]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/truncate.c
mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock
[mirror_ubuntu-bionic-kernel.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27
28 /*
29 * Regular page slots are stabilized by the page lock even without the tree
30 * itself locked. These unlocked entries need verification under the tree
31 * lock.
32 */
33 static inline void __clear_shadow_entry(struct address_space *mapping,
34 pgoff_t index, void *entry)
35 {
36 struct radix_tree_node *node;
37 void **slot;
38
39 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
40 return;
41 if (*slot != entry)
42 return;
43 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
44 workingset_update_node);
45 mapping->nrexceptional--;
46 }
47
48 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
49 void *entry)
50 {
51 spin_lock_irq(&mapping->tree_lock);
52 __clear_shadow_entry(mapping, index, entry);
53 spin_unlock_irq(&mapping->tree_lock);
54 }
55
56 /*
57 * Unconditionally remove exceptional entries. Usually called from truncate
58 * path. Note that the pagevec may be altered by this function by removing
59 * exceptional entries similar to what pagevec_remove_exceptionals does.
60 */
61 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
62 struct pagevec *pvec, pgoff_t *indices,
63 pgoff_t end)
64 {
65 int i, j;
66 bool dax, lock;
67
68 /* Handled by shmem itself */
69 if (shmem_mapping(mapping))
70 return;
71
72 for (j = 0; j < pagevec_count(pvec); j++)
73 if (radix_tree_exceptional_entry(pvec->pages[j]))
74 break;
75
76 if (j == pagevec_count(pvec))
77 return;
78
79 dax = dax_mapping(mapping);
80 lock = !dax && indices[j] < end;
81 if (lock)
82 spin_lock_irq(&mapping->tree_lock);
83
84 for (i = j; i < pagevec_count(pvec); i++) {
85 struct page *page = pvec->pages[i];
86 pgoff_t index = indices[i];
87
88 if (!radix_tree_exceptional_entry(page)) {
89 pvec->pages[j++] = page;
90 continue;
91 }
92
93 if (index >= end)
94 continue;
95
96 if (unlikely(dax)) {
97 dax_delete_mapping_entry(mapping, index);
98 continue;
99 }
100
101 __clear_shadow_entry(mapping, index, page);
102 }
103
104 if (lock)
105 spin_unlock_irq(&mapping->tree_lock);
106 pvec->nr = j;
107 }
108
109 /*
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
112 */
113 static int invalidate_exceptional_entry(struct address_space *mapping,
114 pgoff_t index, void *entry)
115 {
116 /* Handled by shmem itself, or for DAX we do nothing. */
117 if (shmem_mapping(mapping) || dax_mapping(mapping))
118 return 1;
119 clear_shadow_entry(mapping, index, entry);
120 return 1;
121 }
122
123 /*
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126 */
127 static int invalidate_exceptional_entry2(struct address_space *mapping,
128 pgoff_t index, void *entry)
129 {
130 /* Handled by shmem itself */
131 if (shmem_mapping(mapping))
132 return 1;
133 if (dax_mapping(mapping))
134 return dax_invalidate_mapping_entry_sync(mapping, index);
135 clear_shadow_entry(mapping, index, entry);
136 return 1;
137 }
138
139 /**
140 * do_invalidatepage - invalidate part or all of a page
141 * @page: the page which is affected
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
144 *
145 * do_invalidatepage() is called when all or part of the page has become
146 * invalidated by a truncate operation.
147 *
148 * do_invalidatepage() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point. Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
153 */
154 void do_invalidatepage(struct page *page, unsigned int offset,
155 unsigned int length)
156 {
157 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
158
159 invalidatepage = page->mapping->a_ops->invalidatepage;
160 #ifdef CONFIG_BLOCK
161 if (!invalidatepage)
162 invalidatepage = block_invalidatepage;
163 #endif
164 if (invalidatepage)
165 (*invalidatepage)(page, offset, length);
166 }
167
168 /*
169 * If truncate cannot remove the fs-private metadata from the page, the page
170 * becomes orphaned. It will be left on the LRU and may even be mapped into
171 * user pagetables if we're racing with filemap_fault().
172 *
173 * We need to bale out if page->mapping is no longer equal to the original
174 * mapping. This happens a) when the VM reclaimed the page while we waited on
175 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
176 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
177 */
178 static void
179 truncate_cleanup_page(struct address_space *mapping, struct page *page)
180 {
181 if (page_mapped(page)) {
182 loff_t holelen;
183
184 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
185 unmap_mapping_range(mapping,
186 (loff_t)page->index << PAGE_SHIFT,
187 holelen, 0);
188 }
189
190 if (page_has_private(page))
191 do_invalidatepage(page, 0, PAGE_SIZE);
192
193 /*
194 * Some filesystems seem to re-dirty the page even after
195 * the VM has canceled the dirty bit (eg ext3 journaling).
196 * Hence dirty accounting check is placed after invalidation.
197 */
198 cancel_dirty_page(page);
199 ClearPageMappedToDisk(page);
200 }
201
202 /*
203 * This is for invalidate_mapping_pages(). That function can be called at
204 * any time, and is not supposed to throw away dirty pages. But pages can
205 * be marked dirty at any time too, so use remove_mapping which safely
206 * discards clean, unused pages.
207 *
208 * Returns non-zero if the page was successfully invalidated.
209 */
210 static int
211 invalidate_complete_page(struct address_space *mapping, struct page *page)
212 {
213 int ret;
214
215 if (page->mapping != mapping)
216 return 0;
217
218 if (page_has_private(page) && !try_to_release_page(page, 0))
219 return 0;
220
221 ret = remove_mapping(mapping, page);
222
223 return ret;
224 }
225
226 int truncate_inode_page(struct address_space *mapping, struct page *page)
227 {
228 VM_BUG_ON_PAGE(PageTail(page), page);
229
230 if (page->mapping != mapping)
231 return -EIO;
232
233 truncate_cleanup_page(mapping, page);
234 delete_from_page_cache(page);
235 return 0;
236 }
237
238 /*
239 * Used to get rid of pages on hardware memory corruption.
240 */
241 int generic_error_remove_page(struct address_space *mapping, struct page *page)
242 {
243 if (!mapping)
244 return -EINVAL;
245 /*
246 * Only punch for normal data pages for now.
247 * Handling other types like directories would need more auditing.
248 */
249 if (!S_ISREG(mapping->host->i_mode))
250 return -EIO;
251 return truncate_inode_page(mapping, page);
252 }
253 EXPORT_SYMBOL(generic_error_remove_page);
254
255 /*
256 * Safely invalidate one page from its pagecache mapping.
257 * It only drops clean, unused pages. The page must be locked.
258 *
259 * Returns 1 if the page is successfully invalidated, otherwise 0.
260 */
261 int invalidate_inode_page(struct page *page)
262 {
263 struct address_space *mapping = page_mapping(page);
264 if (!mapping)
265 return 0;
266 if (PageDirty(page) || PageWriteback(page))
267 return 0;
268 if (page_mapped(page))
269 return 0;
270 return invalidate_complete_page(mapping, page);
271 }
272
273 /**
274 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
275 * @mapping: mapping to truncate
276 * @lstart: offset from which to truncate
277 * @lend: offset to which to truncate (inclusive)
278 *
279 * Truncate the page cache, removing the pages that are between
280 * specified offsets (and zeroing out partial pages
281 * if lstart or lend + 1 is not page aligned).
282 *
283 * Truncate takes two passes - the first pass is nonblocking. It will not
284 * block on page locks and it will not block on writeback. The second pass
285 * will wait. This is to prevent as much IO as possible in the affected region.
286 * The first pass will remove most pages, so the search cost of the second pass
287 * is low.
288 *
289 * We pass down the cache-hot hint to the page freeing code. Even if the
290 * mapping is large, it is probably the case that the final pages are the most
291 * recently touched, and freeing happens in ascending file offset order.
292 *
293 * Note that since ->invalidatepage() accepts range to invalidate
294 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
295 * page aligned properly.
296 */
297 void truncate_inode_pages_range(struct address_space *mapping,
298 loff_t lstart, loff_t lend)
299 {
300 pgoff_t start; /* inclusive */
301 pgoff_t end; /* exclusive */
302 unsigned int partial_start; /* inclusive */
303 unsigned int partial_end; /* exclusive */
304 struct pagevec pvec;
305 pgoff_t indices[PAGEVEC_SIZE];
306 pgoff_t index;
307 int i;
308
309 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
310 goto out;
311
312 /* Offsets within partial pages */
313 partial_start = lstart & (PAGE_SIZE - 1);
314 partial_end = (lend + 1) & (PAGE_SIZE - 1);
315
316 /*
317 * 'start' and 'end' always covers the range of pages to be fully
318 * truncated. Partial pages are covered with 'partial_start' at the
319 * start of the range and 'partial_end' at the end of the range.
320 * Note that 'end' is exclusive while 'lend' is inclusive.
321 */
322 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
323 if (lend == -1)
324 /*
325 * lend == -1 indicates end-of-file so we have to set 'end'
326 * to the highest possible pgoff_t and since the type is
327 * unsigned we're using -1.
328 */
329 end = -1;
330 else
331 end = (lend + 1) >> PAGE_SHIFT;
332
333 pagevec_init(&pvec);
334 index = start;
335 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
336 min(end - index, (pgoff_t)PAGEVEC_SIZE),
337 indices)) {
338 /*
339 * Pagevec array has exceptional entries and we may also fail
340 * to lock some pages. So we store pages that can be deleted
341 * in a new pagevec.
342 */
343 struct pagevec locked_pvec;
344
345 pagevec_init(&locked_pvec);
346 for (i = 0; i < pagevec_count(&pvec); i++) {
347 struct page *page = pvec.pages[i];
348
349 /* We rely upon deletion not changing page->index */
350 index = indices[i];
351 if (index >= end)
352 break;
353
354 if (radix_tree_exceptional_entry(page))
355 continue;
356
357 if (!trylock_page(page))
358 continue;
359 WARN_ON(page_to_index(page) != index);
360 if (PageWriteback(page)) {
361 unlock_page(page);
362 continue;
363 }
364 if (page->mapping != mapping) {
365 unlock_page(page);
366 continue;
367 }
368 pagevec_add(&locked_pvec, page);
369 }
370 for (i = 0; i < pagevec_count(&locked_pvec); i++)
371 truncate_cleanup_page(mapping, locked_pvec.pages[i]);
372 delete_from_page_cache_batch(mapping, &locked_pvec);
373 for (i = 0; i < pagevec_count(&locked_pvec); i++)
374 unlock_page(locked_pvec.pages[i]);
375 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
376 pagevec_release(&pvec);
377 cond_resched();
378 index++;
379 }
380 if (partial_start) {
381 struct page *page = find_lock_page(mapping, start - 1);
382 if (page) {
383 unsigned int top = PAGE_SIZE;
384 if (start > end) {
385 /* Truncation within a single page */
386 top = partial_end;
387 partial_end = 0;
388 }
389 wait_on_page_writeback(page);
390 zero_user_segment(page, partial_start, top);
391 cleancache_invalidate_page(mapping, page);
392 if (page_has_private(page))
393 do_invalidatepage(page, partial_start,
394 top - partial_start);
395 unlock_page(page);
396 put_page(page);
397 }
398 }
399 if (partial_end) {
400 struct page *page = find_lock_page(mapping, end);
401 if (page) {
402 wait_on_page_writeback(page);
403 zero_user_segment(page, 0, partial_end);
404 cleancache_invalidate_page(mapping, page);
405 if (page_has_private(page))
406 do_invalidatepage(page, 0,
407 partial_end);
408 unlock_page(page);
409 put_page(page);
410 }
411 }
412 /*
413 * If the truncation happened within a single page no pages
414 * will be released, just zeroed, so we can bail out now.
415 */
416 if (start >= end)
417 goto out;
418
419 index = start;
420 for ( ; ; ) {
421 cond_resched();
422 if (!pagevec_lookup_entries(&pvec, mapping, index,
423 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
424 /* If all gone from start onwards, we're done */
425 if (index == start)
426 break;
427 /* Otherwise restart to make sure all gone */
428 index = start;
429 continue;
430 }
431 if (index == start && indices[0] >= end) {
432 /* All gone out of hole to be punched, we're done */
433 pagevec_remove_exceptionals(&pvec);
434 pagevec_release(&pvec);
435 break;
436 }
437
438 for (i = 0; i < pagevec_count(&pvec); i++) {
439 struct page *page = pvec.pages[i];
440
441 /* We rely upon deletion not changing page->index */
442 index = indices[i];
443 if (index >= end) {
444 /* Restart punch to make sure all gone */
445 index = start - 1;
446 break;
447 }
448
449 if (radix_tree_exceptional_entry(page))
450 continue;
451
452 lock_page(page);
453 WARN_ON(page_to_index(page) != index);
454 wait_on_page_writeback(page);
455 truncate_inode_page(mapping, page);
456 unlock_page(page);
457 }
458 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
459 pagevec_release(&pvec);
460 index++;
461 }
462
463 out:
464 cleancache_invalidate_inode(mapping);
465 }
466 EXPORT_SYMBOL(truncate_inode_pages_range);
467
468 /**
469 * truncate_inode_pages - truncate *all* the pages from an offset
470 * @mapping: mapping to truncate
471 * @lstart: offset from which to truncate
472 *
473 * Called under (and serialised by) inode->i_mutex.
474 *
475 * Note: When this function returns, there can be a page in the process of
476 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
477 * mapping->nrpages can be non-zero when this function returns even after
478 * truncation of the whole mapping.
479 */
480 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
481 {
482 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
483 }
484 EXPORT_SYMBOL(truncate_inode_pages);
485
486 /**
487 * truncate_inode_pages_final - truncate *all* pages before inode dies
488 * @mapping: mapping to truncate
489 *
490 * Called under (and serialized by) inode->i_mutex.
491 *
492 * Filesystems have to use this in the .evict_inode path to inform the
493 * VM that this is the final truncate and the inode is going away.
494 */
495 void truncate_inode_pages_final(struct address_space *mapping)
496 {
497 unsigned long nrexceptional;
498 unsigned long nrpages;
499
500 /*
501 * Page reclaim can not participate in regular inode lifetime
502 * management (can't call iput()) and thus can race with the
503 * inode teardown. Tell it when the address space is exiting,
504 * so that it does not install eviction information after the
505 * final truncate has begun.
506 */
507 mapping_set_exiting(mapping);
508
509 /*
510 * When reclaim installs eviction entries, it increases
511 * nrexceptional first, then decreases nrpages. Make sure we see
512 * this in the right order or we might miss an entry.
513 */
514 nrpages = mapping->nrpages;
515 smp_rmb();
516 nrexceptional = mapping->nrexceptional;
517
518 if (nrpages || nrexceptional) {
519 /*
520 * As truncation uses a lockless tree lookup, cycle
521 * the tree lock to make sure any ongoing tree
522 * modification that does not see AS_EXITING is
523 * completed before starting the final truncate.
524 */
525 spin_lock_irq(&mapping->tree_lock);
526 spin_unlock_irq(&mapping->tree_lock);
527 }
528
529 /*
530 * Cleancache needs notification even if there are no pages or shadow
531 * entries.
532 */
533 truncate_inode_pages(mapping, 0);
534 }
535 EXPORT_SYMBOL(truncate_inode_pages_final);
536
537 /**
538 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
539 * @mapping: the address_space which holds the pages to invalidate
540 * @start: the offset 'from' which to invalidate
541 * @end: the offset 'to' which to invalidate (inclusive)
542 *
543 * This function only removes the unlocked pages, if you want to
544 * remove all the pages of one inode, you must call truncate_inode_pages.
545 *
546 * invalidate_mapping_pages() will not block on IO activity. It will not
547 * invalidate pages which are dirty, locked, under writeback or mapped into
548 * pagetables.
549 */
550 unsigned long invalidate_mapping_pages(struct address_space *mapping,
551 pgoff_t start, pgoff_t end)
552 {
553 pgoff_t indices[PAGEVEC_SIZE];
554 struct pagevec pvec;
555 pgoff_t index = start;
556 unsigned long ret;
557 unsigned long count = 0;
558 int i;
559
560 pagevec_init(&pvec);
561 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
562 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
563 indices)) {
564 for (i = 0; i < pagevec_count(&pvec); i++) {
565 struct page *page = pvec.pages[i];
566
567 /* We rely upon deletion not changing page->index */
568 index = indices[i];
569 if (index > end)
570 break;
571
572 if (radix_tree_exceptional_entry(page)) {
573 invalidate_exceptional_entry(mapping, index,
574 page);
575 continue;
576 }
577
578 if (!trylock_page(page))
579 continue;
580
581 WARN_ON(page_to_index(page) != index);
582
583 /* Middle of THP: skip */
584 if (PageTransTail(page)) {
585 unlock_page(page);
586 continue;
587 } else if (PageTransHuge(page)) {
588 index += HPAGE_PMD_NR - 1;
589 i += HPAGE_PMD_NR - 1;
590 /*
591 * 'end' is in the middle of THP. Don't
592 * invalidate the page as the part outside of
593 * 'end' could be still useful.
594 */
595 if (index > end) {
596 unlock_page(page);
597 continue;
598 }
599 }
600
601 ret = invalidate_inode_page(page);
602 unlock_page(page);
603 /*
604 * Invalidation is a hint that the page is no longer
605 * of interest and try to speed up its reclaim.
606 */
607 if (!ret)
608 deactivate_file_page(page);
609 count += ret;
610 }
611 pagevec_remove_exceptionals(&pvec);
612 pagevec_release(&pvec);
613 cond_resched();
614 index++;
615 }
616 return count;
617 }
618 EXPORT_SYMBOL(invalidate_mapping_pages);
619
620 /*
621 * This is like invalidate_complete_page(), except it ignores the page's
622 * refcount. We do this because invalidate_inode_pages2() needs stronger
623 * invalidation guarantees, and cannot afford to leave pages behind because
624 * shrink_page_list() has a temp ref on them, or because they're transiently
625 * sitting in the lru_cache_add() pagevecs.
626 */
627 static int
628 invalidate_complete_page2(struct address_space *mapping, struct page *page)
629 {
630 unsigned long flags;
631
632 if (page->mapping != mapping)
633 return 0;
634
635 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
636 return 0;
637
638 spin_lock_irqsave(&mapping->tree_lock, flags);
639 if (PageDirty(page))
640 goto failed;
641
642 BUG_ON(page_has_private(page));
643 __delete_from_page_cache(page, NULL);
644 spin_unlock_irqrestore(&mapping->tree_lock, flags);
645
646 if (mapping->a_ops->freepage)
647 mapping->a_ops->freepage(page);
648
649 put_page(page); /* pagecache ref */
650 return 1;
651 failed:
652 spin_unlock_irqrestore(&mapping->tree_lock, flags);
653 return 0;
654 }
655
656 static int do_launder_page(struct address_space *mapping, struct page *page)
657 {
658 if (!PageDirty(page))
659 return 0;
660 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
661 return 0;
662 return mapping->a_ops->launder_page(page);
663 }
664
665 /**
666 * invalidate_inode_pages2_range - remove range of pages from an address_space
667 * @mapping: the address_space
668 * @start: the page offset 'from' which to invalidate
669 * @end: the page offset 'to' which to invalidate (inclusive)
670 *
671 * Any pages which are found to be mapped into pagetables are unmapped prior to
672 * invalidation.
673 *
674 * Returns -EBUSY if any pages could not be invalidated.
675 */
676 int invalidate_inode_pages2_range(struct address_space *mapping,
677 pgoff_t start, pgoff_t end)
678 {
679 pgoff_t indices[PAGEVEC_SIZE];
680 struct pagevec pvec;
681 pgoff_t index;
682 int i;
683 int ret = 0;
684 int ret2 = 0;
685 int did_range_unmap = 0;
686
687 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
688 goto out;
689
690 pagevec_init(&pvec);
691 index = start;
692 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
693 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
694 indices)) {
695 for (i = 0; i < pagevec_count(&pvec); i++) {
696 struct page *page = pvec.pages[i];
697
698 /* We rely upon deletion not changing page->index */
699 index = indices[i];
700 if (index > end)
701 break;
702
703 if (radix_tree_exceptional_entry(page)) {
704 if (!invalidate_exceptional_entry2(mapping,
705 index, page))
706 ret = -EBUSY;
707 continue;
708 }
709
710 lock_page(page);
711 WARN_ON(page_to_index(page) != index);
712 if (page->mapping != mapping) {
713 unlock_page(page);
714 continue;
715 }
716 wait_on_page_writeback(page);
717 if (page_mapped(page)) {
718 if (!did_range_unmap) {
719 /*
720 * Zap the rest of the file in one hit.
721 */
722 unmap_mapping_range(mapping,
723 (loff_t)index << PAGE_SHIFT,
724 (loff_t)(1 + end - index)
725 << PAGE_SHIFT,
726 0);
727 did_range_unmap = 1;
728 } else {
729 /*
730 * Just zap this page
731 */
732 unmap_mapping_range(mapping,
733 (loff_t)index << PAGE_SHIFT,
734 PAGE_SIZE, 0);
735 }
736 }
737 BUG_ON(page_mapped(page));
738 ret2 = do_launder_page(mapping, page);
739 if (ret2 == 0) {
740 if (!invalidate_complete_page2(mapping, page))
741 ret2 = -EBUSY;
742 }
743 if (ret2 < 0)
744 ret = ret2;
745 unlock_page(page);
746 }
747 pagevec_remove_exceptionals(&pvec);
748 pagevec_release(&pvec);
749 cond_resched();
750 index++;
751 }
752 /*
753 * For DAX we invalidate page tables after invalidating radix tree. We
754 * could invalidate page tables while invalidating each entry however
755 * that would be expensive. And doing range unmapping before doesn't
756 * work as we have no cheap way to find whether radix tree entry didn't
757 * get remapped later.
758 */
759 if (dax_mapping(mapping)) {
760 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
761 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
762 }
763 out:
764 cleancache_invalidate_inode(mapping);
765 return ret;
766 }
767 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
768
769 /**
770 * invalidate_inode_pages2 - remove all pages from an address_space
771 * @mapping: the address_space
772 *
773 * Any pages which are found to be mapped into pagetables are unmapped prior to
774 * invalidation.
775 *
776 * Returns -EBUSY if any pages could not be invalidated.
777 */
778 int invalidate_inode_pages2(struct address_space *mapping)
779 {
780 return invalidate_inode_pages2_range(mapping, 0, -1);
781 }
782 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
783
784 /**
785 * truncate_pagecache - unmap and remove pagecache that has been truncated
786 * @inode: inode
787 * @newsize: new file size
788 *
789 * inode's new i_size must already be written before truncate_pagecache
790 * is called.
791 *
792 * This function should typically be called before the filesystem
793 * releases resources associated with the freed range (eg. deallocates
794 * blocks). This way, pagecache will always stay logically coherent
795 * with on-disk format, and the filesystem would not have to deal with
796 * situations such as writepage being called for a page that has already
797 * had its underlying blocks deallocated.
798 */
799 void truncate_pagecache(struct inode *inode, loff_t newsize)
800 {
801 struct address_space *mapping = inode->i_mapping;
802 loff_t holebegin = round_up(newsize, PAGE_SIZE);
803
804 /*
805 * unmap_mapping_range is called twice, first simply for
806 * efficiency so that truncate_inode_pages does fewer
807 * single-page unmaps. However after this first call, and
808 * before truncate_inode_pages finishes, it is possible for
809 * private pages to be COWed, which remain after
810 * truncate_inode_pages finishes, hence the second
811 * unmap_mapping_range call must be made for correctness.
812 */
813 unmap_mapping_range(mapping, holebegin, 0, 1);
814 truncate_inode_pages(mapping, newsize);
815 unmap_mapping_range(mapping, holebegin, 0, 1);
816 }
817 EXPORT_SYMBOL(truncate_pagecache);
818
819 /**
820 * truncate_setsize - update inode and pagecache for a new file size
821 * @inode: inode
822 * @newsize: new file size
823 *
824 * truncate_setsize updates i_size and performs pagecache truncation (if
825 * necessary) to @newsize. It will be typically be called from the filesystem's
826 * setattr function when ATTR_SIZE is passed in.
827 *
828 * Must be called with a lock serializing truncates and writes (generally
829 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
830 * specific block truncation has been performed.
831 */
832 void truncate_setsize(struct inode *inode, loff_t newsize)
833 {
834 loff_t oldsize = inode->i_size;
835
836 i_size_write(inode, newsize);
837 if (newsize > oldsize)
838 pagecache_isize_extended(inode, oldsize, newsize);
839 truncate_pagecache(inode, newsize);
840 }
841 EXPORT_SYMBOL(truncate_setsize);
842
843 /**
844 * pagecache_isize_extended - update pagecache after extension of i_size
845 * @inode: inode for which i_size was extended
846 * @from: original inode size
847 * @to: new inode size
848 *
849 * Handle extension of inode size either caused by extending truncate or by
850 * write starting after current i_size. We mark the page straddling current
851 * i_size RO so that page_mkwrite() is called on the nearest write access to
852 * the page. This way filesystem can be sure that page_mkwrite() is called on
853 * the page before user writes to the page via mmap after the i_size has been
854 * changed.
855 *
856 * The function must be called after i_size is updated so that page fault
857 * coming after we unlock the page will already see the new i_size.
858 * The function must be called while we still hold i_mutex - this not only
859 * makes sure i_size is stable but also that userspace cannot observe new
860 * i_size value before we are prepared to store mmap writes at new inode size.
861 */
862 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
863 {
864 int bsize = i_blocksize(inode);
865 loff_t rounded_from;
866 struct page *page;
867 pgoff_t index;
868
869 WARN_ON(to > inode->i_size);
870
871 if (from >= to || bsize == PAGE_SIZE)
872 return;
873 /* Page straddling @from will not have any hole block created? */
874 rounded_from = round_up(from, bsize);
875 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
876 return;
877
878 index = from >> PAGE_SHIFT;
879 page = find_lock_page(inode->i_mapping, index);
880 /* Page not cached? Nothing to do */
881 if (!page)
882 return;
883 /*
884 * See clear_page_dirty_for_io() for details why set_page_dirty()
885 * is needed.
886 */
887 if (page_mkclean(page))
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 EXPORT_SYMBOL(pagecache_isize_extended);
893
894 /**
895 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
896 * @inode: inode
897 * @lstart: offset of beginning of hole
898 * @lend: offset of last byte of hole
899 *
900 * This function should typically be called before the filesystem
901 * releases resources associated with the freed range (eg. deallocates
902 * blocks). This way, pagecache will always stay logically coherent
903 * with on-disk format, and the filesystem would not have to deal with
904 * situations such as writepage being called for a page that has already
905 * had its underlying blocks deallocated.
906 */
907 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
908 {
909 struct address_space *mapping = inode->i_mapping;
910 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
911 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
912 /*
913 * This rounding is currently just for example: unmap_mapping_range
914 * expands its hole outwards, whereas we want it to contract the hole
915 * inwards. However, existing callers of truncate_pagecache_range are
916 * doing their own page rounding first. Note that unmap_mapping_range
917 * allows holelen 0 for all, and we allow lend -1 for end of file.
918 */
919
920 /*
921 * Unlike in truncate_pagecache, unmap_mapping_range is called only
922 * once (before truncating pagecache), and without "even_cows" flag:
923 * hole-punching should not remove private COWed pages from the hole.
924 */
925 if ((u64)unmap_end > (u64)unmap_start)
926 unmap_mapping_range(mapping, unmap_start,
927 1 + unmap_end - unmap_start, 0);
928 truncate_inode_pages_range(mapping, lstart, lend);
929 }
930 EXPORT_SYMBOL(truncate_pagecache_range);