]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
drm/i915: Save the old CDCLK atomic state
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58
59 #include "internal.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63
64 struct scan_control {
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 /* This context's GFP mask */
69 gfp_t gfp_mask;
70
71 /* Allocation order */
72 int order;
73
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
79
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
85
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
108
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
119 };
120
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148
149 /*
150 * From 0 .. 100. Higher means more swappy.
151 */
152 int vm_swappiness = 60;
153 /*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157 unsigned long vm_total_pages;
158
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161
162 #ifdef CONFIG_MEMCG
163 static bool global_reclaim(struct scan_control *sc)
164 {
165 return !sc->target_mem_cgroup;
166 }
167
168 /**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181 static bool sane_reclaim(struct scan_control *sc)
182 {
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187 #ifdef CONFIG_CGROUP_WRITEBACK
188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
189 return true;
190 #endif
191 return false;
192 }
193 #else
194 static bool global_reclaim(struct scan_control *sc)
195 {
196 return true;
197 }
198
199 static bool sane_reclaim(struct scan_control *sc)
200 {
201 return true;
202 }
203 #endif
204
205 /*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210 unsigned long zone_reclaimable_pages(struct zone *zone)
211 {
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221 }
222
223 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224 {
225 unsigned long nr;
226
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
230
231 if (get_nr_swap_pages() > 0)
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
235
236 return nr;
237 }
238
239 /**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
246 {
247 unsigned long lru_size;
248 int zid;
249
250 if (!mem_cgroup_disabled())
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
254
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
258
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
271
272 }
273
274 /*
275 * Add a shrinker callback to be called from the vm.
276 */
277 int prealloc_shrinker(struct shrinker *shrinker)
278 {
279 size_t size = sizeof(*shrinker->nr_deferred);
280
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
287 return 0;
288 }
289
290 void free_prealloced_shrinker(struct shrinker *shrinker)
291 {
292 kfree(shrinker->nr_deferred);
293 shrinker->nr_deferred = NULL;
294 }
295
296 void register_shrinker_prepared(struct shrinker *shrinker)
297 {
298 down_write(&shrinker_rwsem);
299 list_add_tail(&shrinker->list, &shrinker_list);
300 up_write(&shrinker_rwsem);
301 }
302
303 int register_shrinker(struct shrinker *shrinker)
304 {
305 int err = prealloc_shrinker(shrinker);
306
307 if (err)
308 return err;
309 register_shrinker_prepared(shrinker);
310 return 0;
311 }
312 EXPORT_SYMBOL(register_shrinker);
313
314 /*
315 * Remove one
316 */
317 void unregister_shrinker(struct shrinker *shrinker)
318 {
319 if (!shrinker->nr_deferred)
320 return;
321 down_write(&shrinker_rwsem);
322 list_del(&shrinker->list);
323 up_write(&shrinker_rwsem);
324 kfree(shrinker->nr_deferred);
325 shrinker->nr_deferred = NULL;
326 }
327 EXPORT_SYMBOL(unregister_shrinker);
328
329 #define SHRINK_BATCH 128
330
331 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
332 struct shrinker *shrinker,
333 unsigned long nr_scanned,
334 unsigned long nr_eligible)
335 {
336 unsigned long freed = 0;
337 unsigned long long delta;
338 long total_scan;
339 long freeable;
340 long nr;
341 long new_nr;
342 int nid = shrinkctl->nid;
343 long batch_size = shrinker->batch ? shrinker->batch
344 : SHRINK_BATCH;
345 long scanned = 0, next_deferred;
346
347 freeable = shrinker->count_objects(shrinker, shrinkctl);
348 if (freeable == 0)
349 return 0;
350
351 /*
352 * copy the current shrinker scan count into a local variable
353 * and zero it so that other concurrent shrinker invocations
354 * don't also do this scanning work.
355 */
356 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
357
358 total_scan = nr;
359 delta = (4 * nr_scanned) / shrinker->seeks;
360 delta *= freeable;
361 do_div(delta, nr_eligible + 1);
362 total_scan += delta;
363 if (total_scan < 0) {
364 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
365 shrinker->scan_objects, total_scan);
366 total_scan = freeable;
367 next_deferred = nr;
368 } else
369 next_deferred = total_scan;
370
371 /*
372 * We need to avoid excessive windup on filesystem shrinkers
373 * due to large numbers of GFP_NOFS allocations causing the
374 * shrinkers to return -1 all the time. This results in a large
375 * nr being built up so when a shrink that can do some work
376 * comes along it empties the entire cache due to nr >>>
377 * freeable. This is bad for sustaining a working set in
378 * memory.
379 *
380 * Hence only allow the shrinker to scan the entire cache when
381 * a large delta change is calculated directly.
382 */
383 if (delta < freeable / 4)
384 total_scan = min(total_scan, freeable / 2);
385
386 /*
387 * Avoid risking looping forever due to too large nr value:
388 * never try to free more than twice the estimate number of
389 * freeable entries.
390 */
391 if (total_scan > freeable * 2)
392 total_scan = freeable * 2;
393
394 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
395 nr_scanned, nr_eligible,
396 freeable, delta, total_scan);
397
398 /*
399 * Normally, we should not scan less than batch_size objects in one
400 * pass to avoid too frequent shrinker calls, but if the slab has less
401 * than batch_size objects in total and we are really tight on memory,
402 * we will try to reclaim all available objects, otherwise we can end
403 * up failing allocations although there are plenty of reclaimable
404 * objects spread over several slabs with usage less than the
405 * batch_size.
406 *
407 * We detect the "tight on memory" situations by looking at the total
408 * number of objects we want to scan (total_scan). If it is greater
409 * than the total number of objects on slab (freeable), we must be
410 * scanning at high prio and therefore should try to reclaim as much as
411 * possible.
412 */
413 while (total_scan >= batch_size ||
414 total_scan >= freeable) {
415 unsigned long ret;
416 unsigned long nr_to_scan = min(batch_size, total_scan);
417
418 shrinkctl->nr_to_scan = nr_to_scan;
419 shrinkctl->nr_scanned = nr_to_scan;
420 ret = shrinker->scan_objects(shrinker, shrinkctl);
421 if (ret == SHRINK_STOP)
422 break;
423 freed += ret;
424
425 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
426 total_scan -= shrinkctl->nr_scanned;
427 scanned += shrinkctl->nr_scanned;
428
429 cond_resched();
430 }
431
432 if (next_deferred >= scanned)
433 next_deferred -= scanned;
434 else
435 next_deferred = 0;
436 /*
437 * move the unused scan count back into the shrinker in a
438 * manner that handles concurrent updates. If we exhausted the
439 * scan, there is no need to do an update.
440 */
441 if (next_deferred > 0)
442 new_nr = atomic_long_add_return(next_deferred,
443 &shrinker->nr_deferred[nid]);
444 else
445 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
446
447 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
448 return freed;
449 }
450
451 /**
452 * shrink_slab - shrink slab caches
453 * @gfp_mask: allocation context
454 * @nid: node whose slab caches to target
455 * @memcg: memory cgroup whose slab caches to target
456 * @nr_scanned: pressure numerator
457 * @nr_eligible: pressure denominator
458 *
459 * Call the shrink functions to age shrinkable caches.
460 *
461 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
462 * unaware shrinkers will receive a node id of 0 instead.
463 *
464 * @memcg specifies the memory cgroup to target. If it is not NULL,
465 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
466 * objects from the memory cgroup specified. Otherwise, only unaware
467 * shrinkers are called.
468 *
469 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
470 * the available objects should be scanned. Page reclaim for example
471 * passes the number of pages scanned and the number of pages on the
472 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
473 * when it encountered mapped pages. The ratio is further biased by
474 * the ->seeks setting of the shrink function, which indicates the
475 * cost to recreate an object relative to that of an LRU page.
476 *
477 * Returns the number of reclaimed slab objects.
478 */
479 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
480 struct mem_cgroup *memcg,
481 unsigned long nr_scanned,
482 unsigned long nr_eligible)
483 {
484 struct shrinker *shrinker;
485 unsigned long freed = 0;
486
487 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
488 return 0;
489
490 if (nr_scanned == 0)
491 nr_scanned = SWAP_CLUSTER_MAX;
492
493 if (!down_read_trylock(&shrinker_rwsem)) {
494 /*
495 * If we would return 0, our callers would understand that we
496 * have nothing else to shrink and give up trying. By returning
497 * 1 we keep it going and assume we'll be able to shrink next
498 * time.
499 */
500 freed = 1;
501 goto out;
502 }
503
504 list_for_each_entry(shrinker, &shrinker_list, list) {
505 struct shrink_control sc = {
506 .gfp_mask = gfp_mask,
507 .nid = nid,
508 .memcg = memcg,
509 };
510
511 /*
512 * If kernel memory accounting is disabled, we ignore
513 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
514 * passing NULL for memcg.
515 */
516 if (memcg_kmem_enabled() &&
517 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
518 continue;
519
520 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
521 sc.nid = 0;
522
523 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
524 /*
525 * Bail out if someone want to register a new shrinker to
526 * prevent the regsitration from being stalled for long periods
527 * by parallel ongoing shrinking.
528 */
529 if (rwsem_is_contended(&shrinker_rwsem)) {
530 freed = freed ? : 1;
531 break;
532 }
533 }
534
535 up_read(&shrinker_rwsem);
536 out:
537 cond_resched();
538 return freed;
539 }
540
541 void drop_slab_node(int nid)
542 {
543 unsigned long freed;
544
545 do {
546 struct mem_cgroup *memcg = NULL;
547
548 freed = 0;
549 do {
550 freed += shrink_slab(GFP_KERNEL, nid, memcg,
551 1000, 1000);
552 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
553 } while (freed > 10);
554 }
555
556 void drop_slab(void)
557 {
558 int nid;
559
560 for_each_online_node(nid)
561 drop_slab_node(nid);
562 }
563
564 static inline int is_page_cache_freeable(struct page *page)
565 {
566 /*
567 * A freeable page cache page is referenced only by the caller
568 * that isolated the page, the page cache radix tree and
569 * optional buffer heads at page->private.
570 */
571 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
572 HPAGE_PMD_NR : 1;
573 return page_count(page) - page_has_private(page) == 1 + radix_pins;
574 }
575
576 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
577 {
578 if (current->flags & PF_SWAPWRITE)
579 return 1;
580 if (!inode_write_congested(inode))
581 return 1;
582 if (inode_to_bdi(inode) == current->backing_dev_info)
583 return 1;
584 return 0;
585 }
586
587 /*
588 * We detected a synchronous write error writing a page out. Probably
589 * -ENOSPC. We need to propagate that into the address_space for a subsequent
590 * fsync(), msync() or close().
591 *
592 * The tricky part is that after writepage we cannot touch the mapping: nothing
593 * prevents it from being freed up. But we have a ref on the page and once
594 * that page is locked, the mapping is pinned.
595 *
596 * We're allowed to run sleeping lock_page() here because we know the caller has
597 * __GFP_FS.
598 */
599 static void handle_write_error(struct address_space *mapping,
600 struct page *page, int error)
601 {
602 lock_page(page);
603 if (page_mapping(page) == mapping)
604 mapping_set_error(mapping, error);
605 unlock_page(page);
606 }
607
608 /* possible outcome of pageout() */
609 typedef enum {
610 /* failed to write page out, page is locked */
611 PAGE_KEEP,
612 /* move page to the active list, page is locked */
613 PAGE_ACTIVATE,
614 /* page has been sent to the disk successfully, page is unlocked */
615 PAGE_SUCCESS,
616 /* page is clean and locked */
617 PAGE_CLEAN,
618 } pageout_t;
619
620 /*
621 * pageout is called by shrink_page_list() for each dirty page.
622 * Calls ->writepage().
623 */
624 static pageout_t pageout(struct page *page, struct address_space *mapping,
625 struct scan_control *sc)
626 {
627 /*
628 * If the page is dirty, only perform writeback if that write
629 * will be non-blocking. To prevent this allocation from being
630 * stalled by pagecache activity. But note that there may be
631 * stalls if we need to run get_block(). We could test
632 * PagePrivate for that.
633 *
634 * If this process is currently in __generic_file_write_iter() against
635 * this page's queue, we can perform writeback even if that
636 * will block.
637 *
638 * If the page is swapcache, write it back even if that would
639 * block, for some throttling. This happens by accident, because
640 * swap_backing_dev_info is bust: it doesn't reflect the
641 * congestion state of the swapdevs. Easy to fix, if needed.
642 */
643 if (!is_page_cache_freeable(page))
644 return PAGE_KEEP;
645 if (!mapping) {
646 /*
647 * Some data journaling orphaned pages can have
648 * page->mapping == NULL while being dirty with clean buffers.
649 */
650 if (page_has_private(page)) {
651 if (try_to_free_buffers(page)) {
652 ClearPageDirty(page);
653 pr_info("%s: orphaned page\n", __func__);
654 return PAGE_CLEAN;
655 }
656 }
657 return PAGE_KEEP;
658 }
659 if (mapping->a_ops->writepage == NULL)
660 return PAGE_ACTIVATE;
661 if (!may_write_to_inode(mapping->host, sc))
662 return PAGE_KEEP;
663
664 if (clear_page_dirty_for_io(page)) {
665 int res;
666 struct writeback_control wbc = {
667 .sync_mode = WB_SYNC_NONE,
668 .nr_to_write = SWAP_CLUSTER_MAX,
669 .range_start = 0,
670 .range_end = LLONG_MAX,
671 .for_reclaim = 1,
672 };
673
674 SetPageReclaim(page);
675 res = mapping->a_ops->writepage(page, &wbc);
676 if (res < 0)
677 handle_write_error(mapping, page, res);
678 if (res == AOP_WRITEPAGE_ACTIVATE) {
679 ClearPageReclaim(page);
680 return PAGE_ACTIVATE;
681 }
682
683 if (!PageWriteback(page)) {
684 /* synchronous write or broken a_ops? */
685 ClearPageReclaim(page);
686 }
687 trace_mm_vmscan_writepage(page);
688 inc_node_page_state(page, NR_VMSCAN_WRITE);
689 return PAGE_SUCCESS;
690 }
691
692 return PAGE_CLEAN;
693 }
694
695 /*
696 * Same as remove_mapping, but if the page is removed from the mapping, it
697 * gets returned with a refcount of 0.
698 */
699 static int __remove_mapping(struct address_space *mapping, struct page *page,
700 bool reclaimed)
701 {
702 unsigned long flags;
703 int refcount;
704
705 BUG_ON(!PageLocked(page));
706 BUG_ON(mapping != page_mapping(page));
707
708 spin_lock_irqsave(&mapping->tree_lock, flags);
709 /*
710 * The non racy check for a busy page.
711 *
712 * Must be careful with the order of the tests. When someone has
713 * a ref to the page, it may be possible that they dirty it then
714 * drop the reference. So if PageDirty is tested before page_count
715 * here, then the following race may occur:
716 *
717 * get_user_pages(&page);
718 * [user mapping goes away]
719 * write_to(page);
720 * !PageDirty(page) [good]
721 * SetPageDirty(page);
722 * put_page(page);
723 * !page_count(page) [good, discard it]
724 *
725 * [oops, our write_to data is lost]
726 *
727 * Reversing the order of the tests ensures such a situation cannot
728 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
729 * load is not satisfied before that of page->_refcount.
730 *
731 * Note that if SetPageDirty is always performed via set_page_dirty,
732 * and thus under tree_lock, then this ordering is not required.
733 */
734 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
735 refcount = 1 + HPAGE_PMD_NR;
736 else
737 refcount = 2;
738 if (!page_ref_freeze(page, refcount))
739 goto cannot_free;
740 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
741 if (unlikely(PageDirty(page))) {
742 page_ref_unfreeze(page, refcount);
743 goto cannot_free;
744 }
745
746 if (PageSwapCache(page)) {
747 swp_entry_t swap = { .val = page_private(page) };
748 mem_cgroup_swapout(page, swap);
749 __delete_from_swap_cache(page);
750 spin_unlock_irqrestore(&mapping->tree_lock, flags);
751 put_swap_page(page, swap);
752 } else {
753 void (*freepage)(struct page *);
754 void *shadow = NULL;
755
756 freepage = mapping->a_ops->freepage;
757 /*
758 * Remember a shadow entry for reclaimed file cache in
759 * order to detect refaults, thus thrashing, later on.
760 *
761 * But don't store shadows in an address space that is
762 * already exiting. This is not just an optizimation,
763 * inode reclaim needs to empty out the radix tree or
764 * the nodes are lost. Don't plant shadows behind its
765 * back.
766 *
767 * We also don't store shadows for DAX mappings because the
768 * only page cache pages found in these are zero pages
769 * covering holes, and because we don't want to mix DAX
770 * exceptional entries and shadow exceptional entries in the
771 * same page_tree.
772 */
773 if (reclaimed && page_is_file_cache(page) &&
774 !mapping_exiting(mapping) && !dax_mapping(mapping))
775 shadow = workingset_eviction(mapping, page);
776 __delete_from_page_cache(page, shadow);
777 spin_unlock_irqrestore(&mapping->tree_lock, flags);
778
779 if (freepage != NULL)
780 freepage(page);
781 }
782
783 return 1;
784
785 cannot_free:
786 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787 return 0;
788 }
789
790 /*
791 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
792 * someone else has a ref on the page, abort and return 0. If it was
793 * successfully detached, return 1. Assumes the caller has a single ref on
794 * this page.
795 */
796 int remove_mapping(struct address_space *mapping, struct page *page)
797 {
798 if (__remove_mapping(mapping, page, false)) {
799 /*
800 * Unfreezing the refcount with 1 rather than 2 effectively
801 * drops the pagecache ref for us without requiring another
802 * atomic operation.
803 */
804 page_ref_unfreeze(page, 1);
805 return 1;
806 }
807 return 0;
808 }
809
810 /**
811 * putback_lru_page - put previously isolated page onto appropriate LRU list
812 * @page: page to be put back to appropriate lru list
813 *
814 * Add previously isolated @page to appropriate LRU list.
815 * Page may still be unevictable for other reasons.
816 *
817 * lru_lock must not be held, interrupts must be enabled.
818 */
819 void putback_lru_page(struct page *page)
820 {
821 bool is_unevictable;
822 int was_unevictable = PageUnevictable(page);
823
824 VM_BUG_ON_PAGE(PageLRU(page), page);
825
826 redo:
827 ClearPageUnevictable(page);
828
829 if (page_evictable(page)) {
830 /*
831 * For evictable pages, we can use the cache.
832 * In event of a race, worst case is we end up with an
833 * unevictable page on [in]active list.
834 * We know how to handle that.
835 */
836 is_unevictable = false;
837 lru_cache_add(page);
838 } else {
839 /*
840 * Put unevictable pages directly on zone's unevictable
841 * list.
842 */
843 is_unevictable = true;
844 add_page_to_unevictable_list(page);
845 /*
846 * When racing with an mlock or AS_UNEVICTABLE clearing
847 * (page is unlocked) make sure that if the other thread
848 * does not observe our setting of PG_lru and fails
849 * isolation/check_move_unevictable_pages,
850 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
851 * the page back to the evictable list.
852 *
853 * The other side is TestClearPageMlocked() or shmem_lock().
854 */
855 smp_mb();
856 }
857
858 /*
859 * page's status can change while we move it among lru. If an evictable
860 * page is on unevictable list, it never be freed. To avoid that,
861 * check after we added it to the list, again.
862 */
863 if (is_unevictable && page_evictable(page)) {
864 if (!isolate_lru_page(page)) {
865 put_page(page);
866 goto redo;
867 }
868 /* This means someone else dropped this page from LRU
869 * So, it will be freed or putback to LRU again. There is
870 * nothing to do here.
871 */
872 }
873
874 if (was_unevictable && !is_unevictable)
875 count_vm_event(UNEVICTABLE_PGRESCUED);
876 else if (!was_unevictable && is_unevictable)
877 count_vm_event(UNEVICTABLE_PGCULLED);
878
879 put_page(page); /* drop ref from isolate */
880 }
881
882 enum page_references {
883 PAGEREF_RECLAIM,
884 PAGEREF_RECLAIM_CLEAN,
885 PAGEREF_KEEP,
886 PAGEREF_ACTIVATE,
887 };
888
889 static enum page_references page_check_references(struct page *page,
890 struct scan_control *sc)
891 {
892 int referenced_ptes, referenced_page;
893 unsigned long vm_flags;
894
895 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
896 &vm_flags);
897 referenced_page = TestClearPageReferenced(page);
898
899 /*
900 * Mlock lost the isolation race with us. Let try_to_unmap()
901 * move the page to the unevictable list.
902 */
903 if (vm_flags & VM_LOCKED)
904 return PAGEREF_RECLAIM;
905
906 if (referenced_ptes) {
907 if (PageSwapBacked(page))
908 return PAGEREF_ACTIVATE;
909 /*
910 * All mapped pages start out with page table
911 * references from the instantiating fault, so we need
912 * to look twice if a mapped file page is used more
913 * than once.
914 *
915 * Mark it and spare it for another trip around the
916 * inactive list. Another page table reference will
917 * lead to its activation.
918 *
919 * Note: the mark is set for activated pages as well
920 * so that recently deactivated but used pages are
921 * quickly recovered.
922 */
923 SetPageReferenced(page);
924
925 if (referenced_page || referenced_ptes > 1)
926 return PAGEREF_ACTIVATE;
927
928 /*
929 * Activate file-backed executable pages after first usage.
930 */
931 if (vm_flags & VM_EXEC)
932 return PAGEREF_ACTIVATE;
933
934 return PAGEREF_KEEP;
935 }
936
937 /* Reclaim if clean, defer dirty pages to writeback */
938 if (referenced_page && !PageSwapBacked(page))
939 return PAGEREF_RECLAIM_CLEAN;
940
941 return PAGEREF_RECLAIM;
942 }
943
944 /* Check if a page is dirty or under writeback */
945 static void page_check_dirty_writeback(struct page *page,
946 bool *dirty, bool *writeback)
947 {
948 struct address_space *mapping;
949
950 /*
951 * Anonymous pages are not handled by flushers and must be written
952 * from reclaim context. Do not stall reclaim based on them
953 */
954 if (!page_is_file_cache(page) ||
955 (PageAnon(page) && !PageSwapBacked(page))) {
956 *dirty = false;
957 *writeback = false;
958 return;
959 }
960
961 /* By default assume that the page flags are accurate */
962 *dirty = PageDirty(page);
963 *writeback = PageWriteback(page);
964
965 /* Verify dirty/writeback state if the filesystem supports it */
966 if (!page_has_private(page))
967 return;
968
969 mapping = page_mapping(page);
970 if (mapping && mapping->a_ops->is_dirty_writeback)
971 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
972 }
973
974 struct reclaim_stat {
975 unsigned nr_dirty;
976 unsigned nr_unqueued_dirty;
977 unsigned nr_congested;
978 unsigned nr_writeback;
979 unsigned nr_immediate;
980 unsigned nr_activate;
981 unsigned nr_ref_keep;
982 unsigned nr_unmap_fail;
983 };
984
985 /*
986 * shrink_page_list() returns the number of reclaimed pages
987 */
988 static unsigned long shrink_page_list(struct list_head *page_list,
989 struct pglist_data *pgdat,
990 struct scan_control *sc,
991 enum ttu_flags ttu_flags,
992 struct reclaim_stat *stat,
993 bool force_reclaim)
994 {
995 LIST_HEAD(ret_pages);
996 LIST_HEAD(free_pages);
997 int pgactivate = 0;
998 unsigned nr_unqueued_dirty = 0;
999 unsigned nr_dirty = 0;
1000 unsigned nr_congested = 0;
1001 unsigned nr_reclaimed = 0;
1002 unsigned nr_writeback = 0;
1003 unsigned nr_immediate = 0;
1004 unsigned nr_ref_keep = 0;
1005 unsigned nr_unmap_fail = 0;
1006
1007 cond_resched();
1008
1009 while (!list_empty(page_list)) {
1010 struct address_space *mapping;
1011 struct page *page;
1012 int may_enter_fs;
1013 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1014 bool dirty, writeback;
1015
1016 cond_resched();
1017
1018 page = lru_to_page(page_list);
1019 list_del(&page->lru);
1020
1021 if (!trylock_page(page))
1022 goto keep;
1023
1024 VM_BUG_ON_PAGE(PageActive(page), page);
1025
1026 sc->nr_scanned++;
1027
1028 if (unlikely(!page_evictable(page)))
1029 goto activate_locked;
1030
1031 if (!sc->may_unmap && page_mapped(page))
1032 goto keep_locked;
1033
1034 /* Double the slab pressure for mapped and swapcache pages */
1035 if ((page_mapped(page) || PageSwapCache(page)) &&
1036 !(PageAnon(page) && !PageSwapBacked(page)))
1037 sc->nr_scanned++;
1038
1039 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1040 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1041
1042 /*
1043 * The number of dirty pages determines if a zone is marked
1044 * reclaim_congested which affects wait_iff_congested. kswapd
1045 * will stall and start writing pages if the tail of the LRU
1046 * is all dirty unqueued pages.
1047 */
1048 page_check_dirty_writeback(page, &dirty, &writeback);
1049 if (dirty || writeback)
1050 nr_dirty++;
1051
1052 if (dirty && !writeback)
1053 nr_unqueued_dirty++;
1054
1055 /*
1056 * Treat this page as congested if the underlying BDI is or if
1057 * pages are cycling through the LRU so quickly that the
1058 * pages marked for immediate reclaim are making it to the
1059 * end of the LRU a second time.
1060 */
1061 mapping = page_mapping(page);
1062 if (((dirty || writeback) && mapping &&
1063 inode_write_congested(mapping->host)) ||
1064 (writeback && PageReclaim(page)))
1065 nr_congested++;
1066
1067 /*
1068 * If a page at the tail of the LRU is under writeback, there
1069 * are three cases to consider.
1070 *
1071 * 1) If reclaim is encountering an excessive number of pages
1072 * under writeback and this page is both under writeback and
1073 * PageReclaim then it indicates that pages are being queued
1074 * for IO but are being recycled through the LRU before the
1075 * IO can complete. Waiting on the page itself risks an
1076 * indefinite stall if it is impossible to writeback the
1077 * page due to IO error or disconnected storage so instead
1078 * note that the LRU is being scanned too quickly and the
1079 * caller can stall after page list has been processed.
1080 *
1081 * 2) Global or new memcg reclaim encounters a page that is
1082 * not marked for immediate reclaim, or the caller does not
1083 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1084 * not to fs). In this case mark the page for immediate
1085 * reclaim and continue scanning.
1086 *
1087 * Require may_enter_fs because we would wait on fs, which
1088 * may not have submitted IO yet. And the loop driver might
1089 * enter reclaim, and deadlock if it waits on a page for
1090 * which it is needed to do the write (loop masks off
1091 * __GFP_IO|__GFP_FS for this reason); but more thought
1092 * would probably show more reasons.
1093 *
1094 * 3) Legacy memcg encounters a page that is already marked
1095 * PageReclaim. memcg does not have any dirty pages
1096 * throttling so we could easily OOM just because too many
1097 * pages are in writeback and there is nothing else to
1098 * reclaim. Wait for the writeback to complete.
1099 *
1100 * In cases 1) and 2) we activate the pages to get them out of
1101 * the way while we continue scanning for clean pages on the
1102 * inactive list and refilling from the active list. The
1103 * observation here is that waiting for disk writes is more
1104 * expensive than potentially causing reloads down the line.
1105 * Since they're marked for immediate reclaim, they won't put
1106 * memory pressure on the cache working set any longer than it
1107 * takes to write them to disk.
1108 */
1109 if (PageWriteback(page)) {
1110 /* Case 1 above */
1111 if (current_is_kswapd() &&
1112 PageReclaim(page) &&
1113 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1114 nr_immediate++;
1115 goto activate_locked;
1116
1117 /* Case 2 above */
1118 } else if (sane_reclaim(sc) ||
1119 !PageReclaim(page) || !may_enter_fs) {
1120 /*
1121 * This is slightly racy - end_page_writeback()
1122 * might have just cleared PageReclaim, then
1123 * setting PageReclaim here end up interpreted
1124 * as PageReadahead - but that does not matter
1125 * enough to care. What we do want is for this
1126 * page to have PageReclaim set next time memcg
1127 * reclaim reaches the tests above, so it will
1128 * then wait_on_page_writeback() to avoid OOM;
1129 * and it's also appropriate in global reclaim.
1130 */
1131 SetPageReclaim(page);
1132 nr_writeback++;
1133 goto activate_locked;
1134
1135 /* Case 3 above */
1136 } else {
1137 unlock_page(page);
1138 wait_on_page_writeback(page);
1139 /* then go back and try same page again */
1140 list_add_tail(&page->lru, page_list);
1141 continue;
1142 }
1143 }
1144
1145 if (!force_reclaim)
1146 references = page_check_references(page, sc);
1147
1148 switch (references) {
1149 case PAGEREF_ACTIVATE:
1150 goto activate_locked;
1151 case PAGEREF_KEEP:
1152 nr_ref_keep++;
1153 goto keep_locked;
1154 case PAGEREF_RECLAIM:
1155 case PAGEREF_RECLAIM_CLEAN:
1156 ; /* try to reclaim the page below */
1157 }
1158
1159 /*
1160 * Anonymous process memory has backing store?
1161 * Try to allocate it some swap space here.
1162 * Lazyfree page could be freed directly
1163 */
1164 if (PageAnon(page) && PageSwapBacked(page)) {
1165 if (!PageSwapCache(page)) {
1166 if (!(sc->gfp_mask & __GFP_IO))
1167 goto keep_locked;
1168 if (PageTransHuge(page)) {
1169 /* cannot split THP, skip it */
1170 if (!can_split_huge_page(page, NULL))
1171 goto activate_locked;
1172 /*
1173 * Split pages without a PMD map right
1174 * away. Chances are some or all of the
1175 * tail pages can be freed without IO.
1176 */
1177 if (!compound_mapcount(page) &&
1178 split_huge_page_to_list(page,
1179 page_list))
1180 goto activate_locked;
1181 }
1182 if (!add_to_swap(page)) {
1183 if (!PageTransHuge(page))
1184 goto activate_locked;
1185 /* Fallback to swap normal pages */
1186 if (split_huge_page_to_list(page,
1187 page_list))
1188 goto activate_locked;
1189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190 count_vm_event(THP_SWPOUT_FALLBACK);
1191 #endif
1192 if (!add_to_swap(page))
1193 goto activate_locked;
1194 }
1195
1196 may_enter_fs = 1;
1197
1198 /* Adding to swap updated mapping */
1199 mapping = page_mapping(page);
1200 }
1201 } else if (unlikely(PageTransHuge(page))) {
1202 /* Split file THP */
1203 if (split_huge_page_to_list(page, page_list))
1204 goto keep_locked;
1205 }
1206
1207 /*
1208 * The page is mapped into the page tables of one or more
1209 * processes. Try to unmap it here.
1210 */
1211 if (page_mapped(page)) {
1212 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1213
1214 if (unlikely(PageTransHuge(page)))
1215 flags |= TTU_SPLIT_HUGE_PMD;
1216 if (!try_to_unmap(page, flags)) {
1217 nr_unmap_fail++;
1218 goto activate_locked;
1219 }
1220 }
1221
1222 if (PageDirty(page)) {
1223 /*
1224 * Only kswapd can writeback filesystem pages
1225 * to avoid risk of stack overflow. But avoid
1226 * injecting inefficient single-page IO into
1227 * flusher writeback as much as possible: only
1228 * write pages when we've encountered many
1229 * dirty pages, and when we've already scanned
1230 * the rest of the LRU for clean pages and see
1231 * the same dirty pages again (PageReclaim).
1232 */
1233 if (page_is_file_cache(page) &&
1234 (!current_is_kswapd() || !PageReclaim(page) ||
1235 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1236 /*
1237 * Immediately reclaim when written back.
1238 * Similar in principal to deactivate_page()
1239 * except we already have the page isolated
1240 * and know it's dirty
1241 */
1242 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1243 SetPageReclaim(page);
1244
1245 goto activate_locked;
1246 }
1247
1248 if (references == PAGEREF_RECLAIM_CLEAN)
1249 goto keep_locked;
1250 if (!may_enter_fs)
1251 goto keep_locked;
1252 if (!sc->may_writepage)
1253 goto keep_locked;
1254
1255 /*
1256 * Page is dirty. Flush the TLB if a writable entry
1257 * potentially exists to avoid CPU writes after IO
1258 * starts and then write it out here.
1259 */
1260 try_to_unmap_flush_dirty();
1261 switch (pageout(page, mapping, sc)) {
1262 case PAGE_KEEP:
1263 goto keep_locked;
1264 case PAGE_ACTIVATE:
1265 goto activate_locked;
1266 case PAGE_SUCCESS:
1267 if (PageWriteback(page))
1268 goto keep;
1269 if (PageDirty(page))
1270 goto keep;
1271
1272 /*
1273 * A synchronous write - probably a ramdisk. Go
1274 * ahead and try to reclaim the page.
1275 */
1276 if (!trylock_page(page))
1277 goto keep;
1278 if (PageDirty(page) || PageWriteback(page))
1279 goto keep_locked;
1280 mapping = page_mapping(page);
1281 case PAGE_CLEAN:
1282 ; /* try to free the page below */
1283 }
1284 }
1285
1286 /*
1287 * If the page has buffers, try to free the buffer mappings
1288 * associated with this page. If we succeed we try to free
1289 * the page as well.
1290 *
1291 * We do this even if the page is PageDirty().
1292 * try_to_release_page() does not perform I/O, but it is
1293 * possible for a page to have PageDirty set, but it is actually
1294 * clean (all its buffers are clean). This happens if the
1295 * buffers were written out directly, with submit_bh(). ext3
1296 * will do this, as well as the blockdev mapping.
1297 * try_to_release_page() will discover that cleanness and will
1298 * drop the buffers and mark the page clean - it can be freed.
1299 *
1300 * Rarely, pages can have buffers and no ->mapping. These are
1301 * the pages which were not successfully invalidated in
1302 * truncate_complete_page(). We try to drop those buffers here
1303 * and if that worked, and the page is no longer mapped into
1304 * process address space (page_count == 1) it can be freed.
1305 * Otherwise, leave the page on the LRU so it is swappable.
1306 */
1307 if (page_has_private(page)) {
1308 if (!try_to_release_page(page, sc->gfp_mask))
1309 goto activate_locked;
1310 if (!mapping && page_count(page) == 1) {
1311 unlock_page(page);
1312 if (put_page_testzero(page))
1313 goto free_it;
1314 else {
1315 /*
1316 * rare race with speculative reference.
1317 * the speculative reference will free
1318 * this page shortly, so we may
1319 * increment nr_reclaimed here (and
1320 * leave it off the LRU).
1321 */
1322 nr_reclaimed++;
1323 continue;
1324 }
1325 }
1326 }
1327
1328 if (PageAnon(page) && !PageSwapBacked(page)) {
1329 /* follow __remove_mapping for reference */
1330 if (!page_ref_freeze(page, 1))
1331 goto keep_locked;
1332 if (PageDirty(page)) {
1333 page_ref_unfreeze(page, 1);
1334 goto keep_locked;
1335 }
1336
1337 count_vm_event(PGLAZYFREED);
1338 count_memcg_page_event(page, PGLAZYFREED);
1339 } else if (!mapping || !__remove_mapping(mapping, page, true))
1340 goto keep_locked;
1341 /*
1342 * At this point, we have no other references and there is
1343 * no way to pick any more up (removed from LRU, removed
1344 * from pagecache). Can use non-atomic bitops now (and
1345 * we obviously don't have to worry about waking up a process
1346 * waiting on the page lock, because there are no references.
1347 */
1348 __ClearPageLocked(page);
1349 free_it:
1350 nr_reclaimed++;
1351
1352 /*
1353 * Is there need to periodically free_page_list? It would
1354 * appear not as the counts should be low
1355 */
1356 if (unlikely(PageTransHuge(page))) {
1357 mem_cgroup_uncharge(page);
1358 (*get_compound_page_dtor(page))(page);
1359 } else
1360 list_add(&page->lru, &free_pages);
1361 continue;
1362
1363 activate_locked:
1364 /* Not a candidate for swapping, so reclaim swap space. */
1365 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1366 PageMlocked(page)))
1367 try_to_free_swap(page);
1368 VM_BUG_ON_PAGE(PageActive(page), page);
1369 if (!PageMlocked(page)) {
1370 SetPageActive(page);
1371 pgactivate++;
1372 count_memcg_page_event(page, PGACTIVATE);
1373 }
1374 keep_locked:
1375 unlock_page(page);
1376 keep:
1377 list_add(&page->lru, &ret_pages);
1378 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1379 }
1380
1381 mem_cgroup_uncharge_list(&free_pages);
1382 try_to_unmap_flush();
1383 free_unref_page_list(&free_pages);
1384
1385 list_splice(&ret_pages, page_list);
1386 count_vm_events(PGACTIVATE, pgactivate);
1387
1388 if (stat) {
1389 stat->nr_dirty = nr_dirty;
1390 stat->nr_congested = nr_congested;
1391 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1392 stat->nr_writeback = nr_writeback;
1393 stat->nr_immediate = nr_immediate;
1394 stat->nr_activate = pgactivate;
1395 stat->nr_ref_keep = nr_ref_keep;
1396 stat->nr_unmap_fail = nr_unmap_fail;
1397 }
1398 return nr_reclaimed;
1399 }
1400
1401 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1402 struct list_head *page_list)
1403 {
1404 struct scan_control sc = {
1405 .gfp_mask = GFP_KERNEL,
1406 .priority = DEF_PRIORITY,
1407 .may_unmap = 1,
1408 };
1409 unsigned long ret;
1410 struct page *page, *next;
1411 LIST_HEAD(clean_pages);
1412
1413 list_for_each_entry_safe(page, next, page_list, lru) {
1414 if (page_is_file_cache(page) && !PageDirty(page) &&
1415 !__PageMovable(page)) {
1416 ClearPageActive(page);
1417 list_move(&page->lru, &clean_pages);
1418 }
1419 }
1420
1421 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1422 TTU_IGNORE_ACCESS, NULL, true);
1423 list_splice(&clean_pages, page_list);
1424 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1425 return ret;
1426 }
1427
1428 /*
1429 * Attempt to remove the specified page from its LRU. Only take this page
1430 * if it is of the appropriate PageActive status. Pages which are being
1431 * freed elsewhere are also ignored.
1432 *
1433 * page: page to consider
1434 * mode: one of the LRU isolation modes defined above
1435 *
1436 * returns 0 on success, -ve errno on failure.
1437 */
1438 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1439 {
1440 int ret = -EINVAL;
1441
1442 /* Only take pages on the LRU. */
1443 if (!PageLRU(page))
1444 return ret;
1445
1446 /* Compaction should not handle unevictable pages but CMA can do so */
1447 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1448 return ret;
1449
1450 ret = -EBUSY;
1451
1452 /*
1453 * To minimise LRU disruption, the caller can indicate that it only
1454 * wants to isolate pages it will be able to operate on without
1455 * blocking - clean pages for the most part.
1456 *
1457 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1458 * that it is possible to migrate without blocking
1459 */
1460 if (mode & ISOLATE_ASYNC_MIGRATE) {
1461 /* All the caller can do on PageWriteback is block */
1462 if (PageWriteback(page))
1463 return ret;
1464
1465 if (PageDirty(page)) {
1466 struct address_space *mapping;
1467 bool migrate_dirty;
1468
1469 /*
1470 * Only pages without mappings or that have a
1471 * ->migratepage callback are possible to migrate
1472 * without blocking. However, we can be racing with
1473 * truncation so it's necessary to lock the page
1474 * to stabilise the mapping as truncation holds
1475 * the page lock until after the page is removed
1476 * from the page cache.
1477 */
1478 if (!trylock_page(page))
1479 return ret;
1480
1481 mapping = page_mapping(page);
1482 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1483 unlock_page(page);
1484 if (!migrate_dirty)
1485 return ret;
1486 }
1487 }
1488
1489 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1490 return ret;
1491
1492 if (likely(get_page_unless_zero(page))) {
1493 /*
1494 * Be careful not to clear PageLRU until after we're
1495 * sure the page is not being freed elsewhere -- the
1496 * page release code relies on it.
1497 */
1498 ClearPageLRU(page);
1499 ret = 0;
1500 }
1501
1502 return ret;
1503 }
1504
1505
1506 /*
1507 * Update LRU sizes after isolating pages. The LRU size updates must
1508 * be complete before mem_cgroup_update_lru_size due to a santity check.
1509 */
1510 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1511 enum lru_list lru, unsigned long *nr_zone_taken)
1512 {
1513 int zid;
1514
1515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1516 if (!nr_zone_taken[zid])
1517 continue;
1518
1519 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1520 #ifdef CONFIG_MEMCG
1521 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1522 #endif
1523 }
1524
1525 }
1526
1527 /*
1528 * zone_lru_lock is heavily contended. Some of the functions that
1529 * shrink the lists perform better by taking out a batch of pages
1530 * and working on them outside the LRU lock.
1531 *
1532 * For pagecache intensive workloads, this function is the hottest
1533 * spot in the kernel (apart from copy_*_user functions).
1534 *
1535 * Appropriate locks must be held before calling this function.
1536 *
1537 * @nr_to_scan: The number of eligible pages to look through on the list.
1538 * @lruvec: The LRU vector to pull pages from.
1539 * @dst: The temp list to put pages on to.
1540 * @nr_scanned: The number of pages that were scanned.
1541 * @sc: The scan_control struct for this reclaim session
1542 * @mode: One of the LRU isolation modes
1543 * @lru: LRU list id for isolating
1544 *
1545 * returns how many pages were moved onto *@dst.
1546 */
1547 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1548 struct lruvec *lruvec, struct list_head *dst,
1549 unsigned long *nr_scanned, struct scan_control *sc,
1550 isolate_mode_t mode, enum lru_list lru)
1551 {
1552 struct list_head *src = &lruvec->lists[lru];
1553 unsigned long nr_taken = 0;
1554 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1555 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1556 unsigned long skipped = 0;
1557 unsigned long scan, total_scan, nr_pages;
1558 LIST_HEAD(pages_skipped);
1559
1560 scan = 0;
1561 for (total_scan = 0;
1562 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1563 total_scan++) {
1564 struct page *page;
1565
1566 page = lru_to_page(src);
1567 prefetchw_prev_lru_page(page, src, flags);
1568
1569 VM_BUG_ON_PAGE(!PageLRU(page), page);
1570
1571 if (page_zonenum(page) > sc->reclaim_idx) {
1572 list_move(&page->lru, &pages_skipped);
1573 nr_skipped[page_zonenum(page)]++;
1574 continue;
1575 }
1576
1577 /*
1578 * Do not count skipped pages because that makes the function
1579 * return with no isolated pages if the LRU mostly contains
1580 * ineligible pages. This causes the VM to not reclaim any
1581 * pages, triggering a premature OOM.
1582 */
1583 scan++;
1584 switch (__isolate_lru_page(page, mode)) {
1585 case 0:
1586 nr_pages = hpage_nr_pages(page);
1587 nr_taken += nr_pages;
1588 nr_zone_taken[page_zonenum(page)] += nr_pages;
1589 list_move(&page->lru, dst);
1590 break;
1591
1592 case -EBUSY:
1593 /* else it is being freed elsewhere */
1594 list_move(&page->lru, src);
1595 continue;
1596
1597 default:
1598 BUG();
1599 }
1600 }
1601
1602 /*
1603 * Splice any skipped pages to the start of the LRU list. Note that
1604 * this disrupts the LRU order when reclaiming for lower zones but
1605 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1606 * scanning would soon rescan the same pages to skip and put the
1607 * system at risk of premature OOM.
1608 */
1609 if (!list_empty(&pages_skipped)) {
1610 int zid;
1611
1612 list_splice(&pages_skipped, src);
1613 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1614 if (!nr_skipped[zid])
1615 continue;
1616
1617 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1618 skipped += nr_skipped[zid];
1619 }
1620 }
1621 *nr_scanned = total_scan;
1622 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1623 total_scan, skipped, nr_taken, mode, lru);
1624 update_lru_sizes(lruvec, lru, nr_zone_taken);
1625 return nr_taken;
1626 }
1627
1628 /**
1629 * isolate_lru_page - tries to isolate a page from its LRU list
1630 * @page: page to isolate from its LRU list
1631 *
1632 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1633 * vmstat statistic corresponding to whatever LRU list the page was on.
1634 *
1635 * Returns 0 if the page was removed from an LRU list.
1636 * Returns -EBUSY if the page was not on an LRU list.
1637 *
1638 * The returned page will have PageLRU() cleared. If it was found on
1639 * the active list, it will have PageActive set. If it was found on
1640 * the unevictable list, it will have the PageUnevictable bit set. That flag
1641 * may need to be cleared by the caller before letting the page go.
1642 *
1643 * The vmstat statistic corresponding to the list on which the page was
1644 * found will be decremented.
1645 *
1646 * Restrictions:
1647 * (1) Must be called with an elevated refcount on the page. This is a
1648 * fundamentnal difference from isolate_lru_pages (which is called
1649 * without a stable reference).
1650 * (2) the lru_lock must not be held.
1651 * (3) interrupts must be enabled.
1652 */
1653 int isolate_lru_page(struct page *page)
1654 {
1655 int ret = -EBUSY;
1656
1657 VM_BUG_ON_PAGE(!page_count(page), page);
1658 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1659
1660 if (PageLRU(page)) {
1661 struct zone *zone = page_zone(page);
1662 struct lruvec *lruvec;
1663
1664 spin_lock_irq(zone_lru_lock(zone));
1665 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1666 if (PageLRU(page)) {
1667 int lru = page_lru(page);
1668 get_page(page);
1669 ClearPageLRU(page);
1670 del_page_from_lru_list(page, lruvec, lru);
1671 ret = 0;
1672 }
1673 spin_unlock_irq(zone_lru_lock(zone));
1674 }
1675 return ret;
1676 }
1677
1678 /*
1679 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1680 * then get resheduled. When there are massive number of tasks doing page
1681 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1682 * the LRU list will go small and be scanned faster than necessary, leading to
1683 * unnecessary swapping, thrashing and OOM.
1684 */
1685 static int too_many_isolated(struct pglist_data *pgdat, int file,
1686 struct scan_control *sc)
1687 {
1688 unsigned long inactive, isolated;
1689
1690 if (current_is_kswapd())
1691 return 0;
1692
1693 if (!sane_reclaim(sc))
1694 return 0;
1695
1696 if (file) {
1697 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1698 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1699 } else {
1700 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1701 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1702 }
1703
1704 /*
1705 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1706 * won't get blocked by normal direct-reclaimers, forming a circular
1707 * deadlock.
1708 */
1709 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1710 inactive >>= 3;
1711
1712 return isolated > inactive;
1713 }
1714
1715 static noinline_for_stack void
1716 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1717 {
1718 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1719 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1720 LIST_HEAD(pages_to_free);
1721
1722 /*
1723 * Put back any unfreeable pages.
1724 */
1725 while (!list_empty(page_list)) {
1726 struct page *page = lru_to_page(page_list);
1727 int lru;
1728
1729 VM_BUG_ON_PAGE(PageLRU(page), page);
1730 list_del(&page->lru);
1731 if (unlikely(!page_evictable(page))) {
1732 spin_unlock_irq(&pgdat->lru_lock);
1733 putback_lru_page(page);
1734 spin_lock_irq(&pgdat->lru_lock);
1735 continue;
1736 }
1737
1738 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1739
1740 SetPageLRU(page);
1741 lru = page_lru(page);
1742 add_page_to_lru_list(page, lruvec, lru);
1743
1744 if (is_active_lru(lru)) {
1745 int file = is_file_lru(lru);
1746 int numpages = hpage_nr_pages(page);
1747 reclaim_stat->recent_rotated[file] += numpages;
1748 }
1749 if (put_page_testzero(page)) {
1750 __ClearPageLRU(page);
1751 __ClearPageActive(page);
1752 del_page_from_lru_list(page, lruvec, lru);
1753
1754 if (unlikely(PageCompound(page))) {
1755 spin_unlock_irq(&pgdat->lru_lock);
1756 mem_cgroup_uncharge(page);
1757 (*get_compound_page_dtor(page))(page);
1758 spin_lock_irq(&pgdat->lru_lock);
1759 } else
1760 list_add(&page->lru, &pages_to_free);
1761 }
1762 }
1763
1764 /*
1765 * To save our caller's stack, now use input list for pages to free.
1766 */
1767 list_splice(&pages_to_free, page_list);
1768 }
1769
1770 /*
1771 * If a kernel thread (such as nfsd for loop-back mounts) services
1772 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1773 * In that case we should only throttle if the backing device it is
1774 * writing to is congested. In other cases it is safe to throttle.
1775 */
1776 static int current_may_throttle(void)
1777 {
1778 return !(current->flags & PF_LESS_THROTTLE) ||
1779 current->backing_dev_info == NULL ||
1780 bdi_write_congested(current->backing_dev_info);
1781 }
1782
1783 /*
1784 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1785 * of reclaimed pages
1786 */
1787 static noinline_for_stack unsigned long
1788 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1789 struct scan_control *sc, enum lru_list lru)
1790 {
1791 LIST_HEAD(page_list);
1792 unsigned long nr_scanned;
1793 unsigned long nr_reclaimed = 0;
1794 unsigned long nr_taken;
1795 struct reclaim_stat stat = {};
1796 isolate_mode_t isolate_mode = 0;
1797 int file = is_file_lru(lru);
1798 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1799 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1800 bool stalled = false;
1801
1802 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1803 if (stalled)
1804 return 0;
1805
1806 /* wait a bit for the reclaimer. */
1807 msleep(100);
1808 stalled = true;
1809
1810 /* We are about to die and free our memory. Return now. */
1811 if (fatal_signal_pending(current))
1812 return SWAP_CLUSTER_MAX;
1813 }
1814
1815 lru_add_drain();
1816
1817 if (!sc->may_unmap)
1818 isolate_mode |= ISOLATE_UNMAPPED;
1819
1820 spin_lock_irq(&pgdat->lru_lock);
1821
1822 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1823 &nr_scanned, sc, isolate_mode, lru);
1824
1825 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1826 reclaim_stat->recent_scanned[file] += nr_taken;
1827
1828 if (current_is_kswapd()) {
1829 if (global_reclaim(sc))
1830 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1831 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1832 nr_scanned);
1833 } else {
1834 if (global_reclaim(sc))
1835 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1836 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1837 nr_scanned);
1838 }
1839 spin_unlock_irq(&pgdat->lru_lock);
1840
1841 if (nr_taken == 0)
1842 return 0;
1843
1844 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1845 &stat, false);
1846
1847 spin_lock_irq(&pgdat->lru_lock);
1848
1849 if (current_is_kswapd()) {
1850 if (global_reclaim(sc))
1851 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1852 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1853 nr_reclaimed);
1854 } else {
1855 if (global_reclaim(sc))
1856 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1857 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1858 nr_reclaimed);
1859 }
1860
1861 putback_inactive_pages(lruvec, &page_list);
1862
1863 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1864
1865 spin_unlock_irq(&pgdat->lru_lock);
1866
1867 mem_cgroup_uncharge_list(&page_list);
1868 free_unref_page_list(&page_list);
1869
1870 /*
1871 * If reclaim is isolating dirty pages under writeback, it implies
1872 * that the long-lived page allocation rate is exceeding the page
1873 * laundering rate. Either the global limits are not being effective
1874 * at throttling processes due to the page distribution throughout
1875 * zones or there is heavy usage of a slow backing device. The
1876 * only option is to throttle from reclaim context which is not ideal
1877 * as there is no guarantee the dirtying process is throttled in the
1878 * same way balance_dirty_pages() manages.
1879 *
1880 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1881 * of pages under pages flagged for immediate reclaim and stall if any
1882 * are encountered in the nr_immediate check below.
1883 */
1884 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1885 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1886
1887 /*
1888 * If dirty pages are scanned that are not queued for IO, it
1889 * implies that flushers are not doing their job. This can
1890 * happen when memory pressure pushes dirty pages to the end of
1891 * the LRU before the dirty limits are breached and the dirty
1892 * data has expired. It can also happen when the proportion of
1893 * dirty pages grows not through writes but through memory
1894 * pressure reclaiming all the clean cache. And in some cases,
1895 * the flushers simply cannot keep up with the allocation
1896 * rate. Nudge the flusher threads in case they are asleep.
1897 */
1898 if (stat.nr_unqueued_dirty == nr_taken)
1899 wakeup_flusher_threads(WB_REASON_VMSCAN);
1900
1901 /*
1902 * Legacy memcg will stall in page writeback so avoid forcibly
1903 * stalling here.
1904 */
1905 if (sane_reclaim(sc)) {
1906 /*
1907 * Tag a zone as congested if all the dirty pages scanned were
1908 * backed by a congested BDI and wait_iff_congested will stall.
1909 */
1910 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1911 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1912
1913 /* Allow kswapd to start writing pages during reclaim. */
1914 if (stat.nr_unqueued_dirty == nr_taken)
1915 set_bit(PGDAT_DIRTY, &pgdat->flags);
1916
1917 /*
1918 * If kswapd scans pages marked marked for immediate
1919 * reclaim and under writeback (nr_immediate), it implies
1920 * that pages are cycling through the LRU faster than
1921 * they are written so also forcibly stall.
1922 */
1923 if (stat.nr_immediate && current_may_throttle())
1924 congestion_wait(BLK_RW_ASYNC, HZ/10);
1925 }
1926
1927 /*
1928 * Stall direct reclaim for IO completions if underlying BDIs or zone
1929 * is congested. Allow kswapd to continue until it starts encountering
1930 * unqueued dirty pages or cycling through the LRU too quickly.
1931 */
1932 if (!sc->hibernation_mode && !current_is_kswapd() &&
1933 current_may_throttle())
1934 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1935
1936 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1937 nr_scanned, nr_reclaimed,
1938 stat.nr_dirty, stat.nr_writeback,
1939 stat.nr_congested, stat.nr_immediate,
1940 stat.nr_activate, stat.nr_ref_keep,
1941 stat.nr_unmap_fail,
1942 sc->priority, file);
1943 return nr_reclaimed;
1944 }
1945
1946 /*
1947 * This moves pages from the active list to the inactive list.
1948 *
1949 * We move them the other way if the page is referenced by one or more
1950 * processes, from rmap.
1951 *
1952 * If the pages are mostly unmapped, the processing is fast and it is
1953 * appropriate to hold zone_lru_lock across the whole operation. But if
1954 * the pages are mapped, the processing is slow (page_referenced()) so we
1955 * should drop zone_lru_lock around each page. It's impossible to balance
1956 * this, so instead we remove the pages from the LRU while processing them.
1957 * It is safe to rely on PG_active against the non-LRU pages in here because
1958 * nobody will play with that bit on a non-LRU page.
1959 *
1960 * The downside is that we have to touch page->_refcount against each page.
1961 * But we had to alter page->flags anyway.
1962 *
1963 * Returns the number of pages moved to the given lru.
1964 */
1965
1966 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1967 struct list_head *list,
1968 struct list_head *pages_to_free,
1969 enum lru_list lru)
1970 {
1971 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1972 struct page *page;
1973 int nr_pages;
1974 int nr_moved = 0;
1975
1976 while (!list_empty(list)) {
1977 page = lru_to_page(list);
1978 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1979
1980 VM_BUG_ON_PAGE(PageLRU(page), page);
1981 SetPageLRU(page);
1982
1983 nr_pages = hpage_nr_pages(page);
1984 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1985 list_move(&page->lru, &lruvec->lists[lru]);
1986
1987 if (put_page_testzero(page)) {
1988 __ClearPageLRU(page);
1989 __ClearPageActive(page);
1990 del_page_from_lru_list(page, lruvec, lru);
1991
1992 if (unlikely(PageCompound(page))) {
1993 spin_unlock_irq(&pgdat->lru_lock);
1994 mem_cgroup_uncharge(page);
1995 (*get_compound_page_dtor(page))(page);
1996 spin_lock_irq(&pgdat->lru_lock);
1997 } else
1998 list_add(&page->lru, pages_to_free);
1999 } else {
2000 nr_moved += nr_pages;
2001 }
2002 }
2003
2004 if (!is_active_lru(lru)) {
2005 __count_vm_events(PGDEACTIVATE, nr_moved);
2006 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2007 nr_moved);
2008 }
2009
2010 return nr_moved;
2011 }
2012
2013 static void shrink_active_list(unsigned long nr_to_scan,
2014 struct lruvec *lruvec,
2015 struct scan_control *sc,
2016 enum lru_list lru)
2017 {
2018 unsigned long nr_taken;
2019 unsigned long nr_scanned;
2020 unsigned long vm_flags;
2021 LIST_HEAD(l_hold); /* The pages which were snipped off */
2022 LIST_HEAD(l_active);
2023 LIST_HEAD(l_inactive);
2024 struct page *page;
2025 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2026 unsigned nr_deactivate, nr_activate;
2027 unsigned nr_rotated = 0;
2028 isolate_mode_t isolate_mode = 0;
2029 int file = is_file_lru(lru);
2030 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2031
2032 lru_add_drain();
2033
2034 if (!sc->may_unmap)
2035 isolate_mode |= ISOLATE_UNMAPPED;
2036
2037 spin_lock_irq(&pgdat->lru_lock);
2038
2039 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2040 &nr_scanned, sc, isolate_mode, lru);
2041
2042 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2043 reclaim_stat->recent_scanned[file] += nr_taken;
2044
2045 __count_vm_events(PGREFILL, nr_scanned);
2046 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2047
2048 spin_unlock_irq(&pgdat->lru_lock);
2049
2050 while (!list_empty(&l_hold)) {
2051 cond_resched();
2052 page = lru_to_page(&l_hold);
2053 list_del(&page->lru);
2054
2055 if (unlikely(!page_evictable(page))) {
2056 putback_lru_page(page);
2057 continue;
2058 }
2059
2060 if (unlikely(buffer_heads_over_limit)) {
2061 if (page_has_private(page) && trylock_page(page)) {
2062 if (page_has_private(page))
2063 try_to_release_page(page, 0);
2064 unlock_page(page);
2065 }
2066 }
2067
2068 if (page_referenced(page, 0, sc->target_mem_cgroup,
2069 &vm_flags)) {
2070 nr_rotated += hpage_nr_pages(page);
2071 /*
2072 * Identify referenced, file-backed active pages and
2073 * give them one more trip around the active list. So
2074 * that executable code get better chances to stay in
2075 * memory under moderate memory pressure. Anon pages
2076 * are not likely to be evicted by use-once streaming
2077 * IO, plus JVM can create lots of anon VM_EXEC pages,
2078 * so we ignore them here.
2079 */
2080 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2081 list_add(&page->lru, &l_active);
2082 continue;
2083 }
2084 }
2085
2086 ClearPageActive(page); /* we are de-activating */
2087 list_add(&page->lru, &l_inactive);
2088 }
2089
2090 /*
2091 * Move pages back to the lru list.
2092 */
2093 spin_lock_irq(&pgdat->lru_lock);
2094 /*
2095 * Count referenced pages from currently used mappings as rotated,
2096 * even though only some of them are actually re-activated. This
2097 * helps balance scan pressure between file and anonymous pages in
2098 * get_scan_count.
2099 */
2100 reclaim_stat->recent_rotated[file] += nr_rotated;
2101
2102 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2103 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2105 spin_unlock_irq(&pgdat->lru_lock);
2106
2107 mem_cgroup_uncharge_list(&l_hold);
2108 free_unref_page_list(&l_hold);
2109 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2110 nr_deactivate, nr_rotated, sc->priority, file);
2111 }
2112
2113 /*
2114 * The inactive anon list should be small enough that the VM never has
2115 * to do too much work.
2116 *
2117 * The inactive file list should be small enough to leave most memory
2118 * to the established workingset on the scan-resistant active list,
2119 * but large enough to avoid thrashing the aggregate readahead window.
2120 *
2121 * Both inactive lists should also be large enough that each inactive
2122 * page has a chance to be referenced again before it is reclaimed.
2123 *
2124 * If that fails and refaulting is observed, the inactive list grows.
2125 *
2126 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2127 * on this LRU, maintained by the pageout code. An inactive_ratio
2128 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2129 *
2130 * total target max
2131 * memory ratio inactive
2132 * -------------------------------------
2133 * 10MB 1 5MB
2134 * 100MB 1 50MB
2135 * 1GB 3 250MB
2136 * 10GB 10 0.9GB
2137 * 100GB 31 3GB
2138 * 1TB 101 10GB
2139 * 10TB 320 32GB
2140 */
2141 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2142 struct mem_cgroup *memcg,
2143 struct scan_control *sc, bool actual_reclaim)
2144 {
2145 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2146 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2147 enum lru_list inactive_lru = file * LRU_FILE;
2148 unsigned long inactive, active;
2149 unsigned long inactive_ratio;
2150 unsigned long refaults;
2151 unsigned long gb;
2152
2153 /*
2154 * If we don't have swap space, anonymous page deactivation
2155 * is pointless.
2156 */
2157 if (!file && !total_swap_pages)
2158 return false;
2159
2160 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2161 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2162
2163 if (memcg)
2164 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2165 else
2166 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2167
2168 /*
2169 * When refaults are being observed, it means a new workingset
2170 * is being established. Disable active list protection to get
2171 * rid of the stale workingset quickly.
2172 */
2173 if (file && actual_reclaim && lruvec->refaults != refaults) {
2174 inactive_ratio = 0;
2175 } else {
2176 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2177 if (gb)
2178 inactive_ratio = int_sqrt(10 * gb);
2179 else
2180 inactive_ratio = 1;
2181 }
2182
2183 if (actual_reclaim)
2184 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2185 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2186 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2187 inactive_ratio, file);
2188
2189 return inactive * inactive_ratio < active;
2190 }
2191
2192 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2193 struct lruvec *lruvec, struct mem_cgroup *memcg,
2194 struct scan_control *sc)
2195 {
2196 if (is_active_lru(lru)) {
2197 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2198 memcg, sc, true))
2199 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2200 return 0;
2201 }
2202
2203 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2204 }
2205
2206 enum scan_balance {
2207 SCAN_EQUAL,
2208 SCAN_FRACT,
2209 SCAN_ANON,
2210 SCAN_FILE,
2211 };
2212
2213 /*
2214 * Determine how aggressively the anon and file LRU lists should be
2215 * scanned. The relative value of each set of LRU lists is determined
2216 * by looking at the fraction of the pages scanned we did rotate back
2217 * onto the active list instead of evict.
2218 *
2219 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2220 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2221 */
2222 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2223 struct scan_control *sc, unsigned long *nr,
2224 unsigned long *lru_pages)
2225 {
2226 int swappiness = mem_cgroup_swappiness(memcg);
2227 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2228 u64 fraction[2];
2229 u64 denominator = 0; /* gcc */
2230 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2231 unsigned long anon_prio, file_prio;
2232 enum scan_balance scan_balance;
2233 unsigned long anon, file;
2234 unsigned long ap, fp;
2235 enum lru_list lru;
2236
2237 /* If we have no swap space, do not bother scanning anon pages. */
2238 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2239 scan_balance = SCAN_FILE;
2240 goto out;
2241 }
2242
2243 /*
2244 * Global reclaim will swap to prevent OOM even with no
2245 * swappiness, but memcg users want to use this knob to
2246 * disable swapping for individual groups completely when
2247 * using the memory controller's swap limit feature would be
2248 * too expensive.
2249 */
2250 if (!global_reclaim(sc) && !swappiness) {
2251 scan_balance = SCAN_FILE;
2252 goto out;
2253 }
2254
2255 /*
2256 * Do not apply any pressure balancing cleverness when the
2257 * system is close to OOM, scan both anon and file equally
2258 * (unless the swappiness setting disagrees with swapping).
2259 */
2260 if (!sc->priority && swappiness) {
2261 scan_balance = SCAN_EQUAL;
2262 goto out;
2263 }
2264
2265 /*
2266 * Prevent the reclaimer from falling into the cache trap: as
2267 * cache pages start out inactive, every cache fault will tip
2268 * the scan balance towards the file LRU. And as the file LRU
2269 * shrinks, so does the window for rotation from references.
2270 * This means we have a runaway feedback loop where a tiny
2271 * thrashing file LRU becomes infinitely more attractive than
2272 * anon pages. Try to detect this based on file LRU size.
2273 */
2274 if (global_reclaim(sc)) {
2275 unsigned long pgdatfile;
2276 unsigned long pgdatfree;
2277 int z;
2278 unsigned long total_high_wmark = 0;
2279
2280 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2281 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2282 node_page_state(pgdat, NR_INACTIVE_FILE);
2283
2284 for (z = 0; z < MAX_NR_ZONES; z++) {
2285 struct zone *zone = &pgdat->node_zones[z];
2286 if (!managed_zone(zone))
2287 continue;
2288
2289 total_high_wmark += high_wmark_pages(zone);
2290 }
2291
2292 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2293 /*
2294 * Force SCAN_ANON if there are enough inactive
2295 * anonymous pages on the LRU in eligible zones.
2296 * Otherwise, the small LRU gets thrashed.
2297 */
2298 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2299 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2300 >> sc->priority) {
2301 scan_balance = SCAN_ANON;
2302 goto out;
2303 }
2304 }
2305 }
2306
2307 /*
2308 * If there is enough inactive page cache, i.e. if the size of the
2309 * inactive list is greater than that of the active list *and* the
2310 * inactive list actually has some pages to scan on this priority, we
2311 * do not reclaim anything from the anonymous working set right now.
2312 * Without the second condition we could end up never scanning an
2313 * lruvec even if it has plenty of old anonymous pages unless the
2314 * system is under heavy pressure.
2315 */
2316 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2317 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2318 scan_balance = SCAN_FILE;
2319 goto out;
2320 }
2321
2322 scan_balance = SCAN_FRACT;
2323
2324 /*
2325 * With swappiness at 100, anonymous and file have the same priority.
2326 * This scanning priority is essentially the inverse of IO cost.
2327 */
2328 anon_prio = swappiness;
2329 file_prio = 200 - anon_prio;
2330
2331 /*
2332 * OK, so we have swap space and a fair amount of page cache
2333 * pages. We use the recently rotated / recently scanned
2334 * ratios to determine how valuable each cache is.
2335 *
2336 * Because workloads change over time (and to avoid overflow)
2337 * we keep these statistics as a floating average, which ends
2338 * up weighing recent references more than old ones.
2339 *
2340 * anon in [0], file in [1]
2341 */
2342
2343 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2344 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2345 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2346 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2347
2348 spin_lock_irq(&pgdat->lru_lock);
2349 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2350 reclaim_stat->recent_scanned[0] /= 2;
2351 reclaim_stat->recent_rotated[0] /= 2;
2352 }
2353
2354 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2355 reclaim_stat->recent_scanned[1] /= 2;
2356 reclaim_stat->recent_rotated[1] /= 2;
2357 }
2358
2359 /*
2360 * The amount of pressure on anon vs file pages is inversely
2361 * proportional to the fraction of recently scanned pages on
2362 * each list that were recently referenced and in active use.
2363 */
2364 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2365 ap /= reclaim_stat->recent_rotated[0] + 1;
2366
2367 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2368 fp /= reclaim_stat->recent_rotated[1] + 1;
2369 spin_unlock_irq(&pgdat->lru_lock);
2370
2371 fraction[0] = ap;
2372 fraction[1] = fp;
2373 denominator = ap + fp + 1;
2374 out:
2375 *lru_pages = 0;
2376 for_each_evictable_lru(lru) {
2377 int file = is_file_lru(lru);
2378 unsigned long size;
2379 unsigned long scan;
2380
2381 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2382 scan = size >> sc->priority;
2383 /*
2384 * If the cgroup's already been deleted, make sure to
2385 * scrape out the remaining cache.
2386 */
2387 if (!scan && !mem_cgroup_online(memcg))
2388 scan = min(size, SWAP_CLUSTER_MAX);
2389
2390 switch (scan_balance) {
2391 case SCAN_EQUAL:
2392 /* Scan lists relative to size */
2393 break;
2394 case SCAN_FRACT:
2395 /*
2396 * Scan types proportional to swappiness and
2397 * their relative recent reclaim efficiency.
2398 */
2399 scan = div64_u64(scan * fraction[file],
2400 denominator);
2401 break;
2402 case SCAN_FILE:
2403 case SCAN_ANON:
2404 /* Scan one type exclusively */
2405 if ((scan_balance == SCAN_FILE) != file) {
2406 size = 0;
2407 scan = 0;
2408 }
2409 break;
2410 default:
2411 /* Look ma, no brain */
2412 BUG();
2413 }
2414
2415 *lru_pages += size;
2416 nr[lru] = scan;
2417 }
2418 }
2419
2420 /*
2421 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2422 */
2423 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2424 struct scan_control *sc, unsigned long *lru_pages)
2425 {
2426 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2427 unsigned long nr[NR_LRU_LISTS];
2428 unsigned long targets[NR_LRU_LISTS];
2429 unsigned long nr_to_scan;
2430 enum lru_list lru;
2431 unsigned long nr_reclaimed = 0;
2432 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2433 struct blk_plug plug;
2434 bool scan_adjusted;
2435
2436 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2437
2438 /* Record the original scan target for proportional adjustments later */
2439 memcpy(targets, nr, sizeof(nr));
2440
2441 /*
2442 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2443 * event that can occur when there is little memory pressure e.g.
2444 * multiple streaming readers/writers. Hence, we do not abort scanning
2445 * when the requested number of pages are reclaimed when scanning at
2446 * DEF_PRIORITY on the assumption that the fact we are direct
2447 * reclaiming implies that kswapd is not keeping up and it is best to
2448 * do a batch of work at once. For memcg reclaim one check is made to
2449 * abort proportional reclaim if either the file or anon lru has already
2450 * dropped to zero at the first pass.
2451 */
2452 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2453 sc->priority == DEF_PRIORITY);
2454
2455 blk_start_plug(&plug);
2456 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2457 nr[LRU_INACTIVE_FILE]) {
2458 unsigned long nr_anon, nr_file, percentage;
2459 unsigned long nr_scanned;
2460
2461 for_each_evictable_lru(lru) {
2462 if (nr[lru]) {
2463 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2464 nr[lru] -= nr_to_scan;
2465
2466 nr_reclaimed += shrink_list(lru, nr_to_scan,
2467 lruvec, memcg, sc);
2468 }
2469 }
2470
2471 cond_resched();
2472
2473 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2474 continue;
2475
2476 /*
2477 * For kswapd and memcg, reclaim at least the number of pages
2478 * requested. Ensure that the anon and file LRUs are scanned
2479 * proportionally what was requested by get_scan_count(). We
2480 * stop reclaiming one LRU and reduce the amount scanning
2481 * proportional to the original scan target.
2482 */
2483 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2484 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2485
2486 /*
2487 * It's just vindictive to attack the larger once the smaller
2488 * has gone to zero. And given the way we stop scanning the
2489 * smaller below, this makes sure that we only make one nudge
2490 * towards proportionality once we've got nr_to_reclaim.
2491 */
2492 if (!nr_file || !nr_anon)
2493 break;
2494
2495 if (nr_file > nr_anon) {
2496 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2497 targets[LRU_ACTIVE_ANON] + 1;
2498 lru = LRU_BASE;
2499 percentage = nr_anon * 100 / scan_target;
2500 } else {
2501 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2502 targets[LRU_ACTIVE_FILE] + 1;
2503 lru = LRU_FILE;
2504 percentage = nr_file * 100 / scan_target;
2505 }
2506
2507 /* Stop scanning the smaller of the LRU */
2508 nr[lru] = 0;
2509 nr[lru + LRU_ACTIVE] = 0;
2510
2511 /*
2512 * Recalculate the other LRU scan count based on its original
2513 * scan target and the percentage scanning already complete
2514 */
2515 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2516 nr_scanned = targets[lru] - nr[lru];
2517 nr[lru] = targets[lru] * (100 - percentage) / 100;
2518 nr[lru] -= min(nr[lru], nr_scanned);
2519
2520 lru += LRU_ACTIVE;
2521 nr_scanned = targets[lru] - nr[lru];
2522 nr[lru] = targets[lru] * (100 - percentage) / 100;
2523 nr[lru] -= min(nr[lru], nr_scanned);
2524
2525 scan_adjusted = true;
2526 }
2527 blk_finish_plug(&plug);
2528 sc->nr_reclaimed += nr_reclaimed;
2529
2530 /*
2531 * Even if we did not try to evict anon pages at all, we want to
2532 * rebalance the anon lru active/inactive ratio.
2533 */
2534 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2535 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2536 sc, LRU_ACTIVE_ANON);
2537 }
2538
2539 /* Use reclaim/compaction for costly allocs or under memory pressure */
2540 static bool in_reclaim_compaction(struct scan_control *sc)
2541 {
2542 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2543 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2544 sc->priority < DEF_PRIORITY - 2))
2545 return true;
2546
2547 return false;
2548 }
2549
2550 /*
2551 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2552 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2553 * true if more pages should be reclaimed such that when the page allocator
2554 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2555 * It will give up earlier than that if there is difficulty reclaiming pages.
2556 */
2557 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2558 unsigned long nr_reclaimed,
2559 unsigned long nr_scanned,
2560 struct scan_control *sc)
2561 {
2562 unsigned long pages_for_compaction;
2563 unsigned long inactive_lru_pages;
2564 int z;
2565
2566 /* If not in reclaim/compaction mode, stop */
2567 if (!in_reclaim_compaction(sc))
2568 return false;
2569
2570 /* Consider stopping depending on scan and reclaim activity */
2571 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2572 /*
2573 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2574 * full LRU list has been scanned and we are still failing
2575 * to reclaim pages. This full LRU scan is potentially
2576 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2577 */
2578 if (!nr_reclaimed && !nr_scanned)
2579 return false;
2580 } else {
2581 /*
2582 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2583 * fail without consequence, stop if we failed to reclaim
2584 * any pages from the last SWAP_CLUSTER_MAX number of
2585 * pages that were scanned. This will return to the
2586 * caller faster at the risk reclaim/compaction and
2587 * the resulting allocation attempt fails
2588 */
2589 if (!nr_reclaimed)
2590 return false;
2591 }
2592
2593 /*
2594 * If we have not reclaimed enough pages for compaction and the
2595 * inactive lists are large enough, continue reclaiming
2596 */
2597 pages_for_compaction = compact_gap(sc->order);
2598 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2599 if (get_nr_swap_pages() > 0)
2600 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2601 if (sc->nr_reclaimed < pages_for_compaction &&
2602 inactive_lru_pages > pages_for_compaction)
2603 return true;
2604
2605 /* If compaction would go ahead or the allocation would succeed, stop */
2606 for (z = 0; z <= sc->reclaim_idx; z++) {
2607 struct zone *zone = &pgdat->node_zones[z];
2608 if (!managed_zone(zone))
2609 continue;
2610
2611 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2612 case COMPACT_SUCCESS:
2613 case COMPACT_CONTINUE:
2614 return false;
2615 default:
2616 /* check next zone */
2617 ;
2618 }
2619 }
2620 return true;
2621 }
2622
2623 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2624 {
2625 struct reclaim_state *reclaim_state = current->reclaim_state;
2626 unsigned long nr_reclaimed, nr_scanned;
2627 bool reclaimable = false;
2628
2629 do {
2630 struct mem_cgroup *root = sc->target_mem_cgroup;
2631 struct mem_cgroup_reclaim_cookie reclaim = {
2632 .pgdat = pgdat,
2633 .priority = sc->priority,
2634 };
2635 unsigned long node_lru_pages = 0;
2636 struct mem_cgroup *memcg;
2637
2638 nr_reclaimed = sc->nr_reclaimed;
2639 nr_scanned = sc->nr_scanned;
2640
2641 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2642 do {
2643 unsigned long lru_pages;
2644 unsigned long reclaimed;
2645 unsigned long scanned;
2646
2647 if (mem_cgroup_low(root, memcg)) {
2648 if (!sc->memcg_low_reclaim) {
2649 sc->memcg_low_skipped = 1;
2650 continue;
2651 }
2652 mem_cgroup_event(memcg, MEMCG_LOW);
2653 }
2654
2655 reclaimed = sc->nr_reclaimed;
2656 scanned = sc->nr_scanned;
2657
2658 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2659 node_lru_pages += lru_pages;
2660
2661 if (memcg)
2662 shrink_slab(sc->gfp_mask, pgdat->node_id,
2663 memcg, sc->nr_scanned - scanned,
2664 lru_pages);
2665
2666 /* Record the group's reclaim efficiency */
2667 vmpressure(sc->gfp_mask, memcg, false,
2668 sc->nr_scanned - scanned,
2669 sc->nr_reclaimed - reclaimed);
2670
2671 /*
2672 * Direct reclaim and kswapd have to scan all memory
2673 * cgroups to fulfill the overall scan target for the
2674 * node.
2675 *
2676 * Limit reclaim, on the other hand, only cares about
2677 * nr_to_reclaim pages to be reclaimed and it will
2678 * retry with decreasing priority if one round over the
2679 * whole hierarchy is not sufficient.
2680 */
2681 if (!global_reclaim(sc) &&
2682 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2683 mem_cgroup_iter_break(root, memcg);
2684 break;
2685 }
2686 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2687
2688 /*
2689 * Shrink the slab caches in the same proportion that
2690 * the eligible LRU pages were scanned.
2691 */
2692 if (global_reclaim(sc))
2693 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2694 sc->nr_scanned - nr_scanned,
2695 node_lru_pages);
2696
2697 if (reclaim_state) {
2698 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2699 reclaim_state->reclaimed_slab = 0;
2700 }
2701
2702 /* Record the subtree's reclaim efficiency */
2703 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2704 sc->nr_scanned - nr_scanned,
2705 sc->nr_reclaimed - nr_reclaimed);
2706
2707 if (sc->nr_reclaimed - nr_reclaimed)
2708 reclaimable = true;
2709
2710 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2711 sc->nr_scanned - nr_scanned, sc));
2712
2713 /*
2714 * Kswapd gives up on balancing particular nodes after too
2715 * many failures to reclaim anything from them and goes to
2716 * sleep. On reclaim progress, reset the failure counter. A
2717 * successful direct reclaim run will revive a dormant kswapd.
2718 */
2719 if (reclaimable)
2720 pgdat->kswapd_failures = 0;
2721
2722 return reclaimable;
2723 }
2724
2725 /*
2726 * Returns true if compaction should go ahead for a costly-order request, or
2727 * the allocation would already succeed without compaction. Return false if we
2728 * should reclaim first.
2729 */
2730 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2731 {
2732 unsigned long watermark;
2733 enum compact_result suitable;
2734
2735 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2736 if (suitable == COMPACT_SUCCESS)
2737 /* Allocation should succeed already. Don't reclaim. */
2738 return true;
2739 if (suitable == COMPACT_SKIPPED)
2740 /* Compaction cannot yet proceed. Do reclaim. */
2741 return false;
2742
2743 /*
2744 * Compaction is already possible, but it takes time to run and there
2745 * are potentially other callers using the pages just freed. So proceed
2746 * with reclaim to make a buffer of free pages available to give
2747 * compaction a reasonable chance of completing and allocating the page.
2748 * Note that we won't actually reclaim the whole buffer in one attempt
2749 * as the target watermark in should_continue_reclaim() is lower. But if
2750 * we are already above the high+gap watermark, don't reclaim at all.
2751 */
2752 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2753
2754 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2755 }
2756
2757 /*
2758 * This is the direct reclaim path, for page-allocating processes. We only
2759 * try to reclaim pages from zones which will satisfy the caller's allocation
2760 * request.
2761 *
2762 * If a zone is deemed to be full of pinned pages then just give it a light
2763 * scan then give up on it.
2764 */
2765 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2766 {
2767 struct zoneref *z;
2768 struct zone *zone;
2769 unsigned long nr_soft_reclaimed;
2770 unsigned long nr_soft_scanned;
2771 gfp_t orig_mask;
2772 pg_data_t *last_pgdat = NULL;
2773
2774 /*
2775 * If the number of buffer_heads in the machine exceeds the maximum
2776 * allowed level, force direct reclaim to scan the highmem zone as
2777 * highmem pages could be pinning lowmem pages storing buffer_heads
2778 */
2779 orig_mask = sc->gfp_mask;
2780 if (buffer_heads_over_limit) {
2781 sc->gfp_mask |= __GFP_HIGHMEM;
2782 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2783 }
2784
2785 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2786 sc->reclaim_idx, sc->nodemask) {
2787 /*
2788 * Take care memory controller reclaiming has small influence
2789 * to global LRU.
2790 */
2791 if (global_reclaim(sc)) {
2792 if (!cpuset_zone_allowed(zone,
2793 GFP_KERNEL | __GFP_HARDWALL))
2794 continue;
2795
2796 /*
2797 * If we already have plenty of memory free for
2798 * compaction in this zone, don't free any more.
2799 * Even though compaction is invoked for any
2800 * non-zero order, only frequent costly order
2801 * reclamation is disruptive enough to become a
2802 * noticeable problem, like transparent huge
2803 * page allocations.
2804 */
2805 if (IS_ENABLED(CONFIG_COMPACTION) &&
2806 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2807 compaction_ready(zone, sc)) {
2808 sc->compaction_ready = true;
2809 continue;
2810 }
2811
2812 /*
2813 * Shrink each node in the zonelist once. If the
2814 * zonelist is ordered by zone (not the default) then a
2815 * node may be shrunk multiple times but in that case
2816 * the user prefers lower zones being preserved.
2817 */
2818 if (zone->zone_pgdat == last_pgdat)
2819 continue;
2820
2821 /*
2822 * This steals pages from memory cgroups over softlimit
2823 * and returns the number of reclaimed pages and
2824 * scanned pages. This works for global memory pressure
2825 * and balancing, not for a memcg's limit.
2826 */
2827 nr_soft_scanned = 0;
2828 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2829 sc->order, sc->gfp_mask,
2830 &nr_soft_scanned);
2831 sc->nr_reclaimed += nr_soft_reclaimed;
2832 sc->nr_scanned += nr_soft_scanned;
2833 /* need some check for avoid more shrink_zone() */
2834 }
2835
2836 /* See comment about same check for global reclaim above */
2837 if (zone->zone_pgdat == last_pgdat)
2838 continue;
2839 last_pgdat = zone->zone_pgdat;
2840 shrink_node(zone->zone_pgdat, sc);
2841 }
2842
2843 /*
2844 * Restore to original mask to avoid the impact on the caller if we
2845 * promoted it to __GFP_HIGHMEM.
2846 */
2847 sc->gfp_mask = orig_mask;
2848 }
2849
2850 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2851 {
2852 struct mem_cgroup *memcg;
2853
2854 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2855 do {
2856 unsigned long refaults;
2857 struct lruvec *lruvec;
2858
2859 if (memcg)
2860 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2861 else
2862 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2863
2864 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2865 lruvec->refaults = refaults;
2866 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2867 }
2868
2869 /*
2870 * This is the main entry point to direct page reclaim.
2871 *
2872 * If a full scan of the inactive list fails to free enough memory then we
2873 * are "out of memory" and something needs to be killed.
2874 *
2875 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2876 * high - the zone may be full of dirty or under-writeback pages, which this
2877 * caller can't do much about. We kick the writeback threads and take explicit
2878 * naps in the hope that some of these pages can be written. But if the
2879 * allocating task holds filesystem locks which prevent writeout this might not
2880 * work, and the allocation attempt will fail.
2881 *
2882 * returns: 0, if no pages reclaimed
2883 * else, the number of pages reclaimed
2884 */
2885 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2886 struct scan_control *sc)
2887 {
2888 int initial_priority = sc->priority;
2889 pg_data_t *last_pgdat;
2890 struct zoneref *z;
2891 struct zone *zone;
2892 retry:
2893 delayacct_freepages_start();
2894
2895 if (global_reclaim(sc))
2896 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2897
2898 do {
2899 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2900 sc->priority);
2901 sc->nr_scanned = 0;
2902 shrink_zones(zonelist, sc);
2903
2904 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2905 break;
2906
2907 if (sc->compaction_ready)
2908 break;
2909
2910 /*
2911 * If we're getting trouble reclaiming, start doing
2912 * writepage even in laptop mode.
2913 */
2914 if (sc->priority < DEF_PRIORITY - 2)
2915 sc->may_writepage = 1;
2916 } while (--sc->priority >= 0);
2917
2918 last_pgdat = NULL;
2919 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2920 sc->nodemask) {
2921 if (zone->zone_pgdat == last_pgdat)
2922 continue;
2923 last_pgdat = zone->zone_pgdat;
2924 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2925 }
2926
2927 delayacct_freepages_end();
2928
2929 if (sc->nr_reclaimed)
2930 return sc->nr_reclaimed;
2931
2932 /* Aborted reclaim to try compaction? don't OOM, then */
2933 if (sc->compaction_ready)
2934 return 1;
2935
2936 /* Untapped cgroup reserves? Don't OOM, retry. */
2937 if (sc->memcg_low_skipped) {
2938 sc->priority = initial_priority;
2939 sc->memcg_low_reclaim = 1;
2940 sc->memcg_low_skipped = 0;
2941 goto retry;
2942 }
2943
2944 return 0;
2945 }
2946
2947 static bool allow_direct_reclaim(pg_data_t *pgdat)
2948 {
2949 struct zone *zone;
2950 unsigned long pfmemalloc_reserve = 0;
2951 unsigned long free_pages = 0;
2952 int i;
2953 bool wmark_ok;
2954
2955 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2956 return true;
2957
2958 for (i = 0; i <= ZONE_NORMAL; i++) {
2959 zone = &pgdat->node_zones[i];
2960 if (!managed_zone(zone))
2961 continue;
2962
2963 if (!zone_reclaimable_pages(zone))
2964 continue;
2965
2966 pfmemalloc_reserve += min_wmark_pages(zone);
2967 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2968 }
2969
2970 /* If there are no reserves (unexpected config) then do not throttle */
2971 if (!pfmemalloc_reserve)
2972 return true;
2973
2974 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2975
2976 /* kswapd must be awake if processes are being throttled */
2977 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2978 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2979 (enum zone_type)ZONE_NORMAL);
2980 wake_up_interruptible(&pgdat->kswapd_wait);
2981 }
2982
2983 return wmark_ok;
2984 }
2985
2986 /*
2987 * Throttle direct reclaimers if backing storage is backed by the network
2988 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2989 * depleted. kswapd will continue to make progress and wake the processes
2990 * when the low watermark is reached.
2991 *
2992 * Returns true if a fatal signal was delivered during throttling. If this
2993 * happens, the page allocator should not consider triggering the OOM killer.
2994 */
2995 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2996 nodemask_t *nodemask)
2997 {
2998 struct zoneref *z;
2999 struct zone *zone;
3000 pg_data_t *pgdat = NULL;
3001
3002 /*
3003 * Kernel threads should not be throttled as they may be indirectly
3004 * responsible for cleaning pages necessary for reclaim to make forward
3005 * progress. kjournald for example may enter direct reclaim while
3006 * committing a transaction where throttling it could forcing other
3007 * processes to block on log_wait_commit().
3008 */
3009 if (current->flags & PF_KTHREAD)
3010 goto out;
3011
3012 /*
3013 * If a fatal signal is pending, this process should not throttle.
3014 * It should return quickly so it can exit and free its memory
3015 */
3016 if (fatal_signal_pending(current))
3017 goto out;
3018
3019 /*
3020 * Check if the pfmemalloc reserves are ok by finding the first node
3021 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3022 * GFP_KERNEL will be required for allocating network buffers when
3023 * swapping over the network so ZONE_HIGHMEM is unusable.
3024 *
3025 * Throttling is based on the first usable node and throttled processes
3026 * wait on a queue until kswapd makes progress and wakes them. There
3027 * is an affinity then between processes waking up and where reclaim
3028 * progress has been made assuming the process wakes on the same node.
3029 * More importantly, processes running on remote nodes will not compete
3030 * for remote pfmemalloc reserves and processes on different nodes
3031 * should make reasonable progress.
3032 */
3033 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3034 gfp_zone(gfp_mask), nodemask) {
3035 if (zone_idx(zone) > ZONE_NORMAL)
3036 continue;
3037
3038 /* Throttle based on the first usable node */
3039 pgdat = zone->zone_pgdat;
3040 if (allow_direct_reclaim(pgdat))
3041 goto out;
3042 break;
3043 }
3044
3045 /* If no zone was usable by the allocation flags then do not throttle */
3046 if (!pgdat)
3047 goto out;
3048
3049 /* Account for the throttling */
3050 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3051
3052 /*
3053 * If the caller cannot enter the filesystem, it's possible that it
3054 * is due to the caller holding an FS lock or performing a journal
3055 * transaction in the case of a filesystem like ext[3|4]. In this case,
3056 * it is not safe to block on pfmemalloc_wait as kswapd could be
3057 * blocked waiting on the same lock. Instead, throttle for up to a
3058 * second before continuing.
3059 */
3060 if (!(gfp_mask & __GFP_FS)) {
3061 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3062 allow_direct_reclaim(pgdat), HZ);
3063
3064 goto check_pending;
3065 }
3066
3067 /* Throttle until kswapd wakes the process */
3068 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3069 allow_direct_reclaim(pgdat));
3070
3071 check_pending:
3072 if (fatal_signal_pending(current))
3073 return true;
3074
3075 out:
3076 return false;
3077 }
3078
3079 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3080 gfp_t gfp_mask, nodemask_t *nodemask)
3081 {
3082 unsigned long nr_reclaimed;
3083 struct scan_control sc = {
3084 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3085 .gfp_mask = current_gfp_context(gfp_mask),
3086 .reclaim_idx = gfp_zone(gfp_mask),
3087 .order = order,
3088 .nodemask = nodemask,
3089 .priority = DEF_PRIORITY,
3090 .may_writepage = !laptop_mode,
3091 .may_unmap = 1,
3092 .may_swap = 1,
3093 };
3094
3095 /*
3096 * Do not enter reclaim if fatal signal was delivered while throttled.
3097 * 1 is returned so that the page allocator does not OOM kill at this
3098 * point.
3099 */
3100 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3101 return 1;
3102
3103 trace_mm_vmscan_direct_reclaim_begin(order,
3104 sc.may_writepage,
3105 sc.gfp_mask,
3106 sc.reclaim_idx);
3107
3108 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3109
3110 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3111
3112 return nr_reclaimed;
3113 }
3114
3115 #ifdef CONFIG_MEMCG
3116
3117 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3118 gfp_t gfp_mask, bool noswap,
3119 pg_data_t *pgdat,
3120 unsigned long *nr_scanned)
3121 {
3122 struct scan_control sc = {
3123 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3124 .target_mem_cgroup = memcg,
3125 .may_writepage = !laptop_mode,
3126 .may_unmap = 1,
3127 .reclaim_idx = MAX_NR_ZONES - 1,
3128 .may_swap = !noswap,
3129 };
3130 unsigned long lru_pages;
3131
3132 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3133 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3134
3135 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3136 sc.may_writepage,
3137 sc.gfp_mask,
3138 sc.reclaim_idx);
3139
3140 /*
3141 * NOTE: Although we can get the priority field, using it
3142 * here is not a good idea, since it limits the pages we can scan.
3143 * if we don't reclaim here, the shrink_node from balance_pgdat
3144 * will pick up pages from other mem cgroup's as well. We hack
3145 * the priority and make it zero.
3146 */
3147 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3148
3149 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3150
3151 *nr_scanned = sc.nr_scanned;
3152 return sc.nr_reclaimed;
3153 }
3154
3155 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3156 unsigned long nr_pages,
3157 gfp_t gfp_mask,
3158 bool may_swap)
3159 {
3160 struct zonelist *zonelist;
3161 unsigned long nr_reclaimed;
3162 int nid;
3163 unsigned int noreclaim_flag;
3164 struct scan_control sc = {
3165 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3166 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3167 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3168 .reclaim_idx = MAX_NR_ZONES - 1,
3169 .target_mem_cgroup = memcg,
3170 .priority = DEF_PRIORITY,
3171 .may_writepage = !laptop_mode,
3172 .may_unmap = 1,
3173 .may_swap = may_swap,
3174 };
3175
3176 /*
3177 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3178 * take care of from where we get pages. So the node where we start the
3179 * scan does not need to be the current node.
3180 */
3181 nid = mem_cgroup_select_victim_node(memcg);
3182
3183 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3184
3185 trace_mm_vmscan_memcg_reclaim_begin(0,
3186 sc.may_writepage,
3187 sc.gfp_mask,
3188 sc.reclaim_idx);
3189
3190 noreclaim_flag = memalloc_noreclaim_save();
3191 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3192 memalloc_noreclaim_restore(noreclaim_flag);
3193
3194 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3195
3196 return nr_reclaimed;
3197 }
3198 #endif
3199
3200 static void age_active_anon(struct pglist_data *pgdat,
3201 struct scan_control *sc)
3202 {
3203 struct mem_cgroup *memcg;
3204
3205 if (!total_swap_pages)
3206 return;
3207
3208 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3209 do {
3210 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3211
3212 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3213 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3214 sc, LRU_ACTIVE_ANON);
3215
3216 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3217 } while (memcg);
3218 }
3219
3220 /*
3221 * Returns true if there is an eligible zone balanced for the request order
3222 * and classzone_idx
3223 */
3224 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3225 {
3226 int i;
3227 unsigned long mark = -1;
3228 struct zone *zone;
3229
3230 for (i = 0; i <= classzone_idx; i++) {
3231 zone = pgdat->node_zones + i;
3232
3233 if (!managed_zone(zone))
3234 continue;
3235
3236 mark = high_wmark_pages(zone);
3237 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3238 return true;
3239 }
3240
3241 /*
3242 * If a node has no populated zone within classzone_idx, it does not
3243 * need balancing by definition. This can happen if a zone-restricted
3244 * allocation tries to wake a remote kswapd.
3245 */
3246 if (mark == -1)
3247 return true;
3248
3249 return false;
3250 }
3251
3252 /* Clear pgdat state for congested, dirty or under writeback. */
3253 static void clear_pgdat_congested(pg_data_t *pgdat)
3254 {
3255 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3256 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3257 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3258 }
3259
3260 /*
3261 * Prepare kswapd for sleeping. This verifies that there are no processes
3262 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3263 *
3264 * Returns true if kswapd is ready to sleep
3265 */
3266 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3267 {
3268 /*
3269 * The throttled processes are normally woken up in balance_pgdat() as
3270 * soon as allow_direct_reclaim() is true. But there is a potential
3271 * race between when kswapd checks the watermarks and a process gets
3272 * throttled. There is also a potential race if processes get
3273 * throttled, kswapd wakes, a large process exits thereby balancing the
3274 * zones, which causes kswapd to exit balance_pgdat() before reaching
3275 * the wake up checks. If kswapd is going to sleep, no process should
3276 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3277 * the wake up is premature, processes will wake kswapd and get
3278 * throttled again. The difference from wake ups in balance_pgdat() is
3279 * that here we are under prepare_to_wait().
3280 */
3281 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3282 wake_up_all(&pgdat->pfmemalloc_wait);
3283
3284 /* Hopeless node, leave it to direct reclaim */
3285 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3286 return true;
3287
3288 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3289 clear_pgdat_congested(pgdat);
3290 return true;
3291 }
3292
3293 return false;
3294 }
3295
3296 /*
3297 * kswapd shrinks a node of pages that are at or below the highest usable
3298 * zone that is currently unbalanced.
3299 *
3300 * Returns true if kswapd scanned at least the requested number of pages to
3301 * reclaim or if the lack of progress was due to pages under writeback.
3302 * This is used to determine if the scanning priority needs to be raised.
3303 */
3304 static bool kswapd_shrink_node(pg_data_t *pgdat,
3305 struct scan_control *sc)
3306 {
3307 struct zone *zone;
3308 int z;
3309
3310 /* Reclaim a number of pages proportional to the number of zones */
3311 sc->nr_to_reclaim = 0;
3312 for (z = 0; z <= sc->reclaim_idx; z++) {
3313 zone = pgdat->node_zones + z;
3314 if (!managed_zone(zone))
3315 continue;
3316
3317 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3318 }
3319
3320 /*
3321 * Historically care was taken to put equal pressure on all zones but
3322 * now pressure is applied based on node LRU order.
3323 */
3324 shrink_node(pgdat, sc);
3325
3326 /*
3327 * Fragmentation may mean that the system cannot be rebalanced for
3328 * high-order allocations. If twice the allocation size has been
3329 * reclaimed then recheck watermarks only at order-0 to prevent
3330 * excessive reclaim. Assume that a process requested a high-order
3331 * can direct reclaim/compact.
3332 */
3333 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3334 sc->order = 0;
3335
3336 return sc->nr_scanned >= sc->nr_to_reclaim;
3337 }
3338
3339 /*
3340 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3341 * that are eligible for use by the caller until at least one zone is
3342 * balanced.
3343 *
3344 * Returns the order kswapd finished reclaiming at.
3345 *
3346 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3347 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3348 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3349 * or lower is eligible for reclaim until at least one usable zone is
3350 * balanced.
3351 */
3352 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3353 {
3354 int i;
3355 unsigned long nr_soft_reclaimed;
3356 unsigned long nr_soft_scanned;
3357 struct zone *zone;
3358 struct scan_control sc = {
3359 .gfp_mask = GFP_KERNEL,
3360 .order = order,
3361 .priority = DEF_PRIORITY,
3362 .may_writepage = !laptop_mode,
3363 .may_unmap = 1,
3364 .may_swap = 1,
3365 };
3366 count_vm_event(PAGEOUTRUN);
3367
3368 do {
3369 unsigned long nr_reclaimed = sc.nr_reclaimed;
3370 bool raise_priority = true;
3371
3372 sc.reclaim_idx = classzone_idx;
3373
3374 /*
3375 * If the number of buffer_heads exceeds the maximum allowed
3376 * then consider reclaiming from all zones. This has a dual
3377 * purpose -- on 64-bit systems it is expected that
3378 * buffer_heads are stripped during active rotation. On 32-bit
3379 * systems, highmem pages can pin lowmem memory and shrinking
3380 * buffers can relieve lowmem pressure. Reclaim may still not
3381 * go ahead if all eligible zones for the original allocation
3382 * request are balanced to avoid excessive reclaim from kswapd.
3383 */
3384 if (buffer_heads_over_limit) {
3385 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3386 zone = pgdat->node_zones + i;
3387 if (!managed_zone(zone))
3388 continue;
3389
3390 sc.reclaim_idx = i;
3391 break;
3392 }
3393 }
3394
3395 /*
3396 * Only reclaim if there are no eligible zones. Note that
3397 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3398 * have adjusted it.
3399 */
3400 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3401 goto out;
3402
3403 /*
3404 * Do some background aging of the anon list, to give
3405 * pages a chance to be referenced before reclaiming. All
3406 * pages are rotated regardless of classzone as this is
3407 * about consistent aging.
3408 */
3409 age_active_anon(pgdat, &sc);
3410
3411 /*
3412 * If we're getting trouble reclaiming, start doing writepage
3413 * even in laptop mode.
3414 */
3415 if (sc.priority < DEF_PRIORITY - 2)
3416 sc.may_writepage = 1;
3417
3418 /* Call soft limit reclaim before calling shrink_node. */
3419 sc.nr_scanned = 0;
3420 nr_soft_scanned = 0;
3421 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3422 sc.gfp_mask, &nr_soft_scanned);
3423 sc.nr_reclaimed += nr_soft_reclaimed;
3424
3425 /*
3426 * There should be no need to raise the scanning priority if
3427 * enough pages are already being scanned that that high
3428 * watermark would be met at 100% efficiency.
3429 */
3430 if (kswapd_shrink_node(pgdat, &sc))
3431 raise_priority = false;
3432
3433 /*
3434 * If the low watermark is met there is no need for processes
3435 * to be throttled on pfmemalloc_wait as they should not be
3436 * able to safely make forward progress. Wake them
3437 */
3438 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3439 allow_direct_reclaim(pgdat))
3440 wake_up_all(&pgdat->pfmemalloc_wait);
3441
3442 /* Check if kswapd should be suspending */
3443 if (try_to_freeze() || kthread_should_stop())
3444 break;
3445
3446 /*
3447 * Raise priority if scanning rate is too low or there was no
3448 * progress in reclaiming pages
3449 */
3450 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3451 if (raise_priority || !nr_reclaimed)
3452 sc.priority--;
3453 } while (sc.priority >= 1);
3454
3455 if (!sc.nr_reclaimed)
3456 pgdat->kswapd_failures++;
3457
3458 out:
3459 snapshot_refaults(NULL, pgdat);
3460 /*
3461 * Return the order kswapd stopped reclaiming at as
3462 * prepare_kswapd_sleep() takes it into account. If another caller
3463 * entered the allocator slow path while kswapd was awake, order will
3464 * remain at the higher level.
3465 */
3466 return sc.order;
3467 }
3468
3469 /*
3470 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3471 * allocation request woke kswapd for. When kswapd has not woken recently,
3472 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3473 * given classzone and returns it or the highest classzone index kswapd
3474 * was recently woke for.
3475 */
3476 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3477 enum zone_type classzone_idx)
3478 {
3479 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3480 return classzone_idx;
3481
3482 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3483 }
3484
3485 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3486 unsigned int classzone_idx)
3487 {
3488 long remaining = 0;
3489 DEFINE_WAIT(wait);
3490
3491 if (freezing(current) || kthread_should_stop())
3492 return;
3493
3494 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3495
3496 /*
3497 * Try to sleep for a short interval. Note that kcompactd will only be
3498 * woken if it is possible to sleep for a short interval. This is
3499 * deliberate on the assumption that if reclaim cannot keep an
3500 * eligible zone balanced that it's also unlikely that compaction will
3501 * succeed.
3502 */
3503 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3504 /*
3505 * Compaction records what page blocks it recently failed to
3506 * isolate pages from and skips them in the future scanning.
3507 * When kswapd is going to sleep, it is reasonable to assume
3508 * that pages and compaction may succeed so reset the cache.
3509 */
3510 reset_isolation_suitable(pgdat);
3511
3512 /*
3513 * We have freed the memory, now we should compact it to make
3514 * allocation of the requested order possible.
3515 */
3516 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3517
3518 remaining = schedule_timeout(HZ/10);
3519
3520 /*
3521 * If woken prematurely then reset kswapd_classzone_idx and
3522 * order. The values will either be from a wakeup request or
3523 * the previous request that slept prematurely.
3524 */
3525 if (remaining) {
3526 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3527 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3528 }
3529
3530 finish_wait(&pgdat->kswapd_wait, &wait);
3531 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3532 }
3533
3534 /*
3535 * After a short sleep, check if it was a premature sleep. If not, then
3536 * go fully to sleep until explicitly woken up.
3537 */
3538 if (!remaining &&
3539 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3540 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3541
3542 /*
3543 * vmstat counters are not perfectly accurate and the estimated
3544 * value for counters such as NR_FREE_PAGES can deviate from the
3545 * true value by nr_online_cpus * threshold. To avoid the zone
3546 * watermarks being breached while under pressure, we reduce the
3547 * per-cpu vmstat threshold while kswapd is awake and restore
3548 * them before going back to sleep.
3549 */
3550 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3551
3552 if (!kthread_should_stop())
3553 schedule();
3554
3555 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3556 } else {
3557 if (remaining)
3558 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3559 else
3560 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3561 }
3562 finish_wait(&pgdat->kswapd_wait, &wait);
3563 }
3564
3565 /*
3566 * The background pageout daemon, started as a kernel thread
3567 * from the init process.
3568 *
3569 * This basically trickles out pages so that we have _some_
3570 * free memory available even if there is no other activity
3571 * that frees anything up. This is needed for things like routing
3572 * etc, where we otherwise might have all activity going on in
3573 * asynchronous contexts that cannot page things out.
3574 *
3575 * If there are applications that are active memory-allocators
3576 * (most normal use), this basically shouldn't matter.
3577 */
3578 static int kswapd(void *p)
3579 {
3580 unsigned int alloc_order, reclaim_order;
3581 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3582 pg_data_t *pgdat = (pg_data_t*)p;
3583 struct task_struct *tsk = current;
3584
3585 struct reclaim_state reclaim_state = {
3586 .reclaimed_slab = 0,
3587 };
3588 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3589
3590 if (!cpumask_empty(cpumask))
3591 set_cpus_allowed_ptr(tsk, cpumask);
3592 current->reclaim_state = &reclaim_state;
3593
3594 /*
3595 * Tell the memory management that we're a "memory allocator",
3596 * and that if we need more memory we should get access to it
3597 * regardless (see "__alloc_pages()"). "kswapd" should
3598 * never get caught in the normal page freeing logic.
3599 *
3600 * (Kswapd normally doesn't need memory anyway, but sometimes
3601 * you need a small amount of memory in order to be able to
3602 * page out something else, and this flag essentially protects
3603 * us from recursively trying to free more memory as we're
3604 * trying to free the first piece of memory in the first place).
3605 */
3606 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3607 set_freezable();
3608
3609 pgdat->kswapd_order = 0;
3610 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3611 for ( ; ; ) {
3612 bool ret;
3613
3614 alloc_order = reclaim_order = pgdat->kswapd_order;
3615 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3616
3617 kswapd_try_sleep:
3618 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3619 classzone_idx);
3620
3621 /* Read the new order and classzone_idx */
3622 alloc_order = reclaim_order = pgdat->kswapd_order;
3623 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3624 pgdat->kswapd_order = 0;
3625 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3626
3627 ret = try_to_freeze();
3628 if (kthread_should_stop())
3629 break;
3630
3631 /*
3632 * We can speed up thawing tasks if we don't call balance_pgdat
3633 * after returning from the refrigerator
3634 */
3635 if (ret)
3636 continue;
3637
3638 /*
3639 * Reclaim begins at the requested order but if a high-order
3640 * reclaim fails then kswapd falls back to reclaiming for
3641 * order-0. If that happens, kswapd will consider sleeping
3642 * for the order it finished reclaiming at (reclaim_order)
3643 * but kcompactd is woken to compact for the original
3644 * request (alloc_order).
3645 */
3646 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3647 alloc_order);
3648 fs_reclaim_acquire(GFP_KERNEL);
3649 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3650 fs_reclaim_release(GFP_KERNEL);
3651 if (reclaim_order < alloc_order)
3652 goto kswapd_try_sleep;
3653 }
3654
3655 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3656 current->reclaim_state = NULL;
3657
3658 return 0;
3659 }
3660
3661 /*
3662 * A zone is low on free memory, so wake its kswapd task to service it.
3663 */
3664 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3665 {
3666 pg_data_t *pgdat;
3667
3668 if (!managed_zone(zone))
3669 return;
3670
3671 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3672 return;
3673 pgdat = zone->zone_pgdat;
3674 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3675 classzone_idx);
3676 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3677 if (!waitqueue_active(&pgdat->kswapd_wait))
3678 return;
3679
3680 /* Hopeless node, leave it to direct reclaim */
3681 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3682 return;
3683
3684 if (pgdat_balanced(pgdat, order, classzone_idx))
3685 return;
3686
3687 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3688 wake_up_interruptible(&pgdat->kswapd_wait);
3689 }
3690
3691 #ifdef CONFIG_HIBERNATION
3692 /*
3693 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3694 * freed pages.
3695 *
3696 * Rather than trying to age LRUs the aim is to preserve the overall
3697 * LRU order by reclaiming preferentially
3698 * inactive > active > active referenced > active mapped
3699 */
3700 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3701 {
3702 struct reclaim_state reclaim_state;
3703 struct scan_control sc = {
3704 .nr_to_reclaim = nr_to_reclaim,
3705 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3706 .reclaim_idx = MAX_NR_ZONES - 1,
3707 .priority = DEF_PRIORITY,
3708 .may_writepage = 1,
3709 .may_unmap = 1,
3710 .may_swap = 1,
3711 .hibernation_mode = 1,
3712 };
3713 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3714 struct task_struct *p = current;
3715 unsigned long nr_reclaimed;
3716 unsigned int noreclaim_flag;
3717
3718 noreclaim_flag = memalloc_noreclaim_save();
3719 fs_reclaim_acquire(sc.gfp_mask);
3720 reclaim_state.reclaimed_slab = 0;
3721 p->reclaim_state = &reclaim_state;
3722
3723 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3724
3725 p->reclaim_state = NULL;
3726 fs_reclaim_release(sc.gfp_mask);
3727 memalloc_noreclaim_restore(noreclaim_flag);
3728
3729 return nr_reclaimed;
3730 }
3731 #endif /* CONFIG_HIBERNATION */
3732
3733 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3734 not required for correctness. So if the last cpu in a node goes
3735 away, we get changed to run anywhere: as the first one comes back,
3736 restore their cpu bindings. */
3737 static int kswapd_cpu_online(unsigned int cpu)
3738 {
3739 int nid;
3740
3741 for_each_node_state(nid, N_MEMORY) {
3742 pg_data_t *pgdat = NODE_DATA(nid);
3743 const struct cpumask *mask;
3744
3745 mask = cpumask_of_node(pgdat->node_id);
3746
3747 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3748 /* One of our CPUs online: restore mask */
3749 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3750 }
3751 return 0;
3752 }
3753
3754 /*
3755 * This kswapd start function will be called by init and node-hot-add.
3756 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3757 */
3758 int kswapd_run(int nid)
3759 {
3760 pg_data_t *pgdat = NODE_DATA(nid);
3761 int ret = 0;
3762
3763 if (pgdat->kswapd)
3764 return 0;
3765
3766 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3767 if (IS_ERR(pgdat->kswapd)) {
3768 /* failure at boot is fatal */
3769 BUG_ON(system_state < SYSTEM_RUNNING);
3770 pr_err("Failed to start kswapd on node %d\n", nid);
3771 ret = PTR_ERR(pgdat->kswapd);
3772 pgdat->kswapd = NULL;
3773 }
3774 return ret;
3775 }
3776
3777 /*
3778 * Called by memory hotplug when all memory in a node is offlined. Caller must
3779 * hold mem_hotplug_begin/end().
3780 */
3781 void kswapd_stop(int nid)
3782 {
3783 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3784
3785 if (kswapd) {
3786 kthread_stop(kswapd);
3787 NODE_DATA(nid)->kswapd = NULL;
3788 }
3789 }
3790
3791 static int __init kswapd_init(void)
3792 {
3793 int nid, ret;
3794
3795 swap_setup();
3796 for_each_node_state(nid, N_MEMORY)
3797 kswapd_run(nid);
3798 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3799 "mm/vmscan:online", kswapd_cpu_online,
3800 NULL);
3801 WARN_ON(ret < 0);
3802 return 0;
3803 }
3804
3805 module_init(kswapd_init)
3806
3807 #ifdef CONFIG_NUMA
3808 /*
3809 * Node reclaim mode
3810 *
3811 * If non-zero call node_reclaim when the number of free pages falls below
3812 * the watermarks.
3813 */
3814 int node_reclaim_mode __read_mostly;
3815
3816 #define RECLAIM_OFF 0
3817 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3818 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3819 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3820
3821 /*
3822 * Priority for NODE_RECLAIM. This determines the fraction of pages
3823 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3824 * a zone.
3825 */
3826 #define NODE_RECLAIM_PRIORITY 4
3827
3828 /*
3829 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3830 * occur.
3831 */
3832 int sysctl_min_unmapped_ratio = 1;
3833
3834 /*
3835 * If the number of slab pages in a zone grows beyond this percentage then
3836 * slab reclaim needs to occur.
3837 */
3838 int sysctl_min_slab_ratio = 5;
3839
3840 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3841 {
3842 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3843 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3844 node_page_state(pgdat, NR_ACTIVE_FILE);
3845
3846 /*
3847 * It's possible for there to be more file mapped pages than
3848 * accounted for by the pages on the file LRU lists because
3849 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3850 */
3851 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3852 }
3853
3854 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3855 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3856 {
3857 unsigned long nr_pagecache_reclaimable;
3858 unsigned long delta = 0;
3859
3860 /*
3861 * If RECLAIM_UNMAP is set, then all file pages are considered
3862 * potentially reclaimable. Otherwise, we have to worry about
3863 * pages like swapcache and node_unmapped_file_pages() provides
3864 * a better estimate
3865 */
3866 if (node_reclaim_mode & RECLAIM_UNMAP)
3867 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3868 else
3869 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3870
3871 /* If we can't clean pages, remove dirty pages from consideration */
3872 if (!(node_reclaim_mode & RECLAIM_WRITE))
3873 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3874
3875 /* Watch for any possible underflows due to delta */
3876 if (unlikely(delta > nr_pagecache_reclaimable))
3877 delta = nr_pagecache_reclaimable;
3878
3879 return nr_pagecache_reclaimable - delta;
3880 }
3881
3882 /*
3883 * Try to free up some pages from this node through reclaim.
3884 */
3885 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3886 {
3887 /* Minimum pages needed in order to stay on node */
3888 const unsigned long nr_pages = 1 << order;
3889 struct task_struct *p = current;
3890 struct reclaim_state reclaim_state;
3891 unsigned int noreclaim_flag;
3892 struct scan_control sc = {
3893 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3894 .gfp_mask = current_gfp_context(gfp_mask),
3895 .order = order,
3896 .priority = NODE_RECLAIM_PRIORITY,
3897 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3898 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3899 .may_swap = 1,
3900 .reclaim_idx = gfp_zone(gfp_mask),
3901 };
3902
3903 cond_resched();
3904 /*
3905 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3906 * and we also need to be able to write out pages for RECLAIM_WRITE
3907 * and RECLAIM_UNMAP.
3908 */
3909 noreclaim_flag = memalloc_noreclaim_save();
3910 p->flags |= PF_SWAPWRITE;
3911 fs_reclaim_acquire(sc.gfp_mask);
3912 reclaim_state.reclaimed_slab = 0;
3913 p->reclaim_state = &reclaim_state;
3914
3915 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3916 /*
3917 * Free memory by calling shrink zone with increasing
3918 * priorities until we have enough memory freed.
3919 */
3920 do {
3921 shrink_node(pgdat, &sc);
3922 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3923 }
3924
3925 p->reclaim_state = NULL;
3926 fs_reclaim_release(gfp_mask);
3927 current->flags &= ~PF_SWAPWRITE;
3928 memalloc_noreclaim_restore(noreclaim_flag);
3929 return sc.nr_reclaimed >= nr_pages;
3930 }
3931
3932 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3933 {
3934 int ret;
3935
3936 /*
3937 * Node reclaim reclaims unmapped file backed pages and
3938 * slab pages if we are over the defined limits.
3939 *
3940 * A small portion of unmapped file backed pages is needed for
3941 * file I/O otherwise pages read by file I/O will be immediately
3942 * thrown out if the node is overallocated. So we do not reclaim
3943 * if less than a specified percentage of the node is used by
3944 * unmapped file backed pages.
3945 */
3946 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3947 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3948 return NODE_RECLAIM_FULL;
3949
3950 /*
3951 * Do not scan if the allocation should not be delayed.
3952 */
3953 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3954 return NODE_RECLAIM_NOSCAN;
3955
3956 /*
3957 * Only run node reclaim on the local node or on nodes that do not
3958 * have associated processors. This will favor the local processor
3959 * over remote processors and spread off node memory allocations
3960 * as wide as possible.
3961 */
3962 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3963 return NODE_RECLAIM_NOSCAN;
3964
3965 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3966 return NODE_RECLAIM_NOSCAN;
3967
3968 ret = __node_reclaim(pgdat, gfp_mask, order);
3969 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3970
3971 if (!ret)
3972 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3973
3974 return ret;
3975 }
3976 #endif
3977
3978 /*
3979 * page_evictable - test whether a page is evictable
3980 * @page: the page to test
3981 *
3982 * Test whether page is evictable--i.e., should be placed on active/inactive
3983 * lists vs unevictable list.
3984 *
3985 * Reasons page might not be evictable:
3986 * (1) page's mapping marked unevictable
3987 * (2) page is part of an mlocked VMA
3988 *
3989 */
3990 int page_evictable(struct page *page)
3991 {
3992 int ret;
3993
3994 /* Prevent address_space of inode and swap cache from being freed */
3995 rcu_read_lock();
3996 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3997 rcu_read_unlock();
3998 return ret;
3999 }
4000
4001 #ifdef CONFIG_SHMEM
4002 /**
4003 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4004 * @pages: array of pages to check
4005 * @nr_pages: number of pages to check
4006 *
4007 * Checks pages for evictability and moves them to the appropriate lru list.
4008 *
4009 * This function is only used for SysV IPC SHM_UNLOCK.
4010 */
4011 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4012 {
4013 struct lruvec *lruvec;
4014 struct pglist_data *pgdat = NULL;
4015 int pgscanned = 0;
4016 int pgrescued = 0;
4017 int i;
4018
4019 for (i = 0; i < nr_pages; i++) {
4020 struct page *page = pages[i];
4021 struct pglist_data *pagepgdat = page_pgdat(page);
4022
4023 pgscanned++;
4024 if (pagepgdat != pgdat) {
4025 if (pgdat)
4026 spin_unlock_irq(&pgdat->lru_lock);
4027 pgdat = pagepgdat;
4028 spin_lock_irq(&pgdat->lru_lock);
4029 }
4030 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4031
4032 if (!PageLRU(page) || !PageUnevictable(page))
4033 continue;
4034
4035 if (page_evictable(page)) {
4036 enum lru_list lru = page_lru_base_type(page);
4037
4038 VM_BUG_ON_PAGE(PageActive(page), page);
4039 ClearPageUnevictable(page);
4040 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4041 add_page_to_lru_list(page, lruvec, lru);
4042 pgrescued++;
4043 }
4044 }
4045
4046 if (pgdat) {
4047 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4048 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4049 spin_unlock_irq(&pgdat->lru_lock);
4050 }
4051 }
4052 #endif /* CONFIG_SHMEM */