188 ret = drain_cache_node_node(nid);
1189 mutex_unlock(&slab_mutex);
1190 break;
1191 case MEM_ONLINE:
1192 case MEM_OFFLINE:
1193 case MEM_CANCEL_ONLINE:
1194 case MEM_CANCEL_OFFLINE:
1195 break;
1196 }
1197 out:
1198 return notifier_from_errno(ret);
1199 }
1200 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1201
1202 /*
1203 * swap the static kmem_cache_node with kmalloced memory
1204 */
1205 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1206 int nodeid)
1207 {
1208 struct kmem_cache_node *ptr;
1209
1210 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1211 BUG_ON(!ptr);
1212
1213 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1214 /*
1215 * Do not assume that spinlocks can be initialized via memcpy:
1216 */
1217 spin_lock_init(&ptr->list_lock);
1218
1219 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1220 cachep->node[nodeid] = ptr;
1221 }
1222
1223 /*
1224 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1225 * size of kmem_cache_node.
1226 */
1227 static void __init set_up_node(struct kmem_cache *cachep, int index)
1228 {
1229 int node;
1230
1231 for_each_online_node(node) {
1232 cachep->node[node] = &init_kmem_cache_node[index + node];
1233 cachep->node[node]->next_reap = jiffies +
1234 REAPTIMEOUT_NODE +
1235 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1236 }
1237 }
1238
1239 /*
1240 * Initialisation. Called after the page allocator have been initialised and
1241 * before smp_init().
1242 */
1243 void __init kmem_cache_init(void)
1244 {
1245 int i;
1246
1247 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1248 sizeof(struct rcu_head));
1249 kmem_cache = &kmem_cache_boot;
1250
1251 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1252 use_alien_caches = 0;
1253
1254 for (i = 0; i < NUM_INIT_LISTS; i++)
1255 kmem_cache_node_init(&init_kmem_cache_node[i]);
1256
1257 /*
1258 * Fragmentation resistance on low memory - only use bigger
1259 * page orders on machines with more than 32MB of memory if
1260 * not overridden on the command line.
1261 */
1262 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1263 slab_max_order = SLAB_MAX_ORDER_HI;
1264
1265 /* Bootstrap is tricky, because several objects are allocated
1266 * from caches that do not exist yet:
1267 * 1) initialize the kmem_cache cache: it contains the struct
1268 * kmem_cache structures of all caches, except kmem_cache itself:
1269 * kmem_cache is statically allocated.
1270 * Initially an __init data area is used for the head array and the
1271 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1272 * array at the end of the bootstrap.
1273 * 2) Create the first kmalloc cache.
1274 * The struct kmem_cache for the new cache is allocated normally.
1275 * An __init data area is used for the head array.
1276 * 3) Create the remaining kmalloc caches, with minimally sized
1277 * head arrays.
1278 * 4) Replace the __init data head arrays for kmem_cache and the first
1279 * kmalloc cache with kmalloc allocated arrays.
1280 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1281 * the other cache's with kmalloc allocated memory.
1282 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1283 */
1284
1285 /* 1) create the kmem_cache */
1286
1287 /*
1288 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1289 */
1290 create_boot_cache(kmem_cache, "kmem_cache",
1291 offsetof(struct kmem_cache, node) +
1292 nr_node_ids * sizeof(struct kmem_cache_node *),
1293 SLAB_HWCACHE_ALIGN);
1294 list_add(&kmem_cache->list, &slab_caches);
1295 slab_state = PARTIAL;
1296
1297 /*
1298 * Initialize the caches that provide memory for the kmem_cache_node
1299 * structures first. Without this, further allocations will bug.
1300 */
1301 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1302 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1303 slab_state = PARTIAL_NODE;
1304 setup_kmalloc_cache_index_table();
1305
1306 slab_early_init = 0;
1307
1308 /* 5) Replace the bootstrap kmem_cache_node */
1309 {
1310 int nid;
1311
1312 for_each_online_node(nid) {
1313 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1314
1315 init_list(kmalloc_caches[INDEX_NODE],
1316 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1317 }
1318 }
1319
1320 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1321 }
1322
1323 void __init kmem_cache_init_late(void)
1324 {
1325 struct kmem_cache *cachep;
1326
1327 slab_state = UP;
1328
1329 /* 6) resize the head arrays to their final sizes */
1330 mutex_lock(&slab_mutex);
1331 list_for_each_entry(cachep, &slab_caches, list)
1332 if (enable_cpucache(cachep, GFP_NOWAIT))
1333 BUG();
1334 mutex_unlock(&slab_mutex);
1335
1336 /* Done! */
1337 slab_state = FULL;
1338
1339 /*
1340 * Register a cpu startup notifier callback that initializes
1341 * cpu_cache_get for all new cpus
1342 */
1343 register_cpu_notifier(&cpucache_notifier);
1344
1345 #ifdef CONFIG_NUMA
1346 /*
1347 * Register a memory hotplug callback that initializes and frees
1348 * node.
1349 */
1350 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1351 #endif
1352
1353 /*
1354 * The reap timers are started later, with a module init call: That part
1355 * of the kernel is not yet operational.
1356 */
1357 }
1358
1359 static int __init cpucache_init(void)
1360 {
1361 int cpu;
1362
1363 /*
1364 * Register the timers that return unneeded pages to the page allocator
1365 */
1366 for_each_online_cpu(cpu)
1367 start_cpu_timer(cpu);
1368
1369 /* Done! */
1370 slab_state = FULL;
1371 return 0;
1372 }
1373 __initcall(cpucache_init);
1374
1375 static noinline void
1376 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1377 {
1378 #if DEBUG
1379 struct kmem_cache_node *n;
1380 struct page *page;
1381 unsigned long flags;
1382 int node;
1383 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1384 DEFAULT_RATELIMIT_BURST);
1385
1386 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1387 return;
1388
1389 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1390 nodeid, gfpflags, &gfpflags);
1391 pr_warn(" cache: %s, object size: %d, order: %d\n",
1392 cachep->name, cachep->size, cachep->gfporder);
1393
1394 for_each_kmem_cache_node(cachep, node, n) {
1395 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1396 unsigned long active_slabs = 0, num_slabs = 0;
1397
1398 spin_lock_irqsave(&n->list_lock, flags);
1399 list_for_each_entry(page, &n->slabs_full, lru) {
1400 active_objs += cachep->num;
1401 active_slabs++;
1402 }
1403 list_for_each_entry(page, &n->slabs_partial, lru) {
1404 active_objs += page->active;
1405 active_slabs++;
1406 }
1407 list_for_each_entry(page, &n->slabs_free, lru)
1408 num_slabs++;
1409
1410 free_objects += n->free_objects;
1411 spin_unlock_irqrestore(&n->list_lock, flags);
1412
1413 num_slabs += active_slabs;
1414 num_objs = num_slabs * cachep->num;
1415 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1416 node, active_slabs, num_slabs, active_objs, num_objs,
1417 free_objects);
1418 }
1419 #endif
1420 }
1421
1422 /*
1423 * Interface to system's page allocator. No need to hold the
1424 * kmem_cache_node ->list_lock.
1425 *
1426 * If we requested dmaable memory, we will get it. Even if we
1427 * did not request dmaable memory, we might get it, but that
1428 * would be relatively rare and ignorable.
1429 */
1430 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1431 int nodeid)
1432 {
1433 struct page *page;
1434 int nr_pages;
1435
1436 flags |= cachep->allocflags;
1437 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1438 flags |= __GFP_RECLAIMABLE;
1439
1440 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1441 if (!page) {
1442 slab_out_of_memory(cachep, flags, nodeid);
1443 return NULL;
1444 }
1445
1446 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1447 __free_pages(page, cachep->gfporder);
1448 return NULL;
1449 }
1450
1451 nr_pages = (1 << cachep->gfporder);
1452 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1453 add_zone_page_state(page_zone(page),
1454 NR_SLAB_RECLAIMABLE, nr_pages);
1455 else
1456 add_zone_page_state(page_zone(page),
1457 NR_SLAB_UNRECLAIMABLE, nr_pages);
1458
1459 __SetPageSlab(page);
1460 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1461 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1462 SetPageSlabPfmemalloc(page);
1463
1464 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1465 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1466
1467 if (cachep->ctor)
1468 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1469 else
1470 kmemcheck_mark_unallocated_pages(page, nr_pages);
1471 }
1472
1473 return page;
1474 }
1475
1476 /*
1477 * Interface to system's page release.
1478 */
1479 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1480 {
1481 int order = cachep->gfporder;
1482 unsigned long nr_freed = (1 << order);
1483
1484 kmemcheck_free_shadow(page, order);
1485
1486 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1487 sub_zone_page_state(page_zone(page),
1488 NR_SLAB_RECLAIMABLE, nr_freed);
1489 else
1490 sub_zone_page_state(page_zone(page),
1491 NR_SLAB_UNRECLAIMABLE, nr_freed);
1492
1493 BUG_ON(!PageSlab(page));
1494 __ClearPageSlabPfmemalloc(page);
1495 __ClearPageSlab(page);
1496 page_mapcount_reset(page);
1497 page->mapping = NULL;
1498
1499 if (current->reclaim_state)
1500 current->reclaim_state->reclaimed_slab += nr_freed;
1501 memcg_uncharge_slab(page, order, cachep);
1502 __free_pages(page, order);
1503 }
1504
1505 static void kmem_rcu_free(struct rcu_head *head)
1506 {
1507 struct kmem_cache *cachep;
1508 struct page *page;
1509
1510 page = container_of(head, struct page, rcu_head);
1511 cachep = page->slab_cache;
1512
1513 kmem_freepages(cachep, page);
1514 }
1515
1516 #if DEBUG
1517 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1518 {
1519 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1520 (cachep->size % PAGE_SIZE) == 0)
1521 return true;
1522
1523 return false;
1524 }
1525
1526 #ifdef CONFIG_DEBUG_PAGEALLOC
1527 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1528 unsigned long caller)
1529 {
1530 int size = cachep->object_size;
1531
1532 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1533
1534 if (size < 5 * sizeof(unsigned long))
1535 return;
1536
1537 *addr++ = 0x12345678;
1538 *addr++ = caller;
1539 *addr++ = smp_processor_id();
1540 size -= 3 * sizeof(unsigned long);
1541 {
1542 unsigned long *sptr = &caller;
1543 unsigned long svalue;
1544
1545 while (!kstack_end(sptr)) {
1546 svalue = *sptr++;
1547 if (kernel_text_address(svalue)) {
1548 *addr++ = svalue;
1549 size -= sizeof(unsigned long);
1550 if (size <= sizeof(unsigned long))
1551 break;
1552 }
1553 }
1554
1555 }
1556 *addr++ = 0x87654321;
1557 }
1558
1559 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1560 int map, unsigned long caller)
1561 {
1562 if (!is_debug_pagealloc_cache(cachep))
1563 return;
1564
1565 if (caller)
1566 store_stackinfo(cachep, objp, caller);
1567
1568 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1569 }
1570
1571 #else
1572 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1573 int map, unsigned long caller) {}
1574
1575 #endif
1576
1577 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1578 {
1579 int size = cachep->object_size;
1580 addr = &((char *)addr)[obj_offset(cachep)];
1581
1582 memset(addr, val, size);
1583 *(unsigned char *)(addr + size - 1) = POISON_END;
1584 }
1585
1586 static void dump_line(char *data, int offset, int limit)
1587 {
1588 int i;
1589 unsigned char error = 0;
1590 int bad_count = 0;
1591
1592 pr_err("%03x: ", offset);
1593 for (i = 0; i < limit; i++) {
1594 if (data[offset + i] != POISON_FREE) {
1595 error = data[offset + i];
1596 bad_count++;
1597 }
1598 }
1599 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1600 &data[offset], limit, 1);
1601
1602 if (bad_count == 1) {
1603 error ^= POISON_FREE;
1604 if (!(error & (error - 1))) {
1605 pr_err("Single bit error detected. Probably bad RAM.\n");
1606 #ifdef CONFIG_X86
1607 pr_err("Run memtest86+ or a similar memory test tool.\n");
1608 #else
1609 pr_err("Run a memory test tool.\n");
1610 #endif
1611 }
1612 }
1613 }
1614 #endif
1615
1616 #if DEBUG
1617
1618 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1619 {
1620 int i, size;
1621 char *realobj;
1622
1623 if (cachep->flags & SLAB_RED_ZONE) {
1624 pr_err("Redzone: 0x%llx/0x%llx\n",
1625 *dbg_redzone1(cachep, objp),
1626 *dbg_redzone2(cachep, objp));
1627 }
1628
1629 if (cachep->flags & SLAB_STORE_USER) {
1630 pr_err("Last user: [<%p>](%pSR)\n",
1631 *dbg_userword(cachep, objp),
1632 *dbg_userword(cachep, objp));
1633 }
1634 realobj = (char *)objp + obj_offset(cachep);
1635 size = cachep->object_size;
1636 for (i = 0; i < size && lines; i += 16, lines--) {
1637 int limit;
1638 limit = 16;
1639 if (i + limit > size)
1640 limit = size - i;
1641 dump_line(realobj, i, limit);
1642 }
1643 }
1644
1645 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1646 {
1647 char *realobj;
1648 int size, i;
1649 int lines = 0;
1650
1651 if (is_debug_pagealloc_cache(cachep))
1652 return;
1653
1654 realobj = (char *)objp + obj_offset(cachep);
1655 size = cachep->object_size;
1656
1657 for (i = 0; i < size; i++) {
1658 char exp = POISON_FREE;
1659 if (i == size - 1)
1660 exp = POISON_END;
1661 if (realobj[i] != exp) {
1662 int limit;
1663 /* Mismatch ! */
1664 /* Print header */
1665 if (lines == 0) {
1666 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1667 print_tainted(), cachep->name,
1668 realobj, size);
1669 print_objinfo(cachep, objp, 0);
1670 }
1671 /* Hexdump the affected line */
1672 i = (i / 16) * 16;
1673 limit = 16;
1674 if (i + limit > size)
1675 limit = size - i;
1676 dump_line(realobj, i, limit);
1677 i += 16;
1678 lines++;
1679 /* Limit to 5 lines */
1680 if (lines > 5)
1681 break;
1682 }
1683 }
1684 if (lines != 0) {
1685 /* Print some data about the neighboring objects, if they
1686 * exist:
1687 */
1688 struct page *page = virt_to_head_page(objp);
1689 unsigned int objnr;
1690
1691 objnr = obj_to_index(cachep, page, objp);
1692 if (objnr) {
1693 objp = index_to_obj(cachep, page, objnr - 1);
1694 realobj = (char *)objp + obj_offset(cachep);
1695 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1696 print_objinfo(cachep, objp, 2);
1697 }
1698 if (objnr + 1 < cachep->num) {
1699 objp = index_to_obj(cachep, page, objnr + 1);
1700 realobj = (char *)objp + obj_offset(cachep);
1701 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1702 print_objinfo(cachep, objp, 2);
1703 }
1704 }
1705 }
1706 #endif
1707
1708 #if DEBUG
1709 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1710 struct page *page)
1711 {
1712 int i;
1713
1714 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1715 poison_obj(cachep, page->freelist - obj_offset(cachep),
1716 POISON_FREE);
1717 }
1718
1719 for (i = 0; i < cachep->num; i++) {
1720 void *objp = index_to_obj(cachep, page, i);
1721
1722 if (cachep->flags & SLAB_POISON) {
1723 check_poison_obj(cachep, objp);
1724 slab_kernel_map(cachep, objp, 1, 0);
1725 }
1726 if (cachep->flags & SLAB_RED_ZONE) {
1727 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1728 slab_error(cachep, "start of a freed object was overwritten");
1729 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1730 slab_error(cachep, "end of a freed object was overwritten");
1731 }
1732 }
1733 }
1734 #else
1735 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1736 struct page *page)
1737 {
1738 }
1739 #endif
1740
1741 /**
1742 * slab_destroy - destroy and release all objects in a slab
1743 * @cachep: cache pointer being destroyed
1744 * @page: page pointer being destroyed
1745 *
1746 * Destroy all the objs in a slab page, and release the mem back to the system.
1747 * Before calling the slab page must have been unlinked from the cache. The
1748 * kmem_cache_node ->list_lock is not held/needed.
1749 */
1750 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1751 {
1752 void *freelist;
1753
1754 freelist = page->freelist;
1755 slab_destroy_debugcheck(cachep, page);
1756 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1757 call_rcu(&page->rcu_head, kmem_rcu_free);
1758 else
1759 kmem_freepages(cachep, page);
1760
1761 /*
1762 * From now on, we don't use freelist
1763 * although actual page can be freed in rcu context
1764 */
1765 if (OFF_SLAB(cachep))
1766 kmem_cache_free(cachep->freelist_cache, freelist);
1767 }
1768
1769 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1770 {
1771 struct page *page, *n;
1772
1773 list_for_each_entry_safe(page, n, list, lru) {
1774 list_del(&page->lru);
1775 slab_destroy(cachep, page);
1776 }
1777 }
1778
1779 /**
1780 * calculate_slab_order - calculate size (page order) of slabs
1781 * @cachep: pointer to the cache that is being created
1782 * @size: size of objects to be created in this cache.
1783 * @flags: slab allocation flags
1784 *
1785 * Also calculates the number of objects per slab.
1786 *
1787 * This could be made much more intelligent. For now, try to avoid using
1788 * high order pages for slabs. When the gfp() functions are more friendly
1789 * towards high-order requests, this should be changed.
1790 */
1791 static size_t calculate_slab_order(struct kmem_cache *cachep,
1792 size_t size, unsigned long flags)
1793 {
1794 size_t left_over = 0;
1795 int gfporder;
1796
1797 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1798 unsigned int num;
1799 size_t remainder;
1800
1801 num = cache_estimate(gfporder, size, flags, &remainder);
1802 if (!num)
1803 continue;
1804
1805 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1806 if (num > SLAB_OBJ_MAX_NUM)
1807 break;
1808
1809 if (flags & CFLGS_OFF_SLAB) {
1810 struct kmem_cache *freelist_cache;
1811 size_t freelist_size;
1812
1813 freelist_size = num * sizeof(freelist_idx_t);
1814 freelist_cache = kmalloc_slab(freelist_size, 0u);
1815 if (!freelist_cache)
1816 continue;
1817
1818 /*
1819 * Needed to avoid possible looping condition
1820 * in cache_grow_begin()
1821 */
1822 if (OFF_SLAB(freelist_cache))
1823 continue;
1824
1825 /* check if off slab has enough benefit */
1826 if (freelist_cache->size > cachep->size / 2)
1827 continue;
1828 }
1829
1830 /* Found something acceptable - save it away */
1831 cachep->num = num;
1832 cachep->gfporder = gfporder;
1833 left_over = remainder;
1834
1835 /*
1836 * A VFS-reclaimable slab tends to have most allocations
1837 * as GFP_NOFS and we really don't want to have to be allocating
1838 * higher-order pages when we are unable to shrink dcache.
1839 */
1840 if (flags & SLAB_RECLAIM_ACCOUNT)
1841 break;
1842
1843 /*
1844 * Large number of objects is good, but very large slabs are
1845 * currently bad for the gfp()s.
1846 */
1847 if (gfporder >= slab_max_order)
1848 break;
1849
1850 /*
1851 * Acceptable internal fragmentation?
1852 */
1853 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1854 break;
1855 }
1856 return left_over;
1857 }
1858
1859 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1860 struct kmem_cache *cachep, int entries, int batchcount)
1861 {
1862 int cpu;
1863 size_t size;
1864 struct array_cache __percpu *cpu_cache;
1865
1866 size = sizeof(void *) * entries + sizeof(struct array_cache);
1867 cpu_cache = __alloc_percpu(size, sizeof(void *));
1868
1869 if (!cpu_cache)
1870 return NULL;
1871
1872 for_each_possible_cpu(cpu) {
1873 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1874 entries, batchcount);
1875 }
1876
1877 return cpu_cache;
1878 }
1879
1880 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1881 {
1882 if (slab_state >= FULL)
1883 return enable_cpucache(cachep, gfp);
1884
1885 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1886 if (!cachep->cpu_cache)
1887 return 1;
1888
1889 if (slab_state == DOWN) {
1890 /* Creation of first cache (kmem_cache). */
1891 set_up_node(kmem_cache, CACHE_CACHE);
1892 } else if (slab_state == PARTIAL) {
1893 /* For kmem_cache_node */
1894 set_up_node(cachep, SIZE_NODE);
1895 } else {
1896 int node;
1897
1898 for_each_online_node(node) {
1899 cachep->node[node] = kmalloc_node(
1900 sizeof(struct kmem_cache_node), gfp, node);
1901 BUG_ON(!cachep->node[node]);
1902 kmem_cache_node_init(cachep->node[node]);
1903 }
1904 }
1905
1906 cachep->node[numa_mem_id()]->next_reap =
1907 jiffies + REAPTIMEOUT_NODE +
1908 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1909
1910 cpu_cache_get(cachep)->avail = 0;
1911 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1912 cpu_cache_get(cachep)->batchcount = 1;
1913 cpu_cache_get(cachep)->touched = 0;
1914 cachep->batchcount = 1;
1915 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1916 return 0;
1917 }
1918
1919 unsigned long kmem_cache_flags(unsigned long object_size,
1920 unsigned long flags, const char *name,
1921 void (*ctor)(void *))
1922 {
1923 return flags;
1924 }
1925
1926 struct kmem_cache *
1927 __kmem_cache_alias(const char *name, size_t size, size_t align,
1928 unsigned long flags, void (*ctor)(void *))
1929 {
1930 struct kmem_cache *cachep;
1931
1932 cachep = find_mergeable(size, align, flags, name, ctor);
1933 if (cachep) {
1934 cachep->refcount++;
1935
1936 /*
1937 * Adjust the object sizes so that we clear
1938 * the complete object on kzalloc.
1939 */
1940 cachep->object_size = max_t(int, cachep->object_size, size);
1941 }
1942 return cachep;
1943 }
1944
1945 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1946 size_t size, unsigned long flags)
1947 {
1948 size_t left;
1949
1950 cachep->num = 0;
1951
1952 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1953 return false;
1954
1955 left = calculate_slab_order(cachep, size,
1956 flags | CFLGS_OBJFREELIST_SLAB);
1957 if (!cachep->num)
1958 return false;
1959
1960 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1961 return false;
1962
1963 cachep->colour = left / cachep->colour_off;
1964
1965 return true;
1966 }
1967
1968 static bool set_off_slab_cache(struct kmem_cache *cachep,
1969 size_t size, unsigned long flags)
1970 {
1971 size_t left;
1972
1973 cachep->num = 0;
1974
1975 /*
1976 * Always use on-slab management when SLAB_NOLEAKTRACE
1977 * to avoid recursive calls into kmemleak.
1978 */
1979 if (flags & SLAB_NOLEAKTRACE)
1980 return false;
1981
1982 /*
1983 * Size is large, assume best to place the slab management obj
1984 * off-slab (should allow better packing of objs).
1985 */
1986 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1987 if (!cachep->num)
1988 return false;
1989
1990 /*
1991 * If the slab has been placed off-slab, and we have enough space then
1992 * move it on-slab. This is at the expense of any extra colouring.
1993 */
1994 if (left >= cachep->num * sizeof(freelist_idx_t))
1995 return false;
1996
1997 cachep->colour = left / cachep->colour_off;
1998
1999 return true;
2000 }
2001
2002 static bool set_on_slab_cache(struct kmem_cache *cachep,
2003 size_t size, unsigned long flags)
2004 {
2005 size_t left;
2006
2007 cachep->num = 0;
2008
2009 left = calculate_slab_order(cachep, size, flags);
2010 if (!cachep->num)
2011 return false;
2012
2013 cachep->colour = left / cachep->colour_off;
2014
2015 return true;
2016 }
2017
2018 /**
2019 * __kmem_cache_create - Create a cache.
2020 * @cachep: cache management descriptor
2021 * @flags: SLAB flags
2022 *
2023 * Returns a ptr to the cache on success, NULL on failure.
2024 * Cannot be called within a int, but can be interrupted.
2025 * The @ctor is run when new pages are allocated by the cache.
2026 *
2027 * The flags are
2028 *
2029 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2030 * to catch references to uninitialised memory.
2031 *
2032 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2033 * for buffer overruns.
2034 *
2035 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2036 * cacheline. This can be beneficial if you're counting cycles as closely
2037 * as davem.
2038 */
2039 int
2040 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2041 {
2042 size_t ralign = BYTES_PER_WORD;
2043 gfp_t gfp;
2044 int err;
2045 size_t size = cachep->size;
2046
2047 #if DEBUG
2048 #if FORCED_DEBUG
2049 /*
2050 * Enable redzoning and last user accounting, except for caches with
2051 * large objects, if the increased size would increase the object size
2052 * above the next power of two: caches with object sizes just above a
2053 * power of two have a significant amount of internal fragmentation.
2054 */
2055 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2056 2 * sizeof(unsigned long long)))
2057 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2058 if (!(flags & SLAB_DESTROY_BY_RCU))
2059 flags |= SLAB_POISON;
2060 #endif
2061 #endif
2062
2063 /*
2064 * Check that size is in terms of words. This is needed to avoid
2065 * unaligned accesses for some archs when redzoning is used, and makes
2066 * sure any on-slab bufctl's are also correctly aligned.
2067 */
2068 if (size & (BYTES_PER_WORD - 1)) {
2069 size += (BYTES_PER_WORD - 1);
2070 size &= ~(BYTES_PER_WORD - 1);
2071 }
2072
2073 if (flags & SLAB_RED_ZONE) {
2074 ralign = REDZONE_ALIGN;
2075 /* If redzoning, ensure that the second redzone is suitably
2076 * aligned, by adjusting the object size accordingly. */
2077 size += REDZONE_ALIGN - 1;
2078 size &= ~(REDZONE_ALIGN - 1);
2079 }
2080
2081 /* 3) caller mandated alignment */
2082 if (ralign < cachep->align) {
2083 ralign = cachep->align;
2084 }
2085 /* disable debug if necessary */
2086 if (ralign > __alignof__(unsigned long long))
2087 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2088 /*
2089 * 4) Store it.
2090 */
2091 cachep->align = ralign;
2092 cachep->colour_off = cache_line_size();
2093 /* Offset must be a multiple of the alignment. */
2094 if (cachep->colour_off < cachep->align)
2095 cachep->colour_off = cachep->align;
2096
2097 if (slab_is_available())
2098 gfp = GFP_KERNEL;
2099 else
2100 gfp = GFP_NOWAIT;
2101
2102 #if DEBUG
2103
2104 /*
2105 * Both debugging options require word-alignment which is calculated
2106 * into align above.
2107 */
2108 if (flags & SLAB_RED_ZONE) {
2109 /* add space for red zone words */
2110 cachep->obj_offset += sizeof(unsigned long long);
2111 size += 2 * sizeof(unsigned long long);
2112 }
2113 if (flags & SLAB_STORE_USER) {
2114 /* user store requires one word storage behind the end of
2115 * the real object. But if the second red zone needs to be
2116 * aligned to 64 bits, we must allow that much space.
2117 */
2118 if (flags & SLAB_RED_ZONE)
2119 size += REDZONE_ALIGN;
2120 else
2121 size += BYTES_PER_WORD;
2122 }
2123 #endif
2124
2125 kasan_cache_create(cachep, &size, &flags);
2126
2127 size = ALIGN(size, cachep->align);
2128 /*
2129 * We should restrict the number of objects in a slab to implement
2130 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2131 */
2132 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2133 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2134
2135 #if DEBUG
2136 /*
2137 * To activate debug pagealloc, off-slab management is necessary
2138 * requirement. In early phase of initialization, small sized slab
2139 * doesn't get initialized so it would not be possible. So, we need
2140 * to check size >= 256. It guarantees that all necessary small
2141 * sized slab is initialized in current slab initialization sequence.
2142 */
2143 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2144 size >= 256 && cachep->object_size > cache_line_size()) {
2145 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2146 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2147
2148 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2149 flags |= CFLGS_OFF_SLAB;
2150 cachep->obj_offset += tmp_size - size;
2151 size = tmp_size;
2152 goto done;
2153 }
2154 }
2155 }
2156 #endif
2157
2158 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2159 flags |= CFLGS_OBJFREELIST_SLAB;
2160 goto done;
2161 }
2162
2163 if (set_off_slab_cache(cachep, size, flags)) {
2164 flags |= CFLGS_OFF_SLAB;
2165 goto done;
2166 }
2167
2168 if (set_on_slab_cache(cachep, size, flags))
2169 goto done;
2170
2171 return -E2BIG;
2172
2173 done:
2174 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2175 cachep->flags = flags;
2176 cachep->allocflags = __GFP_COMP;
2177 if (flags & SLAB_CACHE_DMA)
2178 cachep->allocflags |= GFP_DMA;
2179 cachep->size = size;
2180 cachep->reciprocal_buffer_size = reciprocal_value(size);
2181
2182 #if DEBUG
2183 /*
2184 * If we're going to use the generic kernel_map_pages()
2185 * poisoning, then it's going to smash the contents of
2186 * the redzone and userword anyhow, so switch them off.
2187 */
2188 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2189 (cachep->flags & SLAB_POISON) &&
2190 is_debug_pagealloc_cache(cachep))
2191 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2192 #endif
2193
2194 if (OFF_SLAB(cachep)) {
2195 cachep->freelist_cache =
2196 kmalloc_slab(cachep->freelist_size, 0u);
2197 }
2198
2199 err = setup_cpu_cache(cachep, gfp);
2200 if (err) {
2201 __kmem_cache_release(cachep);
2202 return err;
2203 }
2204
2205 return 0;
2206 }
2207
2208 #if DEBUG
2209 static void check_irq_off(void)
2210 {
2211 BUG_ON(!irqs_disabled());
2212 }
2213
2214 static void check_irq_on(void)
2215 {
2216 BUG_ON(irqs_disabled());
2217 }
2218
2219 static void check_mutex_acquired(void)
2220 {
2221 BUG_ON(!mutex_is_locked(&slab_mutex));
2222 }
2223
2224 static void check_spinlock_acquired(struct kmem_cache *cachep)
2225 {
2226 #ifdef CONFIG_SMP
2227 check_irq_off();
2228 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2229 #endif
2230 }
2231
2232 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2233 {
2234 #ifdef CONFIG_SMP
2235 check_irq_off();
2236 assert_spin_locked(&get_node(cachep, node)->list_lock);
2237 #endif
2238 }
2239
2240 #else
2241 #define check_irq_off() do { } while(0)
2242 #define check_irq_on() do { } while(0)
2243 #define check_mutex_acquired() do { } while(0)
2244 #define check_spinlock_acquired(x) do { } while(0)
2245 #define check_spinlock_acquired_node(x, y) do { } while(0)
2246 #endif
2247
2248 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2249 int node, bool free_all, struct list_head *list)
2250 {
2251 int tofree;
2252
2253 if (!ac || !ac->avail)
2254 return;
2255
2256 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2257 if (tofree > ac->avail)
2258 tofree = (ac->avail + 1) / 2;
2259
2260 free_block(cachep, ac->entry, tofree, node, list);
2261 ac->avail -= tofree;
2262 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2263 }
2264
2265 static void do_drain(void *arg)
2266 {
2267 struct kmem_cache *cachep = arg;
2268 struct array_cache *ac;
2269 int node = numa_mem_id();
2270 struct kmem_cache_node *n;
2271 LIST_HEAD(list);
2272
2273 check_irq_off();
2274 ac = cpu_cache_get(cachep);
2275 n = get_node(cachep, node);
2276 spin_lock(&n->list_lock);
2277 free_block(cachep, ac->entry, ac->avail, node, &list);
2278 spin_unlock(&n->list_lock);
2279 slabs_destroy(cachep, &list);
2280 ac->avail = 0;
2281 }
2282
2283 static void drain_cpu_caches(struct kmem_cache *cachep)
2284 {
2285 struct kmem_cache_node *n;
2286 int node;
2287 LIST_HEAD(list);
2288
2289 on_each_cpu(do_drain, cachep, 1);
2290 check_irq_on();
2291 for_each_kmem_cache_node(cachep, node, n)
2292 if (n->alien)
2293 drain_alien_cache(cachep, n->alien);
2294
2295 for_each_kmem_cache_node(cachep, node, n) {
2296 spin_lock_irq(&n->list_lock);
2297 drain_array_locked(cachep, n->shared, node, true, &list);
2298 spin_unlock_irq(&n->list_lock);
2299
2300 slabs_destroy(cachep, &list);
2301 }
2302 }
2303
2304 /*
2305 * Remove slabs from the list of free slabs.
2306 * Specify the number of slabs to drain in tofree.
2307 *
2308 * Returns the actual number of slabs released.
2309 */
2310 static int drain_freelist(struct kmem_cache *cache,
2311 struct kmem_cache_node *n, int tofree)
2312 {
2313 struct list_head *p;
2314 int nr_freed;
2315 struct page *page;
2316
2317 nr_freed = 0;
2318 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2319
2320 spin_lock_irq(&n->list_lock);
2321 p = n->slabs_free.prev;
2322 if (p == &n->slabs_free) {
2323 spin_unlock_irq(&n->list_lock);
2324 goto out;
2325 }
2326
2327 page = list_entry(p, struct page, lru);
2328 list_del(&page->lru);
2329 /*
2330 * Safe to drop the lock. The slab is no longer linked
2331 * to the cache.
2332 */
2333 n->free_objects -= cache->num;
2334 spin_unlock_irq(&n->list_lock);
2335 slab_destroy(cache, page);
2336 nr_freed++;
2337 }
2338 out:
2339 return nr_freed;
2340 }
2341
2342 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2343 {
2344 int ret = 0;
2345 int node;
2346 struct kmem_cache_node *n;
2347
2348 drain_cpu_caches(cachep);
2349
2350 check_irq_on();
2351 for_each_kmem_cache_node(cachep, node, n) {
2352 drain_freelist(cachep, n, INT_MAX);
2353
2354 ret += !list_empty(&n->slabs_full) ||
2355 !list_empty(&n->slabs_partial);
2356 }
2357 return (ret ? 1 : 0);
2358 }
2359
2360 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2361 {
2362 return __kmem_cache_shrink(cachep, false);
2363 }
2364
2365 void __kmem_cache_release(struct kmem_cache *cachep)
2366 {
2367 int i;
2368 struct kmem_cache_node *n;
2369
2370 cache_random_seq_destroy(cachep);
2371
2372 free_percpu(cachep->cpu_cache);
2373
2374 /* NUMA: free the node structures */
2375 for_each_kmem_cache_node(cachep, i, n) {
2376 kfree(n->shared);
2377 free_alien_cache(n->alien);
2378 kfree(n);
2379 cachep->node[i] = NULL;
2380 }
2381 }
2382
2383 /*
2384 * Get the memory for a slab management obj.
2385 *
2386 * For a slab cache when the slab descriptor is off-slab, the
2387 * slab descriptor can't come from the same cache which is being created,
2388 * Because if it is the case, that means we defer the creation of
2389 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2390 * And we eventually call down to __kmem_cache_create(), which
2391 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2392 * This is a "chicken-and-egg" problem.
2393 *
2394 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2395 * which are all initialized during kmem_cache_init().
2396 */
2397 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2398 struct page *page, int colour_off,
2399 gfp_t local_flags, int nodeid)
2400 {
2401 void *freelist;
2402 void *addr = page_address(page);
2403
2404 page->s_mem = addr + colour_off;
2405 page->active = 0;
2406
2407 if (OBJFREELIST_SLAB(cachep))
2408 freelist = NULL;
2409 else if (OFF_SLAB(cachep)) {
2410 /* Slab management obj is off-slab. */
2411 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2412 local_flags, nodeid);
2413 if (!freelist)
2414 return NULL;
2415 } else {
2416 /* We will use last bytes at the slab for freelist */
2417 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2418 cachep->freelist_size;
2419 }
2420
2421 return freelist;
2422 }
2423
2424 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2425 {
2426 return ((freelist_idx_t *)page->freelist)[idx];
2427 }
2428
2429 static inline void set_free_obj(struct page *page,
2430 unsigned int idx, freelist_idx_t val)
2431 {
2432 ((freelist_idx_t *)(page->freelist))[idx] = val;
2433 }
2434
2435 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2436 {
2437 #if DEBUG
2438 int i;
2439
2440 for (i = 0; i < cachep->num; i++) {
2441 void *objp = index_to_obj(cachep, page, i);
2442
2443 if (cachep->flags & SLAB_STORE_USER)
2444 *dbg_userword(cachep, objp) = NULL;
2445
2446 if (cachep->flags & SLAB_RED_ZONE) {
2447 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2448 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2449 }
2450 /*
2451 * Constructors are not allowed to allocate memory from the same
2452 * cache which they are a constructor for. Otherwise, deadlock.
2453 * They must also be threaded.
2454 */
2455 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2456 kasan_unpoison_object_data(cachep,
2457 objp + obj_offset(cachep));
2458 cachep->ctor(objp + obj_offset(cachep));
2459 kasan_poison_object_data(
2460 cachep, objp + obj_offset(cachep));
2461 }
2462
2463 if (cachep->flags & SLAB_RED_ZONE) {
2464 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2465 slab_error(cachep, "constructor overwrote the end of an object");
2466 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2467 slab_error(cachep, "constructor overwrote the start of an object");
2468 }
2469 /* need to poison the objs? */
2470 if (cachep->flags & SLAB_POISON) {
2471 poison_obj(cachep, objp, POISON_FREE);
2472 slab_kernel_map(cachep, objp, 0, 0);
2473 }
2474 }
2475 #endif
2476 }
2477
2478 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2479 /* Hold information during a freelist initialization */
2480 union freelist_init_state {
2481 struct {
2482 unsigned int pos;
2483 unsigned int *list;
2484 unsigned int count;
2485 unsigned int rand;
2486 };
2487 struct rnd_state rnd_state;
2488 };
2489
2490 /*
2491 * Initialize the state based on the randomization methode available.
2492 * return true if the pre-computed list is available, false otherwize.
2493 */
2494 static bool freelist_state_initialize(union freelist_init_state *state,
2495 struct kmem_cache *cachep,
2496 unsigned int count)
2497 {
2498 bool ret;
2499 unsigned int rand;
2500
2501 /* Use best entropy available to define a random shift */
2502 rand = get_random_int();
2503
2504 /* Use a random state if the pre-computed list is not available */
2505 if (!cachep->random_seq) {
2506 prandom_seed_state(&state->rnd_state, rand);
2507 ret = false;
2508 } else {
2509 state->list = cachep->random_seq;
2510 state->count = count;
2511 state->pos = 0;
2512 state->rand = rand;
2513 ret = true;
2514 }
2515 return ret;
2516 }
2517
2518 /* Get the next entry on the list and randomize it using a random shift */
2519 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2520 {
2521 return (state->list[state->pos++] + state->rand) % state->count;
2522 }
2523
2524 /* Swap two freelist entries */
2525 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2526 {
2527 swap(((freelist_idx_t *)page->freelist)[a],
2528 ((freelist_idx_t *)page->freelist)[b]);
2529 }
2530
2531 /*
2532 * Shuffle the freelist initialization state based on pre-computed lists.
2533 * return true if the list was successfully shuffled, false otherwise.
2534 */
2535 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2536 {
2537 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2538 union freelist_init_state state;
2539 bool precomputed;
2540
2541 if (count < 2)
2542 return false;
2543
2544 precomputed = freelist_state_initialize(&state, cachep, count);
2545
2546 /* Take a random entry as the objfreelist */
2547 if (OBJFREELIST_SLAB(cachep)) {
2548 if (!precomputed)
2549 objfreelist = count - 1;
2550 else
2551 objfreelist = next_random_slot(&state);
2552 page->freelist = index_to_obj(cachep, page, objfreelist) +
2553 obj_offset(cachep);
2554 count--;
2555 }
2556
2557 /*
2558 * On early boot, generate the list dynamically.
2559 * Later use a pre-computed list for speed.
2560 */
2561 if (!precomputed) {
2562 for (i = 0; i < count; i++)
2563 set_free_obj(page, i, i);
2564
2565 /* Fisher-Yates shuffle */
2566 for (i = count - 1; i > 0; i--) {
2567 rand = prandom_u32_state(&state.rnd_state);
2568 rand %= (i + 1);
2569 swap_free_obj(page, i, rand);
2570 }
2571 } else {
2572 for (i = 0; i < count; i++)
2573 set_free_obj(page, i, next_random_slot(&state));
2574 }
2575
2576 if (OBJFREELIST_SLAB(cachep))
2577 set_free_obj(page, cachep->num - 1, objfreelist);
2578
2579 return true;
2580 }
2581 #else
2582 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2583 struct page *page)
2584 {
2585 return false;
2586 }
2587 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2588
2589 static void cache_init_objs(struct kmem_cache *cachep,
2590 struct page *page)
2591 {
2592 int i;
2593 void *objp;
2594 bool shuffled;
2595
2596 cache_init_objs_debug(cachep, page);
2597
2598 /* Try to randomize the freelist if enabled */
2599 shuffled = shuffle_freelist(cachep, page);
2600
2601 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2602 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2603 obj_offset(cachep);
2604 }
2605
2606 for (i = 0; i < cachep->num; i++) {
2607 objp = index_to_obj(cachep, page, i);
2608 kasan_init_slab_obj(cachep, objp);
2609
2610 /* constructor could break poison info */
2611 if (DEBUG == 0 && cachep->ctor) {
2612 kasan_unpoison_object_data(cachep, objp);
2613 cachep->ctor(objp);
2614 kasan_poison_object_data(cachep, objp);
2615 }
2616
2617 if (!shuffled)
2618 set_free_obj(page, i, i);
2619 }
2620 }
2621
2622 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2623 {
2624 void *objp;
2625
2626 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2627 page->active++;
2628
2629 #if DEBUG
2630 if (cachep->flags & SLAB_STORE_USER)
2631 set_store_user_dirty(cachep);
2632 #endif
2633
2634 return objp;
2635 }
2636
2637 static void slab_put_obj(struct kmem_cache *cachep,
2638 struct page *page, void *objp)
2639 {
2640 unsigned int objnr = obj_to_index(cachep, page, objp);
2641 #if DEBUG
2642 unsigned int i;
2643
2644 /* Verify double free bug */
2645 for (i = page->active; i < cachep->num; i++) {
2646 if (get_free_obj(page, i) == objnr) {
2647 pr_err("slab: double free detected in cache '%s', objp %p\n",
2648 cachep->name, objp);
2649 BUG();
2650 }
2651 }
2652 #endif
2653 page->active--;
2654 if (!page->freelist)
2655 page->freelist = objp + obj_offset(cachep);
2656
2657 set_free_obj(page, page->active, objnr);
2658 }
2659
2660 /*
2661 * Map pages beginning at addr to the given cache and slab. This is required
2662 * for the slab allocator to be able to lookup the cache and slab of a
2663 * virtual address for kfree, ksize, and slab debugging.
2664 */
2665 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2666 void *freelist)
2667 {
2668 page->slab_cache = cache;
2669 page->freelist = freelist;
2670 }
2671
2672 /*
2673 * Grow (by 1) the number of slabs within a cache. This is called by
2674 * kmem_cache_alloc() when there are no active objs left in a cache.
2675 */
2676 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2677 gfp_t flags, int nodeid)
2678 {
2679 void *freelist;
2680 size_t offset;
2681 gfp_t local_flags;
2682 int page_node;
2683 struct kmem_cache_node *n;
2684 struct page *page;
2685
2686 /*
2687 * Be lazy and only check for valid flags here, keeping it out of the
2688 * critical path in kmem_cache_alloc().
2689 */
2690 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2691 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2692 flags &= ~GFP_SLAB_BUG_MASK;
2693 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2694 invalid_mask, &invalid_mask, flags, &flags);
2695 dump_stack();
2696 }
2697 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2698
2699 check_irq_off();
2700 if (gfpflags_allow_blocking(local_flags))
2701 local_irq_enable();
2702
2703 /*
2704 * Get mem for the objs. Attempt to allocate a physical page from
2705 * 'nodeid'.
2706 */
2707 page = kmem_getpages(cachep, local_flags, nodeid);
2708 if (!page)
2709 goto failed;
2710
2711 page_node = page_to_nid(page);
2712 n = get_node(cachep, page_node);
2713
2714 /* Get colour for the slab, and cal the next value. */
2715 n->colour_next++;
2716 if (n->colour_next >= cachep->colour)
2717 n->colour_next = 0;
2718
2719 offset = n->colour_next;
2720 if (offset >= cachep->colour)
2721 offset = 0;
2722
2723 offset *= cachep->colour_off;
2724
2725 /* Get slab management. */
2726 freelist = alloc_slabmgmt(cachep, page, offset,
2727 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2728 if (OFF_SLAB(cachep) && !freelist)
2729 goto opps1;
2730
2731 slab_map_pages(cachep, page, freelist);
2732
2733 kasan_poison_slab(page);
2734 cache_init_objs(cachep, page);
2735
2736 if (gfpflags_allow_blocking(local_flags))
2737 local_irq_disable();
2738
2739 return page;
2740
2741 opps1:
2742 kmem_freepages(cachep, page);
2743 failed:
2744 if (gfpflags_allow_blocking(local_flags))
2745 local_irq_disable();
2746 return NULL;
2747 }
2748
2749 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2750 {
2751 struct kmem_cache_node *n;
2752 void *list = NULL;
2753
2754 check_irq_off();
2755
2756 if (!page)
2757 return;
2758
2759 INIT_LIST_HEAD(&page->lru);
2760 n = get_node(cachep, page_to_nid(page));
2761
2762 spin_lock(&n->list_lock);
2763 if (!page->active)
2764 list_add_tail(&page->lru, &(n->slabs_free));
2765 else
2766 fixup_slab_list(cachep, n, page, &list);
2767 STATS_INC_GROWN(cachep);
2768 n->free_objects += cachep->num - page->active;
2769 spin_unlock(&n->list_lock);
2770
2771 fixup_objfreelist_debug(cachep, &list);
2772 }
2773
2774 #if DEBUG
2775
2776 /*
2777 * Perform extra freeing checks:
2778 * - detect bad pointers.
2779 * - POISON/RED_ZONE checking
2780 */
2781 static void kfree_debugcheck(const void *objp)
2782 {
2783 if (!virt_addr_valid(objp)) {
2784 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2785 (unsigned long)objp);
2786 BUG();
2787 }
2788 }
2789
2790 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2791 {
2792 unsigned long long redzone1, redzone2;
2793
2794 redzone1 = *dbg_redzone1(cache, obj);
2795 redzone2 = *dbg_redzone2(cache, obj);
2796
2797 /*
2798 * Redzone is ok.
2799 */
2800 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2801 return;
2802
2803 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2804 slab_error(cache, "double free detected");
2805 else
2806 slab_error(cache, "memory outside object was overwritten");
2807
2808 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2809 obj, redzone1, redzone2);
2810 }
2811
2812 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2813 unsigned long caller)
2814 {
2815 unsigned int objnr;
2816 struct page *page;
2817
2818 BUG_ON(virt_to_cache(objp) != cachep);
2819
2820 objp -= obj_offset(cachep);
2821 kfree_debugcheck(objp);
2822 page = virt_to_head_page(objp);
2823
2824 if (cachep->flags & SLAB_RED_ZONE) {
2825 verify_redzone_free(cachep, objp);
2826 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2827 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2828 }
2829 if (cachep->flags & SLAB_STORE_USER) {
2830 set_store_user_dirty(cachep);
2831 *dbg_userword(cachep, objp) = (void *)caller;
2832 }
2833
2834 objnr = obj_to_index(cachep, page, objp);
2835
2836 BUG_ON(objnr >= cachep->num);
2837 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2838
2839 if (cachep->flags & SLAB_POISON) {
2840 poison_obj(cachep, objp, POISON_FREE);
2841 slab_kernel_map(cachep, objp, 0, caller);
2842 }
2843 return objp;
2844 }
2845
2846 #else
2847 #define kfree_debugcheck(x) do { } while(0)
2848 #define cache_free_debugcheck(x,objp,z) (objp)
2849 #endif
2850
2851 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2852 void **list)
2853 {
2854 #if DEBUG
2855 void *next = *list;
2856 void *objp;
2857
2858 while (next) {
2859 objp = next - obj_offset(cachep);
2860 next = *(void **)next;
2861 poison_obj(cachep, objp, POISON_FREE);
2862 }
2863 #endif
2864 }
2865
2866 static inline void fixup_slab_list(struct kmem_cache *cachep,
2867 struct kmem_cache_node *n, struct page *page,
2868 void **list)
2869 {
2870 /* move slabp to correct slabp list: */
2871 list_del(&page->lru);
2872 if (page->active == cachep->num) {
2873 list_add(&page->lru, &n->slabs_full);
2874 if (OBJFREELIST_SLAB(cachep)) {
2875 #if DEBUG
2876 /* Poisoning will be done without holding the lock */
2877 if (cachep->flags & SLAB_POISON) {
2878 void **objp = page->freelist;
2879
2880 *objp = *list;
2881 *list = objp;
2882 }
2883 #endif
2884 page->freelist = NULL;
2885 }
2886 } else
2887 list_add(&page->lru, &n->slabs_partial);
2888 }
2889
2890 /* Try to find non-pfmemalloc slab if needed */
2891 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2892 struct page *page, bool pfmemalloc)
2893 {
2894 if (!page)
2895 return NULL;
2896
2897 if (pfmemalloc)
2898 return page;
2899
2900 if (!PageSlabPfmemalloc(page))
2901 return page;
2902
2903 /* No need to keep pfmemalloc slab if we have enough free objects */
2904 if (n->free_objects > n->free_limit) {
2905 ClearPageSlabPfmemalloc(page);
2906 return page;
2907 }
2908
2909 /* Move pfmemalloc slab to the end of list to speed up next search */
2910 list_del(&page->lru);
2911 if (!page->active)
2912 list_add_tail(&page->lru, &n->slabs_free);
2913 else
2914 list_add_tail(&page->lru, &n->slabs_partial);
2915
2916 list_for_each_entry(page, &n->slabs_partial, lru) {
2917 if (!PageSlabPfmemalloc(page))
2918 return page;
2919 }
2920
2921 list_for_each_entry(page, &n->slabs_free, lru) {
2922 if (!PageSlabPfmemalloc(page))
2923 return page;
2924 }
2925
2926 return NULL;
2927 }
2928
2929 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2930 {
2931 struct page *page;
2932
2933 page = list_first_entry_or_null(&n->slabs_partial,
2934 struct page, lru);
2935 if (!page) {
2936 n->free_touched = 1;
2937 page = list_first_entry_or_null(&n->slabs_free,
2938 struct page, lru);
2939 }
2940
2941 if (sk_memalloc_socks())
2942 return get_valid_first_slab(n, page, pfmemalloc);
2943
2944 return page;
2945 }
2946
2947 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2948 struct kmem_cache_node *n, gfp_t flags)
2949 {
2950 struct page *page;
2951 void *obj;
2952 void *list = NULL;
2953
2954 if (!gfp_pfmemalloc_allowed(flags))
2955 return NULL;
2956
2957 spin_lock(&n->list_lock);
2958 page = get_first_slab(n, true);
2959 if (!page) {
2960 spin_unlock(&n->list_lock);
2961 return NULL;
2962 }
2963
2964 obj = slab_get_obj(cachep, page);
2965 n->free_objects--;
2966
2967 fixup_slab_list(cachep, n, page, &list);
2968
2969 spin_unlock(&n->list_lock);
2970 fixup_objfreelist_debug(cachep, &list);
2971
2972 return obj;
2973 }
2974
2975 /*
2976 * Slab list should be fixed up by fixup_slab_list() for existing slab
2977 * or cache_grow_end() for new slab
2978 */
2979 static __always_inline int alloc_block(struct kmem_cache *cachep,
2980 struct array_cache *ac, struct page *page, int batchcount)
2981 {
2982 /*
2983 * There must be at least one object available for
2984 * allocation.
2985 */
2986 BUG_ON(page->active >= cachep->num);
2987
2988 while (page->active < cachep->num && batchcount--) {
2989 STATS_INC_ALLOCED(cachep);
2990 STATS_INC_ACTIVE(cachep);
2991 STATS_SET_HIGH(cachep);
2992
2993 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2994 }
2995
2996 return batchcount;
2997 }
2998
2999 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3000 {
3001 int batchcount;
3002 struct kmem_cache_node *n;
3003 struct array_cache *ac, *shared;
3004 int node;
3005 void *list = NULL;
3006 struct page *page;
3007
3008 check_irq_off();
3009 node = numa_mem_id();
3010
3011 ac = cpu_cache_get(cachep);
3012 batchcount = ac->batchcount;
3013 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3014 /*
3015 * If there was little recent activity on this cache, then
3016 * perform only a partial refill. Otherwise we could generate
3017 * refill bouncing.
3018 */
3019 batchcount = BATCHREFILL_LIMIT;
3020 }
3021 n = get_node(cachep, node);
3022
3023 BUG_ON(ac->avail > 0 || !n);
3024 shared = READ_ONCE(n->shared);
3025 if (!n->free_objects && (!shared || !shared->avail))
3026 goto direct_grow;
3027
3028 spin_lock(&n->list_lock);
3029 shared = READ_ONCE(n->shared);
3030
3031 /* See if we can refill from the shared array */
3032 if (shared && transfer_objects(ac, shared, batchcount)) {
3033 shared->touched = 1;
3034 goto alloc_done;
3035 }
3036
3037 while (batchcount > 0) {
3038 /* Get slab alloc is to come from. */
3039 page = get_first_slab(n, false);
3040 if (!page)
3041 goto must_grow;
3042
3043 check_spinlock_acquired(cachep);
3044
3045 batchcount = alloc_block(cachep, ac, page, batchcount);
3046 fixup_slab_list(cachep, n, page, &list);
3047 }
3048
3049 must_grow:
3050 n->free_objects -= ac->avail;
3051 alloc_done:
3052 spin_unlock(&n->list_lock);
3053 fixup_objfreelist_debug(cachep, &list);
3054
3055 direct_grow:
3056 if (unlikely(!ac->avail)) {
3057 /* Check if we can use obj in pfmemalloc slab */
3058 if (sk_memalloc_socks()) {
3059 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3060
3061 if (obj)
3062 return obj;
3063 }
3064
3065 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3066
3067 /*
3068 * cache_grow_begin() can reenable interrupts,
3069 * then ac could change.
3070 */
3071 ac = cpu_cache_get(cachep);
3072 if (!ac->avail && page)
3073 alloc_block(cachep, ac, page, batchcount);
3074 cache_grow_end(cachep, page);
3075
3076 if (!ac->avail)
3077 return NULL;
3078 }
3079 ac->touched = 1;
3080
3081 return ac->entry[--ac->avail];
3082 }
3083
3084 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3085 gfp_t flags)
3086 {
3087 might_sleep_if(gfpflags_allow_blocking(flags));
3088 }
3089
3090 #if DEBUG
3091 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3092 gfp_t flags, void *objp, unsigned long caller)
3093 {
3094 if (!objp)
3095 return objp;
3096 if (cachep->flags & SLAB_POISON) {
3097 check_poison_obj(cachep, objp);
3098 slab_kernel_map(cachep, objp, 1, 0);
3099 poison_obj(cachep, objp, POISON_INUSE);
3100 }
3101 if (cachep->flags & SLAB_STORE_USER)
3102 *dbg_userword(cachep, objp) = (void *)caller;
3103
3104 if (cachep->flags & SLAB_RED_ZONE) {
3105 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3106 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3107 slab_error(cachep, "double free, or memory outside object was overwritten");
3108 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3109 objp, *dbg_redzone1(cachep, objp),
3110 *dbg_redzone2(cachep, objp));
3111 }
3112 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3113 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3114 }
3115
3116 objp += obj_offset(cachep);
3117 if (cachep->ctor && cachep->flags & SLAB_POISON)
3118 cachep->ctor(objp);
3119 if (ARCH_SLAB_MINALIGN &&
3120 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3121 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3122 objp, (int)ARCH_SLAB_MINALIGN);
3123 }
3124 return objp;
3125 }
3126 #else
3127 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3128 #endif
3129
3130 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3131 {
3132 void *objp;
3133 struct array_cache *ac;
3134
3135 check_irq_off();
3136
3137 ac = cpu_cache_get(cachep);
3138 if (likely(ac->avail)) {
3139 ac->touched = 1;
3140 objp = ac->entry[--ac->avail];
3141
3142 STATS_INC_ALLOCHIT(cachep);
3143 goto out;
3144 }
3145
3146 STATS_INC_ALLOCMISS(cachep);
3147 objp = cache_alloc_refill(cachep, flags);
3148 /*
3149 * the 'ac' may be updated by cache_alloc_refill(),
3150 * and kmemleak_erase() requires its correct value.
3151 */
3152 ac = cpu_cache_get(cachep);
3153
3154 out:
3155 /*
3156 * To avoid a false negative, if an object that is in one of the
3157 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3158 * treat the array pointers as a reference to the object.
3159 */
3160 if (objp)
3161 kmemleak_erase(&ac->entry[ac->avail]);
3162 return objp;
3163 }
3164
3165 #ifdef CONFIG_NUMA
3166 /*
3167 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3168 *
3169 * If we are in_interrupt, then process context, including cpusets and
3170 * mempolicy, may not apply and should not be used for allocation policy.
3171 */
3172 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3173 {
3174 int nid_alloc, nid_here;
3175
3176 if (in_interrupt() || (flags & __GFP_THISNODE))
3177 return NULL;
3178 nid_alloc = nid_here = numa_mem_id();
3179 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3180 nid_alloc = cpuset_slab_spread_node();
3181 else if (current->mempolicy)
3182 nid_alloc = mempolicy_slab_node();
3183 if (nid_alloc != nid_here)
3184 return ____cache_alloc_node(cachep, flags, nid_alloc);
3185 return NULL;
3186 }
3187
3188 /*
3189 * Fallback function if there was no memory available and no objects on a
3190 * certain node and fall back is permitted. First we scan all the
3191 * available node for available objects. If that fails then we
3192 * perform an allocation without specifying a node. This allows the page
3193 * allocator to do its reclaim / fallback magic. We then insert the
3194 * slab into the proper nodelist and then allocate from it.
3195 */
3196 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3197 {
3198 struct zonelist *zonelist;
3199 struct zoneref *z;
3200 struct zone *zone;
3201 enum zone_type high_zoneidx = gfp_zone(flags);
3202 void *obj = NULL;
3203 struct page *page;
3204 int nid;
3205 unsigned int cpuset_mems_cookie;
3206
3207 if (flags & __GFP_THISNODE)
3208 return NULL;
3209
3210 retry_cpuset:
3211 cpuset_mems_cookie = read_mems_allowed_begin();
3212 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3213
3214 retry:
3215 /*
3216 * Look through allowed nodes for objects available
3217 * from existing per node queues.
3218 */
3219 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3220 nid = zone_to_nid(zone);
3221
3222 if (cpuset_zone_allowed(zone, flags) &&
3223 get_node(cache, nid) &&
3224 get_node(cache, nid)->free_objects) {
3225 obj = ____cache_alloc_node(cache,
3226 gfp_exact_node(flags), nid);
3227 if (obj)
3228 break;
3229 }
3230 }
3231
3232 if (!obj) {
3233 /*
3234 * This allocation will be performed within the constraints
3235 * of the current cpuset / memory policy requirements.
3236 * We may trigger various forms of reclaim on the allowed
3237 * set and go into memory reserves if necessary.
3238 */
3239 page = cache_grow_begin(cache, flags, numa_mem_id());
3240 cache_grow_end(cache, page);
3241 if (page) {
3242 nid = page_to_nid(page);
3243 obj = ____cache_alloc_node(cache,
3244 gfp_exact_node(flags), nid);
3245
3246 /*
3247 * Another processor may allocate the objects in
3248 * the slab since we are not holding any locks.
3249 */
3250 if (!obj)
3251 goto retry;
3252 }
3253 }
3254
3255 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3256 goto retry_cpuset;
3257 return obj;
3258 }
3259
3260 /*
3261 * A interface to enable slab creation on nodeid
3262 */
3263 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3264 int nodeid)
3265 {
3266 struct page *page;
3267 struct kmem_cache_node *n;
3268 void *obj = NULL;
3269 void *list = NULL;
3270
3271 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3272 n = get_node(cachep, nodeid);
3273 BUG_ON(!n);
3274
3275 check_irq_off();
3276 spin_lock(&n->list_lock);
3277 page = get_first_slab(n, false);
3278 if (!page)
3279 goto must_grow;
3280
3281 check_spinlock_acquired_node(cachep, nodeid);
3282
3283 STATS_INC_NODEALLOCS(cachep);
3284 STATS_INC_ACTIVE(cachep);
3285 STATS_SET_HIGH(cachep);
3286
3287 BUG_ON(page->active == cachep->num);
3288
3289 obj = slab_get_obj(cachep, page);
3290 n->free_objects--;
3291
3292 fixup_slab_list(cachep, n, page, &list);
3293
3294 spin_unlock(&n->list_lock);
3295 fixup_objfreelist_debug(cachep, &list);
3296 return obj;
3297
3298 must_grow:
3299 spin_unlock(&n->list_lock);
3300 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3301 if (page) {
3302 /* This slab isn't counted yet so don't update free_objects */
3303 obj = slab_get_obj(cachep, page);
3304 }
3305 cache_grow_end(cachep, page);
3306
3307 return obj ? obj : fallback_alloc(cachep, flags);
3308 }
3309
3310 static __always_inline void *
3311 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3312 unsigned long caller)
3313 {
3314 unsigned long save_flags;
3315 void *ptr;
3316 int slab_node = numa_mem_id();
3317
3318 flags &= gfp_allowed_mask;
3319 cachep = slab_pre_alloc_hook(cachep, flags);
3320 if (unlikely(!cachep))
3321 return NULL;
3322
3323 cache_alloc_debugcheck_before(cachep, flags);
3324 local_irq_save(save_flags);
3325
3326 if (nodeid == NUMA_NO_NODE)
3327 nodeid = slab_node;
3328
3329 if (unlikely(!get_node(cachep, nodeid))) {
3330 /* Node not bootstrapped yet */
3331 ptr = fallback_alloc(cachep, flags);
3332 goto out;
3333 }
3334
3335 if (nodeid == slab_node) {
3336 /*
3337 * Use the locally cached objects if possible.
3338 * However ____cache_alloc does not allow fallback
3339 * to other nodes. It may fail while we still have
3340 * objects on other nodes available.
3341 */
3342 ptr = ____cache_alloc(cachep, flags);
3343 if (ptr)
3344 goto out;
3345 }
3346 /* ___cache_alloc_node can fall back to other nodes */
3347 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3348 out:
3349 local_irq_restore(save_flags);
3350 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3351
3352 if (unlikely(flags & __GFP_ZERO) && ptr)
3353 memset(ptr, 0, cachep->object_size);
3354
3355 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3356 return ptr;
3357 }
3358
3359 static __always_inline void *
3360 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3361 {
3362 void *objp;
3363
3364 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3365 objp = alternate_node_alloc(cache, flags);
3366 if (objp)
3367 goto out;
3368 }
3369 objp = ____cache_alloc(cache, flags);
3370
3371 /*
3372 * We may just have run out of memory on the local node.
3373 * ____cache_alloc_node() knows how to locate memory on other nodes
3374 */
3375 if (!objp)
3376 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3377
3378 out:
3379 return objp;
3380 }
3381 #else
3382
3383 static __always_inline void *
3384 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3385 {
3386 return ____cache_alloc(cachep, flags);
3387 }
3388
3389 #endif /* CONFIG_NUMA */
3390
3391 static __always_inline void *
3392 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3393 {
3394 unsigned long save_flags;
3395 void *objp;
3396
3397 flags &= gfp_allowed_mask;
3398 cachep = slab_pre_alloc_hook(cachep, flags);
3399 if (unlikely(!cachep))
3400 return NULL;
3401
3402 cache_alloc_debugcheck_before(cachep, flags);
3403 local_irq_save(save_flags);
3404 objp = __do_cache_alloc(cachep, flags);
3405 local_irq_restore(save_flags);
3406 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3407 prefetchw(objp);
3408
3409 if (unlikely(flags & __GFP_ZERO) && objp)
3410 memset(objp, 0, cachep->object_size);
3411
3412 slab_post_alloc_hook(cachep, flags, 1, &objp);
3413 return objp;
3414 }
3415
3416 /*
3417 * Caller needs to acquire correct kmem_cache_node's list_lock
3418 * @list: List of detached free slabs should be freed by caller
3419 */
3420 static void free_block(struct kmem_cache *cachep, void **objpp,
3421 int nr_objects, int node, struct list_head *list)
3422 {
3423 int i;
3424 struct kmem_cache_node *n = get_node(cachep, node);
3425 struct page *page;
3426
3427 n->free_objects += nr_objects;
3428
3429 for (i = 0; i < nr_objects; i++) {
3430 void *objp;
3431 struct page *page;
3432
3433 objp = objpp[i];
3434
3435 page = virt_to_head_page(objp);
3436 list_del(&page->lru);
3437 check_spinlock_acquired_node(cachep, node);
3438 slab_put_obj(cachep, page, objp);
3439 STATS_DEC_ACTIVE(cachep);
3440
3441 /* fixup slab chains */
3442 if (page->active == 0)
3443 list_add(&page->lru, &n->slabs_free);
3444 else {
3445 /* Unconditionally move a slab to the end of the
3446 * partial list on free - maximum time for the
3447 * other objects to be freed, too.
3448 */
3449 list_add_tail(&page->lru, &n->slabs_partial);
3450 }
3451 }
3452
3453 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3454 n->free_objects -= cachep->num;
3455
3456 page = list_last_entry(&n->slabs_free, struct page, lru);
3457 list_move(&page->lru, list);
3458 }
3459 }
3460
3461 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3462 {
3463 int batchcount;
3464 struct kmem_cache_node *n;
3465 int node = numa_mem_id();
3466 LIST_HEAD(list);
3467
3468 batchcount = ac->batchcount;
3469
3470 check_irq_off();
3471 n = get_node(cachep, node);
3472 spin_lock(&n->list_lock);
3473 if (n->shared) {
3474 struct array_cache *shared_array = n->shared;
3475 int max = shared_array->limit - shared_array->avail;
3476 if (max) {
3477 if (batchcount > max)
3478 batchcount = max;
3479 memcpy(&(shared_array->entry[shared_array->avail]),
3480 ac->entry, sizeof(void *) * batchcount);
3481 shared_array->avail += batchcount;
3482 goto free_done;
3483 }
3484 }
3485
3486 free_block(cachep, ac->entry, batchcount, node, &list);
3487 free_done:
3488 #if STATS
3489 {
3490 int i = 0;
3491 struct page *page;
3492
3493 list_for_each_entry(page, &n->slabs_free, lru) {
3494 BUG_ON(page->active);
3495
3496 i++;
3497 }
3498 STATS_SET_FREEABLE(cachep, i);
3499 }
3500 #endif
3501 spin_unlock(&n->list_lock);
3502 slabs_destroy(cachep, &list);
3503 ac->avail -= batchcount;
3504 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3505 }
3506
3507 /*
3508 * Release an obj back to its cache. If the obj has a constructed state, it must
3509 * be in this state _before_ it is released. Called with disabled ints.
3510 */
3511 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3512 unsigned long caller)
3513 {
3514 /* Put the object into the quarantine, don't touch it for now. */
3515 if (kasan_slab_free(cachep, objp))
3516 return;
3517
3518 ___cache_free(cachep, objp, caller);
3519 }
3520
3521 void ___cache_free(struct kmem_cache *cachep, void *objp,
3522 unsigned long caller)
3523 {
3524 struct array_cache *ac = cpu_cache_get(cachep);
3525
3526 check_irq_off();
3527 kmemleak_free_recursive(objp, cachep->flags);
3528 objp = cache_free_debugcheck(cachep, objp, caller);
3529
3530 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3531
3532 /*
3533 * Skip calling cache_free_alien() when the platform is not numa.
3534 * This will avoid cache misses that happen while accessing slabp (which
3535 * is per page memory reference) to get nodeid. Instead use a global
3536 * variable to skip the call, which is mostly likely to be present in
3537 * the cache.
3538 */
3539 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3540 return;
3541
3542 if (ac->avail < ac->limit) {
3543 STATS_INC_FREEHIT(cachep);
3544 } else {
3545 STATS_INC_FREEMISS(cachep);
3546 cache_flusharray(cachep, ac);
3547 }
3548
3549 if (sk_memalloc_socks()) {
3550 struct page *page = virt_to_head_page(objp);
3551
3552 if (unlikely(PageSlabPfmemalloc(page))) {
3553 cache_free_pfmemalloc(cachep, page, objp);
3554 return;
3555 }
3556 }
3557
3558 ac->entry[ac->avail++] = objp;
3559 }
3560
3561 /**
3562 * kmem_cache_alloc - Allocate an object
3563 * @cachep: The cache to allocate from.
3564 * @flags: See kmalloc().
3565 *
3566 * Allocate an object from this cache. The flags are only relevant
3567 * if the cache has no available objects.
3568 */
3569 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3570 {
3571 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3572
3573 kasan_slab_alloc(cachep, ret, flags);
3574 trace_kmem_cache_alloc(_RET_IP_, ret,
3575 cachep->object_size, cachep->size, flags);
3576
3577 return ret;
3578 }
3579 EXPORT_SYMBOL(kmem_cache_alloc);
3580
3581 static __always_inline void
3582 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3583 size_t size, void **p, unsigned long caller)
3584 {
3585 size_t i;
3586
3587 for (i = 0; i < size; i++)
3588 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3589 }
3590
3591 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3592 void **p)
3593 {
3594 size_t i;
3595
3596 s = slab_pre_alloc_hook(s, flags);
3597 if (!s)
3598 return 0;
3599
3600 cache_alloc_debugcheck_before(s, flags);
3601
3602 local_irq_disable();
3603 for (i = 0; i < size; i++) {
3604 void *objp = __do_cache_alloc(s, flags);
3605
3606 if (unlikely(!objp))
3607 goto error;
3608 p[i] = objp;
3609 }
3610 local_irq_enable();
3611
3612 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3613
3614 /* Clear memory outside IRQ disabled section */
3615 if (unlikely(flags & __GFP_ZERO))
3616 for (i = 0; i < size; i++)
3617 memset(p[i], 0, s->object_size);
3618
3619 slab_post_alloc_hook(s, flags, size, p);
3620 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3621 return size;
3622 error:
3623 local_irq_enable();
3624 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3625 slab_post_alloc_hook(s, flags, i, p);
3626 __kmem_cache_free_bulk(s, i, p);
3627 return 0;
3628 }
3629 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3630
3631 #ifdef CONFIG_TRACING
3632 void *
3633 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3634 {
3635 void *ret;
3636
3637 ret = slab_alloc(cachep, flags, _RET_IP_);
3638
3639 kasan_kmalloc(cachep, ret, size, flags);
3640 trace_kmalloc(_RET_IP_, ret,
3641 size, cachep->size, flags);
3642 return ret;
3643 }
3644 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3645 #endif
3646
3647 #ifdef CONFIG_NUMA
3648 /**
3649 * kmem_cache_alloc_node - Allocate an object on the specified node
3650 * @cachep: The cache to allocate from.
3651 * @flags: See kmalloc().
3652 * @nodeid: node number of the target node.
3653 *
3654 * Identical to kmem_cache_alloc but it will allocate memory on the given
3655 * node, which can improve the performance for cpu bound structures.
3656 *
3657 * Fallback to other node is possible if __GFP_THISNODE is not set.
3658 */
3659 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3660 {
3661 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663 kasan_slab_alloc(cachep, ret, flags);
3664 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3665 cachep->object_size, cachep->size,
3666 flags, nodeid);
3667
3668 return ret;
3669 }
3670 EXPORT_SYMBOL(kmem_cache_alloc_node);
3671
3672 #ifdef CONFIG_TRACING
3673 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3674 gfp_t flags,
3675 int nodeid,
3676 size_t size)
3677 {
3678 void *ret;
3679
3680 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3681
3682 kasan_kmalloc(cachep, ret, size, flags);
3683 trace_kmalloc_node(_RET_IP_, ret,
3684 size, cachep->size,
3685 flags, nodeid);
3686 return ret;
3687 }
3688 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3689 #endif
3690
3691 static __always_inline void *
3692 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3693 {
3694 struct kmem_cache *cachep;
3695 void *ret;
3696
3697 cachep = kmalloc_slab(size, flags);
3698 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3699 return cachep;
3700 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3701 kasan_kmalloc(cachep, ret, size, flags);
3702
3703 return ret;
3704 }
3705
3706 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707 {
3708 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3709 }
3710 EXPORT_SYMBOL(__kmalloc_node);
3711
3712 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3713 int node, unsigned long caller)
3714 {
3715 return __do_kmalloc_node(size, flags, node, caller);
3716 }
3717 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3718 #endif /* CONFIG_NUMA */
3719
3720 /**
3721 * __do_kmalloc - allocate memory
3722 * @size: how many bytes of memory are required.
3723 * @flags: the type of memory to allocate (see kmalloc).
3724 * @caller: function caller for debug tracking of the caller
3725 */
3726 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3727 unsigned long caller)
3728 {
3729 struct kmem_cache *cachep;
3730 void *ret;
3731
3732 cachep = kmalloc_slab(size, flags);
3733 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3734 return cachep;
3735 ret = slab_alloc(cachep, flags, caller);
3736
3737 kasan_kmalloc(cachep, ret, size, flags);
3738 trace_kmalloc(caller, ret,
3739 size, cachep->size, flags);
3740
3741 return ret;
3742 }
3743
3744 void *__kmalloc(size_t size, gfp_t flags)
3745 {
3746 return __do_kmalloc(size, flags, _RET_IP_);
3747 }
3748 EXPORT_SYMBOL(__kmalloc);
3749
3750 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3751 {
3752 return __do_kmalloc(size, flags, caller);
3753 }
3754 EXPORT_SYMBOL(__kmalloc_track_caller);
3755
3756 /**
3757 * kmem_cache_free - Deallocate an object
3758 * @cachep: The cache the allocation was from.
3759 * @objp: The previously allocated object.
3760 *
3761 * Free an object which was previously allocated from this
3762 * cache.
3763 */
3764 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3765 {
3766 unsigned long flags;
3767 cachep = cache_from_obj(cachep, objp);
3768 if (!cachep)
3769 return;
3770
3771 local_irq_save(flags);
3772 debug_check_no_locks_freed(objp, cachep->object_size);
3773 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3774 debug_check_no_obj_freed(objp, cachep->object_size);
3775 __cache_free(cachep, objp, _RET_IP_);
3776 local_irq_restore(flags);
3777
3778 trace_kmem_cache_free(_RET_IP_, objp);
3779 }
3780 EXPORT_SYMBOL(kmem_cache_free);
3781
3782 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3783 {
3784 struct kmem_cache *s;
3785 size_t i;
3786
3787 local_irq_disable();
3788 for (i = 0; i < size; i++) {
3789 void *objp = p[i];
3790
3791 if (!orig_s) /* called via kfree_bulk */
3792 s = virt_to_cache(objp);
3793 else
3794 s = cache_from_obj(orig_s, objp);
3795
3796 debug_check_no_locks_freed(objp, s->object_size);
3797 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3798 debug_check_no_obj_freed(objp, s->object_size);
3799
3800 __cache_free(s, objp, _RET_IP_);
3801 }
3802 local_irq_enable();
3803
3804 /* FIXME: add tracing */
3805 }
3806 EXPORT_SYMBOL(kmem_cache_free_bulk);
3807
3808 /**
3809 * kfree - free previously allocated memory
3810 * @objp: pointer returned by kmalloc.
3811 *
3812 * If @objp is NULL, no operation is performed.
3813 *
3814 * Don't free memory not originally allocated by kmalloc()
3815 * or you will run into trouble.
3816 */
3817 void kfree(const void *objp)
3818 {
3819 struct kmem_cache *c;
3820 unsigned long flags;
3821
3822 trace_kfree(_RET_IP_, objp);
3823
3824 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3825 return;
3826 local_irq_save(flags);
3827 kfree_debugcheck(objp);
3828 c = virt_to_cache(objp);
3829 debug_check_no_locks_freed(objp, c->object_size);
3830
3831 debug_check_no_obj_freed(objp, c->object_size);
3832 __cache_free(c, (void *)objp, _RET_IP_);
3833 local_irq_restore(flags);
3834 }
3835 EXPORT_SYMBOL(kfree);
3836
3837 /*
3838 * This initializes kmem_cache_node or resizes various caches for all nodes.
3839 */
3840 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3841 {
3842 int ret;
3843 int node;
3844 struct kmem_cache_node *n;
3845
3846 for_each_online_node(node) {
3847 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3848 if (ret)
3849 goto fail;
3850
3851 }
3852
3853 return 0;
3854
3855 fail:
3856 if (!cachep->list.next) {
3857 /* Cache is not active yet. Roll back what we did */
3858 node--;
3859 while (node >= 0) {
3860 n = get_node(cachep, node);
3861 if (n) {
3862 kfree(n->shared);
3863 free_alien_cache(n->alien);
3864 kfree(n);
3865 cachep->node[node] = NULL;
3866 }
3867 node--;
3868 }
3869 }
3870 return -ENOMEM;
3871 }
3872
3873 /* Always called with the slab_mutex held */
3874 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3875 int batchcount, int shared, gfp_t gfp)
3876 {
3877 struct array_cache __percpu *cpu_cache, *prev;
3878 int cpu;
3879
3880 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3881 if (!cpu_cache)
3882 return -ENOMEM;
3883
3884 prev = cachep->cpu_cache;
3885 cachep->cpu_cache = cpu_cache;
3886 kick_all_cpus_sync();
3887
3888 check_irq_on();
3889 cachep->batchcount = batchcount;
3890 cachep->limit = limit;
3891 cachep->shared = shared;
3892
3893 if (!prev)
3894 goto setup_node;
3895
3896 for_each_online_cpu(cpu) {
3897 LIST_HEAD(list);
3898 int node;
3899 struct kmem_cache_node *n;
3900 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3901
3902 node = cpu_to_mem(cpu);
3903 n = get_node(cachep, node);
3904 spin_lock_irq(&n->list_lock);
3905 free_block(cachep, ac->entry, ac->avail, node, &list);
3906 spin_unlock_irq(&n->list_lock);
3907 slabs_destroy(cachep, &list);
3908 }
3909 free_percpu(prev);
3910
3911 setup_node:
3912 return setup_kmem_cache_nodes(cachep, gfp);
3913 }
3914
3915 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3916 int batchcount, int shared, gfp_t gfp)
3917 {
3918 int ret;
3919 struct kmem_cache *c;
3920
3921 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3922
3923 if (slab_state < FULL)
3924 return ret;
3925
3926 if ((ret < 0) || !is_root_cache(cachep))
3927 return ret;
3928
3929 lockdep_assert_held(&slab_mutex);
3930 for_each_memcg_cache(c, cachep) {
3931 /* return value determined by the root cache only */
3932 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3933 }
3934
3935 return ret;
3936 }
3937
3938 /* Called with slab_mutex held always */
3939 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3940 {
3941 int err;
3942 int limit = 0;
3943 int shared = 0;
3944 int batchcount = 0;
3945
3946 err = cache_random_seq_create(cachep, cachep->num, gfp);
3947 if (err)
3948 goto end;
3949
3950 if (!is_root_cache(cachep)) {
3951 struct kmem_cache *root = memcg_root_cache(cachep);
3952 limit = root->limit;
3953 shared = root->shared;
3954 batchcount = root->batchcount;
3955 }
3956
3957 if (limit && shared && batchcount)
3958 goto skip_setup;
3959 /*
3960 * The head array serves three purposes:
3961 * - create a LIFO ordering, i.e. return objects that are cache-warm
3962 * - reduce the number of spinlock operations.
3963 * - reduce the number of linked list operations on the slab and
3964 * bufctl chains: array operations are cheaper.
3965 * The numbers are guessed, we should auto-tune as described by
3966 * Bonwick.
3967 */
3968 if (cachep->size > 131072)
3969 limit = 1;
3970 else if (cachep->size > PAGE_SIZE)
3971 limit = 8;
3972 else if (cachep->size > 1024)
3973 limit = 24;
3974 else if (cachep->size > 256)
3975 limit = 54;
3976 else
3977 limit = 120;
3978
3979 /*
3980 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3981 * allocation behaviour: Most allocs on one cpu, most free operations
3982 * on another cpu. For these cases, an efficient object passing between
3983 * cpus is necessary. This is provided by a shared array. The array
3984 * replaces Bonwick's magazine layer.
3985 * On uniprocessor, it's functionally equivalent (but less efficient)
3986 * to a larger limit. Thus disabled by default.
3987 */
3988 shared = 0;
3989 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3990 shared = 8;
3991
3992 #if DEBUG
3993 /*
3994 * With debugging enabled, large batchcount lead to excessively long
3995 * periods with disabled local interrupts. Limit the batchcount
3996 */
3997 if (limit > 32)
3998 limit = 32;
3999 #endif
4000 batchcount = (limit + 1) / 2;
4001 skip_setup:
4002 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4003 end:
4004 if (err)
4005 pr_err("enable_cpucache failed for %s, error %d\n",
4006 cachep->name, -err);
4007 return err;
4008 }
4009
4010 /*
4011 * Drain an array if it contains any elements taking the node lock only if
4012 * necessary. Note that the node listlock also protects the array_cache
4013 * if drain_array() is used on the shared array.
4014 */
4015 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4016 struct array_cache *ac, int node)
4017 {
4018 LIST_HEAD(list);
4019
4020 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4021 check_mutex_acquired();
4022
4023 if (!ac || !ac->avail)
4024 return;
4025
4026 if (ac->touched) {
4027 ac->touched = 0;
4028 return;
4029 }
4030
4031 spin_lock_irq(&n->list_lock);
4032 drain_array_locked(cachep, ac, node, false, &list);
4033 spin_unlock_irq(&n->list_lock);
4034
4035 slabs_destroy(cachep, &list);
4036 }
4037
4038 /**
4039 * cache_reap - Reclaim memory from caches.
4040 * @w: work descriptor
4041 *
4042 * Called from workqueue/eventd every few seconds.
4043 * Purpose:
4044 * - clear the per-cpu caches for this CPU.
4045 * - return freeable pages to the main free memory pool.
4046 *
4047 * If we cannot acquire the cache chain mutex then just give up - we'll try
4048 * again on the next iteration.
4049 */
4050 static void cache_reap(struct work_struct *w)
4051 {
4052 struct kmem_cache *searchp;
4053 struct kmem_cache_node *n;
4054 int node = numa_mem_id();
4055 struct delayed_work *work = to_delayed_work(w);
4056
4057 if (!mutex_trylock(&slab_mutex))
4058 /* Give up. Setup the next iteration. */
4059 goto out;
4060
4061 list_for_each_entry(searchp, &slab_caches, list) {
4062 check_irq_on();
4063
4064 /*
4065 * We only take the node lock if absolutely necessary and we
4066 * have established with reasonable certainty that
4067 * we can do some work if the lock was obtained.
4068 */
4069 n = get_node(searchp, node);
4070
4071 reap_alien(searchp, n);
4072
4073 drain_array(searchp, n, cpu_cache_get(searchp), node);
4074
4075 /*
4076 * These are racy checks but it does not matter
4077 * if we skip one check or scan twice.
4078 */
4079 if (time_after(n->next_reap, jiffies))
4080 goto next;
4081
4082 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4083
4084 drain_array(searchp, n, n->shared, node);
4085
4086 if (n->free_touched)
4087 n->free_touched = 0;
4088 else {
4089 int freed;
4090
4091 freed = drain_freelist(searchp, n, (n->free_limit +
4092 5 * searchp->num - 1) / (5 * searchp->num));
4093 STATS_ADD_REAPED(searchp, freed);
4094 }
4095 next:
4096 cond_resched();
4097 }
4098 check_irq_on();
4099 mutex_unlock(&slab_mutex);
4100 next_reap_node();
4101 out:
4102 /* Set up the next iteration */
4103 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4104 }
4105
4106 #ifdef CONFIG_SLABINFO
4107 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4108 {
4109 struct page *page;
4110 unsigned long active_objs;
4111 unsigned long num_objs;
4112 unsigned long active_slabs = 0;
4113 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4114 const char *name;
4115 char *error = NULL;
4116 int node;
4117 struct kmem_cache_node *n;
4118
4119 active_objs = 0;
4120 num_slabs = 0;
4121 for_each_kmem_cache_node(cachep, node, n) {
4122
4123 check_irq_on();
4124 spin_lock_irq(&n->list_lock);
4125
4126 list_for_each_entry(page, &n->slabs_full, lru) {
4127 if (page->active != cachep->num && !error)
4128 error = "slabs_full accounting error";
4129 active_objs += cachep->num;
4130 active_slabs++;
4131 }
4132 list_for_each_entry(page, &n->slabs_partial, lru) {
4133 if (page->active == cachep->num && !error)
4134 error = "slabs_partial accounting error";
4135 if (!page->active && !error)
4136 error = "slabs_partial accounting error";
4137 active_objs += page->active;
4138 active_slabs++;
4139 }
4140 list_for_each_entry(page, &n->slabs_free, lru) {
4141 if (page->active && !error)
4142 error = "slabs_free accounting error";
4143 num_slabs++;
4144 }
4145 free_objects += n->free_objects;
4146 if (n->shared)
4147 shared_avail += n->shared->avail;
4148
4149 spin_unlock_irq(&n->list_lock);
4150 }
4151 num_slabs += active_slabs;
4152 num_objs = num_slabs * cachep->num;
4153 if (num_objs - active_objs != free_objects && !error)
4154 error = "free_objects accounting error";
4155
4156 name = cachep->name;
4157 if (error)
4158 pr_err("slab: cache %s error: %s\n", name, error);
4159
4160 sinfo->active_objs = active_objs;
4161 sinfo->num_objs = num_objs;
4162 sinfo->active_slabs = active_slabs;
4163 sinfo->num_slabs = num_slabs;
4164 sinfo->shared_avail = shared_avail;
4165 sinfo->limit = cachep->limit;
4166 sinfo->batchcount = cachep->batchcount;
4167 sinfo->shared = cachep->shared;
4168 sinfo->objects_per_slab = cachep->num;
4169 sinfo->cache_order = cachep->gfporder;
4170 }
4171
4172 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4173 {
4174 #if STATS
4175 { /* node stats */
4176 unsigned long high = cachep->high_mark;
4177 unsigned long allocs = cachep->num_allocations;
4178 unsigned long grown = cachep->grown;
4179 unsigned long reaped = cachep->reaped;
4180 unsigned long errors = cachep->errors;
4181 unsigned long max_freeable = cachep->max_freeable;
4182 unsigned long node_allocs = cachep->node_allocs;
4183 unsigned long node_frees = cachep->node_frees;
4184 unsigned long overflows = cachep->node_overflow;
4185
4186 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4187 allocs, high, grown,
4188 reaped, errors, max_freeable, node_allocs,
4189 node_frees, overflows);
4190 }
4191 /* cpu stats */
4192 {
4193 unsigned long allochit = atomic_read(&cachep->allochit);
4194 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4195 unsigned long freehit = atomic_read(&cachep->freehit);
4196 unsigned long freemiss = atomic_read(&cachep->freemiss);
4197
4198 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4199 allochit, allocmiss, freehit, freemiss);
4200 }
4201 #endif
4202 }
4203
4204 #define MAX_SLABINFO_WRITE 128
4205 /**
4206 * slabinfo_write - Tuning for the slab allocator
4207 * @file: unused
4208 * @buffer: user buffer
4209 * @count: data length
4210 * @ppos: unused
4211 */
4212 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4213 size_t count, loff_t *ppos)
4214 {
4215 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4216 int limit, batchcount, shared, res;
4217 struct kmem_cache *cachep;
4218
4219 if (count > MAX_SLABINFO_WRITE)
4220 return -EINVAL;
4221 if (copy_from_user(&kbuf, buffer, count))
4222 return -EFAULT;
4223 kbuf[MAX_SLABINFO_WRITE] = '\0';
4224
4225 tmp = strchr(kbuf, ' ');
4226 if (!tmp)
4227 return -EINVAL;
4228 *tmp = '\0';
4229 tmp++;
4230 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4231 return -EINVAL;
4232
4233 /* Find the cache in the chain of caches. */
4234 mutex_lock(&slab_mutex);
4235 res = -EINVAL;
4236 list_for_each_entry(cachep, &slab_caches, list) {
4237 if (!strcmp(cachep->name, kbuf)) {
4238 if (limit < 1 || batchcount < 1 ||
4239 batchcount > limit || shared < 0) {
4240 res = 0;
4241 } else {
4242 res = do_tune_cpucache(cachep, limit,
4243 batchcount, shared,
4244 GFP_KERNEL);
4245 }
4246 break;
4247 }
4248 }
4249 mutex_unlock(&slab_mutex);
4250 if (res >= 0)
4251 res = count;
4252 return res;
4253 }
4254
4255 #ifdef CONFIG_DEBUG_SLAB_LEAK
4256
4257 static inline int add_caller(unsigned long *n, unsigned long v)
4258 {
4259 unsigned long *p;
4260 int l;
4261 if (!v)
4262 return 1;
4263 l = n[1];
4264 p = n + 2;
4265 while (l) {
4266 int i = l/2;
4267 unsigned long *q = p + 2 * i;
4268 if (*q == v) {
4269 q[1]++;
4270 return 1;
4271 }
4272 if (*q > v) {
4273 l = i;
4274 } else {
4275 p = q + 2;
4276 l -= i + 1;
4277 }
4278 }
4279 if (++n[1] == n[0])
4280 return 0;
4281 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4282 p[0] = v;
4283 p[1] = 1;
4284 return 1;
4285 }
4286
4287 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4288 struct page *page)
4289 {
4290 void *p;
4291 int i, j;
4292 unsigned long v;
4293
4294 if (n[0] == n[1])
4295 return;
4296 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4297 bool active = true;
4298
4299 for (j = page->active; j < c->num; j++) {
4300 if (get_free_obj(page, j) == i) {
4301 active = false;
4302 break;
4303 }
4304 }
4305
4306 if (!active)
4307 continue;
4308
4309 /*
4310 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4311 * mapping is established when actual object allocation and
4312 * we could mistakenly access the unmapped object in the cpu
4313 * cache.
4314 */
4315 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4316 continue;
4317
4318 if (!add_caller(n, v))
4319 return;
4320 }
4321 }
4322
4323 static void show_symbol(struct seq_file *m, unsigned long address)
4324 {
4325 #ifdef CONFIG_KALLSYMS
4326 unsigned long offset, size;
4327 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4328
4329 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4330 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4331 if (modname[0])
4332 seq_printf(m, " [%s]", modname);
4333 return;
4334 }
4335 #endif
4336 seq_printf(m, "%p", (void *)address);
4337 }
4338
4339 static int leaks_show(struct seq_file *m, void *p)
4340 {
4341 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4342 struct page *page;
4343 struct kmem_cache_node *n;
4344 const char *name;
4345 unsigned long *x = m->private;
4346 int node;
4347 int i;
4348
4349 if (!(cachep->flags & SLAB_STORE_USER))
4350 return 0;
4351 if (!(cachep->flags & SLAB_RED_ZONE))
4352 return 0;
4353
4354 /*
4355 * Set store_user_clean and start to grab stored user information
4356 * for all objects on this cache. If some alloc/free requests comes
4357 * during the processing, information would be wrong so restart
4358 * whole processing.
4359 */
4360 do {
4361 set_store_user_clean(cachep);
4362 drain_cpu_caches(cachep);
4363
4364 x[1] = 0;
4365
4366 for_each_kmem_cache_node(cachep, node, n) {
4367
4368 check_irq_on();
4369 spin_lock_irq(&n->list_lock);
4370
4371 list_for_each_entry(page, &n->slabs_full, lru)
4372 handle_slab(x, cachep, page);
4373 list_for_each_entry(page, &n->slabs_partial, lru)
4374 handle_slab(x, cachep, page);
4375 spin_unlock_irq(&n->list_lock);
4376 }
4377 } while (!is_store_user_clean(cachep));
4378
4379 name = cachep->name;
4380 if (x[0] == x[1]) {
4381 /* Increase the buffer size */
4382 mutex_unlock(&slab_mutex);
4383 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4384 if (!m->private) {
4385 /* Too bad, we are really out */
4386 m->private = x;
4387 mutex_lock(&slab_mutex);
4388 return -ENOMEM;
4389 }
4390 *(unsigned long *)m->private = x[0] * 2;
4391 kfree(x);
4392 mutex_lock(&slab_mutex);
4393 /* Now make sure this entry will be retried */
4394 m->count = m->size;
4395 return 0;
4396 }
4397 for (i = 0; i < x[1]; i++) {
4398 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4399 show_symbol(m, x[2*i+2]);
4400 seq_putc(m, '\n');
4401 }
4402
4403 return 0;
4404 }
4405
4406 static const struct seq_operations slabstats_op = {
4407 .start = slab_start,
4408 .next = slab_next,
4409 .stop = slab_stop,
4410 .show = leaks_show,
4411 };
4412
4413 static int slabstats_open(struct inode *inode, struct file *file)
4414 {
4415 unsigned long *n;
4416
4417 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4418 if (!n)
4419 return -ENOMEM;
4420
4421 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4422
4423 return 0;
4424 }
4425
4426 static const struct file_operations proc_slabstats_operations = {
4427 .open = slabstats_open,
4428 .read = seq_read,
4429 .llseek = seq_lseek,
4430 .release = seq_release_private,
4431 };
4432 #endif
4433
4434 static int __init slab_proc_init(void)
4435 {
4436 #ifdef CONFIG_DEBUG_SLAB_LEAK
4437 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4438 #endif
4439 return 0;
4440 }
4441 module_init(slab_proc_init);
4442 #endif
4443
4444 #ifdef CONFIG_HARDENED_USERCOPY
4445 /*
4446 * Rejects objects that are incorrectly sized.
4447 *
4448 * Returns NULL if check passes, otherwise const char * to name of cache
4449 * to indicate an error.
4450 */
4451 const char *__check_heap_object(const void *ptr, unsigned long n,
4452 struct page *page)
4453 {
4454 struct kmem_cache *cachep;
4455 unsigned int objnr;
4456 unsigned long offset;
4457
4458 /* Find and validate object. */
4459 cachep = page->slab_cache;
4460 objnr = obj_to_index(cachep, page, (void *)ptr);
4461 BUG_ON(objnr >= cachep->num);
4462
4463 /* Find offset within object. */
4464 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4465
4466 /* Allow address range falling entirely within object size. */
4467 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4468 return NULL;
4469
4470 return cachep->name;
4471 }
4472 #endif /* CONFIG_HARDENED_USERCOPY */
4473
4474 /**
4475 * ksize - get the actual amount of memory allocated for a given object
4476 * @objp: Pointer to the object
4477 *
4478 * kmalloc may internally round up allocations and return more memory
4479 * than requested. ksize() can be used to determine the actual amount of
4480 * memory allocated. The caller may use this additional memory, even though
4481 * a smaller amount of memory was initially specified with the kmalloc call.
4482 * The caller must guarantee that objp points to a valid object previously
4483 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4484 * must not be freed during the duration of the call.
4485 */
4486 size_t ksize(const void *objp)
4487 {
4488 size_t size;
4489
4490 BUG_ON(!objp);
4491 if (unlikely(objp == ZERO_SIZE_PTR))
4492 return 0;
4493
4494 size = virt_to_cache(objp)->object_size;
4495 /* We assume that ksize callers could use the whole allocated area,
4496 * so we need to unpoison this area.
4497 */
4498 kasan_unpoison_shadow(objp, size);
4499
4500 return size;
4501 }
4502 EXPORT_SYMBOL(ksize);