]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
bdi: Fix use after free bug in debugfs_remove()
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580 }
581
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584 {
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685 }
686
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711 }
712
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722 }
723
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727 {
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744 }
745
746 /*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768 }
769
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772 {
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790 }
791
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794 {
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821 }
822
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835 }
836
837 /*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885 }
886
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
897 static int init_cache_node_node(int node)
898 {
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909 }
910 #endif
911
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 #ifdef CONFIG_SMP
979
980 static void cpuup_canceled(long cpu)
981 {
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032 free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046 }
1047
1048 static int cpuup_prepare(long cpu)
1049 {
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075 bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078 }
1079
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106 }
1107 #endif
1108
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 start_cpu_timer(cpu);
1112 return 0;
1113 }
1114
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127 }
1128
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158 }
1159
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162 {
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188 out:
1189 return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193 /*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198 {
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212 }
1213
1214 /*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228 }
1229
1230 /*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234 void __init kmem_cache_init(void)
1235 {
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1252 */
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
1261 * Initially an __init data area is used for the head array and the
1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 * array at the end of the bootstrap.
1264 * 2) Create the first kmalloc cache.
1265 * The struct kmem_cache for the new cache is allocated normally.
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 * kmalloc cache with kmalloc allocated arrays.
1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 */
1275
1276 /* 1) create the kmem_cache */
1277
1278 /*
1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 */
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 slab_state = PARTIAL;
1287
1288 /*
1289 * Initialize the caches that provide memory for the kmem_cache_node
1290 * structures first. Without this, further allocations will bug.
1291 */
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295 slab_state = PARTIAL_NODE;
1296 setup_kmalloc_cache_index_table();
1297
1298 slab_early_init = 0;
1299
1300 /* 5) Replace the bootstrap kmem_cache_node */
1301 {
1302 int nid;
1303
1304 for_each_online_node(nid) {
1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306
1307 init_list(kmalloc_caches[INDEX_NODE],
1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 }
1310 }
1311
1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 }
1314
1315 void __init kmem_cache_init_late(void)
1316 {
1317 struct kmem_cache *cachep;
1318
1319 slab_state = UP;
1320
1321 /* 6) resize the head arrays to their final sizes */
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
1326 mutex_unlock(&slab_mutex);
1327
1328 /* Done! */
1329 slab_state = FULL;
1330
1331 #ifdef CONFIG_NUMA
1332 /*
1333 * Register a memory hotplug callback that initializes and frees
1334 * node.
1335 */
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337 #endif
1338
1339 /*
1340 * The reap timers are started later, with a module init call: That part
1341 * of the kernel is not yet operational.
1342 */
1343 }
1344
1345 static int __init cpucache_init(void)
1346 {
1347 int ret;
1348
1349 /*
1350 * Register the timers that return unneeded pages to the page allocator
1351 */
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
1355
1356 /* Done! */
1357 slab_state = FULL;
1358 return 0;
1359 }
1360 __initcall(cpucache_init);
1361
1362 static noinline void
1363 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364 {
1365 #if DEBUG
1366 struct kmem_cache_node *n;
1367 unsigned long flags;
1368 int node;
1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 DEFAULT_RATELIMIT_BURST);
1371
1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 return;
1374
1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 nodeid, gfpflags, &gfpflags);
1377 pr_warn(" cache: %s, object size: %d, order: %d\n",
1378 cachep->name, cachep->size, cachep->gfporder);
1379
1380 for_each_kmem_cache_node(cachep, node, n) {
1381 unsigned long total_slabs, free_slabs, free_objs;
1382
1383 spin_lock_irqsave(&n->list_lock, flags);
1384 total_slabs = n->total_slabs;
1385 free_slabs = n->free_slabs;
1386 free_objs = n->free_objects;
1387 spin_unlock_irqrestore(&n->list_lock, flags);
1388
1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 node, total_slabs - free_slabs, total_slabs,
1391 (total_slabs * cachep->num) - free_objs,
1392 total_slabs * cachep->num);
1393 }
1394 #endif
1395 }
1396
1397 /*
1398 * Interface to system's page allocator. No need to hold the
1399 * kmem_cache_node ->list_lock.
1400 *
1401 * If we requested dmaable memory, we will get it. Even if we
1402 * did not request dmaable memory, we might get it, but that
1403 * would be relatively rare and ignorable.
1404 */
1405 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 int nodeid)
1407 {
1408 struct page *page;
1409 int nr_pages;
1410
1411 flags |= cachep->allocflags;
1412
1413 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1414 if (!page) {
1415 slab_out_of_memory(cachep, flags, nodeid);
1416 return NULL;
1417 }
1418
1419 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420 __free_pages(page, cachep->gfporder);
1421 return NULL;
1422 }
1423
1424 nr_pages = (1 << cachep->gfporder);
1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1427 else
1428 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1429
1430 __SetPageSlab(page);
1431 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1432 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1433 SetPageSlabPfmemalloc(page);
1434
1435 return page;
1436 }
1437
1438 /*
1439 * Interface to system's page release.
1440 */
1441 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1442 {
1443 int order = cachep->gfporder;
1444 unsigned long nr_freed = (1 << order);
1445
1446 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1447 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1448 else
1449 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1450
1451 BUG_ON(!PageSlab(page));
1452 __ClearPageSlabPfmemalloc(page);
1453 __ClearPageSlab(page);
1454 page_mapcount_reset(page);
1455 page->mapping = NULL;
1456
1457 if (current->reclaim_state)
1458 current->reclaim_state->reclaimed_slab += nr_freed;
1459 memcg_uncharge_slab(page, order, cachep);
1460 __free_pages(page, order);
1461 }
1462
1463 static void kmem_rcu_free(struct rcu_head *head)
1464 {
1465 struct kmem_cache *cachep;
1466 struct page *page;
1467
1468 page = container_of(head, struct page, rcu_head);
1469 cachep = page->slab_cache;
1470
1471 kmem_freepages(cachep, page);
1472 }
1473
1474 #if DEBUG
1475 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1476 {
1477 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1478 (cachep->size % PAGE_SIZE) == 0)
1479 return true;
1480
1481 return false;
1482 }
1483
1484 #ifdef CONFIG_DEBUG_PAGEALLOC
1485 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1486 unsigned long caller)
1487 {
1488 int size = cachep->object_size;
1489
1490 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1491
1492 if (size < 5 * sizeof(unsigned long))
1493 return;
1494
1495 *addr++ = 0x12345678;
1496 *addr++ = caller;
1497 *addr++ = smp_processor_id();
1498 size -= 3 * sizeof(unsigned long);
1499 {
1500 unsigned long *sptr = &caller;
1501 unsigned long svalue;
1502
1503 while (!kstack_end(sptr)) {
1504 svalue = *sptr++;
1505 if (kernel_text_address(svalue)) {
1506 *addr++ = svalue;
1507 size -= sizeof(unsigned long);
1508 if (size <= sizeof(unsigned long))
1509 break;
1510 }
1511 }
1512
1513 }
1514 *addr++ = 0x87654321;
1515 }
1516
1517 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1518 int map, unsigned long caller)
1519 {
1520 if (!is_debug_pagealloc_cache(cachep))
1521 return;
1522
1523 if (caller)
1524 store_stackinfo(cachep, objp, caller);
1525
1526 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1527 }
1528
1529 #else
1530 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1531 int map, unsigned long caller) {}
1532
1533 #endif
1534
1535 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1536 {
1537 int size = cachep->object_size;
1538 addr = &((char *)addr)[obj_offset(cachep)];
1539
1540 memset(addr, val, size);
1541 *(unsigned char *)(addr + size - 1) = POISON_END;
1542 }
1543
1544 static void dump_line(char *data, int offset, int limit)
1545 {
1546 int i;
1547 unsigned char error = 0;
1548 int bad_count = 0;
1549
1550 pr_err("%03x: ", offset);
1551 for (i = 0; i < limit; i++) {
1552 if (data[offset + i] != POISON_FREE) {
1553 error = data[offset + i];
1554 bad_count++;
1555 }
1556 }
1557 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1558 &data[offset], limit, 1);
1559
1560 if (bad_count == 1) {
1561 error ^= POISON_FREE;
1562 if (!(error & (error - 1))) {
1563 pr_err("Single bit error detected. Probably bad RAM.\n");
1564 #ifdef CONFIG_X86
1565 pr_err("Run memtest86+ or a similar memory test tool.\n");
1566 #else
1567 pr_err("Run a memory test tool.\n");
1568 #endif
1569 }
1570 }
1571 }
1572 #endif
1573
1574 #if DEBUG
1575
1576 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1577 {
1578 int i, size;
1579 char *realobj;
1580
1581 if (cachep->flags & SLAB_RED_ZONE) {
1582 pr_err("Redzone: 0x%llx/0x%llx\n",
1583 *dbg_redzone1(cachep, objp),
1584 *dbg_redzone2(cachep, objp));
1585 }
1586
1587 if (cachep->flags & SLAB_STORE_USER)
1588 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1589 realobj = (char *)objp + obj_offset(cachep);
1590 size = cachep->object_size;
1591 for (i = 0; i < size && lines; i += 16, lines--) {
1592 int limit;
1593 limit = 16;
1594 if (i + limit > size)
1595 limit = size - i;
1596 dump_line(realobj, i, limit);
1597 }
1598 }
1599
1600 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1601 {
1602 char *realobj;
1603 int size, i;
1604 int lines = 0;
1605
1606 if (is_debug_pagealloc_cache(cachep))
1607 return;
1608
1609 realobj = (char *)objp + obj_offset(cachep);
1610 size = cachep->object_size;
1611
1612 for (i = 0; i < size; i++) {
1613 char exp = POISON_FREE;
1614 if (i == size - 1)
1615 exp = POISON_END;
1616 if (realobj[i] != exp) {
1617 int limit;
1618 /* Mismatch ! */
1619 /* Print header */
1620 if (lines == 0) {
1621 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1622 print_tainted(), cachep->name,
1623 realobj, size);
1624 print_objinfo(cachep, objp, 0);
1625 }
1626 /* Hexdump the affected line */
1627 i = (i / 16) * 16;
1628 limit = 16;
1629 if (i + limit > size)
1630 limit = size - i;
1631 dump_line(realobj, i, limit);
1632 i += 16;
1633 lines++;
1634 /* Limit to 5 lines */
1635 if (lines > 5)
1636 break;
1637 }
1638 }
1639 if (lines != 0) {
1640 /* Print some data about the neighboring objects, if they
1641 * exist:
1642 */
1643 struct page *page = virt_to_head_page(objp);
1644 unsigned int objnr;
1645
1646 objnr = obj_to_index(cachep, page, objp);
1647 if (objnr) {
1648 objp = index_to_obj(cachep, page, objnr - 1);
1649 realobj = (char *)objp + obj_offset(cachep);
1650 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1651 print_objinfo(cachep, objp, 2);
1652 }
1653 if (objnr + 1 < cachep->num) {
1654 objp = index_to_obj(cachep, page, objnr + 1);
1655 realobj = (char *)objp + obj_offset(cachep);
1656 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1657 print_objinfo(cachep, objp, 2);
1658 }
1659 }
1660 }
1661 #endif
1662
1663 #if DEBUG
1664 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1665 struct page *page)
1666 {
1667 int i;
1668
1669 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1670 poison_obj(cachep, page->freelist - obj_offset(cachep),
1671 POISON_FREE);
1672 }
1673
1674 for (i = 0; i < cachep->num; i++) {
1675 void *objp = index_to_obj(cachep, page, i);
1676
1677 if (cachep->flags & SLAB_POISON) {
1678 check_poison_obj(cachep, objp);
1679 slab_kernel_map(cachep, objp, 1, 0);
1680 }
1681 if (cachep->flags & SLAB_RED_ZONE) {
1682 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1683 slab_error(cachep, "start of a freed object was overwritten");
1684 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1685 slab_error(cachep, "end of a freed object was overwritten");
1686 }
1687 }
1688 }
1689 #else
1690 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1691 struct page *page)
1692 {
1693 }
1694 #endif
1695
1696 /**
1697 * slab_destroy - destroy and release all objects in a slab
1698 * @cachep: cache pointer being destroyed
1699 * @page: page pointer being destroyed
1700 *
1701 * Destroy all the objs in a slab page, and release the mem back to the system.
1702 * Before calling the slab page must have been unlinked from the cache. The
1703 * kmem_cache_node ->list_lock is not held/needed.
1704 */
1705 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1706 {
1707 void *freelist;
1708
1709 freelist = page->freelist;
1710 slab_destroy_debugcheck(cachep, page);
1711 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1712 call_rcu(&page->rcu_head, kmem_rcu_free);
1713 else
1714 kmem_freepages(cachep, page);
1715
1716 /*
1717 * From now on, we don't use freelist
1718 * although actual page can be freed in rcu context
1719 */
1720 if (OFF_SLAB(cachep))
1721 kmem_cache_free(cachep->freelist_cache, freelist);
1722 }
1723
1724 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1725 {
1726 struct page *page, *n;
1727
1728 list_for_each_entry_safe(page, n, list, lru) {
1729 list_del(&page->lru);
1730 slab_destroy(cachep, page);
1731 }
1732 }
1733
1734 /**
1735 * calculate_slab_order - calculate size (page order) of slabs
1736 * @cachep: pointer to the cache that is being created
1737 * @size: size of objects to be created in this cache.
1738 * @flags: slab allocation flags
1739 *
1740 * Also calculates the number of objects per slab.
1741 *
1742 * This could be made much more intelligent. For now, try to avoid using
1743 * high order pages for slabs. When the gfp() functions are more friendly
1744 * towards high-order requests, this should be changed.
1745 */
1746 static size_t calculate_slab_order(struct kmem_cache *cachep,
1747 size_t size, slab_flags_t flags)
1748 {
1749 size_t left_over = 0;
1750 int gfporder;
1751
1752 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1753 unsigned int num;
1754 size_t remainder;
1755
1756 num = cache_estimate(gfporder, size, flags, &remainder);
1757 if (!num)
1758 continue;
1759
1760 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1761 if (num > SLAB_OBJ_MAX_NUM)
1762 break;
1763
1764 if (flags & CFLGS_OFF_SLAB) {
1765 struct kmem_cache *freelist_cache;
1766 size_t freelist_size;
1767
1768 freelist_size = num * sizeof(freelist_idx_t);
1769 freelist_cache = kmalloc_slab(freelist_size, 0u);
1770 if (!freelist_cache)
1771 continue;
1772
1773 /*
1774 * Needed to avoid possible looping condition
1775 * in cache_grow_begin()
1776 */
1777 if (OFF_SLAB(freelist_cache))
1778 continue;
1779
1780 /* check if off slab has enough benefit */
1781 if (freelist_cache->size > cachep->size / 2)
1782 continue;
1783 }
1784
1785 /* Found something acceptable - save it away */
1786 cachep->num = num;
1787 cachep->gfporder = gfporder;
1788 left_over = remainder;
1789
1790 /*
1791 * A VFS-reclaimable slab tends to have most allocations
1792 * as GFP_NOFS and we really don't want to have to be allocating
1793 * higher-order pages when we are unable to shrink dcache.
1794 */
1795 if (flags & SLAB_RECLAIM_ACCOUNT)
1796 break;
1797
1798 /*
1799 * Large number of objects is good, but very large slabs are
1800 * currently bad for the gfp()s.
1801 */
1802 if (gfporder >= slab_max_order)
1803 break;
1804
1805 /*
1806 * Acceptable internal fragmentation?
1807 */
1808 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1809 break;
1810 }
1811 return left_over;
1812 }
1813
1814 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1815 struct kmem_cache *cachep, int entries, int batchcount)
1816 {
1817 int cpu;
1818 size_t size;
1819 struct array_cache __percpu *cpu_cache;
1820
1821 size = sizeof(void *) * entries + sizeof(struct array_cache);
1822 cpu_cache = __alloc_percpu(size, sizeof(void *));
1823
1824 if (!cpu_cache)
1825 return NULL;
1826
1827 for_each_possible_cpu(cpu) {
1828 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1829 entries, batchcount);
1830 }
1831
1832 return cpu_cache;
1833 }
1834
1835 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1836 {
1837 if (slab_state >= FULL)
1838 return enable_cpucache(cachep, gfp);
1839
1840 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1841 if (!cachep->cpu_cache)
1842 return 1;
1843
1844 if (slab_state == DOWN) {
1845 /* Creation of first cache (kmem_cache). */
1846 set_up_node(kmem_cache, CACHE_CACHE);
1847 } else if (slab_state == PARTIAL) {
1848 /* For kmem_cache_node */
1849 set_up_node(cachep, SIZE_NODE);
1850 } else {
1851 int node;
1852
1853 for_each_online_node(node) {
1854 cachep->node[node] = kmalloc_node(
1855 sizeof(struct kmem_cache_node), gfp, node);
1856 BUG_ON(!cachep->node[node]);
1857 kmem_cache_node_init(cachep->node[node]);
1858 }
1859 }
1860
1861 cachep->node[numa_mem_id()]->next_reap =
1862 jiffies + REAPTIMEOUT_NODE +
1863 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1864
1865 cpu_cache_get(cachep)->avail = 0;
1866 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1867 cpu_cache_get(cachep)->batchcount = 1;
1868 cpu_cache_get(cachep)->touched = 0;
1869 cachep->batchcount = 1;
1870 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1871 return 0;
1872 }
1873
1874 slab_flags_t kmem_cache_flags(unsigned long object_size,
1875 slab_flags_t flags, const char *name,
1876 void (*ctor)(void *))
1877 {
1878 return flags;
1879 }
1880
1881 struct kmem_cache *
1882 __kmem_cache_alias(const char *name, size_t size, size_t align,
1883 slab_flags_t flags, void (*ctor)(void *))
1884 {
1885 struct kmem_cache *cachep;
1886
1887 cachep = find_mergeable(size, align, flags, name, ctor);
1888 if (cachep) {
1889 cachep->refcount++;
1890
1891 /*
1892 * Adjust the object sizes so that we clear
1893 * the complete object on kzalloc.
1894 */
1895 cachep->object_size = max_t(int, cachep->object_size, size);
1896 }
1897 return cachep;
1898 }
1899
1900 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1901 size_t size, slab_flags_t flags)
1902 {
1903 size_t left;
1904
1905 cachep->num = 0;
1906
1907 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1908 return false;
1909
1910 left = calculate_slab_order(cachep, size,
1911 flags | CFLGS_OBJFREELIST_SLAB);
1912 if (!cachep->num)
1913 return false;
1914
1915 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1916 return false;
1917
1918 cachep->colour = left / cachep->colour_off;
1919
1920 return true;
1921 }
1922
1923 static bool set_off_slab_cache(struct kmem_cache *cachep,
1924 size_t size, slab_flags_t flags)
1925 {
1926 size_t left;
1927
1928 cachep->num = 0;
1929
1930 /*
1931 * Always use on-slab management when SLAB_NOLEAKTRACE
1932 * to avoid recursive calls into kmemleak.
1933 */
1934 if (flags & SLAB_NOLEAKTRACE)
1935 return false;
1936
1937 /*
1938 * Size is large, assume best to place the slab management obj
1939 * off-slab (should allow better packing of objs).
1940 */
1941 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1942 if (!cachep->num)
1943 return false;
1944
1945 /*
1946 * If the slab has been placed off-slab, and we have enough space then
1947 * move it on-slab. This is at the expense of any extra colouring.
1948 */
1949 if (left >= cachep->num * sizeof(freelist_idx_t))
1950 return false;
1951
1952 cachep->colour = left / cachep->colour_off;
1953
1954 return true;
1955 }
1956
1957 static bool set_on_slab_cache(struct kmem_cache *cachep,
1958 size_t size, slab_flags_t flags)
1959 {
1960 size_t left;
1961
1962 cachep->num = 0;
1963
1964 left = calculate_slab_order(cachep, size, flags);
1965 if (!cachep->num)
1966 return false;
1967
1968 cachep->colour = left / cachep->colour_off;
1969
1970 return true;
1971 }
1972
1973 /**
1974 * __kmem_cache_create - Create a cache.
1975 * @cachep: cache management descriptor
1976 * @flags: SLAB flags
1977 *
1978 * Returns a ptr to the cache on success, NULL on failure.
1979 * Cannot be called within a int, but can be interrupted.
1980 * The @ctor is run when new pages are allocated by the cache.
1981 *
1982 * The flags are
1983 *
1984 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1985 * to catch references to uninitialised memory.
1986 *
1987 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1988 * for buffer overruns.
1989 *
1990 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1991 * cacheline. This can be beneficial if you're counting cycles as closely
1992 * as davem.
1993 */
1994 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1995 {
1996 size_t ralign = BYTES_PER_WORD;
1997 gfp_t gfp;
1998 int err;
1999 size_t size = cachep->size;
2000
2001 #if DEBUG
2002 #if FORCED_DEBUG
2003 /*
2004 * Enable redzoning and last user accounting, except for caches with
2005 * large objects, if the increased size would increase the object size
2006 * above the next power of two: caches with object sizes just above a
2007 * power of two have a significant amount of internal fragmentation.
2008 */
2009 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2010 2 * sizeof(unsigned long long)))
2011 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2012 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2013 flags |= SLAB_POISON;
2014 #endif
2015 #endif
2016
2017 /*
2018 * Check that size is in terms of words. This is needed to avoid
2019 * unaligned accesses for some archs when redzoning is used, and makes
2020 * sure any on-slab bufctl's are also correctly aligned.
2021 */
2022 size = ALIGN(size, BYTES_PER_WORD);
2023
2024 if (flags & SLAB_RED_ZONE) {
2025 ralign = REDZONE_ALIGN;
2026 /* If redzoning, ensure that the second redzone is suitably
2027 * aligned, by adjusting the object size accordingly. */
2028 size = ALIGN(size, REDZONE_ALIGN);
2029 }
2030
2031 /* 3) caller mandated alignment */
2032 if (ralign < cachep->align) {
2033 ralign = cachep->align;
2034 }
2035 /* disable debug if necessary */
2036 if (ralign > __alignof__(unsigned long long))
2037 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2038 /*
2039 * 4) Store it.
2040 */
2041 cachep->align = ralign;
2042 cachep->colour_off = cache_line_size();
2043 /* Offset must be a multiple of the alignment. */
2044 if (cachep->colour_off < cachep->align)
2045 cachep->colour_off = cachep->align;
2046
2047 if (slab_is_available())
2048 gfp = GFP_KERNEL;
2049 else
2050 gfp = GFP_NOWAIT;
2051
2052 #if DEBUG
2053
2054 /*
2055 * Both debugging options require word-alignment which is calculated
2056 * into align above.
2057 */
2058 if (flags & SLAB_RED_ZONE) {
2059 /* add space for red zone words */
2060 cachep->obj_offset += sizeof(unsigned long long);
2061 size += 2 * sizeof(unsigned long long);
2062 }
2063 if (flags & SLAB_STORE_USER) {
2064 /* user store requires one word storage behind the end of
2065 * the real object. But if the second red zone needs to be
2066 * aligned to 64 bits, we must allow that much space.
2067 */
2068 if (flags & SLAB_RED_ZONE)
2069 size += REDZONE_ALIGN;
2070 else
2071 size += BYTES_PER_WORD;
2072 }
2073 #endif
2074
2075 kasan_cache_create(cachep, &size, &flags);
2076
2077 size = ALIGN(size, cachep->align);
2078 /*
2079 * We should restrict the number of objects in a slab to implement
2080 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2081 */
2082 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2083 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2084
2085 #if DEBUG
2086 /*
2087 * To activate debug pagealloc, off-slab management is necessary
2088 * requirement. In early phase of initialization, small sized slab
2089 * doesn't get initialized so it would not be possible. So, we need
2090 * to check size >= 256. It guarantees that all necessary small
2091 * sized slab is initialized in current slab initialization sequence.
2092 */
2093 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2094 size >= 256 && cachep->object_size > cache_line_size()) {
2095 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2096 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2097
2098 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2099 flags |= CFLGS_OFF_SLAB;
2100 cachep->obj_offset += tmp_size - size;
2101 size = tmp_size;
2102 goto done;
2103 }
2104 }
2105 }
2106 #endif
2107
2108 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2109 flags |= CFLGS_OBJFREELIST_SLAB;
2110 goto done;
2111 }
2112
2113 if (set_off_slab_cache(cachep, size, flags)) {
2114 flags |= CFLGS_OFF_SLAB;
2115 goto done;
2116 }
2117
2118 if (set_on_slab_cache(cachep, size, flags))
2119 goto done;
2120
2121 return -E2BIG;
2122
2123 done:
2124 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2125 cachep->flags = flags;
2126 cachep->allocflags = __GFP_COMP;
2127 if (flags & SLAB_CACHE_DMA)
2128 cachep->allocflags |= GFP_DMA;
2129 if (flags & SLAB_RECLAIM_ACCOUNT)
2130 cachep->allocflags |= __GFP_RECLAIMABLE;
2131 cachep->size = size;
2132 cachep->reciprocal_buffer_size = reciprocal_value(size);
2133
2134 #if DEBUG
2135 /*
2136 * If we're going to use the generic kernel_map_pages()
2137 * poisoning, then it's going to smash the contents of
2138 * the redzone and userword anyhow, so switch them off.
2139 */
2140 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2141 (cachep->flags & SLAB_POISON) &&
2142 is_debug_pagealloc_cache(cachep))
2143 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2144 #endif
2145
2146 if (OFF_SLAB(cachep)) {
2147 cachep->freelist_cache =
2148 kmalloc_slab(cachep->freelist_size, 0u);
2149 }
2150
2151 err = setup_cpu_cache(cachep, gfp);
2152 if (err) {
2153 __kmem_cache_release(cachep);
2154 return err;
2155 }
2156
2157 return 0;
2158 }
2159
2160 #if DEBUG
2161 static void check_irq_off(void)
2162 {
2163 BUG_ON(!irqs_disabled());
2164 }
2165
2166 static void check_irq_on(void)
2167 {
2168 BUG_ON(irqs_disabled());
2169 }
2170
2171 static void check_mutex_acquired(void)
2172 {
2173 BUG_ON(!mutex_is_locked(&slab_mutex));
2174 }
2175
2176 static void check_spinlock_acquired(struct kmem_cache *cachep)
2177 {
2178 #ifdef CONFIG_SMP
2179 check_irq_off();
2180 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2181 #endif
2182 }
2183
2184 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2185 {
2186 #ifdef CONFIG_SMP
2187 check_irq_off();
2188 assert_spin_locked(&get_node(cachep, node)->list_lock);
2189 #endif
2190 }
2191
2192 #else
2193 #define check_irq_off() do { } while(0)
2194 #define check_irq_on() do { } while(0)
2195 #define check_mutex_acquired() do { } while(0)
2196 #define check_spinlock_acquired(x) do { } while(0)
2197 #define check_spinlock_acquired_node(x, y) do { } while(0)
2198 #endif
2199
2200 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2201 int node, bool free_all, struct list_head *list)
2202 {
2203 int tofree;
2204
2205 if (!ac || !ac->avail)
2206 return;
2207
2208 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2209 if (tofree > ac->avail)
2210 tofree = (ac->avail + 1) / 2;
2211
2212 free_block(cachep, ac->entry, tofree, node, list);
2213 ac->avail -= tofree;
2214 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2215 }
2216
2217 static void do_drain(void *arg)
2218 {
2219 struct kmem_cache *cachep = arg;
2220 struct array_cache *ac;
2221 int node = numa_mem_id();
2222 struct kmem_cache_node *n;
2223 LIST_HEAD(list);
2224
2225 check_irq_off();
2226 ac = cpu_cache_get(cachep);
2227 n = get_node(cachep, node);
2228 spin_lock(&n->list_lock);
2229 free_block(cachep, ac->entry, ac->avail, node, &list);
2230 spin_unlock(&n->list_lock);
2231 slabs_destroy(cachep, &list);
2232 ac->avail = 0;
2233 }
2234
2235 static void drain_cpu_caches(struct kmem_cache *cachep)
2236 {
2237 struct kmem_cache_node *n;
2238 int node;
2239 LIST_HEAD(list);
2240
2241 on_each_cpu(do_drain, cachep, 1);
2242 check_irq_on();
2243 for_each_kmem_cache_node(cachep, node, n)
2244 if (n->alien)
2245 drain_alien_cache(cachep, n->alien);
2246
2247 for_each_kmem_cache_node(cachep, node, n) {
2248 spin_lock_irq(&n->list_lock);
2249 drain_array_locked(cachep, n->shared, node, true, &list);
2250 spin_unlock_irq(&n->list_lock);
2251
2252 slabs_destroy(cachep, &list);
2253 }
2254 }
2255
2256 /*
2257 * Remove slabs from the list of free slabs.
2258 * Specify the number of slabs to drain in tofree.
2259 *
2260 * Returns the actual number of slabs released.
2261 */
2262 static int drain_freelist(struct kmem_cache *cache,
2263 struct kmem_cache_node *n, int tofree)
2264 {
2265 struct list_head *p;
2266 int nr_freed;
2267 struct page *page;
2268
2269 nr_freed = 0;
2270 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2271
2272 spin_lock_irq(&n->list_lock);
2273 p = n->slabs_free.prev;
2274 if (p == &n->slabs_free) {
2275 spin_unlock_irq(&n->list_lock);
2276 goto out;
2277 }
2278
2279 page = list_entry(p, struct page, lru);
2280 list_del(&page->lru);
2281 n->free_slabs--;
2282 n->total_slabs--;
2283 /*
2284 * Safe to drop the lock. The slab is no longer linked
2285 * to the cache.
2286 */
2287 n->free_objects -= cache->num;
2288 spin_unlock_irq(&n->list_lock);
2289 slab_destroy(cache, page);
2290 nr_freed++;
2291 }
2292 out:
2293 return nr_freed;
2294 }
2295
2296 int __kmem_cache_shrink(struct kmem_cache *cachep)
2297 {
2298 int ret = 0;
2299 int node;
2300 struct kmem_cache_node *n;
2301
2302 drain_cpu_caches(cachep);
2303
2304 check_irq_on();
2305 for_each_kmem_cache_node(cachep, node, n) {
2306 drain_freelist(cachep, n, INT_MAX);
2307
2308 ret += !list_empty(&n->slabs_full) ||
2309 !list_empty(&n->slabs_partial);
2310 }
2311 return (ret ? 1 : 0);
2312 }
2313
2314 #ifdef CONFIG_MEMCG
2315 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2316 {
2317 __kmem_cache_shrink(cachep);
2318 }
2319 #endif
2320
2321 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2322 {
2323 return __kmem_cache_shrink(cachep);
2324 }
2325
2326 void __kmem_cache_release(struct kmem_cache *cachep)
2327 {
2328 int i;
2329 struct kmem_cache_node *n;
2330
2331 cache_random_seq_destroy(cachep);
2332
2333 free_percpu(cachep->cpu_cache);
2334
2335 /* NUMA: free the node structures */
2336 for_each_kmem_cache_node(cachep, i, n) {
2337 kfree(n->shared);
2338 free_alien_cache(n->alien);
2339 kfree(n);
2340 cachep->node[i] = NULL;
2341 }
2342 }
2343
2344 /*
2345 * Get the memory for a slab management obj.
2346 *
2347 * For a slab cache when the slab descriptor is off-slab, the
2348 * slab descriptor can't come from the same cache which is being created,
2349 * Because if it is the case, that means we defer the creation of
2350 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2351 * And we eventually call down to __kmem_cache_create(), which
2352 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2353 * This is a "chicken-and-egg" problem.
2354 *
2355 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2356 * which are all initialized during kmem_cache_init().
2357 */
2358 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2359 struct page *page, int colour_off,
2360 gfp_t local_flags, int nodeid)
2361 {
2362 void *freelist;
2363 void *addr = page_address(page);
2364
2365 page->s_mem = addr + colour_off;
2366 page->active = 0;
2367
2368 if (OBJFREELIST_SLAB(cachep))
2369 freelist = NULL;
2370 else if (OFF_SLAB(cachep)) {
2371 /* Slab management obj is off-slab. */
2372 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2373 local_flags, nodeid);
2374 if (!freelist)
2375 return NULL;
2376 } else {
2377 /* We will use last bytes at the slab for freelist */
2378 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2379 cachep->freelist_size;
2380 }
2381
2382 return freelist;
2383 }
2384
2385 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2386 {
2387 return ((freelist_idx_t *)page->freelist)[idx];
2388 }
2389
2390 static inline void set_free_obj(struct page *page,
2391 unsigned int idx, freelist_idx_t val)
2392 {
2393 ((freelist_idx_t *)(page->freelist))[idx] = val;
2394 }
2395
2396 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2397 {
2398 #if DEBUG
2399 int i;
2400
2401 for (i = 0; i < cachep->num; i++) {
2402 void *objp = index_to_obj(cachep, page, i);
2403
2404 if (cachep->flags & SLAB_STORE_USER)
2405 *dbg_userword(cachep, objp) = NULL;
2406
2407 if (cachep->flags & SLAB_RED_ZONE) {
2408 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2409 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2410 }
2411 /*
2412 * Constructors are not allowed to allocate memory from the same
2413 * cache which they are a constructor for. Otherwise, deadlock.
2414 * They must also be threaded.
2415 */
2416 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2417 kasan_unpoison_object_data(cachep,
2418 objp + obj_offset(cachep));
2419 cachep->ctor(objp + obj_offset(cachep));
2420 kasan_poison_object_data(
2421 cachep, objp + obj_offset(cachep));
2422 }
2423
2424 if (cachep->flags & SLAB_RED_ZONE) {
2425 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2426 slab_error(cachep, "constructor overwrote the end of an object");
2427 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2428 slab_error(cachep, "constructor overwrote the start of an object");
2429 }
2430 /* need to poison the objs? */
2431 if (cachep->flags & SLAB_POISON) {
2432 poison_obj(cachep, objp, POISON_FREE);
2433 slab_kernel_map(cachep, objp, 0, 0);
2434 }
2435 }
2436 #endif
2437 }
2438
2439 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2440 /* Hold information during a freelist initialization */
2441 union freelist_init_state {
2442 struct {
2443 unsigned int pos;
2444 unsigned int *list;
2445 unsigned int count;
2446 };
2447 struct rnd_state rnd_state;
2448 };
2449
2450 /*
2451 * Initialize the state based on the randomization methode available.
2452 * return true if the pre-computed list is available, false otherwize.
2453 */
2454 static bool freelist_state_initialize(union freelist_init_state *state,
2455 struct kmem_cache *cachep,
2456 unsigned int count)
2457 {
2458 bool ret;
2459 unsigned int rand;
2460
2461 /* Use best entropy available to define a random shift */
2462 rand = get_random_int();
2463
2464 /* Use a random state if the pre-computed list is not available */
2465 if (!cachep->random_seq) {
2466 prandom_seed_state(&state->rnd_state, rand);
2467 ret = false;
2468 } else {
2469 state->list = cachep->random_seq;
2470 state->count = count;
2471 state->pos = rand % count;
2472 ret = true;
2473 }
2474 return ret;
2475 }
2476
2477 /* Get the next entry on the list and randomize it using a random shift */
2478 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2479 {
2480 if (state->pos >= state->count)
2481 state->pos = 0;
2482 return state->list[state->pos++];
2483 }
2484
2485 /* Swap two freelist entries */
2486 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2487 {
2488 swap(((freelist_idx_t *)page->freelist)[a],
2489 ((freelist_idx_t *)page->freelist)[b]);
2490 }
2491
2492 /*
2493 * Shuffle the freelist initialization state based on pre-computed lists.
2494 * return true if the list was successfully shuffled, false otherwise.
2495 */
2496 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2497 {
2498 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2499 union freelist_init_state state;
2500 bool precomputed;
2501
2502 if (count < 2)
2503 return false;
2504
2505 precomputed = freelist_state_initialize(&state, cachep, count);
2506
2507 /* Take a random entry as the objfreelist */
2508 if (OBJFREELIST_SLAB(cachep)) {
2509 if (!precomputed)
2510 objfreelist = count - 1;
2511 else
2512 objfreelist = next_random_slot(&state);
2513 page->freelist = index_to_obj(cachep, page, objfreelist) +
2514 obj_offset(cachep);
2515 count--;
2516 }
2517
2518 /*
2519 * On early boot, generate the list dynamically.
2520 * Later use a pre-computed list for speed.
2521 */
2522 if (!precomputed) {
2523 for (i = 0; i < count; i++)
2524 set_free_obj(page, i, i);
2525
2526 /* Fisher-Yates shuffle */
2527 for (i = count - 1; i > 0; i--) {
2528 rand = prandom_u32_state(&state.rnd_state);
2529 rand %= (i + 1);
2530 swap_free_obj(page, i, rand);
2531 }
2532 } else {
2533 for (i = 0; i < count; i++)
2534 set_free_obj(page, i, next_random_slot(&state));
2535 }
2536
2537 if (OBJFREELIST_SLAB(cachep))
2538 set_free_obj(page, cachep->num - 1, objfreelist);
2539
2540 return true;
2541 }
2542 #else
2543 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2544 struct page *page)
2545 {
2546 return false;
2547 }
2548 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2549
2550 static void cache_init_objs(struct kmem_cache *cachep,
2551 struct page *page)
2552 {
2553 int i;
2554 void *objp;
2555 bool shuffled;
2556
2557 cache_init_objs_debug(cachep, page);
2558
2559 /* Try to randomize the freelist if enabled */
2560 shuffled = shuffle_freelist(cachep, page);
2561
2562 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2563 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2564 obj_offset(cachep);
2565 }
2566
2567 for (i = 0; i < cachep->num; i++) {
2568 objp = index_to_obj(cachep, page, i);
2569 kasan_init_slab_obj(cachep, objp);
2570
2571 /* constructor could break poison info */
2572 if (DEBUG == 0 && cachep->ctor) {
2573 kasan_unpoison_object_data(cachep, objp);
2574 cachep->ctor(objp);
2575 kasan_poison_object_data(cachep, objp);
2576 }
2577
2578 if (!shuffled)
2579 set_free_obj(page, i, i);
2580 }
2581 }
2582
2583 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2584 {
2585 void *objp;
2586
2587 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2588 page->active++;
2589
2590 #if DEBUG
2591 if (cachep->flags & SLAB_STORE_USER)
2592 set_store_user_dirty(cachep);
2593 #endif
2594
2595 return objp;
2596 }
2597
2598 static void slab_put_obj(struct kmem_cache *cachep,
2599 struct page *page, void *objp)
2600 {
2601 unsigned int objnr = obj_to_index(cachep, page, objp);
2602 #if DEBUG
2603 unsigned int i;
2604
2605 /* Verify double free bug */
2606 for (i = page->active; i < cachep->num; i++) {
2607 if (get_free_obj(page, i) == objnr) {
2608 pr_err("slab: double free detected in cache '%s', objp %px\n",
2609 cachep->name, objp);
2610 BUG();
2611 }
2612 }
2613 #endif
2614 page->active--;
2615 if (!page->freelist)
2616 page->freelist = objp + obj_offset(cachep);
2617
2618 set_free_obj(page, page->active, objnr);
2619 }
2620
2621 /*
2622 * Map pages beginning at addr to the given cache and slab. This is required
2623 * for the slab allocator to be able to lookup the cache and slab of a
2624 * virtual address for kfree, ksize, and slab debugging.
2625 */
2626 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2627 void *freelist)
2628 {
2629 page->slab_cache = cache;
2630 page->freelist = freelist;
2631 }
2632
2633 /*
2634 * Grow (by 1) the number of slabs within a cache. This is called by
2635 * kmem_cache_alloc() when there are no active objs left in a cache.
2636 */
2637 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2638 gfp_t flags, int nodeid)
2639 {
2640 void *freelist;
2641 size_t offset;
2642 gfp_t local_flags;
2643 int page_node;
2644 struct kmem_cache_node *n;
2645 struct page *page;
2646
2647 /*
2648 * Be lazy and only check for valid flags here, keeping it out of the
2649 * critical path in kmem_cache_alloc().
2650 */
2651 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2652 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2653 flags &= ~GFP_SLAB_BUG_MASK;
2654 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2655 invalid_mask, &invalid_mask, flags, &flags);
2656 dump_stack();
2657 }
2658 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2659
2660 check_irq_off();
2661 if (gfpflags_allow_blocking(local_flags))
2662 local_irq_enable();
2663
2664 /*
2665 * Get mem for the objs. Attempt to allocate a physical page from
2666 * 'nodeid'.
2667 */
2668 page = kmem_getpages(cachep, local_flags, nodeid);
2669 if (!page)
2670 goto failed;
2671
2672 page_node = page_to_nid(page);
2673 n = get_node(cachep, page_node);
2674
2675 /* Get colour for the slab, and cal the next value. */
2676 n->colour_next++;
2677 if (n->colour_next >= cachep->colour)
2678 n->colour_next = 0;
2679
2680 offset = n->colour_next;
2681 if (offset >= cachep->colour)
2682 offset = 0;
2683
2684 offset *= cachep->colour_off;
2685
2686 /* Get slab management. */
2687 freelist = alloc_slabmgmt(cachep, page, offset,
2688 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2689 if (OFF_SLAB(cachep) && !freelist)
2690 goto opps1;
2691
2692 slab_map_pages(cachep, page, freelist);
2693
2694 kasan_poison_slab(page);
2695 cache_init_objs(cachep, page);
2696
2697 if (gfpflags_allow_blocking(local_flags))
2698 local_irq_disable();
2699
2700 return page;
2701
2702 opps1:
2703 kmem_freepages(cachep, page);
2704 failed:
2705 if (gfpflags_allow_blocking(local_flags))
2706 local_irq_disable();
2707 return NULL;
2708 }
2709
2710 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2711 {
2712 struct kmem_cache_node *n;
2713 void *list = NULL;
2714
2715 check_irq_off();
2716
2717 if (!page)
2718 return;
2719
2720 INIT_LIST_HEAD(&page->lru);
2721 n = get_node(cachep, page_to_nid(page));
2722
2723 spin_lock(&n->list_lock);
2724 n->total_slabs++;
2725 if (!page->active) {
2726 list_add_tail(&page->lru, &(n->slabs_free));
2727 n->free_slabs++;
2728 } else
2729 fixup_slab_list(cachep, n, page, &list);
2730
2731 STATS_INC_GROWN(cachep);
2732 n->free_objects += cachep->num - page->active;
2733 spin_unlock(&n->list_lock);
2734
2735 fixup_objfreelist_debug(cachep, &list);
2736 }
2737
2738 #if DEBUG
2739
2740 /*
2741 * Perform extra freeing checks:
2742 * - detect bad pointers.
2743 * - POISON/RED_ZONE checking
2744 */
2745 static void kfree_debugcheck(const void *objp)
2746 {
2747 if (!virt_addr_valid(objp)) {
2748 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2749 (unsigned long)objp);
2750 BUG();
2751 }
2752 }
2753
2754 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2755 {
2756 unsigned long long redzone1, redzone2;
2757
2758 redzone1 = *dbg_redzone1(cache, obj);
2759 redzone2 = *dbg_redzone2(cache, obj);
2760
2761 /*
2762 * Redzone is ok.
2763 */
2764 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2765 return;
2766
2767 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2768 slab_error(cache, "double free detected");
2769 else
2770 slab_error(cache, "memory outside object was overwritten");
2771
2772 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2773 obj, redzone1, redzone2);
2774 }
2775
2776 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2777 unsigned long caller)
2778 {
2779 unsigned int objnr;
2780 struct page *page;
2781
2782 BUG_ON(virt_to_cache(objp) != cachep);
2783
2784 objp -= obj_offset(cachep);
2785 kfree_debugcheck(objp);
2786 page = virt_to_head_page(objp);
2787
2788 if (cachep->flags & SLAB_RED_ZONE) {
2789 verify_redzone_free(cachep, objp);
2790 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2791 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2792 }
2793 if (cachep->flags & SLAB_STORE_USER) {
2794 set_store_user_dirty(cachep);
2795 *dbg_userword(cachep, objp) = (void *)caller;
2796 }
2797
2798 objnr = obj_to_index(cachep, page, objp);
2799
2800 BUG_ON(objnr >= cachep->num);
2801 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2802
2803 if (cachep->flags & SLAB_POISON) {
2804 poison_obj(cachep, objp, POISON_FREE);
2805 slab_kernel_map(cachep, objp, 0, caller);
2806 }
2807 return objp;
2808 }
2809
2810 #else
2811 #define kfree_debugcheck(x) do { } while(0)
2812 #define cache_free_debugcheck(x,objp,z) (objp)
2813 #endif
2814
2815 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2816 void **list)
2817 {
2818 #if DEBUG
2819 void *next = *list;
2820 void *objp;
2821
2822 while (next) {
2823 objp = next - obj_offset(cachep);
2824 next = *(void **)next;
2825 poison_obj(cachep, objp, POISON_FREE);
2826 }
2827 #endif
2828 }
2829
2830 static inline void fixup_slab_list(struct kmem_cache *cachep,
2831 struct kmem_cache_node *n, struct page *page,
2832 void **list)
2833 {
2834 /* move slabp to correct slabp list: */
2835 list_del(&page->lru);
2836 if (page->active == cachep->num) {
2837 list_add(&page->lru, &n->slabs_full);
2838 if (OBJFREELIST_SLAB(cachep)) {
2839 #if DEBUG
2840 /* Poisoning will be done without holding the lock */
2841 if (cachep->flags & SLAB_POISON) {
2842 void **objp = page->freelist;
2843
2844 *objp = *list;
2845 *list = objp;
2846 }
2847 #endif
2848 page->freelist = NULL;
2849 }
2850 } else
2851 list_add(&page->lru, &n->slabs_partial);
2852 }
2853
2854 /* Try to find non-pfmemalloc slab if needed */
2855 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2856 struct page *page, bool pfmemalloc)
2857 {
2858 if (!page)
2859 return NULL;
2860
2861 if (pfmemalloc)
2862 return page;
2863
2864 if (!PageSlabPfmemalloc(page))
2865 return page;
2866
2867 /* No need to keep pfmemalloc slab if we have enough free objects */
2868 if (n->free_objects > n->free_limit) {
2869 ClearPageSlabPfmemalloc(page);
2870 return page;
2871 }
2872
2873 /* Move pfmemalloc slab to the end of list to speed up next search */
2874 list_del(&page->lru);
2875 if (!page->active) {
2876 list_add_tail(&page->lru, &n->slabs_free);
2877 n->free_slabs++;
2878 } else
2879 list_add_tail(&page->lru, &n->slabs_partial);
2880
2881 list_for_each_entry(page, &n->slabs_partial, lru) {
2882 if (!PageSlabPfmemalloc(page))
2883 return page;
2884 }
2885
2886 n->free_touched = 1;
2887 list_for_each_entry(page, &n->slabs_free, lru) {
2888 if (!PageSlabPfmemalloc(page)) {
2889 n->free_slabs--;
2890 return page;
2891 }
2892 }
2893
2894 return NULL;
2895 }
2896
2897 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2898 {
2899 struct page *page;
2900
2901 assert_spin_locked(&n->list_lock);
2902 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2903 if (!page) {
2904 n->free_touched = 1;
2905 page = list_first_entry_or_null(&n->slabs_free, struct page,
2906 lru);
2907 if (page)
2908 n->free_slabs--;
2909 }
2910
2911 if (sk_memalloc_socks())
2912 page = get_valid_first_slab(n, page, pfmemalloc);
2913
2914 return page;
2915 }
2916
2917 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2918 struct kmem_cache_node *n, gfp_t flags)
2919 {
2920 struct page *page;
2921 void *obj;
2922 void *list = NULL;
2923
2924 if (!gfp_pfmemalloc_allowed(flags))
2925 return NULL;
2926
2927 spin_lock(&n->list_lock);
2928 page = get_first_slab(n, true);
2929 if (!page) {
2930 spin_unlock(&n->list_lock);
2931 return NULL;
2932 }
2933
2934 obj = slab_get_obj(cachep, page);
2935 n->free_objects--;
2936
2937 fixup_slab_list(cachep, n, page, &list);
2938
2939 spin_unlock(&n->list_lock);
2940 fixup_objfreelist_debug(cachep, &list);
2941
2942 return obj;
2943 }
2944
2945 /*
2946 * Slab list should be fixed up by fixup_slab_list() for existing slab
2947 * or cache_grow_end() for new slab
2948 */
2949 static __always_inline int alloc_block(struct kmem_cache *cachep,
2950 struct array_cache *ac, struct page *page, int batchcount)
2951 {
2952 /*
2953 * There must be at least one object available for
2954 * allocation.
2955 */
2956 BUG_ON(page->active >= cachep->num);
2957
2958 while (page->active < cachep->num && batchcount--) {
2959 STATS_INC_ALLOCED(cachep);
2960 STATS_INC_ACTIVE(cachep);
2961 STATS_SET_HIGH(cachep);
2962
2963 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2964 }
2965
2966 return batchcount;
2967 }
2968
2969 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2970 {
2971 int batchcount;
2972 struct kmem_cache_node *n;
2973 struct array_cache *ac, *shared;
2974 int node;
2975 void *list = NULL;
2976 struct page *page;
2977
2978 check_irq_off();
2979 node = numa_mem_id();
2980
2981 ac = cpu_cache_get(cachep);
2982 batchcount = ac->batchcount;
2983 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2984 /*
2985 * If there was little recent activity on this cache, then
2986 * perform only a partial refill. Otherwise we could generate
2987 * refill bouncing.
2988 */
2989 batchcount = BATCHREFILL_LIMIT;
2990 }
2991 n = get_node(cachep, node);
2992
2993 BUG_ON(ac->avail > 0 || !n);
2994 shared = READ_ONCE(n->shared);
2995 if (!n->free_objects && (!shared || !shared->avail))
2996 goto direct_grow;
2997
2998 spin_lock(&n->list_lock);
2999 shared = READ_ONCE(n->shared);
3000
3001 /* See if we can refill from the shared array */
3002 if (shared && transfer_objects(ac, shared, batchcount)) {
3003 shared->touched = 1;
3004 goto alloc_done;
3005 }
3006
3007 while (batchcount > 0) {
3008 /* Get slab alloc is to come from. */
3009 page = get_first_slab(n, false);
3010 if (!page)
3011 goto must_grow;
3012
3013 check_spinlock_acquired(cachep);
3014
3015 batchcount = alloc_block(cachep, ac, page, batchcount);
3016 fixup_slab_list(cachep, n, page, &list);
3017 }
3018
3019 must_grow:
3020 n->free_objects -= ac->avail;
3021 alloc_done:
3022 spin_unlock(&n->list_lock);
3023 fixup_objfreelist_debug(cachep, &list);
3024
3025 direct_grow:
3026 if (unlikely(!ac->avail)) {
3027 /* Check if we can use obj in pfmemalloc slab */
3028 if (sk_memalloc_socks()) {
3029 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3030
3031 if (obj)
3032 return obj;
3033 }
3034
3035 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3036
3037 /*
3038 * cache_grow_begin() can reenable interrupts,
3039 * then ac could change.
3040 */
3041 ac = cpu_cache_get(cachep);
3042 if (!ac->avail && page)
3043 alloc_block(cachep, ac, page, batchcount);
3044 cache_grow_end(cachep, page);
3045
3046 if (!ac->avail)
3047 return NULL;
3048 }
3049 ac->touched = 1;
3050
3051 return ac->entry[--ac->avail];
3052 }
3053
3054 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3055 gfp_t flags)
3056 {
3057 might_sleep_if(gfpflags_allow_blocking(flags));
3058 }
3059
3060 #if DEBUG
3061 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3062 gfp_t flags, void *objp, unsigned long caller)
3063 {
3064 if (!objp)
3065 return objp;
3066 if (cachep->flags & SLAB_POISON) {
3067 check_poison_obj(cachep, objp);
3068 slab_kernel_map(cachep, objp, 1, 0);
3069 poison_obj(cachep, objp, POISON_INUSE);
3070 }
3071 if (cachep->flags & SLAB_STORE_USER)
3072 *dbg_userword(cachep, objp) = (void *)caller;
3073
3074 if (cachep->flags & SLAB_RED_ZONE) {
3075 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3076 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3077 slab_error(cachep, "double free, or memory outside object was overwritten");
3078 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3079 objp, *dbg_redzone1(cachep, objp),
3080 *dbg_redzone2(cachep, objp));
3081 }
3082 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3083 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3084 }
3085
3086 objp += obj_offset(cachep);
3087 if (cachep->ctor && cachep->flags & SLAB_POISON)
3088 cachep->ctor(objp);
3089 if (ARCH_SLAB_MINALIGN &&
3090 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3091 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3092 objp, (int)ARCH_SLAB_MINALIGN);
3093 }
3094 return objp;
3095 }
3096 #else
3097 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3098 #endif
3099
3100 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3101 {
3102 void *objp;
3103 struct array_cache *ac;
3104
3105 check_irq_off();
3106
3107 ac = cpu_cache_get(cachep);
3108 if (likely(ac->avail)) {
3109 ac->touched = 1;
3110 objp = ac->entry[--ac->avail];
3111
3112 STATS_INC_ALLOCHIT(cachep);
3113 goto out;
3114 }
3115
3116 STATS_INC_ALLOCMISS(cachep);
3117 objp = cache_alloc_refill(cachep, flags);
3118 /*
3119 * the 'ac' may be updated by cache_alloc_refill(),
3120 * and kmemleak_erase() requires its correct value.
3121 */
3122 ac = cpu_cache_get(cachep);
3123
3124 out:
3125 /*
3126 * To avoid a false negative, if an object that is in one of the
3127 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3128 * treat the array pointers as a reference to the object.
3129 */
3130 if (objp)
3131 kmemleak_erase(&ac->entry[ac->avail]);
3132 return objp;
3133 }
3134
3135 #ifdef CONFIG_NUMA
3136 /*
3137 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3138 *
3139 * If we are in_interrupt, then process context, including cpusets and
3140 * mempolicy, may not apply and should not be used for allocation policy.
3141 */
3142 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3143 {
3144 int nid_alloc, nid_here;
3145
3146 if (in_interrupt() || (flags & __GFP_THISNODE))
3147 return NULL;
3148 nid_alloc = nid_here = numa_mem_id();
3149 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3150 nid_alloc = cpuset_slab_spread_node();
3151 else if (current->mempolicy)
3152 nid_alloc = mempolicy_slab_node();
3153 if (nid_alloc != nid_here)
3154 return ____cache_alloc_node(cachep, flags, nid_alloc);
3155 return NULL;
3156 }
3157
3158 /*
3159 * Fallback function if there was no memory available and no objects on a
3160 * certain node and fall back is permitted. First we scan all the
3161 * available node for available objects. If that fails then we
3162 * perform an allocation without specifying a node. This allows the page
3163 * allocator to do its reclaim / fallback magic. We then insert the
3164 * slab into the proper nodelist and then allocate from it.
3165 */
3166 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3167 {
3168 struct zonelist *zonelist;
3169 struct zoneref *z;
3170 struct zone *zone;
3171 enum zone_type high_zoneidx = gfp_zone(flags);
3172 void *obj = NULL;
3173 struct page *page;
3174 int nid;
3175 unsigned int cpuset_mems_cookie;
3176
3177 if (flags & __GFP_THISNODE)
3178 return NULL;
3179
3180 retry_cpuset:
3181 cpuset_mems_cookie = read_mems_allowed_begin();
3182 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3183
3184 retry:
3185 /*
3186 * Look through allowed nodes for objects available
3187 * from existing per node queues.
3188 */
3189 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3190 nid = zone_to_nid(zone);
3191
3192 if (cpuset_zone_allowed(zone, flags) &&
3193 get_node(cache, nid) &&
3194 get_node(cache, nid)->free_objects) {
3195 obj = ____cache_alloc_node(cache,
3196 gfp_exact_node(flags), nid);
3197 if (obj)
3198 break;
3199 }
3200 }
3201
3202 if (!obj) {
3203 /*
3204 * This allocation will be performed within the constraints
3205 * of the current cpuset / memory policy requirements.
3206 * We may trigger various forms of reclaim on the allowed
3207 * set and go into memory reserves if necessary.
3208 */
3209 page = cache_grow_begin(cache, flags, numa_mem_id());
3210 cache_grow_end(cache, page);
3211 if (page) {
3212 nid = page_to_nid(page);
3213 obj = ____cache_alloc_node(cache,
3214 gfp_exact_node(flags), nid);
3215
3216 /*
3217 * Another processor may allocate the objects in
3218 * the slab since we are not holding any locks.
3219 */
3220 if (!obj)
3221 goto retry;
3222 }
3223 }
3224
3225 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3226 goto retry_cpuset;
3227 return obj;
3228 }
3229
3230 /*
3231 * A interface to enable slab creation on nodeid
3232 */
3233 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3234 int nodeid)
3235 {
3236 struct page *page;
3237 struct kmem_cache_node *n;
3238 void *obj = NULL;
3239 void *list = NULL;
3240
3241 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3242 n = get_node(cachep, nodeid);
3243 BUG_ON(!n);
3244
3245 check_irq_off();
3246 spin_lock(&n->list_lock);
3247 page = get_first_slab(n, false);
3248 if (!page)
3249 goto must_grow;
3250
3251 check_spinlock_acquired_node(cachep, nodeid);
3252
3253 STATS_INC_NODEALLOCS(cachep);
3254 STATS_INC_ACTIVE(cachep);
3255 STATS_SET_HIGH(cachep);
3256
3257 BUG_ON(page->active == cachep->num);
3258
3259 obj = slab_get_obj(cachep, page);
3260 n->free_objects--;
3261
3262 fixup_slab_list(cachep, n, page, &list);
3263
3264 spin_unlock(&n->list_lock);
3265 fixup_objfreelist_debug(cachep, &list);
3266 return obj;
3267
3268 must_grow:
3269 spin_unlock(&n->list_lock);
3270 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3271 if (page) {
3272 /* This slab isn't counted yet so don't update free_objects */
3273 obj = slab_get_obj(cachep, page);
3274 }
3275 cache_grow_end(cachep, page);
3276
3277 return obj ? obj : fallback_alloc(cachep, flags);
3278 }
3279
3280 static __always_inline void *
3281 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3282 unsigned long caller)
3283 {
3284 unsigned long save_flags;
3285 void *ptr;
3286 int slab_node = numa_mem_id();
3287
3288 flags &= gfp_allowed_mask;
3289 cachep = slab_pre_alloc_hook(cachep, flags);
3290 if (unlikely(!cachep))
3291 return NULL;
3292
3293 cache_alloc_debugcheck_before(cachep, flags);
3294 local_irq_save(save_flags);
3295
3296 if (nodeid == NUMA_NO_NODE)
3297 nodeid = slab_node;
3298
3299 if (unlikely(!get_node(cachep, nodeid))) {
3300 /* Node not bootstrapped yet */
3301 ptr = fallback_alloc(cachep, flags);
3302 goto out;
3303 }
3304
3305 if (nodeid == slab_node) {
3306 /*
3307 * Use the locally cached objects if possible.
3308 * However ____cache_alloc does not allow fallback
3309 * to other nodes. It may fail while we still have
3310 * objects on other nodes available.
3311 */
3312 ptr = ____cache_alloc(cachep, flags);
3313 if (ptr)
3314 goto out;
3315 }
3316 /* ___cache_alloc_node can fall back to other nodes */
3317 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3318 out:
3319 local_irq_restore(save_flags);
3320 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3321
3322 if (unlikely(flags & __GFP_ZERO) && ptr)
3323 memset(ptr, 0, cachep->object_size);
3324
3325 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3326 return ptr;
3327 }
3328
3329 static __always_inline void *
3330 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3331 {
3332 void *objp;
3333
3334 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3335 objp = alternate_node_alloc(cache, flags);
3336 if (objp)
3337 goto out;
3338 }
3339 objp = ____cache_alloc(cache, flags);
3340
3341 /*
3342 * We may just have run out of memory on the local node.
3343 * ____cache_alloc_node() knows how to locate memory on other nodes
3344 */
3345 if (!objp)
3346 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3347
3348 out:
3349 return objp;
3350 }
3351 #else
3352
3353 static __always_inline void *
3354 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3355 {
3356 return ____cache_alloc(cachep, flags);
3357 }
3358
3359 #endif /* CONFIG_NUMA */
3360
3361 static __always_inline void *
3362 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3363 {
3364 unsigned long save_flags;
3365 void *objp;
3366
3367 flags &= gfp_allowed_mask;
3368 cachep = slab_pre_alloc_hook(cachep, flags);
3369 if (unlikely(!cachep))
3370 return NULL;
3371
3372 cache_alloc_debugcheck_before(cachep, flags);
3373 local_irq_save(save_flags);
3374 objp = __do_cache_alloc(cachep, flags);
3375 local_irq_restore(save_flags);
3376 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3377 prefetchw(objp);
3378
3379 if (unlikely(flags & __GFP_ZERO) && objp)
3380 memset(objp, 0, cachep->object_size);
3381
3382 slab_post_alloc_hook(cachep, flags, 1, &objp);
3383 return objp;
3384 }
3385
3386 /*
3387 * Caller needs to acquire correct kmem_cache_node's list_lock
3388 * @list: List of detached free slabs should be freed by caller
3389 */
3390 static void free_block(struct kmem_cache *cachep, void **objpp,
3391 int nr_objects, int node, struct list_head *list)
3392 {
3393 int i;
3394 struct kmem_cache_node *n = get_node(cachep, node);
3395 struct page *page;
3396
3397 n->free_objects += nr_objects;
3398
3399 for (i = 0; i < nr_objects; i++) {
3400 void *objp;
3401 struct page *page;
3402
3403 objp = objpp[i];
3404
3405 page = virt_to_head_page(objp);
3406 list_del(&page->lru);
3407 check_spinlock_acquired_node(cachep, node);
3408 slab_put_obj(cachep, page, objp);
3409 STATS_DEC_ACTIVE(cachep);
3410
3411 /* fixup slab chains */
3412 if (page->active == 0) {
3413 list_add(&page->lru, &n->slabs_free);
3414 n->free_slabs++;
3415 } else {
3416 /* Unconditionally move a slab to the end of the
3417 * partial list on free - maximum time for the
3418 * other objects to be freed, too.
3419 */
3420 list_add_tail(&page->lru, &n->slabs_partial);
3421 }
3422 }
3423
3424 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3425 n->free_objects -= cachep->num;
3426
3427 page = list_last_entry(&n->slabs_free, struct page, lru);
3428 list_move(&page->lru, list);
3429 n->free_slabs--;
3430 n->total_slabs--;
3431 }
3432 }
3433
3434 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3435 {
3436 int batchcount;
3437 struct kmem_cache_node *n;
3438 int node = numa_mem_id();
3439 LIST_HEAD(list);
3440
3441 batchcount = ac->batchcount;
3442
3443 check_irq_off();
3444 n = get_node(cachep, node);
3445 spin_lock(&n->list_lock);
3446 if (n->shared) {
3447 struct array_cache *shared_array = n->shared;
3448 int max = shared_array->limit - shared_array->avail;
3449 if (max) {
3450 if (batchcount > max)
3451 batchcount = max;
3452 memcpy(&(shared_array->entry[shared_array->avail]),
3453 ac->entry, sizeof(void *) * batchcount);
3454 shared_array->avail += batchcount;
3455 goto free_done;
3456 }
3457 }
3458
3459 free_block(cachep, ac->entry, batchcount, node, &list);
3460 free_done:
3461 #if STATS
3462 {
3463 int i = 0;
3464 struct page *page;
3465
3466 list_for_each_entry(page, &n->slabs_free, lru) {
3467 BUG_ON(page->active);
3468
3469 i++;
3470 }
3471 STATS_SET_FREEABLE(cachep, i);
3472 }
3473 #endif
3474 spin_unlock(&n->list_lock);
3475 slabs_destroy(cachep, &list);
3476 ac->avail -= batchcount;
3477 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3478 }
3479
3480 /*
3481 * Release an obj back to its cache. If the obj has a constructed state, it must
3482 * be in this state _before_ it is released. Called with disabled ints.
3483 */
3484 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3485 unsigned long caller)
3486 {
3487 /* Put the object into the quarantine, don't touch it for now. */
3488 if (kasan_slab_free(cachep, objp))
3489 return;
3490
3491 ___cache_free(cachep, objp, caller);
3492 }
3493
3494 void ___cache_free(struct kmem_cache *cachep, void *objp,
3495 unsigned long caller)
3496 {
3497 struct array_cache *ac = cpu_cache_get(cachep);
3498
3499 check_irq_off();
3500 kmemleak_free_recursive(objp, cachep->flags);
3501 objp = cache_free_debugcheck(cachep, objp, caller);
3502
3503 /*
3504 * Skip calling cache_free_alien() when the platform is not numa.
3505 * This will avoid cache misses that happen while accessing slabp (which
3506 * is per page memory reference) to get nodeid. Instead use a global
3507 * variable to skip the call, which is mostly likely to be present in
3508 * the cache.
3509 */
3510 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3511 return;
3512
3513 if (ac->avail < ac->limit) {
3514 STATS_INC_FREEHIT(cachep);
3515 } else {
3516 STATS_INC_FREEMISS(cachep);
3517 cache_flusharray(cachep, ac);
3518 }
3519
3520 if (sk_memalloc_socks()) {
3521 struct page *page = virt_to_head_page(objp);
3522
3523 if (unlikely(PageSlabPfmemalloc(page))) {
3524 cache_free_pfmemalloc(cachep, page, objp);
3525 return;
3526 }
3527 }
3528
3529 ac->entry[ac->avail++] = objp;
3530 }
3531
3532 /**
3533 * kmem_cache_alloc - Allocate an object
3534 * @cachep: The cache to allocate from.
3535 * @flags: See kmalloc().
3536 *
3537 * Allocate an object from this cache. The flags are only relevant
3538 * if the cache has no available objects.
3539 */
3540 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3541 {
3542 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3543
3544 kasan_slab_alloc(cachep, ret, flags);
3545 trace_kmem_cache_alloc(_RET_IP_, ret,
3546 cachep->object_size, cachep->size, flags);
3547
3548 return ret;
3549 }
3550 EXPORT_SYMBOL(kmem_cache_alloc);
3551
3552 static __always_inline void
3553 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3554 size_t size, void **p, unsigned long caller)
3555 {
3556 size_t i;
3557
3558 for (i = 0; i < size; i++)
3559 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3560 }
3561
3562 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3563 void **p)
3564 {
3565 size_t i;
3566
3567 s = slab_pre_alloc_hook(s, flags);
3568 if (!s)
3569 return 0;
3570
3571 cache_alloc_debugcheck_before(s, flags);
3572
3573 local_irq_disable();
3574 for (i = 0; i < size; i++) {
3575 void *objp = __do_cache_alloc(s, flags);
3576
3577 if (unlikely(!objp))
3578 goto error;
3579 p[i] = objp;
3580 }
3581 local_irq_enable();
3582
3583 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3584
3585 /* Clear memory outside IRQ disabled section */
3586 if (unlikely(flags & __GFP_ZERO))
3587 for (i = 0; i < size; i++)
3588 memset(p[i], 0, s->object_size);
3589
3590 slab_post_alloc_hook(s, flags, size, p);
3591 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3592 return size;
3593 error:
3594 local_irq_enable();
3595 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3596 slab_post_alloc_hook(s, flags, i, p);
3597 __kmem_cache_free_bulk(s, i, p);
3598 return 0;
3599 }
3600 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3601
3602 #ifdef CONFIG_TRACING
3603 void *
3604 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3605 {
3606 void *ret;
3607
3608 ret = slab_alloc(cachep, flags, _RET_IP_);
3609
3610 kasan_kmalloc(cachep, ret, size, flags);
3611 trace_kmalloc(_RET_IP_, ret,
3612 size, cachep->size, flags);
3613 return ret;
3614 }
3615 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3616 #endif
3617
3618 #ifdef CONFIG_NUMA
3619 /**
3620 * kmem_cache_alloc_node - Allocate an object on the specified node
3621 * @cachep: The cache to allocate from.
3622 * @flags: See kmalloc().
3623 * @nodeid: node number of the target node.
3624 *
3625 * Identical to kmem_cache_alloc but it will allocate memory on the given
3626 * node, which can improve the performance for cpu bound structures.
3627 *
3628 * Fallback to other node is possible if __GFP_THISNODE is not set.
3629 */
3630 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3631 {
3632 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3633
3634 kasan_slab_alloc(cachep, ret, flags);
3635 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3636 cachep->object_size, cachep->size,
3637 flags, nodeid);
3638
3639 return ret;
3640 }
3641 EXPORT_SYMBOL(kmem_cache_alloc_node);
3642
3643 #ifdef CONFIG_TRACING
3644 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3645 gfp_t flags,
3646 int nodeid,
3647 size_t size)
3648 {
3649 void *ret;
3650
3651 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3652
3653 kasan_kmalloc(cachep, ret, size, flags);
3654 trace_kmalloc_node(_RET_IP_, ret,
3655 size, cachep->size,
3656 flags, nodeid);
3657 return ret;
3658 }
3659 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3660 #endif
3661
3662 static __always_inline void *
3663 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3664 {
3665 struct kmem_cache *cachep;
3666 void *ret;
3667
3668 cachep = kmalloc_slab(size, flags);
3669 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3670 return cachep;
3671 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3672 kasan_kmalloc(cachep, ret, size, flags);
3673
3674 return ret;
3675 }
3676
3677 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3678 {
3679 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3680 }
3681 EXPORT_SYMBOL(__kmalloc_node);
3682
3683 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3684 int node, unsigned long caller)
3685 {
3686 return __do_kmalloc_node(size, flags, node, caller);
3687 }
3688 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3689 #endif /* CONFIG_NUMA */
3690
3691 /**
3692 * __do_kmalloc - allocate memory
3693 * @size: how many bytes of memory are required.
3694 * @flags: the type of memory to allocate (see kmalloc).
3695 * @caller: function caller for debug tracking of the caller
3696 */
3697 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3698 unsigned long caller)
3699 {
3700 struct kmem_cache *cachep;
3701 void *ret;
3702
3703 cachep = kmalloc_slab(size, flags);
3704 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3705 return cachep;
3706 ret = slab_alloc(cachep, flags, caller);
3707
3708 kasan_kmalloc(cachep, ret, size, flags);
3709 trace_kmalloc(caller, ret,
3710 size, cachep->size, flags);
3711
3712 return ret;
3713 }
3714
3715 void *__kmalloc(size_t size, gfp_t flags)
3716 {
3717 return __do_kmalloc(size, flags, _RET_IP_);
3718 }
3719 EXPORT_SYMBOL(__kmalloc);
3720
3721 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3722 {
3723 return __do_kmalloc(size, flags, caller);
3724 }
3725 EXPORT_SYMBOL(__kmalloc_track_caller);
3726
3727 /**
3728 * kmem_cache_free - Deallocate an object
3729 * @cachep: The cache the allocation was from.
3730 * @objp: The previously allocated object.
3731 *
3732 * Free an object which was previously allocated from this
3733 * cache.
3734 */
3735 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3736 {
3737 unsigned long flags;
3738 cachep = cache_from_obj(cachep, objp);
3739 if (!cachep)
3740 return;
3741
3742 local_irq_save(flags);
3743 debug_check_no_locks_freed(objp, cachep->object_size);
3744 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3745 debug_check_no_obj_freed(objp, cachep->object_size);
3746 __cache_free(cachep, objp, _RET_IP_);
3747 local_irq_restore(flags);
3748
3749 trace_kmem_cache_free(_RET_IP_, objp);
3750 }
3751 EXPORT_SYMBOL(kmem_cache_free);
3752
3753 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3754 {
3755 struct kmem_cache *s;
3756 size_t i;
3757
3758 local_irq_disable();
3759 for (i = 0; i < size; i++) {
3760 void *objp = p[i];
3761
3762 if (!orig_s) /* called via kfree_bulk */
3763 s = virt_to_cache(objp);
3764 else
3765 s = cache_from_obj(orig_s, objp);
3766
3767 debug_check_no_locks_freed(objp, s->object_size);
3768 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3769 debug_check_no_obj_freed(objp, s->object_size);
3770
3771 __cache_free(s, objp, _RET_IP_);
3772 }
3773 local_irq_enable();
3774
3775 /* FIXME: add tracing */
3776 }
3777 EXPORT_SYMBOL(kmem_cache_free_bulk);
3778
3779 /**
3780 * kfree - free previously allocated memory
3781 * @objp: pointer returned by kmalloc.
3782 *
3783 * If @objp is NULL, no operation is performed.
3784 *
3785 * Don't free memory not originally allocated by kmalloc()
3786 * or you will run into trouble.
3787 */
3788 void kfree(const void *objp)
3789 {
3790 struct kmem_cache *c;
3791 unsigned long flags;
3792
3793 trace_kfree(_RET_IP_, objp);
3794
3795 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3796 return;
3797 local_irq_save(flags);
3798 kfree_debugcheck(objp);
3799 c = virt_to_cache(objp);
3800 debug_check_no_locks_freed(objp, c->object_size);
3801
3802 debug_check_no_obj_freed(objp, c->object_size);
3803 __cache_free(c, (void *)objp, _RET_IP_);
3804 local_irq_restore(flags);
3805 }
3806 EXPORT_SYMBOL(kfree);
3807
3808 /*
3809 * This initializes kmem_cache_node or resizes various caches for all nodes.
3810 */
3811 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3812 {
3813 int ret;
3814 int node;
3815 struct kmem_cache_node *n;
3816
3817 for_each_online_node(node) {
3818 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3819 if (ret)
3820 goto fail;
3821
3822 }
3823
3824 return 0;
3825
3826 fail:
3827 if (!cachep->list.next) {
3828 /* Cache is not active yet. Roll back what we did */
3829 node--;
3830 while (node >= 0) {
3831 n = get_node(cachep, node);
3832 if (n) {
3833 kfree(n->shared);
3834 free_alien_cache(n->alien);
3835 kfree(n);
3836 cachep->node[node] = NULL;
3837 }
3838 node--;
3839 }
3840 }
3841 return -ENOMEM;
3842 }
3843
3844 /* Always called with the slab_mutex held */
3845 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846 int batchcount, int shared, gfp_t gfp)
3847 {
3848 struct array_cache __percpu *cpu_cache, *prev;
3849 int cpu;
3850
3851 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3852 if (!cpu_cache)
3853 return -ENOMEM;
3854
3855 prev = cachep->cpu_cache;
3856 cachep->cpu_cache = cpu_cache;
3857 /*
3858 * Without a previous cpu_cache there's no need to synchronize remote
3859 * cpus, so skip the IPIs.
3860 */
3861 if (prev)
3862 kick_all_cpus_sync();
3863
3864 check_irq_on();
3865 cachep->batchcount = batchcount;
3866 cachep->limit = limit;
3867 cachep->shared = shared;
3868
3869 if (!prev)
3870 goto setup_node;
3871
3872 for_each_online_cpu(cpu) {
3873 LIST_HEAD(list);
3874 int node;
3875 struct kmem_cache_node *n;
3876 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3877
3878 node = cpu_to_mem(cpu);
3879 n = get_node(cachep, node);
3880 spin_lock_irq(&n->list_lock);
3881 free_block(cachep, ac->entry, ac->avail, node, &list);
3882 spin_unlock_irq(&n->list_lock);
3883 slabs_destroy(cachep, &list);
3884 }
3885 free_percpu(prev);
3886
3887 setup_node:
3888 return setup_kmem_cache_nodes(cachep, gfp);
3889 }
3890
3891 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3892 int batchcount, int shared, gfp_t gfp)
3893 {
3894 int ret;
3895 struct kmem_cache *c;
3896
3897 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3898
3899 if (slab_state < FULL)
3900 return ret;
3901
3902 if ((ret < 0) || !is_root_cache(cachep))
3903 return ret;
3904
3905 lockdep_assert_held(&slab_mutex);
3906 for_each_memcg_cache(c, cachep) {
3907 /* return value determined by the root cache only */
3908 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3909 }
3910
3911 return ret;
3912 }
3913
3914 /* Called with slab_mutex held always */
3915 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3916 {
3917 int err;
3918 int limit = 0;
3919 int shared = 0;
3920 int batchcount = 0;
3921
3922 err = cache_random_seq_create(cachep, cachep->num, gfp);
3923 if (err)
3924 goto end;
3925
3926 if (!is_root_cache(cachep)) {
3927 struct kmem_cache *root = memcg_root_cache(cachep);
3928 limit = root->limit;
3929 shared = root->shared;
3930 batchcount = root->batchcount;
3931 }
3932
3933 if (limit && shared && batchcount)
3934 goto skip_setup;
3935 /*
3936 * The head array serves three purposes:
3937 * - create a LIFO ordering, i.e. return objects that are cache-warm
3938 * - reduce the number of spinlock operations.
3939 * - reduce the number of linked list operations on the slab and
3940 * bufctl chains: array operations are cheaper.
3941 * The numbers are guessed, we should auto-tune as described by
3942 * Bonwick.
3943 */
3944 if (cachep->size > 131072)
3945 limit = 1;
3946 else if (cachep->size > PAGE_SIZE)
3947 limit = 8;
3948 else if (cachep->size > 1024)
3949 limit = 24;
3950 else if (cachep->size > 256)
3951 limit = 54;
3952 else
3953 limit = 120;
3954
3955 /*
3956 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3957 * allocation behaviour: Most allocs on one cpu, most free operations
3958 * on another cpu. For these cases, an efficient object passing between
3959 * cpus is necessary. This is provided by a shared array. The array
3960 * replaces Bonwick's magazine layer.
3961 * On uniprocessor, it's functionally equivalent (but less efficient)
3962 * to a larger limit. Thus disabled by default.
3963 */
3964 shared = 0;
3965 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3966 shared = 8;
3967
3968 #if DEBUG
3969 /*
3970 * With debugging enabled, large batchcount lead to excessively long
3971 * periods with disabled local interrupts. Limit the batchcount
3972 */
3973 if (limit > 32)
3974 limit = 32;
3975 #endif
3976 batchcount = (limit + 1) / 2;
3977 skip_setup:
3978 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3979 end:
3980 if (err)
3981 pr_err("enable_cpucache failed for %s, error %d\n",
3982 cachep->name, -err);
3983 return err;
3984 }
3985
3986 /*
3987 * Drain an array if it contains any elements taking the node lock only if
3988 * necessary. Note that the node listlock also protects the array_cache
3989 * if drain_array() is used on the shared array.
3990 */
3991 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3992 struct array_cache *ac, int node)
3993 {
3994 LIST_HEAD(list);
3995
3996 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3997 check_mutex_acquired();
3998
3999 if (!ac || !ac->avail)
4000 return;
4001
4002 if (ac->touched) {
4003 ac->touched = 0;
4004 return;
4005 }
4006
4007 spin_lock_irq(&n->list_lock);
4008 drain_array_locked(cachep, ac, node, false, &list);
4009 spin_unlock_irq(&n->list_lock);
4010
4011 slabs_destroy(cachep, &list);
4012 }
4013
4014 /**
4015 * cache_reap - Reclaim memory from caches.
4016 * @w: work descriptor
4017 *
4018 * Called from workqueue/eventd every few seconds.
4019 * Purpose:
4020 * - clear the per-cpu caches for this CPU.
4021 * - return freeable pages to the main free memory pool.
4022 *
4023 * If we cannot acquire the cache chain mutex then just give up - we'll try
4024 * again on the next iteration.
4025 */
4026 static void cache_reap(struct work_struct *w)
4027 {
4028 struct kmem_cache *searchp;
4029 struct kmem_cache_node *n;
4030 int node = numa_mem_id();
4031 struct delayed_work *work = to_delayed_work(w);
4032
4033 if (!mutex_trylock(&slab_mutex))
4034 /* Give up. Setup the next iteration. */
4035 goto out;
4036
4037 list_for_each_entry(searchp, &slab_caches, list) {
4038 check_irq_on();
4039
4040 /*
4041 * We only take the node lock if absolutely necessary and we
4042 * have established with reasonable certainty that
4043 * we can do some work if the lock was obtained.
4044 */
4045 n = get_node(searchp, node);
4046
4047 reap_alien(searchp, n);
4048
4049 drain_array(searchp, n, cpu_cache_get(searchp), node);
4050
4051 /*
4052 * These are racy checks but it does not matter
4053 * if we skip one check or scan twice.
4054 */
4055 if (time_after(n->next_reap, jiffies))
4056 goto next;
4057
4058 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4059
4060 drain_array(searchp, n, n->shared, node);
4061
4062 if (n->free_touched)
4063 n->free_touched = 0;
4064 else {
4065 int freed;
4066
4067 freed = drain_freelist(searchp, n, (n->free_limit +
4068 5 * searchp->num - 1) / (5 * searchp->num));
4069 STATS_ADD_REAPED(searchp, freed);
4070 }
4071 next:
4072 cond_resched();
4073 }
4074 check_irq_on();
4075 mutex_unlock(&slab_mutex);
4076 next_reap_node();
4077 out:
4078 /* Set up the next iteration */
4079 schedule_delayed_work_on(smp_processor_id(), work,
4080 round_jiffies_relative(REAPTIMEOUT_AC));
4081 }
4082
4083 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4084 {
4085 unsigned long active_objs, num_objs, active_slabs;
4086 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4087 unsigned long free_slabs = 0;
4088 int node;
4089 struct kmem_cache_node *n;
4090
4091 for_each_kmem_cache_node(cachep, node, n) {
4092 check_irq_on();
4093 spin_lock_irq(&n->list_lock);
4094
4095 total_slabs += n->total_slabs;
4096 free_slabs += n->free_slabs;
4097 free_objs += n->free_objects;
4098
4099 if (n->shared)
4100 shared_avail += n->shared->avail;
4101
4102 spin_unlock_irq(&n->list_lock);
4103 }
4104 num_objs = total_slabs * cachep->num;
4105 active_slabs = total_slabs - free_slabs;
4106 active_objs = num_objs - free_objs;
4107
4108 sinfo->active_objs = active_objs;
4109 sinfo->num_objs = num_objs;
4110 sinfo->active_slabs = active_slabs;
4111 sinfo->num_slabs = total_slabs;
4112 sinfo->shared_avail = shared_avail;
4113 sinfo->limit = cachep->limit;
4114 sinfo->batchcount = cachep->batchcount;
4115 sinfo->shared = cachep->shared;
4116 sinfo->objects_per_slab = cachep->num;
4117 sinfo->cache_order = cachep->gfporder;
4118 }
4119
4120 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4121 {
4122 #if STATS
4123 { /* node stats */
4124 unsigned long high = cachep->high_mark;
4125 unsigned long allocs = cachep->num_allocations;
4126 unsigned long grown = cachep->grown;
4127 unsigned long reaped = cachep->reaped;
4128 unsigned long errors = cachep->errors;
4129 unsigned long max_freeable = cachep->max_freeable;
4130 unsigned long node_allocs = cachep->node_allocs;
4131 unsigned long node_frees = cachep->node_frees;
4132 unsigned long overflows = cachep->node_overflow;
4133
4134 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4135 allocs, high, grown,
4136 reaped, errors, max_freeable, node_allocs,
4137 node_frees, overflows);
4138 }
4139 /* cpu stats */
4140 {
4141 unsigned long allochit = atomic_read(&cachep->allochit);
4142 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4143 unsigned long freehit = atomic_read(&cachep->freehit);
4144 unsigned long freemiss = atomic_read(&cachep->freemiss);
4145
4146 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4147 allochit, allocmiss, freehit, freemiss);
4148 }
4149 #endif
4150 }
4151
4152 #define MAX_SLABINFO_WRITE 128
4153 /**
4154 * slabinfo_write - Tuning for the slab allocator
4155 * @file: unused
4156 * @buffer: user buffer
4157 * @count: data length
4158 * @ppos: unused
4159 */
4160 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4161 size_t count, loff_t *ppos)
4162 {
4163 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4164 int limit, batchcount, shared, res;
4165 struct kmem_cache *cachep;
4166
4167 if (count > MAX_SLABINFO_WRITE)
4168 return -EINVAL;
4169 if (copy_from_user(&kbuf, buffer, count))
4170 return -EFAULT;
4171 kbuf[MAX_SLABINFO_WRITE] = '\0';
4172
4173 tmp = strchr(kbuf, ' ');
4174 if (!tmp)
4175 return -EINVAL;
4176 *tmp = '\0';
4177 tmp++;
4178 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4179 return -EINVAL;
4180
4181 /* Find the cache in the chain of caches. */
4182 mutex_lock(&slab_mutex);
4183 res = -EINVAL;
4184 list_for_each_entry(cachep, &slab_caches, list) {
4185 if (!strcmp(cachep->name, kbuf)) {
4186 if (limit < 1 || batchcount < 1 ||
4187 batchcount > limit || shared < 0) {
4188 res = 0;
4189 } else {
4190 res = do_tune_cpucache(cachep, limit,
4191 batchcount, shared,
4192 GFP_KERNEL);
4193 }
4194 break;
4195 }
4196 }
4197 mutex_unlock(&slab_mutex);
4198 if (res >= 0)
4199 res = count;
4200 return res;
4201 }
4202
4203 #ifdef CONFIG_DEBUG_SLAB_LEAK
4204
4205 static inline int add_caller(unsigned long *n, unsigned long v)
4206 {
4207 unsigned long *p;
4208 int l;
4209 if (!v)
4210 return 1;
4211 l = n[1];
4212 p = n + 2;
4213 while (l) {
4214 int i = l/2;
4215 unsigned long *q = p + 2 * i;
4216 if (*q == v) {
4217 q[1]++;
4218 return 1;
4219 }
4220 if (*q > v) {
4221 l = i;
4222 } else {
4223 p = q + 2;
4224 l -= i + 1;
4225 }
4226 }
4227 if (++n[1] == n[0])
4228 return 0;
4229 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4230 p[0] = v;
4231 p[1] = 1;
4232 return 1;
4233 }
4234
4235 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4236 struct page *page)
4237 {
4238 void *p;
4239 int i, j;
4240 unsigned long v;
4241
4242 if (n[0] == n[1])
4243 return;
4244 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4245 bool active = true;
4246
4247 for (j = page->active; j < c->num; j++) {
4248 if (get_free_obj(page, j) == i) {
4249 active = false;
4250 break;
4251 }
4252 }
4253
4254 if (!active)
4255 continue;
4256
4257 /*
4258 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4259 * mapping is established when actual object allocation and
4260 * we could mistakenly access the unmapped object in the cpu
4261 * cache.
4262 */
4263 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4264 continue;
4265
4266 if (!add_caller(n, v))
4267 return;
4268 }
4269 }
4270
4271 static void show_symbol(struct seq_file *m, unsigned long address)
4272 {
4273 #ifdef CONFIG_KALLSYMS
4274 unsigned long offset, size;
4275 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4276
4277 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4278 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4279 if (modname[0])
4280 seq_printf(m, " [%s]", modname);
4281 return;
4282 }
4283 #endif
4284 seq_printf(m, "%px", (void *)address);
4285 }
4286
4287 static int leaks_show(struct seq_file *m, void *p)
4288 {
4289 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4290 struct page *page;
4291 struct kmem_cache_node *n;
4292 const char *name;
4293 unsigned long *x = m->private;
4294 int node;
4295 int i;
4296
4297 if (!(cachep->flags & SLAB_STORE_USER))
4298 return 0;
4299 if (!(cachep->flags & SLAB_RED_ZONE))
4300 return 0;
4301
4302 /*
4303 * Set store_user_clean and start to grab stored user information
4304 * for all objects on this cache. If some alloc/free requests comes
4305 * during the processing, information would be wrong so restart
4306 * whole processing.
4307 */
4308 do {
4309 set_store_user_clean(cachep);
4310 drain_cpu_caches(cachep);
4311
4312 x[1] = 0;
4313
4314 for_each_kmem_cache_node(cachep, node, n) {
4315
4316 check_irq_on();
4317 spin_lock_irq(&n->list_lock);
4318
4319 list_for_each_entry(page, &n->slabs_full, lru)
4320 handle_slab(x, cachep, page);
4321 list_for_each_entry(page, &n->slabs_partial, lru)
4322 handle_slab(x, cachep, page);
4323 spin_unlock_irq(&n->list_lock);
4324 }
4325 } while (!is_store_user_clean(cachep));
4326
4327 name = cachep->name;
4328 if (x[0] == x[1]) {
4329 /* Increase the buffer size */
4330 mutex_unlock(&slab_mutex);
4331 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4332 if (!m->private) {
4333 /* Too bad, we are really out */
4334 m->private = x;
4335 mutex_lock(&slab_mutex);
4336 return -ENOMEM;
4337 }
4338 *(unsigned long *)m->private = x[0] * 2;
4339 kfree(x);
4340 mutex_lock(&slab_mutex);
4341 /* Now make sure this entry will be retried */
4342 m->count = m->size;
4343 return 0;
4344 }
4345 for (i = 0; i < x[1]; i++) {
4346 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4347 show_symbol(m, x[2*i+2]);
4348 seq_putc(m, '\n');
4349 }
4350
4351 return 0;
4352 }
4353
4354 static const struct seq_operations slabstats_op = {
4355 .start = slab_start,
4356 .next = slab_next,
4357 .stop = slab_stop,
4358 .show = leaks_show,
4359 };
4360
4361 static int slabstats_open(struct inode *inode, struct file *file)
4362 {
4363 unsigned long *n;
4364
4365 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4366 if (!n)
4367 return -ENOMEM;
4368
4369 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4370
4371 return 0;
4372 }
4373
4374 static const struct file_operations proc_slabstats_operations = {
4375 .open = slabstats_open,
4376 .read = seq_read,
4377 .llseek = seq_lseek,
4378 .release = seq_release_private,
4379 };
4380 #endif
4381
4382 static int __init slab_proc_init(void)
4383 {
4384 #ifdef CONFIG_DEBUG_SLAB_LEAK
4385 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4386 #endif
4387 return 0;
4388 }
4389 module_init(slab_proc_init);
4390
4391 #ifdef CONFIG_HARDENED_USERCOPY
4392 /*
4393 * Rejects objects that are incorrectly sized.
4394 *
4395 * Returns NULL if check passes, otherwise const char * to name of cache
4396 * to indicate an error.
4397 */
4398 const char *__check_heap_object(const void *ptr, unsigned long n,
4399 struct page *page)
4400 {
4401 struct kmem_cache *cachep;
4402 unsigned int objnr;
4403 unsigned long offset;
4404
4405 /* Find and validate object. */
4406 cachep = page->slab_cache;
4407 objnr = obj_to_index(cachep, page, (void *)ptr);
4408 BUG_ON(objnr >= cachep->num);
4409
4410 /* Find offset within object. */
4411 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4412
4413 /* Allow address range falling entirely within object size. */
4414 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4415 return NULL;
4416
4417 return cachep->name;
4418 }
4419 #endif /* CONFIG_HARDENED_USERCOPY */
4420
4421 /**
4422 * ksize - get the actual amount of memory allocated for a given object
4423 * @objp: Pointer to the object
4424 *
4425 * kmalloc may internally round up allocations and return more memory
4426 * than requested. ksize() can be used to determine the actual amount of
4427 * memory allocated. The caller may use this additional memory, even though
4428 * a smaller amount of memory was initially specified with the kmalloc call.
4429 * The caller must guarantee that objp points to a valid object previously
4430 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4431 * must not be freed during the duration of the call.
4432 */
4433 size_t ksize(const void *objp)
4434 {
4435 size_t size;
4436
4437 BUG_ON(!objp);
4438 if (unlikely(objp == ZERO_SIZE_PTR))
4439 return 0;
4440
4441 size = virt_to_cache(objp)->object_size;
4442 /* We assume that ksize callers could use the whole allocated area,
4443 * so we need to unpoison this area.
4444 */
4445 kasan_unpoison_shadow(objp, size);
4446
4447 return size;
4448 }
4449 EXPORT_SYMBOL(ksize);