]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slab_common.c
bdi: Fix use after free bug in debugfs_remove()
[mirror_ubuntu-bionic-kernel.git] / mm / slab_common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/compiler.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/page.h>
22 #include <linux/memcontrol.h>
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kmem.h>
26
27 #include "slab.h"
28
29 enum slab_state slab_state;
30 LIST_HEAD(slab_caches);
31 DEFINE_MUTEX(slab_mutex);
32 struct kmem_cache *kmem_cache;
33
34 static LIST_HEAD(slab_caches_to_rcu_destroy);
35 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
36 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
37 slab_caches_to_rcu_destroy_workfn);
38
39 /*
40 * Set of flags that will prevent slab merging
41 */
42 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
43 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
44 SLAB_FAILSLAB | SLAB_KASAN)
45
46 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
47 SLAB_ACCOUNT)
48
49 /*
50 * Merge control. If this is set then no merging of slab caches will occur.
51 */
52 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
53
54 static int __init setup_slab_nomerge(char *str)
55 {
56 slab_nomerge = true;
57 return 1;
58 }
59
60 #ifdef CONFIG_SLUB
61 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
62 #endif
63
64 __setup("slab_nomerge", setup_slab_nomerge);
65
66 /*
67 * Determine the size of a slab object
68 */
69 unsigned int kmem_cache_size(struct kmem_cache *s)
70 {
71 return s->object_size;
72 }
73 EXPORT_SYMBOL(kmem_cache_size);
74
75 #ifdef CONFIG_DEBUG_VM
76 static int kmem_cache_sanity_check(const char *name, size_t size)
77 {
78 struct kmem_cache *s = NULL;
79
80 if (!name || in_interrupt() || size < sizeof(void *) ||
81 size > KMALLOC_MAX_SIZE) {
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
83 return -EINVAL;
84 }
85
86 list_for_each_entry(s, &slab_caches, list) {
87 char tmp;
88 int res;
89
90 /*
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
94 */
95 res = probe_kernel_address(s->name, tmp);
96 if (res) {
97 pr_err("Slab cache with size %d has lost its name\n",
98 s->object_size);
99 continue;
100 }
101 }
102
103 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
104 return 0;
105 }
106 #else
107 static inline int kmem_cache_sanity_check(const char *name, size_t size)
108 {
109 return 0;
110 }
111 #endif
112
113 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
114 {
115 size_t i;
116
117 for (i = 0; i < nr; i++) {
118 if (s)
119 kmem_cache_free(s, p[i]);
120 else
121 kfree(p[i]);
122 }
123 }
124
125 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
126 void **p)
127 {
128 size_t i;
129
130 for (i = 0; i < nr; i++) {
131 void *x = p[i] = kmem_cache_alloc(s, flags);
132 if (!x) {
133 __kmem_cache_free_bulk(s, i, p);
134 return 0;
135 }
136 }
137 return i;
138 }
139
140 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
141
142 LIST_HEAD(slab_root_caches);
143
144 void slab_init_memcg_params(struct kmem_cache *s)
145 {
146 s->memcg_params.root_cache = NULL;
147 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
148 INIT_LIST_HEAD(&s->memcg_params.children);
149 }
150
151 static int init_memcg_params(struct kmem_cache *s,
152 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
153 {
154 struct memcg_cache_array *arr;
155
156 if (root_cache) {
157 s->memcg_params.root_cache = root_cache;
158 s->memcg_params.memcg = memcg;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 return 0;
162 }
163
164 slab_init_memcg_params(s);
165
166 if (!memcg_nr_cache_ids)
167 return 0;
168
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
174
175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 return 0;
177 }
178
179 static void destroy_memcg_params(struct kmem_cache *s)
180 {
181 if (is_root_cache(s))
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 }
184
185 static void free_memcg_params(struct rcu_head *rcu)
186 {
187 struct memcg_cache_array *old;
188
189 old = container_of(rcu, struct memcg_cache_array, rcu);
190 kvfree(old);
191 }
192
193 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
194 {
195 struct memcg_cache_array *old, *new;
196
197 new = kvzalloc(sizeof(struct memcg_cache_array) +
198 new_array_size * sizeof(void *), GFP_KERNEL);
199 if (!new)
200 return -ENOMEM;
201
202 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
203 lockdep_is_held(&slab_mutex));
204 if (old)
205 memcpy(new->entries, old->entries,
206 memcg_nr_cache_ids * sizeof(void *));
207
208 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
209 if (old)
210 call_rcu(&old->rcu, free_memcg_params);
211 return 0;
212 }
213
214 int memcg_update_all_caches(int num_memcgs)
215 {
216 struct kmem_cache *s;
217 int ret = 0;
218
219 mutex_lock(&slab_mutex);
220 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
221 ret = update_memcg_params(s, num_memcgs);
222 /*
223 * Instead of freeing the memory, we'll just leave the caches
224 * up to this point in an updated state.
225 */
226 if (ret)
227 break;
228 }
229 mutex_unlock(&slab_mutex);
230 return ret;
231 }
232
233 void memcg_link_cache(struct kmem_cache *s)
234 {
235 if (is_root_cache(s)) {
236 list_add(&s->root_caches_node, &slab_root_caches);
237 } else {
238 list_add(&s->memcg_params.children_node,
239 &s->memcg_params.root_cache->memcg_params.children);
240 list_add(&s->memcg_params.kmem_caches_node,
241 &s->memcg_params.memcg->kmem_caches);
242 }
243 }
244
245 static void memcg_unlink_cache(struct kmem_cache *s)
246 {
247 if (is_root_cache(s)) {
248 list_del(&s->root_caches_node);
249 } else {
250 list_del(&s->memcg_params.children_node);
251 list_del(&s->memcg_params.kmem_caches_node);
252 }
253 }
254 #else
255 static inline int init_memcg_params(struct kmem_cache *s,
256 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
257 {
258 return 0;
259 }
260
261 static inline void destroy_memcg_params(struct kmem_cache *s)
262 {
263 }
264
265 static inline void memcg_unlink_cache(struct kmem_cache *s)
266 {
267 }
268 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
269
270 /*
271 * Find a mergeable slab cache
272 */
273 int slab_unmergeable(struct kmem_cache *s)
274 {
275 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
276 return 1;
277
278 if (!is_root_cache(s))
279 return 1;
280
281 if (s->ctor)
282 return 1;
283
284 /*
285 * We may have set a slab to be unmergeable during bootstrap.
286 */
287 if (s->refcount < 0)
288 return 1;
289
290 return 0;
291 }
292
293 struct kmem_cache *find_mergeable(size_t size, size_t align,
294 slab_flags_t flags, const char *name, void (*ctor)(void *))
295 {
296 struct kmem_cache *s;
297
298 if (slab_nomerge)
299 return NULL;
300
301 if (ctor)
302 return NULL;
303
304 size = ALIGN(size, sizeof(void *));
305 align = calculate_alignment(flags, align, size);
306 size = ALIGN(size, align);
307 flags = kmem_cache_flags(size, flags, name, NULL);
308
309 if (flags & SLAB_NEVER_MERGE)
310 return NULL;
311
312 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
313 if (slab_unmergeable(s))
314 continue;
315
316 if (size > s->size)
317 continue;
318
319 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
320 continue;
321 /*
322 * Check if alignment is compatible.
323 * Courtesy of Adrian Drzewiecki
324 */
325 if ((s->size & ~(align - 1)) != s->size)
326 continue;
327
328 if (s->size - size >= sizeof(void *))
329 continue;
330
331 if (IS_ENABLED(CONFIG_SLAB) && align &&
332 (align > s->align || s->align % align))
333 continue;
334
335 return s;
336 }
337 return NULL;
338 }
339
340 /*
341 * Figure out what the alignment of the objects will be given a set of
342 * flags, a user specified alignment and the size of the objects.
343 */
344 unsigned long calculate_alignment(slab_flags_t flags,
345 unsigned long align, unsigned long size)
346 {
347 /*
348 * If the user wants hardware cache aligned objects then follow that
349 * suggestion if the object is sufficiently large.
350 *
351 * The hardware cache alignment cannot override the specified
352 * alignment though. If that is greater then use it.
353 */
354 if (flags & SLAB_HWCACHE_ALIGN) {
355 unsigned long ralign = cache_line_size();
356 while (size <= ralign / 2)
357 ralign /= 2;
358 align = max(align, ralign);
359 }
360
361 if (align < ARCH_SLAB_MINALIGN)
362 align = ARCH_SLAB_MINALIGN;
363
364 return ALIGN(align, sizeof(void *));
365 }
366
367 static struct kmem_cache *create_cache(const char *name,
368 size_t object_size, size_t size, size_t align,
369 slab_flags_t flags, void (*ctor)(void *),
370 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
371 {
372 struct kmem_cache *s;
373 int err;
374
375 err = -ENOMEM;
376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 if (!s)
378 goto out;
379
380 s->name = name;
381 s->object_size = object_size;
382 s->size = size;
383 s->align = align;
384 s->ctor = ctor;
385
386 err = init_memcg_params(s, memcg, root_cache);
387 if (err)
388 goto out_free_cache;
389
390 err = __kmem_cache_create(s, flags);
391 if (err)
392 goto out_free_cache;
393
394 s->refcount = 1;
395 list_add(&s->list, &slab_caches);
396 memcg_link_cache(s);
397 out:
398 if (err)
399 return ERR_PTR(err);
400 return s;
401
402 out_free_cache:
403 destroy_memcg_params(s);
404 kmem_cache_free(kmem_cache, s);
405 goto out;
406 }
407
408 /*
409 * kmem_cache_create - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
413 * @flags: SLAB flags
414 * @ctor: A constructor for the objects.
415 *
416 * Returns a ptr to the cache on success, NULL on failure.
417 * Cannot be called within a interrupt, but can be interrupted.
418 * The @ctor is run when new pages are allocated by the cache.
419 *
420 * The flags are
421 *
422 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
423 * to catch references to uninitialised memory.
424 *
425 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
426 * for buffer overruns.
427 *
428 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
429 * cacheline. This can be beneficial if you're counting cycles as closely
430 * as davem.
431 */
432 struct kmem_cache *
433 kmem_cache_create(const char *name, size_t size, size_t align,
434 slab_flags_t flags, void (*ctor)(void *))
435 {
436 struct kmem_cache *s = NULL;
437 const char *cache_name;
438 int err;
439
440 get_online_cpus();
441 get_online_mems();
442 memcg_get_cache_ids();
443
444 mutex_lock(&slab_mutex);
445
446 err = kmem_cache_sanity_check(name, size);
447 if (err) {
448 goto out_unlock;
449 }
450
451 /* Refuse requests with allocator specific flags */
452 if (flags & ~SLAB_FLAGS_PERMITTED) {
453 err = -EINVAL;
454 goto out_unlock;
455 }
456
457 /*
458 * Some allocators will constraint the set of valid flags to a subset
459 * of all flags. We expect them to define CACHE_CREATE_MASK in this
460 * case, and we'll just provide them with a sanitized version of the
461 * passed flags.
462 */
463 flags &= CACHE_CREATE_MASK;
464
465 s = __kmem_cache_alias(name, size, align, flags, ctor);
466 if (s)
467 goto out_unlock;
468
469 cache_name = kstrdup_const(name, GFP_KERNEL);
470 if (!cache_name) {
471 err = -ENOMEM;
472 goto out_unlock;
473 }
474
475 s = create_cache(cache_name, size, size,
476 calculate_alignment(flags, align, size),
477 flags, ctor, NULL, NULL);
478 if (IS_ERR(s)) {
479 err = PTR_ERR(s);
480 kfree_const(cache_name);
481 }
482
483 out_unlock:
484 mutex_unlock(&slab_mutex);
485
486 memcg_put_cache_ids();
487 put_online_mems();
488 put_online_cpus();
489
490 if (err) {
491 if (flags & SLAB_PANIC)
492 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
493 name, err);
494 else {
495 pr_warn("kmem_cache_create(%s) failed with error %d\n",
496 name, err);
497 dump_stack();
498 }
499 return NULL;
500 }
501 return s;
502 }
503 EXPORT_SYMBOL(kmem_cache_create);
504
505 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
506 {
507 LIST_HEAD(to_destroy);
508 struct kmem_cache *s, *s2;
509
510 /*
511 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
512 * @slab_caches_to_rcu_destroy list. The slab pages are freed
513 * through RCU and and the associated kmem_cache are dereferenced
514 * while freeing the pages, so the kmem_caches should be freed only
515 * after the pending RCU operations are finished. As rcu_barrier()
516 * is a pretty slow operation, we batch all pending destructions
517 * asynchronously.
518 */
519 mutex_lock(&slab_mutex);
520 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
521 mutex_unlock(&slab_mutex);
522
523 if (list_empty(&to_destroy))
524 return;
525
526 rcu_barrier();
527
528 list_for_each_entry_safe(s, s2, &to_destroy, list) {
529 #ifdef SLAB_SUPPORTS_SYSFS
530 sysfs_slab_release(s);
531 #else
532 slab_kmem_cache_release(s);
533 #endif
534 }
535 }
536
537 static int shutdown_cache(struct kmem_cache *s)
538 {
539 /* free asan quarantined objects */
540 kasan_cache_shutdown(s);
541
542 if (__kmem_cache_shutdown(s) != 0)
543 return -EBUSY;
544
545 memcg_unlink_cache(s);
546 list_del(&s->list);
547
548 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
549 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
550 schedule_work(&slab_caches_to_rcu_destroy_work);
551 } else {
552 #ifdef SLAB_SUPPORTS_SYSFS
553 sysfs_slab_release(s);
554 #else
555 slab_kmem_cache_release(s);
556 #endif
557 }
558
559 return 0;
560 }
561
562 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
563 /*
564 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
565 * @memcg: The memory cgroup the new cache is for.
566 * @root_cache: The parent of the new cache.
567 *
568 * This function attempts to create a kmem cache that will serve allocation
569 * requests going from @memcg to @root_cache. The new cache inherits properties
570 * from its parent.
571 */
572 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
573 struct kmem_cache *root_cache)
574 {
575 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
576 struct cgroup_subsys_state *css = &memcg->css;
577 struct memcg_cache_array *arr;
578 struct kmem_cache *s = NULL;
579 char *cache_name;
580 int idx;
581
582 get_online_cpus();
583 get_online_mems();
584
585 mutex_lock(&slab_mutex);
586
587 /*
588 * The memory cgroup could have been offlined while the cache
589 * creation work was pending.
590 */
591 if (memcg->kmem_state != KMEM_ONLINE)
592 goto out_unlock;
593
594 idx = memcg_cache_id(memcg);
595 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
596 lockdep_is_held(&slab_mutex));
597
598 /*
599 * Since per-memcg caches are created asynchronously on first
600 * allocation (see memcg_kmem_get_cache()), several threads can try to
601 * create the same cache, but only one of them may succeed.
602 */
603 if (arr->entries[idx])
604 goto out_unlock;
605
606 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
607 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
608 css->serial_nr, memcg_name_buf);
609 if (!cache_name)
610 goto out_unlock;
611
612 s = create_cache(cache_name, root_cache->object_size,
613 root_cache->size, root_cache->align,
614 root_cache->flags & CACHE_CREATE_MASK,
615 root_cache->ctor, memcg, root_cache);
616 /*
617 * If we could not create a memcg cache, do not complain, because
618 * that's not critical at all as we can always proceed with the root
619 * cache.
620 */
621 if (IS_ERR(s)) {
622 kfree(cache_name);
623 goto out_unlock;
624 }
625
626 /*
627 * Since readers won't lock (see cache_from_memcg_idx()), we need a
628 * barrier here to ensure nobody will see the kmem_cache partially
629 * initialized.
630 */
631 smp_wmb();
632 arr->entries[idx] = s;
633
634 out_unlock:
635 mutex_unlock(&slab_mutex);
636
637 put_online_mems();
638 put_online_cpus();
639 }
640
641 static void kmemcg_deactivate_workfn(struct work_struct *work)
642 {
643 struct kmem_cache *s = container_of(work, struct kmem_cache,
644 memcg_params.deact_work);
645
646 get_online_cpus();
647 get_online_mems();
648
649 mutex_lock(&slab_mutex);
650
651 s->memcg_params.deact_fn(s);
652
653 mutex_unlock(&slab_mutex);
654
655 put_online_mems();
656 put_online_cpus();
657
658 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
659 css_put(&s->memcg_params.memcg->css);
660 }
661
662 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
663 {
664 struct kmem_cache *s = container_of(head, struct kmem_cache,
665 memcg_params.deact_rcu_head);
666
667 /*
668 * We need to grab blocking locks. Bounce to ->deact_work. The
669 * work item shares the space with the RCU head and can't be
670 * initialized eariler.
671 */
672 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
673 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
674 }
675
676 /**
677 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
678 * sched RCU grace period
679 * @s: target kmem_cache
680 * @deact_fn: deactivation function to call
681 *
682 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
683 * held after a sched RCU grace period. The slab is guaranteed to stay
684 * alive until @deact_fn is finished. This is to be used from
685 * __kmemcg_cache_deactivate().
686 */
687 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
688 void (*deact_fn)(struct kmem_cache *))
689 {
690 if (WARN_ON_ONCE(is_root_cache(s)) ||
691 WARN_ON_ONCE(s->memcg_params.deact_fn))
692 return;
693
694 /* pin memcg so that @s doesn't get destroyed in the middle */
695 css_get(&s->memcg_params.memcg->css);
696
697 s->memcg_params.deact_fn = deact_fn;
698 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
699 }
700
701 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
702 {
703 int idx;
704 struct memcg_cache_array *arr;
705 struct kmem_cache *s, *c;
706
707 idx = memcg_cache_id(memcg);
708
709 get_online_cpus();
710 get_online_mems();
711
712 mutex_lock(&slab_mutex);
713 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
714 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
715 lockdep_is_held(&slab_mutex));
716 c = arr->entries[idx];
717 if (!c)
718 continue;
719
720 __kmemcg_cache_deactivate(c);
721 arr->entries[idx] = NULL;
722 }
723 mutex_unlock(&slab_mutex);
724
725 put_online_mems();
726 put_online_cpus();
727 }
728
729 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
730 {
731 struct kmem_cache *s, *s2;
732
733 get_online_cpus();
734 get_online_mems();
735
736 mutex_lock(&slab_mutex);
737 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
738 memcg_params.kmem_caches_node) {
739 /*
740 * The cgroup is about to be freed and therefore has no charges
741 * left. Hence, all its caches must be empty by now.
742 */
743 BUG_ON(shutdown_cache(s));
744 }
745 mutex_unlock(&slab_mutex);
746
747 put_online_mems();
748 put_online_cpus();
749 }
750
751 static int shutdown_memcg_caches(struct kmem_cache *s)
752 {
753 struct memcg_cache_array *arr;
754 struct kmem_cache *c, *c2;
755 LIST_HEAD(busy);
756 int i;
757
758 BUG_ON(!is_root_cache(s));
759
760 /*
761 * First, shutdown active caches, i.e. caches that belong to online
762 * memory cgroups.
763 */
764 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
765 lockdep_is_held(&slab_mutex));
766 for_each_memcg_cache_index(i) {
767 c = arr->entries[i];
768 if (!c)
769 continue;
770 if (shutdown_cache(c))
771 /*
772 * The cache still has objects. Move it to a temporary
773 * list so as not to try to destroy it for a second
774 * time while iterating over inactive caches below.
775 */
776 list_move(&c->memcg_params.children_node, &busy);
777 else
778 /*
779 * The cache is empty and will be destroyed soon. Clear
780 * the pointer to it in the memcg_caches array so that
781 * it will never be accessed even if the root cache
782 * stays alive.
783 */
784 arr->entries[i] = NULL;
785 }
786
787 /*
788 * Second, shutdown all caches left from memory cgroups that are now
789 * offline.
790 */
791 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
792 memcg_params.children_node)
793 shutdown_cache(c);
794
795 list_splice(&busy, &s->memcg_params.children);
796
797 /*
798 * A cache being destroyed must be empty. In particular, this means
799 * that all per memcg caches attached to it must be empty too.
800 */
801 if (!list_empty(&s->memcg_params.children))
802 return -EBUSY;
803 return 0;
804 }
805 #else
806 static inline int shutdown_memcg_caches(struct kmem_cache *s)
807 {
808 return 0;
809 }
810 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
811
812 void slab_kmem_cache_release(struct kmem_cache *s)
813 {
814 __kmem_cache_release(s);
815 destroy_memcg_params(s);
816 kfree_const(s->name);
817 kmem_cache_free(kmem_cache, s);
818 }
819
820 void kmem_cache_destroy(struct kmem_cache *s)
821 {
822 int err;
823
824 if (unlikely(!s))
825 return;
826
827 get_online_cpus();
828 get_online_mems();
829
830 mutex_lock(&slab_mutex);
831
832 s->refcount--;
833 if (s->refcount)
834 goto out_unlock;
835
836 err = shutdown_memcg_caches(s);
837 if (!err)
838 err = shutdown_cache(s);
839
840 if (err) {
841 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
842 s->name);
843 dump_stack();
844 }
845 out_unlock:
846 mutex_unlock(&slab_mutex);
847
848 put_online_mems();
849 put_online_cpus();
850 }
851 EXPORT_SYMBOL(kmem_cache_destroy);
852
853 /**
854 * kmem_cache_shrink - Shrink a cache.
855 * @cachep: The cache to shrink.
856 *
857 * Releases as many slabs as possible for a cache.
858 * To help debugging, a zero exit status indicates all slabs were released.
859 */
860 int kmem_cache_shrink(struct kmem_cache *cachep)
861 {
862 int ret;
863
864 get_online_cpus();
865 get_online_mems();
866 kasan_cache_shrink(cachep);
867 ret = __kmem_cache_shrink(cachep);
868 put_online_mems();
869 put_online_cpus();
870 return ret;
871 }
872 EXPORT_SYMBOL(kmem_cache_shrink);
873
874 bool slab_is_available(void)
875 {
876 return slab_state >= UP;
877 }
878
879 #ifndef CONFIG_SLOB
880 /* Create a cache during boot when no slab services are available yet */
881 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
882 slab_flags_t flags)
883 {
884 int err;
885
886 s->name = name;
887 s->size = s->object_size = size;
888 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
889
890 slab_init_memcg_params(s);
891
892 err = __kmem_cache_create(s, flags);
893
894 if (err)
895 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
896 name, size, err);
897
898 s->refcount = -1; /* Exempt from merging for now */
899 }
900
901 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
902 slab_flags_t flags)
903 {
904 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
905
906 if (!s)
907 panic("Out of memory when creating slab %s\n", name);
908
909 create_boot_cache(s, name, size, flags);
910 list_add(&s->list, &slab_caches);
911 memcg_link_cache(s);
912 s->refcount = 1;
913 return s;
914 }
915
916 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
917 EXPORT_SYMBOL(kmalloc_caches);
918
919 #ifdef CONFIG_ZONE_DMA
920 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
921 EXPORT_SYMBOL(kmalloc_dma_caches);
922 #endif
923
924 /*
925 * Conversion table for small slabs sizes / 8 to the index in the
926 * kmalloc array. This is necessary for slabs < 192 since we have non power
927 * of two cache sizes there. The size of larger slabs can be determined using
928 * fls.
929 */
930 static s8 size_index[24] = {
931 3, /* 8 */
932 4, /* 16 */
933 5, /* 24 */
934 5, /* 32 */
935 6, /* 40 */
936 6, /* 48 */
937 6, /* 56 */
938 6, /* 64 */
939 1, /* 72 */
940 1, /* 80 */
941 1, /* 88 */
942 1, /* 96 */
943 7, /* 104 */
944 7, /* 112 */
945 7, /* 120 */
946 7, /* 128 */
947 2, /* 136 */
948 2, /* 144 */
949 2, /* 152 */
950 2, /* 160 */
951 2, /* 168 */
952 2, /* 176 */
953 2, /* 184 */
954 2 /* 192 */
955 };
956
957 static inline int size_index_elem(size_t bytes)
958 {
959 return (bytes - 1) / 8;
960 }
961
962 /*
963 * Find the kmem_cache structure that serves a given size of
964 * allocation
965 */
966 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
967 {
968 int index;
969
970 if (unlikely(size > KMALLOC_MAX_SIZE)) {
971 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
972 return NULL;
973 }
974
975 if (size <= 192) {
976 if (!size)
977 return ZERO_SIZE_PTR;
978
979 index = size_index[size_index_elem(size)];
980 } else
981 index = fls(size - 1);
982
983 #ifdef CONFIG_ZONE_DMA
984 if (unlikely((flags & GFP_DMA)))
985 return kmalloc_dma_caches[index];
986
987 #endif
988 return kmalloc_caches[index];
989 }
990
991 /*
992 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
993 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
994 * kmalloc-67108864.
995 */
996 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
997 {NULL, 0}, {"kmalloc-96", 96},
998 {"kmalloc-192", 192}, {"kmalloc-8", 8},
999 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1000 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1001 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1002 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1003 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1004 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1005 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1006 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1007 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1008 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1009 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1010 {"kmalloc-67108864", 67108864}
1011 };
1012
1013 /*
1014 * Patch up the size_index table if we have strange large alignment
1015 * requirements for the kmalloc array. This is only the case for
1016 * MIPS it seems. The standard arches will not generate any code here.
1017 *
1018 * Largest permitted alignment is 256 bytes due to the way we
1019 * handle the index determination for the smaller caches.
1020 *
1021 * Make sure that nothing crazy happens if someone starts tinkering
1022 * around with ARCH_KMALLOC_MINALIGN
1023 */
1024 void __init setup_kmalloc_cache_index_table(void)
1025 {
1026 int i;
1027
1028 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1029 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1030
1031 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1032 int elem = size_index_elem(i);
1033
1034 if (elem >= ARRAY_SIZE(size_index))
1035 break;
1036 size_index[elem] = KMALLOC_SHIFT_LOW;
1037 }
1038
1039 if (KMALLOC_MIN_SIZE >= 64) {
1040 /*
1041 * The 96 byte size cache is not used if the alignment
1042 * is 64 byte.
1043 */
1044 for (i = 64 + 8; i <= 96; i += 8)
1045 size_index[size_index_elem(i)] = 7;
1046
1047 }
1048
1049 if (KMALLOC_MIN_SIZE >= 128) {
1050 /*
1051 * The 192 byte sized cache is not used if the alignment
1052 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1053 * instead.
1054 */
1055 for (i = 128 + 8; i <= 192; i += 8)
1056 size_index[size_index_elem(i)] = 8;
1057 }
1058 }
1059
1060 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1061 {
1062 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1063 kmalloc_info[idx].size, flags);
1064 }
1065
1066 /*
1067 * Create the kmalloc array. Some of the regular kmalloc arrays
1068 * may already have been created because they were needed to
1069 * enable allocations for slab creation.
1070 */
1071 void __init create_kmalloc_caches(slab_flags_t flags)
1072 {
1073 int i;
1074
1075 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1076 if (!kmalloc_caches[i])
1077 new_kmalloc_cache(i, flags);
1078
1079 /*
1080 * Caches that are not of the two-to-the-power-of size.
1081 * These have to be created immediately after the
1082 * earlier power of two caches
1083 */
1084 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1085 new_kmalloc_cache(1, flags);
1086 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1087 new_kmalloc_cache(2, flags);
1088 }
1089
1090 /* Kmalloc array is now usable */
1091 slab_state = UP;
1092
1093 #ifdef CONFIG_ZONE_DMA
1094 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1095 struct kmem_cache *s = kmalloc_caches[i];
1096
1097 if (s) {
1098 int size = kmalloc_size(i);
1099 char *n = kasprintf(GFP_NOWAIT,
1100 "dma-kmalloc-%d", size);
1101
1102 BUG_ON(!n);
1103 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1104 size, SLAB_CACHE_DMA | flags);
1105 }
1106 }
1107 #endif
1108 }
1109 #endif /* !CONFIG_SLOB */
1110
1111 /*
1112 * To avoid unnecessary overhead, we pass through large allocation requests
1113 * directly to the page allocator. We use __GFP_COMP, because we will need to
1114 * know the allocation order to free the pages properly in kfree.
1115 */
1116 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1117 {
1118 void *ret;
1119 struct page *page;
1120
1121 flags |= __GFP_COMP;
1122 page = alloc_pages(flags, order);
1123 ret = page ? page_address(page) : NULL;
1124 kmemleak_alloc(ret, size, 1, flags);
1125 kasan_kmalloc_large(ret, size, flags);
1126 return ret;
1127 }
1128 EXPORT_SYMBOL(kmalloc_order);
1129
1130 #ifdef CONFIG_TRACING
1131 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1132 {
1133 void *ret = kmalloc_order(size, flags, order);
1134 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1135 return ret;
1136 }
1137 EXPORT_SYMBOL(kmalloc_order_trace);
1138 #endif
1139
1140 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1141 /* Randomize a generic freelist */
1142 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1143 size_t count)
1144 {
1145 size_t i;
1146 unsigned int rand;
1147
1148 for (i = 0; i < count; i++)
1149 list[i] = i;
1150
1151 /* Fisher-Yates shuffle */
1152 for (i = count - 1; i > 0; i--) {
1153 rand = prandom_u32_state(state);
1154 rand %= (i + 1);
1155 swap(list[i], list[rand]);
1156 }
1157 }
1158
1159 /* Create a random sequence per cache */
1160 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1161 gfp_t gfp)
1162 {
1163 struct rnd_state state;
1164
1165 if (count < 2 || cachep->random_seq)
1166 return 0;
1167
1168 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1169 if (!cachep->random_seq)
1170 return -ENOMEM;
1171
1172 /* Get best entropy at this stage of boot */
1173 prandom_seed_state(&state, get_random_long());
1174
1175 freelist_randomize(&state, cachep->random_seq, count);
1176 return 0;
1177 }
1178
1179 /* Destroy the per-cache random freelist sequence */
1180 void cache_random_seq_destroy(struct kmem_cache *cachep)
1181 {
1182 kfree(cachep->random_seq);
1183 cachep->random_seq = NULL;
1184 }
1185 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1186
1187 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1188 #ifdef CONFIG_SLAB
1189 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1190 #else
1191 #define SLABINFO_RIGHTS S_IRUSR
1192 #endif
1193
1194 static void print_slabinfo_header(struct seq_file *m)
1195 {
1196 /*
1197 * Output format version, so at least we can change it
1198 * without _too_ many complaints.
1199 */
1200 #ifdef CONFIG_DEBUG_SLAB
1201 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1202 #else
1203 seq_puts(m, "slabinfo - version: 2.1\n");
1204 #endif
1205 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1206 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1207 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1208 #ifdef CONFIG_DEBUG_SLAB
1209 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1210 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1211 #endif
1212 seq_putc(m, '\n');
1213 }
1214
1215 void *slab_start(struct seq_file *m, loff_t *pos)
1216 {
1217 mutex_lock(&slab_mutex);
1218 return seq_list_start(&slab_root_caches, *pos);
1219 }
1220
1221 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1222 {
1223 return seq_list_next(p, &slab_root_caches, pos);
1224 }
1225
1226 void slab_stop(struct seq_file *m, void *p)
1227 {
1228 mutex_unlock(&slab_mutex);
1229 }
1230
1231 static void
1232 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1233 {
1234 struct kmem_cache *c;
1235 struct slabinfo sinfo;
1236
1237 if (!is_root_cache(s))
1238 return;
1239
1240 for_each_memcg_cache(c, s) {
1241 memset(&sinfo, 0, sizeof(sinfo));
1242 get_slabinfo(c, &sinfo);
1243
1244 info->active_slabs += sinfo.active_slabs;
1245 info->num_slabs += sinfo.num_slabs;
1246 info->shared_avail += sinfo.shared_avail;
1247 info->active_objs += sinfo.active_objs;
1248 info->num_objs += sinfo.num_objs;
1249 }
1250 }
1251
1252 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1253 {
1254 struct slabinfo sinfo;
1255
1256 memset(&sinfo, 0, sizeof(sinfo));
1257 get_slabinfo(s, &sinfo);
1258
1259 memcg_accumulate_slabinfo(s, &sinfo);
1260
1261 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1262 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1263 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1264
1265 seq_printf(m, " : tunables %4u %4u %4u",
1266 sinfo.limit, sinfo.batchcount, sinfo.shared);
1267 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1268 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1269 slabinfo_show_stats(m, s);
1270 seq_putc(m, '\n');
1271 }
1272
1273 static int slab_show(struct seq_file *m, void *p)
1274 {
1275 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1276
1277 if (p == slab_root_caches.next)
1278 print_slabinfo_header(m);
1279 cache_show(s, m);
1280 return 0;
1281 }
1282
1283 void dump_unreclaimable_slab(void)
1284 {
1285 struct kmem_cache *s, *s2;
1286 struct slabinfo sinfo;
1287
1288 /*
1289 * Here acquiring slab_mutex is risky since we don't prefer to get
1290 * sleep in oom path. But, without mutex hold, it may introduce a
1291 * risk of crash.
1292 * Use mutex_trylock to protect the list traverse, dump nothing
1293 * without acquiring the mutex.
1294 */
1295 if (!mutex_trylock(&slab_mutex)) {
1296 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1297 return;
1298 }
1299
1300 pr_info("Unreclaimable slab info:\n");
1301 pr_info("Name Used Total\n");
1302
1303 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1304 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1305 continue;
1306
1307 get_slabinfo(s, &sinfo);
1308
1309 if (sinfo.num_objs > 0)
1310 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1311 (sinfo.active_objs * s->size) / 1024,
1312 (sinfo.num_objs * s->size) / 1024);
1313 }
1314 mutex_unlock(&slab_mutex);
1315 }
1316
1317 #if defined(CONFIG_MEMCG)
1318 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1319 {
1320 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1321
1322 mutex_lock(&slab_mutex);
1323 return seq_list_start(&memcg->kmem_caches, *pos);
1324 }
1325
1326 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1327 {
1328 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1329
1330 return seq_list_next(p, &memcg->kmem_caches, pos);
1331 }
1332
1333 void memcg_slab_stop(struct seq_file *m, void *p)
1334 {
1335 mutex_unlock(&slab_mutex);
1336 }
1337
1338 int memcg_slab_show(struct seq_file *m, void *p)
1339 {
1340 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1341 memcg_params.kmem_caches_node);
1342 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1343
1344 if (p == memcg->kmem_caches.next)
1345 print_slabinfo_header(m);
1346 cache_show(s, m);
1347 return 0;
1348 }
1349 #endif
1350
1351 /*
1352 * slabinfo_op - iterator that generates /proc/slabinfo
1353 *
1354 * Output layout:
1355 * cache-name
1356 * num-active-objs
1357 * total-objs
1358 * object size
1359 * num-active-slabs
1360 * total-slabs
1361 * num-pages-per-slab
1362 * + further values on SMP and with statistics enabled
1363 */
1364 static const struct seq_operations slabinfo_op = {
1365 .start = slab_start,
1366 .next = slab_next,
1367 .stop = slab_stop,
1368 .show = slab_show,
1369 };
1370
1371 static int slabinfo_open(struct inode *inode, struct file *file)
1372 {
1373 return seq_open(file, &slabinfo_op);
1374 }
1375
1376 static const struct file_operations proc_slabinfo_operations = {
1377 .open = slabinfo_open,
1378 .read = seq_read,
1379 .write = slabinfo_write,
1380 .llseek = seq_lseek,
1381 .release = seq_release,
1382 };
1383
1384 static int __init slab_proc_init(void)
1385 {
1386 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1387 &proc_slabinfo_operations);
1388 return 0;
1389 }
1390 module_init(slab_proc_init);
1391 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1392
1393 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1394 gfp_t flags)
1395 {
1396 void *ret;
1397 size_t ks = 0;
1398
1399 if (p)
1400 ks = ksize(p);
1401
1402 if (ks >= new_size) {
1403 kasan_krealloc((void *)p, new_size, flags);
1404 return (void *)p;
1405 }
1406
1407 ret = kmalloc_track_caller(new_size, flags);
1408 if (ret && p)
1409 memcpy(ret, p, ks);
1410
1411 return ret;
1412 }
1413
1414 /**
1415 * __krealloc - like krealloc() but don't free @p.
1416 * @p: object to reallocate memory for.
1417 * @new_size: how many bytes of memory are required.
1418 * @flags: the type of memory to allocate.
1419 *
1420 * This function is like krealloc() except it never frees the originally
1421 * allocated buffer. Use this if you don't want to free the buffer immediately
1422 * like, for example, with RCU.
1423 */
1424 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1425 {
1426 if (unlikely(!new_size))
1427 return ZERO_SIZE_PTR;
1428
1429 return __do_krealloc(p, new_size, flags);
1430
1431 }
1432 EXPORT_SYMBOL(__krealloc);
1433
1434 /**
1435 * krealloc - reallocate memory. The contents will remain unchanged.
1436 * @p: object to reallocate memory for.
1437 * @new_size: how many bytes of memory are required.
1438 * @flags: the type of memory to allocate.
1439 *
1440 * The contents of the object pointed to are preserved up to the
1441 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1442 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1443 * %NULL pointer, the object pointed to is freed.
1444 */
1445 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1446 {
1447 void *ret;
1448
1449 if (unlikely(!new_size)) {
1450 kfree(p);
1451 return ZERO_SIZE_PTR;
1452 }
1453
1454 ret = __do_krealloc(p, new_size, flags);
1455 if (ret && p != ret)
1456 kfree(p);
1457
1458 return ret;
1459 }
1460 EXPORT_SYMBOL(krealloc);
1461
1462 /**
1463 * kzfree - like kfree but zero memory
1464 * @p: object to free memory of
1465 *
1466 * The memory of the object @p points to is zeroed before freed.
1467 * If @p is %NULL, kzfree() does nothing.
1468 *
1469 * Note: this function zeroes the whole allocated buffer which can be a good
1470 * deal bigger than the requested buffer size passed to kmalloc(). So be
1471 * careful when using this function in performance sensitive code.
1472 */
1473 void kzfree(const void *p)
1474 {
1475 size_t ks;
1476 void *mem = (void *)p;
1477
1478 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1479 return;
1480 ks = ksize(mem);
1481 memset(mem, 0, ks);
1482 kfree(mem);
1483 }
1484 EXPORT_SYMBOL(kzfree);
1485
1486 /* Tracepoints definitions. */
1487 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1488 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1489 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1490 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1491 EXPORT_TRACEPOINT_SYMBOL(kfree);
1492 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);