]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
mm/zsmalloc.c: fix race condition in zs_destroy_pool
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200 /*
201 * Tracking user of a slab.
202 */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212 };
213
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244 /*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
257 }
258
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262 {
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return freelist_dereference(s, object + s->offset);
270 }
271
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 unsigned long freepointer_addr;
281 void *p;
282
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
289 }
290
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
307
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
312
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 return (p - addr) / s->size;
317 }
318
319 static inline int order_objects(int order, unsigned long size, int reserved)
320 {
321 return ((PAGE_SIZE << order) - reserved) / size;
322 }
323
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
326 {
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
329 };
330
331 return x;
332 }
333
334 static inline int oo_order(struct kmem_cache_order_objects x)
335 {
336 return x.x >> OO_SHIFT;
337 }
338
339 static inline int oo_objects(struct kmem_cache_order_objects x)
340 {
341 return x.x & OO_MASK;
342 }
343
344 /*
345 * Per slab locking using the pagelock
346 */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return false;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return false;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 static inline int size_from_object(struct kmem_cache *s)
470 {
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475 }
476
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483 }
484
485 /*
486 * Debug settings:
487 */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
496
497 /*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503 static inline void metadata_access_enable(void)
504 {
505 kasan_disable_current();
506 }
507
508 static inline void metadata_access_disable(void)
509 {
510 kasan_enable_current();
511 }
512
513 /*
514 * Object debugging
515 */
516
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520 {
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534 }
535
536 static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
538 {
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
543 }
544
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547 {
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556 }
557
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
560 {
561 struct track *p = get_track(s, object, alloc);
562
563 if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583 #endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590 }
591
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600
601 static void print_track(const char *s, struct track *t)
602 {
603 if (!t->addr)
604 return;
605
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
616 }
617 #endif
618 }
619
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
626 print_track("Freed", get_track(s, object, TRACK_FREE));
627 }
628
629 static void print_page_info(struct page *page)
630 {
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page, page->objects, page->inuse, page->freelist, page->flags);
633
634 }
635
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 struct va_format vaf;
639 va_list args;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 pr_err("-----------------------------------------------------------------------------\n\n");
647
648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 va_end(args);
650 }
651
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 va_start(args, fmt);
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
661 va_end(args);
662 }
663
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 unsigned int off; /* Offset of last byte */
667 u8 *addr = page_address(page);
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
675
676 if (s->flags & SLAB_RED_ZONE)
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
679 else if (p > addr + 16)
680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681
682 print_section(KERN_ERR, "Object ", p,
683 min_t(unsigned long, s->object_size, PAGE_SIZE));
684 if (s->flags & SLAB_RED_ZONE)
685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 s->inuse - s->object_size);
687
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
693 if (s->flags & SLAB_STORE_USER)
694 off += 2 * sizeof(struct track);
695
696 off += kasan_metadata_size(s);
697
698 if (off != size_from_object(s))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
702
703 dump_stack();
704 }
705
706 void object_err(struct kmem_cache *s, struct page *page,
707 u8 *object, char *reason)
708 {
709 slab_bug(s, "%s", reason);
710 print_trailer(s, page, object);
711 }
712
713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
714 const char *fmt, ...)
715 {
716 va_list args;
717 char buf[100];
718
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
721 va_end(args);
722 slab_bug(s, "%s", buf);
723 print_page_info(page);
724 dump_stack();
725 }
726
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 u8 *p = object;
730
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
734 if (s->flags & __OBJECT_POISON) {
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
740 memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745 {
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748 }
749
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
752 u8 *start, unsigned int value, unsigned int bytes)
753 {
754 u8 *fault;
755 u8 *end;
756
757 metadata_access_enable();
758 fault = memchr_inv(start, value, bytes);
759 metadata_access_disable();
760 if (!fault)
761 return 1;
762
763 end = start + bytes;
764 while (end > fault && end[-1] == value)
765 end--;
766
767 slab_bug(s, "%s overwritten", what);
768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 fault, end - 1, fault[0], value);
770 print_trailer(s, page, object);
771
772 restore_bytes(s, what, value, fault, end);
773 return 0;
774 }
775
776 /*
777 * Object layout:
778 *
779 * object address
780 * Bytes of the object to be managed.
781 * If the freepointer may overlay the object then the free
782 * pointer is the first word of the object.
783 *
784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
785 * 0xa5 (POISON_END)
786 *
787 * object + s->object_size
788 * Padding to reach word boundary. This is also used for Redzoning.
789 * Padding is extended by another word if Redzoning is enabled and
790 * object_size == inuse.
791 *
792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793 * 0xcc (RED_ACTIVE) for objects in use.
794 *
795 * object + s->inuse
796 * Meta data starts here.
797 *
798 * A. Free pointer (if we cannot overwrite object on free)
799 * B. Tracking data for SLAB_STORE_USER
800 * C. Padding to reach required alignment boundary or at mininum
801 * one word if debugging is on to be able to detect writes
802 * before the word boundary.
803 *
804 * Padding is done using 0x5a (POISON_INUSE)
805 *
806 * object + s->size
807 * Nothing is used beyond s->size.
808 *
809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
810 * ignored. And therefore no slab options that rely on these boundaries
811 * may be used with merged slabcaches.
812 */
813
814 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
815 {
816 unsigned long off = s->inuse; /* The end of info */
817
818 if (s->offset)
819 /* Freepointer is placed after the object. */
820 off += sizeof(void *);
821
822 if (s->flags & SLAB_STORE_USER)
823 /* We also have user information there */
824 off += 2 * sizeof(struct track);
825
826 off += kasan_metadata_size(s);
827
828 if (size_from_object(s) == off)
829 return 1;
830
831 return check_bytes_and_report(s, page, p, "Object padding",
832 p + off, POISON_INUSE, size_from_object(s) - off);
833 }
834
835 /* Check the pad bytes at the end of a slab page */
836 static int slab_pad_check(struct kmem_cache *s, struct page *page)
837 {
838 u8 *start;
839 u8 *fault;
840 u8 *end;
841 int length;
842 int remainder;
843
844 if (!(s->flags & SLAB_POISON))
845 return 1;
846
847 start = page_address(page);
848 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
849 end = start + length;
850 remainder = length % s->size;
851 if (!remainder)
852 return 1;
853
854 metadata_access_enable();
855 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
856 metadata_access_disable();
857 if (!fault)
858 return 1;
859 while (end > fault && end[-1] == POISON_INUSE)
860 end--;
861
862 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
863 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
864
865 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
866 return 0;
867 }
868
869 static int check_object(struct kmem_cache *s, struct page *page,
870 void *object, u8 val)
871 {
872 u8 *p = object;
873 u8 *endobject = object + s->object_size;
874
875 if (s->flags & SLAB_RED_ZONE) {
876 if (!check_bytes_and_report(s, page, object, "Redzone",
877 object - s->red_left_pad, val, s->red_left_pad))
878 return 0;
879
880 if (!check_bytes_and_report(s, page, object, "Redzone",
881 endobject, val, s->inuse - s->object_size))
882 return 0;
883 } else {
884 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
885 check_bytes_and_report(s, page, p, "Alignment padding",
886 endobject, POISON_INUSE,
887 s->inuse - s->object_size);
888 }
889 }
890
891 if (s->flags & SLAB_POISON) {
892 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
893 (!check_bytes_and_report(s, page, p, "Poison", p,
894 POISON_FREE, s->object_size - 1) ||
895 !check_bytes_and_report(s, page, p, "Poison",
896 p + s->object_size - 1, POISON_END, 1)))
897 return 0;
898 /*
899 * check_pad_bytes cleans up on its own.
900 */
901 check_pad_bytes(s, page, p);
902 }
903
904 if (!s->offset && val == SLUB_RED_ACTIVE)
905 /*
906 * Object and freepointer overlap. Cannot check
907 * freepointer while object is allocated.
908 */
909 return 1;
910
911 /* Check free pointer validity */
912 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
913 object_err(s, page, p, "Freepointer corrupt");
914 /*
915 * No choice but to zap it and thus lose the remainder
916 * of the free objects in this slab. May cause
917 * another error because the object count is now wrong.
918 */
919 set_freepointer(s, p, NULL);
920 return 0;
921 }
922 return 1;
923 }
924
925 static int check_slab(struct kmem_cache *s, struct page *page)
926 {
927 int maxobj;
928
929 VM_BUG_ON(!irqs_disabled());
930
931 if (!PageSlab(page)) {
932 slab_err(s, page, "Not a valid slab page");
933 return 0;
934 }
935
936 maxobj = order_objects(compound_order(page), s->size, s->reserved);
937 if (page->objects > maxobj) {
938 slab_err(s, page, "objects %u > max %u",
939 page->objects, maxobj);
940 return 0;
941 }
942 if (page->inuse > page->objects) {
943 slab_err(s, page, "inuse %u > max %u",
944 page->inuse, page->objects);
945 return 0;
946 }
947 /* Slab_pad_check fixes things up after itself */
948 slab_pad_check(s, page);
949 return 1;
950 }
951
952 /*
953 * Determine if a certain object on a page is on the freelist. Must hold the
954 * slab lock to guarantee that the chains are in a consistent state.
955 */
956 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
957 {
958 int nr = 0;
959 void *fp;
960 void *object = NULL;
961 int max_objects;
962
963 fp = page->freelist;
964 while (fp && nr <= page->objects) {
965 if (fp == search)
966 return 1;
967 if (!check_valid_pointer(s, page, fp)) {
968 if (object) {
969 object_err(s, page, object,
970 "Freechain corrupt");
971 set_freepointer(s, object, NULL);
972 } else {
973 slab_err(s, page, "Freepointer corrupt");
974 page->freelist = NULL;
975 page->inuse = page->objects;
976 slab_fix(s, "Freelist cleared");
977 return 0;
978 }
979 break;
980 }
981 object = fp;
982 fp = get_freepointer(s, object);
983 nr++;
984 }
985
986 max_objects = order_objects(compound_order(page), s->size, s->reserved);
987 if (max_objects > MAX_OBJS_PER_PAGE)
988 max_objects = MAX_OBJS_PER_PAGE;
989
990 if (page->objects != max_objects) {
991 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
992 page->objects, max_objects);
993 page->objects = max_objects;
994 slab_fix(s, "Number of objects adjusted.");
995 }
996 if (page->inuse != page->objects - nr) {
997 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
998 page->inuse, page->objects - nr);
999 page->inuse = page->objects - nr;
1000 slab_fix(s, "Object count adjusted.");
1001 }
1002 return search == NULL;
1003 }
1004
1005 static void trace(struct kmem_cache *s, struct page *page, void *object,
1006 int alloc)
1007 {
1008 if (s->flags & SLAB_TRACE) {
1009 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1010 s->name,
1011 alloc ? "alloc" : "free",
1012 object, page->inuse,
1013 page->freelist);
1014
1015 if (!alloc)
1016 print_section(KERN_INFO, "Object ", (void *)object,
1017 s->object_size);
1018
1019 dump_stack();
1020 }
1021 }
1022
1023 /*
1024 * Tracking of fully allocated slabs for debugging purposes.
1025 */
1026 static void add_full(struct kmem_cache *s,
1027 struct kmem_cache_node *n, struct page *page)
1028 {
1029 if (!(s->flags & SLAB_STORE_USER))
1030 return;
1031
1032 lockdep_assert_held(&n->list_lock);
1033 list_add(&page->lru, &n->full);
1034 }
1035
1036 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1037 {
1038 if (!(s->flags & SLAB_STORE_USER))
1039 return;
1040
1041 lockdep_assert_held(&n->list_lock);
1042 list_del(&page->lru);
1043 }
1044
1045 /* Tracking of the number of slabs for debugging purposes */
1046 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1047 {
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 return atomic_long_read(&n->nr_slabs);
1051 }
1052
1053 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1054 {
1055 return atomic_long_read(&n->nr_slabs);
1056 }
1057
1058 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 /*
1063 * May be called early in order to allocate a slab for the
1064 * kmem_cache_node structure. Solve the chicken-egg
1065 * dilemma by deferring the increment of the count during
1066 * bootstrap (see early_kmem_cache_node_alloc).
1067 */
1068 if (likely(n)) {
1069 atomic_long_inc(&n->nr_slabs);
1070 atomic_long_add(objects, &n->total_objects);
1071 }
1072 }
1073 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1074 {
1075 struct kmem_cache_node *n = get_node(s, node);
1076
1077 atomic_long_dec(&n->nr_slabs);
1078 atomic_long_sub(objects, &n->total_objects);
1079 }
1080
1081 /* Object debug checks for alloc/free paths */
1082 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1083 void *object)
1084 {
1085 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1086 return;
1087
1088 init_object(s, object, SLUB_RED_INACTIVE);
1089 init_tracking(s, object);
1090 }
1091
1092 static inline int alloc_consistency_checks(struct kmem_cache *s,
1093 struct page *page,
1094 void *object, unsigned long addr)
1095 {
1096 if (!check_slab(s, page))
1097 return 0;
1098
1099 if (!check_valid_pointer(s, page, object)) {
1100 object_err(s, page, object, "Freelist Pointer check fails");
1101 return 0;
1102 }
1103
1104 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1105 return 0;
1106
1107 return 1;
1108 }
1109
1110 static noinline int alloc_debug_processing(struct kmem_cache *s,
1111 struct page *page,
1112 void *object, unsigned long addr)
1113 {
1114 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1115 if (!alloc_consistency_checks(s, page, object, addr))
1116 goto bad;
1117 }
1118
1119 /* Success perform special debug activities for allocs */
1120 if (s->flags & SLAB_STORE_USER)
1121 set_track(s, object, TRACK_ALLOC, addr);
1122 trace(s, page, object, 1);
1123 init_object(s, object, SLUB_RED_ACTIVE);
1124 return 1;
1125
1126 bad:
1127 if (PageSlab(page)) {
1128 /*
1129 * If this is a slab page then lets do the best we can
1130 * to avoid issues in the future. Marking all objects
1131 * as used avoids touching the remaining objects.
1132 */
1133 slab_fix(s, "Marking all objects used");
1134 page->inuse = page->objects;
1135 page->freelist = NULL;
1136 }
1137 return 0;
1138 }
1139
1140 static inline int free_consistency_checks(struct kmem_cache *s,
1141 struct page *page, void *object, unsigned long addr)
1142 {
1143 if (!check_valid_pointer(s, page, object)) {
1144 slab_err(s, page, "Invalid object pointer 0x%p", object);
1145 return 0;
1146 }
1147
1148 if (on_freelist(s, page, object)) {
1149 object_err(s, page, object, "Object already free");
1150 return 0;
1151 }
1152
1153 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1154 return 0;
1155
1156 if (unlikely(s != page->slab_cache)) {
1157 if (!PageSlab(page)) {
1158 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1159 object);
1160 } else if (!page->slab_cache) {
1161 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1162 object);
1163 dump_stack();
1164 } else
1165 object_err(s, page, object,
1166 "page slab pointer corrupt.");
1167 return 0;
1168 }
1169 return 1;
1170 }
1171
1172 /* Supports checking bulk free of a constructed freelist */
1173 static noinline int free_debug_processing(
1174 struct kmem_cache *s, struct page *page,
1175 void *head, void *tail, int bulk_cnt,
1176 unsigned long addr)
1177 {
1178 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1179 void *object = head;
1180 int cnt = 0;
1181 unsigned long uninitialized_var(flags);
1182 int ret = 0;
1183
1184 spin_lock_irqsave(&n->list_lock, flags);
1185 slab_lock(page);
1186
1187 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1188 if (!check_slab(s, page))
1189 goto out;
1190 }
1191
1192 next_object:
1193 cnt++;
1194
1195 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1196 if (!free_consistency_checks(s, page, object, addr))
1197 goto out;
1198 }
1199
1200 if (s->flags & SLAB_STORE_USER)
1201 set_track(s, object, TRACK_FREE, addr);
1202 trace(s, page, object, 0);
1203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1204 init_object(s, object, SLUB_RED_INACTIVE);
1205
1206 /* Reached end of constructed freelist yet? */
1207 if (object != tail) {
1208 object = get_freepointer(s, object);
1209 goto next_object;
1210 }
1211 ret = 1;
1212
1213 out:
1214 if (cnt != bulk_cnt)
1215 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1216 bulk_cnt, cnt);
1217
1218 slab_unlock(page);
1219 spin_unlock_irqrestore(&n->list_lock, flags);
1220 if (!ret)
1221 slab_fix(s, "Object at 0x%p not freed", object);
1222 return ret;
1223 }
1224
1225 static int __init setup_slub_debug(char *str)
1226 {
1227 slub_debug = DEBUG_DEFAULT_FLAGS;
1228 if (*str++ != '=' || !*str)
1229 /*
1230 * No options specified. Switch on full debugging.
1231 */
1232 goto out;
1233
1234 if (*str == ',')
1235 /*
1236 * No options but restriction on slabs. This means full
1237 * debugging for slabs matching a pattern.
1238 */
1239 goto check_slabs;
1240
1241 slub_debug = 0;
1242 if (*str == '-')
1243 /*
1244 * Switch off all debugging measures.
1245 */
1246 goto out;
1247
1248 /*
1249 * Determine which debug features should be switched on
1250 */
1251 for (; *str && *str != ','; str++) {
1252 switch (tolower(*str)) {
1253 case 'f':
1254 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1255 break;
1256 case 'z':
1257 slub_debug |= SLAB_RED_ZONE;
1258 break;
1259 case 'p':
1260 slub_debug |= SLAB_POISON;
1261 break;
1262 case 'u':
1263 slub_debug |= SLAB_STORE_USER;
1264 break;
1265 case 't':
1266 slub_debug |= SLAB_TRACE;
1267 break;
1268 case 'a':
1269 slub_debug |= SLAB_FAILSLAB;
1270 break;
1271 case 'o':
1272 /*
1273 * Avoid enabling debugging on caches if its minimum
1274 * order would increase as a result.
1275 */
1276 disable_higher_order_debug = 1;
1277 break;
1278 default:
1279 pr_err("slub_debug option '%c' unknown. skipped\n",
1280 *str);
1281 }
1282 }
1283
1284 check_slabs:
1285 if (*str == ',')
1286 slub_debug_slabs = str + 1;
1287 out:
1288 return 1;
1289 }
1290
1291 __setup("slub_debug", setup_slub_debug);
1292
1293 slab_flags_t kmem_cache_flags(unsigned long object_size,
1294 slab_flags_t flags, const char *name,
1295 void (*ctor)(void *))
1296 {
1297 /*
1298 * Enable debugging if selected on the kernel commandline.
1299 */
1300 if (slub_debug && (!slub_debug_slabs || (name &&
1301 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1302 flags |= slub_debug;
1303
1304 return flags;
1305 }
1306 #else /* !CONFIG_SLUB_DEBUG */
1307 static inline void setup_object_debug(struct kmem_cache *s,
1308 struct page *page, void *object) {}
1309
1310 static inline int alloc_debug_processing(struct kmem_cache *s,
1311 struct page *page, void *object, unsigned long addr) { return 0; }
1312
1313 static inline int free_debug_processing(
1314 struct kmem_cache *s, struct page *page,
1315 void *head, void *tail, int bulk_cnt,
1316 unsigned long addr) { return 0; }
1317
1318 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1319 { return 1; }
1320 static inline int check_object(struct kmem_cache *s, struct page *page,
1321 void *object, u8 val) { return 1; }
1322 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
1324 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325 struct page *page) {}
1326 slab_flags_t kmem_cache_flags(unsigned long object_size,
1327 slab_flags_t flags, const char *name,
1328 void (*ctor)(void *))
1329 {
1330 return flags;
1331 }
1332 #define slub_debug 0
1333
1334 #define disable_higher_order_debug 0
1335
1336 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1337 { return 0; }
1338 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1339 { return 0; }
1340 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
1342 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1343 int objects) {}
1344
1345 #endif /* CONFIG_SLUB_DEBUG */
1346
1347 /*
1348 * Hooks for other subsystems that check memory allocations. In a typical
1349 * production configuration these hooks all should produce no code at all.
1350 */
1351 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1352 {
1353 kmemleak_alloc(ptr, size, 1, flags);
1354 kasan_kmalloc_large(ptr, size, flags);
1355 }
1356
1357 static inline void kfree_hook(const void *x)
1358 {
1359 kmemleak_free(x);
1360 kasan_kfree_large(x);
1361 }
1362
1363 static inline bool slab_free_hook(struct kmem_cache *s, void *x)
1364 {
1365 kmemleak_free_recursive(x, s->flags);
1366
1367 /*
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1371 */
1372 #ifdef CONFIG_LOCKDEP
1373 {
1374 unsigned long flags;
1375
1376 local_irq_save(flags);
1377 debug_check_no_locks_freed(x, s->object_size);
1378 local_irq_restore(flags);
1379 }
1380 #endif
1381 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1382 debug_check_no_obj_freed(x, s->object_size);
1383
1384 /* KASAN might put x into memory quarantine, delaying its reuse */
1385 return kasan_slab_free(s, x);
1386 }
1387
1388 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1389 void **head, void **tail)
1390 {
1391 /*
1392 * Compiler cannot detect this function can be removed if slab_free_hook()
1393 * evaluates to nothing. Thus, catch all relevant config debug options here.
1394 */
1395 #if defined(CONFIG_LOCKDEP) || \
1396 defined(CONFIG_DEBUG_KMEMLEAK) || \
1397 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1398 defined(CONFIG_KASAN)
1399
1400 void *object;
1401 void *next = *head;
1402 void *old_tail = *tail ? *tail : *head;
1403
1404 /* Head and tail of the reconstructed freelist */
1405 *head = NULL;
1406 *tail = NULL;
1407
1408 do {
1409 object = next;
1410 next = get_freepointer(s, object);
1411 /* If object's reuse doesn't have to be delayed */
1412 if (!slab_free_hook(s, object)) {
1413 /* Move object to the new freelist */
1414 set_freepointer(s, object, *head);
1415 *head = object;
1416 if (!*tail)
1417 *tail = object;
1418 }
1419 } while (object != old_tail);
1420
1421 if (*head == *tail)
1422 *tail = NULL;
1423
1424 return *head != NULL;
1425 #else
1426 return true;
1427 #endif
1428 }
1429
1430 static void setup_object(struct kmem_cache *s, struct page *page,
1431 void *object)
1432 {
1433 setup_object_debug(s, page, object);
1434 kasan_init_slab_obj(s, object);
1435 if (unlikely(s->ctor)) {
1436 kasan_unpoison_object_data(s, object);
1437 s->ctor(object);
1438 kasan_poison_object_data(s, object);
1439 }
1440 }
1441
1442 /*
1443 * Slab allocation and freeing
1444 */
1445 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1446 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1447 {
1448 struct page *page;
1449 int order = oo_order(oo);
1450
1451 if (node == NUMA_NO_NODE)
1452 page = alloc_pages(flags, order);
1453 else
1454 page = __alloc_pages_node(node, flags, order);
1455
1456 if (page && memcg_charge_slab(page, flags, order, s)) {
1457 __free_pages(page, order);
1458 page = NULL;
1459 }
1460
1461 return page;
1462 }
1463
1464 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1465 /* Pre-initialize the random sequence cache */
1466 static int init_cache_random_seq(struct kmem_cache *s)
1467 {
1468 int err;
1469 unsigned long i, count = oo_objects(s->oo);
1470
1471 /* Bailout if already initialised */
1472 if (s->random_seq)
1473 return 0;
1474
1475 err = cache_random_seq_create(s, count, GFP_KERNEL);
1476 if (err) {
1477 pr_err("SLUB: Unable to initialize free list for %s\n",
1478 s->name);
1479 return err;
1480 }
1481
1482 /* Transform to an offset on the set of pages */
1483 if (s->random_seq) {
1484 for (i = 0; i < count; i++)
1485 s->random_seq[i] *= s->size;
1486 }
1487 return 0;
1488 }
1489
1490 /* Initialize each random sequence freelist per cache */
1491 static void __init init_freelist_randomization(void)
1492 {
1493 struct kmem_cache *s;
1494
1495 mutex_lock(&slab_mutex);
1496
1497 list_for_each_entry(s, &slab_caches, list)
1498 init_cache_random_seq(s);
1499
1500 mutex_unlock(&slab_mutex);
1501 }
1502
1503 /* Get the next entry on the pre-computed freelist randomized */
1504 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1505 unsigned long *pos, void *start,
1506 unsigned long page_limit,
1507 unsigned long freelist_count)
1508 {
1509 unsigned int idx;
1510
1511 /*
1512 * If the target page allocation failed, the number of objects on the
1513 * page might be smaller than the usual size defined by the cache.
1514 */
1515 do {
1516 idx = s->random_seq[*pos];
1517 *pos += 1;
1518 if (*pos >= freelist_count)
1519 *pos = 0;
1520 } while (unlikely(idx >= page_limit));
1521
1522 return (char *)start + idx;
1523 }
1524
1525 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1526 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1527 {
1528 void *start;
1529 void *cur;
1530 void *next;
1531 unsigned long idx, pos, page_limit, freelist_count;
1532
1533 if (page->objects < 2 || !s->random_seq)
1534 return false;
1535
1536 freelist_count = oo_objects(s->oo);
1537 pos = get_random_int() % freelist_count;
1538
1539 page_limit = page->objects * s->size;
1540 start = fixup_red_left(s, page_address(page));
1541
1542 /* First entry is used as the base of the freelist */
1543 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1544 freelist_count);
1545 page->freelist = cur;
1546
1547 for (idx = 1; idx < page->objects; idx++) {
1548 setup_object(s, page, cur);
1549 next = next_freelist_entry(s, page, &pos, start, page_limit,
1550 freelist_count);
1551 set_freepointer(s, cur, next);
1552 cur = next;
1553 }
1554 setup_object(s, page, cur);
1555 set_freepointer(s, cur, NULL);
1556
1557 return true;
1558 }
1559 #else
1560 static inline int init_cache_random_seq(struct kmem_cache *s)
1561 {
1562 return 0;
1563 }
1564 static inline void init_freelist_randomization(void) { }
1565 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1566 {
1567 return false;
1568 }
1569 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1570
1571 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1572 {
1573 struct page *page;
1574 struct kmem_cache_order_objects oo = s->oo;
1575 gfp_t alloc_gfp;
1576 void *start, *p;
1577 int idx, order;
1578 bool shuffle;
1579
1580 flags &= gfp_allowed_mask;
1581
1582 if (gfpflags_allow_blocking(flags))
1583 local_irq_enable();
1584
1585 flags |= s->allocflags;
1586
1587 /*
1588 * Let the initial higher-order allocation fail under memory pressure
1589 * so we fall-back to the minimum order allocation.
1590 */
1591 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1592 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1593 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1594
1595 page = alloc_slab_page(s, alloc_gfp, node, oo);
1596 if (unlikely(!page)) {
1597 oo = s->min;
1598 alloc_gfp = flags;
1599 /*
1600 * Allocation may have failed due to fragmentation.
1601 * Try a lower order alloc if possible
1602 */
1603 page = alloc_slab_page(s, alloc_gfp, node, oo);
1604 if (unlikely(!page))
1605 goto out;
1606 stat(s, ORDER_FALLBACK);
1607 }
1608
1609 page->objects = oo_objects(oo);
1610
1611 order = compound_order(page);
1612 page->slab_cache = s;
1613 __SetPageSlab(page);
1614 if (page_is_pfmemalloc(page))
1615 SetPageSlabPfmemalloc(page);
1616
1617 start = page_address(page);
1618
1619 if (unlikely(s->flags & SLAB_POISON))
1620 memset(start, POISON_INUSE, PAGE_SIZE << order);
1621
1622 kasan_poison_slab(page);
1623
1624 shuffle = shuffle_freelist(s, page);
1625
1626 if (!shuffle) {
1627 for_each_object_idx(p, idx, s, start, page->objects) {
1628 setup_object(s, page, p);
1629 if (likely(idx < page->objects))
1630 set_freepointer(s, p, p + s->size);
1631 else
1632 set_freepointer(s, p, NULL);
1633 }
1634 page->freelist = fixup_red_left(s, start);
1635 }
1636
1637 page->inuse = page->objects;
1638 page->frozen = 1;
1639
1640 out:
1641 if (gfpflags_allow_blocking(flags))
1642 local_irq_disable();
1643 if (!page)
1644 return NULL;
1645
1646 mod_lruvec_page_state(page,
1647 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1648 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1649 1 << oo_order(oo));
1650
1651 inc_slabs_node(s, page_to_nid(page), page->objects);
1652
1653 return page;
1654 }
1655
1656 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1657 {
1658 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1659 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1660 flags &= ~GFP_SLAB_BUG_MASK;
1661 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1662 invalid_mask, &invalid_mask, flags, &flags);
1663 dump_stack();
1664 }
1665
1666 return allocate_slab(s,
1667 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1668 }
1669
1670 static void __free_slab(struct kmem_cache *s, struct page *page)
1671 {
1672 int order = compound_order(page);
1673 int pages = 1 << order;
1674
1675 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1676 void *p;
1677
1678 slab_pad_check(s, page);
1679 for_each_object(p, s, page_address(page),
1680 page->objects)
1681 check_object(s, page, p, SLUB_RED_INACTIVE);
1682 }
1683
1684 mod_lruvec_page_state(page,
1685 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1686 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1687 -pages);
1688
1689 __ClearPageSlabPfmemalloc(page);
1690 __ClearPageSlab(page);
1691
1692 page_mapcount_reset(page);
1693 if (current->reclaim_state)
1694 current->reclaim_state->reclaimed_slab += pages;
1695 memcg_uncharge_slab(page, order, s);
1696 __free_pages(page, order);
1697 }
1698
1699 #define need_reserve_slab_rcu \
1700 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1701
1702 static void rcu_free_slab(struct rcu_head *h)
1703 {
1704 struct page *page;
1705
1706 if (need_reserve_slab_rcu)
1707 page = virt_to_head_page(h);
1708 else
1709 page = container_of((struct list_head *)h, struct page, lru);
1710
1711 __free_slab(page->slab_cache, page);
1712 }
1713
1714 static void free_slab(struct kmem_cache *s, struct page *page)
1715 {
1716 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1717 struct rcu_head *head;
1718
1719 if (need_reserve_slab_rcu) {
1720 int order = compound_order(page);
1721 int offset = (PAGE_SIZE << order) - s->reserved;
1722
1723 VM_BUG_ON(s->reserved != sizeof(*head));
1724 head = page_address(page) + offset;
1725 } else {
1726 head = &page->rcu_head;
1727 }
1728
1729 call_rcu(head, rcu_free_slab);
1730 } else
1731 __free_slab(s, page);
1732 }
1733
1734 static void discard_slab(struct kmem_cache *s, struct page *page)
1735 {
1736 dec_slabs_node(s, page_to_nid(page), page->objects);
1737 free_slab(s, page);
1738 }
1739
1740 /*
1741 * Management of partially allocated slabs.
1742 */
1743 static inline void
1744 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1745 {
1746 n->nr_partial++;
1747 if (tail == DEACTIVATE_TO_TAIL)
1748 list_add_tail(&page->lru, &n->partial);
1749 else
1750 list_add(&page->lru, &n->partial);
1751 }
1752
1753 static inline void add_partial(struct kmem_cache_node *n,
1754 struct page *page, int tail)
1755 {
1756 lockdep_assert_held(&n->list_lock);
1757 __add_partial(n, page, tail);
1758 }
1759
1760 static inline void remove_partial(struct kmem_cache_node *n,
1761 struct page *page)
1762 {
1763 lockdep_assert_held(&n->list_lock);
1764 list_del(&page->lru);
1765 n->nr_partial--;
1766 }
1767
1768 /*
1769 * Remove slab from the partial list, freeze it and
1770 * return the pointer to the freelist.
1771 *
1772 * Returns a list of objects or NULL if it fails.
1773 */
1774 static inline void *acquire_slab(struct kmem_cache *s,
1775 struct kmem_cache_node *n, struct page *page,
1776 int mode, int *objects)
1777 {
1778 void *freelist;
1779 unsigned long counters;
1780 struct page new;
1781
1782 lockdep_assert_held(&n->list_lock);
1783
1784 /*
1785 * Zap the freelist and set the frozen bit.
1786 * The old freelist is the list of objects for the
1787 * per cpu allocation list.
1788 */
1789 freelist = page->freelist;
1790 counters = page->counters;
1791 new.counters = counters;
1792 *objects = new.objects - new.inuse;
1793 if (mode) {
1794 new.inuse = page->objects;
1795 new.freelist = NULL;
1796 } else {
1797 new.freelist = freelist;
1798 }
1799
1800 VM_BUG_ON(new.frozen);
1801 new.frozen = 1;
1802
1803 if (!__cmpxchg_double_slab(s, page,
1804 freelist, counters,
1805 new.freelist, new.counters,
1806 "acquire_slab"))
1807 return NULL;
1808
1809 remove_partial(n, page);
1810 WARN_ON(!freelist);
1811 return freelist;
1812 }
1813
1814 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1815 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1816
1817 /*
1818 * Try to allocate a partial slab from a specific node.
1819 */
1820 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1821 struct kmem_cache_cpu *c, gfp_t flags)
1822 {
1823 struct page *page, *page2;
1824 void *object = NULL;
1825 unsigned int available = 0;
1826 int objects;
1827
1828 /*
1829 * Racy check. If we mistakenly see no partial slabs then we
1830 * just allocate an empty slab. If we mistakenly try to get a
1831 * partial slab and there is none available then get_partials()
1832 * will return NULL.
1833 */
1834 if (!n || !n->nr_partial)
1835 return NULL;
1836
1837 spin_lock(&n->list_lock);
1838 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1839 void *t;
1840
1841 if (!pfmemalloc_match(page, flags))
1842 continue;
1843
1844 t = acquire_slab(s, n, page, object == NULL, &objects);
1845 if (!t)
1846 break;
1847
1848 available += objects;
1849 if (!object) {
1850 c->page = page;
1851 stat(s, ALLOC_FROM_PARTIAL);
1852 object = t;
1853 } else {
1854 put_cpu_partial(s, page, 0);
1855 stat(s, CPU_PARTIAL_NODE);
1856 }
1857 if (!kmem_cache_has_cpu_partial(s)
1858 || available > slub_cpu_partial(s) / 2)
1859 break;
1860
1861 }
1862 spin_unlock(&n->list_lock);
1863 return object;
1864 }
1865
1866 /*
1867 * Get a page from somewhere. Search in increasing NUMA distances.
1868 */
1869 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1870 struct kmem_cache_cpu *c)
1871 {
1872 #ifdef CONFIG_NUMA
1873 struct zonelist *zonelist;
1874 struct zoneref *z;
1875 struct zone *zone;
1876 enum zone_type high_zoneidx = gfp_zone(flags);
1877 void *object;
1878 unsigned int cpuset_mems_cookie;
1879
1880 /*
1881 * The defrag ratio allows a configuration of the tradeoffs between
1882 * inter node defragmentation and node local allocations. A lower
1883 * defrag_ratio increases the tendency to do local allocations
1884 * instead of attempting to obtain partial slabs from other nodes.
1885 *
1886 * If the defrag_ratio is set to 0 then kmalloc() always
1887 * returns node local objects. If the ratio is higher then kmalloc()
1888 * may return off node objects because partial slabs are obtained
1889 * from other nodes and filled up.
1890 *
1891 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1892 * (which makes defrag_ratio = 1000) then every (well almost)
1893 * allocation will first attempt to defrag slab caches on other nodes.
1894 * This means scanning over all nodes to look for partial slabs which
1895 * may be expensive if we do it every time we are trying to find a slab
1896 * with available objects.
1897 */
1898 if (!s->remote_node_defrag_ratio ||
1899 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1900 return NULL;
1901
1902 do {
1903 cpuset_mems_cookie = read_mems_allowed_begin();
1904 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1905 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1906 struct kmem_cache_node *n;
1907
1908 n = get_node(s, zone_to_nid(zone));
1909
1910 if (n && cpuset_zone_allowed(zone, flags) &&
1911 n->nr_partial > s->min_partial) {
1912 object = get_partial_node(s, n, c, flags);
1913 if (object) {
1914 /*
1915 * Don't check read_mems_allowed_retry()
1916 * here - if mems_allowed was updated in
1917 * parallel, that was a harmless race
1918 * between allocation and the cpuset
1919 * update
1920 */
1921 return object;
1922 }
1923 }
1924 }
1925 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1926 #endif
1927 return NULL;
1928 }
1929
1930 /*
1931 * Get a partial page, lock it and return it.
1932 */
1933 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1934 struct kmem_cache_cpu *c)
1935 {
1936 void *object;
1937 int searchnode = node;
1938
1939 if (node == NUMA_NO_NODE)
1940 searchnode = numa_mem_id();
1941 else if (!node_present_pages(node))
1942 searchnode = node_to_mem_node(node);
1943
1944 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1945 if (object || node != NUMA_NO_NODE)
1946 return object;
1947
1948 return get_any_partial(s, flags, c);
1949 }
1950
1951 #ifdef CONFIG_PREEMPT
1952 /*
1953 * Calculate the next globally unique transaction for disambiguiation
1954 * during cmpxchg. The transactions start with the cpu number and are then
1955 * incremented by CONFIG_NR_CPUS.
1956 */
1957 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1958 #else
1959 /*
1960 * No preemption supported therefore also no need to check for
1961 * different cpus.
1962 */
1963 #define TID_STEP 1
1964 #endif
1965
1966 static inline unsigned long next_tid(unsigned long tid)
1967 {
1968 return tid + TID_STEP;
1969 }
1970
1971 static inline unsigned int tid_to_cpu(unsigned long tid)
1972 {
1973 return tid % TID_STEP;
1974 }
1975
1976 static inline unsigned long tid_to_event(unsigned long tid)
1977 {
1978 return tid / TID_STEP;
1979 }
1980
1981 static inline unsigned int init_tid(int cpu)
1982 {
1983 return cpu;
1984 }
1985
1986 static inline void note_cmpxchg_failure(const char *n,
1987 const struct kmem_cache *s, unsigned long tid)
1988 {
1989 #ifdef SLUB_DEBUG_CMPXCHG
1990 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1991
1992 pr_info("%s %s: cmpxchg redo ", n, s->name);
1993
1994 #ifdef CONFIG_PREEMPT
1995 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1996 pr_warn("due to cpu change %d -> %d\n",
1997 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1998 else
1999 #endif
2000 if (tid_to_event(tid) != tid_to_event(actual_tid))
2001 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2002 tid_to_event(tid), tid_to_event(actual_tid));
2003 else
2004 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2005 actual_tid, tid, next_tid(tid));
2006 #endif
2007 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2008 }
2009
2010 static void init_kmem_cache_cpus(struct kmem_cache *s)
2011 {
2012 int cpu;
2013
2014 for_each_possible_cpu(cpu)
2015 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2016 }
2017
2018 /*
2019 * Remove the cpu slab
2020 */
2021 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2022 void *freelist, struct kmem_cache_cpu *c)
2023 {
2024 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2025 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2026 int lock = 0;
2027 enum slab_modes l = M_NONE, m = M_NONE;
2028 void *nextfree;
2029 int tail = DEACTIVATE_TO_HEAD;
2030 struct page new;
2031 struct page old;
2032
2033 if (page->freelist) {
2034 stat(s, DEACTIVATE_REMOTE_FREES);
2035 tail = DEACTIVATE_TO_TAIL;
2036 }
2037
2038 /*
2039 * Stage one: Free all available per cpu objects back
2040 * to the page freelist while it is still frozen. Leave the
2041 * last one.
2042 *
2043 * There is no need to take the list->lock because the page
2044 * is still frozen.
2045 */
2046 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2047 void *prior;
2048 unsigned long counters;
2049
2050 do {
2051 prior = page->freelist;
2052 counters = page->counters;
2053 set_freepointer(s, freelist, prior);
2054 new.counters = counters;
2055 new.inuse--;
2056 VM_BUG_ON(!new.frozen);
2057
2058 } while (!__cmpxchg_double_slab(s, page,
2059 prior, counters,
2060 freelist, new.counters,
2061 "drain percpu freelist"));
2062
2063 freelist = nextfree;
2064 }
2065
2066 /*
2067 * Stage two: Ensure that the page is unfrozen while the
2068 * list presence reflects the actual number of objects
2069 * during unfreeze.
2070 *
2071 * We setup the list membership and then perform a cmpxchg
2072 * with the count. If there is a mismatch then the page
2073 * is not unfrozen but the page is on the wrong list.
2074 *
2075 * Then we restart the process which may have to remove
2076 * the page from the list that we just put it on again
2077 * because the number of objects in the slab may have
2078 * changed.
2079 */
2080 redo:
2081
2082 old.freelist = page->freelist;
2083 old.counters = page->counters;
2084 VM_BUG_ON(!old.frozen);
2085
2086 /* Determine target state of the slab */
2087 new.counters = old.counters;
2088 if (freelist) {
2089 new.inuse--;
2090 set_freepointer(s, freelist, old.freelist);
2091 new.freelist = freelist;
2092 } else
2093 new.freelist = old.freelist;
2094
2095 new.frozen = 0;
2096
2097 if (!new.inuse && n->nr_partial >= s->min_partial)
2098 m = M_FREE;
2099 else if (new.freelist) {
2100 m = M_PARTIAL;
2101 if (!lock) {
2102 lock = 1;
2103 /*
2104 * Taking the spinlock removes the possiblity
2105 * that acquire_slab() will see a slab page that
2106 * is frozen
2107 */
2108 spin_lock(&n->list_lock);
2109 }
2110 } else {
2111 m = M_FULL;
2112 if (kmem_cache_debug(s) && !lock) {
2113 lock = 1;
2114 /*
2115 * This also ensures that the scanning of full
2116 * slabs from diagnostic functions will not see
2117 * any frozen slabs.
2118 */
2119 spin_lock(&n->list_lock);
2120 }
2121 }
2122
2123 if (l != m) {
2124
2125 if (l == M_PARTIAL)
2126
2127 remove_partial(n, page);
2128
2129 else if (l == M_FULL)
2130
2131 remove_full(s, n, page);
2132
2133 if (m == M_PARTIAL) {
2134
2135 add_partial(n, page, tail);
2136 stat(s, tail);
2137
2138 } else if (m == M_FULL) {
2139
2140 stat(s, DEACTIVATE_FULL);
2141 add_full(s, n, page);
2142
2143 }
2144 }
2145
2146 l = m;
2147 if (!__cmpxchg_double_slab(s, page,
2148 old.freelist, old.counters,
2149 new.freelist, new.counters,
2150 "unfreezing slab"))
2151 goto redo;
2152
2153 if (lock)
2154 spin_unlock(&n->list_lock);
2155
2156 if (m == M_FREE) {
2157 stat(s, DEACTIVATE_EMPTY);
2158 discard_slab(s, page);
2159 stat(s, FREE_SLAB);
2160 }
2161
2162 c->page = NULL;
2163 c->freelist = NULL;
2164 }
2165
2166 /*
2167 * Unfreeze all the cpu partial slabs.
2168 *
2169 * This function must be called with interrupts disabled
2170 * for the cpu using c (or some other guarantee must be there
2171 * to guarantee no concurrent accesses).
2172 */
2173 static void unfreeze_partials(struct kmem_cache *s,
2174 struct kmem_cache_cpu *c)
2175 {
2176 #ifdef CONFIG_SLUB_CPU_PARTIAL
2177 struct kmem_cache_node *n = NULL, *n2 = NULL;
2178 struct page *page, *discard_page = NULL;
2179
2180 while ((page = c->partial)) {
2181 struct page new;
2182 struct page old;
2183
2184 c->partial = page->next;
2185
2186 n2 = get_node(s, page_to_nid(page));
2187 if (n != n2) {
2188 if (n)
2189 spin_unlock(&n->list_lock);
2190
2191 n = n2;
2192 spin_lock(&n->list_lock);
2193 }
2194
2195 do {
2196
2197 old.freelist = page->freelist;
2198 old.counters = page->counters;
2199 VM_BUG_ON(!old.frozen);
2200
2201 new.counters = old.counters;
2202 new.freelist = old.freelist;
2203
2204 new.frozen = 0;
2205
2206 } while (!__cmpxchg_double_slab(s, page,
2207 old.freelist, old.counters,
2208 new.freelist, new.counters,
2209 "unfreezing slab"));
2210
2211 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2212 page->next = discard_page;
2213 discard_page = page;
2214 } else {
2215 add_partial(n, page, DEACTIVATE_TO_TAIL);
2216 stat(s, FREE_ADD_PARTIAL);
2217 }
2218 }
2219
2220 if (n)
2221 spin_unlock(&n->list_lock);
2222
2223 while (discard_page) {
2224 page = discard_page;
2225 discard_page = discard_page->next;
2226
2227 stat(s, DEACTIVATE_EMPTY);
2228 discard_slab(s, page);
2229 stat(s, FREE_SLAB);
2230 }
2231 #endif
2232 }
2233
2234 /*
2235 * Put a page that was just frozen (in __slab_free) into a partial page
2236 * slot if available. This is done without interrupts disabled and without
2237 * preemption disabled. The cmpxchg is racy and may put the partial page
2238 * onto a random cpus partial slot.
2239 *
2240 * If we did not find a slot then simply move all the partials to the
2241 * per node partial list.
2242 */
2243 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2244 {
2245 #ifdef CONFIG_SLUB_CPU_PARTIAL
2246 struct page *oldpage;
2247 int pages;
2248 int pobjects;
2249
2250 preempt_disable();
2251 do {
2252 pages = 0;
2253 pobjects = 0;
2254 oldpage = this_cpu_read(s->cpu_slab->partial);
2255
2256 if (oldpage) {
2257 pobjects = oldpage->pobjects;
2258 pages = oldpage->pages;
2259 if (drain && pobjects > s->cpu_partial) {
2260 unsigned long flags;
2261 /*
2262 * partial array is full. Move the existing
2263 * set to the per node partial list.
2264 */
2265 local_irq_save(flags);
2266 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2267 local_irq_restore(flags);
2268 oldpage = NULL;
2269 pobjects = 0;
2270 pages = 0;
2271 stat(s, CPU_PARTIAL_DRAIN);
2272 }
2273 }
2274
2275 pages++;
2276 pobjects += page->objects - page->inuse;
2277
2278 page->pages = pages;
2279 page->pobjects = pobjects;
2280 page->next = oldpage;
2281
2282 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2283 != oldpage);
2284 if (unlikely(!s->cpu_partial)) {
2285 unsigned long flags;
2286
2287 local_irq_save(flags);
2288 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2289 local_irq_restore(flags);
2290 }
2291 preempt_enable();
2292 #endif
2293 }
2294
2295 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2296 {
2297 stat(s, CPUSLAB_FLUSH);
2298 deactivate_slab(s, c->page, c->freelist, c);
2299
2300 c->tid = next_tid(c->tid);
2301 }
2302
2303 /*
2304 * Flush cpu slab.
2305 *
2306 * Called from IPI handler with interrupts disabled.
2307 */
2308 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2309 {
2310 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2311
2312 if (likely(c)) {
2313 if (c->page)
2314 flush_slab(s, c);
2315
2316 unfreeze_partials(s, c);
2317 }
2318 }
2319
2320 static void flush_cpu_slab(void *d)
2321 {
2322 struct kmem_cache *s = d;
2323
2324 __flush_cpu_slab(s, smp_processor_id());
2325 }
2326
2327 static bool has_cpu_slab(int cpu, void *info)
2328 {
2329 struct kmem_cache *s = info;
2330 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2331
2332 return c->page || slub_percpu_partial(c);
2333 }
2334
2335 static void flush_all(struct kmem_cache *s)
2336 {
2337 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2338 }
2339
2340 /*
2341 * Use the cpu notifier to insure that the cpu slabs are flushed when
2342 * necessary.
2343 */
2344 static int slub_cpu_dead(unsigned int cpu)
2345 {
2346 struct kmem_cache *s;
2347 unsigned long flags;
2348
2349 mutex_lock(&slab_mutex);
2350 list_for_each_entry(s, &slab_caches, list) {
2351 local_irq_save(flags);
2352 __flush_cpu_slab(s, cpu);
2353 local_irq_restore(flags);
2354 }
2355 mutex_unlock(&slab_mutex);
2356 return 0;
2357 }
2358
2359 /*
2360 * Check if the objects in a per cpu structure fit numa
2361 * locality expectations.
2362 */
2363 static inline int node_match(struct page *page, int node)
2364 {
2365 #ifdef CONFIG_NUMA
2366 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2367 return 0;
2368 #endif
2369 return 1;
2370 }
2371
2372 #ifdef CONFIG_SLUB_DEBUG
2373 static int count_free(struct page *page)
2374 {
2375 return page->objects - page->inuse;
2376 }
2377
2378 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2379 {
2380 return atomic_long_read(&n->total_objects);
2381 }
2382 #endif /* CONFIG_SLUB_DEBUG */
2383
2384 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2385 static unsigned long count_partial(struct kmem_cache_node *n,
2386 int (*get_count)(struct page *))
2387 {
2388 unsigned long flags;
2389 unsigned long x = 0;
2390 struct page *page;
2391
2392 spin_lock_irqsave(&n->list_lock, flags);
2393 list_for_each_entry(page, &n->partial, lru)
2394 x += get_count(page);
2395 spin_unlock_irqrestore(&n->list_lock, flags);
2396 return x;
2397 }
2398 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2399
2400 static noinline void
2401 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2402 {
2403 #ifdef CONFIG_SLUB_DEBUG
2404 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2405 DEFAULT_RATELIMIT_BURST);
2406 int node;
2407 struct kmem_cache_node *n;
2408
2409 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2410 return;
2411
2412 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2413 nid, gfpflags, &gfpflags);
2414 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2415 s->name, s->object_size, s->size, oo_order(s->oo),
2416 oo_order(s->min));
2417
2418 if (oo_order(s->min) > get_order(s->object_size))
2419 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2420 s->name);
2421
2422 for_each_kmem_cache_node(s, node, n) {
2423 unsigned long nr_slabs;
2424 unsigned long nr_objs;
2425 unsigned long nr_free;
2426
2427 nr_free = count_partial(n, count_free);
2428 nr_slabs = node_nr_slabs(n);
2429 nr_objs = node_nr_objs(n);
2430
2431 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2432 node, nr_slabs, nr_objs, nr_free);
2433 }
2434 #endif
2435 }
2436
2437 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2438 int node, struct kmem_cache_cpu **pc)
2439 {
2440 void *freelist;
2441 struct kmem_cache_cpu *c = *pc;
2442 struct page *page;
2443
2444 freelist = get_partial(s, flags, node, c);
2445
2446 if (freelist)
2447 return freelist;
2448
2449 page = new_slab(s, flags, node);
2450 if (page) {
2451 c = raw_cpu_ptr(s->cpu_slab);
2452 if (c->page)
2453 flush_slab(s, c);
2454
2455 /*
2456 * No other reference to the page yet so we can
2457 * muck around with it freely without cmpxchg
2458 */
2459 freelist = page->freelist;
2460 page->freelist = NULL;
2461
2462 stat(s, ALLOC_SLAB);
2463 c->page = page;
2464 *pc = c;
2465 } else
2466 freelist = NULL;
2467
2468 return freelist;
2469 }
2470
2471 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2472 {
2473 if (unlikely(PageSlabPfmemalloc(page)))
2474 return gfp_pfmemalloc_allowed(gfpflags);
2475
2476 return true;
2477 }
2478
2479 /*
2480 * Check the page->freelist of a page and either transfer the freelist to the
2481 * per cpu freelist or deactivate the page.
2482 *
2483 * The page is still frozen if the return value is not NULL.
2484 *
2485 * If this function returns NULL then the page has been unfrozen.
2486 *
2487 * This function must be called with interrupt disabled.
2488 */
2489 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2490 {
2491 struct page new;
2492 unsigned long counters;
2493 void *freelist;
2494
2495 do {
2496 freelist = page->freelist;
2497 counters = page->counters;
2498
2499 new.counters = counters;
2500 VM_BUG_ON(!new.frozen);
2501
2502 new.inuse = page->objects;
2503 new.frozen = freelist != NULL;
2504
2505 } while (!__cmpxchg_double_slab(s, page,
2506 freelist, counters,
2507 NULL, new.counters,
2508 "get_freelist"));
2509
2510 return freelist;
2511 }
2512
2513 /*
2514 * Slow path. The lockless freelist is empty or we need to perform
2515 * debugging duties.
2516 *
2517 * Processing is still very fast if new objects have been freed to the
2518 * regular freelist. In that case we simply take over the regular freelist
2519 * as the lockless freelist and zap the regular freelist.
2520 *
2521 * If that is not working then we fall back to the partial lists. We take the
2522 * first element of the freelist as the object to allocate now and move the
2523 * rest of the freelist to the lockless freelist.
2524 *
2525 * And if we were unable to get a new slab from the partial slab lists then
2526 * we need to allocate a new slab. This is the slowest path since it involves
2527 * a call to the page allocator and the setup of a new slab.
2528 *
2529 * Version of __slab_alloc to use when we know that interrupts are
2530 * already disabled (which is the case for bulk allocation).
2531 */
2532 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2533 unsigned long addr, struct kmem_cache_cpu *c)
2534 {
2535 void *freelist;
2536 struct page *page;
2537
2538 page = c->page;
2539 if (!page)
2540 goto new_slab;
2541 redo:
2542
2543 if (unlikely(!node_match(page, node))) {
2544 int searchnode = node;
2545
2546 if (node != NUMA_NO_NODE && !node_present_pages(node))
2547 searchnode = node_to_mem_node(node);
2548
2549 if (unlikely(!node_match(page, searchnode))) {
2550 stat(s, ALLOC_NODE_MISMATCH);
2551 deactivate_slab(s, page, c->freelist, c);
2552 goto new_slab;
2553 }
2554 }
2555
2556 /*
2557 * By rights, we should be searching for a slab page that was
2558 * PFMEMALLOC but right now, we are losing the pfmemalloc
2559 * information when the page leaves the per-cpu allocator
2560 */
2561 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2562 deactivate_slab(s, page, c->freelist, c);
2563 goto new_slab;
2564 }
2565
2566 /* must check again c->freelist in case of cpu migration or IRQ */
2567 freelist = c->freelist;
2568 if (freelist)
2569 goto load_freelist;
2570
2571 freelist = get_freelist(s, page);
2572
2573 if (!freelist) {
2574 c->page = NULL;
2575 stat(s, DEACTIVATE_BYPASS);
2576 goto new_slab;
2577 }
2578
2579 stat(s, ALLOC_REFILL);
2580
2581 load_freelist:
2582 /*
2583 * freelist is pointing to the list of objects to be used.
2584 * page is pointing to the page from which the objects are obtained.
2585 * That page must be frozen for per cpu allocations to work.
2586 */
2587 VM_BUG_ON(!c->page->frozen);
2588 c->freelist = get_freepointer(s, freelist);
2589 c->tid = next_tid(c->tid);
2590 return freelist;
2591
2592 new_slab:
2593
2594 if (slub_percpu_partial(c)) {
2595 page = c->page = slub_percpu_partial(c);
2596 slub_set_percpu_partial(c, page);
2597 stat(s, CPU_PARTIAL_ALLOC);
2598 goto redo;
2599 }
2600
2601 freelist = new_slab_objects(s, gfpflags, node, &c);
2602
2603 if (unlikely(!freelist)) {
2604 slab_out_of_memory(s, gfpflags, node);
2605 return NULL;
2606 }
2607
2608 page = c->page;
2609 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2610 goto load_freelist;
2611
2612 /* Only entered in the debug case */
2613 if (kmem_cache_debug(s) &&
2614 !alloc_debug_processing(s, page, freelist, addr))
2615 goto new_slab; /* Slab failed checks. Next slab needed */
2616
2617 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2618 return freelist;
2619 }
2620
2621 /*
2622 * Another one that disabled interrupt and compensates for possible
2623 * cpu changes by refetching the per cpu area pointer.
2624 */
2625 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2626 unsigned long addr, struct kmem_cache_cpu *c)
2627 {
2628 void *p;
2629 unsigned long flags;
2630
2631 local_irq_save(flags);
2632 #ifdef CONFIG_PREEMPT
2633 /*
2634 * We may have been preempted and rescheduled on a different
2635 * cpu before disabling interrupts. Need to reload cpu area
2636 * pointer.
2637 */
2638 c = this_cpu_ptr(s->cpu_slab);
2639 #endif
2640
2641 p = ___slab_alloc(s, gfpflags, node, addr, c);
2642 local_irq_restore(flags);
2643 return p;
2644 }
2645
2646 /*
2647 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2648 * have the fastpath folded into their functions. So no function call
2649 * overhead for requests that can be satisfied on the fastpath.
2650 *
2651 * The fastpath works by first checking if the lockless freelist can be used.
2652 * If not then __slab_alloc is called for slow processing.
2653 *
2654 * Otherwise we can simply pick the next object from the lockless free list.
2655 */
2656 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2657 gfp_t gfpflags, int node, unsigned long addr)
2658 {
2659 void *object;
2660 struct kmem_cache_cpu *c;
2661 struct page *page;
2662 unsigned long tid;
2663
2664 s = slab_pre_alloc_hook(s, gfpflags);
2665 if (!s)
2666 return NULL;
2667 redo:
2668 /*
2669 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2670 * enabled. We may switch back and forth between cpus while
2671 * reading from one cpu area. That does not matter as long
2672 * as we end up on the original cpu again when doing the cmpxchg.
2673 *
2674 * We should guarantee that tid and kmem_cache are retrieved on
2675 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2676 * to check if it is matched or not.
2677 */
2678 do {
2679 tid = this_cpu_read(s->cpu_slab->tid);
2680 c = raw_cpu_ptr(s->cpu_slab);
2681 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2682 unlikely(tid != READ_ONCE(c->tid)));
2683
2684 /*
2685 * Irqless object alloc/free algorithm used here depends on sequence
2686 * of fetching cpu_slab's data. tid should be fetched before anything
2687 * on c to guarantee that object and page associated with previous tid
2688 * won't be used with current tid. If we fetch tid first, object and
2689 * page could be one associated with next tid and our alloc/free
2690 * request will be failed. In this case, we will retry. So, no problem.
2691 */
2692 barrier();
2693
2694 /*
2695 * The transaction ids are globally unique per cpu and per operation on
2696 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2697 * occurs on the right processor and that there was no operation on the
2698 * linked list in between.
2699 */
2700
2701 object = c->freelist;
2702 page = c->page;
2703 if (unlikely(!object || !node_match(page, node))) {
2704 object = __slab_alloc(s, gfpflags, node, addr, c);
2705 stat(s, ALLOC_SLOWPATH);
2706 } else {
2707 void *next_object = get_freepointer_safe(s, object);
2708
2709 /*
2710 * The cmpxchg will only match if there was no additional
2711 * operation and if we are on the right processor.
2712 *
2713 * The cmpxchg does the following atomically (without lock
2714 * semantics!)
2715 * 1. Relocate first pointer to the current per cpu area.
2716 * 2. Verify that tid and freelist have not been changed
2717 * 3. If they were not changed replace tid and freelist
2718 *
2719 * Since this is without lock semantics the protection is only
2720 * against code executing on this cpu *not* from access by
2721 * other cpus.
2722 */
2723 if (unlikely(!this_cpu_cmpxchg_double(
2724 s->cpu_slab->freelist, s->cpu_slab->tid,
2725 object, tid,
2726 next_object, next_tid(tid)))) {
2727
2728 note_cmpxchg_failure("slab_alloc", s, tid);
2729 goto redo;
2730 }
2731 prefetch_freepointer(s, next_object);
2732 stat(s, ALLOC_FASTPATH);
2733 }
2734
2735 if (unlikely(gfpflags & __GFP_ZERO) && object)
2736 memset(object, 0, s->object_size);
2737
2738 slab_post_alloc_hook(s, gfpflags, 1, &object);
2739
2740 return object;
2741 }
2742
2743 static __always_inline void *slab_alloc(struct kmem_cache *s,
2744 gfp_t gfpflags, unsigned long addr)
2745 {
2746 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2747 }
2748
2749 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2750 {
2751 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2752
2753 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2754 s->size, gfpflags);
2755
2756 return ret;
2757 }
2758 EXPORT_SYMBOL(kmem_cache_alloc);
2759
2760 #ifdef CONFIG_TRACING
2761 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2762 {
2763 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2764 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2765 kasan_kmalloc(s, ret, size, gfpflags);
2766 return ret;
2767 }
2768 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2769 #endif
2770
2771 #ifdef CONFIG_NUMA
2772 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2773 {
2774 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2775
2776 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2777 s->object_size, s->size, gfpflags, node);
2778
2779 return ret;
2780 }
2781 EXPORT_SYMBOL(kmem_cache_alloc_node);
2782
2783 #ifdef CONFIG_TRACING
2784 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2785 gfp_t gfpflags,
2786 int node, size_t size)
2787 {
2788 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2789
2790 trace_kmalloc_node(_RET_IP_, ret,
2791 size, s->size, gfpflags, node);
2792
2793 kasan_kmalloc(s, ret, size, gfpflags);
2794 return ret;
2795 }
2796 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2797 #endif
2798 #endif
2799
2800 /*
2801 * Slow path handling. This may still be called frequently since objects
2802 * have a longer lifetime than the cpu slabs in most processing loads.
2803 *
2804 * So we still attempt to reduce cache line usage. Just take the slab
2805 * lock and free the item. If there is no additional partial page
2806 * handling required then we can return immediately.
2807 */
2808 static void __slab_free(struct kmem_cache *s, struct page *page,
2809 void *head, void *tail, int cnt,
2810 unsigned long addr)
2811
2812 {
2813 void *prior;
2814 int was_frozen;
2815 struct page new;
2816 unsigned long counters;
2817 struct kmem_cache_node *n = NULL;
2818 unsigned long uninitialized_var(flags);
2819
2820 stat(s, FREE_SLOWPATH);
2821
2822 if (kmem_cache_debug(s) &&
2823 !free_debug_processing(s, page, head, tail, cnt, addr))
2824 return;
2825
2826 do {
2827 if (unlikely(n)) {
2828 spin_unlock_irqrestore(&n->list_lock, flags);
2829 n = NULL;
2830 }
2831 prior = page->freelist;
2832 counters = page->counters;
2833 set_freepointer(s, tail, prior);
2834 new.counters = counters;
2835 was_frozen = new.frozen;
2836 new.inuse -= cnt;
2837 if ((!new.inuse || !prior) && !was_frozen) {
2838
2839 if (kmem_cache_has_cpu_partial(s) && !prior) {
2840
2841 /*
2842 * Slab was on no list before and will be
2843 * partially empty
2844 * We can defer the list move and instead
2845 * freeze it.
2846 */
2847 new.frozen = 1;
2848
2849 } else { /* Needs to be taken off a list */
2850
2851 n = get_node(s, page_to_nid(page));
2852 /*
2853 * Speculatively acquire the list_lock.
2854 * If the cmpxchg does not succeed then we may
2855 * drop the list_lock without any processing.
2856 *
2857 * Otherwise the list_lock will synchronize with
2858 * other processors updating the list of slabs.
2859 */
2860 spin_lock_irqsave(&n->list_lock, flags);
2861
2862 }
2863 }
2864
2865 } while (!cmpxchg_double_slab(s, page,
2866 prior, counters,
2867 head, new.counters,
2868 "__slab_free"));
2869
2870 if (likely(!n)) {
2871
2872 /*
2873 * If we just froze the page then put it onto the
2874 * per cpu partial list.
2875 */
2876 if (new.frozen && !was_frozen) {
2877 put_cpu_partial(s, page, 1);
2878 stat(s, CPU_PARTIAL_FREE);
2879 }
2880 /*
2881 * The list lock was not taken therefore no list
2882 * activity can be necessary.
2883 */
2884 if (was_frozen)
2885 stat(s, FREE_FROZEN);
2886 return;
2887 }
2888
2889 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2890 goto slab_empty;
2891
2892 /*
2893 * Objects left in the slab. If it was not on the partial list before
2894 * then add it.
2895 */
2896 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2897 if (kmem_cache_debug(s))
2898 remove_full(s, n, page);
2899 add_partial(n, page, DEACTIVATE_TO_TAIL);
2900 stat(s, FREE_ADD_PARTIAL);
2901 }
2902 spin_unlock_irqrestore(&n->list_lock, flags);
2903 return;
2904
2905 slab_empty:
2906 if (prior) {
2907 /*
2908 * Slab on the partial list.
2909 */
2910 remove_partial(n, page);
2911 stat(s, FREE_REMOVE_PARTIAL);
2912 } else {
2913 /* Slab must be on the full list */
2914 remove_full(s, n, page);
2915 }
2916
2917 spin_unlock_irqrestore(&n->list_lock, flags);
2918 stat(s, FREE_SLAB);
2919 discard_slab(s, page);
2920 }
2921
2922 /*
2923 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2924 * can perform fastpath freeing without additional function calls.
2925 *
2926 * The fastpath is only possible if we are freeing to the current cpu slab
2927 * of this processor. This typically the case if we have just allocated
2928 * the item before.
2929 *
2930 * If fastpath is not possible then fall back to __slab_free where we deal
2931 * with all sorts of special processing.
2932 *
2933 * Bulk free of a freelist with several objects (all pointing to the
2934 * same page) possible by specifying head and tail ptr, plus objects
2935 * count (cnt). Bulk free indicated by tail pointer being set.
2936 */
2937 static __always_inline void do_slab_free(struct kmem_cache *s,
2938 struct page *page, void *head, void *tail,
2939 int cnt, unsigned long addr)
2940 {
2941 void *tail_obj = tail ? : head;
2942 struct kmem_cache_cpu *c;
2943 unsigned long tid;
2944 redo:
2945 /*
2946 * Determine the currently cpus per cpu slab.
2947 * The cpu may change afterward. However that does not matter since
2948 * data is retrieved via this pointer. If we are on the same cpu
2949 * during the cmpxchg then the free will succeed.
2950 */
2951 do {
2952 tid = this_cpu_read(s->cpu_slab->tid);
2953 c = raw_cpu_ptr(s->cpu_slab);
2954 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2955 unlikely(tid != READ_ONCE(c->tid)));
2956
2957 /* Same with comment on barrier() in slab_alloc_node() */
2958 barrier();
2959
2960 if (likely(page == c->page)) {
2961 set_freepointer(s, tail_obj, c->freelist);
2962
2963 if (unlikely(!this_cpu_cmpxchg_double(
2964 s->cpu_slab->freelist, s->cpu_slab->tid,
2965 c->freelist, tid,
2966 head, next_tid(tid)))) {
2967
2968 note_cmpxchg_failure("slab_free", s, tid);
2969 goto redo;
2970 }
2971 stat(s, FREE_FASTPATH);
2972 } else
2973 __slab_free(s, page, head, tail_obj, cnt, addr);
2974
2975 }
2976
2977 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2978 void *head, void *tail, int cnt,
2979 unsigned long addr)
2980 {
2981 /*
2982 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2983 * to remove objects, whose reuse must be delayed.
2984 */
2985 if (slab_free_freelist_hook(s, &head, &tail))
2986 do_slab_free(s, page, head, tail, cnt, addr);
2987 }
2988
2989 #ifdef CONFIG_KASAN
2990 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2991 {
2992 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2993 }
2994 #endif
2995
2996 void kmem_cache_free(struct kmem_cache *s, void *x)
2997 {
2998 s = cache_from_obj(s, x);
2999 if (!s)
3000 return;
3001 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3002 trace_kmem_cache_free(_RET_IP_, x);
3003 }
3004 EXPORT_SYMBOL(kmem_cache_free);
3005
3006 struct detached_freelist {
3007 struct page *page;
3008 void *tail;
3009 void *freelist;
3010 int cnt;
3011 struct kmem_cache *s;
3012 };
3013
3014 /*
3015 * This function progressively scans the array with free objects (with
3016 * a limited look ahead) and extract objects belonging to the same
3017 * page. It builds a detached freelist directly within the given
3018 * page/objects. This can happen without any need for
3019 * synchronization, because the objects are owned by running process.
3020 * The freelist is build up as a single linked list in the objects.
3021 * The idea is, that this detached freelist can then be bulk
3022 * transferred to the real freelist(s), but only requiring a single
3023 * synchronization primitive. Look ahead in the array is limited due
3024 * to performance reasons.
3025 */
3026 static inline
3027 int build_detached_freelist(struct kmem_cache *s, size_t size,
3028 void **p, struct detached_freelist *df)
3029 {
3030 size_t first_skipped_index = 0;
3031 int lookahead = 3;
3032 void *object;
3033 struct page *page;
3034
3035 /* Always re-init detached_freelist */
3036 df->page = NULL;
3037
3038 do {
3039 object = p[--size];
3040 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3041 } while (!object && size);
3042
3043 if (!object)
3044 return 0;
3045
3046 page = virt_to_head_page(object);
3047 if (!s) {
3048 /* Handle kalloc'ed objects */
3049 if (unlikely(!PageSlab(page))) {
3050 BUG_ON(!PageCompound(page));
3051 kfree_hook(object);
3052 __free_pages(page, compound_order(page));
3053 p[size] = NULL; /* mark object processed */
3054 return size;
3055 }
3056 /* Derive kmem_cache from object */
3057 df->s = page->slab_cache;
3058 } else {
3059 df->s = cache_from_obj(s, object); /* Support for memcg */
3060 }
3061
3062 /* Start new detached freelist */
3063 df->page = page;
3064 set_freepointer(df->s, object, NULL);
3065 df->tail = object;
3066 df->freelist = object;
3067 p[size] = NULL; /* mark object processed */
3068 df->cnt = 1;
3069
3070 while (size) {
3071 object = p[--size];
3072 if (!object)
3073 continue; /* Skip processed objects */
3074
3075 /* df->page is always set at this point */
3076 if (df->page == virt_to_head_page(object)) {
3077 /* Opportunity build freelist */
3078 set_freepointer(df->s, object, df->freelist);
3079 df->freelist = object;
3080 df->cnt++;
3081 p[size] = NULL; /* mark object processed */
3082
3083 continue;
3084 }
3085
3086 /* Limit look ahead search */
3087 if (!--lookahead)
3088 break;
3089
3090 if (!first_skipped_index)
3091 first_skipped_index = size + 1;
3092 }
3093
3094 return first_skipped_index;
3095 }
3096
3097 /* Note that interrupts must be enabled when calling this function. */
3098 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3099 {
3100 if (WARN_ON(!size))
3101 return;
3102
3103 do {
3104 struct detached_freelist df;
3105
3106 size = build_detached_freelist(s, size, p, &df);
3107 if (!df.page)
3108 continue;
3109
3110 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3111 } while (likely(size));
3112 }
3113 EXPORT_SYMBOL(kmem_cache_free_bulk);
3114
3115 /* Note that interrupts must be enabled when calling this function. */
3116 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3117 void **p)
3118 {
3119 struct kmem_cache_cpu *c;
3120 int i;
3121
3122 /* memcg and kmem_cache debug support */
3123 s = slab_pre_alloc_hook(s, flags);
3124 if (unlikely(!s))
3125 return false;
3126 /*
3127 * Drain objects in the per cpu slab, while disabling local
3128 * IRQs, which protects against PREEMPT and interrupts
3129 * handlers invoking normal fastpath.
3130 */
3131 local_irq_disable();
3132 c = this_cpu_ptr(s->cpu_slab);
3133
3134 for (i = 0; i < size; i++) {
3135 void *object = c->freelist;
3136
3137 if (unlikely(!object)) {
3138 /*
3139 * Invoking slow path likely have side-effect
3140 * of re-populating per CPU c->freelist
3141 */
3142 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3143 _RET_IP_, c);
3144 if (unlikely(!p[i]))
3145 goto error;
3146
3147 c = this_cpu_ptr(s->cpu_slab);
3148 continue; /* goto for-loop */
3149 }
3150 c->freelist = get_freepointer(s, object);
3151 p[i] = object;
3152 }
3153 c->tid = next_tid(c->tid);
3154 local_irq_enable();
3155
3156 /* Clear memory outside IRQ disabled fastpath loop */
3157 if (unlikely(flags & __GFP_ZERO)) {
3158 int j;
3159
3160 for (j = 0; j < i; j++)
3161 memset(p[j], 0, s->object_size);
3162 }
3163
3164 /* memcg and kmem_cache debug support */
3165 slab_post_alloc_hook(s, flags, size, p);
3166 return i;
3167 error:
3168 local_irq_enable();
3169 slab_post_alloc_hook(s, flags, i, p);
3170 __kmem_cache_free_bulk(s, i, p);
3171 return 0;
3172 }
3173 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3174
3175
3176 /*
3177 * Object placement in a slab is made very easy because we always start at
3178 * offset 0. If we tune the size of the object to the alignment then we can
3179 * get the required alignment by putting one properly sized object after
3180 * another.
3181 *
3182 * Notice that the allocation order determines the sizes of the per cpu
3183 * caches. Each processor has always one slab available for allocations.
3184 * Increasing the allocation order reduces the number of times that slabs
3185 * must be moved on and off the partial lists and is therefore a factor in
3186 * locking overhead.
3187 */
3188
3189 /*
3190 * Mininum / Maximum order of slab pages. This influences locking overhead
3191 * and slab fragmentation. A higher order reduces the number of partial slabs
3192 * and increases the number of allocations possible without having to
3193 * take the list_lock.
3194 */
3195 static int slub_min_order;
3196 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3197 static int slub_min_objects;
3198
3199 /*
3200 * Calculate the order of allocation given an slab object size.
3201 *
3202 * The order of allocation has significant impact on performance and other
3203 * system components. Generally order 0 allocations should be preferred since
3204 * order 0 does not cause fragmentation in the page allocator. Larger objects
3205 * be problematic to put into order 0 slabs because there may be too much
3206 * unused space left. We go to a higher order if more than 1/16th of the slab
3207 * would be wasted.
3208 *
3209 * In order to reach satisfactory performance we must ensure that a minimum
3210 * number of objects is in one slab. Otherwise we may generate too much
3211 * activity on the partial lists which requires taking the list_lock. This is
3212 * less a concern for large slabs though which are rarely used.
3213 *
3214 * slub_max_order specifies the order where we begin to stop considering the
3215 * number of objects in a slab as critical. If we reach slub_max_order then
3216 * we try to keep the page order as low as possible. So we accept more waste
3217 * of space in favor of a small page order.
3218 *
3219 * Higher order allocations also allow the placement of more objects in a
3220 * slab and thereby reduce object handling overhead. If the user has
3221 * requested a higher mininum order then we start with that one instead of
3222 * the smallest order which will fit the object.
3223 */
3224 static inline int slab_order(int size, int min_objects,
3225 int max_order, int fract_leftover, int reserved)
3226 {
3227 int order;
3228 int rem;
3229 int min_order = slub_min_order;
3230
3231 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3232 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3233
3234 for (order = max(min_order, get_order(min_objects * size + reserved));
3235 order <= max_order; order++) {
3236
3237 unsigned long slab_size = PAGE_SIZE << order;
3238
3239 rem = (slab_size - reserved) % size;
3240
3241 if (rem <= slab_size / fract_leftover)
3242 break;
3243 }
3244
3245 return order;
3246 }
3247
3248 static inline int calculate_order(int size, int reserved)
3249 {
3250 int order;
3251 int min_objects;
3252 int fraction;
3253 int max_objects;
3254
3255 /*
3256 * Attempt to find best configuration for a slab. This
3257 * works by first attempting to generate a layout with
3258 * the best configuration and backing off gradually.
3259 *
3260 * First we increase the acceptable waste in a slab. Then
3261 * we reduce the minimum objects required in a slab.
3262 */
3263 min_objects = slub_min_objects;
3264 if (!min_objects)
3265 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3266 max_objects = order_objects(slub_max_order, size, reserved);
3267 min_objects = min(min_objects, max_objects);
3268
3269 while (min_objects > 1) {
3270 fraction = 16;
3271 while (fraction >= 4) {
3272 order = slab_order(size, min_objects,
3273 slub_max_order, fraction, reserved);
3274 if (order <= slub_max_order)
3275 return order;
3276 fraction /= 2;
3277 }
3278 min_objects--;
3279 }
3280
3281 /*
3282 * We were unable to place multiple objects in a slab. Now
3283 * lets see if we can place a single object there.
3284 */
3285 order = slab_order(size, 1, slub_max_order, 1, reserved);
3286 if (order <= slub_max_order)
3287 return order;
3288
3289 /*
3290 * Doh this slab cannot be placed using slub_max_order.
3291 */
3292 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3293 if (order < MAX_ORDER)
3294 return order;
3295 return -ENOSYS;
3296 }
3297
3298 static void
3299 init_kmem_cache_node(struct kmem_cache_node *n)
3300 {
3301 n->nr_partial = 0;
3302 spin_lock_init(&n->list_lock);
3303 INIT_LIST_HEAD(&n->partial);
3304 #ifdef CONFIG_SLUB_DEBUG
3305 atomic_long_set(&n->nr_slabs, 0);
3306 atomic_long_set(&n->total_objects, 0);
3307 INIT_LIST_HEAD(&n->full);
3308 #endif
3309 }
3310
3311 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3312 {
3313 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3314 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3315
3316 /*
3317 * Must align to double word boundary for the double cmpxchg
3318 * instructions to work; see __pcpu_double_call_return_bool().
3319 */
3320 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3321 2 * sizeof(void *));
3322
3323 if (!s->cpu_slab)
3324 return 0;
3325
3326 init_kmem_cache_cpus(s);
3327
3328 return 1;
3329 }
3330
3331 static struct kmem_cache *kmem_cache_node;
3332
3333 /*
3334 * No kmalloc_node yet so do it by hand. We know that this is the first
3335 * slab on the node for this slabcache. There are no concurrent accesses
3336 * possible.
3337 *
3338 * Note that this function only works on the kmem_cache_node
3339 * when allocating for the kmem_cache_node. This is used for bootstrapping
3340 * memory on a fresh node that has no slab structures yet.
3341 */
3342 static void early_kmem_cache_node_alloc(int node)
3343 {
3344 struct page *page;
3345 struct kmem_cache_node *n;
3346
3347 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3348
3349 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3350
3351 BUG_ON(!page);
3352 if (page_to_nid(page) != node) {
3353 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3354 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3355 }
3356
3357 n = page->freelist;
3358 BUG_ON(!n);
3359 page->freelist = get_freepointer(kmem_cache_node, n);
3360 page->inuse = 1;
3361 page->frozen = 0;
3362 kmem_cache_node->node[node] = n;
3363 #ifdef CONFIG_SLUB_DEBUG
3364 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3365 init_tracking(kmem_cache_node, n);
3366 #endif
3367 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3368 GFP_KERNEL);
3369 init_kmem_cache_node(n);
3370 inc_slabs_node(kmem_cache_node, node, page->objects);
3371
3372 /*
3373 * No locks need to be taken here as it has just been
3374 * initialized and there is no concurrent access.
3375 */
3376 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3377 }
3378
3379 static void free_kmem_cache_nodes(struct kmem_cache *s)
3380 {
3381 int node;
3382 struct kmem_cache_node *n;
3383
3384 for_each_kmem_cache_node(s, node, n) {
3385 s->node[node] = NULL;
3386 kmem_cache_free(kmem_cache_node, n);
3387 }
3388 }
3389
3390 void __kmem_cache_release(struct kmem_cache *s)
3391 {
3392 cache_random_seq_destroy(s);
3393 free_percpu(s->cpu_slab);
3394 free_kmem_cache_nodes(s);
3395 }
3396
3397 static int init_kmem_cache_nodes(struct kmem_cache *s)
3398 {
3399 int node;
3400
3401 for_each_node_state(node, N_NORMAL_MEMORY) {
3402 struct kmem_cache_node *n;
3403
3404 if (slab_state == DOWN) {
3405 early_kmem_cache_node_alloc(node);
3406 continue;
3407 }
3408 n = kmem_cache_alloc_node(kmem_cache_node,
3409 GFP_KERNEL, node);
3410
3411 if (!n) {
3412 free_kmem_cache_nodes(s);
3413 return 0;
3414 }
3415
3416 init_kmem_cache_node(n);
3417 s->node[node] = n;
3418 }
3419 return 1;
3420 }
3421
3422 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3423 {
3424 if (min < MIN_PARTIAL)
3425 min = MIN_PARTIAL;
3426 else if (min > MAX_PARTIAL)
3427 min = MAX_PARTIAL;
3428 s->min_partial = min;
3429 }
3430
3431 static void set_cpu_partial(struct kmem_cache *s)
3432 {
3433 #ifdef CONFIG_SLUB_CPU_PARTIAL
3434 /*
3435 * cpu_partial determined the maximum number of objects kept in the
3436 * per cpu partial lists of a processor.
3437 *
3438 * Per cpu partial lists mainly contain slabs that just have one
3439 * object freed. If they are used for allocation then they can be
3440 * filled up again with minimal effort. The slab will never hit the
3441 * per node partial lists and therefore no locking will be required.
3442 *
3443 * This setting also determines
3444 *
3445 * A) The number of objects from per cpu partial slabs dumped to the
3446 * per node list when we reach the limit.
3447 * B) The number of objects in cpu partial slabs to extract from the
3448 * per node list when we run out of per cpu objects. We only fetch
3449 * 50% to keep some capacity around for frees.
3450 */
3451 if (!kmem_cache_has_cpu_partial(s))
3452 s->cpu_partial = 0;
3453 else if (s->size >= PAGE_SIZE)
3454 s->cpu_partial = 2;
3455 else if (s->size >= 1024)
3456 s->cpu_partial = 6;
3457 else if (s->size >= 256)
3458 s->cpu_partial = 13;
3459 else
3460 s->cpu_partial = 30;
3461 #endif
3462 }
3463
3464 /*
3465 * calculate_sizes() determines the order and the distribution of data within
3466 * a slab object.
3467 */
3468 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3469 {
3470 slab_flags_t flags = s->flags;
3471 size_t size = s->object_size;
3472 int order;
3473
3474 /*
3475 * Round up object size to the next word boundary. We can only
3476 * place the free pointer at word boundaries and this determines
3477 * the possible location of the free pointer.
3478 */
3479 size = ALIGN(size, sizeof(void *));
3480
3481 #ifdef CONFIG_SLUB_DEBUG
3482 /*
3483 * Determine if we can poison the object itself. If the user of
3484 * the slab may touch the object after free or before allocation
3485 * then we should never poison the object itself.
3486 */
3487 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3488 !s->ctor)
3489 s->flags |= __OBJECT_POISON;
3490 else
3491 s->flags &= ~__OBJECT_POISON;
3492
3493
3494 /*
3495 * If we are Redzoning then check if there is some space between the
3496 * end of the object and the free pointer. If not then add an
3497 * additional word to have some bytes to store Redzone information.
3498 */
3499 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3500 size += sizeof(void *);
3501 #endif
3502
3503 /*
3504 * With that we have determined the number of bytes in actual use
3505 * by the object. This is the potential offset to the free pointer.
3506 */
3507 s->inuse = size;
3508
3509 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3510 s->ctor)) {
3511 /*
3512 * Relocate free pointer after the object if it is not
3513 * permitted to overwrite the first word of the object on
3514 * kmem_cache_free.
3515 *
3516 * This is the case if we do RCU, have a constructor or
3517 * destructor or are poisoning the objects.
3518 */
3519 s->offset = size;
3520 size += sizeof(void *);
3521 }
3522
3523 #ifdef CONFIG_SLUB_DEBUG
3524 if (flags & SLAB_STORE_USER)
3525 /*
3526 * Need to store information about allocs and frees after
3527 * the object.
3528 */
3529 size += 2 * sizeof(struct track);
3530 #endif
3531
3532 kasan_cache_create(s, &size, &s->flags);
3533 #ifdef CONFIG_SLUB_DEBUG
3534 if (flags & SLAB_RED_ZONE) {
3535 /*
3536 * Add some empty padding so that we can catch
3537 * overwrites from earlier objects rather than let
3538 * tracking information or the free pointer be
3539 * corrupted if a user writes before the start
3540 * of the object.
3541 */
3542 size += sizeof(void *);
3543
3544 s->red_left_pad = sizeof(void *);
3545 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3546 size += s->red_left_pad;
3547 }
3548 #endif
3549
3550 /*
3551 * SLUB stores one object immediately after another beginning from
3552 * offset 0. In order to align the objects we have to simply size
3553 * each object to conform to the alignment.
3554 */
3555 size = ALIGN(size, s->align);
3556 s->size = size;
3557 if (forced_order >= 0)
3558 order = forced_order;
3559 else
3560 order = calculate_order(size, s->reserved);
3561
3562 if (order < 0)
3563 return 0;
3564
3565 s->allocflags = 0;
3566 if (order)
3567 s->allocflags |= __GFP_COMP;
3568
3569 if (s->flags & SLAB_CACHE_DMA)
3570 s->allocflags |= GFP_DMA;
3571
3572 if (s->flags & SLAB_CACHE_DMA32)
3573 s->allocflags |= GFP_DMA32;
3574
3575 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3576 s->allocflags |= __GFP_RECLAIMABLE;
3577
3578 /*
3579 * Determine the number of objects per slab
3580 */
3581 s->oo = oo_make(order, size, s->reserved);
3582 s->min = oo_make(get_order(size), size, s->reserved);
3583 if (oo_objects(s->oo) > oo_objects(s->max))
3584 s->max = s->oo;
3585
3586 return !!oo_objects(s->oo);
3587 }
3588
3589 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3590 {
3591 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3592 s->reserved = 0;
3593 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3594 s->random = get_random_long();
3595 #endif
3596
3597 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3598 s->reserved = sizeof(struct rcu_head);
3599
3600 if (!calculate_sizes(s, -1))
3601 goto error;
3602 if (disable_higher_order_debug) {
3603 /*
3604 * Disable debugging flags that store metadata if the min slab
3605 * order increased.
3606 */
3607 if (get_order(s->size) > get_order(s->object_size)) {
3608 s->flags &= ~DEBUG_METADATA_FLAGS;
3609 s->offset = 0;
3610 if (!calculate_sizes(s, -1))
3611 goto error;
3612 }
3613 }
3614
3615 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3616 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3617 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3618 /* Enable fast mode */
3619 s->flags |= __CMPXCHG_DOUBLE;
3620 #endif
3621
3622 /*
3623 * The larger the object size is, the more pages we want on the partial
3624 * list to avoid pounding the page allocator excessively.
3625 */
3626 set_min_partial(s, ilog2(s->size) / 2);
3627
3628 set_cpu_partial(s);
3629
3630 #ifdef CONFIG_NUMA
3631 s->remote_node_defrag_ratio = 1000;
3632 #endif
3633
3634 /* Initialize the pre-computed randomized freelist if slab is up */
3635 if (slab_state >= UP) {
3636 if (init_cache_random_seq(s))
3637 goto error;
3638 }
3639
3640 if (!init_kmem_cache_nodes(s))
3641 goto error;
3642
3643 if (alloc_kmem_cache_cpus(s))
3644 return 0;
3645
3646 free_kmem_cache_nodes(s);
3647 error:
3648 if (flags & SLAB_PANIC)
3649 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3650 s->name, (unsigned long)s->size, s->size,
3651 oo_order(s->oo), s->offset, (unsigned long)flags);
3652 return -EINVAL;
3653 }
3654
3655 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3656 const char *text)
3657 {
3658 #ifdef CONFIG_SLUB_DEBUG
3659 void *addr = page_address(page);
3660 void *p;
3661 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3662 sizeof(long), GFP_ATOMIC);
3663 if (!map)
3664 return;
3665 slab_err(s, page, text, s->name);
3666 slab_lock(page);
3667
3668 get_map(s, page, map);
3669 for_each_object(p, s, addr, page->objects) {
3670
3671 if (!test_bit(slab_index(p, s, addr), map)) {
3672 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3673 print_tracking(s, p);
3674 }
3675 }
3676 slab_unlock(page);
3677 kfree(map);
3678 #endif
3679 }
3680
3681 /*
3682 * Attempt to free all partial slabs on a node.
3683 * This is called from __kmem_cache_shutdown(). We must take list_lock
3684 * because sysfs file might still access partial list after the shutdowning.
3685 */
3686 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3687 {
3688 LIST_HEAD(discard);
3689 struct page *page, *h;
3690
3691 BUG_ON(irqs_disabled());
3692 spin_lock_irq(&n->list_lock);
3693 list_for_each_entry_safe(page, h, &n->partial, lru) {
3694 if (!page->inuse) {
3695 remove_partial(n, page);
3696 list_add(&page->lru, &discard);
3697 } else {
3698 list_slab_objects(s, page,
3699 "Objects remaining in %s on __kmem_cache_shutdown()");
3700 }
3701 }
3702 spin_unlock_irq(&n->list_lock);
3703
3704 list_for_each_entry_safe(page, h, &discard, lru)
3705 discard_slab(s, page);
3706 }
3707
3708 /*
3709 * Release all resources used by a slab cache.
3710 */
3711 int __kmem_cache_shutdown(struct kmem_cache *s)
3712 {
3713 int node;
3714 struct kmem_cache_node *n;
3715
3716 flush_all(s);
3717 /* Attempt to free all objects */
3718 for_each_kmem_cache_node(s, node, n) {
3719 free_partial(s, n);
3720 if (n->nr_partial || slabs_node(s, node))
3721 return 1;
3722 }
3723 sysfs_slab_remove(s);
3724 return 0;
3725 }
3726
3727 /********************************************************************
3728 * Kmalloc subsystem
3729 *******************************************************************/
3730
3731 static int __init setup_slub_min_order(char *str)
3732 {
3733 get_option(&str, &slub_min_order);
3734
3735 return 1;
3736 }
3737
3738 __setup("slub_min_order=", setup_slub_min_order);
3739
3740 static int __init setup_slub_max_order(char *str)
3741 {
3742 get_option(&str, &slub_max_order);
3743 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3744
3745 return 1;
3746 }
3747
3748 __setup("slub_max_order=", setup_slub_max_order);
3749
3750 static int __init setup_slub_min_objects(char *str)
3751 {
3752 get_option(&str, &slub_min_objects);
3753
3754 return 1;
3755 }
3756
3757 __setup("slub_min_objects=", setup_slub_min_objects);
3758
3759 void *__kmalloc(size_t size, gfp_t flags)
3760 {
3761 struct kmem_cache *s;
3762 void *ret;
3763
3764 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3765 return kmalloc_large(size, flags);
3766
3767 s = kmalloc_slab(size, flags);
3768
3769 if (unlikely(ZERO_OR_NULL_PTR(s)))
3770 return s;
3771
3772 ret = slab_alloc(s, flags, _RET_IP_);
3773
3774 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3775
3776 kasan_kmalloc(s, ret, size, flags);
3777
3778 return ret;
3779 }
3780 EXPORT_SYMBOL(__kmalloc);
3781
3782 #ifdef CONFIG_NUMA
3783 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3784 {
3785 struct page *page;
3786 void *ptr = NULL;
3787
3788 flags |= __GFP_COMP;
3789 page = alloc_pages_node(node, flags, get_order(size));
3790 if (page)
3791 ptr = page_address(page);
3792
3793 kmalloc_large_node_hook(ptr, size, flags);
3794 return ptr;
3795 }
3796
3797 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3798 {
3799 struct kmem_cache *s;
3800 void *ret;
3801
3802 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3803 ret = kmalloc_large_node(size, flags, node);
3804
3805 trace_kmalloc_node(_RET_IP_, ret,
3806 size, PAGE_SIZE << get_order(size),
3807 flags, node);
3808
3809 return ret;
3810 }
3811
3812 s = kmalloc_slab(size, flags);
3813
3814 if (unlikely(ZERO_OR_NULL_PTR(s)))
3815 return s;
3816
3817 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3818
3819 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3820
3821 kasan_kmalloc(s, ret, size, flags);
3822
3823 return ret;
3824 }
3825 EXPORT_SYMBOL(__kmalloc_node);
3826 #endif
3827
3828 #ifdef CONFIG_HARDENED_USERCOPY
3829 /*
3830 * Rejects objects that are incorrectly sized.
3831 *
3832 * Returns NULL if check passes, otherwise const char * to name of cache
3833 * to indicate an error.
3834 */
3835 const char *__check_heap_object(const void *ptr, unsigned long n,
3836 struct page *page)
3837 {
3838 struct kmem_cache *s;
3839 unsigned long offset;
3840 size_t object_size;
3841
3842 /* Find object and usable object size. */
3843 s = page->slab_cache;
3844 object_size = slab_ksize(s);
3845
3846 /* Reject impossible pointers. */
3847 if (ptr < page_address(page))
3848 return s->name;
3849
3850 /* Find offset within object. */
3851 offset = (ptr - page_address(page)) % s->size;
3852
3853 /* Adjust for redzone and reject if within the redzone. */
3854 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3855 if (offset < s->red_left_pad)
3856 return s->name;
3857 offset -= s->red_left_pad;
3858 }
3859
3860 /* Allow address range falling entirely within object size. */
3861 if (offset <= object_size && n <= object_size - offset)
3862 return NULL;
3863
3864 return s->name;
3865 }
3866 #endif /* CONFIG_HARDENED_USERCOPY */
3867
3868 static size_t __ksize(const void *object)
3869 {
3870 struct page *page;
3871
3872 if (unlikely(object == ZERO_SIZE_PTR))
3873 return 0;
3874
3875 page = virt_to_head_page(object);
3876
3877 if (unlikely(!PageSlab(page))) {
3878 WARN_ON(!PageCompound(page));
3879 return PAGE_SIZE << compound_order(page);
3880 }
3881
3882 return slab_ksize(page->slab_cache);
3883 }
3884
3885 size_t ksize(const void *object)
3886 {
3887 size_t size = __ksize(object);
3888 /* We assume that ksize callers could use whole allocated area,
3889 * so we need to unpoison this area.
3890 */
3891 kasan_unpoison_shadow(object, size);
3892 return size;
3893 }
3894 EXPORT_SYMBOL(ksize);
3895
3896 void kfree(const void *x)
3897 {
3898 struct page *page;
3899 void *object = (void *)x;
3900
3901 trace_kfree(_RET_IP_, x);
3902
3903 if (unlikely(ZERO_OR_NULL_PTR(x)))
3904 return;
3905
3906 page = virt_to_head_page(x);
3907 if (unlikely(!PageSlab(page))) {
3908 BUG_ON(!PageCompound(page));
3909 kfree_hook(x);
3910 __free_pages(page, compound_order(page));
3911 return;
3912 }
3913 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3914 }
3915 EXPORT_SYMBOL(kfree);
3916
3917 #define SHRINK_PROMOTE_MAX 32
3918
3919 /*
3920 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3921 * up most to the head of the partial lists. New allocations will then
3922 * fill those up and thus they can be removed from the partial lists.
3923 *
3924 * The slabs with the least items are placed last. This results in them
3925 * being allocated from last increasing the chance that the last objects
3926 * are freed in them.
3927 */
3928 int __kmem_cache_shrink(struct kmem_cache *s)
3929 {
3930 int node;
3931 int i;
3932 struct kmem_cache_node *n;
3933 struct page *page;
3934 struct page *t;
3935 struct list_head discard;
3936 struct list_head promote[SHRINK_PROMOTE_MAX];
3937 unsigned long flags;
3938 int ret = 0;
3939
3940 flush_all(s);
3941 for_each_kmem_cache_node(s, node, n) {
3942 INIT_LIST_HEAD(&discard);
3943 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3944 INIT_LIST_HEAD(promote + i);
3945
3946 spin_lock_irqsave(&n->list_lock, flags);
3947
3948 /*
3949 * Build lists of slabs to discard or promote.
3950 *
3951 * Note that concurrent frees may occur while we hold the
3952 * list_lock. page->inuse here is the upper limit.
3953 */
3954 list_for_each_entry_safe(page, t, &n->partial, lru) {
3955 int free = page->objects - page->inuse;
3956
3957 /* Do not reread page->inuse */
3958 barrier();
3959
3960 /* We do not keep full slabs on the list */
3961 BUG_ON(free <= 0);
3962
3963 if (free == page->objects) {
3964 list_move(&page->lru, &discard);
3965 n->nr_partial--;
3966 } else if (free <= SHRINK_PROMOTE_MAX)
3967 list_move(&page->lru, promote + free - 1);
3968 }
3969
3970 /*
3971 * Promote the slabs filled up most to the head of the
3972 * partial list.
3973 */
3974 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3975 list_splice(promote + i, &n->partial);
3976
3977 spin_unlock_irqrestore(&n->list_lock, flags);
3978
3979 /* Release empty slabs */
3980 list_for_each_entry_safe(page, t, &discard, lru)
3981 discard_slab(s, page);
3982
3983 if (slabs_node(s, node))
3984 ret = 1;
3985 }
3986
3987 return ret;
3988 }
3989
3990 #ifdef CONFIG_MEMCG
3991 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3992 {
3993 /*
3994 * Called with all the locks held after a sched RCU grace period.
3995 * Even if @s becomes empty after shrinking, we can't know that @s
3996 * doesn't have allocations already in-flight and thus can't
3997 * destroy @s until the associated memcg is released.
3998 *
3999 * However, let's remove the sysfs files for empty caches here.
4000 * Each cache has a lot of interface files which aren't
4001 * particularly useful for empty draining caches; otherwise, we can
4002 * easily end up with millions of unnecessary sysfs files on
4003 * systems which have a lot of memory and transient cgroups.
4004 */
4005 if (!__kmem_cache_shrink(s))
4006 sysfs_slab_remove(s);
4007 }
4008
4009 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4010 {
4011 /*
4012 * Disable empty slabs caching. Used to avoid pinning offline
4013 * memory cgroups by kmem pages that can be freed.
4014 */
4015 slub_set_cpu_partial(s, 0);
4016 s->min_partial = 0;
4017
4018 /*
4019 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4020 * we have to make sure the change is visible before shrinking.
4021 */
4022 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4023 }
4024 #endif
4025
4026 static int slab_mem_going_offline_callback(void *arg)
4027 {
4028 struct kmem_cache *s;
4029
4030 mutex_lock(&slab_mutex);
4031 list_for_each_entry(s, &slab_caches, list)
4032 __kmem_cache_shrink(s);
4033 mutex_unlock(&slab_mutex);
4034
4035 return 0;
4036 }
4037
4038 static void slab_mem_offline_callback(void *arg)
4039 {
4040 struct kmem_cache_node *n;
4041 struct kmem_cache *s;
4042 struct memory_notify *marg = arg;
4043 int offline_node;
4044
4045 offline_node = marg->status_change_nid_normal;
4046
4047 /*
4048 * If the node still has available memory. we need kmem_cache_node
4049 * for it yet.
4050 */
4051 if (offline_node < 0)
4052 return;
4053
4054 mutex_lock(&slab_mutex);
4055 list_for_each_entry(s, &slab_caches, list) {
4056 n = get_node(s, offline_node);
4057 if (n) {
4058 /*
4059 * if n->nr_slabs > 0, slabs still exist on the node
4060 * that is going down. We were unable to free them,
4061 * and offline_pages() function shouldn't call this
4062 * callback. So, we must fail.
4063 */
4064 BUG_ON(slabs_node(s, offline_node));
4065
4066 s->node[offline_node] = NULL;
4067 kmem_cache_free(kmem_cache_node, n);
4068 }
4069 }
4070 mutex_unlock(&slab_mutex);
4071 }
4072
4073 static int slab_mem_going_online_callback(void *arg)
4074 {
4075 struct kmem_cache_node *n;
4076 struct kmem_cache *s;
4077 struct memory_notify *marg = arg;
4078 int nid = marg->status_change_nid_normal;
4079 int ret = 0;
4080
4081 /*
4082 * If the node's memory is already available, then kmem_cache_node is
4083 * already created. Nothing to do.
4084 */
4085 if (nid < 0)
4086 return 0;
4087
4088 /*
4089 * We are bringing a node online. No memory is available yet. We must
4090 * allocate a kmem_cache_node structure in order to bring the node
4091 * online.
4092 */
4093 mutex_lock(&slab_mutex);
4094 list_for_each_entry(s, &slab_caches, list) {
4095 /*
4096 * XXX: kmem_cache_alloc_node will fallback to other nodes
4097 * since memory is not yet available from the node that
4098 * is brought up.
4099 */
4100 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4101 if (!n) {
4102 ret = -ENOMEM;
4103 goto out;
4104 }
4105 init_kmem_cache_node(n);
4106 s->node[nid] = n;
4107 }
4108 out:
4109 mutex_unlock(&slab_mutex);
4110 return ret;
4111 }
4112
4113 static int slab_memory_callback(struct notifier_block *self,
4114 unsigned long action, void *arg)
4115 {
4116 int ret = 0;
4117
4118 switch (action) {
4119 case MEM_GOING_ONLINE:
4120 ret = slab_mem_going_online_callback(arg);
4121 break;
4122 case MEM_GOING_OFFLINE:
4123 ret = slab_mem_going_offline_callback(arg);
4124 break;
4125 case MEM_OFFLINE:
4126 case MEM_CANCEL_ONLINE:
4127 slab_mem_offline_callback(arg);
4128 break;
4129 case MEM_ONLINE:
4130 case MEM_CANCEL_OFFLINE:
4131 break;
4132 }
4133 if (ret)
4134 ret = notifier_from_errno(ret);
4135 else
4136 ret = NOTIFY_OK;
4137 return ret;
4138 }
4139
4140 static struct notifier_block slab_memory_callback_nb = {
4141 .notifier_call = slab_memory_callback,
4142 .priority = SLAB_CALLBACK_PRI,
4143 };
4144
4145 /********************************************************************
4146 * Basic setup of slabs
4147 *******************************************************************/
4148
4149 /*
4150 * Used for early kmem_cache structures that were allocated using
4151 * the page allocator. Allocate them properly then fix up the pointers
4152 * that may be pointing to the wrong kmem_cache structure.
4153 */
4154
4155 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4156 {
4157 int node;
4158 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4159 struct kmem_cache_node *n;
4160
4161 memcpy(s, static_cache, kmem_cache->object_size);
4162
4163 /*
4164 * This runs very early, and only the boot processor is supposed to be
4165 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4166 * IPIs around.
4167 */
4168 __flush_cpu_slab(s, smp_processor_id());
4169 for_each_kmem_cache_node(s, node, n) {
4170 struct page *p;
4171
4172 list_for_each_entry(p, &n->partial, lru)
4173 p->slab_cache = s;
4174
4175 #ifdef CONFIG_SLUB_DEBUG
4176 list_for_each_entry(p, &n->full, lru)
4177 p->slab_cache = s;
4178 #endif
4179 }
4180 slab_init_memcg_params(s);
4181 list_add(&s->list, &slab_caches);
4182 memcg_link_cache(s);
4183 return s;
4184 }
4185
4186 void __init kmem_cache_init(void)
4187 {
4188 static __initdata struct kmem_cache boot_kmem_cache,
4189 boot_kmem_cache_node;
4190
4191 if (debug_guardpage_minorder())
4192 slub_max_order = 0;
4193
4194 kmem_cache_node = &boot_kmem_cache_node;
4195 kmem_cache = &boot_kmem_cache;
4196
4197 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4198 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4199
4200 register_hotmemory_notifier(&slab_memory_callback_nb);
4201
4202 /* Able to allocate the per node structures */
4203 slab_state = PARTIAL;
4204
4205 create_boot_cache(kmem_cache, "kmem_cache",
4206 offsetof(struct kmem_cache, node) +
4207 nr_node_ids * sizeof(struct kmem_cache_node *),
4208 SLAB_HWCACHE_ALIGN);
4209
4210 kmem_cache = bootstrap(&boot_kmem_cache);
4211
4212 /*
4213 * Allocate kmem_cache_node properly from the kmem_cache slab.
4214 * kmem_cache_node is separately allocated so no need to
4215 * update any list pointers.
4216 */
4217 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4218
4219 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4220 setup_kmalloc_cache_index_table();
4221 create_kmalloc_caches(0);
4222
4223 /* Setup random freelists for each cache */
4224 init_freelist_randomization();
4225
4226 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4227 slub_cpu_dead);
4228
4229 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4230 cache_line_size(),
4231 slub_min_order, slub_max_order, slub_min_objects,
4232 nr_cpu_ids, nr_node_ids);
4233 }
4234
4235 void __init kmem_cache_init_late(void)
4236 {
4237 }
4238
4239 struct kmem_cache *
4240 __kmem_cache_alias(const char *name, size_t size, size_t align,
4241 slab_flags_t flags, void (*ctor)(void *))
4242 {
4243 struct kmem_cache *s, *c;
4244
4245 s = find_mergeable(size, align, flags, name, ctor);
4246 if (s) {
4247 s->refcount++;
4248
4249 /*
4250 * Adjust the object sizes so that we clear
4251 * the complete object on kzalloc.
4252 */
4253 s->object_size = max(s->object_size, (int)size);
4254 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4255
4256 for_each_memcg_cache(c, s) {
4257 c->object_size = s->object_size;
4258 c->inuse = max_t(int, c->inuse,
4259 ALIGN(size, sizeof(void *)));
4260 }
4261
4262 if (sysfs_slab_alias(s, name)) {
4263 s->refcount--;
4264 s = NULL;
4265 }
4266 }
4267
4268 return s;
4269 }
4270
4271 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4272 {
4273 int err;
4274
4275 err = kmem_cache_open(s, flags);
4276 if (err)
4277 return err;
4278
4279 /* Mutex is not taken during early boot */
4280 if (slab_state <= UP)
4281 return 0;
4282
4283 memcg_propagate_slab_attrs(s);
4284 err = sysfs_slab_add(s);
4285 if (err)
4286 __kmem_cache_release(s);
4287
4288 return err;
4289 }
4290
4291 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4292 {
4293 struct kmem_cache *s;
4294 void *ret;
4295
4296 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4297 return kmalloc_large(size, gfpflags);
4298
4299 s = kmalloc_slab(size, gfpflags);
4300
4301 if (unlikely(ZERO_OR_NULL_PTR(s)))
4302 return s;
4303
4304 ret = slab_alloc(s, gfpflags, caller);
4305
4306 /* Honor the call site pointer we received. */
4307 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4308
4309 return ret;
4310 }
4311
4312 #ifdef CONFIG_NUMA
4313 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4314 int node, unsigned long caller)
4315 {
4316 struct kmem_cache *s;
4317 void *ret;
4318
4319 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4320 ret = kmalloc_large_node(size, gfpflags, node);
4321
4322 trace_kmalloc_node(caller, ret,
4323 size, PAGE_SIZE << get_order(size),
4324 gfpflags, node);
4325
4326 return ret;
4327 }
4328
4329 s = kmalloc_slab(size, gfpflags);
4330
4331 if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 return s;
4333
4334 ret = slab_alloc_node(s, gfpflags, node, caller);
4335
4336 /* Honor the call site pointer we received. */
4337 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4338
4339 return ret;
4340 }
4341 #endif
4342
4343 #ifdef CONFIG_SYSFS
4344 static int count_inuse(struct page *page)
4345 {
4346 return page->inuse;
4347 }
4348
4349 static int count_total(struct page *page)
4350 {
4351 return page->objects;
4352 }
4353 #endif
4354
4355 #ifdef CONFIG_SLUB_DEBUG
4356 static int validate_slab(struct kmem_cache *s, struct page *page,
4357 unsigned long *map)
4358 {
4359 void *p;
4360 void *addr = page_address(page);
4361
4362 if (!check_slab(s, page) ||
4363 !on_freelist(s, page, NULL))
4364 return 0;
4365
4366 /* Now we know that a valid freelist exists */
4367 bitmap_zero(map, page->objects);
4368
4369 get_map(s, page, map);
4370 for_each_object(p, s, addr, page->objects) {
4371 if (test_bit(slab_index(p, s, addr), map))
4372 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4373 return 0;
4374 }
4375
4376 for_each_object(p, s, addr, page->objects)
4377 if (!test_bit(slab_index(p, s, addr), map))
4378 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4379 return 0;
4380 return 1;
4381 }
4382
4383 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4384 unsigned long *map)
4385 {
4386 slab_lock(page);
4387 validate_slab(s, page, map);
4388 slab_unlock(page);
4389 }
4390
4391 static int validate_slab_node(struct kmem_cache *s,
4392 struct kmem_cache_node *n, unsigned long *map)
4393 {
4394 unsigned long count = 0;
4395 struct page *page;
4396 unsigned long flags;
4397
4398 spin_lock_irqsave(&n->list_lock, flags);
4399
4400 list_for_each_entry(page, &n->partial, lru) {
4401 validate_slab_slab(s, page, map);
4402 count++;
4403 }
4404 if (count != n->nr_partial)
4405 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4406 s->name, count, n->nr_partial);
4407
4408 if (!(s->flags & SLAB_STORE_USER))
4409 goto out;
4410
4411 list_for_each_entry(page, &n->full, lru) {
4412 validate_slab_slab(s, page, map);
4413 count++;
4414 }
4415 if (count != atomic_long_read(&n->nr_slabs))
4416 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4417 s->name, count, atomic_long_read(&n->nr_slabs));
4418
4419 out:
4420 spin_unlock_irqrestore(&n->list_lock, flags);
4421 return count;
4422 }
4423
4424 static long validate_slab_cache(struct kmem_cache *s)
4425 {
4426 int node;
4427 unsigned long count = 0;
4428 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4429 sizeof(unsigned long), GFP_KERNEL);
4430 struct kmem_cache_node *n;
4431
4432 if (!map)
4433 return -ENOMEM;
4434
4435 flush_all(s);
4436 for_each_kmem_cache_node(s, node, n)
4437 count += validate_slab_node(s, n, map);
4438 kfree(map);
4439 return count;
4440 }
4441 /*
4442 * Generate lists of code addresses where slabcache objects are allocated
4443 * and freed.
4444 */
4445
4446 struct location {
4447 unsigned long count;
4448 unsigned long addr;
4449 long long sum_time;
4450 long min_time;
4451 long max_time;
4452 long min_pid;
4453 long max_pid;
4454 DECLARE_BITMAP(cpus, NR_CPUS);
4455 nodemask_t nodes;
4456 };
4457
4458 struct loc_track {
4459 unsigned long max;
4460 unsigned long count;
4461 struct location *loc;
4462 };
4463
4464 static void free_loc_track(struct loc_track *t)
4465 {
4466 if (t->max)
4467 free_pages((unsigned long)t->loc,
4468 get_order(sizeof(struct location) * t->max));
4469 }
4470
4471 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4472 {
4473 struct location *l;
4474 int order;
4475
4476 order = get_order(sizeof(struct location) * max);
4477
4478 l = (void *)__get_free_pages(flags, order);
4479 if (!l)
4480 return 0;
4481
4482 if (t->count) {
4483 memcpy(l, t->loc, sizeof(struct location) * t->count);
4484 free_loc_track(t);
4485 }
4486 t->max = max;
4487 t->loc = l;
4488 return 1;
4489 }
4490
4491 static int add_location(struct loc_track *t, struct kmem_cache *s,
4492 const struct track *track)
4493 {
4494 long start, end, pos;
4495 struct location *l;
4496 unsigned long caddr;
4497 unsigned long age = jiffies - track->when;
4498
4499 start = -1;
4500 end = t->count;
4501
4502 for ( ; ; ) {
4503 pos = start + (end - start + 1) / 2;
4504
4505 /*
4506 * There is nothing at "end". If we end up there
4507 * we need to add something to before end.
4508 */
4509 if (pos == end)
4510 break;
4511
4512 caddr = t->loc[pos].addr;
4513 if (track->addr == caddr) {
4514
4515 l = &t->loc[pos];
4516 l->count++;
4517 if (track->when) {
4518 l->sum_time += age;
4519 if (age < l->min_time)
4520 l->min_time = age;
4521 if (age > l->max_time)
4522 l->max_time = age;
4523
4524 if (track->pid < l->min_pid)
4525 l->min_pid = track->pid;
4526 if (track->pid > l->max_pid)
4527 l->max_pid = track->pid;
4528
4529 cpumask_set_cpu(track->cpu,
4530 to_cpumask(l->cpus));
4531 }
4532 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4533 return 1;
4534 }
4535
4536 if (track->addr < caddr)
4537 end = pos;
4538 else
4539 start = pos;
4540 }
4541
4542 /*
4543 * Not found. Insert new tracking element.
4544 */
4545 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4546 return 0;
4547
4548 l = t->loc + pos;
4549 if (pos < t->count)
4550 memmove(l + 1, l,
4551 (t->count - pos) * sizeof(struct location));
4552 t->count++;
4553 l->count = 1;
4554 l->addr = track->addr;
4555 l->sum_time = age;
4556 l->min_time = age;
4557 l->max_time = age;
4558 l->min_pid = track->pid;
4559 l->max_pid = track->pid;
4560 cpumask_clear(to_cpumask(l->cpus));
4561 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4562 nodes_clear(l->nodes);
4563 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4564 return 1;
4565 }
4566
4567 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4568 struct page *page, enum track_item alloc,
4569 unsigned long *map)
4570 {
4571 void *addr = page_address(page);
4572 void *p;
4573
4574 bitmap_zero(map, page->objects);
4575 get_map(s, page, map);
4576
4577 for_each_object(p, s, addr, page->objects)
4578 if (!test_bit(slab_index(p, s, addr), map))
4579 add_location(t, s, get_track(s, p, alloc));
4580 }
4581
4582 static int list_locations(struct kmem_cache *s, char *buf,
4583 enum track_item alloc)
4584 {
4585 int len = 0;
4586 unsigned long i;
4587 struct loc_track t = { 0, 0, NULL };
4588 int node;
4589 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4590 sizeof(unsigned long), GFP_KERNEL);
4591 struct kmem_cache_node *n;
4592
4593 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4594 GFP_KERNEL)) {
4595 kfree(map);
4596 return sprintf(buf, "Out of memory\n");
4597 }
4598 /* Push back cpu slabs */
4599 flush_all(s);
4600
4601 for_each_kmem_cache_node(s, node, n) {
4602 unsigned long flags;
4603 struct page *page;
4604
4605 if (!atomic_long_read(&n->nr_slabs))
4606 continue;
4607
4608 spin_lock_irqsave(&n->list_lock, flags);
4609 list_for_each_entry(page, &n->partial, lru)
4610 process_slab(&t, s, page, alloc, map);
4611 list_for_each_entry(page, &n->full, lru)
4612 process_slab(&t, s, page, alloc, map);
4613 spin_unlock_irqrestore(&n->list_lock, flags);
4614 }
4615
4616 for (i = 0; i < t.count; i++) {
4617 struct location *l = &t.loc[i];
4618
4619 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4620 break;
4621 len += sprintf(buf + len, "%7ld ", l->count);
4622
4623 if (l->addr)
4624 len += sprintf(buf + len, "%pS", (void *)l->addr);
4625 else
4626 len += sprintf(buf + len, "<not-available>");
4627
4628 if (l->sum_time != l->min_time) {
4629 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4630 l->min_time,
4631 (long)div_u64(l->sum_time, l->count),
4632 l->max_time);
4633 } else
4634 len += sprintf(buf + len, " age=%ld",
4635 l->min_time);
4636
4637 if (l->min_pid != l->max_pid)
4638 len += sprintf(buf + len, " pid=%ld-%ld",
4639 l->min_pid, l->max_pid);
4640 else
4641 len += sprintf(buf + len, " pid=%ld",
4642 l->min_pid);
4643
4644 if (num_online_cpus() > 1 &&
4645 !cpumask_empty(to_cpumask(l->cpus)) &&
4646 len < PAGE_SIZE - 60)
4647 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4648 " cpus=%*pbl",
4649 cpumask_pr_args(to_cpumask(l->cpus)));
4650
4651 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4652 len < PAGE_SIZE - 60)
4653 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4654 " nodes=%*pbl",
4655 nodemask_pr_args(&l->nodes));
4656
4657 len += sprintf(buf + len, "\n");
4658 }
4659
4660 free_loc_track(&t);
4661 kfree(map);
4662 if (!t.count)
4663 len += sprintf(buf, "No data\n");
4664 return len;
4665 }
4666 #endif
4667
4668 #ifdef SLUB_RESILIENCY_TEST
4669 static void __init resiliency_test(void)
4670 {
4671 u8 *p;
4672
4673 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4674
4675 pr_err("SLUB resiliency testing\n");
4676 pr_err("-----------------------\n");
4677 pr_err("A. Corruption after allocation\n");
4678
4679 p = kzalloc(16, GFP_KERNEL);
4680 p[16] = 0x12;
4681 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4682 p + 16);
4683
4684 validate_slab_cache(kmalloc_caches[4]);
4685
4686 /* Hmmm... The next two are dangerous */
4687 p = kzalloc(32, GFP_KERNEL);
4688 p[32 + sizeof(void *)] = 0x34;
4689 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4690 p);
4691 pr_err("If allocated object is overwritten then not detectable\n\n");
4692
4693 validate_slab_cache(kmalloc_caches[5]);
4694 p = kzalloc(64, GFP_KERNEL);
4695 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4696 *p = 0x56;
4697 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4698 p);
4699 pr_err("If allocated object is overwritten then not detectable\n\n");
4700 validate_slab_cache(kmalloc_caches[6]);
4701
4702 pr_err("\nB. Corruption after free\n");
4703 p = kzalloc(128, GFP_KERNEL);
4704 kfree(p);
4705 *p = 0x78;
4706 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4707 validate_slab_cache(kmalloc_caches[7]);
4708
4709 p = kzalloc(256, GFP_KERNEL);
4710 kfree(p);
4711 p[50] = 0x9a;
4712 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4713 validate_slab_cache(kmalloc_caches[8]);
4714
4715 p = kzalloc(512, GFP_KERNEL);
4716 kfree(p);
4717 p[512] = 0xab;
4718 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4719 validate_slab_cache(kmalloc_caches[9]);
4720 }
4721 #else
4722 #ifdef CONFIG_SYSFS
4723 static void resiliency_test(void) {};
4724 #endif
4725 #endif
4726
4727 #ifdef CONFIG_SYSFS
4728 enum slab_stat_type {
4729 SL_ALL, /* All slabs */
4730 SL_PARTIAL, /* Only partially allocated slabs */
4731 SL_CPU, /* Only slabs used for cpu caches */
4732 SL_OBJECTS, /* Determine allocated objects not slabs */
4733 SL_TOTAL /* Determine object capacity not slabs */
4734 };
4735
4736 #define SO_ALL (1 << SL_ALL)
4737 #define SO_PARTIAL (1 << SL_PARTIAL)
4738 #define SO_CPU (1 << SL_CPU)
4739 #define SO_OBJECTS (1 << SL_OBJECTS)
4740 #define SO_TOTAL (1 << SL_TOTAL)
4741
4742 #ifdef CONFIG_MEMCG
4743 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4744
4745 static int __init setup_slub_memcg_sysfs(char *str)
4746 {
4747 int v;
4748
4749 if (get_option(&str, &v) > 0)
4750 memcg_sysfs_enabled = v;
4751
4752 return 1;
4753 }
4754
4755 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4756 #endif
4757
4758 static ssize_t show_slab_objects(struct kmem_cache *s,
4759 char *buf, unsigned long flags)
4760 {
4761 unsigned long total = 0;
4762 int node;
4763 int x;
4764 unsigned long *nodes;
4765
4766 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4767 if (!nodes)
4768 return -ENOMEM;
4769
4770 if (flags & SO_CPU) {
4771 int cpu;
4772
4773 for_each_possible_cpu(cpu) {
4774 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4775 cpu);
4776 int node;
4777 struct page *page;
4778
4779 page = READ_ONCE(c->page);
4780 if (!page)
4781 continue;
4782
4783 node = page_to_nid(page);
4784 if (flags & SO_TOTAL)
4785 x = page->objects;
4786 else if (flags & SO_OBJECTS)
4787 x = page->inuse;
4788 else
4789 x = 1;
4790
4791 total += x;
4792 nodes[node] += x;
4793
4794 page = slub_percpu_partial_read_once(c);
4795 if (page) {
4796 node = page_to_nid(page);
4797 if (flags & SO_TOTAL)
4798 WARN_ON_ONCE(1);
4799 else if (flags & SO_OBJECTS)
4800 WARN_ON_ONCE(1);
4801 else
4802 x = page->pages;
4803 total += x;
4804 nodes[node] += x;
4805 }
4806 }
4807 }
4808
4809 get_online_mems();
4810 #ifdef CONFIG_SLUB_DEBUG
4811 if (flags & SO_ALL) {
4812 struct kmem_cache_node *n;
4813
4814 for_each_kmem_cache_node(s, node, n) {
4815
4816 if (flags & SO_TOTAL)
4817 x = atomic_long_read(&n->total_objects);
4818 else if (flags & SO_OBJECTS)
4819 x = atomic_long_read(&n->total_objects) -
4820 count_partial(n, count_free);
4821 else
4822 x = atomic_long_read(&n->nr_slabs);
4823 total += x;
4824 nodes[node] += x;
4825 }
4826
4827 } else
4828 #endif
4829 if (flags & SO_PARTIAL) {
4830 struct kmem_cache_node *n;
4831
4832 for_each_kmem_cache_node(s, node, n) {
4833 if (flags & SO_TOTAL)
4834 x = count_partial(n, count_total);
4835 else if (flags & SO_OBJECTS)
4836 x = count_partial(n, count_inuse);
4837 else
4838 x = n->nr_partial;
4839 total += x;
4840 nodes[node] += x;
4841 }
4842 }
4843 x = sprintf(buf, "%lu", total);
4844 #ifdef CONFIG_NUMA
4845 for (node = 0; node < nr_node_ids; node++)
4846 if (nodes[node])
4847 x += sprintf(buf + x, " N%d=%lu",
4848 node, nodes[node]);
4849 #endif
4850 put_online_mems();
4851 kfree(nodes);
4852 return x + sprintf(buf + x, "\n");
4853 }
4854
4855 #ifdef CONFIG_SLUB_DEBUG
4856 static int any_slab_objects(struct kmem_cache *s)
4857 {
4858 int node;
4859 struct kmem_cache_node *n;
4860
4861 for_each_kmem_cache_node(s, node, n)
4862 if (atomic_long_read(&n->total_objects))
4863 return 1;
4864
4865 return 0;
4866 }
4867 #endif
4868
4869 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4870 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4871
4872 struct slab_attribute {
4873 struct attribute attr;
4874 ssize_t (*show)(struct kmem_cache *s, char *buf);
4875 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4876 };
4877
4878 #define SLAB_ATTR_RO(_name) \
4879 static struct slab_attribute _name##_attr = \
4880 __ATTR(_name, 0400, _name##_show, NULL)
4881
4882 #define SLAB_ATTR(_name) \
4883 static struct slab_attribute _name##_attr = \
4884 __ATTR(_name, 0600, _name##_show, _name##_store)
4885
4886 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4887 {
4888 return sprintf(buf, "%d\n", s->size);
4889 }
4890 SLAB_ATTR_RO(slab_size);
4891
4892 static ssize_t align_show(struct kmem_cache *s, char *buf)
4893 {
4894 return sprintf(buf, "%d\n", s->align);
4895 }
4896 SLAB_ATTR_RO(align);
4897
4898 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4899 {
4900 return sprintf(buf, "%d\n", s->object_size);
4901 }
4902 SLAB_ATTR_RO(object_size);
4903
4904 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4905 {
4906 return sprintf(buf, "%d\n", oo_objects(s->oo));
4907 }
4908 SLAB_ATTR_RO(objs_per_slab);
4909
4910 static ssize_t order_store(struct kmem_cache *s,
4911 const char *buf, size_t length)
4912 {
4913 unsigned long order;
4914 int err;
4915
4916 err = kstrtoul(buf, 10, &order);
4917 if (err)
4918 return err;
4919
4920 if (order > slub_max_order || order < slub_min_order)
4921 return -EINVAL;
4922
4923 calculate_sizes(s, order);
4924 return length;
4925 }
4926
4927 static ssize_t order_show(struct kmem_cache *s, char *buf)
4928 {
4929 return sprintf(buf, "%d\n", oo_order(s->oo));
4930 }
4931 SLAB_ATTR(order);
4932
4933 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4934 {
4935 return sprintf(buf, "%lu\n", s->min_partial);
4936 }
4937
4938 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4939 size_t length)
4940 {
4941 unsigned long min;
4942 int err;
4943
4944 err = kstrtoul(buf, 10, &min);
4945 if (err)
4946 return err;
4947
4948 set_min_partial(s, min);
4949 return length;
4950 }
4951 SLAB_ATTR(min_partial);
4952
4953 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4954 {
4955 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4956 }
4957
4958 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4959 size_t length)
4960 {
4961 unsigned int objects;
4962 int err;
4963
4964 err = kstrtouint(buf, 10, &objects);
4965 if (err)
4966 return err;
4967 if (objects && !kmem_cache_has_cpu_partial(s))
4968 return -EINVAL;
4969
4970 slub_set_cpu_partial(s, objects);
4971 flush_all(s);
4972 return length;
4973 }
4974 SLAB_ATTR(cpu_partial);
4975
4976 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4977 {
4978 if (!s->ctor)
4979 return 0;
4980 return sprintf(buf, "%pS\n", s->ctor);
4981 }
4982 SLAB_ATTR_RO(ctor);
4983
4984 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4985 {
4986 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4987 }
4988 SLAB_ATTR_RO(aliases);
4989
4990 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4991 {
4992 return show_slab_objects(s, buf, SO_PARTIAL);
4993 }
4994 SLAB_ATTR_RO(partial);
4995
4996 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4997 {
4998 return show_slab_objects(s, buf, SO_CPU);
4999 }
5000 SLAB_ATTR_RO(cpu_slabs);
5001
5002 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5003 {
5004 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5005 }
5006 SLAB_ATTR_RO(objects);
5007
5008 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5009 {
5010 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5011 }
5012 SLAB_ATTR_RO(objects_partial);
5013
5014 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5015 {
5016 int objects = 0;
5017 int pages = 0;
5018 int cpu;
5019 int len;
5020
5021 for_each_online_cpu(cpu) {
5022 struct page *page;
5023
5024 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5025
5026 if (page) {
5027 pages += page->pages;
5028 objects += page->pobjects;
5029 }
5030 }
5031
5032 len = sprintf(buf, "%d(%d)", objects, pages);
5033
5034 #ifdef CONFIG_SMP
5035 for_each_online_cpu(cpu) {
5036 struct page *page;
5037
5038 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5039
5040 if (page && len < PAGE_SIZE - 20)
5041 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5042 page->pobjects, page->pages);
5043 }
5044 #endif
5045 return len + sprintf(buf + len, "\n");
5046 }
5047 SLAB_ATTR_RO(slabs_cpu_partial);
5048
5049 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5050 {
5051 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5052 }
5053
5054 static ssize_t reclaim_account_store(struct kmem_cache *s,
5055 const char *buf, size_t length)
5056 {
5057 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5058 if (buf[0] == '1')
5059 s->flags |= SLAB_RECLAIM_ACCOUNT;
5060 return length;
5061 }
5062 SLAB_ATTR(reclaim_account);
5063
5064 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5065 {
5066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5067 }
5068 SLAB_ATTR_RO(hwcache_align);
5069
5070 #ifdef CONFIG_ZONE_DMA
5071 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5072 {
5073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5074 }
5075 SLAB_ATTR_RO(cache_dma);
5076 #endif
5077
5078 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5079 {
5080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5081 }
5082 SLAB_ATTR_RO(destroy_by_rcu);
5083
5084 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5085 {
5086 return sprintf(buf, "%d\n", s->reserved);
5087 }
5088 SLAB_ATTR_RO(reserved);
5089
5090 #ifdef CONFIG_SLUB_DEBUG
5091 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5092 {
5093 return show_slab_objects(s, buf, SO_ALL);
5094 }
5095 SLAB_ATTR_RO(slabs);
5096
5097 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5098 {
5099 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5100 }
5101 SLAB_ATTR_RO(total_objects);
5102
5103 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5104 {
5105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5106 }
5107
5108 static ssize_t sanity_checks_store(struct kmem_cache *s,
5109 const char *buf, size_t length)
5110 {
5111 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5112 if (buf[0] == '1') {
5113 s->flags &= ~__CMPXCHG_DOUBLE;
5114 s->flags |= SLAB_CONSISTENCY_CHECKS;
5115 }
5116 return length;
5117 }
5118 SLAB_ATTR(sanity_checks);
5119
5120 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5121 {
5122 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5123 }
5124
5125 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5126 size_t length)
5127 {
5128 /*
5129 * Tracing a merged cache is going to give confusing results
5130 * as well as cause other issues like converting a mergeable
5131 * cache into an umergeable one.
5132 */
5133 if (s->refcount > 1)
5134 return -EINVAL;
5135
5136 s->flags &= ~SLAB_TRACE;
5137 if (buf[0] == '1') {
5138 s->flags &= ~__CMPXCHG_DOUBLE;
5139 s->flags |= SLAB_TRACE;
5140 }
5141 return length;
5142 }
5143 SLAB_ATTR(trace);
5144
5145 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5146 {
5147 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5148 }
5149
5150 static ssize_t red_zone_store(struct kmem_cache *s,
5151 const char *buf, size_t length)
5152 {
5153 if (any_slab_objects(s))
5154 return -EBUSY;
5155
5156 s->flags &= ~SLAB_RED_ZONE;
5157 if (buf[0] == '1') {
5158 s->flags |= SLAB_RED_ZONE;
5159 }
5160 calculate_sizes(s, -1);
5161 return length;
5162 }
5163 SLAB_ATTR(red_zone);
5164
5165 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5166 {
5167 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5168 }
5169
5170 static ssize_t poison_store(struct kmem_cache *s,
5171 const char *buf, size_t length)
5172 {
5173 if (any_slab_objects(s))
5174 return -EBUSY;
5175
5176 s->flags &= ~SLAB_POISON;
5177 if (buf[0] == '1') {
5178 s->flags |= SLAB_POISON;
5179 }
5180 calculate_sizes(s, -1);
5181 return length;
5182 }
5183 SLAB_ATTR(poison);
5184
5185 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5186 {
5187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5188 }
5189
5190 static ssize_t store_user_store(struct kmem_cache *s,
5191 const char *buf, size_t length)
5192 {
5193 if (any_slab_objects(s))
5194 return -EBUSY;
5195
5196 s->flags &= ~SLAB_STORE_USER;
5197 if (buf[0] == '1') {
5198 s->flags &= ~__CMPXCHG_DOUBLE;
5199 s->flags |= SLAB_STORE_USER;
5200 }
5201 calculate_sizes(s, -1);
5202 return length;
5203 }
5204 SLAB_ATTR(store_user);
5205
5206 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5207 {
5208 return 0;
5209 }
5210
5211 static ssize_t validate_store(struct kmem_cache *s,
5212 const char *buf, size_t length)
5213 {
5214 int ret = -EINVAL;
5215
5216 if (buf[0] == '1') {
5217 ret = validate_slab_cache(s);
5218 if (ret >= 0)
5219 ret = length;
5220 }
5221 return ret;
5222 }
5223 SLAB_ATTR(validate);
5224
5225 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5226 {
5227 if (!(s->flags & SLAB_STORE_USER))
5228 return -ENOSYS;
5229 return list_locations(s, buf, TRACK_ALLOC);
5230 }
5231 SLAB_ATTR_RO(alloc_calls);
5232
5233 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5234 {
5235 if (!(s->flags & SLAB_STORE_USER))
5236 return -ENOSYS;
5237 return list_locations(s, buf, TRACK_FREE);
5238 }
5239 SLAB_ATTR_RO(free_calls);
5240 #endif /* CONFIG_SLUB_DEBUG */
5241
5242 #ifdef CONFIG_FAILSLAB
5243 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5244 {
5245 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5246 }
5247
5248 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5249 size_t length)
5250 {
5251 if (s->refcount > 1)
5252 return -EINVAL;
5253
5254 s->flags &= ~SLAB_FAILSLAB;
5255 if (buf[0] == '1')
5256 s->flags |= SLAB_FAILSLAB;
5257 return length;
5258 }
5259 SLAB_ATTR(failslab);
5260 #endif
5261
5262 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5263 {
5264 return 0;
5265 }
5266
5267 static ssize_t shrink_store(struct kmem_cache *s,
5268 const char *buf, size_t length)
5269 {
5270 if (buf[0] == '1')
5271 kmem_cache_shrink(s);
5272 else
5273 return -EINVAL;
5274 return length;
5275 }
5276 SLAB_ATTR(shrink);
5277
5278 #ifdef CONFIG_NUMA
5279 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5280 {
5281 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5282 }
5283
5284 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5285 const char *buf, size_t length)
5286 {
5287 unsigned long ratio;
5288 int err;
5289
5290 err = kstrtoul(buf, 10, &ratio);
5291 if (err)
5292 return err;
5293
5294 if (ratio <= 100)
5295 s->remote_node_defrag_ratio = ratio * 10;
5296
5297 return length;
5298 }
5299 SLAB_ATTR(remote_node_defrag_ratio);
5300 #endif
5301
5302 #ifdef CONFIG_SLUB_STATS
5303 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5304 {
5305 unsigned long sum = 0;
5306 int cpu;
5307 int len;
5308 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5309
5310 if (!data)
5311 return -ENOMEM;
5312
5313 for_each_online_cpu(cpu) {
5314 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5315
5316 data[cpu] = x;
5317 sum += x;
5318 }
5319
5320 len = sprintf(buf, "%lu", sum);
5321
5322 #ifdef CONFIG_SMP
5323 for_each_online_cpu(cpu) {
5324 if (data[cpu] && len < PAGE_SIZE - 20)
5325 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5326 }
5327 #endif
5328 kfree(data);
5329 return len + sprintf(buf + len, "\n");
5330 }
5331
5332 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5333 {
5334 int cpu;
5335
5336 for_each_online_cpu(cpu)
5337 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5338 }
5339
5340 #define STAT_ATTR(si, text) \
5341 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5342 { \
5343 return show_stat(s, buf, si); \
5344 } \
5345 static ssize_t text##_store(struct kmem_cache *s, \
5346 const char *buf, size_t length) \
5347 { \
5348 if (buf[0] != '0') \
5349 return -EINVAL; \
5350 clear_stat(s, si); \
5351 return length; \
5352 } \
5353 SLAB_ATTR(text); \
5354
5355 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5356 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5357 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5358 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5359 STAT_ATTR(FREE_FROZEN, free_frozen);
5360 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5361 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5362 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5363 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5364 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5365 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5366 STAT_ATTR(FREE_SLAB, free_slab);
5367 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5368 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5369 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5370 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5371 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5372 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5373 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5374 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5375 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5376 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5377 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5378 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5379 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5380 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5381 #endif
5382
5383 static struct attribute *slab_attrs[] = {
5384 &slab_size_attr.attr,
5385 &object_size_attr.attr,
5386 &objs_per_slab_attr.attr,
5387 &order_attr.attr,
5388 &min_partial_attr.attr,
5389 &cpu_partial_attr.attr,
5390 &objects_attr.attr,
5391 &objects_partial_attr.attr,
5392 &partial_attr.attr,
5393 &cpu_slabs_attr.attr,
5394 &ctor_attr.attr,
5395 &aliases_attr.attr,
5396 &align_attr.attr,
5397 &hwcache_align_attr.attr,
5398 &reclaim_account_attr.attr,
5399 &destroy_by_rcu_attr.attr,
5400 &shrink_attr.attr,
5401 &reserved_attr.attr,
5402 &slabs_cpu_partial_attr.attr,
5403 #ifdef CONFIG_SLUB_DEBUG
5404 &total_objects_attr.attr,
5405 &slabs_attr.attr,
5406 &sanity_checks_attr.attr,
5407 &trace_attr.attr,
5408 &red_zone_attr.attr,
5409 &poison_attr.attr,
5410 &store_user_attr.attr,
5411 &validate_attr.attr,
5412 &alloc_calls_attr.attr,
5413 &free_calls_attr.attr,
5414 #endif
5415 #ifdef CONFIG_ZONE_DMA
5416 &cache_dma_attr.attr,
5417 #endif
5418 #ifdef CONFIG_NUMA
5419 &remote_node_defrag_ratio_attr.attr,
5420 #endif
5421 #ifdef CONFIG_SLUB_STATS
5422 &alloc_fastpath_attr.attr,
5423 &alloc_slowpath_attr.attr,
5424 &free_fastpath_attr.attr,
5425 &free_slowpath_attr.attr,
5426 &free_frozen_attr.attr,
5427 &free_add_partial_attr.attr,
5428 &free_remove_partial_attr.attr,
5429 &alloc_from_partial_attr.attr,
5430 &alloc_slab_attr.attr,
5431 &alloc_refill_attr.attr,
5432 &alloc_node_mismatch_attr.attr,
5433 &free_slab_attr.attr,
5434 &cpuslab_flush_attr.attr,
5435 &deactivate_full_attr.attr,
5436 &deactivate_empty_attr.attr,
5437 &deactivate_to_head_attr.attr,
5438 &deactivate_to_tail_attr.attr,
5439 &deactivate_remote_frees_attr.attr,
5440 &deactivate_bypass_attr.attr,
5441 &order_fallback_attr.attr,
5442 &cmpxchg_double_fail_attr.attr,
5443 &cmpxchg_double_cpu_fail_attr.attr,
5444 &cpu_partial_alloc_attr.attr,
5445 &cpu_partial_free_attr.attr,
5446 &cpu_partial_node_attr.attr,
5447 &cpu_partial_drain_attr.attr,
5448 #endif
5449 #ifdef CONFIG_FAILSLAB
5450 &failslab_attr.attr,
5451 #endif
5452
5453 NULL
5454 };
5455
5456 static const struct attribute_group slab_attr_group = {
5457 .attrs = slab_attrs,
5458 };
5459
5460 static ssize_t slab_attr_show(struct kobject *kobj,
5461 struct attribute *attr,
5462 char *buf)
5463 {
5464 struct slab_attribute *attribute;
5465 struct kmem_cache *s;
5466 int err;
5467
5468 attribute = to_slab_attr(attr);
5469 s = to_slab(kobj);
5470
5471 if (!attribute->show)
5472 return -EIO;
5473
5474 err = attribute->show(s, buf);
5475
5476 return err;
5477 }
5478
5479 static ssize_t slab_attr_store(struct kobject *kobj,
5480 struct attribute *attr,
5481 const char *buf, size_t len)
5482 {
5483 struct slab_attribute *attribute;
5484 struct kmem_cache *s;
5485 int err;
5486
5487 attribute = to_slab_attr(attr);
5488 s = to_slab(kobj);
5489
5490 if (!attribute->store)
5491 return -EIO;
5492
5493 err = attribute->store(s, buf, len);
5494 #ifdef CONFIG_MEMCG
5495 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5496 struct kmem_cache *c;
5497
5498 mutex_lock(&slab_mutex);
5499 if (s->max_attr_size < len)
5500 s->max_attr_size = len;
5501
5502 /*
5503 * This is a best effort propagation, so this function's return
5504 * value will be determined by the parent cache only. This is
5505 * basically because not all attributes will have a well
5506 * defined semantics for rollbacks - most of the actions will
5507 * have permanent effects.
5508 *
5509 * Returning the error value of any of the children that fail
5510 * is not 100 % defined, in the sense that users seeing the
5511 * error code won't be able to know anything about the state of
5512 * the cache.
5513 *
5514 * Only returning the error code for the parent cache at least
5515 * has well defined semantics. The cache being written to
5516 * directly either failed or succeeded, in which case we loop
5517 * through the descendants with best-effort propagation.
5518 */
5519 for_each_memcg_cache(c, s)
5520 attribute->store(c, buf, len);
5521 mutex_unlock(&slab_mutex);
5522 }
5523 #endif
5524 return err;
5525 }
5526
5527 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5528 {
5529 #ifdef CONFIG_MEMCG
5530 int i;
5531 char *buffer = NULL;
5532 struct kmem_cache *root_cache;
5533
5534 if (is_root_cache(s))
5535 return;
5536
5537 root_cache = s->memcg_params.root_cache;
5538
5539 /*
5540 * This mean this cache had no attribute written. Therefore, no point
5541 * in copying default values around
5542 */
5543 if (!root_cache->max_attr_size)
5544 return;
5545
5546 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5547 char mbuf[64];
5548 char *buf;
5549 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5550 ssize_t len;
5551
5552 if (!attr || !attr->store || !attr->show)
5553 continue;
5554
5555 /*
5556 * It is really bad that we have to allocate here, so we will
5557 * do it only as a fallback. If we actually allocate, though,
5558 * we can just use the allocated buffer until the end.
5559 *
5560 * Most of the slub attributes will tend to be very small in
5561 * size, but sysfs allows buffers up to a page, so they can
5562 * theoretically happen.
5563 */
5564 if (buffer)
5565 buf = buffer;
5566 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5567 buf = mbuf;
5568 else {
5569 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5570 if (WARN_ON(!buffer))
5571 continue;
5572 buf = buffer;
5573 }
5574
5575 len = attr->show(root_cache, buf);
5576 if (len > 0)
5577 attr->store(s, buf, len);
5578 }
5579
5580 if (buffer)
5581 free_page((unsigned long)buffer);
5582 #endif
5583 }
5584
5585 static void kmem_cache_release(struct kobject *k)
5586 {
5587 slab_kmem_cache_release(to_slab(k));
5588 }
5589
5590 static const struct sysfs_ops slab_sysfs_ops = {
5591 .show = slab_attr_show,
5592 .store = slab_attr_store,
5593 };
5594
5595 static struct kobj_type slab_ktype = {
5596 .sysfs_ops = &slab_sysfs_ops,
5597 .release = kmem_cache_release,
5598 };
5599
5600 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5601 {
5602 struct kobj_type *ktype = get_ktype(kobj);
5603
5604 if (ktype == &slab_ktype)
5605 return 1;
5606 return 0;
5607 }
5608
5609 static const struct kset_uevent_ops slab_uevent_ops = {
5610 .filter = uevent_filter,
5611 };
5612
5613 static struct kset *slab_kset;
5614
5615 static inline struct kset *cache_kset(struct kmem_cache *s)
5616 {
5617 #ifdef CONFIG_MEMCG
5618 if (!is_root_cache(s))
5619 return s->memcg_params.root_cache->memcg_kset;
5620 #endif
5621 return slab_kset;
5622 }
5623
5624 #define ID_STR_LENGTH 64
5625
5626 /* Create a unique string id for a slab cache:
5627 *
5628 * Format :[flags-]size
5629 */
5630 static char *create_unique_id(struct kmem_cache *s)
5631 {
5632 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5633 char *p = name;
5634
5635 BUG_ON(!name);
5636
5637 *p++ = ':';
5638 /*
5639 * First flags affecting slabcache operations. We will only
5640 * get here for aliasable slabs so we do not need to support
5641 * too many flags. The flags here must cover all flags that
5642 * are matched during merging to guarantee that the id is
5643 * unique.
5644 */
5645 if (s->flags & SLAB_CACHE_DMA)
5646 *p++ = 'd';
5647 if (s->flags & SLAB_CACHE_DMA32)
5648 *p++ = 'D';
5649 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5650 *p++ = 'a';
5651 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5652 *p++ = 'F';
5653 if (s->flags & SLAB_ACCOUNT)
5654 *p++ = 'A';
5655 if (p != name + 1)
5656 *p++ = '-';
5657 p += sprintf(p, "%07d", s->size);
5658
5659 BUG_ON(p > name + ID_STR_LENGTH - 1);
5660 return name;
5661 }
5662
5663 static void sysfs_slab_remove_workfn(struct work_struct *work)
5664 {
5665 struct kmem_cache *s =
5666 container_of(work, struct kmem_cache, kobj_remove_work);
5667
5668 if (!s->kobj.state_in_sysfs)
5669 /*
5670 * For a memcg cache, this may be called during
5671 * deactivation and again on shutdown. Remove only once.
5672 * A cache is never shut down before deactivation is
5673 * complete, so no need to worry about synchronization.
5674 */
5675 goto out;
5676
5677 #ifdef CONFIG_MEMCG
5678 kset_unregister(s->memcg_kset);
5679 #endif
5680 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5681 out:
5682 kobject_put(&s->kobj);
5683 }
5684
5685 static int sysfs_slab_add(struct kmem_cache *s)
5686 {
5687 int err;
5688 const char *name;
5689 struct kset *kset = cache_kset(s);
5690 int unmergeable = slab_unmergeable(s);
5691
5692 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5693
5694 if (!kset) {
5695 kobject_init(&s->kobj, &slab_ktype);
5696 return 0;
5697 }
5698
5699 if (!unmergeable && disable_higher_order_debug &&
5700 (slub_debug & DEBUG_METADATA_FLAGS))
5701 unmergeable = 1;
5702
5703 if (unmergeable) {
5704 /*
5705 * Slabcache can never be merged so we can use the name proper.
5706 * This is typically the case for debug situations. In that
5707 * case we can catch duplicate names easily.
5708 */
5709 sysfs_remove_link(&slab_kset->kobj, s->name);
5710 name = s->name;
5711 } else {
5712 /*
5713 * Create a unique name for the slab as a target
5714 * for the symlinks.
5715 */
5716 name = create_unique_id(s);
5717 }
5718
5719 s->kobj.kset = kset;
5720 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5721 if (err)
5722 goto out;
5723
5724 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5725 if (err)
5726 goto out_del_kobj;
5727
5728 #ifdef CONFIG_MEMCG
5729 if (is_root_cache(s) && memcg_sysfs_enabled) {
5730 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5731 if (!s->memcg_kset) {
5732 err = -ENOMEM;
5733 goto out_del_kobj;
5734 }
5735 }
5736 #endif
5737
5738 kobject_uevent(&s->kobj, KOBJ_ADD);
5739 if (!unmergeable) {
5740 /* Setup first alias */
5741 sysfs_slab_alias(s, s->name);
5742 }
5743 out:
5744 if (!unmergeable)
5745 kfree(name);
5746 return err;
5747 out_del_kobj:
5748 kobject_del(&s->kobj);
5749 goto out;
5750 }
5751
5752 static void sysfs_slab_remove(struct kmem_cache *s)
5753 {
5754 if (slab_state < FULL)
5755 /*
5756 * Sysfs has not been setup yet so no need to remove the
5757 * cache from sysfs.
5758 */
5759 return;
5760
5761 kobject_get(&s->kobj);
5762 schedule_work(&s->kobj_remove_work);
5763 }
5764
5765 void sysfs_slab_unlink(struct kmem_cache *s)
5766 {
5767 if (slab_state >= FULL)
5768 kobject_del(&s->kobj);
5769 }
5770
5771 void sysfs_slab_release(struct kmem_cache *s)
5772 {
5773 if (slab_state >= FULL)
5774 kobject_put(&s->kobj);
5775 }
5776
5777 /*
5778 * Need to buffer aliases during bootup until sysfs becomes
5779 * available lest we lose that information.
5780 */
5781 struct saved_alias {
5782 struct kmem_cache *s;
5783 const char *name;
5784 struct saved_alias *next;
5785 };
5786
5787 static struct saved_alias *alias_list;
5788
5789 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5790 {
5791 struct saved_alias *al;
5792
5793 if (slab_state == FULL) {
5794 /*
5795 * If we have a leftover link then remove it.
5796 */
5797 sysfs_remove_link(&slab_kset->kobj, name);
5798 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5799 }
5800
5801 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5802 if (!al)
5803 return -ENOMEM;
5804
5805 al->s = s;
5806 al->name = name;
5807 al->next = alias_list;
5808 alias_list = al;
5809 return 0;
5810 }
5811
5812 static int __init slab_sysfs_init(void)
5813 {
5814 struct kmem_cache *s;
5815 int err;
5816
5817 mutex_lock(&slab_mutex);
5818
5819 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5820 if (!slab_kset) {
5821 mutex_unlock(&slab_mutex);
5822 pr_err("Cannot register slab subsystem.\n");
5823 return -ENOSYS;
5824 }
5825
5826 slab_state = FULL;
5827
5828 list_for_each_entry(s, &slab_caches, list) {
5829 err = sysfs_slab_add(s);
5830 if (err)
5831 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5832 s->name);
5833 }
5834
5835 while (alias_list) {
5836 struct saved_alias *al = alias_list;
5837
5838 alias_list = alias_list->next;
5839 err = sysfs_slab_alias(al->s, al->name);
5840 if (err)
5841 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5842 al->name);
5843 kfree(al);
5844 }
5845
5846 mutex_unlock(&slab_mutex);
5847 resiliency_test();
5848 return 0;
5849 }
5850
5851 __initcall(slab_sysfs_init);
5852 #endif /* CONFIG_SYSFS */
5853
5854 /*
5855 * The /proc/slabinfo ABI
5856 */
5857 #ifdef CONFIG_SLUB_DEBUG
5858 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5859 {
5860 unsigned long nr_slabs = 0;
5861 unsigned long nr_objs = 0;
5862 unsigned long nr_free = 0;
5863 int node;
5864 struct kmem_cache_node *n;
5865
5866 for_each_kmem_cache_node(s, node, n) {
5867 nr_slabs += node_nr_slabs(n);
5868 nr_objs += node_nr_objs(n);
5869 nr_free += count_partial(n, count_free);
5870 }
5871
5872 sinfo->active_objs = nr_objs - nr_free;
5873 sinfo->num_objs = nr_objs;
5874 sinfo->active_slabs = nr_slabs;
5875 sinfo->num_slabs = nr_slabs;
5876 sinfo->objects_per_slab = oo_objects(s->oo);
5877 sinfo->cache_order = oo_order(s->oo);
5878 }
5879
5880 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5881 {
5882 }
5883
5884 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5885 size_t count, loff_t *ppos)
5886 {
5887 return -EIO;
5888 }
5889 #endif /* CONFIG_SLUB_DEBUG */