]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmalloc.c
x86/mm: Add TLB purge to free pmd/pte page interfaces
[mirror_ubuntu-bionic-kernel.git] / mm / vmalloc.c
1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38
39 #include "internal.h"
40
41 struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47 static void __vunmap(const void *, int);
48
49 static void free_work(struct work_struct *w)
50 {
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *t, *llnode;
53
54 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 __vunmap((void *)llnode, 1);
56 }
57
58 /*** Page table manipulation functions ***/
59
60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61 {
62 pte_t *pte;
63
64 pte = pte_offset_kernel(pmd, addr);
65 do {
66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 } while (pte++, addr += PAGE_SIZE, addr != end);
69 }
70
71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
72 {
73 pmd_t *pmd;
74 unsigned long next;
75
76 pmd = pmd_offset(pud, addr);
77 do {
78 next = pmd_addr_end(addr, end);
79 if (pmd_clear_huge(pmd))
80 continue;
81 if (pmd_none_or_clear_bad(pmd))
82 continue;
83 vunmap_pte_range(pmd, addr, next);
84 } while (pmd++, addr = next, addr != end);
85 }
86
87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
88 {
89 pud_t *pud;
90 unsigned long next;
91
92 pud = pud_offset(p4d, addr);
93 do {
94 next = pud_addr_end(addr, end);
95 if (pud_clear_huge(pud))
96 continue;
97 if (pud_none_or_clear_bad(pud))
98 continue;
99 vunmap_pmd_range(pud, addr, next);
100 } while (pud++, addr = next, addr != end);
101 }
102
103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104 {
105 p4d_t *p4d;
106 unsigned long next;
107
108 p4d = p4d_offset(pgd, addr);
109 do {
110 next = p4d_addr_end(addr, end);
111 if (p4d_clear_huge(p4d))
112 continue;
113 if (p4d_none_or_clear_bad(p4d))
114 continue;
115 vunmap_pud_range(p4d, addr, next);
116 } while (p4d++, addr = next, addr != end);
117 }
118
119 static void vunmap_page_range(unsigned long addr, unsigned long end)
120 {
121 pgd_t *pgd;
122 unsigned long next;
123
124 BUG_ON(addr >= end);
125 pgd = pgd_offset_k(addr);
126 do {
127 next = pgd_addr_end(addr, end);
128 if (pgd_none_or_clear_bad(pgd))
129 continue;
130 vunmap_p4d_range(pgd, addr, next);
131 } while (pgd++, addr = next, addr != end);
132 }
133
134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 pte_t *pte;
138
139 /*
140 * nr is a running index into the array which helps higher level
141 * callers keep track of where we're up to.
142 */
143
144 pte = pte_alloc_kernel(pmd, addr);
145 if (!pte)
146 return -ENOMEM;
147 do {
148 struct page *page = pages[*nr];
149
150 if (WARN_ON(!pte_none(*pte)))
151 return -EBUSY;
152 if (WARN_ON(!page))
153 return -ENOMEM;
154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
155 (*nr)++;
156 } while (pte++, addr += PAGE_SIZE, addr != end);
157 return 0;
158 }
159
160 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc(&init_mm, pud, addr);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
172 return -ENOMEM;
173 } while (pmd++, addr = next, addr != end);
174 return 0;
175 }
176
177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
178 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
179 {
180 pud_t *pud;
181 unsigned long next;
182
183 pud = pud_alloc(&init_mm, p4d, addr);
184 if (!pud)
185 return -ENOMEM;
186 do {
187 next = pud_addr_end(addr, end);
188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
189 return -ENOMEM;
190 } while (pud++, addr = next, addr != end);
191 return 0;
192 }
193
194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196 {
197 p4d_t *p4d;
198 unsigned long next;
199
200 p4d = p4d_alloc(&init_mm, pgd, addr);
201 if (!p4d)
202 return -ENOMEM;
203 do {
204 next = p4d_addr_end(addr, end);
205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 return -ENOMEM;
207 } while (p4d++, addr = next, addr != end);
208 return 0;
209 }
210
211 /*
212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213 * will have pfns corresponding to the "pages" array.
214 *
215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216 */
217 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 pgprot_t prot, struct page **pages)
219 {
220 pgd_t *pgd;
221 unsigned long next;
222 unsigned long addr = start;
223 int err = 0;
224 int nr = 0;
225
226 BUG_ON(addr >= end);
227 pgd = pgd_offset_k(addr);
228 do {
229 next = pgd_addr_end(addr, end);
230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
231 if (err)
232 return err;
233 } while (pgd++, addr = next, addr != end);
234
235 return nr;
236 }
237
238 static int vmap_page_range(unsigned long start, unsigned long end,
239 pgprot_t prot, struct page **pages)
240 {
241 int ret;
242
243 ret = vmap_page_range_noflush(start, end, prot, pages);
244 flush_cache_vmap(start, end);
245 return ret;
246 }
247
248 int is_vmalloc_or_module_addr(const void *x)
249 {
250 /*
251 * ARM, x86-64 and sparc64 put modules in a special place,
252 * and fall back on vmalloc() if that fails. Others
253 * just put it in the vmalloc space.
254 */
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 unsigned long addr = (unsigned long)x;
257 if (addr >= MODULES_VADDR && addr < MODULES_END)
258 return 1;
259 #endif
260 return is_vmalloc_addr(x);
261 }
262
263 /*
264 * Walk a vmap address to the struct page it maps.
265 */
266 struct page *vmalloc_to_page(const void *vmalloc_addr)
267 {
268 unsigned long addr = (unsigned long) vmalloc_addr;
269 struct page *page = NULL;
270 pgd_t *pgd = pgd_offset_k(addr);
271 p4d_t *p4d;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *ptep, pte;
275
276 /*
277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 * architectures that do not vmalloc module space
279 */
280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
281
282 if (pgd_none(*pgd))
283 return NULL;
284 p4d = p4d_offset(pgd, addr);
285 if (p4d_none(*p4d))
286 return NULL;
287 pud = pud_offset(p4d, addr);
288
289 /*
290 * Don't dereference bad PUD or PMD (below) entries. This will also
291 * identify huge mappings, which we may encounter on architectures
292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 * not [unambiguously] associated with a struct page, so there is
295 * no correct value to return for them.
296 */
297 WARN_ON_ONCE(pud_bad(*pud));
298 if (pud_none(*pud) || pud_bad(*pud))
299 return NULL;
300 pmd = pmd_offset(pud, addr);
301 WARN_ON_ONCE(pmd_bad(*pmd));
302 if (pmd_none(*pmd) || pmd_bad(*pmd))
303 return NULL;
304
305 ptep = pte_offset_map(pmd, addr);
306 pte = *ptep;
307 if (pte_present(pte))
308 page = pte_page(pte);
309 pte_unmap(ptep);
310 return page;
311 }
312 EXPORT_SYMBOL(vmalloc_to_page);
313
314 /*
315 * Map a vmalloc()-space virtual address to the physical page frame number.
316 */
317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318 {
319 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320 }
321 EXPORT_SYMBOL(vmalloc_to_pfn);
322
323
324 /*** Global kva allocator ***/
325
326 #define VM_LAZY_FREE 0x02
327 #define VM_VM_AREA 0x04
328
329 static DEFINE_SPINLOCK(vmap_area_lock);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list);
332 static LLIST_HEAD(vmap_purge_list);
333 static struct rb_root vmap_area_root = RB_ROOT;
334
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node *free_vmap_cache;
337 static unsigned long cached_hole_size;
338 static unsigned long cached_vstart;
339 static unsigned long cached_align;
340
341 static unsigned long vmap_area_pcpu_hole;
342
343 static struct vmap_area *__find_vmap_area(unsigned long addr)
344 {
345 struct rb_node *n = vmap_area_root.rb_node;
346
347 while (n) {
348 struct vmap_area *va;
349
350 va = rb_entry(n, struct vmap_area, rb_node);
351 if (addr < va->va_start)
352 n = n->rb_left;
353 else if (addr >= va->va_end)
354 n = n->rb_right;
355 else
356 return va;
357 }
358
359 return NULL;
360 }
361
362 static void __insert_vmap_area(struct vmap_area *va)
363 {
364 struct rb_node **p = &vmap_area_root.rb_node;
365 struct rb_node *parent = NULL;
366 struct rb_node *tmp;
367
368 while (*p) {
369 struct vmap_area *tmp_va;
370
371 parent = *p;
372 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 if (va->va_start < tmp_va->va_end)
374 p = &(*p)->rb_left;
375 else if (va->va_end > tmp_va->va_start)
376 p = &(*p)->rb_right;
377 else
378 BUG();
379 }
380
381 rb_link_node(&va->rb_node, parent, p);
382 rb_insert_color(&va->rb_node, &vmap_area_root);
383
384 /* address-sort this list */
385 tmp = rb_prev(&va->rb_node);
386 if (tmp) {
387 struct vmap_area *prev;
388 prev = rb_entry(tmp, struct vmap_area, rb_node);
389 list_add_rcu(&va->list, &prev->list);
390 } else
391 list_add_rcu(&va->list, &vmap_area_list);
392 }
393
394 static void purge_vmap_area_lazy(void);
395
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397
398 /*
399 * Allocate a region of KVA of the specified size and alignment, within the
400 * vstart and vend.
401 */
402 static struct vmap_area *alloc_vmap_area(unsigned long size,
403 unsigned long align,
404 unsigned long vstart, unsigned long vend,
405 int node, gfp_t gfp_mask)
406 {
407 struct vmap_area *va;
408 struct rb_node *n;
409 unsigned long addr;
410 int purged = 0;
411 struct vmap_area *first;
412
413 BUG_ON(!size);
414 BUG_ON(offset_in_page(size));
415 BUG_ON(!is_power_of_2(align));
416
417 might_sleep();
418
419 va = kmalloc_node(sizeof(struct vmap_area),
420 gfp_mask & GFP_RECLAIM_MASK, node);
421 if (unlikely(!va))
422 return ERR_PTR(-ENOMEM);
423
424 /*
425 * Only scan the relevant parts containing pointers to other objects
426 * to avoid false negatives.
427 */
428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429
430 retry:
431 spin_lock(&vmap_area_lock);
432 /*
433 * Invalidate cache if we have more permissive parameters.
434 * cached_hole_size notes the largest hole noticed _below_
435 * the vmap_area cached in free_vmap_cache: if size fits
436 * into that hole, we want to scan from vstart to reuse
437 * the hole instead of allocating above free_vmap_cache.
438 * Note that __free_vmap_area may update free_vmap_cache
439 * without updating cached_hole_size or cached_align.
440 */
441 if (!free_vmap_cache ||
442 size < cached_hole_size ||
443 vstart < cached_vstart ||
444 align < cached_align) {
445 nocache:
446 cached_hole_size = 0;
447 free_vmap_cache = NULL;
448 }
449 /* record if we encounter less permissive parameters */
450 cached_vstart = vstart;
451 cached_align = align;
452
453 /* find starting point for our search */
454 if (free_vmap_cache) {
455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456 addr = ALIGN(first->va_end, align);
457 if (addr < vstart)
458 goto nocache;
459 if (addr + size < addr)
460 goto overflow;
461
462 } else {
463 addr = ALIGN(vstart, align);
464 if (addr + size < addr)
465 goto overflow;
466
467 n = vmap_area_root.rb_node;
468 first = NULL;
469
470 while (n) {
471 struct vmap_area *tmp;
472 tmp = rb_entry(n, struct vmap_area, rb_node);
473 if (tmp->va_end >= addr) {
474 first = tmp;
475 if (tmp->va_start <= addr)
476 break;
477 n = n->rb_left;
478 } else
479 n = n->rb_right;
480 }
481
482 if (!first)
483 goto found;
484 }
485
486 /* from the starting point, walk areas until a suitable hole is found */
487 while (addr + size > first->va_start && addr + size <= vend) {
488 if (addr + cached_hole_size < first->va_start)
489 cached_hole_size = first->va_start - addr;
490 addr = ALIGN(first->va_end, align);
491 if (addr + size < addr)
492 goto overflow;
493
494 if (list_is_last(&first->list, &vmap_area_list))
495 goto found;
496
497 first = list_next_entry(first, list);
498 }
499
500 found:
501 if (addr + size > vend)
502 goto overflow;
503
504 va->va_start = addr;
505 va->va_end = addr + size;
506 va->flags = 0;
507 __insert_vmap_area(va);
508 free_vmap_cache = &va->rb_node;
509 spin_unlock(&vmap_area_lock);
510
511 BUG_ON(!IS_ALIGNED(va->va_start, align));
512 BUG_ON(va->va_start < vstart);
513 BUG_ON(va->va_end > vend);
514
515 return va;
516
517 overflow:
518 spin_unlock(&vmap_area_lock);
519 if (!purged) {
520 purge_vmap_area_lazy();
521 purged = 1;
522 goto retry;
523 }
524
525 if (gfpflags_allow_blocking(gfp_mask)) {
526 unsigned long freed = 0;
527 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
528 if (freed > 0) {
529 purged = 0;
530 goto retry;
531 }
532 }
533
534 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
535 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
536 size);
537 kfree(va);
538 return ERR_PTR(-EBUSY);
539 }
540
541 int register_vmap_purge_notifier(struct notifier_block *nb)
542 {
543 return blocking_notifier_chain_register(&vmap_notify_list, nb);
544 }
545 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
546
547 int unregister_vmap_purge_notifier(struct notifier_block *nb)
548 {
549 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
550 }
551 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
552
553 static void __free_vmap_area(struct vmap_area *va)
554 {
555 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
556
557 if (free_vmap_cache) {
558 if (va->va_end < cached_vstart) {
559 free_vmap_cache = NULL;
560 } else {
561 struct vmap_area *cache;
562 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
563 if (va->va_start <= cache->va_start) {
564 free_vmap_cache = rb_prev(&va->rb_node);
565 /*
566 * We don't try to update cached_hole_size or
567 * cached_align, but it won't go very wrong.
568 */
569 }
570 }
571 }
572 rb_erase(&va->rb_node, &vmap_area_root);
573 RB_CLEAR_NODE(&va->rb_node);
574 list_del_rcu(&va->list);
575
576 /*
577 * Track the highest possible candidate for pcpu area
578 * allocation. Areas outside of vmalloc area can be returned
579 * here too, consider only end addresses which fall inside
580 * vmalloc area proper.
581 */
582 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
583 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
584
585 kfree_rcu(va, rcu_head);
586 }
587
588 /*
589 * Free a region of KVA allocated by alloc_vmap_area
590 */
591 static void free_vmap_area(struct vmap_area *va)
592 {
593 spin_lock(&vmap_area_lock);
594 __free_vmap_area(va);
595 spin_unlock(&vmap_area_lock);
596 }
597
598 /*
599 * Clear the pagetable entries of a given vmap_area
600 */
601 static void unmap_vmap_area(struct vmap_area *va)
602 {
603 vunmap_page_range(va->va_start, va->va_end);
604 }
605
606 static void vmap_debug_free_range(unsigned long start, unsigned long end)
607 {
608 /*
609 * Unmap page tables and force a TLB flush immediately if pagealloc
610 * debugging is enabled. This catches use after free bugs similarly to
611 * those in linear kernel virtual address space after a page has been
612 * freed.
613 *
614 * All the lazy freeing logic is still retained, in order to minimise
615 * intrusiveness of this debugging feature.
616 *
617 * This is going to be *slow* (linear kernel virtual address debugging
618 * doesn't do a broadcast TLB flush so it is a lot faster).
619 */
620 if (debug_pagealloc_enabled()) {
621 vunmap_page_range(start, end);
622 flush_tlb_kernel_range(start, end);
623 }
624 }
625
626 /*
627 * lazy_max_pages is the maximum amount of virtual address space we gather up
628 * before attempting to purge with a TLB flush.
629 *
630 * There is a tradeoff here: a larger number will cover more kernel page tables
631 * and take slightly longer to purge, but it will linearly reduce the number of
632 * global TLB flushes that must be performed. It would seem natural to scale
633 * this number up linearly with the number of CPUs (because vmapping activity
634 * could also scale linearly with the number of CPUs), however it is likely
635 * that in practice, workloads might be constrained in other ways that mean
636 * vmap activity will not scale linearly with CPUs. Also, I want to be
637 * conservative and not introduce a big latency on huge systems, so go with
638 * a less aggressive log scale. It will still be an improvement over the old
639 * code, and it will be simple to change the scale factor if we find that it
640 * becomes a problem on bigger systems.
641 */
642 static unsigned long lazy_max_pages(void)
643 {
644 unsigned int log;
645
646 log = fls(num_online_cpus());
647
648 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
649 }
650
651 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
652
653 /*
654 * Serialize vmap purging. There is no actual criticial section protected
655 * by this look, but we want to avoid concurrent calls for performance
656 * reasons and to make the pcpu_get_vm_areas more deterministic.
657 */
658 static DEFINE_MUTEX(vmap_purge_lock);
659
660 /* for per-CPU blocks */
661 static void purge_fragmented_blocks_allcpus(void);
662
663 /*
664 * called before a call to iounmap() if the caller wants vm_area_struct's
665 * immediately freed.
666 */
667 void set_iounmap_nonlazy(void)
668 {
669 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
670 }
671
672 /*
673 * Purges all lazily-freed vmap areas.
674 */
675 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
676 {
677 struct llist_node *valist;
678 struct vmap_area *va;
679 struct vmap_area *n_va;
680 bool do_free = false;
681
682 lockdep_assert_held(&vmap_purge_lock);
683
684 valist = llist_del_all(&vmap_purge_list);
685 llist_for_each_entry(va, valist, purge_list) {
686 if (va->va_start < start)
687 start = va->va_start;
688 if (va->va_end > end)
689 end = va->va_end;
690 do_free = true;
691 }
692
693 if (!do_free)
694 return false;
695
696 flush_tlb_kernel_range(start, end);
697
698 spin_lock(&vmap_area_lock);
699 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
700 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
701
702 __free_vmap_area(va);
703 atomic_sub(nr, &vmap_lazy_nr);
704 cond_resched_lock(&vmap_area_lock);
705 }
706 spin_unlock(&vmap_area_lock);
707 return true;
708 }
709
710 /*
711 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
712 * is already purging.
713 */
714 static void try_purge_vmap_area_lazy(void)
715 {
716 if (mutex_trylock(&vmap_purge_lock)) {
717 __purge_vmap_area_lazy(ULONG_MAX, 0);
718 mutex_unlock(&vmap_purge_lock);
719 }
720 }
721
722 /*
723 * Kick off a purge of the outstanding lazy areas.
724 */
725 static void purge_vmap_area_lazy(void)
726 {
727 mutex_lock(&vmap_purge_lock);
728 purge_fragmented_blocks_allcpus();
729 __purge_vmap_area_lazy(ULONG_MAX, 0);
730 mutex_unlock(&vmap_purge_lock);
731 }
732
733 /*
734 * Free a vmap area, caller ensuring that the area has been unmapped
735 * and flush_cache_vunmap had been called for the correct range
736 * previously.
737 */
738 static void free_vmap_area_noflush(struct vmap_area *va)
739 {
740 int nr_lazy;
741
742 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
743 &vmap_lazy_nr);
744
745 /* After this point, we may free va at any time */
746 llist_add(&va->purge_list, &vmap_purge_list);
747
748 if (unlikely(nr_lazy > lazy_max_pages()))
749 try_purge_vmap_area_lazy();
750 }
751
752 /*
753 * Free and unmap a vmap area
754 */
755 static void free_unmap_vmap_area(struct vmap_area *va)
756 {
757 flush_cache_vunmap(va->va_start, va->va_end);
758 unmap_vmap_area(va);
759 free_vmap_area_noflush(va);
760 }
761
762 static struct vmap_area *find_vmap_area(unsigned long addr)
763 {
764 struct vmap_area *va;
765
766 spin_lock(&vmap_area_lock);
767 va = __find_vmap_area(addr);
768 spin_unlock(&vmap_area_lock);
769
770 return va;
771 }
772
773 /*** Per cpu kva allocator ***/
774
775 /*
776 * vmap space is limited especially on 32 bit architectures. Ensure there is
777 * room for at least 16 percpu vmap blocks per CPU.
778 */
779 /*
780 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
781 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
782 * instead (we just need a rough idea)
783 */
784 #if BITS_PER_LONG == 32
785 #define VMALLOC_SPACE (128UL*1024*1024)
786 #else
787 #define VMALLOC_SPACE (128UL*1024*1024*1024)
788 #endif
789
790 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
791 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
792 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
793 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
794 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
795 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
796 #define VMAP_BBMAP_BITS \
797 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
798 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
799 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
800
801 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
802
803 static bool vmap_initialized __read_mostly = false;
804
805 struct vmap_block_queue {
806 spinlock_t lock;
807 struct list_head free;
808 };
809
810 struct vmap_block {
811 spinlock_t lock;
812 struct vmap_area *va;
813 unsigned long free, dirty;
814 unsigned long dirty_min, dirty_max; /*< dirty range */
815 struct list_head free_list;
816 struct rcu_head rcu_head;
817 struct list_head purge;
818 };
819
820 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
821 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
822
823 /*
824 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
825 * in the free path. Could get rid of this if we change the API to return a
826 * "cookie" from alloc, to be passed to free. But no big deal yet.
827 */
828 static DEFINE_SPINLOCK(vmap_block_tree_lock);
829 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
830
831 /*
832 * We should probably have a fallback mechanism to allocate virtual memory
833 * out of partially filled vmap blocks. However vmap block sizing should be
834 * fairly reasonable according to the vmalloc size, so it shouldn't be a
835 * big problem.
836 */
837
838 static unsigned long addr_to_vb_idx(unsigned long addr)
839 {
840 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
841 addr /= VMAP_BLOCK_SIZE;
842 return addr;
843 }
844
845 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
846 {
847 unsigned long addr;
848
849 addr = va_start + (pages_off << PAGE_SHIFT);
850 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
851 return (void *)addr;
852 }
853
854 /**
855 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
856 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
857 * @order: how many 2^order pages should be occupied in newly allocated block
858 * @gfp_mask: flags for the page level allocator
859 *
860 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
861 */
862 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
863 {
864 struct vmap_block_queue *vbq;
865 struct vmap_block *vb;
866 struct vmap_area *va;
867 unsigned long vb_idx;
868 int node, err;
869 void *vaddr;
870
871 node = numa_node_id();
872
873 vb = kmalloc_node(sizeof(struct vmap_block),
874 gfp_mask & GFP_RECLAIM_MASK, node);
875 if (unlikely(!vb))
876 return ERR_PTR(-ENOMEM);
877
878 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
879 VMALLOC_START, VMALLOC_END,
880 node, gfp_mask);
881 if (IS_ERR(va)) {
882 kfree(vb);
883 return ERR_CAST(va);
884 }
885
886 err = radix_tree_preload(gfp_mask);
887 if (unlikely(err)) {
888 kfree(vb);
889 free_vmap_area(va);
890 return ERR_PTR(err);
891 }
892
893 vaddr = vmap_block_vaddr(va->va_start, 0);
894 spin_lock_init(&vb->lock);
895 vb->va = va;
896 /* At least something should be left free */
897 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
898 vb->free = VMAP_BBMAP_BITS - (1UL << order);
899 vb->dirty = 0;
900 vb->dirty_min = VMAP_BBMAP_BITS;
901 vb->dirty_max = 0;
902 INIT_LIST_HEAD(&vb->free_list);
903
904 vb_idx = addr_to_vb_idx(va->va_start);
905 spin_lock(&vmap_block_tree_lock);
906 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
907 spin_unlock(&vmap_block_tree_lock);
908 BUG_ON(err);
909 radix_tree_preload_end();
910
911 vbq = &get_cpu_var(vmap_block_queue);
912 spin_lock(&vbq->lock);
913 list_add_tail_rcu(&vb->free_list, &vbq->free);
914 spin_unlock(&vbq->lock);
915 put_cpu_var(vmap_block_queue);
916
917 return vaddr;
918 }
919
920 static void free_vmap_block(struct vmap_block *vb)
921 {
922 struct vmap_block *tmp;
923 unsigned long vb_idx;
924
925 vb_idx = addr_to_vb_idx(vb->va->va_start);
926 spin_lock(&vmap_block_tree_lock);
927 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
928 spin_unlock(&vmap_block_tree_lock);
929 BUG_ON(tmp != vb);
930
931 free_vmap_area_noflush(vb->va);
932 kfree_rcu(vb, rcu_head);
933 }
934
935 static void purge_fragmented_blocks(int cpu)
936 {
937 LIST_HEAD(purge);
938 struct vmap_block *vb;
939 struct vmap_block *n_vb;
940 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
941
942 rcu_read_lock();
943 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
944
945 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
946 continue;
947
948 spin_lock(&vb->lock);
949 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
950 vb->free = 0; /* prevent further allocs after releasing lock */
951 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
952 vb->dirty_min = 0;
953 vb->dirty_max = VMAP_BBMAP_BITS;
954 spin_lock(&vbq->lock);
955 list_del_rcu(&vb->free_list);
956 spin_unlock(&vbq->lock);
957 spin_unlock(&vb->lock);
958 list_add_tail(&vb->purge, &purge);
959 } else
960 spin_unlock(&vb->lock);
961 }
962 rcu_read_unlock();
963
964 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
965 list_del(&vb->purge);
966 free_vmap_block(vb);
967 }
968 }
969
970 static void purge_fragmented_blocks_allcpus(void)
971 {
972 int cpu;
973
974 for_each_possible_cpu(cpu)
975 purge_fragmented_blocks(cpu);
976 }
977
978 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
979 {
980 struct vmap_block_queue *vbq;
981 struct vmap_block *vb;
982 void *vaddr = NULL;
983 unsigned int order;
984
985 BUG_ON(offset_in_page(size));
986 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
987 if (WARN_ON(size == 0)) {
988 /*
989 * Allocating 0 bytes isn't what caller wants since
990 * get_order(0) returns funny result. Just warn and terminate
991 * early.
992 */
993 return NULL;
994 }
995 order = get_order(size);
996
997 rcu_read_lock();
998 vbq = &get_cpu_var(vmap_block_queue);
999 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1000 unsigned long pages_off;
1001
1002 spin_lock(&vb->lock);
1003 if (vb->free < (1UL << order)) {
1004 spin_unlock(&vb->lock);
1005 continue;
1006 }
1007
1008 pages_off = VMAP_BBMAP_BITS - vb->free;
1009 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1010 vb->free -= 1UL << order;
1011 if (vb->free == 0) {
1012 spin_lock(&vbq->lock);
1013 list_del_rcu(&vb->free_list);
1014 spin_unlock(&vbq->lock);
1015 }
1016
1017 spin_unlock(&vb->lock);
1018 break;
1019 }
1020
1021 put_cpu_var(vmap_block_queue);
1022 rcu_read_unlock();
1023
1024 /* Allocate new block if nothing was found */
1025 if (!vaddr)
1026 vaddr = new_vmap_block(order, gfp_mask);
1027
1028 return vaddr;
1029 }
1030
1031 static void vb_free(const void *addr, unsigned long size)
1032 {
1033 unsigned long offset;
1034 unsigned long vb_idx;
1035 unsigned int order;
1036 struct vmap_block *vb;
1037
1038 BUG_ON(offset_in_page(size));
1039 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1040
1041 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1042
1043 order = get_order(size);
1044
1045 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1046 offset >>= PAGE_SHIFT;
1047
1048 vb_idx = addr_to_vb_idx((unsigned long)addr);
1049 rcu_read_lock();
1050 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1051 rcu_read_unlock();
1052 BUG_ON(!vb);
1053
1054 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1055
1056 spin_lock(&vb->lock);
1057
1058 /* Expand dirty range */
1059 vb->dirty_min = min(vb->dirty_min, offset);
1060 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1061
1062 vb->dirty += 1UL << order;
1063 if (vb->dirty == VMAP_BBMAP_BITS) {
1064 BUG_ON(vb->free);
1065 spin_unlock(&vb->lock);
1066 free_vmap_block(vb);
1067 } else
1068 spin_unlock(&vb->lock);
1069 }
1070
1071 /**
1072 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1073 *
1074 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1075 * to amortize TLB flushing overheads. What this means is that any page you
1076 * have now, may, in a former life, have been mapped into kernel virtual
1077 * address by the vmap layer and so there might be some CPUs with TLB entries
1078 * still referencing that page (additional to the regular 1:1 kernel mapping).
1079 *
1080 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1081 * be sure that none of the pages we have control over will have any aliases
1082 * from the vmap layer.
1083 */
1084 void vm_unmap_aliases(void)
1085 {
1086 unsigned long start = ULONG_MAX, end = 0;
1087 int cpu;
1088 int flush = 0;
1089
1090 if (unlikely(!vmap_initialized))
1091 return;
1092
1093 might_sleep();
1094
1095 for_each_possible_cpu(cpu) {
1096 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1097 struct vmap_block *vb;
1098
1099 rcu_read_lock();
1100 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1101 spin_lock(&vb->lock);
1102 if (vb->dirty) {
1103 unsigned long va_start = vb->va->va_start;
1104 unsigned long s, e;
1105
1106 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1107 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1108
1109 start = min(s, start);
1110 end = max(e, end);
1111
1112 flush = 1;
1113 }
1114 spin_unlock(&vb->lock);
1115 }
1116 rcu_read_unlock();
1117 }
1118
1119 mutex_lock(&vmap_purge_lock);
1120 purge_fragmented_blocks_allcpus();
1121 if (!__purge_vmap_area_lazy(start, end) && flush)
1122 flush_tlb_kernel_range(start, end);
1123 mutex_unlock(&vmap_purge_lock);
1124 }
1125 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1126
1127 /**
1128 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1129 * @mem: the pointer returned by vm_map_ram
1130 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1131 */
1132 void vm_unmap_ram(const void *mem, unsigned int count)
1133 {
1134 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1135 unsigned long addr = (unsigned long)mem;
1136 struct vmap_area *va;
1137
1138 might_sleep();
1139 BUG_ON(!addr);
1140 BUG_ON(addr < VMALLOC_START);
1141 BUG_ON(addr > VMALLOC_END);
1142 BUG_ON(!PAGE_ALIGNED(addr));
1143
1144 debug_check_no_locks_freed(mem, size);
1145 vmap_debug_free_range(addr, addr+size);
1146
1147 if (likely(count <= VMAP_MAX_ALLOC)) {
1148 vb_free(mem, size);
1149 return;
1150 }
1151
1152 va = find_vmap_area(addr);
1153 BUG_ON(!va);
1154 free_unmap_vmap_area(va);
1155 }
1156 EXPORT_SYMBOL(vm_unmap_ram);
1157
1158 /**
1159 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1160 * @pages: an array of pointers to the pages to be mapped
1161 * @count: number of pages
1162 * @node: prefer to allocate data structures on this node
1163 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1164 *
1165 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1166 * faster than vmap so it's good. But if you mix long-life and short-life
1167 * objects with vm_map_ram(), it could consume lots of address space through
1168 * fragmentation (especially on a 32bit machine). You could see failures in
1169 * the end. Please use this function for short-lived objects.
1170 *
1171 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1172 */
1173 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1174 {
1175 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1176 unsigned long addr;
1177 void *mem;
1178
1179 if (likely(count <= VMAP_MAX_ALLOC)) {
1180 mem = vb_alloc(size, GFP_KERNEL);
1181 if (IS_ERR(mem))
1182 return NULL;
1183 addr = (unsigned long)mem;
1184 } else {
1185 struct vmap_area *va;
1186 va = alloc_vmap_area(size, PAGE_SIZE,
1187 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1188 if (IS_ERR(va))
1189 return NULL;
1190
1191 addr = va->va_start;
1192 mem = (void *)addr;
1193 }
1194 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1195 vm_unmap_ram(mem, count);
1196 return NULL;
1197 }
1198 return mem;
1199 }
1200 EXPORT_SYMBOL(vm_map_ram);
1201
1202 static struct vm_struct *vmlist __initdata;
1203 /**
1204 * vm_area_add_early - add vmap area early during boot
1205 * @vm: vm_struct to add
1206 *
1207 * This function is used to add fixed kernel vm area to vmlist before
1208 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1209 * should contain proper values and the other fields should be zero.
1210 *
1211 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1212 */
1213 void __init vm_area_add_early(struct vm_struct *vm)
1214 {
1215 struct vm_struct *tmp, **p;
1216
1217 BUG_ON(vmap_initialized);
1218 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1219 if (tmp->addr >= vm->addr) {
1220 BUG_ON(tmp->addr < vm->addr + vm->size);
1221 break;
1222 } else
1223 BUG_ON(tmp->addr + tmp->size > vm->addr);
1224 }
1225 vm->next = *p;
1226 *p = vm;
1227 }
1228
1229 /**
1230 * vm_area_register_early - register vmap area early during boot
1231 * @vm: vm_struct to register
1232 * @align: requested alignment
1233 *
1234 * This function is used to register kernel vm area before
1235 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1236 * proper values on entry and other fields should be zero. On return,
1237 * vm->addr contains the allocated address.
1238 *
1239 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1240 */
1241 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1242 {
1243 static size_t vm_init_off __initdata;
1244 unsigned long addr;
1245
1246 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1247 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1248
1249 vm->addr = (void *)addr;
1250
1251 vm_area_add_early(vm);
1252 }
1253
1254 void __init vmalloc_init(void)
1255 {
1256 struct vmap_area *va;
1257 struct vm_struct *tmp;
1258 int i;
1259
1260 for_each_possible_cpu(i) {
1261 struct vmap_block_queue *vbq;
1262 struct vfree_deferred *p;
1263
1264 vbq = &per_cpu(vmap_block_queue, i);
1265 spin_lock_init(&vbq->lock);
1266 INIT_LIST_HEAD(&vbq->free);
1267 p = &per_cpu(vfree_deferred, i);
1268 init_llist_head(&p->list);
1269 INIT_WORK(&p->wq, free_work);
1270 }
1271
1272 /* Import existing vmlist entries. */
1273 for (tmp = vmlist; tmp; tmp = tmp->next) {
1274 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1275 va->flags = VM_VM_AREA;
1276 va->va_start = (unsigned long)tmp->addr;
1277 va->va_end = va->va_start + tmp->size;
1278 va->vm = tmp;
1279 __insert_vmap_area(va);
1280 }
1281
1282 vmap_area_pcpu_hole = VMALLOC_END;
1283
1284 vmap_initialized = true;
1285 }
1286
1287 /**
1288 * map_kernel_range_noflush - map kernel VM area with the specified pages
1289 * @addr: start of the VM area to map
1290 * @size: size of the VM area to map
1291 * @prot: page protection flags to use
1292 * @pages: pages to map
1293 *
1294 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1295 * specify should have been allocated using get_vm_area() and its
1296 * friends.
1297 *
1298 * NOTE:
1299 * This function does NOT do any cache flushing. The caller is
1300 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1301 * before calling this function.
1302 *
1303 * RETURNS:
1304 * The number of pages mapped on success, -errno on failure.
1305 */
1306 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1307 pgprot_t prot, struct page **pages)
1308 {
1309 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1310 }
1311
1312 /**
1313 * unmap_kernel_range_noflush - unmap kernel VM area
1314 * @addr: start of the VM area to unmap
1315 * @size: size of the VM area to unmap
1316 *
1317 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1318 * specify should have been allocated using get_vm_area() and its
1319 * friends.
1320 *
1321 * NOTE:
1322 * This function does NOT do any cache flushing. The caller is
1323 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1324 * before calling this function and flush_tlb_kernel_range() after.
1325 */
1326 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1327 {
1328 vunmap_page_range(addr, addr + size);
1329 }
1330 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1331
1332 /**
1333 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1334 * @addr: start of the VM area to unmap
1335 * @size: size of the VM area to unmap
1336 *
1337 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1338 * the unmapping and tlb after.
1339 */
1340 void unmap_kernel_range(unsigned long addr, unsigned long size)
1341 {
1342 unsigned long end = addr + size;
1343
1344 flush_cache_vunmap(addr, end);
1345 vunmap_page_range(addr, end);
1346 flush_tlb_kernel_range(addr, end);
1347 }
1348 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1349
1350 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1351 {
1352 unsigned long addr = (unsigned long)area->addr;
1353 unsigned long end = addr + get_vm_area_size(area);
1354 int err;
1355
1356 err = vmap_page_range(addr, end, prot, pages);
1357
1358 return err > 0 ? 0 : err;
1359 }
1360 EXPORT_SYMBOL_GPL(map_vm_area);
1361
1362 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1363 unsigned long flags, const void *caller)
1364 {
1365 spin_lock(&vmap_area_lock);
1366 vm->flags = flags;
1367 vm->addr = (void *)va->va_start;
1368 vm->size = va->va_end - va->va_start;
1369 vm->caller = caller;
1370 va->vm = vm;
1371 va->flags |= VM_VM_AREA;
1372 spin_unlock(&vmap_area_lock);
1373 }
1374
1375 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1376 {
1377 /*
1378 * Before removing VM_UNINITIALIZED,
1379 * we should make sure that vm has proper values.
1380 * Pair with smp_rmb() in show_numa_info().
1381 */
1382 smp_wmb();
1383 vm->flags &= ~VM_UNINITIALIZED;
1384 }
1385
1386 static struct vm_struct *__get_vm_area_node(unsigned long size,
1387 unsigned long align, unsigned long flags, unsigned long start,
1388 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1389 {
1390 struct vmap_area *va;
1391 struct vm_struct *area;
1392
1393 BUG_ON(in_interrupt());
1394 size = PAGE_ALIGN(size);
1395 if (unlikely(!size))
1396 return NULL;
1397
1398 if (flags & VM_IOREMAP)
1399 align = 1ul << clamp_t(int, get_count_order_long(size),
1400 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1401
1402 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1403 if (unlikely(!area))
1404 return NULL;
1405
1406 if (!(flags & VM_NO_GUARD))
1407 size += PAGE_SIZE;
1408
1409 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1410 if (IS_ERR(va)) {
1411 kfree(area);
1412 return NULL;
1413 }
1414
1415 setup_vmalloc_vm(area, va, flags, caller);
1416
1417 return area;
1418 }
1419
1420 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1421 unsigned long start, unsigned long end)
1422 {
1423 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424 GFP_KERNEL, __builtin_return_address(0));
1425 }
1426 EXPORT_SYMBOL_GPL(__get_vm_area);
1427
1428 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1429 unsigned long start, unsigned long end,
1430 const void *caller)
1431 {
1432 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1433 GFP_KERNEL, caller);
1434 }
1435
1436 /**
1437 * get_vm_area - reserve a contiguous kernel virtual area
1438 * @size: size of the area
1439 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1440 *
1441 * Search an area of @size in the kernel virtual mapping area,
1442 * and reserved it for out purposes. Returns the area descriptor
1443 * on success or %NULL on failure.
1444 */
1445 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1446 {
1447 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448 NUMA_NO_NODE, GFP_KERNEL,
1449 __builtin_return_address(0));
1450 }
1451
1452 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1453 const void *caller)
1454 {
1455 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1456 NUMA_NO_NODE, GFP_KERNEL, caller);
1457 }
1458
1459 /**
1460 * find_vm_area - find a continuous kernel virtual area
1461 * @addr: base address
1462 *
1463 * Search for the kernel VM area starting at @addr, and return it.
1464 * It is up to the caller to do all required locking to keep the returned
1465 * pointer valid.
1466 */
1467 struct vm_struct *find_vm_area(const void *addr)
1468 {
1469 struct vmap_area *va;
1470
1471 va = find_vmap_area((unsigned long)addr);
1472 if (va && va->flags & VM_VM_AREA)
1473 return va->vm;
1474
1475 return NULL;
1476 }
1477
1478 /**
1479 * remove_vm_area - find and remove a continuous kernel virtual area
1480 * @addr: base address
1481 *
1482 * Search for the kernel VM area starting at @addr, and remove it.
1483 * This function returns the found VM area, but using it is NOT safe
1484 * on SMP machines, except for its size or flags.
1485 */
1486 struct vm_struct *remove_vm_area(const void *addr)
1487 {
1488 struct vmap_area *va;
1489
1490 might_sleep();
1491
1492 va = find_vmap_area((unsigned long)addr);
1493 if (va && va->flags & VM_VM_AREA) {
1494 struct vm_struct *vm = va->vm;
1495
1496 spin_lock(&vmap_area_lock);
1497 va->vm = NULL;
1498 va->flags &= ~VM_VM_AREA;
1499 va->flags |= VM_LAZY_FREE;
1500 spin_unlock(&vmap_area_lock);
1501
1502 vmap_debug_free_range(va->va_start, va->va_end);
1503 kasan_free_shadow(vm);
1504 free_unmap_vmap_area(va);
1505
1506 return vm;
1507 }
1508 return NULL;
1509 }
1510
1511 static void __vunmap(const void *addr, int deallocate_pages)
1512 {
1513 struct vm_struct *area;
1514
1515 if (!addr)
1516 return;
1517
1518 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1519 addr))
1520 return;
1521
1522 area = find_vmap_area((unsigned long)addr)->vm;
1523 if (unlikely(!area)) {
1524 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1525 addr);
1526 return;
1527 }
1528
1529 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1530 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1531
1532 remove_vm_area(addr);
1533 if (deallocate_pages) {
1534 int i;
1535
1536 for (i = 0; i < area->nr_pages; i++) {
1537 struct page *page = area->pages[i];
1538
1539 BUG_ON(!page);
1540 __free_pages(page, 0);
1541 }
1542
1543 kvfree(area->pages);
1544 }
1545
1546 kfree(area);
1547 return;
1548 }
1549
1550 static inline void __vfree_deferred(const void *addr)
1551 {
1552 /*
1553 * Use raw_cpu_ptr() because this can be called from preemptible
1554 * context. Preemption is absolutely fine here, because the llist_add()
1555 * implementation is lockless, so it works even if we are adding to
1556 * nother cpu's list. schedule_work() should be fine with this too.
1557 */
1558 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1559
1560 if (llist_add((struct llist_node *)addr, &p->list))
1561 schedule_work(&p->wq);
1562 }
1563
1564 /**
1565 * vfree_atomic - release memory allocated by vmalloc()
1566 * @addr: memory base address
1567 *
1568 * This one is just like vfree() but can be called in any atomic context
1569 * except NMIs.
1570 */
1571 void vfree_atomic(const void *addr)
1572 {
1573 BUG_ON(in_nmi());
1574
1575 kmemleak_free(addr);
1576
1577 if (!addr)
1578 return;
1579 __vfree_deferred(addr);
1580 }
1581
1582 /**
1583 * vfree - release memory allocated by vmalloc()
1584 * @addr: memory base address
1585 *
1586 * Free the virtually continuous memory area starting at @addr, as
1587 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1588 * NULL, no operation is performed.
1589 *
1590 * Must not be called in NMI context (strictly speaking, only if we don't
1591 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1592 * conventions for vfree() arch-depenedent would be a really bad idea)
1593 *
1594 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1595 */
1596 void vfree(const void *addr)
1597 {
1598 BUG_ON(in_nmi());
1599
1600 kmemleak_free(addr);
1601
1602 if (!addr)
1603 return;
1604 if (unlikely(in_interrupt()))
1605 __vfree_deferred(addr);
1606 else
1607 __vunmap(addr, 1);
1608 }
1609 EXPORT_SYMBOL(vfree);
1610
1611 /**
1612 * vunmap - release virtual mapping obtained by vmap()
1613 * @addr: memory base address
1614 *
1615 * Free the virtually contiguous memory area starting at @addr,
1616 * which was created from the page array passed to vmap().
1617 *
1618 * Must not be called in interrupt context.
1619 */
1620 void vunmap(const void *addr)
1621 {
1622 BUG_ON(in_interrupt());
1623 might_sleep();
1624 if (addr)
1625 __vunmap(addr, 0);
1626 }
1627 EXPORT_SYMBOL(vunmap);
1628
1629 /**
1630 * vmap - map an array of pages into virtually contiguous space
1631 * @pages: array of page pointers
1632 * @count: number of pages to map
1633 * @flags: vm_area->flags
1634 * @prot: page protection for the mapping
1635 *
1636 * Maps @count pages from @pages into contiguous kernel virtual
1637 * space.
1638 */
1639 void *vmap(struct page **pages, unsigned int count,
1640 unsigned long flags, pgprot_t prot)
1641 {
1642 struct vm_struct *area;
1643 unsigned long size; /* In bytes */
1644
1645 might_sleep();
1646
1647 if (count > totalram_pages)
1648 return NULL;
1649
1650 size = (unsigned long)count << PAGE_SHIFT;
1651 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1652 if (!area)
1653 return NULL;
1654
1655 if (map_vm_area(area, prot, pages)) {
1656 vunmap(area->addr);
1657 return NULL;
1658 }
1659
1660 return area->addr;
1661 }
1662 EXPORT_SYMBOL(vmap);
1663
1664 static void *__vmalloc_node(unsigned long size, unsigned long align,
1665 gfp_t gfp_mask, pgprot_t prot,
1666 int node, const void *caller);
1667 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1668 pgprot_t prot, int node)
1669 {
1670 struct page **pages;
1671 unsigned int nr_pages, array_size, i;
1672 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1673 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1674 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1675 0 :
1676 __GFP_HIGHMEM;
1677
1678 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1679 array_size = (nr_pages * sizeof(struct page *));
1680
1681 area->nr_pages = nr_pages;
1682 /* Please note that the recursion is strictly bounded. */
1683 if (array_size > PAGE_SIZE) {
1684 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1685 PAGE_KERNEL, node, area->caller);
1686 } else {
1687 pages = kmalloc_node(array_size, nested_gfp, node);
1688 }
1689 area->pages = pages;
1690 if (!area->pages) {
1691 remove_vm_area(area->addr);
1692 kfree(area);
1693 return NULL;
1694 }
1695
1696 for (i = 0; i < area->nr_pages; i++) {
1697 struct page *page;
1698
1699 if (node == NUMA_NO_NODE)
1700 page = alloc_page(alloc_mask|highmem_mask);
1701 else
1702 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1703
1704 if (unlikely(!page)) {
1705 /* Successfully allocated i pages, free them in __vunmap() */
1706 area->nr_pages = i;
1707 goto fail;
1708 }
1709 area->pages[i] = page;
1710 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1711 cond_resched();
1712 }
1713
1714 if (map_vm_area(area, prot, pages))
1715 goto fail;
1716 return area->addr;
1717
1718 fail:
1719 warn_alloc(gfp_mask, NULL,
1720 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1721 (area->nr_pages*PAGE_SIZE), area->size);
1722 vfree(area->addr);
1723 return NULL;
1724 }
1725
1726 /**
1727 * __vmalloc_node_range - allocate virtually contiguous memory
1728 * @size: allocation size
1729 * @align: desired alignment
1730 * @start: vm area range start
1731 * @end: vm area range end
1732 * @gfp_mask: flags for the page level allocator
1733 * @prot: protection mask for the allocated pages
1734 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1735 * @node: node to use for allocation or NUMA_NO_NODE
1736 * @caller: caller's return address
1737 *
1738 * Allocate enough pages to cover @size from the page level
1739 * allocator with @gfp_mask flags. Map them into contiguous
1740 * kernel virtual space, using a pagetable protection of @prot.
1741 */
1742 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1743 unsigned long start, unsigned long end, gfp_t gfp_mask,
1744 pgprot_t prot, unsigned long vm_flags, int node,
1745 const void *caller)
1746 {
1747 struct vm_struct *area;
1748 void *addr;
1749 unsigned long real_size = size;
1750
1751 size = PAGE_ALIGN(size);
1752 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1753 goto fail;
1754
1755 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1756 vm_flags, start, end, node, gfp_mask, caller);
1757 if (!area)
1758 goto fail;
1759
1760 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1761 if (!addr)
1762 return NULL;
1763
1764 /*
1765 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1766 * flag. It means that vm_struct is not fully initialized.
1767 * Now, it is fully initialized, so remove this flag here.
1768 */
1769 clear_vm_uninitialized_flag(area);
1770
1771 kmemleak_vmalloc(area, size, gfp_mask);
1772
1773 return addr;
1774
1775 fail:
1776 warn_alloc(gfp_mask, NULL,
1777 "vmalloc: allocation failure: %lu bytes", real_size);
1778 return NULL;
1779 }
1780
1781 /**
1782 * __vmalloc_node - allocate virtually contiguous memory
1783 * @size: allocation size
1784 * @align: desired alignment
1785 * @gfp_mask: flags for the page level allocator
1786 * @prot: protection mask for the allocated pages
1787 * @node: node to use for allocation or NUMA_NO_NODE
1788 * @caller: caller's return address
1789 *
1790 * Allocate enough pages to cover @size from the page level
1791 * allocator with @gfp_mask flags. Map them into contiguous
1792 * kernel virtual space, using a pagetable protection of @prot.
1793 *
1794 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1795 * and __GFP_NOFAIL are not supported
1796 *
1797 * Any use of gfp flags outside of GFP_KERNEL should be consulted
1798 * with mm people.
1799 *
1800 */
1801 static void *__vmalloc_node(unsigned long size, unsigned long align,
1802 gfp_t gfp_mask, pgprot_t prot,
1803 int node, const void *caller)
1804 {
1805 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1806 gfp_mask, prot, 0, node, caller);
1807 }
1808
1809 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1810 {
1811 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1812 __builtin_return_address(0));
1813 }
1814 EXPORT_SYMBOL(__vmalloc);
1815
1816 static inline void *__vmalloc_node_flags(unsigned long size,
1817 int node, gfp_t flags)
1818 {
1819 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1820 node, __builtin_return_address(0));
1821 }
1822
1823
1824 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1825 void *caller)
1826 {
1827 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1828 }
1829
1830 /**
1831 * vmalloc - allocate virtually contiguous memory
1832 * @size: allocation size
1833 * Allocate enough pages to cover @size from the page level
1834 * allocator and map them into contiguous kernel virtual space.
1835 *
1836 * For tight control over page level allocator and protection flags
1837 * use __vmalloc() instead.
1838 */
1839 void *vmalloc(unsigned long size)
1840 {
1841 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1842 GFP_KERNEL);
1843 }
1844 EXPORT_SYMBOL(vmalloc);
1845
1846 /**
1847 * vzalloc - allocate virtually contiguous memory with zero fill
1848 * @size: allocation size
1849 * Allocate enough pages to cover @size from the page level
1850 * allocator and map them into contiguous kernel virtual space.
1851 * The memory allocated is set to zero.
1852 *
1853 * For tight control over page level allocator and protection flags
1854 * use __vmalloc() instead.
1855 */
1856 void *vzalloc(unsigned long size)
1857 {
1858 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1859 GFP_KERNEL | __GFP_ZERO);
1860 }
1861 EXPORT_SYMBOL(vzalloc);
1862
1863 /**
1864 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1865 * @size: allocation size
1866 *
1867 * The resulting memory area is zeroed so it can be mapped to userspace
1868 * without leaking data.
1869 */
1870 void *vmalloc_user(unsigned long size)
1871 {
1872 struct vm_struct *area;
1873 void *ret;
1874
1875 ret = __vmalloc_node(size, SHMLBA,
1876 GFP_KERNEL | __GFP_ZERO,
1877 PAGE_KERNEL, NUMA_NO_NODE,
1878 __builtin_return_address(0));
1879 if (ret) {
1880 area = find_vm_area(ret);
1881 area->flags |= VM_USERMAP;
1882 }
1883 return ret;
1884 }
1885 EXPORT_SYMBOL(vmalloc_user);
1886
1887 /**
1888 * vmalloc_node - allocate memory on a specific node
1889 * @size: allocation size
1890 * @node: numa node
1891 *
1892 * Allocate enough pages to cover @size from the page level
1893 * allocator and map them into contiguous kernel virtual space.
1894 *
1895 * For tight control over page level allocator and protection flags
1896 * use __vmalloc() instead.
1897 */
1898 void *vmalloc_node(unsigned long size, int node)
1899 {
1900 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1901 node, __builtin_return_address(0));
1902 }
1903 EXPORT_SYMBOL(vmalloc_node);
1904
1905 /**
1906 * vzalloc_node - allocate memory on a specific node with zero fill
1907 * @size: allocation size
1908 * @node: numa node
1909 *
1910 * Allocate enough pages to cover @size from the page level
1911 * allocator and map them into contiguous kernel virtual space.
1912 * The memory allocated is set to zero.
1913 *
1914 * For tight control over page level allocator and protection flags
1915 * use __vmalloc_node() instead.
1916 */
1917 void *vzalloc_node(unsigned long size, int node)
1918 {
1919 return __vmalloc_node_flags(size, node,
1920 GFP_KERNEL | __GFP_ZERO);
1921 }
1922 EXPORT_SYMBOL(vzalloc_node);
1923
1924 #ifndef PAGE_KERNEL_EXEC
1925 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1926 #endif
1927
1928 /**
1929 * vmalloc_exec - allocate virtually contiguous, executable memory
1930 * @size: allocation size
1931 *
1932 * Kernel-internal function to allocate enough pages to cover @size
1933 * the page level allocator and map them into contiguous and
1934 * executable kernel virtual space.
1935 *
1936 * For tight control over page level allocator and protection flags
1937 * use __vmalloc() instead.
1938 */
1939
1940 void *vmalloc_exec(unsigned long size)
1941 {
1942 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1943 NUMA_NO_NODE, __builtin_return_address(0));
1944 }
1945
1946 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1947 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1948 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1949 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1950 #else
1951 /*
1952 * 64b systems should always have either DMA or DMA32 zones. For others
1953 * GFP_DMA32 should do the right thing and use the normal zone.
1954 */
1955 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1956 #endif
1957
1958 /**
1959 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1960 * @size: allocation size
1961 *
1962 * Allocate enough 32bit PA addressable pages to cover @size from the
1963 * page level allocator and map them into contiguous kernel virtual space.
1964 */
1965 void *vmalloc_32(unsigned long size)
1966 {
1967 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1968 NUMA_NO_NODE, __builtin_return_address(0));
1969 }
1970 EXPORT_SYMBOL(vmalloc_32);
1971
1972 /**
1973 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1974 * @size: allocation size
1975 *
1976 * The resulting memory area is 32bit addressable and zeroed so it can be
1977 * mapped to userspace without leaking data.
1978 */
1979 void *vmalloc_32_user(unsigned long size)
1980 {
1981 struct vm_struct *area;
1982 void *ret;
1983
1984 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1985 NUMA_NO_NODE, __builtin_return_address(0));
1986 if (ret) {
1987 area = find_vm_area(ret);
1988 area->flags |= VM_USERMAP;
1989 }
1990 return ret;
1991 }
1992 EXPORT_SYMBOL(vmalloc_32_user);
1993
1994 /*
1995 * small helper routine , copy contents to buf from addr.
1996 * If the page is not present, fill zero.
1997 */
1998
1999 static int aligned_vread(char *buf, char *addr, unsigned long count)
2000 {
2001 struct page *p;
2002 int copied = 0;
2003
2004 while (count) {
2005 unsigned long offset, length;
2006
2007 offset = offset_in_page(addr);
2008 length = PAGE_SIZE - offset;
2009 if (length > count)
2010 length = count;
2011 p = vmalloc_to_page(addr);
2012 /*
2013 * To do safe access to this _mapped_ area, we need
2014 * lock. But adding lock here means that we need to add
2015 * overhead of vmalloc()/vfree() calles for this _debug_
2016 * interface, rarely used. Instead of that, we'll use
2017 * kmap() and get small overhead in this access function.
2018 */
2019 if (p) {
2020 /*
2021 * we can expect USER0 is not used (see vread/vwrite's
2022 * function description)
2023 */
2024 void *map = kmap_atomic(p);
2025 memcpy(buf, map + offset, length);
2026 kunmap_atomic(map);
2027 } else
2028 memset(buf, 0, length);
2029
2030 addr += length;
2031 buf += length;
2032 copied += length;
2033 count -= length;
2034 }
2035 return copied;
2036 }
2037
2038 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2039 {
2040 struct page *p;
2041 int copied = 0;
2042
2043 while (count) {
2044 unsigned long offset, length;
2045
2046 offset = offset_in_page(addr);
2047 length = PAGE_SIZE - offset;
2048 if (length > count)
2049 length = count;
2050 p = vmalloc_to_page(addr);
2051 /*
2052 * To do safe access to this _mapped_ area, we need
2053 * lock. But adding lock here means that we need to add
2054 * overhead of vmalloc()/vfree() calles for this _debug_
2055 * interface, rarely used. Instead of that, we'll use
2056 * kmap() and get small overhead in this access function.
2057 */
2058 if (p) {
2059 /*
2060 * we can expect USER0 is not used (see vread/vwrite's
2061 * function description)
2062 */
2063 void *map = kmap_atomic(p);
2064 memcpy(map + offset, buf, length);
2065 kunmap_atomic(map);
2066 }
2067 addr += length;
2068 buf += length;
2069 copied += length;
2070 count -= length;
2071 }
2072 return copied;
2073 }
2074
2075 /**
2076 * vread() - read vmalloc area in a safe way.
2077 * @buf: buffer for reading data
2078 * @addr: vm address.
2079 * @count: number of bytes to be read.
2080 *
2081 * Returns # of bytes which addr and buf should be increased.
2082 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2083 * includes any intersect with alive vmalloc area.
2084 *
2085 * This function checks that addr is a valid vmalloc'ed area, and
2086 * copy data from that area to a given buffer. If the given memory range
2087 * of [addr...addr+count) includes some valid address, data is copied to
2088 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2089 * IOREMAP area is treated as memory hole and no copy is done.
2090 *
2091 * If [addr...addr+count) doesn't includes any intersects with alive
2092 * vm_struct area, returns 0. @buf should be kernel's buffer.
2093 *
2094 * Note: In usual ops, vread() is never necessary because the caller
2095 * should know vmalloc() area is valid and can use memcpy().
2096 * This is for routines which have to access vmalloc area without
2097 * any informaion, as /dev/kmem.
2098 *
2099 */
2100
2101 long vread(char *buf, char *addr, unsigned long count)
2102 {
2103 struct vmap_area *va;
2104 struct vm_struct *vm;
2105 char *vaddr, *buf_start = buf;
2106 unsigned long buflen = count;
2107 unsigned long n;
2108
2109 /* Don't allow overflow */
2110 if ((unsigned long) addr + count < count)
2111 count = -(unsigned long) addr;
2112
2113 spin_lock(&vmap_area_lock);
2114 list_for_each_entry(va, &vmap_area_list, list) {
2115 if (!count)
2116 break;
2117
2118 if (!(va->flags & VM_VM_AREA))
2119 continue;
2120
2121 vm = va->vm;
2122 vaddr = (char *) vm->addr;
2123 if (addr >= vaddr + get_vm_area_size(vm))
2124 continue;
2125 while (addr < vaddr) {
2126 if (count == 0)
2127 goto finished;
2128 *buf = '\0';
2129 buf++;
2130 addr++;
2131 count--;
2132 }
2133 n = vaddr + get_vm_area_size(vm) - addr;
2134 if (n > count)
2135 n = count;
2136 if (!(vm->flags & VM_IOREMAP))
2137 aligned_vread(buf, addr, n);
2138 else /* IOREMAP area is treated as memory hole */
2139 memset(buf, 0, n);
2140 buf += n;
2141 addr += n;
2142 count -= n;
2143 }
2144 finished:
2145 spin_unlock(&vmap_area_lock);
2146
2147 if (buf == buf_start)
2148 return 0;
2149 /* zero-fill memory holes */
2150 if (buf != buf_start + buflen)
2151 memset(buf, 0, buflen - (buf - buf_start));
2152
2153 return buflen;
2154 }
2155
2156 /**
2157 * vwrite() - write vmalloc area in a safe way.
2158 * @buf: buffer for source data
2159 * @addr: vm address.
2160 * @count: number of bytes to be read.
2161 *
2162 * Returns # of bytes which addr and buf should be incresed.
2163 * (same number to @count).
2164 * If [addr...addr+count) doesn't includes any intersect with valid
2165 * vmalloc area, returns 0.
2166 *
2167 * This function checks that addr is a valid vmalloc'ed area, and
2168 * copy data from a buffer to the given addr. If specified range of
2169 * [addr...addr+count) includes some valid address, data is copied from
2170 * proper area of @buf. If there are memory holes, no copy to hole.
2171 * IOREMAP area is treated as memory hole and no copy is done.
2172 *
2173 * If [addr...addr+count) doesn't includes any intersects with alive
2174 * vm_struct area, returns 0. @buf should be kernel's buffer.
2175 *
2176 * Note: In usual ops, vwrite() is never necessary because the caller
2177 * should know vmalloc() area is valid and can use memcpy().
2178 * This is for routines which have to access vmalloc area without
2179 * any informaion, as /dev/kmem.
2180 */
2181
2182 long vwrite(char *buf, char *addr, unsigned long count)
2183 {
2184 struct vmap_area *va;
2185 struct vm_struct *vm;
2186 char *vaddr;
2187 unsigned long n, buflen;
2188 int copied = 0;
2189
2190 /* Don't allow overflow */
2191 if ((unsigned long) addr + count < count)
2192 count = -(unsigned long) addr;
2193 buflen = count;
2194
2195 spin_lock(&vmap_area_lock);
2196 list_for_each_entry(va, &vmap_area_list, list) {
2197 if (!count)
2198 break;
2199
2200 if (!(va->flags & VM_VM_AREA))
2201 continue;
2202
2203 vm = va->vm;
2204 vaddr = (char *) vm->addr;
2205 if (addr >= vaddr + get_vm_area_size(vm))
2206 continue;
2207 while (addr < vaddr) {
2208 if (count == 0)
2209 goto finished;
2210 buf++;
2211 addr++;
2212 count--;
2213 }
2214 n = vaddr + get_vm_area_size(vm) - addr;
2215 if (n > count)
2216 n = count;
2217 if (!(vm->flags & VM_IOREMAP)) {
2218 aligned_vwrite(buf, addr, n);
2219 copied++;
2220 }
2221 buf += n;
2222 addr += n;
2223 count -= n;
2224 }
2225 finished:
2226 spin_unlock(&vmap_area_lock);
2227 if (!copied)
2228 return 0;
2229 return buflen;
2230 }
2231
2232 /**
2233 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2234 * @vma: vma to cover
2235 * @uaddr: target user address to start at
2236 * @kaddr: virtual address of vmalloc kernel memory
2237 * @size: size of map area
2238 *
2239 * Returns: 0 for success, -Exxx on failure
2240 *
2241 * This function checks that @kaddr is a valid vmalloc'ed area,
2242 * and that it is big enough to cover the range starting at
2243 * @uaddr in @vma. Will return failure if that criteria isn't
2244 * met.
2245 *
2246 * Similar to remap_pfn_range() (see mm/memory.c)
2247 */
2248 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2249 void *kaddr, unsigned long size)
2250 {
2251 struct vm_struct *area;
2252
2253 size = PAGE_ALIGN(size);
2254
2255 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2256 return -EINVAL;
2257
2258 area = find_vm_area(kaddr);
2259 if (!area)
2260 return -EINVAL;
2261
2262 if (!(area->flags & VM_USERMAP))
2263 return -EINVAL;
2264
2265 if (kaddr + size > area->addr + area->size)
2266 return -EINVAL;
2267
2268 do {
2269 struct page *page = vmalloc_to_page(kaddr);
2270 int ret;
2271
2272 ret = vm_insert_page(vma, uaddr, page);
2273 if (ret)
2274 return ret;
2275
2276 uaddr += PAGE_SIZE;
2277 kaddr += PAGE_SIZE;
2278 size -= PAGE_SIZE;
2279 } while (size > 0);
2280
2281 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2282
2283 return 0;
2284 }
2285 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2286
2287 /**
2288 * remap_vmalloc_range - map vmalloc pages to userspace
2289 * @vma: vma to cover (map full range of vma)
2290 * @addr: vmalloc memory
2291 * @pgoff: number of pages into addr before first page to map
2292 *
2293 * Returns: 0 for success, -Exxx on failure
2294 *
2295 * This function checks that addr is a valid vmalloc'ed area, and
2296 * that it is big enough to cover the vma. Will return failure if
2297 * that criteria isn't met.
2298 *
2299 * Similar to remap_pfn_range() (see mm/memory.c)
2300 */
2301 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2302 unsigned long pgoff)
2303 {
2304 return remap_vmalloc_range_partial(vma, vma->vm_start,
2305 addr + (pgoff << PAGE_SHIFT),
2306 vma->vm_end - vma->vm_start);
2307 }
2308 EXPORT_SYMBOL(remap_vmalloc_range);
2309
2310 /*
2311 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2312 * have one.
2313 */
2314 void __weak vmalloc_sync_all(void)
2315 {
2316 }
2317
2318
2319 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2320 {
2321 pte_t ***p = data;
2322
2323 if (p) {
2324 *(*p) = pte;
2325 (*p)++;
2326 }
2327 return 0;
2328 }
2329
2330 /**
2331 * alloc_vm_area - allocate a range of kernel address space
2332 * @size: size of the area
2333 * @ptes: returns the PTEs for the address space
2334 *
2335 * Returns: NULL on failure, vm_struct on success
2336 *
2337 * This function reserves a range of kernel address space, and
2338 * allocates pagetables to map that range. No actual mappings
2339 * are created.
2340 *
2341 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2342 * allocated for the VM area are returned.
2343 */
2344 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2345 {
2346 struct vm_struct *area;
2347
2348 area = get_vm_area_caller(size, VM_IOREMAP,
2349 __builtin_return_address(0));
2350 if (area == NULL)
2351 return NULL;
2352
2353 /*
2354 * This ensures that page tables are constructed for this region
2355 * of kernel virtual address space and mapped into init_mm.
2356 */
2357 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2358 size, f, ptes ? &ptes : NULL)) {
2359 free_vm_area(area);
2360 return NULL;
2361 }
2362
2363 return area;
2364 }
2365 EXPORT_SYMBOL_GPL(alloc_vm_area);
2366
2367 void free_vm_area(struct vm_struct *area)
2368 {
2369 struct vm_struct *ret;
2370 ret = remove_vm_area(area->addr);
2371 BUG_ON(ret != area);
2372 kfree(area);
2373 }
2374 EXPORT_SYMBOL_GPL(free_vm_area);
2375
2376 #ifdef CONFIG_SMP
2377 static struct vmap_area *node_to_va(struct rb_node *n)
2378 {
2379 return rb_entry_safe(n, struct vmap_area, rb_node);
2380 }
2381
2382 /**
2383 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2384 * @end: target address
2385 * @pnext: out arg for the next vmap_area
2386 * @pprev: out arg for the previous vmap_area
2387 *
2388 * Returns: %true if either or both of next and prev are found,
2389 * %false if no vmap_area exists
2390 *
2391 * Find vmap_areas end addresses of which enclose @end. ie. if not
2392 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2393 */
2394 static bool pvm_find_next_prev(unsigned long end,
2395 struct vmap_area **pnext,
2396 struct vmap_area **pprev)
2397 {
2398 struct rb_node *n = vmap_area_root.rb_node;
2399 struct vmap_area *va = NULL;
2400
2401 while (n) {
2402 va = rb_entry(n, struct vmap_area, rb_node);
2403 if (end < va->va_end)
2404 n = n->rb_left;
2405 else if (end > va->va_end)
2406 n = n->rb_right;
2407 else
2408 break;
2409 }
2410
2411 if (!va)
2412 return false;
2413
2414 if (va->va_end > end) {
2415 *pnext = va;
2416 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2417 } else {
2418 *pprev = va;
2419 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2420 }
2421 return true;
2422 }
2423
2424 /**
2425 * pvm_determine_end - find the highest aligned address between two vmap_areas
2426 * @pnext: in/out arg for the next vmap_area
2427 * @pprev: in/out arg for the previous vmap_area
2428 * @align: alignment
2429 *
2430 * Returns: determined end address
2431 *
2432 * Find the highest aligned address between *@pnext and *@pprev below
2433 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2434 * down address is between the end addresses of the two vmap_areas.
2435 *
2436 * Please note that the address returned by this function may fall
2437 * inside *@pnext vmap_area. The caller is responsible for checking
2438 * that.
2439 */
2440 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2441 struct vmap_area **pprev,
2442 unsigned long align)
2443 {
2444 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2445 unsigned long addr;
2446
2447 if (*pnext)
2448 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2449 else
2450 addr = vmalloc_end;
2451
2452 while (*pprev && (*pprev)->va_end > addr) {
2453 *pnext = *pprev;
2454 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2455 }
2456
2457 return addr;
2458 }
2459
2460 /**
2461 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2462 * @offsets: array containing offset of each area
2463 * @sizes: array containing size of each area
2464 * @nr_vms: the number of areas to allocate
2465 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2466 *
2467 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2468 * vm_structs on success, %NULL on failure
2469 *
2470 * Percpu allocator wants to use congruent vm areas so that it can
2471 * maintain the offsets among percpu areas. This function allocates
2472 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2473 * be scattered pretty far, distance between two areas easily going up
2474 * to gigabytes. To avoid interacting with regular vmallocs, these
2475 * areas are allocated from top.
2476 *
2477 * Despite its complicated look, this allocator is rather simple. It
2478 * does everything top-down and scans areas from the end looking for
2479 * matching slot. While scanning, if any of the areas overlaps with
2480 * existing vmap_area, the base address is pulled down to fit the
2481 * area. Scanning is repeated till all the areas fit and then all
2482 * necessary data structures are inserted and the result is returned.
2483 */
2484 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2485 const size_t *sizes, int nr_vms,
2486 size_t align)
2487 {
2488 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2489 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2490 struct vmap_area **vas, *prev, *next;
2491 struct vm_struct **vms;
2492 int area, area2, last_area, term_area;
2493 unsigned long base, start, end, last_end;
2494 bool purged = false;
2495
2496 /* verify parameters and allocate data structures */
2497 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2498 for (last_area = 0, area = 0; area < nr_vms; area++) {
2499 start = offsets[area];
2500 end = start + sizes[area];
2501
2502 /* is everything aligned properly? */
2503 BUG_ON(!IS_ALIGNED(offsets[area], align));
2504 BUG_ON(!IS_ALIGNED(sizes[area], align));
2505
2506 /* detect the area with the highest address */
2507 if (start > offsets[last_area])
2508 last_area = area;
2509
2510 for (area2 = area + 1; area2 < nr_vms; area2++) {
2511 unsigned long start2 = offsets[area2];
2512 unsigned long end2 = start2 + sizes[area2];
2513
2514 BUG_ON(start2 < end && start < end2);
2515 }
2516 }
2517 last_end = offsets[last_area] + sizes[last_area];
2518
2519 if (vmalloc_end - vmalloc_start < last_end) {
2520 WARN_ON(true);
2521 return NULL;
2522 }
2523
2524 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2525 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2526 if (!vas || !vms)
2527 goto err_free2;
2528
2529 for (area = 0; area < nr_vms; area++) {
2530 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2531 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2532 if (!vas[area] || !vms[area])
2533 goto err_free;
2534 }
2535 retry:
2536 spin_lock(&vmap_area_lock);
2537
2538 /* start scanning - we scan from the top, begin with the last area */
2539 area = term_area = last_area;
2540 start = offsets[area];
2541 end = start + sizes[area];
2542
2543 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2544 base = vmalloc_end - last_end;
2545 goto found;
2546 }
2547 base = pvm_determine_end(&next, &prev, align) - end;
2548
2549 while (true) {
2550 BUG_ON(next && next->va_end <= base + end);
2551 BUG_ON(prev && prev->va_end > base + end);
2552
2553 /*
2554 * base might have underflowed, add last_end before
2555 * comparing.
2556 */
2557 if (base + last_end < vmalloc_start + last_end) {
2558 spin_unlock(&vmap_area_lock);
2559 if (!purged) {
2560 purge_vmap_area_lazy();
2561 purged = true;
2562 goto retry;
2563 }
2564 goto err_free;
2565 }
2566
2567 /*
2568 * If next overlaps, move base downwards so that it's
2569 * right below next and then recheck.
2570 */
2571 if (next && next->va_start < base + end) {
2572 base = pvm_determine_end(&next, &prev, align) - end;
2573 term_area = area;
2574 continue;
2575 }
2576
2577 /*
2578 * If prev overlaps, shift down next and prev and move
2579 * base so that it's right below new next and then
2580 * recheck.
2581 */
2582 if (prev && prev->va_end > base + start) {
2583 next = prev;
2584 prev = node_to_va(rb_prev(&next->rb_node));
2585 base = pvm_determine_end(&next, &prev, align) - end;
2586 term_area = area;
2587 continue;
2588 }
2589
2590 /*
2591 * This area fits, move on to the previous one. If
2592 * the previous one is the terminal one, we're done.
2593 */
2594 area = (area + nr_vms - 1) % nr_vms;
2595 if (area == term_area)
2596 break;
2597 start = offsets[area];
2598 end = start + sizes[area];
2599 pvm_find_next_prev(base + end, &next, &prev);
2600 }
2601 found:
2602 /* we've found a fitting base, insert all va's */
2603 for (area = 0; area < nr_vms; area++) {
2604 struct vmap_area *va = vas[area];
2605
2606 va->va_start = base + offsets[area];
2607 va->va_end = va->va_start + sizes[area];
2608 __insert_vmap_area(va);
2609 }
2610
2611 vmap_area_pcpu_hole = base + offsets[last_area];
2612
2613 spin_unlock(&vmap_area_lock);
2614
2615 /* insert all vm's */
2616 for (area = 0; area < nr_vms; area++)
2617 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2618 pcpu_get_vm_areas);
2619
2620 kfree(vas);
2621 return vms;
2622
2623 err_free:
2624 for (area = 0; area < nr_vms; area++) {
2625 kfree(vas[area]);
2626 kfree(vms[area]);
2627 }
2628 err_free2:
2629 kfree(vas);
2630 kfree(vms);
2631 return NULL;
2632 }
2633
2634 /**
2635 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2636 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2637 * @nr_vms: the number of allocated areas
2638 *
2639 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2640 */
2641 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2642 {
2643 int i;
2644
2645 for (i = 0; i < nr_vms; i++)
2646 free_vm_area(vms[i]);
2647 kfree(vms);
2648 }
2649 #endif /* CONFIG_SMP */
2650
2651 #ifdef CONFIG_PROC_FS
2652 static void *s_start(struct seq_file *m, loff_t *pos)
2653 __acquires(&vmap_area_lock)
2654 {
2655 spin_lock(&vmap_area_lock);
2656 return seq_list_start(&vmap_area_list, *pos);
2657 }
2658
2659 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2660 {
2661 return seq_list_next(p, &vmap_area_list, pos);
2662 }
2663
2664 static void s_stop(struct seq_file *m, void *p)
2665 __releases(&vmap_area_lock)
2666 {
2667 spin_unlock(&vmap_area_lock);
2668 }
2669
2670 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2671 {
2672 if (IS_ENABLED(CONFIG_NUMA)) {
2673 unsigned int nr, *counters = m->private;
2674
2675 if (!counters)
2676 return;
2677
2678 if (v->flags & VM_UNINITIALIZED)
2679 return;
2680 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2681 smp_rmb();
2682
2683 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2684
2685 for (nr = 0; nr < v->nr_pages; nr++)
2686 counters[page_to_nid(v->pages[nr])]++;
2687
2688 for_each_node_state(nr, N_HIGH_MEMORY)
2689 if (counters[nr])
2690 seq_printf(m, " N%u=%u", nr, counters[nr]);
2691 }
2692 }
2693
2694 static int s_show(struct seq_file *m, void *p)
2695 {
2696 struct vmap_area *va;
2697 struct vm_struct *v;
2698
2699 va = list_entry(p, struct vmap_area, list);
2700
2701 /*
2702 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2703 * behalf of vmap area is being tear down or vm_map_ram allocation.
2704 */
2705 if (!(va->flags & VM_VM_AREA)) {
2706 seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2707 (void *)va->va_start, (void *)va->va_end,
2708 va->va_end - va->va_start,
2709 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2710
2711 return 0;
2712 }
2713
2714 v = va->vm;
2715
2716 seq_printf(m, "0x%pK-0x%pK %7ld",
2717 v->addr, v->addr + v->size, v->size);
2718
2719 if (v->caller)
2720 seq_printf(m, " %pS", v->caller);
2721
2722 if (v->nr_pages)
2723 seq_printf(m, " pages=%d", v->nr_pages);
2724
2725 if (v->phys_addr)
2726 seq_printf(m, " phys=%pa", &v->phys_addr);
2727
2728 if (v->flags & VM_IOREMAP)
2729 seq_puts(m, " ioremap");
2730
2731 if (v->flags & VM_ALLOC)
2732 seq_puts(m, " vmalloc");
2733
2734 if (v->flags & VM_MAP)
2735 seq_puts(m, " vmap");
2736
2737 if (v->flags & VM_USERMAP)
2738 seq_puts(m, " user");
2739
2740 if (is_vmalloc_addr(v->pages))
2741 seq_puts(m, " vpages");
2742
2743 show_numa_info(m, v);
2744 seq_putc(m, '\n');
2745 return 0;
2746 }
2747
2748 static const struct seq_operations vmalloc_op = {
2749 .start = s_start,
2750 .next = s_next,
2751 .stop = s_stop,
2752 .show = s_show,
2753 };
2754
2755 static int vmalloc_open(struct inode *inode, struct file *file)
2756 {
2757 if (IS_ENABLED(CONFIG_NUMA))
2758 return seq_open_private(file, &vmalloc_op,
2759 nr_node_ids * sizeof(unsigned int));
2760 else
2761 return seq_open(file, &vmalloc_op);
2762 }
2763
2764 static const struct file_operations proc_vmalloc_operations = {
2765 .open = vmalloc_open,
2766 .read = seq_read,
2767 .llseek = seq_lseek,
2768 .release = seq_release_private,
2769 };
2770
2771 static int __init proc_vmalloc_init(void)
2772 {
2773 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2774 return 0;
2775 }
2776 module_init(proc_vmalloc_init);
2777
2778 #endif
2779