]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
media: dvb_ca_en50221: prevent using slot_info for Spectre attacs
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200 /*
201 * Tracking user of a slab.
202 */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212 };
213
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244 /*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
257 }
258
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
262 {
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
265 }
266
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 return freelist_dereference(s, object + s->offset);
270 }
271
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
276 }
277
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 {
280 unsigned long freepointer_addr;
281 void *p;
282
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
285
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
289 }
290
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 {
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
298
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
300 }
301
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
307
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
312
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315 {
316 return (p - addr) / s->size;
317 }
318
319 static inline int order_objects(int order, unsigned long size, int reserved)
320 {
321 return ((PAGE_SIZE << order) - reserved) / size;
322 }
323
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
326 {
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
329 };
330
331 return x;
332 }
333
334 static inline int oo_order(struct kmem_cache_order_objects x)
335 {
336 return x.x >> OO_SHIFT;
337 }
338
339 static inline int oo_objects(struct kmem_cache_order_objects x)
340 {
341 return x.x & OO_MASK;
342 }
343
344 /*
345 * Per slab locking using the pagelock
346 */
347 static __always_inline void slab_lock(struct page *page)
348 {
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
357 }
358
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return false;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return false;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455 * Determine a map of object in use on a page.
456 *
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
459 */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467 }
468
469 static inline int size_from_object(struct kmem_cache *s)
470 {
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
473
474 return s->size;
475 }
476
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 {
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
481
482 return p;
483 }
484
485 /*
486 * Debug settings:
487 */
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
493
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
496
497 /*
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
502 */
503 static inline void metadata_access_enable(void)
504 {
505 kasan_disable_current();
506 }
507
508 static inline void metadata_access_disable(void)
509 {
510 kasan_enable_current();
511 }
512
513 /*
514 * Object debugging
515 */
516
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
520 {
521 void *base;
522
523 if (!object)
524 return 1;
525
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
531 }
532
533 return 1;
534 }
535
536 static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
538 {
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
543 }
544
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
547 {
548 struct track *p;
549
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
554
555 return p + alloc;
556 }
557
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
560 {
561 struct track *p = get_track(s, object, alloc);
562
563 if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
567
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
575
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
580
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583 #endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
590 }
591
592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
596
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600
601 static void print_track(const char *s, struct track *t)
602 {
603 if (!t->addr)
604 return;
605
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 {
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
616 }
617 #endif
618 }
619
620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
624
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
626 print_track("Freed", get_track(s, object, TRACK_FREE));
627 }
628
629 static void print_page_info(struct page *page)
630 {
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page, page->objects, page->inuse, page->freelist, page->flags);
633
634 }
635
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 {
638 struct va_format vaf;
639 va_list args;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 pr_err("-----------------------------------------------------------------------------\n\n");
647
648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 va_end(args);
650 }
651
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 va_start(args, fmt);
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
661 va_end(args);
662 }
663
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 {
666 unsigned int off; /* Offset of last byte */
667 u8 *addr = page_address(page);
668
669 print_tracking(s, p);
670
671 print_page_info(page);
672
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
675
676 if (s->flags & SLAB_RED_ZONE)
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
679 else if (p > addr + 16)
680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681
682 print_section(KERN_ERR, "Object ", p,
683 min_t(unsigned long, s->object_size, PAGE_SIZE));
684 if (s->flags & SLAB_RED_ZONE)
685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 s->inuse - s->object_size);
687
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
692
693 if (s->flags & SLAB_STORE_USER)
694 off += 2 * sizeof(struct track);
695
696 off += kasan_metadata_size(s);
697
698 if (off != size_from_object(s))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
702
703 dump_stack();
704 }
705
706 void object_err(struct kmem_cache *s, struct page *page,
707 u8 *object, char *reason)
708 {
709 slab_bug(s, "%s", reason);
710 print_trailer(s, page, object);
711 }
712
713 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
714 const char *fmt, ...)
715 {
716 va_list args;
717 char buf[100];
718
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
721 va_end(args);
722 slab_bug(s, "%s", buf);
723 print_page_info(page);
724 dump_stack();
725 }
726
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 {
729 u8 *p = object;
730
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
733
734 if (s->flags & __OBJECT_POISON) {
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
737 }
738
739 if (s->flags & SLAB_RED_ZONE)
740 memset(p + s->object_size, val, s->inuse - s->object_size);
741 }
742
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
745 {
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
748 }
749
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
752 u8 *start, unsigned int value, unsigned int bytes)
753 {
754 u8 *fault;
755 u8 *end;
756
757 metadata_access_enable();
758 fault = memchr_inv(start, value, bytes);
759 metadata_access_disable();
760 if (!fault)
761 return 1;
762
763 end = start + bytes;
764 while (end > fault && end[-1] == value)
765 end--;
766
767 slab_bug(s, "%s overwritten", what);
768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 fault, end - 1, fault[0], value);
770 print_trailer(s, page, object);
771
772 restore_bytes(s, what, value, fault, end);
773 return 0;
774 }
775
776 /*
777 * Object layout:
778 *
779 * object address
780 * Bytes of the object to be managed.
781 * If the freepointer may overlay the object then the free
782 * pointer is the first word of the object.
783 *
784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
785 * 0xa5 (POISON_END)
786 *
787 * object + s->object_size
788 * Padding to reach word boundary. This is also used for Redzoning.
789 * Padding is extended by another word if Redzoning is enabled and
790 * object_size == inuse.
791 *
792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793 * 0xcc (RED_ACTIVE) for objects in use.
794 *
795 * object + s->inuse
796 * Meta data starts here.
797 *
798 * A. Free pointer (if we cannot overwrite object on free)
799 * B. Tracking data for SLAB_STORE_USER
800 * C. Padding to reach required alignment boundary or at mininum
801 * one word if debugging is on to be able to detect writes
802 * before the word boundary.
803 *
804 * Padding is done using 0x5a (POISON_INUSE)
805 *
806 * object + s->size
807 * Nothing is used beyond s->size.
808 *
809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
810 * ignored. And therefore no slab options that rely on these boundaries
811 * may be used with merged slabcaches.
812 */
813
814 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
815 {
816 unsigned long off = s->inuse; /* The end of info */
817
818 if (s->offset)
819 /* Freepointer is placed after the object. */
820 off += sizeof(void *);
821
822 if (s->flags & SLAB_STORE_USER)
823 /* We also have user information there */
824 off += 2 * sizeof(struct track);
825
826 off += kasan_metadata_size(s);
827
828 if (size_from_object(s) == off)
829 return 1;
830
831 return check_bytes_and_report(s, page, p, "Object padding",
832 p + off, POISON_INUSE, size_from_object(s) - off);
833 }
834
835 /* Check the pad bytes at the end of a slab page */
836 static int slab_pad_check(struct kmem_cache *s, struct page *page)
837 {
838 u8 *start;
839 u8 *fault;
840 u8 *end;
841 int length;
842 int remainder;
843
844 if (!(s->flags & SLAB_POISON))
845 return 1;
846
847 start = page_address(page);
848 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
849 end = start + length;
850 remainder = length % s->size;
851 if (!remainder)
852 return 1;
853
854 metadata_access_enable();
855 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
856 metadata_access_disable();
857 if (!fault)
858 return 1;
859 while (end > fault && end[-1] == POISON_INUSE)
860 end--;
861
862 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
863 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
864
865 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
866 return 0;
867 }
868
869 static int check_object(struct kmem_cache *s, struct page *page,
870 void *object, u8 val)
871 {
872 u8 *p = object;
873 u8 *endobject = object + s->object_size;
874
875 if (s->flags & SLAB_RED_ZONE) {
876 if (!check_bytes_and_report(s, page, object, "Redzone",
877 object - s->red_left_pad, val, s->red_left_pad))
878 return 0;
879
880 if (!check_bytes_and_report(s, page, object, "Redzone",
881 endobject, val, s->inuse - s->object_size))
882 return 0;
883 } else {
884 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
885 check_bytes_and_report(s, page, p, "Alignment padding",
886 endobject, POISON_INUSE,
887 s->inuse - s->object_size);
888 }
889 }
890
891 if (s->flags & SLAB_POISON) {
892 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
893 (!check_bytes_and_report(s, page, p, "Poison", p,
894 POISON_FREE, s->object_size - 1) ||
895 !check_bytes_and_report(s, page, p, "Poison",
896 p + s->object_size - 1, POISON_END, 1)))
897 return 0;
898 /*
899 * check_pad_bytes cleans up on its own.
900 */
901 check_pad_bytes(s, page, p);
902 }
903
904 if (!s->offset && val == SLUB_RED_ACTIVE)
905 /*
906 * Object and freepointer overlap. Cannot check
907 * freepointer while object is allocated.
908 */
909 return 1;
910
911 /* Check free pointer validity */
912 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
913 object_err(s, page, p, "Freepointer corrupt");
914 /*
915 * No choice but to zap it and thus lose the remainder
916 * of the free objects in this slab. May cause
917 * another error because the object count is now wrong.
918 */
919 set_freepointer(s, p, NULL);
920 return 0;
921 }
922 return 1;
923 }
924
925 static int check_slab(struct kmem_cache *s, struct page *page)
926 {
927 int maxobj;
928
929 VM_BUG_ON(!irqs_disabled());
930
931 if (!PageSlab(page)) {
932 slab_err(s, page, "Not a valid slab page");
933 return 0;
934 }
935
936 maxobj = order_objects(compound_order(page), s->size, s->reserved);
937 if (page->objects > maxobj) {
938 slab_err(s, page, "objects %u > max %u",
939 page->objects, maxobj);
940 return 0;
941 }
942 if (page->inuse > page->objects) {
943 slab_err(s, page, "inuse %u > max %u",
944 page->inuse, page->objects);
945 return 0;
946 }
947 /* Slab_pad_check fixes things up after itself */
948 slab_pad_check(s, page);
949 return 1;
950 }
951
952 /*
953 * Determine if a certain object on a page is on the freelist. Must hold the
954 * slab lock to guarantee that the chains are in a consistent state.
955 */
956 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
957 {
958 int nr = 0;
959 void *fp;
960 void *object = NULL;
961 int max_objects;
962
963 fp = page->freelist;
964 while (fp && nr <= page->objects) {
965 if (fp == search)
966 return 1;
967 if (!check_valid_pointer(s, page, fp)) {
968 if (object) {
969 object_err(s, page, object,
970 "Freechain corrupt");
971 set_freepointer(s, object, NULL);
972 } else {
973 slab_err(s, page, "Freepointer corrupt");
974 page->freelist = NULL;
975 page->inuse = page->objects;
976 slab_fix(s, "Freelist cleared");
977 return 0;
978 }
979 break;
980 }
981 object = fp;
982 fp = get_freepointer(s, object);
983 nr++;
984 }
985
986 max_objects = order_objects(compound_order(page), s->size, s->reserved);
987 if (max_objects > MAX_OBJS_PER_PAGE)
988 max_objects = MAX_OBJS_PER_PAGE;
989
990 if (page->objects != max_objects) {
991 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
992 page->objects, max_objects);
993 page->objects = max_objects;
994 slab_fix(s, "Number of objects adjusted.");
995 }
996 if (page->inuse != page->objects - nr) {
997 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
998 page->inuse, page->objects - nr);
999 page->inuse = page->objects - nr;
1000 slab_fix(s, "Object count adjusted.");
1001 }
1002 return search == NULL;
1003 }
1004
1005 static void trace(struct kmem_cache *s, struct page *page, void *object,
1006 int alloc)
1007 {
1008 if (s->flags & SLAB_TRACE) {
1009 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1010 s->name,
1011 alloc ? "alloc" : "free",
1012 object, page->inuse,
1013 page->freelist);
1014
1015 if (!alloc)
1016 print_section(KERN_INFO, "Object ", (void *)object,
1017 s->object_size);
1018
1019 dump_stack();
1020 }
1021 }
1022
1023 /*
1024 * Tracking of fully allocated slabs for debugging purposes.
1025 */
1026 static void add_full(struct kmem_cache *s,
1027 struct kmem_cache_node *n, struct page *page)
1028 {
1029 if (!(s->flags & SLAB_STORE_USER))
1030 return;
1031
1032 lockdep_assert_held(&n->list_lock);
1033 list_add(&page->lru, &n->full);
1034 }
1035
1036 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1037 {
1038 if (!(s->flags & SLAB_STORE_USER))
1039 return;
1040
1041 lockdep_assert_held(&n->list_lock);
1042 list_del(&page->lru);
1043 }
1044
1045 /* Tracking of the number of slabs for debugging purposes */
1046 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1047 {
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 return atomic_long_read(&n->nr_slabs);
1051 }
1052
1053 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1054 {
1055 return atomic_long_read(&n->nr_slabs);
1056 }
1057
1058 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 /*
1063 * May be called early in order to allocate a slab for the
1064 * kmem_cache_node structure. Solve the chicken-egg
1065 * dilemma by deferring the increment of the count during
1066 * bootstrap (see early_kmem_cache_node_alloc).
1067 */
1068 if (likely(n)) {
1069 atomic_long_inc(&n->nr_slabs);
1070 atomic_long_add(objects, &n->total_objects);
1071 }
1072 }
1073 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1074 {
1075 struct kmem_cache_node *n = get_node(s, node);
1076
1077 atomic_long_dec(&n->nr_slabs);
1078 atomic_long_sub(objects, &n->total_objects);
1079 }
1080
1081 /* Object debug checks for alloc/free paths */
1082 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1083 void *object)
1084 {
1085 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1086 return;
1087
1088 init_object(s, object, SLUB_RED_INACTIVE);
1089 init_tracking(s, object);
1090 }
1091
1092 static inline int alloc_consistency_checks(struct kmem_cache *s,
1093 struct page *page,
1094 void *object, unsigned long addr)
1095 {
1096 if (!check_slab(s, page))
1097 return 0;
1098
1099 if (!check_valid_pointer(s, page, object)) {
1100 object_err(s, page, object, "Freelist Pointer check fails");
1101 return 0;
1102 }
1103
1104 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1105 return 0;
1106
1107 return 1;
1108 }
1109
1110 static noinline int alloc_debug_processing(struct kmem_cache *s,
1111 struct page *page,
1112 void *object, unsigned long addr)
1113 {
1114 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1115 if (!alloc_consistency_checks(s, page, object, addr))
1116 goto bad;
1117 }
1118
1119 /* Success perform special debug activities for allocs */
1120 if (s->flags & SLAB_STORE_USER)
1121 set_track(s, object, TRACK_ALLOC, addr);
1122 trace(s, page, object, 1);
1123 init_object(s, object, SLUB_RED_ACTIVE);
1124 return 1;
1125
1126 bad:
1127 if (PageSlab(page)) {
1128 /*
1129 * If this is a slab page then lets do the best we can
1130 * to avoid issues in the future. Marking all objects
1131 * as used avoids touching the remaining objects.
1132 */
1133 slab_fix(s, "Marking all objects used");
1134 page->inuse = page->objects;
1135 page->freelist = NULL;
1136 }
1137 return 0;
1138 }
1139
1140 static inline int free_consistency_checks(struct kmem_cache *s,
1141 struct page *page, void *object, unsigned long addr)
1142 {
1143 if (!check_valid_pointer(s, page, object)) {
1144 slab_err(s, page, "Invalid object pointer 0x%p", object);
1145 return 0;
1146 }
1147
1148 if (on_freelist(s, page, object)) {
1149 object_err(s, page, object, "Object already free");
1150 return 0;
1151 }
1152
1153 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1154 return 0;
1155
1156 if (unlikely(s != page->slab_cache)) {
1157 if (!PageSlab(page)) {
1158 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1159 object);
1160 } else if (!page->slab_cache) {
1161 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1162 object);
1163 dump_stack();
1164 } else
1165 object_err(s, page, object,
1166 "page slab pointer corrupt.");
1167 return 0;
1168 }
1169 return 1;
1170 }
1171
1172 /* Supports checking bulk free of a constructed freelist */
1173 static noinline int free_debug_processing(
1174 struct kmem_cache *s, struct page *page,
1175 void *head, void *tail, int bulk_cnt,
1176 unsigned long addr)
1177 {
1178 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1179 void *object = head;
1180 int cnt = 0;
1181 unsigned long uninitialized_var(flags);
1182 int ret = 0;
1183
1184 spin_lock_irqsave(&n->list_lock, flags);
1185 slab_lock(page);
1186
1187 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1188 if (!check_slab(s, page))
1189 goto out;
1190 }
1191
1192 next_object:
1193 cnt++;
1194
1195 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1196 if (!free_consistency_checks(s, page, object, addr))
1197 goto out;
1198 }
1199
1200 if (s->flags & SLAB_STORE_USER)
1201 set_track(s, object, TRACK_FREE, addr);
1202 trace(s, page, object, 0);
1203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1204 init_object(s, object, SLUB_RED_INACTIVE);
1205
1206 /* Reached end of constructed freelist yet? */
1207 if (object != tail) {
1208 object = get_freepointer(s, object);
1209 goto next_object;
1210 }
1211 ret = 1;
1212
1213 out:
1214 if (cnt != bulk_cnt)
1215 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1216 bulk_cnt, cnt);
1217
1218 slab_unlock(page);
1219 spin_unlock_irqrestore(&n->list_lock, flags);
1220 if (!ret)
1221 slab_fix(s, "Object at 0x%p not freed", object);
1222 return ret;
1223 }
1224
1225 static int __init setup_slub_debug(char *str)
1226 {
1227 slub_debug = DEBUG_DEFAULT_FLAGS;
1228 if (*str++ != '=' || !*str)
1229 /*
1230 * No options specified. Switch on full debugging.
1231 */
1232 goto out;
1233
1234 if (*str == ',')
1235 /*
1236 * No options but restriction on slabs. This means full
1237 * debugging for slabs matching a pattern.
1238 */
1239 goto check_slabs;
1240
1241 slub_debug = 0;
1242 if (*str == '-')
1243 /*
1244 * Switch off all debugging measures.
1245 */
1246 goto out;
1247
1248 /*
1249 * Determine which debug features should be switched on
1250 */
1251 for (; *str && *str != ','; str++) {
1252 switch (tolower(*str)) {
1253 case 'f':
1254 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1255 break;
1256 case 'z':
1257 slub_debug |= SLAB_RED_ZONE;
1258 break;
1259 case 'p':
1260 slub_debug |= SLAB_POISON;
1261 break;
1262 case 'u':
1263 slub_debug |= SLAB_STORE_USER;
1264 break;
1265 case 't':
1266 slub_debug |= SLAB_TRACE;
1267 break;
1268 case 'a':
1269 slub_debug |= SLAB_FAILSLAB;
1270 break;
1271 case 'o':
1272 /*
1273 * Avoid enabling debugging on caches if its minimum
1274 * order would increase as a result.
1275 */
1276 disable_higher_order_debug = 1;
1277 break;
1278 default:
1279 pr_err("slub_debug option '%c' unknown. skipped\n",
1280 *str);
1281 }
1282 }
1283
1284 check_slabs:
1285 if (*str == ',')
1286 slub_debug_slabs = str + 1;
1287 out:
1288 return 1;
1289 }
1290
1291 __setup("slub_debug", setup_slub_debug);
1292
1293 slab_flags_t kmem_cache_flags(unsigned long object_size,
1294 slab_flags_t flags, const char *name,
1295 void (*ctor)(void *))
1296 {
1297 /*
1298 * Enable debugging if selected on the kernel commandline.
1299 */
1300 if (slub_debug && (!slub_debug_slabs || (name &&
1301 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1302 flags |= slub_debug;
1303
1304 return flags;
1305 }
1306 #else /* !CONFIG_SLUB_DEBUG */
1307 static inline void setup_object_debug(struct kmem_cache *s,
1308 struct page *page, void *object) {}
1309
1310 static inline int alloc_debug_processing(struct kmem_cache *s,
1311 struct page *page, void *object, unsigned long addr) { return 0; }
1312
1313 static inline int free_debug_processing(
1314 struct kmem_cache *s, struct page *page,
1315 void *head, void *tail, int bulk_cnt,
1316 unsigned long addr) { return 0; }
1317
1318 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1319 { return 1; }
1320 static inline int check_object(struct kmem_cache *s, struct page *page,
1321 void *object, u8 val) { return 1; }
1322 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
1324 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325 struct page *page) {}
1326 slab_flags_t kmem_cache_flags(unsigned long object_size,
1327 slab_flags_t flags, const char *name,
1328 void (*ctor)(void *))
1329 {
1330 return flags;
1331 }
1332 #define slub_debug 0
1333
1334 #define disable_higher_order_debug 0
1335
1336 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1337 { return 0; }
1338 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1339 { return 0; }
1340 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
1342 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1343 int objects) {}
1344
1345 #endif /* CONFIG_SLUB_DEBUG */
1346
1347 /*
1348 * Hooks for other subsystems that check memory allocations. In a typical
1349 * production configuration these hooks all should produce no code at all.
1350 */
1351 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1352 {
1353 kmemleak_alloc(ptr, size, 1, flags);
1354 kasan_kmalloc_large(ptr, size, flags);
1355 }
1356
1357 static inline void kfree_hook(const void *x)
1358 {
1359 kmemleak_free(x);
1360 kasan_kfree_large(x);
1361 }
1362
1363 static inline bool slab_free_hook(struct kmem_cache *s, void *x)
1364 {
1365 kmemleak_free_recursive(x, s->flags);
1366
1367 /*
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1371 */
1372 #ifdef CONFIG_LOCKDEP
1373 {
1374 unsigned long flags;
1375
1376 local_irq_save(flags);
1377 debug_check_no_locks_freed(x, s->object_size);
1378 local_irq_restore(flags);
1379 }
1380 #endif
1381 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1382 debug_check_no_obj_freed(x, s->object_size);
1383
1384 /* KASAN might put x into memory quarantine, delaying its reuse */
1385 return kasan_slab_free(s, x);
1386 }
1387
1388 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1389 void **head, void **tail)
1390 {
1391 /*
1392 * Compiler cannot detect this function can be removed if slab_free_hook()
1393 * evaluates to nothing. Thus, catch all relevant config debug options here.
1394 */
1395 #if defined(CONFIG_LOCKDEP) || \
1396 defined(CONFIG_DEBUG_KMEMLEAK) || \
1397 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1398 defined(CONFIG_KASAN)
1399
1400 void *object;
1401 void *next = *head;
1402 void *old_tail = *tail ? *tail : *head;
1403
1404 /* Head and tail of the reconstructed freelist */
1405 *head = NULL;
1406 *tail = NULL;
1407
1408 do {
1409 object = next;
1410 next = get_freepointer(s, object);
1411 /* If object's reuse doesn't have to be delayed */
1412 if (!slab_free_hook(s, object)) {
1413 /* Move object to the new freelist */
1414 set_freepointer(s, object, *head);
1415 *head = object;
1416 if (!*tail)
1417 *tail = object;
1418 }
1419 } while (object != old_tail);
1420
1421 if (*head == *tail)
1422 *tail = NULL;
1423
1424 return *head != NULL;
1425 #else
1426 return true;
1427 #endif
1428 }
1429
1430 static void setup_object(struct kmem_cache *s, struct page *page,
1431 void *object)
1432 {
1433 setup_object_debug(s, page, object);
1434 kasan_init_slab_obj(s, object);
1435 if (unlikely(s->ctor)) {
1436 kasan_unpoison_object_data(s, object);
1437 s->ctor(object);
1438 kasan_poison_object_data(s, object);
1439 }
1440 }
1441
1442 /*
1443 * Slab allocation and freeing
1444 */
1445 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1446 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1447 {
1448 struct page *page;
1449 int order = oo_order(oo);
1450
1451 if (node == NUMA_NO_NODE)
1452 page = alloc_pages(flags, order);
1453 else
1454 page = __alloc_pages_node(node, flags, order);
1455
1456 if (page && memcg_charge_slab(page, flags, order, s)) {
1457 __free_pages(page, order);
1458 page = NULL;
1459 }
1460
1461 return page;
1462 }
1463
1464 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1465 /* Pre-initialize the random sequence cache */
1466 static int init_cache_random_seq(struct kmem_cache *s)
1467 {
1468 int err;
1469 unsigned long i, count = oo_objects(s->oo);
1470
1471 /* Bailout if already initialised */
1472 if (s->random_seq)
1473 return 0;
1474
1475 err = cache_random_seq_create(s, count, GFP_KERNEL);
1476 if (err) {
1477 pr_err("SLUB: Unable to initialize free list for %s\n",
1478 s->name);
1479 return err;
1480 }
1481
1482 /* Transform to an offset on the set of pages */
1483 if (s->random_seq) {
1484 for (i = 0; i < count; i++)
1485 s->random_seq[i] *= s->size;
1486 }
1487 return 0;
1488 }
1489
1490 /* Initialize each random sequence freelist per cache */
1491 static void __init init_freelist_randomization(void)
1492 {
1493 struct kmem_cache *s;
1494
1495 mutex_lock(&slab_mutex);
1496
1497 list_for_each_entry(s, &slab_caches, list)
1498 init_cache_random_seq(s);
1499
1500 mutex_unlock(&slab_mutex);
1501 }
1502
1503 /* Get the next entry on the pre-computed freelist randomized */
1504 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1505 unsigned long *pos, void *start,
1506 unsigned long page_limit,
1507 unsigned long freelist_count)
1508 {
1509 unsigned int idx;
1510
1511 /*
1512 * If the target page allocation failed, the number of objects on the
1513 * page might be smaller than the usual size defined by the cache.
1514 */
1515 do {
1516 idx = s->random_seq[*pos];
1517 *pos += 1;
1518 if (*pos >= freelist_count)
1519 *pos = 0;
1520 } while (unlikely(idx >= page_limit));
1521
1522 return (char *)start + idx;
1523 }
1524
1525 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1526 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1527 {
1528 void *start;
1529 void *cur;
1530 void *next;
1531 unsigned long idx, pos, page_limit, freelist_count;
1532
1533 if (page->objects < 2 || !s->random_seq)
1534 return false;
1535
1536 freelist_count = oo_objects(s->oo);
1537 pos = get_random_int() % freelist_count;
1538
1539 page_limit = page->objects * s->size;
1540 start = fixup_red_left(s, page_address(page));
1541
1542 /* First entry is used as the base of the freelist */
1543 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1544 freelist_count);
1545 page->freelist = cur;
1546
1547 for (idx = 1; idx < page->objects; idx++) {
1548 setup_object(s, page, cur);
1549 next = next_freelist_entry(s, page, &pos, start, page_limit,
1550 freelist_count);
1551 set_freepointer(s, cur, next);
1552 cur = next;
1553 }
1554 setup_object(s, page, cur);
1555 set_freepointer(s, cur, NULL);
1556
1557 return true;
1558 }
1559 #else
1560 static inline int init_cache_random_seq(struct kmem_cache *s)
1561 {
1562 return 0;
1563 }
1564 static inline void init_freelist_randomization(void) { }
1565 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1566 {
1567 return false;
1568 }
1569 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1570
1571 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1572 {
1573 struct page *page;
1574 struct kmem_cache_order_objects oo = s->oo;
1575 gfp_t alloc_gfp;
1576 void *start, *p;
1577 int idx, order;
1578 bool shuffle;
1579
1580 flags &= gfp_allowed_mask;
1581
1582 if (gfpflags_allow_blocking(flags))
1583 local_irq_enable();
1584
1585 flags |= s->allocflags;
1586
1587 /*
1588 * Let the initial higher-order allocation fail under memory pressure
1589 * so we fall-back to the minimum order allocation.
1590 */
1591 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1592 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1593 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1594
1595 page = alloc_slab_page(s, alloc_gfp, node, oo);
1596 if (unlikely(!page)) {
1597 oo = s->min;
1598 alloc_gfp = flags;
1599 /*
1600 * Allocation may have failed due to fragmentation.
1601 * Try a lower order alloc if possible
1602 */
1603 page = alloc_slab_page(s, alloc_gfp, node, oo);
1604 if (unlikely(!page))
1605 goto out;
1606 stat(s, ORDER_FALLBACK);
1607 }
1608
1609 page->objects = oo_objects(oo);
1610
1611 order = compound_order(page);
1612 page->slab_cache = s;
1613 __SetPageSlab(page);
1614 if (page_is_pfmemalloc(page))
1615 SetPageSlabPfmemalloc(page);
1616
1617 start = page_address(page);
1618
1619 if (unlikely(s->flags & SLAB_POISON))
1620 memset(start, POISON_INUSE, PAGE_SIZE << order);
1621
1622 kasan_poison_slab(page);
1623
1624 shuffle = shuffle_freelist(s, page);
1625
1626 if (!shuffle) {
1627 for_each_object_idx(p, idx, s, start, page->objects) {
1628 setup_object(s, page, p);
1629 if (likely(idx < page->objects))
1630 set_freepointer(s, p, p + s->size);
1631 else
1632 set_freepointer(s, p, NULL);
1633 }
1634 page->freelist = fixup_red_left(s, start);
1635 }
1636
1637 page->inuse = page->objects;
1638 page->frozen = 1;
1639
1640 out:
1641 if (gfpflags_allow_blocking(flags))
1642 local_irq_disable();
1643 if (!page)
1644 return NULL;
1645
1646 mod_lruvec_page_state(page,
1647 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1648 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1649 1 << oo_order(oo));
1650
1651 inc_slabs_node(s, page_to_nid(page), page->objects);
1652
1653 return page;
1654 }
1655
1656 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1657 {
1658 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1659 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1660 flags &= ~GFP_SLAB_BUG_MASK;
1661 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1662 invalid_mask, &invalid_mask, flags, &flags);
1663 dump_stack();
1664 }
1665
1666 return allocate_slab(s,
1667 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1668 }
1669
1670 static void __free_slab(struct kmem_cache *s, struct page *page)
1671 {
1672 int order = compound_order(page);
1673 int pages = 1 << order;
1674
1675 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1676 void *p;
1677
1678 slab_pad_check(s, page);
1679 for_each_object(p, s, page_address(page),
1680 page->objects)
1681 check_object(s, page, p, SLUB_RED_INACTIVE);
1682 }
1683
1684 mod_lruvec_page_state(page,
1685 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1686 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1687 -pages);
1688
1689 __ClearPageSlabPfmemalloc(page);
1690 __ClearPageSlab(page);
1691
1692 page_mapcount_reset(page);
1693 if (current->reclaim_state)
1694 current->reclaim_state->reclaimed_slab += pages;
1695 memcg_uncharge_slab(page, order, s);
1696 __free_pages(page, order);
1697 }
1698
1699 #define need_reserve_slab_rcu \
1700 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1701
1702 static void rcu_free_slab(struct rcu_head *h)
1703 {
1704 struct page *page;
1705
1706 if (need_reserve_slab_rcu)
1707 page = virt_to_head_page(h);
1708 else
1709 page = container_of((struct list_head *)h, struct page, lru);
1710
1711 __free_slab(page->slab_cache, page);
1712 }
1713
1714 static void free_slab(struct kmem_cache *s, struct page *page)
1715 {
1716 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1717 struct rcu_head *head;
1718
1719 if (need_reserve_slab_rcu) {
1720 int order = compound_order(page);
1721 int offset = (PAGE_SIZE << order) - s->reserved;
1722
1723 VM_BUG_ON(s->reserved != sizeof(*head));
1724 head = page_address(page) + offset;
1725 } else {
1726 head = &page->rcu_head;
1727 }
1728
1729 call_rcu(head, rcu_free_slab);
1730 } else
1731 __free_slab(s, page);
1732 }
1733
1734 static void discard_slab(struct kmem_cache *s, struct page *page)
1735 {
1736 dec_slabs_node(s, page_to_nid(page), page->objects);
1737 free_slab(s, page);
1738 }
1739
1740 /*
1741 * Management of partially allocated slabs.
1742 */
1743 static inline void
1744 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1745 {
1746 n->nr_partial++;
1747 if (tail == DEACTIVATE_TO_TAIL)
1748 list_add_tail(&page->lru, &n->partial);
1749 else
1750 list_add(&page->lru, &n->partial);
1751 }
1752
1753 static inline void add_partial(struct kmem_cache_node *n,
1754 struct page *page, int tail)
1755 {
1756 lockdep_assert_held(&n->list_lock);
1757 __add_partial(n, page, tail);
1758 }
1759
1760 static inline void remove_partial(struct kmem_cache_node *n,
1761 struct page *page)
1762 {
1763 lockdep_assert_held(&n->list_lock);
1764 list_del(&page->lru);
1765 n->nr_partial--;
1766 }
1767
1768 /*
1769 * Remove slab from the partial list, freeze it and
1770 * return the pointer to the freelist.
1771 *
1772 * Returns a list of objects or NULL if it fails.
1773 */
1774 static inline void *acquire_slab(struct kmem_cache *s,
1775 struct kmem_cache_node *n, struct page *page,
1776 int mode, int *objects)
1777 {
1778 void *freelist;
1779 unsigned long counters;
1780 struct page new;
1781
1782 lockdep_assert_held(&n->list_lock);
1783
1784 /*
1785 * Zap the freelist and set the frozen bit.
1786 * The old freelist is the list of objects for the
1787 * per cpu allocation list.
1788 */
1789 freelist = page->freelist;
1790 counters = page->counters;
1791 new.counters = counters;
1792 *objects = new.objects - new.inuse;
1793 if (mode) {
1794 new.inuse = page->objects;
1795 new.freelist = NULL;
1796 } else {
1797 new.freelist = freelist;
1798 }
1799
1800 VM_BUG_ON(new.frozen);
1801 new.frozen = 1;
1802
1803 if (!__cmpxchg_double_slab(s, page,
1804 freelist, counters,
1805 new.freelist, new.counters,
1806 "acquire_slab"))
1807 return NULL;
1808
1809 remove_partial(n, page);
1810 WARN_ON(!freelist);
1811 return freelist;
1812 }
1813
1814 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1815 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1816
1817 /*
1818 * Try to allocate a partial slab from a specific node.
1819 */
1820 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1821 struct kmem_cache_cpu *c, gfp_t flags)
1822 {
1823 struct page *page, *page2;
1824 void *object = NULL;
1825 int available = 0;
1826 int objects;
1827
1828 /*
1829 * Racy check. If we mistakenly see no partial slabs then we
1830 * just allocate an empty slab. If we mistakenly try to get a
1831 * partial slab and there is none available then get_partials()
1832 * will return NULL.
1833 */
1834 if (!n || !n->nr_partial)
1835 return NULL;
1836
1837 spin_lock(&n->list_lock);
1838 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1839 void *t;
1840
1841 if (!pfmemalloc_match(page, flags))
1842 continue;
1843
1844 t = acquire_slab(s, n, page, object == NULL, &objects);
1845 if (!t)
1846 break;
1847
1848 available += objects;
1849 if (!object) {
1850 c->page = page;
1851 stat(s, ALLOC_FROM_PARTIAL);
1852 object = t;
1853 } else {
1854 put_cpu_partial(s, page, 0);
1855 stat(s, CPU_PARTIAL_NODE);
1856 }
1857 if (!kmem_cache_has_cpu_partial(s)
1858 || available > slub_cpu_partial(s) / 2)
1859 break;
1860
1861 }
1862 spin_unlock(&n->list_lock);
1863 return object;
1864 }
1865
1866 /*
1867 * Get a page from somewhere. Search in increasing NUMA distances.
1868 */
1869 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1870 struct kmem_cache_cpu *c)
1871 {
1872 #ifdef CONFIG_NUMA
1873 struct zonelist *zonelist;
1874 struct zoneref *z;
1875 struct zone *zone;
1876 enum zone_type high_zoneidx = gfp_zone(flags);
1877 void *object;
1878 unsigned int cpuset_mems_cookie;
1879
1880 /*
1881 * The defrag ratio allows a configuration of the tradeoffs between
1882 * inter node defragmentation and node local allocations. A lower
1883 * defrag_ratio increases the tendency to do local allocations
1884 * instead of attempting to obtain partial slabs from other nodes.
1885 *
1886 * If the defrag_ratio is set to 0 then kmalloc() always
1887 * returns node local objects. If the ratio is higher then kmalloc()
1888 * may return off node objects because partial slabs are obtained
1889 * from other nodes and filled up.
1890 *
1891 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1892 * (which makes defrag_ratio = 1000) then every (well almost)
1893 * allocation will first attempt to defrag slab caches on other nodes.
1894 * This means scanning over all nodes to look for partial slabs which
1895 * may be expensive if we do it every time we are trying to find a slab
1896 * with available objects.
1897 */
1898 if (!s->remote_node_defrag_ratio ||
1899 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1900 return NULL;
1901
1902 do {
1903 cpuset_mems_cookie = read_mems_allowed_begin();
1904 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1905 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1906 struct kmem_cache_node *n;
1907
1908 n = get_node(s, zone_to_nid(zone));
1909
1910 if (n && cpuset_zone_allowed(zone, flags) &&
1911 n->nr_partial > s->min_partial) {
1912 object = get_partial_node(s, n, c, flags);
1913 if (object) {
1914 /*
1915 * Don't check read_mems_allowed_retry()
1916 * here - if mems_allowed was updated in
1917 * parallel, that was a harmless race
1918 * between allocation and the cpuset
1919 * update
1920 */
1921 return object;
1922 }
1923 }
1924 }
1925 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1926 #endif
1927 return NULL;
1928 }
1929
1930 /*
1931 * Get a partial page, lock it and return it.
1932 */
1933 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1934 struct kmem_cache_cpu *c)
1935 {
1936 void *object;
1937 int searchnode = node;
1938
1939 if (node == NUMA_NO_NODE)
1940 searchnode = numa_mem_id();
1941 else if (!node_present_pages(node))
1942 searchnode = node_to_mem_node(node);
1943
1944 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1945 if (object || node != NUMA_NO_NODE)
1946 return object;
1947
1948 return get_any_partial(s, flags, c);
1949 }
1950
1951 #ifdef CONFIG_PREEMPT
1952 /*
1953 * Calculate the next globally unique transaction for disambiguiation
1954 * during cmpxchg. The transactions start with the cpu number and are then
1955 * incremented by CONFIG_NR_CPUS.
1956 */
1957 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1958 #else
1959 /*
1960 * No preemption supported therefore also no need to check for
1961 * different cpus.
1962 */
1963 #define TID_STEP 1
1964 #endif
1965
1966 static inline unsigned long next_tid(unsigned long tid)
1967 {
1968 return tid + TID_STEP;
1969 }
1970
1971 static inline unsigned int tid_to_cpu(unsigned long tid)
1972 {
1973 return tid % TID_STEP;
1974 }
1975
1976 static inline unsigned long tid_to_event(unsigned long tid)
1977 {
1978 return tid / TID_STEP;
1979 }
1980
1981 static inline unsigned int init_tid(int cpu)
1982 {
1983 return cpu;
1984 }
1985
1986 static inline void note_cmpxchg_failure(const char *n,
1987 const struct kmem_cache *s, unsigned long tid)
1988 {
1989 #ifdef SLUB_DEBUG_CMPXCHG
1990 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1991
1992 pr_info("%s %s: cmpxchg redo ", n, s->name);
1993
1994 #ifdef CONFIG_PREEMPT
1995 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1996 pr_warn("due to cpu change %d -> %d\n",
1997 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1998 else
1999 #endif
2000 if (tid_to_event(tid) != tid_to_event(actual_tid))
2001 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2002 tid_to_event(tid), tid_to_event(actual_tid));
2003 else
2004 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2005 actual_tid, tid, next_tid(tid));
2006 #endif
2007 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2008 }
2009
2010 static void init_kmem_cache_cpus(struct kmem_cache *s)
2011 {
2012 int cpu;
2013
2014 for_each_possible_cpu(cpu)
2015 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2016 }
2017
2018 /*
2019 * Remove the cpu slab
2020 */
2021 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2022 void *freelist, struct kmem_cache_cpu *c)
2023 {
2024 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2025 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2026 int lock = 0;
2027 enum slab_modes l = M_NONE, m = M_NONE;
2028 void *nextfree;
2029 int tail = DEACTIVATE_TO_HEAD;
2030 struct page new;
2031 struct page old;
2032
2033 if (page->freelist) {
2034 stat(s, DEACTIVATE_REMOTE_FREES);
2035 tail = DEACTIVATE_TO_TAIL;
2036 }
2037
2038 /*
2039 * Stage one: Free all available per cpu objects back
2040 * to the page freelist while it is still frozen. Leave the
2041 * last one.
2042 *
2043 * There is no need to take the list->lock because the page
2044 * is still frozen.
2045 */
2046 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2047 void *prior;
2048 unsigned long counters;
2049
2050 do {
2051 prior = page->freelist;
2052 counters = page->counters;
2053 set_freepointer(s, freelist, prior);
2054 new.counters = counters;
2055 new.inuse--;
2056 VM_BUG_ON(!new.frozen);
2057
2058 } while (!__cmpxchg_double_slab(s, page,
2059 prior, counters,
2060 freelist, new.counters,
2061 "drain percpu freelist"));
2062
2063 freelist = nextfree;
2064 }
2065
2066 /*
2067 * Stage two: Ensure that the page is unfrozen while the
2068 * list presence reflects the actual number of objects
2069 * during unfreeze.
2070 *
2071 * We setup the list membership and then perform a cmpxchg
2072 * with the count. If there is a mismatch then the page
2073 * is not unfrozen but the page is on the wrong list.
2074 *
2075 * Then we restart the process which may have to remove
2076 * the page from the list that we just put it on again
2077 * because the number of objects in the slab may have
2078 * changed.
2079 */
2080 redo:
2081
2082 old.freelist = page->freelist;
2083 old.counters = page->counters;
2084 VM_BUG_ON(!old.frozen);
2085
2086 /* Determine target state of the slab */
2087 new.counters = old.counters;
2088 if (freelist) {
2089 new.inuse--;
2090 set_freepointer(s, freelist, old.freelist);
2091 new.freelist = freelist;
2092 } else
2093 new.freelist = old.freelist;
2094
2095 new.frozen = 0;
2096
2097 if (!new.inuse && n->nr_partial >= s->min_partial)
2098 m = M_FREE;
2099 else if (new.freelist) {
2100 m = M_PARTIAL;
2101 if (!lock) {
2102 lock = 1;
2103 /*
2104 * Taking the spinlock removes the possiblity
2105 * that acquire_slab() will see a slab page that
2106 * is frozen
2107 */
2108 spin_lock(&n->list_lock);
2109 }
2110 } else {
2111 m = M_FULL;
2112 if (kmem_cache_debug(s) && !lock) {
2113 lock = 1;
2114 /*
2115 * This also ensures that the scanning of full
2116 * slabs from diagnostic functions will not see
2117 * any frozen slabs.
2118 */
2119 spin_lock(&n->list_lock);
2120 }
2121 }
2122
2123 if (l != m) {
2124
2125 if (l == M_PARTIAL)
2126
2127 remove_partial(n, page);
2128
2129 else if (l == M_FULL)
2130
2131 remove_full(s, n, page);
2132
2133 if (m == M_PARTIAL) {
2134
2135 add_partial(n, page, tail);
2136 stat(s, tail);
2137
2138 } else if (m == M_FULL) {
2139
2140 stat(s, DEACTIVATE_FULL);
2141 add_full(s, n, page);
2142
2143 }
2144 }
2145
2146 l = m;
2147 if (!__cmpxchg_double_slab(s, page,
2148 old.freelist, old.counters,
2149 new.freelist, new.counters,
2150 "unfreezing slab"))
2151 goto redo;
2152
2153 if (lock)
2154 spin_unlock(&n->list_lock);
2155
2156 if (m == M_FREE) {
2157 stat(s, DEACTIVATE_EMPTY);
2158 discard_slab(s, page);
2159 stat(s, FREE_SLAB);
2160 }
2161
2162 c->page = NULL;
2163 c->freelist = NULL;
2164 }
2165
2166 /*
2167 * Unfreeze all the cpu partial slabs.
2168 *
2169 * This function must be called with interrupts disabled
2170 * for the cpu using c (or some other guarantee must be there
2171 * to guarantee no concurrent accesses).
2172 */
2173 static void unfreeze_partials(struct kmem_cache *s,
2174 struct kmem_cache_cpu *c)
2175 {
2176 #ifdef CONFIG_SLUB_CPU_PARTIAL
2177 struct kmem_cache_node *n = NULL, *n2 = NULL;
2178 struct page *page, *discard_page = NULL;
2179
2180 while ((page = c->partial)) {
2181 struct page new;
2182 struct page old;
2183
2184 c->partial = page->next;
2185
2186 n2 = get_node(s, page_to_nid(page));
2187 if (n != n2) {
2188 if (n)
2189 spin_unlock(&n->list_lock);
2190
2191 n = n2;
2192 spin_lock(&n->list_lock);
2193 }
2194
2195 do {
2196
2197 old.freelist = page->freelist;
2198 old.counters = page->counters;
2199 VM_BUG_ON(!old.frozen);
2200
2201 new.counters = old.counters;
2202 new.freelist = old.freelist;
2203
2204 new.frozen = 0;
2205
2206 } while (!__cmpxchg_double_slab(s, page,
2207 old.freelist, old.counters,
2208 new.freelist, new.counters,
2209 "unfreezing slab"));
2210
2211 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2212 page->next = discard_page;
2213 discard_page = page;
2214 } else {
2215 add_partial(n, page, DEACTIVATE_TO_TAIL);
2216 stat(s, FREE_ADD_PARTIAL);
2217 }
2218 }
2219
2220 if (n)
2221 spin_unlock(&n->list_lock);
2222
2223 while (discard_page) {
2224 page = discard_page;
2225 discard_page = discard_page->next;
2226
2227 stat(s, DEACTIVATE_EMPTY);
2228 discard_slab(s, page);
2229 stat(s, FREE_SLAB);
2230 }
2231 #endif
2232 }
2233
2234 /*
2235 * Put a page that was just frozen (in __slab_free) into a partial page
2236 * slot if available. This is done without interrupts disabled and without
2237 * preemption disabled. The cmpxchg is racy and may put the partial page
2238 * onto a random cpus partial slot.
2239 *
2240 * If we did not find a slot then simply move all the partials to the
2241 * per node partial list.
2242 */
2243 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2244 {
2245 #ifdef CONFIG_SLUB_CPU_PARTIAL
2246 struct page *oldpage;
2247 int pages;
2248 int pobjects;
2249
2250 preempt_disable();
2251 do {
2252 pages = 0;
2253 pobjects = 0;
2254 oldpage = this_cpu_read(s->cpu_slab->partial);
2255
2256 if (oldpage) {
2257 pobjects = oldpage->pobjects;
2258 pages = oldpage->pages;
2259 if (drain && pobjects > s->cpu_partial) {
2260 unsigned long flags;
2261 /*
2262 * partial array is full. Move the existing
2263 * set to the per node partial list.
2264 */
2265 local_irq_save(flags);
2266 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2267 local_irq_restore(flags);
2268 oldpage = NULL;
2269 pobjects = 0;
2270 pages = 0;
2271 stat(s, CPU_PARTIAL_DRAIN);
2272 }
2273 }
2274
2275 pages++;
2276 pobjects += page->objects - page->inuse;
2277
2278 page->pages = pages;
2279 page->pobjects = pobjects;
2280 page->next = oldpage;
2281
2282 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2283 != oldpage);
2284 if (unlikely(!s->cpu_partial)) {
2285 unsigned long flags;
2286
2287 local_irq_save(flags);
2288 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2289 local_irq_restore(flags);
2290 }
2291 preempt_enable();
2292 #endif
2293 }
2294
2295 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2296 {
2297 stat(s, CPUSLAB_FLUSH);
2298 deactivate_slab(s, c->page, c->freelist, c);
2299
2300 c->tid = next_tid(c->tid);
2301 }
2302
2303 /*
2304 * Flush cpu slab.
2305 *
2306 * Called from IPI handler with interrupts disabled.
2307 */
2308 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2309 {
2310 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2311
2312 if (likely(c)) {
2313 if (c->page)
2314 flush_slab(s, c);
2315
2316 unfreeze_partials(s, c);
2317 }
2318 }
2319
2320 static void flush_cpu_slab(void *d)
2321 {
2322 struct kmem_cache *s = d;
2323
2324 __flush_cpu_slab(s, smp_processor_id());
2325 }
2326
2327 static bool has_cpu_slab(int cpu, void *info)
2328 {
2329 struct kmem_cache *s = info;
2330 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2331
2332 return c->page || slub_percpu_partial(c);
2333 }
2334
2335 static void flush_all(struct kmem_cache *s)
2336 {
2337 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2338 }
2339
2340 /*
2341 * Use the cpu notifier to insure that the cpu slabs are flushed when
2342 * necessary.
2343 */
2344 static int slub_cpu_dead(unsigned int cpu)
2345 {
2346 struct kmem_cache *s;
2347 unsigned long flags;
2348
2349 mutex_lock(&slab_mutex);
2350 list_for_each_entry(s, &slab_caches, list) {
2351 local_irq_save(flags);
2352 __flush_cpu_slab(s, cpu);
2353 local_irq_restore(flags);
2354 }
2355 mutex_unlock(&slab_mutex);
2356 return 0;
2357 }
2358
2359 /*
2360 * Check if the objects in a per cpu structure fit numa
2361 * locality expectations.
2362 */
2363 static inline int node_match(struct page *page, int node)
2364 {
2365 #ifdef CONFIG_NUMA
2366 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2367 return 0;
2368 #endif
2369 return 1;
2370 }
2371
2372 #ifdef CONFIG_SLUB_DEBUG
2373 static int count_free(struct page *page)
2374 {
2375 return page->objects - page->inuse;
2376 }
2377
2378 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2379 {
2380 return atomic_long_read(&n->total_objects);
2381 }
2382 #endif /* CONFIG_SLUB_DEBUG */
2383
2384 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2385 static unsigned long count_partial(struct kmem_cache_node *n,
2386 int (*get_count)(struct page *))
2387 {
2388 unsigned long flags;
2389 unsigned long x = 0;
2390 struct page *page;
2391
2392 spin_lock_irqsave(&n->list_lock, flags);
2393 list_for_each_entry(page, &n->partial, lru)
2394 x += get_count(page);
2395 spin_unlock_irqrestore(&n->list_lock, flags);
2396 return x;
2397 }
2398 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2399
2400 static noinline void
2401 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2402 {
2403 #ifdef CONFIG_SLUB_DEBUG
2404 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2405 DEFAULT_RATELIMIT_BURST);
2406 int node;
2407 struct kmem_cache_node *n;
2408
2409 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2410 return;
2411
2412 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2413 nid, gfpflags, &gfpflags);
2414 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2415 s->name, s->object_size, s->size, oo_order(s->oo),
2416 oo_order(s->min));
2417
2418 if (oo_order(s->min) > get_order(s->object_size))
2419 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2420 s->name);
2421
2422 for_each_kmem_cache_node(s, node, n) {
2423 unsigned long nr_slabs;
2424 unsigned long nr_objs;
2425 unsigned long nr_free;
2426
2427 nr_free = count_partial(n, count_free);
2428 nr_slabs = node_nr_slabs(n);
2429 nr_objs = node_nr_objs(n);
2430
2431 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2432 node, nr_slabs, nr_objs, nr_free);
2433 }
2434 #endif
2435 }
2436
2437 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2438 int node, struct kmem_cache_cpu **pc)
2439 {
2440 void *freelist;
2441 struct kmem_cache_cpu *c = *pc;
2442 struct page *page;
2443
2444 freelist = get_partial(s, flags, node, c);
2445
2446 if (freelist)
2447 return freelist;
2448
2449 page = new_slab(s, flags, node);
2450 if (page) {
2451 c = raw_cpu_ptr(s->cpu_slab);
2452 if (c->page)
2453 flush_slab(s, c);
2454
2455 /*
2456 * No other reference to the page yet so we can
2457 * muck around with it freely without cmpxchg
2458 */
2459 freelist = page->freelist;
2460 page->freelist = NULL;
2461
2462 stat(s, ALLOC_SLAB);
2463 c->page = page;
2464 *pc = c;
2465 } else
2466 freelist = NULL;
2467
2468 return freelist;
2469 }
2470
2471 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2472 {
2473 if (unlikely(PageSlabPfmemalloc(page)))
2474 return gfp_pfmemalloc_allowed(gfpflags);
2475
2476 return true;
2477 }
2478
2479 /*
2480 * Check the page->freelist of a page and either transfer the freelist to the
2481 * per cpu freelist or deactivate the page.
2482 *
2483 * The page is still frozen if the return value is not NULL.
2484 *
2485 * If this function returns NULL then the page has been unfrozen.
2486 *
2487 * This function must be called with interrupt disabled.
2488 */
2489 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2490 {
2491 struct page new;
2492 unsigned long counters;
2493 void *freelist;
2494
2495 do {
2496 freelist = page->freelist;
2497 counters = page->counters;
2498
2499 new.counters = counters;
2500 VM_BUG_ON(!new.frozen);
2501
2502 new.inuse = page->objects;
2503 new.frozen = freelist != NULL;
2504
2505 } while (!__cmpxchg_double_slab(s, page,
2506 freelist, counters,
2507 NULL, new.counters,
2508 "get_freelist"));
2509
2510 return freelist;
2511 }
2512
2513 /*
2514 * Slow path. The lockless freelist is empty or we need to perform
2515 * debugging duties.
2516 *
2517 * Processing is still very fast if new objects have been freed to the
2518 * regular freelist. In that case we simply take over the regular freelist
2519 * as the lockless freelist and zap the regular freelist.
2520 *
2521 * If that is not working then we fall back to the partial lists. We take the
2522 * first element of the freelist as the object to allocate now and move the
2523 * rest of the freelist to the lockless freelist.
2524 *
2525 * And if we were unable to get a new slab from the partial slab lists then
2526 * we need to allocate a new slab. This is the slowest path since it involves
2527 * a call to the page allocator and the setup of a new slab.
2528 *
2529 * Version of __slab_alloc to use when we know that interrupts are
2530 * already disabled (which is the case for bulk allocation).
2531 */
2532 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2533 unsigned long addr, struct kmem_cache_cpu *c)
2534 {
2535 void *freelist;
2536 struct page *page;
2537
2538 page = c->page;
2539 if (!page)
2540 goto new_slab;
2541 redo:
2542
2543 if (unlikely(!node_match(page, node))) {
2544 int searchnode = node;
2545
2546 if (node != NUMA_NO_NODE && !node_present_pages(node))
2547 searchnode = node_to_mem_node(node);
2548
2549 if (unlikely(!node_match(page, searchnode))) {
2550 stat(s, ALLOC_NODE_MISMATCH);
2551 deactivate_slab(s, page, c->freelist, c);
2552 goto new_slab;
2553 }
2554 }
2555
2556 /*
2557 * By rights, we should be searching for a slab page that was
2558 * PFMEMALLOC but right now, we are losing the pfmemalloc
2559 * information when the page leaves the per-cpu allocator
2560 */
2561 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2562 deactivate_slab(s, page, c->freelist, c);
2563 goto new_slab;
2564 }
2565
2566 /* must check again c->freelist in case of cpu migration or IRQ */
2567 freelist = c->freelist;
2568 if (freelist)
2569 goto load_freelist;
2570
2571 freelist = get_freelist(s, page);
2572
2573 if (!freelist) {
2574 c->page = NULL;
2575 stat(s, DEACTIVATE_BYPASS);
2576 goto new_slab;
2577 }
2578
2579 stat(s, ALLOC_REFILL);
2580
2581 load_freelist:
2582 /*
2583 * freelist is pointing to the list of objects to be used.
2584 * page is pointing to the page from which the objects are obtained.
2585 * That page must be frozen for per cpu allocations to work.
2586 */
2587 VM_BUG_ON(!c->page->frozen);
2588 c->freelist = get_freepointer(s, freelist);
2589 c->tid = next_tid(c->tid);
2590 return freelist;
2591
2592 new_slab:
2593
2594 if (slub_percpu_partial(c)) {
2595 page = c->page = slub_percpu_partial(c);
2596 slub_set_percpu_partial(c, page);
2597 stat(s, CPU_PARTIAL_ALLOC);
2598 goto redo;
2599 }
2600
2601 freelist = new_slab_objects(s, gfpflags, node, &c);
2602
2603 if (unlikely(!freelist)) {
2604 slab_out_of_memory(s, gfpflags, node);
2605 return NULL;
2606 }
2607
2608 page = c->page;
2609 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2610 goto load_freelist;
2611
2612 /* Only entered in the debug case */
2613 if (kmem_cache_debug(s) &&
2614 !alloc_debug_processing(s, page, freelist, addr))
2615 goto new_slab; /* Slab failed checks. Next slab needed */
2616
2617 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2618 return freelist;
2619 }
2620
2621 /*
2622 * Another one that disabled interrupt and compensates for possible
2623 * cpu changes by refetching the per cpu area pointer.
2624 */
2625 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2626 unsigned long addr, struct kmem_cache_cpu *c)
2627 {
2628 void *p;
2629 unsigned long flags;
2630
2631 local_irq_save(flags);
2632 #ifdef CONFIG_PREEMPT
2633 /*
2634 * We may have been preempted and rescheduled on a different
2635 * cpu before disabling interrupts. Need to reload cpu area
2636 * pointer.
2637 */
2638 c = this_cpu_ptr(s->cpu_slab);
2639 #endif
2640
2641 p = ___slab_alloc(s, gfpflags, node, addr, c);
2642 local_irq_restore(flags);
2643 return p;
2644 }
2645
2646 /*
2647 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2648 * have the fastpath folded into their functions. So no function call
2649 * overhead for requests that can be satisfied on the fastpath.
2650 *
2651 * The fastpath works by first checking if the lockless freelist can be used.
2652 * If not then __slab_alloc is called for slow processing.
2653 *
2654 * Otherwise we can simply pick the next object from the lockless free list.
2655 */
2656 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2657 gfp_t gfpflags, int node, unsigned long addr)
2658 {
2659 void *object;
2660 struct kmem_cache_cpu *c;
2661 struct page *page;
2662 unsigned long tid;
2663
2664 s = slab_pre_alloc_hook(s, gfpflags);
2665 if (!s)
2666 return NULL;
2667 redo:
2668 /*
2669 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2670 * enabled. We may switch back and forth between cpus while
2671 * reading from one cpu area. That does not matter as long
2672 * as we end up on the original cpu again when doing the cmpxchg.
2673 *
2674 * We should guarantee that tid and kmem_cache are retrieved on
2675 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2676 * to check if it is matched or not.
2677 */
2678 do {
2679 tid = this_cpu_read(s->cpu_slab->tid);
2680 c = raw_cpu_ptr(s->cpu_slab);
2681 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2682 unlikely(tid != READ_ONCE(c->tid)));
2683
2684 /*
2685 * Irqless object alloc/free algorithm used here depends on sequence
2686 * of fetching cpu_slab's data. tid should be fetched before anything
2687 * on c to guarantee that object and page associated with previous tid
2688 * won't be used with current tid. If we fetch tid first, object and
2689 * page could be one associated with next tid and our alloc/free
2690 * request will be failed. In this case, we will retry. So, no problem.
2691 */
2692 barrier();
2693
2694 /*
2695 * The transaction ids are globally unique per cpu and per operation on
2696 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2697 * occurs on the right processor and that there was no operation on the
2698 * linked list in between.
2699 */
2700
2701 object = c->freelist;
2702 page = c->page;
2703 if (unlikely(!object || !node_match(page, node))) {
2704 object = __slab_alloc(s, gfpflags, node, addr, c);
2705 stat(s, ALLOC_SLOWPATH);
2706 } else {
2707 void *next_object = get_freepointer_safe(s, object);
2708
2709 /*
2710 * The cmpxchg will only match if there was no additional
2711 * operation and if we are on the right processor.
2712 *
2713 * The cmpxchg does the following atomically (without lock
2714 * semantics!)
2715 * 1. Relocate first pointer to the current per cpu area.
2716 * 2. Verify that tid and freelist have not been changed
2717 * 3. If they were not changed replace tid and freelist
2718 *
2719 * Since this is without lock semantics the protection is only
2720 * against code executing on this cpu *not* from access by
2721 * other cpus.
2722 */
2723 if (unlikely(!this_cpu_cmpxchg_double(
2724 s->cpu_slab->freelist, s->cpu_slab->tid,
2725 object, tid,
2726 next_object, next_tid(tid)))) {
2727
2728 note_cmpxchg_failure("slab_alloc", s, tid);
2729 goto redo;
2730 }
2731 prefetch_freepointer(s, next_object);
2732 stat(s, ALLOC_FASTPATH);
2733 }
2734
2735 if (unlikely(gfpflags & __GFP_ZERO) && object)
2736 memset(object, 0, s->object_size);
2737
2738 slab_post_alloc_hook(s, gfpflags, 1, &object);
2739
2740 return object;
2741 }
2742
2743 static __always_inline void *slab_alloc(struct kmem_cache *s,
2744 gfp_t gfpflags, unsigned long addr)
2745 {
2746 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2747 }
2748
2749 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2750 {
2751 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2752
2753 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2754 s->size, gfpflags);
2755
2756 return ret;
2757 }
2758 EXPORT_SYMBOL(kmem_cache_alloc);
2759
2760 #ifdef CONFIG_TRACING
2761 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2762 {
2763 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2764 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2765 kasan_kmalloc(s, ret, size, gfpflags);
2766 return ret;
2767 }
2768 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2769 #endif
2770
2771 #ifdef CONFIG_NUMA
2772 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2773 {
2774 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2775
2776 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2777 s->object_size, s->size, gfpflags, node);
2778
2779 return ret;
2780 }
2781 EXPORT_SYMBOL(kmem_cache_alloc_node);
2782
2783 #ifdef CONFIG_TRACING
2784 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2785 gfp_t gfpflags,
2786 int node, size_t size)
2787 {
2788 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2789
2790 trace_kmalloc_node(_RET_IP_, ret,
2791 size, s->size, gfpflags, node);
2792
2793 kasan_kmalloc(s, ret, size, gfpflags);
2794 return ret;
2795 }
2796 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2797 #endif
2798 #endif
2799
2800 /*
2801 * Slow path handling. This may still be called frequently since objects
2802 * have a longer lifetime than the cpu slabs in most processing loads.
2803 *
2804 * So we still attempt to reduce cache line usage. Just take the slab
2805 * lock and free the item. If there is no additional partial page
2806 * handling required then we can return immediately.
2807 */
2808 static void __slab_free(struct kmem_cache *s, struct page *page,
2809 void *head, void *tail, int cnt,
2810 unsigned long addr)
2811
2812 {
2813 void *prior;
2814 int was_frozen;
2815 struct page new;
2816 unsigned long counters;
2817 struct kmem_cache_node *n = NULL;
2818 unsigned long uninitialized_var(flags);
2819
2820 stat(s, FREE_SLOWPATH);
2821
2822 if (kmem_cache_debug(s) &&
2823 !free_debug_processing(s, page, head, tail, cnt, addr))
2824 return;
2825
2826 do {
2827 if (unlikely(n)) {
2828 spin_unlock_irqrestore(&n->list_lock, flags);
2829 n = NULL;
2830 }
2831 prior = page->freelist;
2832 counters = page->counters;
2833 set_freepointer(s, tail, prior);
2834 new.counters = counters;
2835 was_frozen = new.frozen;
2836 new.inuse -= cnt;
2837 if ((!new.inuse || !prior) && !was_frozen) {
2838
2839 if (kmem_cache_has_cpu_partial(s) && !prior) {
2840
2841 /*
2842 * Slab was on no list before and will be
2843 * partially empty
2844 * We can defer the list move and instead
2845 * freeze it.
2846 */
2847 new.frozen = 1;
2848
2849 } else { /* Needs to be taken off a list */
2850
2851 n = get_node(s, page_to_nid(page));
2852 /*
2853 * Speculatively acquire the list_lock.
2854 * If the cmpxchg does not succeed then we may
2855 * drop the list_lock without any processing.
2856 *
2857 * Otherwise the list_lock will synchronize with
2858 * other processors updating the list of slabs.
2859 */
2860 spin_lock_irqsave(&n->list_lock, flags);
2861
2862 }
2863 }
2864
2865 } while (!cmpxchg_double_slab(s, page,
2866 prior, counters,
2867 head, new.counters,
2868 "__slab_free"));
2869
2870 if (likely(!n)) {
2871
2872 /*
2873 * If we just froze the page then put it onto the
2874 * per cpu partial list.
2875 */
2876 if (new.frozen && !was_frozen) {
2877 put_cpu_partial(s, page, 1);
2878 stat(s, CPU_PARTIAL_FREE);
2879 }
2880 /*
2881 * The list lock was not taken therefore no list
2882 * activity can be necessary.
2883 */
2884 if (was_frozen)
2885 stat(s, FREE_FROZEN);
2886 return;
2887 }
2888
2889 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2890 goto slab_empty;
2891
2892 /*
2893 * Objects left in the slab. If it was not on the partial list before
2894 * then add it.
2895 */
2896 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2897 if (kmem_cache_debug(s))
2898 remove_full(s, n, page);
2899 add_partial(n, page, DEACTIVATE_TO_TAIL);
2900 stat(s, FREE_ADD_PARTIAL);
2901 }
2902 spin_unlock_irqrestore(&n->list_lock, flags);
2903 return;
2904
2905 slab_empty:
2906 if (prior) {
2907 /*
2908 * Slab on the partial list.
2909 */
2910 remove_partial(n, page);
2911 stat(s, FREE_REMOVE_PARTIAL);
2912 } else {
2913 /* Slab must be on the full list */
2914 remove_full(s, n, page);
2915 }
2916
2917 spin_unlock_irqrestore(&n->list_lock, flags);
2918 stat(s, FREE_SLAB);
2919 discard_slab(s, page);
2920 }
2921
2922 /*
2923 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2924 * can perform fastpath freeing without additional function calls.
2925 *
2926 * The fastpath is only possible if we are freeing to the current cpu slab
2927 * of this processor. This typically the case if we have just allocated
2928 * the item before.
2929 *
2930 * If fastpath is not possible then fall back to __slab_free where we deal
2931 * with all sorts of special processing.
2932 *
2933 * Bulk free of a freelist with several objects (all pointing to the
2934 * same page) possible by specifying head and tail ptr, plus objects
2935 * count (cnt). Bulk free indicated by tail pointer being set.
2936 */
2937 static __always_inline void do_slab_free(struct kmem_cache *s,
2938 struct page *page, void *head, void *tail,
2939 int cnt, unsigned long addr)
2940 {
2941 void *tail_obj = tail ? : head;
2942 struct kmem_cache_cpu *c;
2943 unsigned long tid;
2944 redo:
2945 /*
2946 * Determine the currently cpus per cpu slab.
2947 * The cpu may change afterward. However that does not matter since
2948 * data is retrieved via this pointer. If we are on the same cpu
2949 * during the cmpxchg then the free will succeed.
2950 */
2951 do {
2952 tid = this_cpu_read(s->cpu_slab->tid);
2953 c = raw_cpu_ptr(s->cpu_slab);
2954 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2955 unlikely(tid != READ_ONCE(c->tid)));
2956
2957 /* Same with comment on barrier() in slab_alloc_node() */
2958 barrier();
2959
2960 if (likely(page == c->page)) {
2961 set_freepointer(s, tail_obj, c->freelist);
2962
2963 if (unlikely(!this_cpu_cmpxchg_double(
2964 s->cpu_slab->freelist, s->cpu_slab->tid,
2965 c->freelist, tid,
2966 head, next_tid(tid)))) {
2967
2968 note_cmpxchg_failure("slab_free", s, tid);
2969 goto redo;
2970 }
2971 stat(s, FREE_FASTPATH);
2972 } else
2973 __slab_free(s, page, head, tail_obj, cnt, addr);
2974
2975 }
2976
2977 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2978 void *head, void *tail, int cnt,
2979 unsigned long addr)
2980 {
2981 /*
2982 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2983 * to remove objects, whose reuse must be delayed.
2984 */
2985 if (slab_free_freelist_hook(s, &head, &tail))
2986 do_slab_free(s, page, head, tail, cnt, addr);
2987 }
2988
2989 #ifdef CONFIG_KASAN
2990 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2991 {
2992 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2993 }
2994 #endif
2995
2996 void kmem_cache_free(struct kmem_cache *s, void *x)
2997 {
2998 s = cache_from_obj(s, x);
2999 if (!s)
3000 return;
3001 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3002 trace_kmem_cache_free(_RET_IP_, x);
3003 }
3004 EXPORT_SYMBOL(kmem_cache_free);
3005
3006 struct detached_freelist {
3007 struct page *page;
3008 void *tail;
3009 void *freelist;
3010 int cnt;
3011 struct kmem_cache *s;
3012 };
3013
3014 /*
3015 * This function progressively scans the array with free objects (with
3016 * a limited look ahead) and extract objects belonging to the same
3017 * page. It builds a detached freelist directly within the given
3018 * page/objects. This can happen without any need for
3019 * synchronization, because the objects are owned by running process.
3020 * The freelist is build up as a single linked list in the objects.
3021 * The idea is, that this detached freelist can then be bulk
3022 * transferred to the real freelist(s), but only requiring a single
3023 * synchronization primitive. Look ahead in the array is limited due
3024 * to performance reasons.
3025 */
3026 static inline
3027 int build_detached_freelist(struct kmem_cache *s, size_t size,
3028 void **p, struct detached_freelist *df)
3029 {
3030 size_t first_skipped_index = 0;
3031 int lookahead = 3;
3032 void *object;
3033 struct page *page;
3034
3035 /* Always re-init detached_freelist */
3036 df->page = NULL;
3037
3038 do {
3039 object = p[--size];
3040 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3041 } while (!object && size);
3042
3043 if (!object)
3044 return 0;
3045
3046 page = virt_to_head_page(object);
3047 if (!s) {
3048 /* Handle kalloc'ed objects */
3049 if (unlikely(!PageSlab(page))) {
3050 BUG_ON(!PageCompound(page));
3051 kfree_hook(object);
3052 __free_pages(page, compound_order(page));
3053 p[size] = NULL; /* mark object processed */
3054 return size;
3055 }
3056 /* Derive kmem_cache from object */
3057 df->s = page->slab_cache;
3058 } else {
3059 df->s = cache_from_obj(s, object); /* Support for memcg */
3060 }
3061
3062 /* Start new detached freelist */
3063 df->page = page;
3064 set_freepointer(df->s, object, NULL);
3065 df->tail = object;
3066 df->freelist = object;
3067 p[size] = NULL; /* mark object processed */
3068 df->cnt = 1;
3069
3070 while (size) {
3071 object = p[--size];
3072 if (!object)
3073 continue; /* Skip processed objects */
3074
3075 /* df->page is always set at this point */
3076 if (df->page == virt_to_head_page(object)) {
3077 /* Opportunity build freelist */
3078 set_freepointer(df->s, object, df->freelist);
3079 df->freelist = object;
3080 df->cnt++;
3081 p[size] = NULL; /* mark object processed */
3082
3083 continue;
3084 }
3085
3086 /* Limit look ahead search */
3087 if (!--lookahead)
3088 break;
3089
3090 if (!first_skipped_index)
3091 first_skipped_index = size + 1;
3092 }
3093
3094 return first_skipped_index;
3095 }
3096
3097 /* Note that interrupts must be enabled when calling this function. */
3098 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3099 {
3100 if (WARN_ON(!size))
3101 return;
3102
3103 do {
3104 struct detached_freelist df;
3105
3106 size = build_detached_freelist(s, size, p, &df);
3107 if (!df.page)
3108 continue;
3109
3110 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3111 } while (likely(size));
3112 }
3113 EXPORT_SYMBOL(kmem_cache_free_bulk);
3114
3115 /* Note that interrupts must be enabled when calling this function. */
3116 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3117 void **p)
3118 {
3119 struct kmem_cache_cpu *c;
3120 int i;
3121
3122 /* memcg and kmem_cache debug support */
3123 s = slab_pre_alloc_hook(s, flags);
3124 if (unlikely(!s))
3125 return false;
3126 /*
3127 * Drain objects in the per cpu slab, while disabling local
3128 * IRQs, which protects against PREEMPT and interrupts
3129 * handlers invoking normal fastpath.
3130 */
3131 local_irq_disable();
3132 c = this_cpu_ptr(s->cpu_slab);
3133
3134 for (i = 0; i < size; i++) {
3135 void *object = c->freelist;
3136
3137 if (unlikely(!object)) {
3138 /*
3139 * Invoking slow path likely have side-effect
3140 * of re-populating per CPU c->freelist
3141 */
3142 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3143 _RET_IP_, c);
3144 if (unlikely(!p[i]))
3145 goto error;
3146
3147 c = this_cpu_ptr(s->cpu_slab);
3148 continue; /* goto for-loop */
3149 }
3150 c->freelist = get_freepointer(s, object);
3151 p[i] = object;
3152 }
3153 c->tid = next_tid(c->tid);
3154 local_irq_enable();
3155
3156 /* Clear memory outside IRQ disabled fastpath loop */
3157 if (unlikely(flags & __GFP_ZERO)) {
3158 int j;
3159
3160 for (j = 0; j < i; j++)
3161 memset(p[j], 0, s->object_size);
3162 }
3163
3164 /* memcg and kmem_cache debug support */
3165 slab_post_alloc_hook(s, flags, size, p);
3166 return i;
3167 error:
3168 local_irq_enable();
3169 slab_post_alloc_hook(s, flags, i, p);
3170 __kmem_cache_free_bulk(s, i, p);
3171 return 0;
3172 }
3173 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3174
3175
3176 /*
3177 * Object placement in a slab is made very easy because we always start at
3178 * offset 0. If we tune the size of the object to the alignment then we can
3179 * get the required alignment by putting one properly sized object after
3180 * another.
3181 *
3182 * Notice that the allocation order determines the sizes of the per cpu
3183 * caches. Each processor has always one slab available for allocations.
3184 * Increasing the allocation order reduces the number of times that slabs
3185 * must be moved on and off the partial lists and is therefore a factor in
3186 * locking overhead.
3187 */
3188
3189 /*
3190 * Mininum / Maximum order of slab pages. This influences locking overhead
3191 * and slab fragmentation. A higher order reduces the number of partial slabs
3192 * and increases the number of allocations possible without having to
3193 * take the list_lock.
3194 */
3195 static int slub_min_order;
3196 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3197 static int slub_min_objects;
3198
3199 /*
3200 * Calculate the order of allocation given an slab object size.
3201 *
3202 * The order of allocation has significant impact on performance and other
3203 * system components. Generally order 0 allocations should be preferred since
3204 * order 0 does not cause fragmentation in the page allocator. Larger objects
3205 * be problematic to put into order 0 slabs because there may be too much
3206 * unused space left. We go to a higher order if more than 1/16th of the slab
3207 * would be wasted.
3208 *
3209 * In order to reach satisfactory performance we must ensure that a minimum
3210 * number of objects is in one slab. Otherwise we may generate too much
3211 * activity on the partial lists which requires taking the list_lock. This is
3212 * less a concern for large slabs though which are rarely used.
3213 *
3214 * slub_max_order specifies the order where we begin to stop considering the
3215 * number of objects in a slab as critical. If we reach slub_max_order then
3216 * we try to keep the page order as low as possible. So we accept more waste
3217 * of space in favor of a small page order.
3218 *
3219 * Higher order allocations also allow the placement of more objects in a
3220 * slab and thereby reduce object handling overhead. If the user has
3221 * requested a higher mininum order then we start with that one instead of
3222 * the smallest order which will fit the object.
3223 */
3224 static inline int slab_order(int size, int min_objects,
3225 int max_order, int fract_leftover, int reserved)
3226 {
3227 int order;
3228 int rem;
3229 int min_order = slub_min_order;
3230
3231 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3232 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3233
3234 for (order = max(min_order, get_order(min_objects * size + reserved));
3235 order <= max_order; order++) {
3236
3237 unsigned long slab_size = PAGE_SIZE << order;
3238
3239 rem = (slab_size - reserved) % size;
3240
3241 if (rem <= slab_size / fract_leftover)
3242 break;
3243 }
3244
3245 return order;
3246 }
3247
3248 static inline int calculate_order(int size, int reserved)
3249 {
3250 int order;
3251 int min_objects;
3252 int fraction;
3253 int max_objects;
3254
3255 /*
3256 * Attempt to find best configuration for a slab. This
3257 * works by first attempting to generate a layout with
3258 * the best configuration and backing off gradually.
3259 *
3260 * First we increase the acceptable waste in a slab. Then
3261 * we reduce the minimum objects required in a slab.
3262 */
3263 min_objects = slub_min_objects;
3264 if (!min_objects)
3265 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3266 max_objects = order_objects(slub_max_order, size, reserved);
3267 min_objects = min(min_objects, max_objects);
3268
3269 while (min_objects > 1) {
3270 fraction = 16;
3271 while (fraction >= 4) {
3272 order = slab_order(size, min_objects,
3273 slub_max_order, fraction, reserved);
3274 if (order <= slub_max_order)
3275 return order;
3276 fraction /= 2;
3277 }
3278 min_objects--;
3279 }
3280
3281 /*
3282 * We were unable to place multiple objects in a slab. Now
3283 * lets see if we can place a single object there.
3284 */
3285 order = slab_order(size, 1, slub_max_order, 1, reserved);
3286 if (order <= slub_max_order)
3287 return order;
3288
3289 /*
3290 * Doh this slab cannot be placed using slub_max_order.
3291 */
3292 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3293 if (order < MAX_ORDER)
3294 return order;
3295 return -ENOSYS;
3296 }
3297
3298 static void
3299 init_kmem_cache_node(struct kmem_cache_node *n)
3300 {
3301 n->nr_partial = 0;
3302 spin_lock_init(&n->list_lock);
3303 INIT_LIST_HEAD(&n->partial);
3304 #ifdef CONFIG_SLUB_DEBUG
3305 atomic_long_set(&n->nr_slabs, 0);
3306 atomic_long_set(&n->total_objects, 0);
3307 INIT_LIST_HEAD(&n->full);
3308 #endif
3309 }
3310
3311 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3312 {
3313 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3314 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3315
3316 /*
3317 * Must align to double word boundary for the double cmpxchg
3318 * instructions to work; see __pcpu_double_call_return_bool().
3319 */
3320 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3321 2 * sizeof(void *));
3322
3323 if (!s->cpu_slab)
3324 return 0;
3325
3326 init_kmem_cache_cpus(s);
3327
3328 return 1;
3329 }
3330
3331 static struct kmem_cache *kmem_cache_node;
3332
3333 /*
3334 * No kmalloc_node yet so do it by hand. We know that this is the first
3335 * slab on the node for this slabcache. There are no concurrent accesses
3336 * possible.
3337 *
3338 * Note that this function only works on the kmem_cache_node
3339 * when allocating for the kmem_cache_node. This is used for bootstrapping
3340 * memory on a fresh node that has no slab structures yet.
3341 */
3342 static void early_kmem_cache_node_alloc(int node)
3343 {
3344 struct page *page;
3345 struct kmem_cache_node *n;
3346
3347 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3348
3349 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3350
3351 BUG_ON(!page);
3352 if (page_to_nid(page) != node) {
3353 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3354 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3355 }
3356
3357 n = page->freelist;
3358 BUG_ON(!n);
3359 page->freelist = get_freepointer(kmem_cache_node, n);
3360 page->inuse = 1;
3361 page->frozen = 0;
3362 kmem_cache_node->node[node] = n;
3363 #ifdef CONFIG_SLUB_DEBUG
3364 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3365 init_tracking(kmem_cache_node, n);
3366 #endif
3367 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3368 GFP_KERNEL);
3369 init_kmem_cache_node(n);
3370 inc_slabs_node(kmem_cache_node, node, page->objects);
3371
3372 /*
3373 * No locks need to be taken here as it has just been
3374 * initialized and there is no concurrent access.
3375 */
3376 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3377 }
3378
3379 static void free_kmem_cache_nodes(struct kmem_cache *s)
3380 {
3381 int node;
3382 struct kmem_cache_node *n;
3383
3384 for_each_kmem_cache_node(s, node, n) {
3385 s->node[node] = NULL;
3386 kmem_cache_free(kmem_cache_node, n);
3387 }
3388 }
3389
3390 void __kmem_cache_release(struct kmem_cache *s)
3391 {
3392 cache_random_seq_destroy(s);
3393 free_percpu(s->cpu_slab);
3394 free_kmem_cache_nodes(s);
3395 }
3396
3397 static int init_kmem_cache_nodes(struct kmem_cache *s)
3398 {
3399 int node;
3400
3401 for_each_node_state(node, N_NORMAL_MEMORY) {
3402 struct kmem_cache_node *n;
3403
3404 if (slab_state == DOWN) {
3405 early_kmem_cache_node_alloc(node);
3406 continue;
3407 }
3408 n = kmem_cache_alloc_node(kmem_cache_node,
3409 GFP_KERNEL, node);
3410
3411 if (!n) {
3412 free_kmem_cache_nodes(s);
3413 return 0;
3414 }
3415
3416 init_kmem_cache_node(n);
3417 s->node[node] = n;
3418 }
3419 return 1;
3420 }
3421
3422 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3423 {
3424 if (min < MIN_PARTIAL)
3425 min = MIN_PARTIAL;
3426 else if (min > MAX_PARTIAL)
3427 min = MAX_PARTIAL;
3428 s->min_partial = min;
3429 }
3430
3431 static void set_cpu_partial(struct kmem_cache *s)
3432 {
3433 #ifdef CONFIG_SLUB_CPU_PARTIAL
3434 /*
3435 * cpu_partial determined the maximum number of objects kept in the
3436 * per cpu partial lists of a processor.
3437 *
3438 * Per cpu partial lists mainly contain slabs that just have one
3439 * object freed. If they are used for allocation then they can be
3440 * filled up again with minimal effort. The slab will never hit the
3441 * per node partial lists and therefore no locking will be required.
3442 *
3443 * This setting also determines
3444 *
3445 * A) The number of objects from per cpu partial slabs dumped to the
3446 * per node list when we reach the limit.
3447 * B) The number of objects in cpu partial slabs to extract from the
3448 * per node list when we run out of per cpu objects. We only fetch
3449 * 50% to keep some capacity around for frees.
3450 */
3451 if (!kmem_cache_has_cpu_partial(s))
3452 s->cpu_partial = 0;
3453 else if (s->size >= PAGE_SIZE)
3454 s->cpu_partial = 2;
3455 else if (s->size >= 1024)
3456 s->cpu_partial = 6;
3457 else if (s->size >= 256)
3458 s->cpu_partial = 13;
3459 else
3460 s->cpu_partial = 30;
3461 #endif
3462 }
3463
3464 /*
3465 * calculate_sizes() determines the order and the distribution of data within
3466 * a slab object.
3467 */
3468 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3469 {
3470 slab_flags_t flags = s->flags;
3471 size_t size = s->object_size;
3472 int order;
3473
3474 /*
3475 * Round up object size to the next word boundary. We can only
3476 * place the free pointer at word boundaries and this determines
3477 * the possible location of the free pointer.
3478 */
3479 size = ALIGN(size, sizeof(void *));
3480
3481 #ifdef CONFIG_SLUB_DEBUG
3482 /*
3483 * Determine if we can poison the object itself. If the user of
3484 * the slab may touch the object after free or before allocation
3485 * then we should never poison the object itself.
3486 */
3487 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3488 !s->ctor)
3489 s->flags |= __OBJECT_POISON;
3490 else
3491 s->flags &= ~__OBJECT_POISON;
3492
3493
3494 /*
3495 * If we are Redzoning then check if there is some space between the
3496 * end of the object and the free pointer. If not then add an
3497 * additional word to have some bytes to store Redzone information.
3498 */
3499 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3500 size += sizeof(void *);
3501 #endif
3502
3503 /*
3504 * With that we have determined the number of bytes in actual use
3505 * by the object. This is the potential offset to the free pointer.
3506 */
3507 s->inuse = size;
3508
3509 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3510 s->ctor)) {
3511 /*
3512 * Relocate free pointer after the object if it is not
3513 * permitted to overwrite the first word of the object on
3514 * kmem_cache_free.
3515 *
3516 * This is the case if we do RCU, have a constructor or
3517 * destructor or are poisoning the objects.
3518 */
3519 s->offset = size;
3520 size += sizeof(void *);
3521 }
3522
3523 #ifdef CONFIG_SLUB_DEBUG
3524 if (flags & SLAB_STORE_USER)
3525 /*
3526 * Need to store information about allocs and frees after
3527 * the object.
3528 */
3529 size += 2 * sizeof(struct track);
3530 #endif
3531
3532 kasan_cache_create(s, &size, &s->flags);
3533 #ifdef CONFIG_SLUB_DEBUG
3534 if (flags & SLAB_RED_ZONE) {
3535 /*
3536 * Add some empty padding so that we can catch
3537 * overwrites from earlier objects rather than let
3538 * tracking information or the free pointer be
3539 * corrupted if a user writes before the start
3540 * of the object.
3541 */
3542 size += sizeof(void *);
3543
3544 s->red_left_pad = sizeof(void *);
3545 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3546 size += s->red_left_pad;
3547 }
3548 #endif
3549
3550 /*
3551 * SLUB stores one object immediately after another beginning from
3552 * offset 0. In order to align the objects we have to simply size
3553 * each object to conform to the alignment.
3554 */
3555 size = ALIGN(size, s->align);
3556 s->size = size;
3557 if (forced_order >= 0)
3558 order = forced_order;
3559 else
3560 order = calculate_order(size, s->reserved);
3561
3562 if (order < 0)
3563 return 0;
3564
3565 s->allocflags = 0;
3566 if (order)
3567 s->allocflags |= __GFP_COMP;
3568
3569 if (s->flags & SLAB_CACHE_DMA)
3570 s->allocflags |= GFP_DMA;
3571
3572 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3573 s->allocflags |= __GFP_RECLAIMABLE;
3574
3575 /*
3576 * Determine the number of objects per slab
3577 */
3578 s->oo = oo_make(order, size, s->reserved);
3579 s->min = oo_make(get_order(size), size, s->reserved);
3580 if (oo_objects(s->oo) > oo_objects(s->max))
3581 s->max = s->oo;
3582
3583 return !!oo_objects(s->oo);
3584 }
3585
3586 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3587 {
3588 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3589 s->reserved = 0;
3590 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3591 s->random = get_random_long();
3592 #endif
3593
3594 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3595 s->reserved = sizeof(struct rcu_head);
3596
3597 if (!calculate_sizes(s, -1))
3598 goto error;
3599 if (disable_higher_order_debug) {
3600 /*
3601 * Disable debugging flags that store metadata if the min slab
3602 * order increased.
3603 */
3604 if (get_order(s->size) > get_order(s->object_size)) {
3605 s->flags &= ~DEBUG_METADATA_FLAGS;
3606 s->offset = 0;
3607 if (!calculate_sizes(s, -1))
3608 goto error;
3609 }
3610 }
3611
3612 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3613 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3614 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3615 /* Enable fast mode */
3616 s->flags |= __CMPXCHG_DOUBLE;
3617 #endif
3618
3619 /*
3620 * The larger the object size is, the more pages we want on the partial
3621 * list to avoid pounding the page allocator excessively.
3622 */
3623 set_min_partial(s, ilog2(s->size) / 2);
3624
3625 set_cpu_partial(s);
3626
3627 #ifdef CONFIG_NUMA
3628 s->remote_node_defrag_ratio = 1000;
3629 #endif
3630
3631 /* Initialize the pre-computed randomized freelist if slab is up */
3632 if (slab_state >= UP) {
3633 if (init_cache_random_seq(s))
3634 goto error;
3635 }
3636
3637 if (!init_kmem_cache_nodes(s))
3638 goto error;
3639
3640 if (alloc_kmem_cache_cpus(s))
3641 return 0;
3642
3643 free_kmem_cache_nodes(s);
3644 error:
3645 if (flags & SLAB_PANIC)
3646 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3647 s->name, (unsigned long)s->size, s->size,
3648 oo_order(s->oo), s->offset, (unsigned long)flags);
3649 return -EINVAL;
3650 }
3651
3652 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3653 const char *text)
3654 {
3655 #ifdef CONFIG_SLUB_DEBUG
3656 void *addr = page_address(page);
3657 void *p;
3658 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3659 sizeof(long), GFP_ATOMIC);
3660 if (!map)
3661 return;
3662 slab_err(s, page, text, s->name);
3663 slab_lock(page);
3664
3665 get_map(s, page, map);
3666 for_each_object(p, s, addr, page->objects) {
3667
3668 if (!test_bit(slab_index(p, s, addr), map)) {
3669 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3670 print_tracking(s, p);
3671 }
3672 }
3673 slab_unlock(page);
3674 kfree(map);
3675 #endif
3676 }
3677
3678 /*
3679 * Attempt to free all partial slabs on a node.
3680 * This is called from __kmem_cache_shutdown(). We must take list_lock
3681 * because sysfs file might still access partial list after the shutdowning.
3682 */
3683 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3684 {
3685 LIST_HEAD(discard);
3686 struct page *page, *h;
3687
3688 BUG_ON(irqs_disabled());
3689 spin_lock_irq(&n->list_lock);
3690 list_for_each_entry_safe(page, h, &n->partial, lru) {
3691 if (!page->inuse) {
3692 remove_partial(n, page);
3693 list_add(&page->lru, &discard);
3694 } else {
3695 list_slab_objects(s, page,
3696 "Objects remaining in %s on __kmem_cache_shutdown()");
3697 }
3698 }
3699 spin_unlock_irq(&n->list_lock);
3700
3701 list_for_each_entry_safe(page, h, &discard, lru)
3702 discard_slab(s, page);
3703 }
3704
3705 /*
3706 * Release all resources used by a slab cache.
3707 */
3708 int __kmem_cache_shutdown(struct kmem_cache *s)
3709 {
3710 int node;
3711 struct kmem_cache_node *n;
3712
3713 flush_all(s);
3714 /* Attempt to free all objects */
3715 for_each_kmem_cache_node(s, node, n) {
3716 free_partial(s, n);
3717 if (n->nr_partial || slabs_node(s, node))
3718 return 1;
3719 }
3720 sysfs_slab_remove(s);
3721 return 0;
3722 }
3723
3724 /********************************************************************
3725 * Kmalloc subsystem
3726 *******************************************************************/
3727
3728 static int __init setup_slub_min_order(char *str)
3729 {
3730 get_option(&str, &slub_min_order);
3731
3732 return 1;
3733 }
3734
3735 __setup("slub_min_order=", setup_slub_min_order);
3736
3737 static int __init setup_slub_max_order(char *str)
3738 {
3739 get_option(&str, &slub_max_order);
3740 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3741
3742 return 1;
3743 }
3744
3745 __setup("slub_max_order=", setup_slub_max_order);
3746
3747 static int __init setup_slub_min_objects(char *str)
3748 {
3749 get_option(&str, &slub_min_objects);
3750
3751 return 1;
3752 }
3753
3754 __setup("slub_min_objects=", setup_slub_min_objects);
3755
3756 void *__kmalloc(size_t size, gfp_t flags)
3757 {
3758 struct kmem_cache *s;
3759 void *ret;
3760
3761 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3762 return kmalloc_large(size, flags);
3763
3764 s = kmalloc_slab(size, flags);
3765
3766 if (unlikely(ZERO_OR_NULL_PTR(s)))
3767 return s;
3768
3769 ret = slab_alloc(s, flags, _RET_IP_);
3770
3771 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3772
3773 kasan_kmalloc(s, ret, size, flags);
3774
3775 return ret;
3776 }
3777 EXPORT_SYMBOL(__kmalloc);
3778
3779 #ifdef CONFIG_NUMA
3780 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3781 {
3782 struct page *page;
3783 void *ptr = NULL;
3784
3785 flags |= __GFP_COMP;
3786 page = alloc_pages_node(node, flags, get_order(size));
3787 if (page)
3788 ptr = page_address(page);
3789
3790 kmalloc_large_node_hook(ptr, size, flags);
3791 return ptr;
3792 }
3793
3794 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3795 {
3796 struct kmem_cache *s;
3797 void *ret;
3798
3799 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3800 ret = kmalloc_large_node(size, flags, node);
3801
3802 trace_kmalloc_node(_RET_IP_, ret,
3803 size, PAGE_SIZE << get_order(size),
3804 flags, node);
3805
3806 return ret;
3807 }
3808
3809 s = kmalloc_slab(size, flags);
3810
3811 if (unlikely(ZERO_OR_NULL_PTR(s)))
3812 return s;
3813
3814 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3815
3816 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3817
3818 kasan_kmalloc(s, ret, size, flags);
3819
3820 return ret;
3821 }
3822 EXPORT_SYMBOL(__kmalloc_node);
3823 #endif
3824
3825 #ifdef CONFIG_HARDENED_USERCOPY
3826 /*
3827 * Rejects objects that are incorrectly sized.
3828 *
3829 * Returns NULL if check passes, otherwise const char * to name of cache
3830 * to indicate an error.
3831 */
3832 const char *__check_heap_object(const void *ptr, unsigned long n,
3833 struct page *page)
3834 {
3835 struct kmem_cache *s;
3836 unsigned long offset;
3837 size_t object_size;
3838
3839 /* Find object and usable object size. */
3840 s = page->slab_cache;
3841 object_size = slab_ksize(s);
3842
3843 /* Reject impossible pointers. */
3844 if (ptr < page_address(page))
3845 return s->name;
3846
3847 /* Find offset within object. */
3848 offset = (ptr - page_address(page)) % s->size;
3849
3850 /* Adjust for redzone and reject if within the redzone. */
3851 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3852 if (offset < s->red_left_pad)
3853 return s->name;
3854 offset -= s->red_left_pad;
3855 }
3856
3857 /* Allow address range falling entirely within object size. */
3858 if (offset <= object_size && n <= object_size - offset)
3859 return NULL;
3860
3861 return s->name;
3862 }
3863 #endif /* CONFIG_HARDENED_USERCOPY */
3864
3865 static size_t __ksize(const void *object)
3866 {
3867 struct page *page;
3868
3869 if (unlikely(object == ZERO_SIZE_PTR))
3870 return 0;
3871
3872 page = virt_to_head_page(object);
3873
3874 if (unlikely(!PageSlab(page))) {
3875 WARN_ON(!PageCompound(page));
3876 return PAGE_SIZE << compound_order(page);
3877 }
3878
3879 return slab_ksize(page->slab_cache);
3880 }
3881
3882 size_t ksize(const void *object)
3883 {
3884 size_t size = __ksize(object);
3885 /* We assume that ksize callers could use whole allocated area,
3886 * so we need to unpoison this area.
3887 */
3888 kasan_unpoison_shadow(object, size);
3889 return size;
3890 }
3891 EXPORT_SYMBOL(ksize);
3892
3893 void kfree(const void *x)
3894 {
3895 struct page *page;
3896 void *object = (void *)x;
3897
3898 trace_kfree(_RET_IP_, x);
3899
3900 if (unlikely(ZERO_OR_NULL_PTR(x)))
3901 return;
3902
3903 page = virt_to_head_page(x);
3904 if (unlikely(!PageSlab(page))) {
3905 BUG_ON(!PageCompound(page));
3906 kfree_hook(x);
3907 __free_pages(page, compound_order(page));
3908 return;
3909 }
3910 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3911 }
3912 EXPORT_SYMBOL(kfree);
3913
3914 #define SHRINK_PROMOTE_MAX 32
3915
3916 /*
3917 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3918 * up most to the head of the partial lists. New allocations will then
3919 * fill those up and thus they can be removed from the partial lists.
3920 *
3921 * The slabs with the least items are placed last. This results in them
3922 * being allocated from last increasing the chance that the last objects
3923 * are freed in them.
3924 */
3925 int __kmem_cache_shrink(struct kmem_cache *s)
3926 {
3927 int node;
3928 int i;
3929 struct kmem_cache_node *n;
3930 struct page *page;
3931 struct page *t;
3932 struct list_head discard;
3933 struct list_head promote[SHRINK_PROMOTE_MAX];
3934 unsigned long flags;
3935 int ret = 0;
3936
3937 flush_all(s);
3938 for_each_kmem_cache_node(s, node, n) {
3939 INIT_LIST_HEAD(&discard);
3940 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3941 INIT_LIST_HEAD(promote + i);
3942
3943 spin_lock_irqsave(&n->list_lock, flags);
3944
3945 /*
3946 * Build lists of slabs to discard or promote.
3947 *
3948 * Note that concurrent frees may occur while we hold the
3949 * list_lock. page->inuse here is the upper limit.
3950 */
3951 list_for_each_entry_safe(page, t, &n->partial, lru) {
3952 int free = page->objects - page->inuse;
3953
3954 /* Do not reread page->inuse */
3955 barrier();
3956
3957 /* We do not keep full slabs on the list */
3958 BUG_ON(free <= 0);
3959
3960 if (free == page->objects) {
3961 list_move(&page->lru, &discard);
3962 n->nr_partial--;
3963 } else if (free <= SHRINK_PROMOTE_MAX)
3964 list_move(&page->lru, promote + free - 1);
3965 }
3966
3967 /*
3968 * Promote the slabs filled up most to the head of the
3969 * partial list.
3970 */
3971 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3972 list_splice(promote + i, &n->partial);
3973
3974 spin_unlock_irqrestore(&n->list_lock, flags);
3975
3976 /* Release empty slabs */
3977 list_for_each_entry_safe(page, t, &discard, lru)
3978 discard_slab(s, page);
3979
3980 if (slabs_node(s, node))
3981 ret = 1;
3982 }
3983
3984 return ret;
3985 }
3986
3987 #ifdef CONFIG_MEMCG
3988 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3989 {
3990 /*
3991 * Called with all the locks held after a sched RCU grace period.
3992 * Even if @s becomes empty after shrinking, we can't know that @s
3993 * doesn't have allocations already in-flight and thus can't
3994 * destroy @s until the associated memcg is released.
3995 *
3996 * However, let's remove the sysfs files for empty caches here.
3997 * Each cache has a lot of interface files which aren't
3998 * particularly useful for empty draining caches; otherwise, we can
3999 * easily end up with millions of unnecessary sysfs files on
4000 * systems which have a lot of memory and transient cgroups.
4001 */
4002 if (!__kmem_cache_shrink(s))
4003 sysfs_slab_remove(s);
4004 }
4005
4006 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4007 {
4008 /*
4009 * Disable empty slabs caching. Used to avoid pinning offline
4010 * memory cgroups by kmem pages that can be freed.
4011 */
4012 slub_set_cpu_partial(s, 0);
4013 s->min_partial = 0;
4014
4015 /*
4016 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4017 * we have to make sure the change is visible before shrinking.
4018 */
4019 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4020 }
4021 #endif
4022
4023 static int slab_mem_going_offline_callback(void *arg)
4024 {
4025 struct kmem_cache *s;
4026
4027 mutex_lock(&slab_mutex);
4028 list_for_each_entry(s, &slab_caches, list)
4029 __kmem_cache_shrink(s);
4030 mutex_unlock(&slab_mutex);
4031
4032 return 0;
4033 }
4034
4035 static void slab_mem_offline_callback(void *arg)
4036 {
4037 struct kmem_cache_node *n;
4038 struct kmem_cache *s;
4039 struct memory_notify *marg = arg;
4040 int offline_node;
4041
4042 offline_node = marg->status_change_nid_normal;
4043
4044 /*
4045 * If the node still has available memory. we need kmem_cache_node
4046 * for it yet.
4047 */
4048 if (offline_node < 0)
4049 return;
4050
4051 mutex_lock(&slab_mutex);
4052 list_for_each_entry(s, &slab_caches, list) {
4053 n = get_node(s, offline_node);
4054 if (n) {
4055 /*
4056 * if n->nr_slabs > 0, slabs still exist on the node
4057 * that is going down. We were unable to free them,
4058 * and offline_pages() function shouldn't call this
4059 * callback. So, we must fail.
4060 */
4061 BUG_ON(slabs_node(s, offline_node));
4062
4063 s->node[offline_node] = NULL;
4064 kmem_cache_free(kmem_cache_node, n);
4065 }
4066 }
4067 mutex_unlock(&slab_mutex);
4068 }
4069
4070 static int slab_mem_going_online_callback(void *arg)
4071 {
4072 struct kmem_cache_node *n;
4073 struct kmem_cache *s;
4074 struct memory_notify *marg = arg;
4075 int nid = marg->status_change_nid_normal;
4076 int ret = 0;
4077
4078 /*
4079 * If the node's memory is already available, then kmem_cache_node is
4080 * already created. Nothing to do.
4081 */
4082 if (nid < 0)
4083 return 0;
4084
4085 /*
4086 * We are bringing a node online. No memory is available yet. We must
4087 * allocate a kmem_cache_node structure in order to bring the node
4088 * online.
4089 */
4090 mutex_lock(&slab_mutex);
4091 list_for_each_entry(s, &slab_caches, list) {
4092 /*
4093 * XXX: kmem_cache_alloc_node will fallback to other nodes
4094 * since memory is not yet available from the node that
4095 * is brought up.
4096 */
4097 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4098 if (!n) {
4099 ret = -ENOMEM;
4100 goto out;
4101 }
4102 init_kmem_cache_node(n);
4103 s->node[nid] = n;
4104 }
4105 out:
4106 mutex_unlock(&slab_mutex);
4107 return ret;
4108 }
4109
4110 static int slab_memory_callback(struct notifier_block *self,
4111 unsigned long action, void *arg)
4112 {
4113 int ret = 0;
4114
4115 switch (action) {
4116 case MEM_GOING_ONLINE:
4117 ret = slab_mem_going_online_callback(arg);
4118 break;
4119 case MEM_GOING_OFFLINE:
4120 ret = slab_mem_going_offline_callback(arg);
4121 break;
4122 case MEM_OFFLINE:
4123 case MEM_CANCEL_ONLINE:
4124 slab_mem_offline_callback(arg);
4125 break;
4126 case MEM_ONLINE:
4127 case MEM_CANCEL_OFFLINE:
4128 break;
4129 }
4130 if (ret)
4131 ret = notifier_from_errno(ret);
4132 else
4133 ret = NOTIFY_OK;
4134 return ret;
4135 }
4136
4137 static struct notifier_block slab_memory_callback_nb = {
4138 .notifier_call = slab_memory_callback,
4139 .priority = SLAB_CALLBACK_PRI,
4140 };
4141
4142 /********************************************************************
4143 * Basic setup of slabs
4144 *******************************************************************/
4145
4146 /*
4147 * Used for early kmem_cache structures that were allocated using
4148 * the page allocator. Allocate them properly then fix up the pointers
4149 * that may be pointing to the wrong kmem_cache structure.
4150 */
4151
4152 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4153 {
4154 int node;
4155 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4156 struct kmem_cache_node *n;
4157
4158 memcpy(s, static_cache, kmem_cache->object_size);
4159
4160 /*
4161 * This runs very early, and only the boot processor is supposed to be
4162 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4163 * IPIs around.
4164 */
4165 __flush_cpu_slab(s, smp_processor_id());
4166 for_each_kmem_cache_node(s, node, n) {
4167 struct page *p;
4168
4169 list_for_each_entry(p, &n->partial, lru)
4170 p->slab_cache = s;
4171
4172 #ifdef CONFIG_SLUB_DEBUG
4173 list_for_each_entry(p, &n->full, lru)
4174 p->slab_cache = s;
4175 #endif
4176 }
4177 slab_init_memcg_params(s);
4178 list_add(&s->list, &slab_caches);
4179 memcg_link_cache(s);
4180 return s;
4181 }
4182
4183 void __init kmem_cache_init(void)
4184 {
4185 static __initdata struct kmem_cache boot_kmem_cache,
4186 boot_kmem_cache_node;
4187
4188 if (debug_guardpage_minorder())
4189 slub_max_order = 0;
4190
4191 kmem_cache_node = &boot_kmem_cache_node;
4192 kmem_cache = &boot_kmem_cache;
4193
4194 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4195 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4196
4197 register_hotmemory_notifier(&slab_memory_callback_nb);
4198
4199 /* Able to allocate the per node structures */
4200 slab_state = PARTIAL;
4201
4202 create_boot_cache(kmem_cache, "kmem_cache",
4203 offsetof(struct kmem_cache, node) +
4204 nr_node_ids * sizeof(struct kmem_cache_node *),
4205 SLAB_HWCACHE_ALIGN);
4206
4207 kmem_cache = bootstrap(&boot_kmem_cache);
4208
4209 /*
4210 * Allocate kmem_cache_node properly from the kmem_cache slab.
4211 * kmem_cache_node is separately allocated so no need to
4212 * update any list pointers.
4213 */
4214 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4215
4216 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4217 setup_kmalloc_cache_index_table();
4218 create_kmalloc_caches(0);
4219
4220 /* Setup random freelists for each cache */
4221 init_freelist_randomization();
4222
4223 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4224 slub_cpu_dead);
4225
4226 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4227 cache_line_size(),
4228 slub_min_order, slub_max_order, slub_min_objects,
4229 nr_cpu_ids, nr_node_ids);
4230 }
4231
4232 void __init kmem_cache_init_late(void)
4233 {
4234 }
4235
4236 struct kmem_cache *
4237 __kmem_cache_alias(const char *name, size_t size, size_t align,
4238 slab_flags_t flags, void (*ctor)(void *))
4239 {
4240 struct kmem_cache *s, *c;
4241
4242 s = find_mergeable(size, align, flags, name, ctor);
4243 if (s) {
4244 s->refcount++;
4245
4246 /*
4247 * Adjust the object sizes so that we clear
4248 * the complete object on kzalloc.
4249 */
4250 s->object_size = max(s->object_size, (int)size);
4251 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4252
4253 for_each_memcg_cache(c, s) {
4254 c->object_size = s->object_size;
4255 c->inuse = max_t(int, c->inuse,
4256 ALIGN(size, sizeof(void *)));
4257 }
4258
4259 if (sysfs_slab_alias(s, name)) {
4260 s->refcount--;
4261 s = NULL;
4262 }
4263 }
4264
4265 return s;
4266 }
4267
4268 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4269 {
4270 int err;
4271
4272 err = kmem_cache_open(s, flags);
4273 if (err)
4274 return err;
4275
4276 /* Mutex is not taken during early boot */
4277 if (slab_state <= UP)
4278 return 0;
4279
4280 memcg_propagate_slab_attrs(s);
4281 err = sysfs_slab_add(s);
4282 if (err)
4283 __kmem_cache_release(s);
4284
4285 return err;
4286 }
4287
4288 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4289 {
4290 struct kmem_cache *s;
4291 void *ret;
4292
4293 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4294 return kmalloc_large(size, gfpflags);
4295
4296 s = kmalloc_slab(size, gfpflags);
4297
4298 if (unlikely(ZERO_OR_NULL_PTR(s)))
4299 return s;
4300
4301 ret = slab_alloc(s, gfpflags, caller);
4302
4303 /* Honor the call site pointer we received. */
4304 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4305
4306 return ret;
4307 }
4308
4309 #ifdef CONFIG_NUMA
4310 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4311 int node, unsigned long caller)
4312 {
4313 struct kmem_cache *s;
4314 void *ret;
4315
4316 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4317 ret = kmalloc_large_node(size, gfpflags, node);
4318
4319 trace_kmalloc_node(caller, ret,
4320 size, PAGE_SIZE << get_order(size),
4321 gfpflags, node);
4322
4323 return ret;
4324 }
4325
4326 s = kmalloc_slab(size, gfpflags);
4327
4328 if (unlikely(ZERO_OR_NULL_PTR(s)))
4329 return s;
4330
4331 ret = slab_alloc_node(s, gfpflags, node, caller);
4332
4333 /* Honor the call site pointer we received. */
4334 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4335
4336 return ret;
4337 }
4338 #endif
4339
4340 #ifdef CONFIG_SYSFS
4341 static int count_inuse(struct page *page)
4342 {
4343 return page->inuse;
4344 }
4345
4346 static int count_total(struct page *page)
4347 {
4348 return page->objects;
4349 }
4350 #endif
4351
4352 #ifdef CONFIG_SLUB_DEBUG
4353 static int validate_slab(struct kmem_cache *s, struct page *page,
4354 unsigned long *map)
4355 {
4356 void *p;
4357 void *addr = page_address(page);
4358
4359 if (!check_slab(s, page) ||
4360 !on_freelist(s, page, NULL))
4361 return 0;
4362
4363 /* Now we know that a valid freelist exists */
4364 bitmap_zero(map, page->objects);
4365
4366 get_map(s, page, map);
4367 for_each_object(p, s, addr, page->objects) {
4368 if (test_bit(slab_index(p, s, addr), map))
4369 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4370 return 0;
4371 }
4372
4373 for_each_object(p, s, addr, page->objects)
4374 if (!test_bit(slab_index(p, s, addr), map))
4375 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4376 return 0;
4377 return 1;
4378 }
4379
4380 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4381 unsigned long *map)
4382 {
4383 slab_lock(page);
4384 validate_slab(s, page, map);
4385 slab_unlock(page);
4386 }
4387
4388 static int validate_slab_node(struct kmem_cache *s,
4389 struct kmem_cache_node *n, unsigned long *map)
4390 {
4391 unsigned long count = 0;
4392 struct page *page;
4393 unsigned long flags;
4394
4395 spin_lock_irqsave(&n->list_lock, flags);
4396
4397 list_for_each_entry(page, &n->partial, lru) {
4398 validate_slab_slab(s, page, map);
4399 count++;
4400 }
4401 if (count != n->nr_partial)
4402 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4403 s->name, count, n->nr_partial);
4404
4405 if (!(s->flags & SLAB_STORE_USER))
4406 goto out;
4407
4408 list_for_each_entry(page, &n->full, lru) {
4409 validate_slab_slab(s, page, map);
4410 count++;
4411 }
4412 if (count != atomic_long_read(&n->nr_slabs))
4413 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4414 s->name, count, atomic_long_read(&n->nr_slabs));
4415
4416 out:
4417 spin_unlock_irqrestore(&n->list_lock, flags);
4418 return count;
4419 }
4420
4421 static long validate_slab_cache(struct kmem_cache *s)
4422 {
4423 int node;
4424 unsigned long count = 0;
4425 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4426 sizeof(unsigned long), GFP_KERNEL);
4427 struct kmem_cache_node *n;
4428
4429 if (!map)
4430 return -ENOMEM;
4431
4432 flush_all(s);
4433 for_each_kmem_cache_node(s, node, n)
4434 count += validate_slab_node(s, n, map);
4435 kfree(map);
4436 return count;
4437 }
4438 /*
4439 * Generate lists of code addresses where slabcache objects are allocated
4440 * and freed.
4441 */
4442
4443 struct location {
4444 unsigned long count;
4445 unsigned long addr;
4446 long long sum_time;
4447 long min_time;
4448 long max_time;
4449 long min_pid;
4450 long max_pid;
4451 DECLARE_BITMAP(cpus, NR_CPUS);
4452 nodemask_t nodes;
4453 };
4454
4455 struct loc_track {
4456 unsigned long max;
4457 unsigned long count;
4458 struct location *loc;
4459 };
4460
4461 static void free_loc_track(struct loc_track *t)
4462 {
4463 if (t->max)
4464 free_pages((unsigned long)t->loc,
4465 get_order(sizeof(struct location) * t->max));
4466 }
4467
4468 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4469 {
4470 struct location *l;
4471 int order;
4472
4473 order = get_order(sizeof(struct location) * max);
4474
4475 l = (void *)__get_free_pages(flags, order);
4476 if (!l)
4477 return 0;
4478
4479 if (t->count) {
4480 memcpy(l, t->loc, sizeof(struct location) * t->count);
4481 free_loc_track(t);
4482 }
4483 t->max = max;
4484 t->loc = l;
4485 return 1;
4486 }
4487
4488 static int add_location(struct loc_track *t, struct kmem_cache *s,
4489 const struct track *track)
4490 {
4491 long start, end, pos;
4492 struct location *l;
4493 unsigned long caddr;
4494 unsigned long age = jiffies - track->when;
4495
4496 start = -1;
4497 end = t->count;
4498
4499 for ( ; ; ) {
4500 pos = start + (end - start + 1) / 2;
4501
4502 /*
4503 * There is nothing at "end". If we end up there
4504 * we need to add something to before end.
4505 */
4506 if (pos == end)
4507 break;
4508
4509 caddr = t->loc[pos].addr;
4510 if (track->addr == caddr) {
4511
4512 l = &t->loc[pos];
4513 l->count++;
4514 if (track->when) {
4515 l->sum_time += age;
4516 if (age < l->min_time)
4517 l->min_time = age;
4518 if (age > l->max_time)
4519 l->max_time = age;
4520
4521 if (track->pid < l->min_pid)
4522 l->min_pid = track->pid;
4523 if (track->pid > l->max_pid)
4524 l->max_pid = track->pid;
4525
4526 cpumask_set_cpu(track->cpu,
4527 to_cpumask(l->cpus));
4528 }
4529 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4530 return 1;
4531 }
4532
4533 if (track->addr < caddr)
4534 end = pos;
4535 else
4536 start = pos;
4537 }
4538
4539 /*
4540 * Not found. Insert new tracking element.
4541 */
4542 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4543 return 0;
4544
4545 l = t->loc + pos;
4546 if (pos < t->count)
4547 memmove(l + 1, l,
4548 (t->count - pos) * sizeof(struct location));
4549 t->count++;
4550 l->count = 1;
4551 l->addr = track->addr;
4552 l->sum_time = age;
4553 l->min_time = age;
4554 l->max_time = age;
4555 l->min_pid = track->pid;
4556 l->max_pid = track->pid;
4557 cpumask_clear(to_cpumask(l->cpus));
4558 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4559 nodes_clear(l->nodes);
4560 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4561 return 1;
4562 }
4563
4564 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4565 struct page *page, enum track_item alloc,
4566 unsigned long *map)
4567 {
4568 void *addr = page_address(page);
4569 void *p;
4570
4571 bitmap_zero(map, page->objects);
4572 get_map(s, page, map);
4573
4574 for_each_object(p, s, addr, page->objects)
4575 if (!test_bit(slab_index(p, s, addr), map))
4576 add_location(t, s, get_track(s, p, alloc));
4577 }
4578
4579 static int list_locations(struct kmem_cache *s, char *buf,
4580 enum track_item alloc)
4581 {
4582 int len = 0;
4583 unsigned long i;
4584 struct loc_track t = { 0, 0, NULL };
4585 int node;
4586 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4587 sizeof(unsigned long), GFP_KERNEL);
4588 struct kmem_cache_node *n;
4589
4590 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4591 GFP_KERNEL)) {
4592 kfree(map);
4593 return sprintf(buf, "Out of memory\n");
4594 }
4595 /* Push back cpu slabs */
4596 flush_all(s);
4597
4598 for_each_kmem_cache_node(s, node, n) {
4599 unsigned long flags;
4600 struct page *page;
4601
4602 if (!atomic_long_read(&n->nr_slabs))
4603 continue;
4604
4605 spin_lock_irqsave(&n->list_lock, flags);
4606 list_for_each_entry(page, &n->partial, lru)
4607 process_slab(&t, s, page, alloc, map);
4608 list_for_each_entry(page, &n->full, lru)
4609 process_slab(&t, s, page, alloc, map);
4610 spin_unlock_irqrestore(&n->list_lock, flags);
4611 }
4612
4613 for (i = 0; i < t.count; i++) {
4614 struct location *l = &t.loc[i];
4615
4616 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4617 break;
4618 len += sprintf(buf + len, "%7ld ", l->count);
4619
4620 if (l->addr)
4621 len += sprintf(buf + len, "%pS", (void *)l->addr);
4622 else
4623 len += sprintf(buf + len, "<not-available>");
4624
4625 if (l->sum_time != l->min_time) {
4626 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4627 l->min_time,
4628 (long)div_u64(l->sum_time, l->count),
4629 l->max_time);
4630 } else
4631 len += sprintf(buf + len, " age=%ld",
4632 l->min_time);
4633
4634 if (l->min_pid != l->max_pid)
4635 len += sprintf(buf + len, " pid=%ld-%ld",
4636 l->min_pid, l->max_pid);
4637 else
4638 len += sprintf(buf + len, " pid=%ld",
4639 l->min_pid);
4640
4641 if (num_online_cpus() > 1 &&
4642 !cpumask_empty(to_cpumask(l->cpus)) &&
4643 len < PAGE_SIZE - 60)
4644 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4645 " cpus=%*pbl",
4646 cpumask_pr_args(to_cpumask(l->cpus)));
4647
4648 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4649 len < PAGE_SIZE - 60)
4650 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4651 " nodes=%*pbl",
4652 nodemask_pr_args(&l->nodes));
4653
4654 len += sprintf(buf + len, "\n");
4655 }
4656
4657 free_loc_track(&t);
4658 kfree(map);
4659 if (!t.count)
4660 len += sprintf(buf, "No data\n");
4661 return len;
4662 }
4663 #endif
4664
4665 #ifdef SLUB_RESILIENCY_TEST
4666 static void __init resiliency_test(void)
4667 {
4668 u8 *p;
4669
4670 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4671
4672 pr_err("SLUB resiliency testing\n");
4673 pr_err("-----------------------\n");
4674 pr_err("A. Corruption after allocation\n");
4675
4676 p = kzalloc(16, GFP_KERNEL);
4677 p[16] = 0x12;
4678 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4679 p + 16);
4680
4681 validate_slab_cache(kmalloc_caches[4]);
4682
4683 /* Hmmm... The next two are dangerous */
4684 p = kzalloc(32, GFP_KERNEL);
4685 p[32 + sizeof(void *)] = 0x34;
4686 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4687 p);
4688 pr_err("If allocated object is overwritten then not detectable\n\n");
4689
4690 validate_slab_cache(kmalloc_caches[5]);
4691 p = kzalloc(64, GFP_KERNEL);
4692 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4693 *p = 0x56;
4694 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4695 p);
4696 pr_err("If allocated object is overwritten then not detectable\n\n");
4697 validate_slab_cache(kmalloc_caches[6]);
4698
4699 pr_err("\nB. Corruption after free\n");
4700 p = kzalloc(128, GFP_KERNEL);
4701 kfree(p);
4702 *p = 0x78;
4703 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4704 validate_slab_cache(kmalloc_caches[7]);
4705
4706 p = kzalloc(256, GFP_KERNEL);
4707 kfree(p);
4708 p[50] = 0x9a;
4709 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4710 validate_slab_cache(kmalloc_caches[8]);
4711
4712 p = kzalloc(512, GFP_KERNEL);
4713 kfree(p);
4714 p[512] = 0xab;
4715 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4716 validate_slab_cache(kmalloc_caches[9]);
4717 }
4718 #else
4719 #ifdef CONFIG_SYSFS
4720 static void resiliency_test(void) {};
4721 #endif
4722 #endif
4723
4724 #ifdef CONFIG_SYSFS
4725 enum slab_stat_type {
4726 SL_ALL, /* All slabs */
4727 SL_PARTIAL, /* Only partially allocated slabs */
4728 SL_CPU, /* Only slabs used for cpu caches */
4729 SL_OBJECTS, /* Determine allocated objects not slabs */
4730 SL_TOTAL /* Determine object capacity not slabs */
4731 };
4732
4733 #define SO_ALL (1 << SL_ALL)
4734 #define SO_PARTIAL (1 << SL_PARTIAL)
4735 #define SO_CPU (1 << SL_CPU)
4736 #define SO_OBJECTS (1 << SL_OBJECTS)
4737 #define SO_TOTAL (1 << SL_TOTAL)
4738
4739 #ifdef CONFIG_MEMCG
4740 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4741
4742 static int __init setup_slub_memcg_sysfs(char *str)
4743 {
4744 int v;
4745
4746 if (get_option(&str, &v) > 0)
4747 memcg_sysfs_enabled = v;
4748
4749 return 1;
4750 }
4751
4752 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4753 #endif
4754
4755 static ssize_t show_slab_objects(struct kmem_cache *s,
4756 char *buf, unsigned long flags)
4757 {
4758 unsigned long total = 0;
4759 int node;
4760 int x;
4761 unsigned long *nodes;
4762
4763 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4764 if (!nodes)
4765 return -ENOMEM;
4766
4767 if (flags & SO_CPU) {
4768 int cpu;
4769
4770 for_each_possible_cpu(cpu) {
4771 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4772 cpu);
4773 int node;
4774 struct page *page;
4775
4776 page = READ_ONCE(c->page);
4777 if (!page)
4778 continue;
4779
4780 node = page_to_nid(page);
4781 if (flags & SO_TOTAL)
4782 x = page->objects;
4783 else if (flags & SO_OBJECTS)
4784 x = page->inuse;
4785 else
4786 x = 1;
4787
4788 total += x;
4789 nodes[node] += x;
4790
4791 page = slub_percpu_partial_read_once(c);
4792 if (page) {
4793 node = page_to_nid(page);
4794 if (flags & SO_TOTAL)
4795 WARN_ON_ONCE(1);
4796 else if (flags & SO_OBJECTS)
4797 WARN_ON_ONCE(1);
4798 else
4799 x = page->pages;
4800 total += x;
4801 nodes[node] += x;
4802 }
4803 }
4804 }
4805
4806 get_online_mems();
4807 #ifdef CONFIG_SLUB_DEBUG
4808 if (flags & SO_ALL) {
4809 struct kmem_cache_node *n;
4810
4811 for_each_kmem_cache_node(s, node, n) {
4812
4813 if (flags & SO_TOTAL)
4814 x = atomic_long_read(&n->total_objects);
4815 else if (flags & SO_OBJECTS)
4816 x = atomic_long_read(&n->total_objects) -
4817 count_partial(n, count_free);
4818 else
4819 x = atomic_long_read(&n->nr_slabs);
4820 total += x;
4821 nodes[node] += x;
4822 }
4823
4824 } else
4825 #endif
4826 if (flags & SO_PARTIAL) {
4827 struct kmem_cache_node *n;
4828
4829 for_each_kmem_cache_node(s, node, n) {
4830 if (flags & SO_TOTAL)
4831 x = count_partial(n, count_total);
4832 else if (flags & SO_OBJECTS)
4833 x = count_partial(n, count_inuse);
4834 else
4835 x = n->nr_partial;
4836 total += x;
4837 nodes[node] += x;
4838 }
4839 }
4840 x = sprintf(buf, "%lu", total);
4841 #ifdef CONFIG_NUMA
4842 for (node = 0; node < nr_node_ids; node++)
4843 if (nodes[node])
4844 x += sprintf(buf + x, " N%d=%lu",
4845 node, nodes[node]);
4846 #endif
4847 put_online_mems();
4848 kfree(nodes);
4849 return x + sprintf(buf + x, "\n");
4850 }
4851
4852 #ifdef CONFIG_SLUB_DEBUG
4853 static int any_slab_objects(struct kmem_cache *s)
4854 {
4855 int node;
4856 struct kmem_cache_node *n;
4857
4858 for_each_kmem_cache_node(s, node, n)
4859 if (atomic_long_read(&n->total_objects))
4860 return 1;
4861
4862 return 0;
4863 }
4864 #endif
4865
4866 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4867 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4868
4869 struct slab_attribute {
4870 struct attribute attr;
4871 ssize_t (*show)(struct kmem_cache *s, char *buf);
4872 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4873 };
4874
4875 #define SLAB_ATTR_RO(_name) \
4876 static struct slab_attribute _name##_attr = \
4877 __ATTR(_name, 0400, _name##_show, NULL)
4878
4879 #define SLAB_ATTR(_name) \
4880 static struct slab_attribute _name##_attr = \
4881 __ATTR(_name, 0600, _name##_show, _name##_store)
4882
4883 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4884 {
4885 return sprintf(buf, "%d\n", s->size);
4886 }
4887 SLAB_ATTR_RO(slab_size);
4888
4889 static ssize_t align_show(struct kmem_cache *s, char *buf)
4890 {
4891 return sprintf(buf, "%d\n", s->align);
4892 }
4893 SLAB_ATTR_RO(align);
4894
4895 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4896 {
4897 return sprintf(buf, "%d\n", s->object_size);
4898 }
4899 SLAB_ATTR_RO(object_size);
4900
4901 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4902 {
4903 return sprintf(buf, "%d\n", oo_objects(s->oo));
4904 }
4905 SLAB_ATTR_RO(objs_per_slab);
4906
4907 static ssize_t order_store(struct kmem_cache *s,
4908 const char *buf, size_t length)
4909 {
4910 unsigned long order;
4911 int err;
4912
4913 err = kstrtoul(buf, 10, &order);
4914 if (err)
4915 return err;
4916
4917 if (order > slub_max_order || order < slub_min_order)
4918 return -EINVAL;
4919
4920 calculate_sizes(s, order);
4921 return length;
4922 }
4923
4924 static ssize_t order_show(struct kmem_cache *s, char *buf)
4925 {
4926 return sprintf(buf, "%d\n", oo_order(s->oo));
4927 }
4928 SLAB_ATTR(order);
4929
4930 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4931 {
4932 return sprintf(buf, "%lu\n", s->min_partial);
4933 }
4934
4935 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4936 size_t length)
4937 {
4938 unsigned long min;
4939 int err;
4940
4941 err = kstrtoul(buf, 10, &min);
4942 if (err)
4943 return err;
4944
4945 set_min_partial(s, min);
4946 return length;
4947 }
4948 SLAB_ATTR(min_partial);
4949
4950 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4951 {
4952 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4953 }
4954
4955 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4956 size_t length)
4957 {
4958 unsigned long objects;
4959 int err;
4960
4961 err = kstrtoul(buf, 10, &objects);
4962 if (err)
4963 return err;
4964 if (objects && !kmem_cache_has_cpu_partial(s))
4965 return -EINVAL;
4966
4967 slub_set_cpu_partial(s, objects);
4968 flush_all(s);
4969 return length;
4970 }
4971 SLAB_ATTR(cpu_partial);
4972
4973 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4974 {
4975 if (!s->ctor)
4976 return 0;
4977 return sprintf(buf, "%pS\n", s->ctor);
4978 }
4979 SLAB_ATTR_RO(ctor);
4980
4981 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4982 {
4983 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4984 }
4985 SLAB_ATTR_RO(aliases);
4986
4987 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4988 {
4989 return show_slab_objects(s, buf, SO_PARTIAL);
4990 }
4991 SLAB_ATTR_RO(partial);
4992
4993 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4994 {
4995 return show_slab_objects(s, buf, SO_CPU);
4996 }
4997 SLAB_ATTR_RO(cpu_slabs);
4998
4999 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5000 {
5001 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5002 }
5003 SLAB_ATTR_RO(objects);
5004
5005 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5006 {
5007 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5008 }
5009 SLAB_ATTR_RO(objects_partial);
5010
5011 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5012 {
5013 int objects = 0;
5014 int pages = 0;
5015 int cpu;
5016 int len;
5017
5018 for_each_online_cpu(cpu) {
5019 struct page *page;
5020
5021 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5022
5023 if (page) {
5024 pages += page->pages;
5025 objects += page->pobjects;
5026 }
5027 }
5028
5029 len = sprintf(buf, "%d(%d)", objects, pages);
5030
5031 #ifdef CONFIG_SMP
5032 for_each_online_cpu(cpu) {
5033 struct page *page;
5034
5035 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5036
5037 if (page && len < PAGE_SIZE - 20)
5038 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5039 page->pobjects, page->pages);
5040 }
5041 #endif
5042 return len + sprintf(buf + len, "\n");
5043 }
5044 SLAB_ATTR_RO(slabs_cpu_partial);
5045
5046 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5047 {
5048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5049 }
5050
5051 static ssize_t reclaim_account_store(struct kmem_cache *s,
5052 const char *buf, size_t length)
5053 {
5054 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5055 if (buf[0] == '1')
5056 s->flags |= SLAB_RECLAIM_ACCOUNT;
5057 return length;
5058 }
5059 SLAB_ATTR(reclaim_account);
5060
5061 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5062 {
5063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5064 }
5065 SLAB_ATTR_RO(hwcache_align);
5066
5067 #ifdef CONFIG_ZONE_DMA
5068 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5069 {
5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5071 }
5072 SLAB_ATTR_RO(cache_dma);
5073 #endif
5074
5075 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5076 {
5077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5078 }
5079 SLAB_ATTR_RO(destroy_by_rcu);
5080
5081 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5082 {
5083 return sprintf(buf, "%d\n", s->reserved);
5084 }
5085 SLAB_ATTR_RO(reserved);
5086
5087 #ifdef CONFIG_SLUB_DEBUG
5088 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5089 {
5090 return show_slab_objects(s, buf, SO_ALL);
5091 }
5092 SLAB_ATTR_RO(slabs);
5093
5094 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5095 {
5096 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5097 }
5098 SLAB_ATTR_RO(total_objects);
5099
5100 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5101 {
5102 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5103 }
5104
5105 static ssize_t sanity_checks_store(struct kmem_cache *s,
5106 const char *buf, size_t length)
5107 {
5108 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5109 if (buf[0] == '1') {
5110 s->flags &= ~__CMPXCHG_DOUBLE;
5111 s->flags |= SLAB_CONSISTENCY_CHECKS;
5112 }
5113 return length;
5114 }
5115 SLAB_ATTR(sanity_checks);
5116
5117 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5118 {
5119 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5120 }
5121
5122 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5123 size_t length)
5124 {
5125 /*
5126 * Tracing a merged cache is going to give confusing results
5127 * as well as cause other issues like converting a mergeable
5128 * cache into an umergeable one.
5129 */
5130 if (s->refcount > 1)
5131 return -EINVAL;
5132
5133 s->flags &= ~SLAB_TRACE;
5134 if (buf[0] == '1') {
5135 s->flags &= ~__CMPXCHG_DOUBLE;
5136 s->flags |= SLAB_TRACE;
5137 }
5138 return length;
5139 }
5140 SLAB_ATTR(trace);
5141
5142 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5143 {
5144 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5145 }
5146
5147 static ssize_t red_zone_store(struct kmem_cache *s,
5148 const char *buf, size_t length)
5149 {
5150 if (any_slab_objects(s))
5151 return -EBUSY;
5152
5153 s->flags &= ~SLAB_RED_ZONE;
5154 if (buf[0] == '1') {
5155 s->flags |= SLAB_RED_ZONE;
5156 }
5157 calculate_sizes(s, -1);
5158 return length;
5159 }
5160 SLAB_ATTR(red_zone);
5161
5162 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5163 {
5164 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5165 }
5166
5167 static ssize_t poison_store(struct kmem_cache *s,
5168 const char *buf, size_t length)
5169 {
5170 if (any_slab_objects(s))
5171 return -EBUSY;
5172
5173 s->flags &= ~SLAB_POISON;
5174 if (buf[0] == '1') {
5175 s->flags |= SLAB_POISON;
5176 }
5177 calculate_sizes(s, -1);
5178 return length;
5179 }
5180 SLAB_ATTR(poison);
5181
5182 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5183 {
5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5185 }
5186
5187 static ssize_t store_user_store(struct kmem_cache *s,
5188 const char *buf, size_t length)
5189 {
5190 if (any_slab_objects(s))
5191 return -EBUSY;
5192
5193 s->flags &= ~SLAB_STORE_USER;
5194 if (buf[0] == '1') {
5195 s->flags &= ~__CMPXCHG_DOUBLE;
5196 s->flags |= SLAB_STORE_USER;
5197 }
5198 calculate_sizes(s, -1);
5199 return length;
5200 }
5201 SLAB_ATTR(store_user);
5202
5203 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5204 {
5205 return 0;
5206 }
5207
5208 static ssize_t validate_store(struct kmem_cache *s,
5209 const char *buf, size_t length)
5210 {
5211 int ret = -EINVAL;
5212
5213 if (buf[0] == '1') {
5214 ret = validate_slab_cache(s);
5215 if (ret >= 0)
5216 ret = length;
5217 }
5218 return ret;
5219 }
5220 SLAB_ATTR(validate);
5221
5222 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5223 {
5224 if (!(s->flags & SLAB_STORE_USER))
5225 return -ENOSYS;
5226 return list_locations(s, buf, TRACK_ALLOC);
5227 }
5228 SLAB_ATTR_RO(alloc_calls);
5229
5230 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5231 {
5232 if (!(s->flags & SLAB_STORE_USER))
5233 return -ENOSYS;
5234 return list_locations(s, buf, TRACK_FREE);
5235 }
5236 SLAB_ATTR_RO(free_calls);
5237 #endif /* CONFIG_SLUB_DEBUG */
5238
5239 #ifdef CONFIG_FAILSLAB
5240 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5241 {
5242 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5243 }
5244
5245 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5246 size_t length)
5247 {
5248 if (s->refcount > 1)
5249 return -EINVAL;
5250
5251 s->flags &= ~SLAB_FAILSLAB;
5252 if (buf[0] == '1')
5253 s->flags |= SLAB_FAILSLAB;
5254 return length;
5255 }
5256 SLAB_ATTR(failslab);
5257 #endif
5258
5259 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5260 {
5261 return 0;
5262 }
5263
5264 static ssize_t shrink_store(struct kmem_cache *s,
5265 const char *buf, size_t length)
5266 {
5267 if (buf[0] == '1')
5268 kmem_cache_shrink(s);
5269 else
5270 return -EINVAL;
5271 return length;
5272 }
5273 SLAB_ATTR(shrink);
5274
5275 #ifdef CONFIG_NUMA
5276 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5277 {
5278 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5279 }
5280
5281 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5282 const char *buf, size_t length)
5283 {
5284 unsigned long ratio;
5285 int err;
5286
5287 err = kstrtoul(buf, 10, &ratio);
5288 if (err)
5289 return err;
5290
5291 if (ratio <= 100)
5292 s->remote_node_defrag_ratio = ratio * 10;
5293
5294 return length;
5295 }
5296 SLAB_ATTR(remote_node_defrag_ratio);
5297 #endif
5298
5299 #ifdef CONFIG_SLUB_STATS
5300 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5301 {
5302 unsigned long sum = 0;
5303 int cpu;
5304 int len;
5305 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5306
5307 if (!data)
5308 return -ENOMEM;
5309
5310 for_each_online_cpu(cpu) {
5311 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5312
5313 data[cpu] = x;
5314 sum += x;
5315 }
5316
5317 len = sprintf(buf, "%lu", sum);
5318
5319 #ifdef CONFIG_SMP
5320 for_each_online_cpu(cpu) {
5321 if (data[cpu] && len < PAGE_SIZE - 20)
5322 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5323 }
5324 #endif
5325 kfree(data);
5326 return len + sprintf(buf + len, "\n");
5327 }
5328
5329 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5330 {
5331 int cpu;
5332
5333 for_each_online_cpu(cpu)
5334 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5335 }
5336
5337 #define STAT_ATTR(si, text) \
5338 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5339 { \
5340 return show_stat(s, buf, si); \
5341 } \
5342 static ssize_t text##_store(struct kmem_cache *s, \
5343 const char *buf, size_t length) \
5344 { \
5345 if (buf[0] != '0') \
5346 return -EINVAL; \
5347 clear_stat(s, si); \
5348 return length; \
5349 } \
5350 SLAB_ATTR(text); \
5351
5352 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5353 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5354 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5355 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5356 STAT_ATTR(FREE_FROZEN, free_frozen);
5357 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5358 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5359 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5360 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5361 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5362 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5363 STAT_ATTR(FREE_SLAB, free_slab);
5364 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5365 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5366 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5367 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5368 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5369 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5370 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5371 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5372 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5373 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5374 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5375 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5376 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5377 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5378 #endif
5379
5380 static struct attribute *slab_attrs[] = {
5381 &slab_size_attr.attr,
5382 &object_size_attr.attr,
5383 &objs_per_slab_attr.attr,
5384 &order_attr.attr,
5385 &min_partial_attr.attr,
5386 &cpu_partial_attr.attr,
5387 &objects_attr.attr,
5388 &objects_partial_attr.attr,
5389 &partial_attr.attr,
5390 &cpu_slabs_attr.attr,
5391 &ctor_attr.attr,
5392 &aliases_attr.attr,
5393 &align_attr.attr,
5394 &hwcache_align_attr.attr,
5395 &reclaim_account_attr.attr,
5396 &destroy_by_rcu_attr.attr,
5397 &shrink_attr.attr,
5398 &reserved_attr.attr,
5399 &slabs_cpu_partial_attr.attr,
5400 #ifdef CONFIG_SLUB_DEBUG
5401 &total_objects_attr.attr,
5402 &slabs_attr.attr,
5403 &sanity_checks_attr.attr,
5404 &trace_attr.attr,
5405 &red_zone_attr.attr,
5406 &poison_attr.attr,
5407 &store_user_attr.attr,
5408 &validate_attr.attr,
5409 &alloc_calls_attr.attr,
5410 &free_calls_attr.attr,
5411 #endif
5412 #ifdef CONFIG_ZONE_DMA
5413 &cache_dma_attr.attr,
5414 #endif
5415 #ifdef CONFIG_NUMA
5416 &remote_node_defrag_ratio_attr.attr,
5417 #endif
5418 #ifdef CONFIG_SLUB_STATS
5419 &alloc_fastpath_attr.attr,
5420 &alloc_slowpath_attr.attr,
5421 &free_fastpath_attr.attr,
5422 &free_slowpath_attr.attr,
5423 &free_frozen_attr.attr,
5424 &free_add_partial_attr.attr,
5425 &free_remove_partial_attr.attr,
5426 &alloc_from_partial_attr.attr,
5427 &alloc_slab_attr.attr,
5428 &alloc_refill_attr.attr,
5429 &alloc_node_mismatch_attr.attr,
5430 &free_slab_attr.attr,
5431 &cpuslab_flush_attr.attr,
5432 &deactivate_full_attr.attr,
5433 &deactivate_empty_attr.attr,
5434 &deactivate_to_head_attr.attr,
5435 &deactivate_to_tail_attr.attr,
5436 &deactivate_remote_frees_attr.attr,
5437 &deactivate_bypass_attr.attr,
5438 &order_fallback_attr.attr,
5439 &cmpxchg_double_fail_attr.attr,
5440 &cmpxchg_double_cpu_fail_attr.attr,
5441 &cpu_partial_alloc_attr.attr,
5442 &cpu_partial_free_attr.attr,
5443 &cpu_partial_node_attr.attr,
5444 &cpu_partial_drain_attr.attr,
5445 #endif
5446 #ifdef CONFIG_FAILSLAB
5447 &failslab_attr.attr,
5448 #endif
5449
5450 NULL
5451 };
5452
5453 static const struct attribute_group slab_attr_group = {
5454 .attrs = slab_attrs,
5455 };
5456
5457 static ssize_t slab_attr_show(struct kobject *kobj,
5458 struct attribute *attr,
5459 char *buf)
5460 {
5461 struct slab_attribute *attribute;
5462 struct kmem_cache *s;
5463 int err;
5464
5465 attribute = to_slab_attr(attr);
5466 s = to_slab(kobj);
5467
5468 if (!attribute->show)
5469 return -EIO;
5470
5471 err = attribute->show(s, buf);
5472
5473 return err;
5474 }
5475
5476 static ssize_t slab_attr_store(struct kobject *kobj,
5477 struct attribute *attr,
5478 const char *buf, size_t len)
5479 {
5480 struct slab_attribute *attribute;
5481 struct kmem_cache *s;
5482 int err;
5483
5484 attribute = to_slab_attr(attr);
5485 s = to_slab(kobj);
5486
5487 if (!attribute->store)
5488 return -EIO;
5489
5490 err = attribute->store(s, buf, len);
5491 #ifdef CONFIG_MEMCG
5492 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5493 struct kmem_cache *c;
5494
5495 mutex_lock(&slab_mutex);
5496 if (s->max_attr_size < len)
5497 s->max_attr_size = len;
5498
5499 /*
5500 * This is a best effort propagation, so this function's return
5501 * value will be determined by the parent cache only. This is
5502 * basically because not all attributes will have a well
5503 * defined semantics for rollbacks - most of the actions will
5504 * have permanent effects.
5505 *
5506 * Returning the error value of any of the children that fail
5507 * is not 100 % defined, in the sense that users seeing the
5508 * error code won't be able to know anything about the state of
5509 * the cache.
5510 *
5511 * Only returning the error code for the parent cache at least
5512 * has well defined semantics. The cache being written to
5513 * directly either failed or succeeded, in which case we loop
5514 * through the descendants with best-effort propagation.
5515 */
5516 for_each_memcg_cache(c, s)
5517 attribute->store(c, buf, len);
5518 mutex_unlock(&slab_mutex);
5519 }
5520 #endif
5521 return err;
5522 }
5523
5524 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5525 {
5526 #ifdef CONFIG_MEMCG
5527 int i;
5528 char *buffer = NULL;
5529 struct kmem_cache *root_cache;
5530
5531 if (is_root_cache(s))
5532 return;
5533
5534 root_cache = s->memcg_params.root_cache;
5535
5536 /*
5537 * This mean this cache had no attribute written. Therefore, no point
5538 * in copying default values around
5539 */
5540 if (!root_cache->max_attr_size)
5541 return;
5542
5543 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5544 char mbuf[64];
5545 char *buf;
5546 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5547 ssize_t len;
5548
5549 if (!attr || !attr->store || !attr->show)
5550 continue;
5551
5552 /*
5553 * It is really bad that we have to allocate here, so we will
5554 * do it only as a fallback. If we actually allocate, though,
5555 * we can just use the allocated buffer until the end.
5556 *
5557 * Most of the slub attributes will tend to be very small in
5558 * size, but sysfs allows buffers up to a page, so they can
5559 * theoretically happen.
5560 */
5561 if (buffer)
5562 buf = buffer;
5563 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5564 buf = mbuf;
5565 else {
5566 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5567 if (WARN_ON(!buffer))
5568 continue;
5569 buf = buffer;
5570 }
5571
5572 len = attr->show(root_cache, buf);
5573 if (len > 0)
5574 attr->store(s, buf, len);
5575 }
5576
5577 if (buffer)
5578 free_page((unsigned long)buffer);
5579 #endif
5580 }
5581
5582 static void kmem_cache_release(struct kobject *k)
5583 {
5584 slab_kmem_cache_release(to_slab(k));
5585 }
5586
5587 static const struct sysfs_ops slab_sysfs_ops = {
5588 .show = slab_attr_show,
5589 .store = slab_attr_store,
5590 };
5591
5592 static struct kobj_type slab_ktype = {
5593 .sysfs_ops = &slab_sysfs_ops,
5594 .release = kmem_cache_release,
5595 };
5596
5597 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5598 {
5599 struct kobj_type *ktype = get_ktype(kobj);
5600
5601 if (ktype == &slab_ktype)
5602 return 1;
5603 return 0;
5604 }
5605
5606 static const struct kset_uevent_ops slab_uevent_ops = {
5607 .filter = uevent_filter,
5608 };
5609
5610 static struct kset *slab_kset;
5611
5612 static inline struct kset *cache_kset(struct kmem_cache *s)
5613 {
5614 #ifdef CONFIG_MEMCG
5615 if (!is_root_cache(s))
5616 return s->memcg_params.root_cache->memcg_kset;
5617 #endif
5618 return slab_kset;
5619 }
5620
5621 #define ID_STR_LENGTH 64
5622
5623 /* Create a unique string id for a slab cache:
5624 *
5625 * Format :[flags-]size
5626 */
5627 static char *create_unique_id(struct kmem_cache *s)
5628 {
5629 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5630 char *p = name;
5631
5632 BUG_ON(!name);
5633
5634 *p++ = ':';
5635 /*
5636 * First flags affecting slabcache operations. We will only
5637 * get here for aliasable slabs so we do not need to support
5638 * too many flags. The flags here must cover all flags that
5639 * are matched during merging to guarantee that the id is
5640 * unique.
5641 */
5642 if (s->flags & SLAB_CACHE_DMA)
5643 *p++ = 'd';
5644 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5645 *p++ = 'a';
5646 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5647 *p++ = 'F';
5648 if (s->flags & SLAB_ACCOUNT)
5649 *p++ = 'A';
5650 if (p != name + 1)
5651 *p++ = '-';
5652 p += sprintf(p, "%07d", s->size);
5653
5654 BUG_ON(p > name + ID_STR_LENGTH - 1);
5655 return name;
5656 }
5657
5658 static void sysfs_slab_remove_workfn(struct work_struct *work)
5659 {
5660 struct kmem_cache *s =
5661 container_of(work, struct kmem_cache, kobj_remove_work);
5662
5663 if (!s->kobj.state_in_sysfs)
5664 /*
5665 * For a memcg cache, this may be called during
5666 * deactivation and again on shutdown. Remove only once.
5667 * A cache is never shut down before deactivation is
5668 * complete, so no need to worry about synchronization.
5669 */
5670 goto out;
5671
5672 #ifdef CONFIG_MEMCG
5673 kset_unregister(s->memcg_kset);
5674 #endif
5675 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5676 out:
5677 kobject_put(&s->kobj);
5678 }
5679
5680 static int sysfs_slab_add(struct kmem_cache *s)
5681 {
5682 int err;
5683 const char *name;
5684 struct kset *kset = cache_kset(s);
5685 int unmergeable = slab_unmergeable(s);
5686
5687 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5688
5689 if (!kset) {
5690 kobject_init(&s->kobj, &slab_ktype);
5691 return 0;
5692 }
5693
5694 if (!unmergeable && disable_higher_order_debug &&
5695 (slub_debug & DEBUG_METADATA_FLAGS))
5696 unmergeable = 1;
5697
5698 if (unmergeable) {
5699 /*
5700 * Slabcache can never be merged so we can use the name proper.
5701 * This is typically the case for debug situations. In that
5702 * case we can catch duplicate names easily.
5703 */
5704 sysfs_remove_link(&slab_kset->kobj, s->name);
5705 name = s->name;
5706 } else {
5707 /*
5708 * Create a unique name for the slab as a target
5709 * for the symlinks.
5710 */
5711 name = create_unique_id(s);
5712 }
5713
5714 s->kobj.kset = kset;
5715 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5716 if (err)
5717 goto out;
5718
5719 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5720 if (err)
5721 goto out_del_kobj;
5722
5723 #ifdef CONFIG_MEMCG
5724 if (is_root_cache(s) && memcg_sysfs_enabled) {
5725 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5726 if (!s->memcg_kset) {
5727 err = -ENOMEM;
5728 goto out_del_kobj;
5729 }
5730 }
5731 #endif
5732
5733 kobject_uevent(&s->kobj, KOBJ_ADD);
5734 if (!unmergeable) {
5735 /* Setup first alias */
5736 sysfs_slab_alias(s, s->name);
5737 }
5738 out:
5739 if (!unmergeable)
5740 kfree(name);
5741 return err;
5742 out_del_kobj:
5743 kobject_del(&s->kobj);
5744 goto out;
5745 }
5746
5747 static void sysfs_slab_remove(struct kmem_cache *s)
5748 {
5749 if (slab_state < FULL)
5750 /*
5751 * Sysfs has not been setup yet so no need to remove the
5752 * cache from sysfs.
5753 */
5754 return;
5755
5756 kobject_get(&s->kobj);
5757 schedule_work(&s->kobj_remove_work);
5758 }
5759
5760 void sysfs_slab_unlink(struct kmem_cache *s)
5761 {
5762 if (slab_state >= FULL)
5763 kobject_del(&s->kobj);
5764 }
5765
5766 void sysfs_slab_release(struct kmem_cache *s)
5767 {
5768 if (slab_state >= FULL)
5769 kobject_put(&s->kobj);
5770 }
5771
5772 /*
5773 * Need to buffer aliases during bootup until sysfs becomes
5774 * available lest we lose that information.
5775 */
5776 struct saved_alias {
5777 struct kmem_cache *s;
5778 const char *name;
5779 struct saved_alias *next;
5780 };
5781
5782 static struct saved_alias *alias_list;
5783
5784 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5785 {
5786 struct saved_alias *al;
5787
5788 if (slab_state == FULL) {
5789 /*
5790 * If we have a leftover link then remove it.
5791 */
5792 sysfs_remove_link(&slab_kset->kobj, name);
5793 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5794 }
5795
5796 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5797 if (!al)
5798 return -ENOMEM;
5799
5800 al->s = s;
5801 al->name = name;
5802 al->next = alias_list;
5803 alias_list = al;
5804 return 0;
5805 }
5806
5807 static int __init slab_sysfs_init(void)
5808 {
5809 struct kmem_cache *s;
5810 int err;
5811
5812 mutex_lock(&slab_mutex);
5813
5814 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5815 if (!slab_kset) {
5816 mutex_unlock(&slab_mutex);
5817 pr_err("Cannot register slab subsystem.\n");
5818 return -ENOSYS;
5819 }
5820
5821 slab_state = FULL;
5822
5823 list_for_each_entry(s, &slab_caches, list) {
5824 err = sysfs_slab_add(s);
5825 if (err)
5826 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5827 s->name);
5828 }
5829
5830 while (alias_list) {
5831 struct saved_alias *al = alias_list;
5832
5833 alias_list = alias_list->next;
5834 err = sysfs_slab_alias(al->s, al->name);
5835 if (err)
5836 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5837 al->name);
5838 kfree(al);
5839 }
5840
5841 mutex_unlock(&slab_mutex);
5842 resiliency_test();
5843 return 0;
5844 }
5845
5846 __initcall(slab_sysfs_init);
5847 #endif /* CONFIG_SYSFS */
5848
5849 /*
5850 * The /proc/slabinfo ABI
5851 */
5852 #ifdef CONFIG_SLUB_DEBUG
5853 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5854 {
5855 unsigned long nr_slabs = 0;
5856 unsigned long nr_objs = 0;
5857 unsigned long nr_free = 0;
5858 int node;
5859 struct kmem_cache_node *n;
5860
5861 for_each_kmem_cache_node(s, node, n) {
5862 nr_slabs += node_nr_slabs(n);
5863 nr_objs += node_nr_objs(n);
5864 nr_free += count_partial(n, count_free);
5865 }
5866
5867 sinfo->active_objs = nr_objs - nr_free;
5868 sinfo->num_objs = nr_objs;
5869 sinfo->active_slabs = nr_slabs;
5870 sinfo->num_slabs = nr_slabs;
5871 sinfo->objects_per_slab = oo_objects(s->oo);
5872 sinfo->cache_order = oo_order(s->oo);
5873 }
5874
5875 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5876 {
5877 }
5878
5879 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5880 size_t count, loff_t *ppos)
5881 {
5882 return -EIO;
5883 }
5884 #endif /* CONFIG_SLUB_DEBUG */