]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580 }
581
582 static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584 {
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685 }
686
687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711 }
712
713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722 }
723
724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727 {
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744 }
745
746 /*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768 }
769
770 static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772 {
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790 }
791
792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794 {
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821 }
822
823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835 }
836
837 /*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846
847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885 }
886
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
897 static int init_cache_node_node(int node)
898 {
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909 }
910 #endif
911
912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 #ifdef CONFIG_SMP
979
980 static void cpuup_canceled(long cpu)
981 {
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032 free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046 }
1047
1048 static int cpuup_prepare(long cpu)
1049 {
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075 bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078 }
1079
1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106 }
1107 #endif
1108
1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 start_cpu_timer(cpu);
1112 return 0;
1113 }
1114
1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127 }
1128
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158 }
1159
1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162 {
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188 out:
1189 return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193 /*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198 {
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212 }
1213
1214 /*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228 }
1229
1230 /*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234 void __init kmem_cache_init(void)
1235 {
1236 int i;
1237
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
1240 kmem_cache = &kmem_cache_boot;
1241
1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243 use_alien_caches = 0;
1244
1245 for (i = 0; i < NUM_INIT_LISTS; i++)
1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1252 */
1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254 slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
1261 * Initially an __init data area is used for the head array and the
1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1263 * array at the end of the bootstrap.
1264 * 2) Create the first kmalloc cache.
1265 * The struct kmem_cache for the new cache is allocated normally.
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1270 * kmalloc cache with kmalloc allocated arrays.
1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274 */
1275
1276 /* 1) create the kmem_cache */
1277
1278 /*
1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280 */
1281 create_boot_cache(kmem_cache, "kmem_cache",
1282 offsetof(struct kmem_cache, node) +
1283 nr_node_ids * sizeof(struct kmem_cache_node *),
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
1286 memcg_link_cache(kmem_cache);
1287 slab_state = PARTIAL;
1288
1289 /*
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
1292 */
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1298
1299 slab_early_init = 0;
1300
1301 /* 5) Replace the bootstrap kmem_cache_node */
1302 {
1303 int nid;
1304
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1307
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1310 }
1311 }
1312
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1314 }
1315
1316 void __init kmem_cache_init_late(void)
1317 {
1318 struct kmem_cache *cachep;
1319
1320 slab_state = UP;
1321
1322 /* 6) resize the head arrays to their final sizes */
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1328
1329 /* Done! */
1330 slab_state = FULL;
1331
1332 #ifdef CONFIG_NUMA
1333 /*
1334 * Register a memory hotplug callback that initializes and frees
1335 * node.
1336 */
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338 #endif
1339
1340 /*
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1343 */
1344 }
1345
1346 static int __init cpucache_init(void)
1347 {
1348 int ret;
1349
1350 /*
1351 * Register the timers that return unneeded pages to the page allocator
1352 */
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
1356
1357 /* Done! */
1358 slab_state = FULL;
1359 return 0;
1360 }
1361 __initcall(cpucache_init);
1362
1363 static noinline void
1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365 {
1366 #if DEBUG
1367 struct kmem_cache_node *n;
1368 unsigned long flags;
1369 int node;
1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371 DEFAULT_RATELIMIT_BURST);
1372
1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374 return;
1375
1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377 nodeid, gfpflags, &gfpflags);
1378 pr_warn(" cache: %s, object size: %d, order: %d\n",
1379 cachep->name, cachep->size, cachep->gfporder);
1380
1381 for_each_kmem_cache_node(cachep, node, n) {
1382 unsigned long total_slabs, free_slabs, free_objs;
1383
1384 spin_lock_irqsave(&n->list_lock, flags);
1385 total_slabs = n->total_slabs;
1386 free_slabs = n->free_slabs;
1387 free_objs = n->free_objects;
1388 spin_unlock_irqrestore(&n->list_lock, flags);
1389
1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391 node, total_slabs - free_slabs, total_slabs,
1392 (total_slabs * cachep->num) - free_objs,
1393 total_slabs * cachep->num);
1394 }
1395 #endif
1396 }
1397
1398 /*
1399 * Interface to system's page allocator. No need to hold the
1400 * kmem_cache_node ->list_lock.
1401 *
1402 * If we requested dmaable memory, we will get it. Even if we
1403 * did not request dmaable memory, we might get it, but that
1404 * would be relatively rare and ignorable.
1405 */
1406 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407 int nodeid)
1408 {
1409 struct page *page;
1410 int nr_pages;
1411
1412 flags |= cachep->allocflags;
1413
1414 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1415 if (!page) {
1416 slab_out_of_memory(cachep, flags, nodeid);
1417 return NULL;
1418 }
1419
1420 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1421 __free_pages(page, cachep->gfporder);
1422 return NULL;
1423 }
1424
1425 nr_pages = (1 << cachep->gfporder);
1426 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1428 else
1429 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1430
1431 __SetPageSlab(page);
1432 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1433 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1434 SetPageSlabPfmemalloc(page);
1435
1436 return page;
1437 }
1438
1439 /*
1440 * Interface to system's page release.
1441 */
1442 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1443 {
1444 int order = cachep->gfporder;
1445 unsigned long nr_freed = (1 << order);
1446
1447 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1448 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1449 else
1450 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1451
1452 BUG_ON(!PageSlab(page));
1453 __ClearPageSlabPfmemalloc(page);
1454 __ClearPageSlab(page);
1455 page_mapcount_reset(page);
1456 page->mapping = NULL;
1457
1458 if (current->reclaim_state)
1459 current->reclaim_state->reclaimed_slab += nr_freed;
1460 memcg_uncharge_slab(page, order, cachep);
1461 __free_pages(page, order);
1462 }
1463
1464 static void kmem_rcu_free(struct rcu_head *head)
1465 {
1466 struct kmem_cache *cachep;
1467 struct page *page;
1468
1469 page = container_of(head, struct page, rcu_head);
1470 cachep = page->slab_cache;
1471
1472 kmem_freepages(cachep, page);
1473 }
1474
1475 #if DEBUG
1476 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1477 {
1478 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1479 (cachep->size % PAGE_SIZE) == 0)
1480 return true;
1481
1482 return false;
1483 }
1484
1485 #ifdef CONFIG_DEBUG_PAGEALLOC
1486 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1487 unsigned long caller)
1488 {
1489 int size = cachep->object_size;
1490
1491 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1492
1493 if (size < 5 * sizeof(unsigned long))
1494 return;
1495
1496 *addr++ = 0x12345678;
1497 *addr++ = caller;
1498 *addr++ = smp_processor_id();
1499 size -= 3 * sizeof(unsigned long);
1500 {
1501 unsigned long *sptr = &caller;
1502 unsigned long svalue;
1503
1504 while (!kstack_end(sptr)) {
1505 svalue = *sptr++;
1506 if (kernel_text_address(svalue)) {
1507 *addr++ = svalue;
1508 size -= sizeof(unsigned long);
1509 if (size <= sizeof(unsigned long))
1510 break;
1511 }
1512 }
1513
1514 }
1515 *addr++ = 0x87654321;
1516 }
1517
1518 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1519 int map, unsigned long caller)
1520 {
1521 if (!is_debug_pagealloc_cache(cachep))
1522 return;
1523
1524 if (caller)
1525 store_stackinfo(cachep, objp, caller);
1526
1527 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1528 }
1529
1530 #else
1531 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532 int map, unsigned long caller) {}
1533
1534 #endif
1535
1536 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1537 {
1538 int size = cachep->object_size;
1539 addr = &((char *)addr)[obj_offset(cachep)];
1540
1541 memset(addr, val, size);
1542 *(unsigned char *)(addr + size - 1) = POISON_END;
1543 }
1544
1545 static void dump_line(char *data, int offset, int limit)
1546 {
1547 int i;
1548 unsigned char error = 0;
1549 int bad_count = 0;
1550
1551 pr_err("%03x: ", offset);
1552 for (i = 0; i < limit; i++) {
1553 if (data[offset + i] != POISON_FREE) {
1554 error = data[offset + i];
1555 bad_count++;
1556 }
1557 }
1558 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1559 &data[offset], limit, 1);
1560
1561 if (bad_count == 1) {
1562 error ^= POISON_FREE;
1563 if (!(error & (error - 1))) {
1564 pr_err("Single bit error detected. Probably bad RAM.\n");
1565 #ifdef CONFIG_X86
1566 pr_err("Run memtest86+ or a similar memory test tool.\n");
1567 #else
1568 pr_err("Run a memory test tool.\n");
1569 #endif
1570 }
1571 }
1572 }
1573 #endif
1574
1575 #if DEBUG
1576
1577 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1578 {
1579 int i, size;
1580 char *realobj;
1581
1582 if (cachep->flags & SLAB_RED_ZONE) {
1583 pr_err("Redzone: 0x%llx/0x%llx\n",
1584 *dbg_redzone1(cachep, objp),
1585 *dbg_redzone2(cachep, objp));
1586 }
1587
1588 if (cachep->flags & SLAB_STORE_USER)
1589 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1590 realobj = (char *)objp + obj_offset(cachep);
1591 size = cachep->object_size;
1592 for (i = 0; i < size && lines; i += 16, lines--) {
1593 int limit;
1594 limit = 16;
1595 if (i + limit > size)
1596 limit = size - i;
1597 dump_line(realobj, i, limit);
1598 }
1599 }
1600
1601 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1602 {
1603 char *realobj;
1604 int size, i;
1605 int lines = 0;
1606
1607 if (is_debug_pagealloc_cache(cachep))
1608 return;
1609
1610 realobj = (char *)objp + obj_offset(cachep);
1611 size = cachep->object_size;
1612
1613 for (i = 0; i < size; i++) {
1614 char exp = POISON_FREE;
1615 if (i == size - 1)
1616 exp = POISON_END;
1617 if (realobj[i] != exp) {
1618 int limit;
1619 /* Mismatch ! */
1620 /* Print header */
1621 if (lines == 0) {
1622 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1623 print_tainted(), cachep->name,
1624 realobj, size);
1625 print_objinfo(cachep, objp, 0);
1626 }
1627 /* Hexdump the affected line */
1628 i = (i / 16) * 16;
1629 limit = 16;
1630 if (i + limit > size)
1631 limit = size - i;
1632 dump_line(realobj, i, limit);
1633 i += 16;
1634 lines++;
1635 /* Limit to 5 lines */
1636 if (lines > 5)
1637 break;
1638 }
1639 }
1640 if (lines != 0) {
1641 /* Print some data about the neighboring objects, if they
1642 * exist:
1643 */
1644 struct page *page = virt_to_head_page(objp);
1645 unsigned int objnr;
1646
1647 objnr = obj_to_index(cachep, page, objp);
1648 if (objnr) {
1649 objp = index_to_obj(cachep, page, objnr - 1);
1650 realobj = (char *)objp + obj_offset(cachep);
1651 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1652 print_objinfo(cachep, objp, 2);
1653 }
1654 if (objnr + 1 < cachep->num) {
1655 objp = index_to_obj(cachep, page, objnr + 1);
1656 realobj = (char *)objp + obj_offset(cachep);
1657 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1658 print_objinfo(cachep, objp, 2);
1659 }
1660 }
1661 }
1662 #endif
1663
1664 #if DEBUG
1665 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1666 struct page *page)
1667 {
1668 int i;
1669
1670 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1671 poison_obj(cachep, page->freelist - obj_offset(cachep),
1672 POISON_FREE);
1673 }
1674
1675 for (i = 0; i < cachep->num; i++) {
1676 void *objp = index_to_obj(cachep, page, i);
1677
1678 if (cachep->flags & SLAB_POISON) {
1679 check_poison_obj(cachep, objp);
1680 slab_kernel_map(cachep, objp, 1, 0);
1681 }
1682 if (cachep->flags & SLAB_RED_ZONE) {
1683 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1684 slab_error(cachep, "start of a freed object was overwritten");
1685 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1686 slab_error(cachep, "end of a freed object was overwritten");
1687 }
1688 }
1689 }
1690 #else
1691 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1692 struct page *page)
1693 {
1694 }
1695 #endif
1696
1697 /**
1698 * slab_destroy - destroy and release all objects in a slab
1699 * @cachep: cache pointer being destroyed
1700 * @page: page pointer being destroyed
1701 *
1702 * Destroy all the objs in a slab page, and release the mem back to the system.
1703 * Before calling the slab page must have been unlinked from the cache. The
1704 * kmem_cache_node ->list_lock is not held/needed.
1705 */
1706 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1707 {
1708 void *freelist;
1709
1710 freelist = page->freelist;
1711 slab_destroy_debugcheck(cachep, page);
1712 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1713 call_rcu(&page->rcu_head, kmem_rcu_free);
1714 else
1715 kmem_freepages(cachep, page);
1716
1717 /*
1718 * From now on, we don't use freelist
1719 * although actual page can be freed in rcu context
1720 */
1721 if (OFF_SLAB(cachep))
1722 kmem_cache_free(cachep->freelist_cache, freelist);
1723 }
1724
1725 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1726 {
1727 struct page *page, *n;
1728
1729 list_for_each_entry_safe(page, n, list, lru) {
1730 list_del(&page->lru);
1731 slab_destroy(cachep, page);
1732 }
1733 }
1734
1735 /**
1736 * calculate_slab_order - calculate size (page order) of slabs
1737 * @cachep: pointer to the cache that is being created
1738 * @size: size of objects to be created in this cache.
1739 * @flags: slab allocation flags
1740 *
1741 * Also calculates the number of objects per slab.
1742 *
1743 * This could be made much more intelligent. For now, try to avoid using
1744 * high order pages for slabs. When the gfp() functions are more friendly
1745 * towards high-order requests, this should be changed.
1746 */
1747 static size_t calculate_slab_order(struct kmem_cache *cachep,
1748 size_t size, slab_flags_t flags)
1749 {
1750 size_t left_over = 0;
1751 int gfporder;
1752
1753 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1754 unsigned int num;
1755 size_t remainder;
1756
1757 num = cache_estimate(gfporder, size, flags, &remainder);
1758 if (!num)
1759 continue;
1760
1761 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1762 if (num > SLAB_OBJ_MAX_NUM)
1763 break;
1764
1765 if (flags & CFLGS_OFF_SLAB) {
1766 struct kmem_cache *freelist_cache;
1767 size_t freelist_size;
1768
1769 freelist_size = num * sizeof(freelist_idx_t);
1770 freelist_cache = kmalloc_slab(freelist_size, 0u);
1771 if (!freelist_cache)
1772 continue;
1773
1774 /*
1775 * Needed to avoid possible looping condition
1776 * in cache_grow_begin()
1777 */
1778 if (OFF_SLAB(freelist_cache))
1779 continue;
1780
1781 /* check if off slab has enough benefit */
1782 if (freelist_cache->size > cachep->size / 2)
1783 continue;
1784 }
1785
1786 /* Found something acceptable - save it away */
1787 cachep->num = num;
1788 cachep->gfporder = gfporder;
1789 left_over = remainder;
1790
1791 /*
1792 * A VFS-reclaimable slab tends to have most allocations
1793 * as GFP_NOFS and we really don't want to have to be allocating
1794 * higher-order pages when we are unable to shrink dcache.
1795 */
1796 if (flags & SLAB_RECLAIM_ACCOUNT)
1797 break;
1798
1799 /*
1800 * Large number of objects is good, but very large slabs are
1801 * currently bad for the gfp()s.
1802 */
1803 if (gfporder >= slab_max_order)
1804 break;
1805
1806 /*
1807 * Acceptable internal fragmentation?
1808 */
1809 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1810 break;
1811 }
1812 return left_over;
1813 }
1814
1815 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1816 struct kmem_cache *cachep, int entries, int batchcount)
1817 {
1818 int cpu;
1819 size_t size;
1820 struct array_cache __percpu *cpu_cache;
1821
1822 size = sizeof(void *) * entries + sizeof(struct array_cache);
1823 cpu_cache = __alloc_percpu(size, sizeof(void *));
1824
1825 if (!cpu_cache)
1826 return NULL;
1827
1828 for_each_possible_cpu(cpu) {
1829 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1830 entries, batchcount);
1831 }
1832
1833 return cpu_cache;
1834 }
1835
1836 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1837 {
1838 if (slab_state >= FULL)
1839 return enable_cpucache(cachep, gfp);
1840
1841 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1842 if (!cachep->cpu_cache)
1843 return 1;
1844
1845 if (slab_state == DOWN) {
1846 /* Creation of first cache (kmem_cache). */
1847 set_up_node(kmem_cache, CACHE_CACHE);
1848 } else if (slab_state == PARTIAL) {
1849 /* For kmem_cache_node */
1850 set_up_node(cachep, SIZE_NODE);
1851 } else {
1852 int node;
1853
1854 for_each_online_node(node) {
1855 cachep->node[node] = kmalloc_node(
1856 sizeof(struct kmem_cache_node), gfp, node);
1857 BUG_ON(!cachep->node[node]);
1858 kmem_cache_node_init(cachep->node[node]);
1859 }
1860 }
1861
1862 cachep->node[numa_mem_id()]->next_reap =
1863 jiffies + REAPTIMEOUT_NODE +
1864 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1865
1866 cpu_cache_get(cachep)->avail = 0;
1867 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1868 cpu_cache_get(cachep)->batchcount = 1;
1869 cpu_cache_get(cachep)->touched = 0;
1870 cachep->batchcount = 1;
1871 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1872 return 0;
1873 }
1874
1875 slab_flags_t kmem_cache_flags(unsigned long object_size,
1876 slab_flags_t flags, const char *name,
1877 void (*ctor)(void *))
1878 {
1879 return flags;
1880 }
1881
1882 struct kmem_cache *
1883 __kmem_cache_alias(const char *name, size_t size, size_t align,
1884 slab_flags_t flags, void (*ctor)(void *))
1885 {
1886 struct kmem_cache *cachep;
1887
1888 cachep = find_mergeable(size, align, flags, name, ctor);
1889 if (cachep) {
1890 cachep->refcount++;
1891
1892 /*
1893 * Adjust the object sizes so that we clear
1894 * the complete object on kzalloc.
1895 */
1896 cachep->object_size = max_t(int, cachep->object_size, size);
1897 }
1898 return cachep;
1899 }
1900
1901 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1902 size_t size, slab_flags_t flags)
1903 {
1904 size_t left;
1905
1906 cachep->num = 0;
1907
1908 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1909 return false;
1910
1911 left = calculate_slab_order(cachep, size,
1912 flags | CFLGS_OBJFREELIST_SLAB);
1913 if (!cachep->num)
1914 return false;
1915
1916 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1917 return false;
1918
1919 cachep->colour = left / cachep->colour_off;
1920
1921 return true;
1922 }
1923
1924 static bool set_off_slab_cache(struct kmem_cache *cachep,
1925 size_t size, slab_flags_t flags)
1926 {
1927 size_t left;
1928
1929 cachep->num = 0;
1930
1931 /*
1932 * Always use on-slab management when SLAB_NOLEAKTRACE
1933 * to avoid recursive calls into kmemleak.
1934 */
1935 if (flags & SLAB_NOLEAKTRACE)
1936 return false;
1937
1938 /*
1939 * Size is large, assume best to place the slab management obj
1940 * off-slab (should allow better packing of objs).
1941 */
1942 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1943 if (!cachep->num)
1944 return false;
1945
1946 /*
1947 * If the slab has been placed off-slab, and we have enough space then
1948 * move it on-slab. This is at the expense of any extra colouring.
1949 */
1950 if (left >= cachep->num * sizeof(freelist_idx_t))
1951 return false;
1952
1953 cachep->colour = left / cachep->colour_off;
1954
1955 return true;
1956 }
1957
1958 static bool set_on_slab_cache(struct kmem_cache *cachep,
1959 size_t size, slab_flags_t flags)
1960 {
1961 size_t left;
1962
1963 cachep->num = 0;
1964
1965 left = calculate_slab_order(cachep, size, flags);
1966 if (!cachep->num)
1967 return false;
1968
1969 cachep->colour = left / cachep->colour_off;
1970
1971 return true;
1972 }
1973
1974 /**
1975 * __kmem_cache_create - Create a cache.
1976 * @cachep: cache management descriptor
1977 * @flags: SLAB flags
1978 *
1979 * Returns a ptr to the cache on success, NULL on failure.
1980 * Cannot be called within a int, but can be interrupted.
1981 * The @ctor is run when new pages are allocated by the cache.
1982 *
1983 * The flags are
1984 *
1985 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1986 * to catch references to uninitialised memory.
1987 *
1988 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1989 * for buffer overruns.
1990 *
1991 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1992 * cacheline. This can be beneficial if you're counting cycles as closely
1993 * as davem.
1994 */
1995 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1996 {
1997 size_t ralign = BYTES_PER_WORD;
1998 gfp_t gfp;
1999 int err;
2000 size_t size = cachep->size;
2001
2002 #if DEBUG
2003 #if FORCED_DEBUG
2004 /*
2005 * Enable redzoning and last user accounting, except for caches with
2006 * large objects, if the increased size would increase the object size
2007 * above the next power of two: caches with object sizes just above a
2008 * power of two have a significant amount of internal fragmentation.
2009 */
2010 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2011 2 * sizeof(unsigned long long)))
2012 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2013 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2014 flags |= SLAB_POISON;
2015 #endif
2016 #endif
2017
2018 /*
2019 * Check that size is in terms of words. This is needed to avoid
2020 * unaligned accesses for some archs when redzoning is used, and makes
2021 * sure any on-slab bufctl's are also correctly aligned.
2022 */
2023 size = ALIGN(size, BYTES_PER_WORD);
2024
2025 if (flags & SLAB_RED_ZONE) {
2026 ralign = REDZONE_ALIGN;
2027 /* If redzoning, ensure that the second redzone is suitably
2028 * aligned, by adjusting the object size accordingly. */
2029 size = ALIGN(size, REDZONE_ALIGN);
2030 }
2031
2032 /* 3) caller mandated alignment */
2033 if (ralign < cachep->align) {
2034 ralign = cachep->align;
2035 }
2036 /* disable debug if necessary */
2037 if (ralign > __alignof__(unsigned long long))
2038 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2039 /*
2040 * 4) Store it.
2041 */
2042 cachep->align = ralign;
2043 cachep->colour_off = cache_line_size();
2044 /* Offset must be a multiple of the alignment. */
2045 if (cachep->colour_off < cachep->align)
2046 cachep->colour_off = cachep->align;
2047
2048 if (slab_is_available())
2049 gfp = GFP_KERNEL;
2050 else
2051 gfp = GFP_NOWAIT;
2052
2053 #if DEBUG
2054
2055 /*
2056 * Both debugging options require word-alignment which is calculated
2057 * into align above.
2058 */
2059 if (flags & SLAB_RED_ZONE) {
2060 /* add space for red zone words */
2061 cachep->obj_offset += sizeof(unsigned long long);
2062 size += 2 * sizeof(unsigned long long);
2063 }
2064 if (flags & SLAB_STORE_USER) {
2065 /* user store requires one word storage behind the end of
2066 * the real object. But if the second red zone needs to be
2067 * aligned to 64 bits, we must allow that much space.
2068 */
2069 if (flags & SLAB_RED_ZONE)
2070 size += REDZONE_ALIGN;
2071 else
2072 size += BYTES_PER_WORD;
2073 }
2074 #endif
2075
2076 kasan_cache_create(cachep, &size, &flags);
2077
2078 size = ALIGN(size, cachep->align);
2079 /*
2080 * We should restrict the number of objects in a slab to implement
2081 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2082 */
2083 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2084 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2085
2086 #if DEBUG
2087 /*
2088 * To activate debug pagealloc, off-slab management is necessary
2089 * requirement. In early phase of initialization, small sized slab
2090 * doesn't get initialized so it would not be possible. So, we need
2091 * to check size >= 256. It guarantees that all necessary small
2092 * sized slab is initialized in current slab initialization sequence.
2093 */
2094 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2095 size >= 256 && cachep->object_size > cache_line_size()) {
2096 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2097 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2098
2099 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2100 flags |= CFLGS_OFF_SLAB;
2101 cachep->obj_offset += tmp_size - size;
2102 size = tmp_size;
2103 goto done;
2104 }
2105 }
2106 }
2107 #endif
2108
2109 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2110 flags |= CFLGS_OBJFREELIST_SLAB;
2111 goto done;
2112 }
2113
2114 if (set_off_slab_cache(cachep, size, flags)) {
2115 flags |= CFLGS_OFF_SLAB;
2116 goto done;
2117 }
2118
2119 if (set_on_slab_cache(cachep, size, flags))
2120 goto done;
2121
2122 return -E2BIG;
2123
2124 done:
2125 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2126 cachep->flags = flags;
2127 cachep->allocflags = __GFP_COMP;
2128 if (flags & SLAB_CACHE_DMA)
2129 cachep->allocflags |= GFP_DMA;
2130 if (flags & SLAB_RECLAIM_ACCOUNT)
2131 cachep->allocflags |= __GFP_RECLAIMABLE;
2132 cachep->size = size;
2133 cachep->reciprocal_buffer_size = reciprocal_value(size);
2134
2135 #if DEBUG
2136 /*
2137 * If we're going to use the generic kernel_map_pages()
2138 * poisoning, then it's going to smash the contents of
2139 * the redzone and userword anyhow, so switch them off.
2140 */
2141 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2142 (cachep->flags & SLAB_POISON) &&
2143 is_debug_pagealloc_cache(cachep))
2144 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2145 #endif
2146
2147 if (OFF_SLAB(cachep)) {
2148 cachep->freelist_cache =
2149 kmalloc_slab(cachep->freelist_size, 0u);
2150 }
2151
2152 err = setup_cpu_cache(cachep, gfp);
2153 if (err) {
2154 __kmem_cache_release(cachep);
2155 return err;
2156 }
2157
2158 return 0;
2159 }
2160
2161 #if DEBUG
2162 static void check_irq_off(void)
2163 {
2164 BUG_ON(!irqs_disabled());
2165 }
2166
2167 static void check_irq_on(void)
2168 {
2169 BUG_ON(irqs_disabled());
2170 }
2171
2172 static void check_mutex_acquired(void)
2173 {
2174 BUG_ON(!mutex_is_locked(&slab_mutex));
2175 }
2176
2177 static void check_spinlock_acquired(struct kmem_cache *cachep)
2178 {
2179 #ifdef CONFIG_SMP
2180 check_irq_off();
2181 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2182 #endif
2183 }
2184
2185 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2186 {
2187 #ifdef CONFIG_SMP
2188 check_irq_off();
2189 assert_spin_locked(&get_node(cachep, node)->list_lock);
2190 #endif
2191 }
2192
2193 #else
2194 #define check_irq_off() do { } while(0)
2195 #define check_irq_on() do { } while(0)
2196 #define check_mutex_acquired() do { } while(0)
2197 #define check_spinlock_acquired(x) do { } while(0)
2198 #define check_spinlock_acquired_node(x, y) do { } while(0)
2199 #endif
2200
2201 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2202 int node, bool free_all, struct list_head *list)
2203 {
2204 int tofree;
2205
2206 if (!ac || !ac->avail)
2207 return;
2208
2209 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2210 if (tofree > ac->avail)
2211 tofree = (ac->avail + 1) / 2;
2212
2213 free_block(cachep, ac->entry, tofree, node, list);
2214 ac->avail -= tofree;
2215 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2216 }
2217
2218 static void do_drain(void *arg)
2219 {
2220 struct kmem_cache *cachep = arg;
2221 struct array_cache *ac;
2222 int node = numa_mem_id();
2223 struct kmem_cache_node *n;
2224 LIST_HEAD(list);
2225
2226 check_irq_off();
2227 ac = cpu_cache_get(cachep);
2228 n = get_node(cachep, node);
2229 spin_lock(&n->list_lock);
2230 free_block(cachep, ac->entry, ac->avail, node, &list);
2231 spin_unlock(&n->list_lock);
2232 slabs_destroy(cachep, &list);
2233 ac->avail = 0;
2234 }
2235
2236 static void drain_cpu_caches(struct kmem_cache *cachep)
2237 {
2238 struct kmem_cache_node *n;
2239 int node;
2240 LIST_HEAD(list);
2241
2242 on_each_cpu(do_drain, cachep, 1);
2243 check_irq_on();
2244 for_each_kmem_cache_node(cachep, node, n)
2245 if (n->alien)
2246 drain_alien_cache(cachep, n->alien);
2247
2248 for_each_kmem_cache_node(cachep, node, n) {
2249 spin_lock_irq(&n->list_lock);
2250 drain_array_locked(cachep, n->shared, node, true, &list);
2251 spin_unlock_irq(&n->list_lock);
2252
2253 slabs_destroy(cachep, &list);
2254 }
2255 }
2256
2257 /*
2258 * Remove slabs from the list of free slabs.
2259 * Specify the number of slabs to drain in tofree.
2260 *
2261 * Returns the actual number of slabs released.
2262 */
2263 static int drain_freelist(struct kmem_cache *cache,
2264 struct kmem_cache_node *n, int tofree)
2265 {
2266 struct list_head *p;
2267 int nr_freed;
2268 struct page *page;
2269
2270 nr_freed = 0;
2271 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2272
2273 spin_lock_irq(&n->list_lock);
2274 p = n->slabs_free.prev;
2275 if (p == &n->slabs_free) {
2276 spin_unlock_irq(&n->list_lock);
2277 goto out;
2278 }
2279
2280 page = list_entry(p, struct page, lru);
2281 list_del(&page->lru);
2282 n->free_slabs--;
2283 n->total_slabs--;
2284 /*
2285 * Safe to drop the lock. The slab is no longer linked
2286 * to the cache.
2287 */
2288 n->free_objects -= cache->num;
2289 spin_unlock_irq(&n->list_lock);
2290 slab_destroy(cache, page);
2291 nr_freed++;
2292 }
2293 out:
2294 return nr_freed;
2295 }
2296
2297 int __kmem_cache_shrink(struct kmem_cache *cachep)
2298 {
2299 int ret = 0;
2300 int node;
2301 struct kmem_cache_node *n;
2302
2303 drain_cpu_caches(cachep);
2304
2305 check_irq_on();
2306 for_each_kmem_cache_node(cachep, node, n) {
2307 drain_freelist(cachep, n, INT_MAX);
2308
2309 ret += !list_empty(&n->slabs_full) ||
2310 !list_empty(&n->slabs_partial);
2311 }
2312 return (ret ? 1 : 0);
2313 }
2314
2315 #ifdef CONFIG_MEMCG
2316 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2317 {
2318 __kmem_cache_shrink(cachep);
2319 }
2320 #endif
2321
2322 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2323 {
2324 return __kmem_cache_shrink(cachep);
2325 }
2326
2327 void __kmem_cache_release(struct kmem_cache *cachep)
2328 {
2329 int i;
2330 struct kmem_cache_node *n;
2331
2332 cache_random_seq_destroy(cachep);
2333
2334 free_percpu(cachep->cpu_cache);
2335
2336 /* NUMA: free the node structures */
2337 for_each_kmem_cache_node(cachep, i, n) {
2338 kfree(n->shared);
2339 free_alien_cache(n->alien);
2340 kfree(n);
2341 cachep->node[i] = NULL;
2342 }
2343 }
2344
2345 /*
2346 * Get the memory for a slab management obj.
2347 *
2348 * For a slab cache when the slab descriptor is off-slab, the
2349 * slab descriptor can't come from the same cache which is being created,
2350 * Because if it is the case, that means we defer the creation of
2351 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2352 * And we eventually call down to __kmem_cache_create(), which
2353 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2354 * This is a "chicken-and-egg" problem.
2355 *
2356 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2357 * which are all initialized during kmem_cache_init().
2358 */
2359 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2360 struct page *page, int colour_off,
2361 gfp_t local_flags, int nodeid)
2362 {
2363 void *freelist;
2364 void *addr = page_address(page);
2365
2366 page->s_mem = addr + colour_off;
2367 page->active = 0;
2368
2369 if (OBJFREELIST_SLAB(cachep))
2370 freelist = NULL;
2371 else if (OFF_SLAB(cachep)) {
2372 /* Slab management obj is off-slab. */
2373 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2374 local_flags, nodeid);
2375 if (!freelist)
2376 return NULL;
2377 } else {
2378 /* We will use last bytes at the slab for freelist */
2379 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2380 cachep->freelist_size;
2381 }
2382
2383 return freelist;
2384 }
2385
2386 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2387 {
2388 return ((freelist_idx_t *)page->freelist)[idx];
2389 }
2390
2391 static inline void set_free_obj(struct page *page,
2392 unsigned int idx, freelist_idx_t val)
2393 {
2394 ((freelist_idx_t *)(page->freelist))[idx] = val;
2395 }
2396
2397 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2398 {
2399 #if DEBUG
2400 int i;
2401
2402 for (i = 0; i < cachep->num; i++) {
2403 void *objp = index_to_obj(cachep, page, i);
2404
2405 if (cachep->flags & SLAB_STORE_USER)
2406 *dbg_userword(cachep, objp) = NULL;
2407
2408 if (cachep->flags & SLAB_RED_ZONE) {
2409 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2410 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2411 }
2412 /*
2413 * Constructors are not allowed to allocate memory from the same
2414 * cache which they are a constructor for. Otherwise, deadlock.
2415 * They must also be threaded.
2416 */
2417 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2418 kasan_unpoison_object_data(cachep,
2419 objp + obj_offset(cachep));
2420 cachep->ctor(objp + obj_offset(cachep));
2421 kasan_poison_object_data(
2422 cachep, objp + obj_offset(cachep));
2423 }
2424
2425 if (cachep->flags & SLAB_RED_ZONE) {
2426 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2427 slab_error(cachep, "constructor overwrote the end of an object");
2428 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2429 slab_error(cachep, "constructor overwrote the start of an object");
2430 }
2431 /* need to poison the objs? */
2432 if (cachep->flags & SLAB_POISON) {
2433 poison_obj(cachep, objp, POISON_FREE);
2434 slab_kernel_map(cachep, objp, 0, 0);
2435 }
2436 }
2437 #endif
2438 }
2439
2440 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2441 /* Hold information during a freelist initialization */
2442 union freelist_init_state {
2443 struct {
2444 unsigned int pos;
2445 unsigned int *list;
2446 unsigned int count;
2447 };
2448 struct rnd_state rnd_state;
2449 };
2450
2451 /*
2452 * Initialize the state based on the randomization methode available.
2453 * return true if the pre-computed list is available, false otherwize.
2454 */
2455 static bool freelist_state_initialize(union freelist_init_state *state,
2456 struct kmem_cache *cachep,
2457 unsigned int count)
2458 {
2459 bool ret;
2460 unsigned int rand;
2461
2462 /* Use best entropy available to define a random shift */
2463 rand = get_random_int();
2464
2465 /* Use a random state if the pre-computed list is not available */
2466 if (!cachep->random_seq) {
2467 prandom_seed_state(&state->rnd_state, rand);
2468 ret = false;
2469 } else {
2470 state->list = cachep->random_seq;
2471 state->count = count;
2472 state->pos = rand % count;
2473 ret = true;
2474 }
2475 return ret;
2476 }
2477
2478 /* Get the next entry on the list and randomize it using a random shift */
2479 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2480 {
2481 if (state->pos >= state->count)
2482 state->pos = 0;
2483 return state->list[state->pos++];
2484 }
2485
2486 /* Swap two freelist entries */
2487 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2488 {
2489 swap(((freelist_idx_t *)page->freelist)[a],
2490 ((freelist_idx_t *)page->freelist)[b]);
2491 }
2492
2493 /*
2494 * Shuffle the freelist initialization state based on pre-computed lists.
2495 * return true if the list was successfully shuffled, false otherwise.
2496 */
2497 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2498 {
2499 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2500 union freelist_init_state state;
2501 bool precomputed;
2502
2503 if (count < 2)
2504 return false;
2505
2506 precomputed = freelist_state_initialize(&state, cachep, count);
2507
2508 /* Take a random entry as the objfreelist */
2509 if (OBJFREELIST_SLAB(cachep)) {
2510 if (!precomputed)
2511 objfreelist = count - 1;
2512 else
2513 objfreelist = next_random_slot(&state);
2514 page->freelist = index_to_obj(cachep, page, objfreelist) +
2515 obj_offset(cachep);
2516 count--;
2517 }
2518
2519 /*
2520 * On early boot, generate the list dynamically.
2521 * Later use a pre-computed list for speed.
2522 */
2523 if (!precomputed) {
2524 for (i = 0; i < count; i++)
2525 set_free_obj(page, i, i);
2526
2527 /* Fisher-Yates shuffle */
2528 for (i = count - 1; i > 0; i--) {
2529 rand = prandom_u32_state(&state.rnd_state);
2530 rand %= (i + 1);
2531 swap_free_obj(page, i, rand);
2532 }
2533 } else {
2534 for (i = 0; i < count; i++)
2535 set_free_obj(page, i, next_random_slot(&state));
2536 }
2537
2538 if (OBJFREELIST_SLAB(cachep))
2539 set_free_obj(page, cachep->num - 1, objfreelist);
2540
2541 return true;
2542 }
2543 #else
2544 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2545 struct page *page)
2546 {
2547 return false;
2548 }
2549 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2550
2551 static void cache_init_objs(struct kmem_cache *cachep,
2552 struct page *page)
2553 {
2554 int i;
2555 void *objp;
2556 bool shuffled;
2557
2558 cache_init_objs_debug(cachep, page);
2559
2560 /* Try to randomize the freelist if enabled */
2561 shuffled = shuffle_freelist(cachep, page);
2562
2563 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2564 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2565 obj_offset(cachep);
2566 }
2567
2568 for (i = 0; i < cachep->num; i++) {
2569 objp = index_to_obj(cachep, page, i);
2570 kasan_init_slab_obj(cachep, objp);
2571
2572 /* constructor could break poison info */
2573 if (DEBUG == 0 && cachep->ctor) {
2574 kasan_unpoison_object_data(cachep, objp);
2575 cachep->ctor(objp);
2576 kasan_poison_object_data(cachep, objp);
2577 }
2578
2579 if (!shuffled)
2580 set_free_obj(page, i, i);
2581 }
2582 }
2583
2584 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2585 {
2586 void *objp;
2587
2588 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2589 page->active++;
2590
2591 #if DEBUG
2592 if (cachep->flags & SLAB_STORE_USER)
2593 set_store_user_dirty(cachep);
2594 #endif
2595
2596 return objp;
2597 }
2598
2599 static void slab_put_obj(struct kmem_cache *cachep,
2600 struct page *page, void *objp)
2601 {
2602 unsigned int objnr = obj_to_index(cachep, page, objp);
2603 #if DEBUG
2604 unsigned int i;
2605
2606 /* Verify double free bug */
2607 for (i = page->active; i < cachep->num; i++) {
2608 if (get_free_obj(page, i) == objnr) {
2609 pr_err("slab: double free detected in cache '%s', objp %px\n",
2610 cachep->name, objp);
2611 BUG();
2612 }
2613 }
2614 #endif
2615 page->active--;
2616 if (!page->freelist)
2617 page->freelist = objp + obj_offset(cachep);
2618
2619 set_free_obj(page, page->active, objnr);
2620 }
2621
2622 /*
2623 * Map pages beginning at addr to the given cache and slab. This is required
2624 * for the slab allocator to be able to lookup the cache and slab of a
2625 * virtual address for kfree, ksize, and slab debugging.
2626 */
2627 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2628 void *freelist)
2629 {
2630 page->slab_cache = cache;
2631 page->freelist = freelist;
2632 }
2633
2634 /*
2635 * Grow (by 1) the number of slabs within a cache. This is called by
2636 * kmem_cache_alloc() when there are no active objs left in a cache.
2637 */
2638 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2639 gfp_t flags, int nodeid)
2640 {
2641 void *freelist;
2642 size_t offset;
2643 gfp_t local_flags;
2644 int page_node;
2645 struct kmem_cache_node *n;
2646 struct page *page;
2647
2648 /*
2649 * Be lazy and only check for valid flags here, keeping it out of the
2650 * critical path in kmem_cache_alloc().
2651 */
2652 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2653 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2654 flags &= ~GFP_SLAB_BUG_MASK;
2655 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2656 invalid_mask, &invalid_mask, flags, &flags);
2657 dump_stack();
2658 }
2659 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2660
2661 check_irq_off();
2662 if (gfpflags_allow_blocking(local_flags))
2663 local_irq_enable();
2664
2665 /*
2666 * Get mem for the objs. Attempt to allocate a physical page from
2667 * 'nodeid'.
2668 */
2669 page = kmem_getpages(cachep, local_flags, nodeid);
2670 if (!page)
2671 goto failed;
2672
2673 page_node = page_to_nid(page);
2674 n = get_node(cachep, page_node);
2675
2676 /* Get colour for the slab, and cal the next value. */
2677 n->colour_next++;
2678 if (n->colour_next >= cachep->colour)
2679 n->colour_next = 0;
2680
2681 offset = n->colour_next;
2682 if (offset >= cachep->colour)
2683 offset = 0;
2684
2685 offset *= cachep->colour_off;
2686
2687 /* Get slab management. */
2688 freelist = alloc_slabmgmt(cachep, page, offset,
2689 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2690 if (OFF_SLAB(cachep) && !freelist)
2691 goto opps1;
2692
2693 slab_map_pages(cachep, page, freelist);
2694
2695 kasan_poison_slab(page);
2696 cache_init_objs(cachep, page);
2697
2698 if (gfpflags_allow_blocking(local_flags))
2699 local_irq_disable();
2700
2701 return page;
2702
2703 opps1:
2704 kmem_freepages(cachep, page);
2705 failed:
2706 if (gfpflags_allow_blocking(local_flags))
2707 local_irq_disable();
2708 return NULL;
2709 }
2710
2711 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2712 {
2713 struct kmem_cache_node *n;
2714 void *list = NULL;
2715
2716 check_irq_off();
2717
2718 if (!page)
2719 return;
2720
2721 INIT_LIST_HEAD(&page->lru);
2722 n = get_node(cachep, page_to_nid(page));
2723
2724 spin_lock(&n->list_lock);
2725 n->total_slabs++;
2726 if (!page->active) {
2727 list_add_tail(&page->lru, &(n->slabs_free));
2728 n->free_slabs++;
2729 } else
2730 fixup_slab_list(cachep, n, page, &list);
2731
2732 STATS_INC_GROWN(cachep);
2733 n->free_objects += cachep->num - page->active;
2734 spin_unlock(&n->list_lock);
2735
2736 fixup_objfreelist_debug(cachep, &list);
2737 }
2738
2739 #if DEBUG
2740
2741 /*
2742 * Perform extra freeing checks:
2743 * - detect bad pointers.
2744 * - POISON/RED_ZONE checking
2745 */
2746 static void kfree_debugcheck(const void *objp)
2747 {
2748 if (!virt_addr_valid(objp)) {
2749 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2750 (unsigned long)objp);
2751 BUG();
2752 }
2753 }
2754
2755 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2756 {
2757 unsigned long long redzone1, redzone2;
2758
2759 redzone1 = *dbg_redzone1(cache, obj);
2760 redzone2 = *dbg_redzone2(cache, obj);
2761
2762 /*
2763 * Redzone is ok.
2764 */
2765 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2766 return;
2767
2768 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2769 slab_error(cache, "double free detected");
2770 else
2771 slab_error(cache, "memory outside object was overwritten");
2772
2773 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2774 obj, redzone1, redzone2);
2775 }
2776
2777 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2778 unsigned long caller)
2779 {
2780 unsigned int objnr;
2781 struct page *page;
2782
2783 BUG_ON(virt_to_cache(objp) != cachep);
2784
2785 objp -= obj_offset(cachep);
2786 kfree_debugcheck(objp);
2787 page = virt_to_head_page(objp);
2788
2789 if (cachep->flags & SLAB_RED_ZONE) {
2790 verify_redzone_free(cachep, objp);
2791 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2792 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2793 }
2794 if (cachep->flags & SLAB_STORE_USER) {
2795 set_store_user_dirty(cachep);
2796 *dbg_userword(cachep, objp) = (void *)caller;
2797 }
2798
2799 objnr = obj_to_index(cachep, page, objp);
2800
2801 BUG_ON(objnr >= cachep->num);
2802 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2803
2804 if (cachep->flags & SLAB_POISON) {
2805 poison_obj(cachep, objp, POISON_FREE);
2806 slab_kernel_map(cachep, objp, 0, caller);
2807 }
2808 return objp;
2809 }
2810
2811 #else
2812 #define kfree_debugcheck(x) do { } while(0)
2813 #define cache_free_debugcheck(x,objp,z) (objp)
2814 #endif
2815
2816 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2817 void **list)
2818 {
2819 #if DEBUG
2820 void *next = *list;
2821 void *objp;
2822
2823 while (next) {
2824 objp = next - obj_offset(cachep);
2825 next = *(void **)next;
2826 poison_obj(cachep, objp, POISON_FREE);
2827 }
2828 #endif
2829 }
2830
2831 static inline void fixup_slab_list(struct kmem_cache *cachep,
2832 struct kmem_cache_node *n, struct page *page,
2833 void **list)
2834 {
2835 /* move slabp to correct slabp list: */
2836 list_del(&page->lru);
2837 if (page->active == cachep->num) {
2838 list_add(&page->lru, &n->slabs_full);
2839 if (OBJFREELIST_SLAB(cachep)) {
2840 #if DEBUG
2841 /* Poisoning will be done without holding the lock */
2842 if (cachep->flags & SLAB_POISON) {
2843 void **objp = page->freelist;
2844
2845 *objp = *list;
2846 *list = objp;
2847 }
2848 #endif
2849 page->freelist = NULL;
2850 }
2851 } else
2852 list_add(&page->lru, &n->slabs_partial);
2853 }
2854
2855 /* Try to find non-pfmemalloc slab if needed */
2856 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2857 struct page *page, bool pfmemalloc)
2858 {
2859 if (!page)
2860 return NULL;
2861
2862 if (pfmemalloc)
2863 return page;
2864
2865 if (!PageSlabPfmemalloc(page))
2866 return page;
2867
2868 /* No need to keep pfmemalloc slab if we have enough free objects */
2869 if (n->free_objects > n->free_limit) {
2870 ClearPageSlabPfmemalloc(page);
2871 return page;
2872 }
2873
2874 /* Move pfmemalloc slab to the end of list to speed up next search */
2875 list_del(&page->lru);
2876 if (!page->active) {
2877 list_add_tail(&page->lru, &n->slabs_free);
2878 n->free_slabs++;
2879 } else
2880 list_add_tail(&page->lru, &n->slabs_partial);
2881
2882 list_for_each_entry(page, &n->slabs_partial, lru) {
2883 if (!PageSlabPfmemalloc(page))
2884 return page;
2885 }
2886
2887 n->free_touched = 1;
2888 list_for_each_entry(page, &n->slabs_free, lru) {
2889 if (!PageSlabPfmemalloc(page)) {
2890 n->free_slabs--;
2891 return page;
2892 }
2893 }
2894
2895 return NULL;
2896 }
2897
2898 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2899 {
2900 struct page *page;
2901
2902 assert_spin_locked(&n->list_lock);
2903 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2904 if (!page) {
2905 n->free_touched = 1;
2906 page = list_first_entry_or_null(&n->slabs_free, struct page,
2907 lru);
2908 if (page)
2909 n->free_slabs--;
2910 }
2911
2912 if (sk_memalloc_socks())
2913 page = get_valid_first_slab(n, page, pfmemalloc);
2914
2915 return page;
2916 }
2917
2918 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2919 struct kmem_cache_node *n, gfp_t flags)
2920 {
2921 struct page *page;
2922 void *obj;
2923 void *list = NULL;
2924
2925 if (!gfp_pfmemalloc_allowed(flags))
2926 return NULL;
2927
2928 spin_lock(&n->list_lock);
2929 page = get_first_slab(n, true);
2930 if (!page) {
2931 spin_unlock(&n->list_lock);
2932 return NULL;
2933 }
2934
2935 obj = slab_get_obj(cachep, page);
2936 n->free_objects--;
2937
2938 fixup_slab_list(cachep, n, page, &list);
2939
2940 spin_unlock(&n->list_lock);
2941 fixup_objfreelist_debug(cachep, &list);
2942
2943 return obj;
2944 }
2945
2946 /*
2947 * Slab list should be fixed up by fixup_slab_list() for existing slab
2948 * or cache_grow_end() for new slab
2949 */
2950 static __always_inline int alloc_block(struct kmem_cache *cachep,
2951 struct array_cache *ac, struct page *page, int batchcount)
2952 {
2953 /*
2954 * There must be at least one object available for
2955 * allocation.
2956 */
2957 BUG_ON(page->active >= cachep->num);
2958
2959 while (page->active < cachep->num && batchcount--) {
2960 STATS_INC_ALLOCED(cachep);
2961 STATS_INC_ACTIVE(cachep);
2962 STATS_SET_HIGH(cachep);
2963
2964 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2965 }
2966
2967 return batchcount;
2968 }
2969
2970 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2971 {
2972 int batchcount;
2973 struct kmem_cache_node *n;
2974 struct array_cache *ac, *shared;
2975 int node;
2976 void *list = NULL;
2977 struct page *page;
2978
2979 check_irq_off();
2980 node = numa_mem_id();
2981
2982 ac = cpu_cache_get(cachep);
2983 batchcount = ac->batchcount;
2984 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2985 /*
2986 * If there was little recent activity on this cache, then
2987 * perform only a partial refill. Otherwise we could generate
2988 * refill bouncing.
2989 */
2990 batchcount = BATCHREFILL_LIMIT;
2991 }
2992 n = get_node(cachep, node);
2993
2994 BUG_ON(ac->avail > 0 || !n);
2995 shared = READ_ONCE(n->shared);
2996 if (!n->free_objects && (!shared || !shared->avail))
2997 goto direct_grow;
2998
2999 spin_lock(&n->list_lock);
3000 shared = READ_ONCE(n->shared);
3001
3002 /* See if we can refill from the shared array */
3003 if (shared && transfer_objects(ac, shared, batchcount)) {
3004 shared->touched = 1;
3005 goto alloc_done;
3006 }
3007
3008 while (batchcount > 0) {
3009 /* Get slab alloc is to come from. */
3010 page = get_first_slab(n, false);
3011 if (!page)
3012 goto must_grow;
3013
3014 check_spinlock_acquired(cachep);
3015
3016 batchcount = alloc_block(cachep, ac, page, batchcount);
3017 fixup_slab_list(cachep, n, page, &list);
3018 }
3019
3020 must_grow:
3021 n->free_objects -= ac->avail;
3022 alloc_done:
3023 spin_unlock(&n->list_lock);
3024 fixup_objfreelist_debug(cachep, &list);
3025
3026 direct_grow:
3027 if (unlikely(!ac->avail)) {
3028 /* Check if we can use obj in pfmemalloc slab */
3029 if (sk_memalloc_socks()) {
3030 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3031
3032 if (obj)
3033 return obj;
3034 }
3035
3036 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3037
3038 /*
3039 * cache_grow_begin() can reenable interrupts,
3040 * then ac could change.
3041 */
3042 ac = cpu_cache_get(cachep);
3043 if (!ac->avail && page)
3044 alloc_block(cachep, ac, page, batchcount);
3045 cache_grow_end(cachep, page);
3046
3047 if (!ac->avail)
3048 return NULL;
3049 }
3050 ac->touched = 1;
3051
3052 return ac->entry[--ac->avail];
3053 }
3054
3055 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3056 gfp_t flags)
3057 {
3058 might_sleep_if(gfpflags_allow_blocking(flags));
3059 }
3060
3061 #if DEBUG
3062 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3063 gfp_t flags, void *objp, unsigned long caller)
3064 {
3065 if (!objp)
3066 return objp;
3067 if (cachep->flags & SLAB_POISON) {
3068 check_poison_obj(cachep, objp);
3069 slab_kernel_map(cachep, objp, 1, 0);
3070 poison_obj(cachep, objp, POISON_INUSE);
3071 }
3072 if (cachep->flags & SLAB_STORE_USER)
3073 *dbg_userword(cachep, objp) = (void *)caller;
3074
3075 if (cachep->flags & SLAB_RED_ZONE) {
3076 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3077 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3078 slab_error(cachep, "double free, or memory outside object was overwritten");
3079 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3080 objp, *dbg_redzone1(cachep, objp),
3081 *dbg_redzone2(cachep, objp));
3082 }
3083 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3084 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3085 }
3086
3087 objp += obj_offset(cachep);
3088 if (cachep->ctor && cachep->flags & SLAB_POISON)
3089 cachep->ctor(objp);
3090 if (ARCH_SLAB_MINALIGN &&
3091 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3092 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3093 objp, (int)ARCH_SLAB_MINALIGN);
3094 }
3095 return objp;
3096 }
3097 #else
3098 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3099 #endif
3100
3101 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3102 {
3103 void *objp;
3104 struct array_cache *ac;
3105
3106 check_irq_off();
3107
3108 ac = cpu_cache_get(cachep);
3109 if (likely(ac->avail)) {
3110 ac->touched = 1;
3111 objp = ac->entry[--ac->avail];
3112
3113 STATS_INC_ALLOCHIT(cachep);
3114 goto out;
3115 }
3116
3117 STATS_INC_ALLOCMISS(cachep);
3118 objp = cache_alloc_refill(cachep, flags);
3119 /*
3120 * the 'ac' may be updated by cache_alloc_refill(),
3121 * and kmemleak_erase() requires its correct value.
3122 */
3123 ac = cpu_cache_get(cachep);
3124
3125 out:
3126 /*
3127 * To avoid a false negative, if an object that is in one of the
3128 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3129 * treat the array pointers as a reference to the object.
3130 */
3131 if (objp)
3132 kmemleak_erase(&ac->entry[ac->avail]);
3133 return objp;
3134 }
3135
3136 #ifdef CONFIG_NUMA
3137 /*
3138 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3139 *
3140 * If we are in_interrupt, then process context, including cpusets and
3141 * mempolicy, may not apply and should not be used for allocation policy.
3142 */
3143 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3144 {
3145 int nid_alloc, nid_here;
3146
3147 if (in_interrupt() || (flags & __GFP_THISNODE))
3148 return NULL;
3149 nid_alloc = nid_here = numa_mem_id();
3150 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3151 nid_alloc = cpuset_slab_spread_node();
3152 else if (current->mempolicy)
3153 nid_alloc = mempolicy_slab_node();
3154 if (nid_alloc != nid_here)
3155 return ____cache_alloc_node(cachep, flags, nid_alloc);
3156 return NULL;
3157 }
3158
3159 /*
3160 * Fallback function if there was no memory available and no objects on a
3161 * certain node and fall back is permitted. First we scan all the
3162 * available node for available objects. If that fails then we
3163 * perform an allocation without specifying a node. This allows the page
3164 * allocator to do its reclaim / fallback magic. We then insert the
3165 * slab into the proper nodelist and then allocate from it.
3166 */
3167 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3168 {
3169 struct zonelist *zonelist;
3170 struct zoneref *z;
3171 struct zone *zone;
3172 enum zone_type high_zoneidx = gfp_zone(flags);
3173 void *obj = NULL;
3174 struct page *page;
3175 int nid;
3176 unsigned int cpuset_mems_cookie;
3177
3178 if (flags & __GFP_THISNODE)
3179 return NULL;
3180
3181 retry_cpuset:
3182 cpuset_mems_cookie = read_mems_allowed_begin();
3183 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3184
3185 retry:
3186 /*
3187 * Look through allowed nodes for objects available
3188 * from existing per node queues.
3189 */
3190 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3191 nid = zone_to_nid(zone);
3192
3193 if (cpuset_zone_allowed(zone, flags) &&
3194 get_node(cache, nid) &&
3195 get_node(cache, nid)->free_objects) {
3196 obj = ____cache_alloc_node(cache,
3197 gfp_exact_node(flags), nid);
3198 if (obj)
3199 break;
3200 }
3201 }
3202
3203 if (!obj) {
3204 /*
3205 * This allocation will be performed within the constraints
3206 * of the current cpuset / memory policy requirements.
3207 * We may trigger various forms of reclaim on the allowed
3208 * set and go into memory reserves if necessary.
3209 */
3210 page = cache_grow_begin(cache, flags, numa_mem_id());
3211 cache_grow_end(cache, page);
3212 if (page) {
3213 nid = page_to_nid(page);
3214 obj = ____cache_alloc_node(cache,
3215 gfp_exact_node(flags), nid);
3216
3217 /*
3218 * Another processor may allocate the objects in
3219 * the slab since we are not holding any locks.
3220 */
3221 if (!obj)
3222 goto retry;
3223 }
3224 }
3225
3226 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3227 goto retry_cpuset;
3228 return obj;
3229 }
3230
3231 /*
3232 * A interface to enable slab creation on nodeid
3233 */
3234 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3235 int nodeid)
3236 {
3237 struct page *page;
3238 struct kmem_cache_node *n;
3239 void *obj = NULL;
3240 void *list = NULL;
3241
3242 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3243 n = get_node(cachep, nodeid);
3244 BUG_ON(!n);
3245
3246 check_irq_off();
3247 spin_lock(&n->list_lock);
3248 page = get_first_slab(n, false);
3249 if (!page)
3250 goto must_grow;
3251
3252 check_spinlock_acquired_node(cachep, nodeid);
3253
3254 STATS_INC_NODEALLOCS(cachep);
3255 STATS_INC_ACTIVE(cachep);
3256 STATS_SET_HIGH(cachep);
3257
3258 BUG_ON(page->active == cachep->num);
3259
3260 obj = slab_get_obj(cachep, page);
3261 n->free_objects--;
3262
3263 fixup_slab_list(cachep, n, page, &list);
3264
3265 spin_unlock(&n->list_lock);
3266 fixup_objfreelist_debug(cachep, &list);
3267 return obj;
3268
3269 must_grow:
3270 spin_unlock(&n->list_lock);
3271 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3272 if (page) {
3273 /* This slab isn't counted yet so don't update free_objects */
3274 obj = slab_get_obj(cachep, page);
3275 }
3276 cache_grow_end(cachep, page);
3277
3278 return obj ? obj : fallback_alloc(cachep, flags);
3279 }
3280
3281 static __always_inline void *
3282 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3283 unsigned long caller)
3284 {
3285 unsigned long save_flags;
3286 void *ptr;
3287 int slab_node = numa_mem_id();
3288
3289 flags &= gfp_allowed_mask;
3290 cachep = slab_pre_alloc_hook(cachep, flags);
3291 if (unlikely(!cachep))
3292 return NULL;
3293
3294 cache_alloc_debugcheck_before(cachep, flags);
3295 local_irq_save(save_flags);
3296
3297 if (nodeid == NUMA_NO_NODE)
3298 nodeid = slab_node;
3299
3300 if (unlikely(!get_node(cachep, nodeid))) {
3301 /* Node not bootstrapped yet */
3302 ptr = fallback_alloc(cachep, flags);
3303 goto out;
3304 }
3305
3306 if (nodeid == slab_node) {
3307 /*
3308 * Use the locally cached objects if possible.
3309 * However ____cache_alloc does not allow fallback
3310 * to other nodes. It may fail while we still have
3311 * objects on other nodes available.
3312 */
3313 ptr = ____cache_alloc(cachep, flags);
3314 if (ptr)
3315 goto out;
3316 }
3317 /* ___cache_alloc_node can fall back to other nodes */
3318 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3319 out:
3320 local_irq_restore(save_flags);
3321 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3322
3323 if (unlikely(flags & __GFP_ZERO) && ptr)
3324 memset(ptr, 0, cachep->object_size);
3325
3326 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3327 return ptr;
3328 }
3329
3330 static __always_inline void *
3331 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3332 {
3333 void *objp;
3334
3335 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3336 objp = alternate_node_alloc(cache, flags);
3337 if (objp)
3338 goto out;
3339 }
3340 objp = ____cache_alloc(cache, flags);
3341
3342 /*
3343 * We may just have run out of memory on the local node.
3344 * ____cache_alloc_node() knows how to locate memory on other nodes
3345 */
3346 if (!objp)
3347 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3348
3349 out:
3350 return objp;
3351 }
3352 #else
3353
3354 static __always_inline void *
3355 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3356 {
3357 return ____cache_alloc(cachep, flags);
3358 }
3359
3360 #endif /* CONFIG_NUMA */
3361
3362 static __always_inline void *
3363 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3364 {
3365 unsigned long save_flags;
3366 void *objp;
3367
3368 flags &= gfp_allowed_mask;
3369 cachep = slab_pre_alloc_hook(cachep, flags);
3370 if (unlikely(!cachep))
3371 return NULL;
3372
3373 cache_alloc_debugcheck_before(cachep, flags);
3374 local_irq_save(save_flags);
3375 objp = __do_cache_alloc(cachep, flags);
3376 local_irq_restore(save_flags);
3377 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3378 prefetchw(objp);
3379
3380 if (unlikely(flags & __GFP_ZERO) && objp)
3381 memset(objp, 0, cachep->object_size);
3382
3383 slab_post_alloc_hook(cachep, flags, 1, &objp);
3384 return objp;
3385 }
3386
3387 /*
3388 * Caller needs to acquire correct kmem_cache_node's list_lock
3389 * @list: List of detached free slabs should be freed by caller
3390 */
3391 static void free_block(struct kmem_cache *cachep, void **objpp,
3392 int nr_objects, int node, struct list_head *list)
3393 {
3394 int i;
3395 struct kmem_cache_node *n = get_node(cachep, node);
3396 struct page *page;
3397
3398 n->free_objects += nr_objects;
3399
3400 for (i = 0; i < nr_objects; i++) {
3401 void *objp;
3402 struct page *page;
3403
3404 objp = objpp[i];
3405
3406 page = virt_to_head_page(objp);
3407 list_del(&page->lru);
3408 check_spinlock_acquired_node(cachep, node);
3409 slab_put_obj(cachep, page, objp);
3410 STATS_DEC_ACTIVE(cachep);
3411
3412 /* fixup slab chains */
3413 if (page->active == 0) {
3414 list_add(&page->lru, &n->slabs_free);
3415 n->free_slabs++;
3416 } else {
3417 /* Unconditionally move a slab to the end of the
3418 * partial list on free - maximum time for the
3419 * other objects to be freed, too.
3420 */
3421 list_add_tail(&page->lru, &n->slabs_partial);
3422 }
3423 }
3424
3425 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3426 n->free_objects -= cachep->num;
3427
3428 page = list_last_entry(&n->slabs_free, struct page, lru);
3429 list_move(&page->lru, list);
3430 n->free_slabs--;
3431 n->total_slabs--;
3432 }
3433 }
3434
3435 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3436 {
3437 int batchcount;
3438 struct kmem_cache_node *n;
3439 int node = numa_mem_id();
3440 LIST_HEAD(list);
3441
3442 batchcount = ac->batchcount;
3443
3444 check_irq_off();
3445 n = get_node(cachep, node);
3446 spin_lock(&n->list_lock);
3447 if (n->shared) {
3448 struct array_cache *shared_array = n->shared;
3449 int max = shared_array->limit - shared_array->avail;
3450 if (max) {
3451 if (batchcount > max)
3452 batchcount = max;
3453 memcpy(&(shared_array->entry[shared_array->avail]),
3454 ac->entry, sizeof(void *) * batchcount);
3455 shared_array->avail += batchcount;
3456 goto free_done;
3457 }
3458 }
3459
3460 free_block(cachep, ac->entry, batchcount, node, &list);
3461 free_done:
3462 #if STATS
3463 {
3464 int i = 0;
3465 struct page *page;
3466
3467 list_for_each_entry(page, &n->slabs_free, lru) {
3468 BUG_ON(page->active);
3469
3470 i++;
3471 }
3472 STATS_SET_FREEABLE(cachep, i);
3473 }
3474 #endif
3475 spin_unlock(&n->list_lock);
3476 slabs_destroy(cachep, &list);
3477 ac->avail -= batchcount;
3478 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3479 }
3480
3481 /*
3482 * Release an obj back to its cache. If the obj has a constructed state, it must
3483 * be in this state _before_ it is released. Called with disabled ints.
3484 */
3485 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3486 unsigned long caller)
3487 {
3488 /* Put the object into the quarantine, don't touch it for now. */
3489 if (kasan_slab_free(cachep, objp))
3490 return;
3491
3492 ___cache_free(cachep, objp, caller);
3493 }
3494
3495 void ___cache_free(struct kmem_cache *cachep, void *objp,
3496 unsigned long caller)
3497 {
3498 struct array_cache *ac = cpu_cache_get(cachep);
3499
3500 check_irq_off();
3501 kmemleak_free_recursive(objp, cachep->flags);
3502 objp = cache_free_debugcheck(cachep, objp, caller);
3503
3504 /*
3505 * Skip calling cache_free_alien() when the platform is not numa.
3506 * This will avoid cache misses that happen while accessing slabp (which
3507 * is per page memory reference) to get nodeid. Instead use a global
3508 * variable to skip the call, which is mostly likely to be present in
3509 * the cache.
3510 */
3511 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3512 return;
3513
3514 if (ac->avail < ac->limit) {
3515 STATS_INC_FREEHIT(cachep);
3516 } else {
3517 STATS_INC_FREEMISS(cachep);
3518 cache_flusharray(cachep, ac);
3519 }
3520
3521 if (sk_memalloc_socks()) {
3522 struct page *page = virt_to_head_page(objp);
3523
3524 if (unlikely(PageSlabPfmemalloc(page))) {
3525 cache_free_pfmemalloc(cachep, page, objp);
3526 return;
3527 }
3528 }
3529
3530 ac->entry[ac->avail++] = objp;
3531 }
3532
3533 /**
3534 * kmem_cache_alloc - Allocate an object
3535 * @cachep: The cache to allocate from.
3536 * @flags: See kmalloc().
3537 *
3538 * Allocate an object from this cache. The flags are only relevant
3539 * if the cache has no available objects.
3540 */
3541 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3542 {
3543 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3544
3545 kasan_slab_alloc(cachep, ret, flags);
3546 trace_kmem_cache_alloc(_RET_IP_, ret,
3547 cachep->object_size, cachep->size, flags);
3548
3549 return ret;
3550 }
3551 EXPORT_SYMBOL(kmem_cache_alloc);
3552
3553 static __always_inline void
3554 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3555 size_t size, void **p, unsigned long caller)
3556 {
3557 size_t i;
3558
3559 for (i = 0; i < size; i++)
3560 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3561 }
3562
3563 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3564 void **p)
3565 {
3566 size_t i;
3567
3568 s = slab_pre_alloc_hook(s, flags);
3569 if (!s)
3570 return 0;
3571
3572 cache_alloc_debugcheck_before(s, flags);
3573
3574 local_irq_disable();
3575 for (i = 0; i < size; i++) {
3576 void *objp = __do_cache_alloc(s, flags);
3577
3578 if (unlikely(!objp))
3579 goto error;
3580 p[i] = objp;
3581 }
3582 local_irq_enable();
3583
3584 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3585
3586 /* Clear memory outside IRQ disabled section */
3587 if (unlikely(flags & __GFP_ZERO))
3588 for (i = 0; i < size; i++)
3589 memset(p[i], 0, s->object_size);
3590
3591 slab_post_alloc_hook(s, flags, size, p);
3592 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3593 return size;
3594 error:
3595 local_irq_enable();
3596 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3597 slab_post_alloc_hook(s, flags, i, p);
3598 __kmem_cache_free_bulk(s, i, p);
3599 return 0;
3600 }
3601 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3602
3603 #ifdef CONFIG_TRACING
3604 void *
3605 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3606 {
3607 void *ret;
3608
3609 ret = slab_alloc(cachep, flags, _RET_IP_);
3610
3611 kasan_kmalloc(cachep, ret, size, flags);
3612 trace_kmalloc(_RET_IP_, ret,
3613 size, cachep->size, flags);
3614 return ret;
3615 }
3616 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3617 #endif
3618
3619 #ifdef CONFIG_NUMA
3620 /**
3621 * kmem_cache_alloc_node - Allocate an object on the specified node
3622 * @cachep: The cache to allocate from.
3623 * @flags: See kmalloc().
3624 * @nodeid: node number of the target node.
3625 *
3626 * Identical to kmem_cache_alloc but it will allocate memory on the given
3627 * node, which can improve the performance for cpu bound structures.
3628 *
3629 * Fallback to other node is possible if __GFP_THISNODE is not set.
3630 */
3631 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3632 {
3633 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3634
3635 kasan_slab_alloc(cachep, ret, flags);
3636 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3637 cachep->object_size, cachep->size,
3638 flags, nodeid);
3639
3640 return ret;
3641 }
3642 EXPORT_SYMBOL(kmem_cache_alloc_node);
3643
3644 #ifdef CONFIG_TRACING
3645 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3646 gfp_t flags,
3647 int nodeid,
3648 size_t size)
3649 {
3650 void *ret;
3651
3652 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3653
3654 kasan_kmalloc(cachep, ret, size, flags);
3655 trace_kmalloc_node(_RET_IP_, ret,
3656 size, cachep->size,
3657 flags, nodeid);
3658 return ret;
3659 }
3660 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3661 #endif
3662
3663 static __always_inline void *
3664 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3665 {
3666 struct kmem_cache *cachep;
3667 void *ret;
3668
3669 cachep = kmalloc_slab(size, flags);
3670 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3671 return cachep;
3672 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3673 kasan_kmalloc(cachep, ret, size, flags);
3674
3675 return ret;
3676 }
3677
3678 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3679 {
3680 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3681 }
3682 EXPORT_SYMBOL(__kmalloc_node);
3683
3684 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3685 int node, unsigned long caller)
3686 {
3687 return __do_kmalloc_node(size, flags, node, caller);
3688 }
3689 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3690 #endif /* CONFIG_NUMA */
3691
3692 /**
3693 * __do_kmalloc - allocate memory
3694 * @size: how many bytes of memory are required.
3695 * @flags: the type of memory to allocate (see kmalloc).
3696 * @caller: function caller for debug tracking of the caller
3697 */
3698 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3699 unsigned long caller)
3700 {
3701 struct kmem_cache *cachep;
3702 void *ret;
3703
3704 cachep = kmalloc_slab(size, flags);
3705 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3706 return cachep;
3707 ret = slab_alloc(cachep, flags, caller);
3708
3709 kasan_kmalloc(cachep, ret, size, flags);
3710 trace_kmalloc(caller, ret,
3711 size, cachep->size, flags);
3712
3713 return ret;
3714 }
3715
3716 void *__kmalloc(size_t size, gfp_t flags)
3717 {
3718 return __do_kmalloc(size, flags, _RET_IP_);
3719 }
3720 EXPORT_SYMBOL(__kmalloc);
3721
3722 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3723 {
3724 return __do_kmalloc(size, flags, caller);
3725 }
3726 EXPORT_SYMBOL(__kmalloc_track_caller);
3727
3728 /**
3729 * kmem_cache_free - Deallocate an object
3730 * @cachep: The cache the allocation was from.
3731 * @objp: The previously allocated object.
3732 *
3733 * Free an object which was previously allocated from this
3734 * cache.
3735 */
3736 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3737 {
3738 unsigned long flags;
3739 cachep = cache_from_obj(cachep, objp);
3740 if (!cachep)
3741 return;
3742
3743 local_irq_save(flags);
3744 debug_check_no_locks_freed(objp, cachep->object_size);
3745 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3746 debug_check_no_obj_freed(objp, cachep->object_size);
3747 __cache_free(cachep, objp, _RET_IP_);
3748 local_irq_restore(flags);
3749
3750 trace_kmem_cache_free(_RET_IP_, objp);
3751 }
3752 EXPORT_SYMBOL(kmem_cache_free);
3753
3754 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3755 {
3756 struct kmem_cache *s;
3757 size_t i;
3758
3759 local_irq_disable();
3760 for (i = 0; i < size; i++) {
3761 void *objp = p[i];
3762
3763 if (!orig_s) /* called via kfree_bulk */
3764 s = virt_to_cache(objp);
3765 else
3766 s = cache_from_obj(orig_s, objp);
3767
3768 debug_check_no_locks_freed(objp, s->object_size);
3769 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3770 debug_check_no_obj_freed(objp, s->object_size);
3771
3772 __cache_free(s, objp, _RET_IP_);
3773 }
3774 local_irq_enable();
3775
3776 /* FIXME: add tracing */
3777 }
3778 EXPORT_SYMBOL(kmem_cache_free_bulk);
3779
3780 /**
3781 * kfree - free previously allocated memory
3782 * @objp: pointer returned by kmalloc.
3783 *
3784 * If @objp is NULL, no operation is performed.
3785 *
3786 * Don't free memory not originally allocated by kmalloc()
3787 * or you will run into trouble.
3788 */
3789 void kfree(const void *objp)
3790 {
3791 struct kmem_cache *c;
3792 unsigned long flags;
3793
3794 trace_kfree(_RET_IP_, objp);
3795
3796 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3797 return;
3798 local_irq_save(flags);
3799 kfree_debugcheck(objp);
3800 c = virt_to_cache(objp);
3801 debug_check_no_locks_freed(objp, c->object_size);
3802
3803 debug_check_no_obj_freed(objp, c->object_size);
3804 __cache_free(c, (void *)objp, _RET_IP_);
3805 local_irq_restore(flags);
3806 }
3807 EXPORT_SYMBOL(kfree);
3808
3809 /*
3810 * This initializes kmem_cache_node or resizes various caches for all nodes.
3811 */
3812 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3813 {
3814 int ret;
3815 int node;
3816 struct kmem_cache_node *n;
3817
3818 for_each_online_node(node) {
3819 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3820 if (ret)
3821 goto fail;
3822
3823 }
3824
3825 return 0;
3826
3827 fail:
3828 if (!cachep->list.next) {
3829 /* Cache is not active yet. Roll back what we did */
3830 node--;
3831 while (node >= 0) {
3832 n = get_node(cachep, node);
3833 if (n) {
3834 kfree(n->shared);
3835 free_alien_cache(n->alien);
3836 kfree(n);
3837 cachep->node[node] = NULL;
3838 }
3839 node--;
3840 }
3841 }
3842 return -ENOMEM;
3843 }
3844
3845 /* Always called with the slab_mutex held */
3846 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3847 int batchcount, int shared, gfp_t gfp)
3848 {
3849 struct array_cache __percpu *cpu_cache, *prev;
3850 int cpu;
3851
3852 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3853 if (!cpu_cache)
3854 return -ENOMEM;
3855
3856 prev = cachep->cpu_cache;
3857 cachep->cpu_cache = cpu_cache;
3858 /*
3859 * Without a previous cpu_cache there's no need to synchronize remote
3860 * cpus, so skip the IPIs.
3861 */
3862 if (prev)
3863 kick_all_cpus_sync();
3864
3865 check_irq_on();
3866 cachep->batchcount = batchcount;
3867 cachep->limit = limit;
3868 cachep->shared = shared;
3869
3870 if (!prev)
3871 goto setup_node;
3872
3873 for_each_online_cpu(cpu) {
3874 LIST_HEAD(list);
3875 int node;
3876 struct kmem_cache_node *n;
3877 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3878
3879 node = cpu_to_mem(cpu);
3880 n = get_node(cachep, node);
3881 spin_lock_irq(&n->list_lock);
3882 free_block(cachep, ac->entry, ac->avail, node, &list);
3883 spin_unlock_irq(&n->list_lock);
3884 slabs_destroy(cachep, &list);
3885 }
3886 free_percpu(prev);
3887
3888 setup_node:
3889 return setup_kmem_cache_nodes(cachep, gfp);
3890 }
3891
3892 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3893 int batchcount, int shared, gfp_t gfp)
3894 {
3895 int ret;
3896 struct kmem_cache *c;
3897
3898 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3899
3900 if (slab_state < FULL)
3901 return ret;
3902
3903 if ((ret < 0) || !is_root_cache(cachep))
3904 return ret;
3905
3906 lockdep_assert_held(&slab_mutex);
3907 for_each_memcg_cache(c, cachep) {
3908 /* return value determined by the root cache only */
3909 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3910 }
3911
3912 return ret;
3913 }
3914
3915 /* Called with slab_mutex held always */
3916 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3917 {
3918 int err;
3919 int limit = 0;
3920 int shared = 0;
3921 int batchcount = 0;
3922
3923 err = cache_random_seq_create(cachep, cachep->num, gfp);
3924 if (err)
3925 goto end;
3926
3927 if (!is_root_cache(cachep)) {
3928 struct kmem_cache *root = memcg_root_cache(cachep);
3929 limit = root->limit;
3930 shared = root->shared;
3931 batchcount = root->batchcount;
3932 }
3933
3934 if (limit && shared && batchcount)
3935 goto skip_setup;
3936 /*
3937 * The head array serves three purposes:
3938 * - create a LIFO ordering, i.e. return objects that are cache-warm
3939 * - reduce the number of spinlock operations.
3940 * - reduce the number of linked list operations on the slab and
3941 * bufctl chains: array operations are cheaper.
3942 * The numbers are guessed, we should auto-tune as described by
3943 * Bonwick.
3944 */
3945 if (cachep->size > 131072)
3946 limit = 1;
3947 else if (cachep->size > PAGE_SIZE)
3948 limit = 8;
3949 else if (cachep->size > 1024)
3950 limit = 24;
3951 else if (cachep->size > 256)
3952 limit = 54;
3953 else
3954 limit = 120;
3955
3956 /*
3957 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3958 * allocation behaviour: Most allocs on one cpu, most free operations
3959 * on another cpu. For these cases, an efficient object passing between
3960 * cpus is necessary. This is provided by a shared array. The array
3961 * replaces Bonwick's magazine layer.
3962 * On uniprocessor, it's functionally equivalent (but less efficient)
3963 * to a larger limit. Thus disabled by default.
3964 */
3965 shared = 0;
3966 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3967 shared = 8;
3968
3969 #if DEBUG
3970 /*
3971 * With debugging enabled, large batchcount lead to excessively long
3972 * periods with disabled local interrupts. Limit the batchcount
3973 */
3974 if (limit > 32)
3975 limit = 32;
3976 #endif
3977 batchcount = (limit + 1) / 2;
3978 skip_setup:
3979 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3980 end:
3981 if (err)
3982 pr_err("enable_cpucache failed for %s, error %d\n",
3983 cachep->name, -err);
3984 return err;
3985 }
3986
3987 /*
3988 * Drain an array if it contains any elements taking the node lock only if
3989 * necessary. Note that the node listlock also protects the array_cache
3990 * if drain_array() is used on the shared array.
3991 */
3992 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3993 struct array_cache *ac, int node)
3994 {
3995 LIST_HEAD(list);
3996
3997 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3998 check_mutex_acquired();
3999
4000 if (!ac || !ac->avail)
4001 return;
4002
4003 if (ac->touched) {
4004 ac->touched = 0;
4005 return;
4006 }
4007
4008 spin_lock_irq(&n->list_lock);
4009 drain_array_locked(cachep, ac, node, false, &list);
4010 spin_unlock_irq(&n->list_lock);
4011
4012 slabs_destroy(cachep, &list);
4013 }
4014
4015 /**
4016 * cache_reap - Reclaim memory from caches.
4017 * @w: work descriptor
4018 *
4019 * Called from workqueue/eventd every few seconds.
4020 * Purpose:
4021 * - clear the per-cpu caches for this CPU.
4022 * - return freeable pages to the main free memory pool.
4023 *
4024 * If we cannot acquire the cache chain mutex then just give up - we'll try
4025 * again on the next iteration.
4026 */
4027 static void cache_reap(struct work_struct *w)
4028 {
4029 struct kmem_cache *searchp;
4030 struct kmem_cache_node *n;
4031 int node = numa_mem_id();
4032 struct delayed_work *work = to_delayed_work(w);
4033
4034 if (!mutex_trylock(&slab_mutex))
4035 /* Give up. Setup the next iteration. */
4036 goto out;
4037
4038 list_for_each_entry(searchp, &slab_caches, list) {
4039 check_irq_on();
4040
4041 /*
4042 * We only take the node lock if absolutely necessary and we
4043 * have established with reasonable certainty that
4044 * we can do some work if the lock was obtained.
4045 */
4046 n = get_node(searchp, node);
4047
4048 reap_alien(searchp, n);
4049
4050 drain_array(searchp, n, cpu_cache_get(searchp), node);
4051
4052 /*
4053 * These are racy checks but it does not matter
4054 * if we skip one check or scan twice.
4055 */
4056 if (time_after(n->next_reap, jiffies))
4057 goto next;
4058
4059 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4060
4061 drain_array(searchp, n, n->shared, node);
4062
4063 if (n->free_touched)
4064 n->free_touched = 0;
4065 else {
4066 int freed;
4067
4068 freed = drain_freelist(searchp, n, (n->free_limit +
4069 5 * searchp->num - 1) / (5 * searchp->num));
4070 STATS_ADD_REAPED(searchp, freed);
4071 }
4072 next:
4073 cond_resched();
4074 }
4075 check_irq_on();
4076 mutex_unlock(&slab_mutex);
4077 next_reap_node();
4078 out:
4079 /* Set up the next iteration */
4080 schedule_delayed_work_on(smp_processor_id(), work,
4081 round_jiffies_relative(REAPTIMEOUT_AC));
4082 }
4083
4084 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4085 {
4086 unsigned long active_objs, num_objs, active_slabs;
4087 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4088 unsigned long free_slabs = 0;
4089 int node;
4090 struct kmem_cache_node *n;
4091
4092 for_each_kmem_cache_node(cachep, node, n) {
4093 check_irq_on();
4094 spin_lock_irq(&n->list_lock);
4095
4096 total_slabs += n->total_slabs;
4097 free_slabs += n->free_slabs;
4098 free_objs += n->free_objects;
4099
4100 if (n->shared)
4101 shared_avail += n->shared->avail;
4102
4103 spin_unlock_irq(&n->list_lock);
4104 }
4105 num_objs = total_slabs * cachep->num;
4106 active_slabs = total_slabs - free_slabs;
4107 active_objs = num_objs - free_objs;
4108
4109 sinfo->active_objs = active_objs;
4110 sinfo->num_objs = num_objs;
4111 sinfo->active_slabs = active_slabs;
4112 sinfo->num_slabs = total_slabs;
4113 sinfo->shared_avail = shared_avail;
4114 sinfo->limit = cachep->limit;
4115 sinfo->batchcount = cachep->batchcount;
4116 sinfo->shared = cachep->shared;
4117 sinfo->objects_per_slab = cachep->num;
4118 sinfo->cache_order = cachep->gfporder;
4119 }
4120
4121 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4122 {
4123 #if STATS
4124 { /* node stats */
4125 unsigned long high = cachep->high_mark;
4126 unsigned long allocs = cachep->num_allocations;
4127 unsigned long grown = cachep->grown;
4128 unsigned long reaped = cachep->reaped;
4129 unsigned long errors = cachep->errors;
4130 unsigned long max_freeable = cachep->max_freeable;
4131 unsigned long node_allocs = cachep->node_allocs;
4132 unsigned long node_frees = cachep->node_frees;
4133 unsigned long overflows = cachep->node_overflow;
4134
4135 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4136 allocs, high, grown,
4137 reaped, errors, max_freeable, node_allocs,
4138 node_frees, overflows);
4139 }
4140 /* cpu stats */
4141 {
4142 unsigned long allochit = atomic_read(&cachep->allochit);
4143 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4144 unsigned long freehit = atomic_read(&cachep->freehit);
4145 unsigned long freemiss = atomic_read(&cachep->freemiss);
4146
4147 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4148 allochit, allocmiss, freehit, freemiss);
4149 }
4150 #endif
4151 }
4152
4153 #define MAX_SLABINFO_WRITE 128
4154 /**
4155 * slabinfo_write - Tuning for the slab allocator
4156 * @file: unused
4157 * @buffer: user buffer
4158 * @count: data length
4159 * @ppos: unused
4160 */
4161 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4162 size_t count, loff_t *ppos)
4163 {
4164 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4165 int limit, batchcount, shared, res;
4166 struct kmem_cache *cachep;
4167
4168 if (count > MAX_SLABINFO_WRITE)
4169 return -EINVAL;
4170 if (copy_from_user(&kbuf, buffer, count))
4171 return -EFAULT;
4172 kbuf[MAX_SLABINFO_WRITE] = '\0';
4173
4174 tmp = strchr(kbuf, ' ');
4175 if (!tmp)
4176 return -EINVAL;
4177 *tmp = '\0';
4178 tmp++;
4179 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4180 return -EINVAL;
4181
4182 /* Find the cache in the chain of caches. */
4183 mutex_lock(&slab_mutex);
4184 res = -EINVAL;
4185 list_for_each_entry(cachep, &slab_caches, list) {
4186 if (!strcmp(cachep->name, kbuf)) {
4187 if (limit < 1 || batchcount < 1 ||
4188 batchcount > limit || shared < 0) {
4189 res = 0;
4190 } else {
4191 res = do_tune_cpucache(cachep, limit,
4192 batchcount, shared,
4193 GFP_KERNEL);
4194 }
4195 break;
4196 }
4197 }
4198 mutex_unlock(&slab_mutex);
4199 if (res >= 0)
4200 res = count;
4201 return res;
4202 }
4203
4204 #ifdef CONFIG_DEBUG_SLAB_LEAK
4205
4206 static inline int add_caller(unsigned long *n, unsigned long v)
4207 {
4208 unsigned long *p;
4209 int l;
4210 if (!v)
4211 return 1;
4212 l = n[1];
4213 p = n + 2;
4214 while (l) {
4215 int i = l/2;
4216 unsigned long *q = p + 2 * i;
4217 if (*q == v) {
4218 q[1]++;
4219 return 1;
4220 }
4221 if (*q > v) {
4222 l = i;
4223 } else {
4224 p = q + 2;
4225 l -= i + 1;
4226 }
4227 }
4228 if (++n[1] == n[0])
4229 return 0;
4230 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4231 p[0] = v;
4232 p[1] = 1;
4233 return 1;
4234 }
4235
4236 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4237 struct page *page)
4238 {
4239 void *p;
4240 int i, j;
4241 unsigned long v;
4242
4243 if (n[0] == n[1])
4244 return;
4245 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4246 bool active = true;
4247
4248 for (j = page->active; j < c->num; j++) {
4249 if (get_free_obj(page, j) == i) {
4250 active = false;
4251 break;
4252 }
4253 }
4254
4255 if (!active)
4256 continue;
4257
4258 /*
4259 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4260 * mapping is established when actual object allocation and
4261 * we could mistakenly access the unmapped object in the cpu
4262 * cache.
4263 */
4264 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4265 continue;
4266
4267 if (!add_caller(n, v))
4268 return;
4269 }
4270 }
4271
4272 static void show_symbol(struct seq_file *m, unsigned long address)
4273 {
4274 #ifdef CONFIG_KALLSYMS
4275 unsigned long offset, size;
4276 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4277
4278 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4279 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4280 if (modname[0])
4281 seq_printf(m, " [%s]", modname);
4282 return;
4283 }
4284 #endif
4285 seq_printf(m, "%px", (void *)address);
4286 }
4287
4288 static int leaks_show(struct seq_file *m, void *p)
4289 {
4290 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4291 struct page *page;
4292 struct kmem_cache_node *n;
4293 const char *name;
4294 unsigned long *x = m->private;
4295 int node;
4296 int i;
4297
4298 if (!(cachep->flags & SLAB_STORE_USER))
4299 return 0;
4300 if (!(cachep->flags & SLAB_RED_ZONE))
4301 return 0;
4302
4303 /*
4304 * Set store_user_clean and start to grab stored user information
4305 * for all objects on this cache. If some alloc/free requests comes
4306 * during the processing, information would be wrong so restart
4307 * whole processing.
4308 */
4309 do {
4310 set_store_user_clean(cachep);
4311 drain_cpu_caches(cachep);
4312
4313 x[1] = 0;
4314
4315 for_each_kmem_cache_node(cachep, node, n) {
4316
4317 check_irq_on();
4318 spin_lock_irq(&n->list_lock);
4319
4320 list_for_each_entry(page, &n->slabs_full, lru)
4321 handle_slab(x, cachep, page);
4322 list_for_each_entry(page, &n->slabs_partial, lru)
4323 handle_slab(x, cachep, page);
4324 spin_unlock_irq(&n->list_lock);
4325 }
4326 } while (!is_store_user_clean(cachep));
4327
4328 name = cachep->name;
4329 if (x[0] == x[1]) {
4330 /* Increase the buffer size */
4331 mutex_unlock(&slab_mutex);
4332 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4333 if (!m->private) {
4334 /* Too bad, we are really out */
4335 m->private = x;
4336 mutex_lock(&slab_mutex);
4337 return -ENOMEM;
4338 }
4339 *(unsigned long *)m->private = x[0] * 2;
4340 kfree(x);
4341 mutex_lock(&slab_mutex);
4342 /* Now make sure this entry will be retried */
4343 m->count = m->size;
4344 return 0;
4345 }
4346 for (i = 0; i < x[1]; i++) {
4347 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4348 show_symbol(m, x[2*i+2]);
4349 seq_putc(m, '\n');
4350 }
4351
4352 return 0;
4353 }
4354
4355 static const struct seq_operations slabstats_op = {
4356 .start = slab_start,
4357 .next = slab_next,
4358 .stop = slab_stop,
4359 .show = leaks_show,
4360 };
4361
4362 static int slabstats_open(struct inode *inode, struct file *file)
4363 {
4364 unsigned long *n;
4365
4366 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4367 if (!n)
4368 return -ENOMEM;
4369
4370 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4371
4372 return 0;
4373 }
4374
4375 static const struct file_operations proc_slabstats_operations = {
4376 .open = slabstats_open,
4377 .read = seq_read,
4378 .llseek = seq_lseek,
4379 .release = seq_release_private,
4380 };
4381 #endif
4382
4383 static int __init slab_proc_init(void)
4384 {
4385 #ifdef CONFIG_DEBUG_SLAB_LEAK
4386 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4387 #endif
4388 return 0;
4389 }
4390 module_init(slab_proc_init);
4391
4392 #ifdef CONFIG_HARDENED_USERCOPY
4393 /*
4394 * Rejects objects that are incorrectly sized.
4395 *
4396 * Returns NULL if check passes, otherwise const char * to name of cache
4397 * to indicate an error.
4398 */
4399 const char *__check_heap_object(const void *ptr, unsigned long n,
4400 struct page *page)
4401 {
4402 struct kmem_cache *cachep;
4403 unsigned int objnr;
4404 unsigned long offset;
4405
4406 /* Find and validate object. */
4407 cachep = page->slab_cache;
4408 objnr = obj_to_index(cachep, page, (void *)ptr);
4409 BUG_ON(objnr >= cachep->num);
4410
4411 /* Find offset within object. */
4412 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4413
4414 /* Allow address range falling entirely within object size. */
4415 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4416 return NULL;
4417
4418 return cachep->name;
4419 }
4420 #endif /* CONFIG_HARDENED_USERCOPY */
4421
4422 /**
4423 * ksize - get the actual amount of memory allocated for a given object
4424 * @objp: Pointer to the object
4425 *
4426 * kmalloc may internally round up allocations and return more memory
4427 * than requested. ksize() can be used to determine the actual amount of
4428 * memory allocated. The caller may use this additional memory, even though
4429 * a smaller amount of memory was initially specified with the kmalloc call.
4430 * The caller must guarantee that objp points to a valid object previously
4431 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4432 * must not be freed during the duration of the call.
4433 */
4434 size_t ksize(const void *objp)
4435 {
4436 size_t size;
4437
4438 BUG_ON(!objp);
4439 if (unlikely(objp == ZERO_SIZE_PTR))
4440 return 0;
4441
4442 size = virt_to_cache(objp)->object_size;
4443 /* We assume that ksize callers could use the whole allocated area,
4444 * so we need to unpoison this area.
4445 */
4446 kasan_unpoison_shadow(objp, size);
4447
4448 return size;
4449 }
4450 EXPORT_SYMBOL(ksize);