]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/neighbour.c
treewide: setup_timer() -> timer_setup()
[mirror_ubuntu-bionic-kernel.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 #include <linux/inetdevice.h>
42 #include <net/addrconf.h>
43
44 #define DEBUG
45 #define NEIGH_DEBUG 1
46 #define neigh_dbg(level, fmt, ...) \
47 do { \
48 if (level <= NEIGH_DEBUG) \
49 pr_debug(fmt, ##__VA_ARGS__); \
50 } while (0)
51
52 #define PNEIGH_HASHMASK 0xF
53
54 static void neigh_timer_handler(struct timer_list *t);
55 static void __neigh_notify(struct neighbour *n, int type, int flags,
56 u32 pid);
57 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
58 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
59
60 #ifdef CONFIG_PROC_FS
61 static const struct file_operations neigh_stat_seq_fops;
62 #endif
63
64 /*
65 Neighbour hash table buckets are protected with rwlock tbl->lock.
66
67 - All the scans/updates to hash buckets MUST be made under this lock.
68 - NOTHING clever should be made under this lock: no callbacks
69 to protocol backends, no attempts to send something to network.
70 It will result in deadlocks, if backend/driver wants to use neighbour
71 cache.
72 - If the entry requires some non-trivial actions, increase
73 its reference count and release table lock.
74
75 Neighbour entries are protected:
76 - with reference count.
77 - with rwlock neigh->lock
78
79 Reference count prevents destruction.
80
81 neigh->lock mainly serializes ll address data and its validity state.
82 However, the same lock is used to protect another entry fields:
83 - timer
84 - resolution queue
85
86 Again, nothing clever shall be made under neigh->lock,
87 the most complicated procedure, which we allow is dev->hard_header.
88 It is supposed, that dev->hard_header is simplistic and does
89 not make callbacks to neighbour tables.
90 */
91
92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
93 {
94 kfree_skb(skb);
95 return -ENETDOWN;
96 }
97
98 static void neigh_cleanup_and_release(struct neighbour *neigh)
99 {
100 if (neigh->parms->neigh_cleanup)
101 neigh->parms->neigh_cleanup(neigh);
102
103 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
104 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
105 neigh_release(neigh);
106 }
107
108 /*
109 * It is random distribution in the interval (1/2)*base...(3/2)*base.
110 * It corresponds to default IPv6 settings and is not overridable,
111 * because it is really reasonable choice.
112 */
113
114 unsigned long neigh_rand_reach_time(unsigned long base)
115 {
116 return base ? (prandom_u32() % base) + (base >> 1) : 0;
117 }
118 EXPORT_SYMBOL(neigh_rand_reach_time);
119
120
121 static bool neigh_del(struct neighbour *n, __u8 state,
122 struct neighbour __rcu **np, struct neigh_table *tbl)
123 {
124 bool retval = false;
125
126 write_lock(&n->lock);
127 if (refcount_read(&n->refcnt) == 1 && !(n->nud_state & state)) {
128 struct neighbour *neigh;
129
130 neigh = rcu_dereference_protected(n->next,
131 lockdep_is_held(&tbl->lock));
132 rcu_assign_pointer(*np, neigh);
133 n->dead = 1;
134 retval = true;
135 }
136 write_unlock(&n->lock);
137 if (retval)
138 neigh_cleanup_and_release(n);
139 return retval;
140 }
141
142 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
143 {
144 struct neigh_hash_table *nht;
145 void *pkey = ndel->primary_key;
146 u32 hash_val;
147 struct neighbour *n;
148 struct neighbour __rcu **np;
149
150 nht = rcu_dereference_protected(tbl->nht,
151 lockdep_is_held(&tbl->lock));
152 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
153 hash_val = hash_val >> (32 - nht->hash_shift);
154
155 np = &nht->hash_buckets[hash_val];
156 while ((n = rcu_dereference_protected(*np,
157 lockdep_is_held(&tbl->lock)))) {
158 if (n == ndel)
159 return neigh_del(n, 0, np, tbl);
160 np = &n->next;
161 }
162 return false;
163 }
164
165 static int neigh_forced_gc(struct neigh_table *tbl)
166 {
167 int shrunk = 0;
168 int i;
169 struct neigh_hash_table *nht;
170
171 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
172
173 write_lock_bh(&tbl->lock);
174 nht = rcu_dereference_protected(tbl->nht,
175 lockdep_is_held(&tbl->lock));
176 for (i = 0; i < (1 << nht->hash_shift); i++) {
177 struct neighbour *n;
178 struct neighbour __rcu **np;
179
180 np = &nht->hash_buckets[i];
181 while ((n = rcu_dereference_protected(*np,
182 lockdep_is_held(&tbl->lock))) != NULL) {
183 /* Neighbour record may be discarded if:
184 * - nobody refers to it.
185 * - it is not permanent
186 */
187 if (neigh_del(n, NUD_PERMANENT, np, tbl)) {
188 shrunk = 1;
189 continue;
190 }
191 np = &n->next;
192 }
193 }
194
195 tbl->last_flush = jiffies;
196
197 write_unlock_bh(&tbl->lock);
198
199 return shrunk;
200 }
201
202 static void neigh_add_timer(struct neighbour *n, unsigned long when)
203 {
204 neigh_hold(n);
205 if (unlikely(mod_timer(&n->timer, when))) {
206 printk("NEIGH: BUG, double timer add, state is %x\n",
207 n->nud_state);
208 dump_stack();
209 }
210 }
211
212 static int neigh_del_timer(struct neighbour *n)
213 {
214 if ((n->nud_state & NUD_IN_TIMER) &&
215 del_timer(&n->timer)) {
216 neigh_release(n);
217 return 1;
218 }
219 return 0;
220 }
221
222 static void pneigh_queue_purge(struct sk_buff_head *list)
223 {
224 struct sk_buff *skb;
225
226 while ((skb = skb_dequeue(list)) != NULL) {
227 dev_put(skb->dev);
228 kfree_skb(skb);
229 }
230 }
231
232 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
233 {
234 int i;
235 struct neigh_hash_table *nht;
236
237 nht = rcu_dereference_protected(tbl->nht,
238 lockdep_is_held(&tbl->lock));
239
240 for (i = 0; i < (1 << nht->hash_shift); i++) {
241 struct neighbour *n;
242 struct neighbour __rcu **np = &nht->hash_buckets[i];
243
244 while ((n = rcu_dereference_protected(*np,
245 lockdep_is_held(&tbl->lock))) != NULL) {
246 if (dev && n->dev != dev) {
247 np = &n->next;
248 continue;
249 }
250 rcu_assign_pointer(*np,
251 rcu_dereference_protected(n->next,
252 lockdep_is_held(&tbl->lock)));
253 write_lock(&n->lock);
254 neigh_del_timer(n);
255 n->dead = 1;
256
257 if (refcount_read(&n->refcnt) != 1) {
258 /* The most unpleasant situation.
259 We must destroy neighbour entry,
260 but someone still uses it.
261
262 The destroy will be delayed until
263 the last user releases us, but
264 we must kill timers etc. and move
265 it to safe state.
266 */
267 __skb_queue_purge(&n->arp_queue);
268 n->arp_queue_len_bytes = 0;
269 n->output = neigh_blackhole;
270 if (n->nud_state & NUD_VALID)
271 n->nud_state = NUD_NOARP;
272 else
273 n->nud_state = NUD_NONE;
274 neigh_dbg(2, "neigh %p is stray\n", n);
275 }
276 write_unlock(&n->lock);
277 neigh_cleanup_and_release(n);
278 }
279 }
280 }
281
282 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
283 {
284 write_lock_bh(&tbl->lock);
285 neigh_flush_dev(tbl, dev);
286 write_unlock_bh(&tbl->lock);
287 }
288 EXPORT_SYMBOL(neigh_changeaddr);
289
290 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
291 {
292 write_lock_bh(&tbl->lock);
293 neigh_flush_dev(tbl, dev);
294 pneigh_ifdown(tbl, dev);
295 write_unlock_bh(&tbl->lock);
296
297 del_timer_sync(&tbl->proxy_timer);
298 pneigh_queue_purge(&tbl->proxy_queue);
299 return 0;
300 }
301 EXPORT_SYMBOL(neigh_ifdown);
302
303 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
304 {
305 struct neighbour *n = NULL;
306 unsigned long now = jiffies;
307 int entries;
308
309 entries = atomic_inc_return(&tbl->entries) - 1;
310 if (entries >= tbl->gc_thresh3 ||
311 (entries >= tbl->gc_thresh2 &&
312 time_after(now, tbl->last_flush + 5 * HZ))) {
313 if (!neigh_forced_gc(tbl) &&
314 entries >= tbl->gc_thresh3) {
315 net_info_ratelimited("%s: neighbor table overflow!\n",
316 tbl->id);
317 NEIGH_CACHE_STAT_INC(tbl, table_fulls);
318 goto out_entries;
319 }
320 }
321
322 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
323 if (!n)
324 goto out_entries;
325
326 __skb_queue_head_init(&n->arp_queue);
327 rwlock_init(&n->lock);
328 seqlock_init(&n->ha_lock);
329 n->updated = n->used = now;
330 n->nud_state = NUD_NONE;
331 n->output = neigh_blackhole;
332 seqlock_init(&n->hh.hh_lock);
333 n->parms = neigh_parms_clone(&tbl->parms);
334 timer_setup(&n->timer, neigh_timer_handler, 0);
335
336 NEIGH_CACHE_STAT_INC(tbl, allocs);
337 n->tbl = tbl;
338 refcount_set(&n->refcnt, 1);
339 n->dead = 1;
340 out:
341 return n;
342
343 out_entries:
344 atomic_dec(&tbl->entries);
345 goto out;
346 }
347
348 static void neigh_get_hash_rnd(u32 *x)
349 {
350 *x = get_random_u32() | 1;
351 }
352
353 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
354 {
355 size_t size = (1 << shift) * sizeof(struct neighbour *);
356 struct neigh_hash_table *ret;
357 struct neighbour __rcu **buckets;
358 int i;
359
360 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
361 if (!ret)
362 return NULL;
363 if (size <= PAGE_SIZE)
364 buckets = kzalloc(size, GFP_ATOMIC);
365 else
366 buckets = (struct neighbour __rcu **)
367 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
368 get_order(size));
369 if (!buckets) {
370 kfree(ret);
371 return NULL;
372 }
373 ret->hash_buckets = buckets;
374 ret->hash_shift = shift;
375 for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
376 neigh_get_hash_rnd(&ret->hash_rnd[i]);
377 return ret;
378 }
379
380 static void neigh_hash_free_rcu(struct rcu_head *head)
381 {
382 struct neigh_hash_table *nht = container_of(head,
383 struct neigh_hash_table,
384 rcu);
385 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
386 struct neighbour __rcu **buckets = nht->hash_buckets;
387
388 if (size <= PAGE_SIZE)
389 kfree(buckets);
390 else
391 free_pages((unsigned long)buckets, get_order(size));
392 kfree(nht);
393 }
394
395 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
396 unsigned long new_shift)
397 {
398 unsigned int i, hash;
399 struct neigh_hash_table *new_nht, *old_nht;
400
401 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
402
403 old_nht = rcu_dereference_protected(tbl->nht,
404 lockdep_is_held(&tbl->lock));
405 new_nht = neigh_hash_alloc(new_shift);
406 if (!new_nht)
407 return old_nht;
408
409 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
410 struct neighbour *n, *next;
411
412 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
413 lockdep_is_held(&tbl->lock));
414 n != NULL;
415 n = next) {
416 hash = tbl->hash(n->primary_key, n->dev,
417 new_nht->hash_rnd);
418
419 hash >>= (32 - new_nht->hash_shift);
420 next = rcu_dereference_protected(n->next,
421 lockdep_is_held(&tbl->lock));
422
423 rcu_assign_pointer(n->next,
424 rcu_dereference_protected(
425 new_nht->hash_buckets[hash],
426 lockdep_is_held(&tbl->lock)));
427 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
428 }
429 }
430
431 rcu_assign_pointer(tbl->nht, new_nht);
432 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
433 return new_nht;
434 }
435
436 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
437 struct net_device *dev)
438 {
439 struct neighbour *n;
440
441 NEIGH_CACHE_STAT_INC(tbl, lookups);
442
443 rcu_read_lock_bh();
444 n = __neigh_lookup_noref(tbl, pkey, dev);
445 if (n) {
446 if (!refcount_inc_not_zero(&n->refcnt))
447 n = NULL;
448 NEIGH_CACHE_STAT_INC(tbl, hits);
449 }
450
451 rcu_read_unlock_bh();
452 return n;
453 }
454 EXPORT_SYMBOL(neigh_lookup);
455
456 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
457 const void *pkey)
458 {
459 struct neighbour *n;
460 unsigned int key_len = tbl->key_len;
461 u32 hash_val;
462 struct neigh_hash_table *nht;
463
464 NEIGH_CACHE_STAT_INC(tbl, lookups);
465
466 rcu_read_lock_bh();
467 nht = rcu_dereference_bh(tbl->nht);
468 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
469
470 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
471 n != NULL;
472 n = rcu_dereference_bh(n->next)) {
473 if (!memcmp(n->primary_key, pkey, key_len) &&
474 net_eq(dev_net(n->dev), net)) {
475 if (!refcount_inc_not_zero(&n->refcnt))
476 n = NULL;
477 NEIGH_CACHE_STAT_INC(tbl, hits);
478 break;
479 }
480 }
481
482 rcu_read_unlock_bh();
483 return n;
484 }
485 EXPORT_SYMBOL(neigh_lookup_nodev);
486
487 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
488 struct net_device *dev, bool want_ref)
489 {
490 u32 hash_val;
491 unsigned int key_len = tbl->key_len;
492 int error;
493 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
494 struct neigh_hash_table *nht;
495
496 if (!n) {
497 rc = ERR_PTR(-ENOBUFS);
498 goto out;
499 }
500
501 memcpy(n->primary_key, pkey, key_len);
502 n->dev = dev;
503 dev_hold(dev);
504
505 /* Protocol specific setup. */
506 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
507 rc = ERR_PTR(error);
508 goto out_neigh_release;
509 }
510
511 if (dev->netdev_ops->ndo_neigh_construct) {
512 error = dev->netdev_ops->ndo_neigh_construct(dev, n);
513 if (error < 0) {
514 rc = ERR_PTR(error);
515 goto out_neigh_release;
516 }
517 }
518
519 /* Device specific setup. */
520 if (n->parms->neigh_setup &&
521 (error = n->parms->neigh_setup(n)) < 0) {
522 rc = ERR_PTR(error);
523 goto out_neigh_release;
524 }
525
526 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
527
528 write_lock_bh(&tbl->lock);
529 nht = rcu_dereference_protected(tbl->nht,
530 lockdep_is_held(&tbl->lock));
531
532 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
533 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
534
535 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
536
537 if (n->parms->dead) {
538 rc = ERR_PTR(-EINVAL);
539 goto out_tbl_unlock;
540 }
541
542 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
543 lockdep_is_held(&tbl->lock));
544 n1 != NULL;
545 n1 = rcu_dereference_protected(n1->next,
546 lockdep_is_held(&tbl->lock))) {
547 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
548 if (want_ref)
549 neigh_hold(n1);
550 rc = n1;
551 goto out_tbl_unlock;
552 }
553 }
554
555 n->dead = 0;
556 if (want_ref)
557 neigh_hold(n);
558 rcu_assign_pointer(n->next,
559 rcu_dereference_protected(nht->hash_buckets[hash_val],
560 lockdep_is_held(&tbl->lock)));
561 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
562 write_unlock_bh(&tbl->lock);
563 neigh_dbg(2, "neigh %p is created\n", n);
564 rc = n;
565 out:
566 return rc;
567 out_tbl_unlock:
568 write_unlock_bh(&tbl->lock);
569 out_neigh_release:
570 neigh_release(n);
571 goto out;
572 }
573 EXPORT_SYMBOL(__neigh_create);
574
575 static u32 pneigh_hash(const void *pkey, unsigned int key_len)
576 {
577 u32 hash_val = *(u32 *)(pkey + key_len - 4);
578 hash_val ^= (hash_val >> 16);
579 hash_val ^= hash_val >> 8;
580 hash_val ^= hash_val >> 4;
581 hash_val &= PNEIGH_HASHMASK;
582 return hash_val;
583 }
584
585 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
586 struct net *net,
587 const void *pkey,
588 unsigned int key_len,
589 struct net_device *dev)
590 {
591 while (n) {
592 if (!memcmp(n->key, pkey, key_len) &&
593 net_eq(pneigh_net(n), net) &&
594 (n->dev == dev || !n->dev))
595 return n;
596 n = n->next;
597 }
598 return NULL;
599 }
600
601 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
602 struct net *net, const void *pkey, struct net_device *dev)
603 {
604 unsigned int key_len = tbl->key_len;
605 u32 hash_val = pneigh_hash(pkey, key_len);
606
607 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
608 net, pkey, key_len, dev);
609 }
610 EXPORT_SYMBOL_GPL(__pneigh_lookup);
611
612 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
613 struct net *net, const void *pkey,
614 struct net_device *dev, int creat)
615 {
616 struct pneigh_entry *n;
617 unsigned int key_len = tbl->key_len;
618 u32 hash_val = pneigh_hash(pkey, key_len);
619
620 read_lock_bh(&tbl->lock);
621 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
622 net, pkey, key_len, dev);
623 read_unlock_bh(&tbl->lock);
624
625 if (n || !creat)
626 goto out;
627
628 ASSERT_RTNL();
629
630 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
631 if (!n)
632 goto out;
633
634 write_pnet(&n->net, net);
635 memcpy(n->key, pkey, key_len);
636 n->dev = dev;
637 if (dev)
638 dev_hold(dev);
639
640 if (tbl->pconstructor && tbl->pconstructor(n)) {
641 if (dev)
642 dev_put(dev);
643 kfree(n);
644 n = NULL;
645 goto out;
646 }
647
648 write_lock_bh(&tbl->lock);
649 n->next = tbl->phash_buckets[hash_val];
650 tbl->phash_buckets[hash_val] = n;
651 write_unlock_bh(&tbl->lock);
652 out:
653 return n;
654 }
655 EXPORT_SYMBOL(pneigh_lookup);
656
657
658 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
659 struct net_device *dev)
660 {
661 struct pneigh_entry *n, **np;
662 unsigned int key_len = tbl->key_len;
663 u32 hash_val = pneigh_hash(pkey, key_len);
664
665 write_lock_bh(&tbl->lock);
666 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
667 np = &n->next) {
668 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
669 net_eq(pneigh_net(n), net)) {
670 *np = n->next;
671 write_unlock_bh(&tbl->lock);
672 if (tbl->pdestructor)
673 tbl->pdestructor(n);
674 if (n->dev)
675 dev_put(n->dev);
676 kfree(n);
677 return 0;
678 }
679 }
680 write_unlock_bh(&tbl->lock);
681 return -ENOENT;
682 }
683
684 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
685 {
686 struct pneigh_entry *n, **np;
687 u32 h;
688
689 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
690 np = &tbl->phash_buckets[h];
691 while ((n = *np) != NULL) {
692 if (!dev || n->dev == dev) {
693 *np = n->next;
694 if (tbl->pdestructor)
695 tbl->pdestructor(n);
696 if (n->dev)
697 dev_put(n->dev);
698 kfree(n);
699 continue;
700 }
701 np = &n->next;
702 }
703 }
704 return -ENOENT;
705 }
706
707 static void neigh_parms_destroy(struct neigh_parms *parms);
708
709 static inline void neigh_parms_put(struct neigh_parms *parms)
710 {
711 if (refcount_dec_and_test(&parms->refcnt))
712 neigh_parms_destroy(parms);
713 }
714
715 /*
716 * neighbour must already be out of the table;
717 *
718 */
719 void neigh_destroy(struct neighbour *neigh)
720 {
721 struct net_device *dev = neigh->dev;
722
723 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
724
725 if (!neigh->dead) {
726 pr_warn("Destroying alive neighbour %p\n", neigh);
727 dump_stack();
728 return;
729 }
730
731 if (neigh_del_timer(neigh))
732 pr_warn("Impossible event\n");
733
734 write_lock_bh(&neigh->lock);
735 __skb_queue_purge(&neigh->arp_queue);
736 write_unlock_bh(&neigh->lock);
737 neigh->arp_queue_len_bytes = 0;
738
739 if (dev->netdev_ops->ndo_neigh_destroy)
740 dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
741
742 dev_put(dev);
743 neigh_parms_put(neigh->parms);
744
745 neigh_dbg(2, "neigh %p is destroyed\n", neigh);
746
747 atomic_dec(&neigh->tbl->entries);
748 kfree_rcu(neigh, rcu);
749 }
750 EXPORT_SYMBOL(neigh_destroy);
751
752 /* Neighbour state is suspicious;
753 disable fast path.
754
755 Called with write_locked neigh.
756 */
757 static void neigh_suspect(struct neighbour *neigh)
758 {
759 neigh_dbg(2, "neigh %p is suspected\n", neigh);
760
761 neigh->output = neigh->ops->output;
762 }
763
764 /* Neighbour state is OK;
765 enable fast path.
766
767 Called with write_locked neigh.
768 */
769 static void neigh_connect(struct neighbour *neigh)
770 {
771 neigh_dbg(2, "neigh %p is connected\n", neigh);
772
773 neigh->output = neigh->ops->connected_output;
774 }
775
776 static void neigh_periodic_work(struct work_struct *work)
777 {
778 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
779 struct neighbour *n;
780 struct neighbour __rcu **np;
781 unsigned int i;
782 struct neigh_hash_table *nht;
783
784 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
785
786 write_lock_bh(&tbl->lock);
787 nht = rcu_dereference_protected(tbl->nht,
788 lockdep_is_held(&tbl->lock));
789
790 /*
791 * periodically recompute ReachableTime from random function
792 */
793
794 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
795 struct neigh_parms *p;
796 tbl->last_rand = jiffies;
797 list_for_each_entry(p, &tbl->parms_list, list)
798 p->reachable_time =
799 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
800 }
801
802 if (atomic_read(&tbl->entries) < tbl->gc_thresh1)
803 goto out;
804
805 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
806 np = &nht->hash_buckets[i];
807
808 while ((n = rcu_dereference_protected(*np,
809 lockdep_is_held(&tbl->lock))) != NULL) {
810 unsigned int state;
811
812 write_lock(&n->lock);
813
814 state = n->nud_state;
815 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
816 write_unlock(&n->lock);
817 goto next_elt;
818 }
819
820 if (time_before(n->used, n->confirmed))
821 n->used = n->confirmed;
822
823 if (refcount_read(&n->refcnt) == 1 &&
824 (state == NUD_FAILED ||
825 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
826 *np = n->next;
827 n->dead = 1;
828 write_unlock(&n->lock);
829 neigh_cleanup_and_release(n);
830 continue;
831 }
832 write_unlock(&n->lock);
833
834 next_elt:
835 np = &n->next;
836 }
837 /*
838 * It's fine to release lock here, even if hash table
839 * grows while we are preempted.
840 */
841 write_unlock_bh(&tbl->lock);
842 cond_resched();
843 write_lock_bh(&tbl->lock);
844 nht = rcu_dereference_protected(tbl->nht,
845 lockdep_is_held(&tbl->lock));
846 }
847 out:
848 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
849 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
850 * BASE_REACHABLE_TIME.
851 */
852 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
853 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
854 write_unlock_bh(&tbl->lock);
855 }
856
857 static __inline__ int neigh_max_probes(struct neighbour *n)
858 {
859 struct neigh_parms *p = n->parms;
860 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
861 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
862 NEIGH_VAR(p, MCAST_PROBES));
863 }
864
865 static void neigh_invalidate(struct neighbour *neigh)
866 __releases(neigh->lock)
867 __acquires(neigh->lock)
868 {
869 struct sk_buff *skb;
870
871 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
872 neigh_dbg(2, "neigh %p is failed\n", neigh);
873 neigh->updated = jiffies;
874
875 /* It is very thin place. report_unreachable is very complicated
876 routine. Particularly, it can hit the same neighbour entry!
877
878 So that, we try to be accurate and avoid dead loop. --ANK
879 */
880 while (neigh->nud_state == NUD_FAILED &&
881 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
882 write_unlock(&neigh->lock);
883 neigh->ops->error_report(neigh, skb);
884 write_lock(&neigh->lock);
885 }
886 __skb_queue_purge(&neigh->arp_queue);
887 neigh->arp_queue_len_bytes = 0;
888 }
889
890 static void neigh_probe(struct neighbour *neigh)
891 __releases(neigh->lock)
892 {
893 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
894 /* keep skb alive even if arp_queue overflows */
895 if (skb)
896 skb = skb_clone(skb, GFP_ATOMIC);
897 write_unlock(&neigh->lock);
898 if (neigh->ops->solicit)
899 neigh->ops->solicit(neigh, skb);
900 atomic_inc(&neigh->probes);
901 kfree_skb(skb);
902 }
903
904 /* Called when a timer expires for a neighbour entry. */
905
906 static void neigh_timer_handler(struct timer_list *t)
907 {
908 unsigned long now, next;
909 struct neighbour *neigh = from_timer(neigh, t, timer);
910 unsigned int state;
911 int notify = 0;
912
913 write_lock(&neigh->lock);
914
915 state = neigh->nud_state;
916 now = jiffies;
917 next = now + HZ;
918
919 if (!(state & NUD_IN_TIMER))
920 goto out;
921
922 if (state & NUD_REACHABLE) {
923 if (time_before_eq(now,
924 neigh->confirmed + neigh->parms->reachable_time)) {
925 neigh_dbg(2, "neigh %p is still alive\n", neigh);
926 next = neigh->confirmed + neigh->parms->reachable_time;
927 } else if (time_before_eq(now,
928 neigh->used +
929 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
930 neigh_dbg(2, "neigh %p is delayed\n", neigh);
931 neigh->nud_state = NUD_DELAY;
932 neigh->updated = jiffies;
933 neigh_suspect(neigh);
934 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
935 } else {
936 neigh_dbg(2, "neigh %p is suspected\n", neigh);
937 neigh->nud_state = NUD_STALE;
938 neigh->updated = jiffies;
939 neigh_suspect(neigh);
940 notify = 1;
941 }
942 } else if (state & NUD_DELAY) {
943 if (time_before_eq(now,
944 neigh->confirmed +
945 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
946 neigh_dbg(2, "neigh %p is now reachable\n", neigh);
947 neigh->nud_state = NUD_REACHABLE;
948 neigh->updated = jiffies;
949 neigh_connect(neigh);
950 notify = 1;
951 next = neigh->confirmed + neigh->parms->reachable_time;
952 } else {
953 neigh_dbg(2, "neigh %p is probed\n", neigh);
954 neigh->nud_state = NUD_PROBE;
955 neigh->updated = jiffies;
956 atomic_set(&neigh->probes, 0);
957 notify = 1;
958 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
959 }
960 } else {
961 /* NUD_PROBE|NUD_INCOMPLETE */
962 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME);
963 }
964
965 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
966 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
967 neigh->nud_state = NUD_FAILED;
968 notify = 1;
969 neigh_invalidate(neigh);
970 goto out;
971 }
972
973 if (neigh->nud_state & NUD_IN_TIMER) {
974 if (time_before(next, jiffies + HZ/2))
975 next = jiffies + HZ/2;
976 if (!mod_timer(&neigh->timer, next))
977 neigh_hold(neigh);
978 }
979 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
980 neigh_probe(neigh);
981 } else {
982 out:
983 write_unlock(&neigh->lock);
984 }
985
986 if (notify)
987 neigh_update_notify(neigh, 0);
988
989 neigh_release(neigh);
990 }
991
992 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
993 {
994 int rc;
995 bool immediate_probe = false;
996
997 write_lock_bh(&neigh->lock);
998
999 rc = 0;
1000 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1001 goto out_unlock_bh;
1002 if (neigh->dead)
1003 goto out_dead;
1004
1005 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1006 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1007 NEIGH_VAR(neigh->parms, APP_PROBES)) {
1008 unsigned long next, now = jiffies;
1009
1010 atomic_set(&neigh->probes,
1011 NEIGH_VAR(neigh->parms, UCAST_PROBES));
1012 neigh->nud_state = NUD_INCOMPLETE;
1013 neigh->updated = now;
1014 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1015 HZ/2);
1016 neigh_add_timer(neigh, next);
1017 immediate_probe = true;
1018 } else {
1019 neigh->nud_state = NUD_FAILED;
1020 neigh->updated = jiffies;
1021 write_unlock_bh(&neigh->lock);
1022
1023 kfree_skb(skb);
1024 return 1;
1025 }
1026 } else if (neigh->nud_state & NUD_STALE) {
1027 neigh_dbg(2, "neigh %p is delayed\n", neigh);
1028 neigh->nud_state = NUD_DELAY;
1029 neigh->updated = jiffies;
1030 neigh_add_timer(neigh, jiffies +
1031 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1032 }
1033
1034 if (neigh->nud_state == NUD_INCOMPLETE) {
1035 if (skb) {
1036 while (neigh->arp_queue_len_bytes + skb->truesize >
1037 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1038 struct sk_buff *buff;
1039
1040 buff = __skb_dequeue(&neigh->arp_queue);
1041 if (!buff)
1042 break;
1043 neigh->arp_queue_len_bytes -= buff->truesize;
1044 kfree_skb(buff);
1045 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1046 }
1047 skb_dst_force(skb);
1048 __skb_queue_tail(&neigh->arp_queue, skb);
1049 neigh->arp_queue_len_bytes += skb->truesize;
1050 }
1051 rc = 1;
1052 }
1053 out_unlock_bh:
1054 if (immediate_probe)
1055 neigh_probe(neigh);
1056 else
1057 write_unlock(&neigh->lock);
1058 local_bh_enable();
1059 return rc;
1060
1061 out_dead:
1062 if (neigh->nud_state & NUD_STALE)
1063 goto out_unlock_bh;
1064 write_unlock_bh(&neigh->lock);
1065 kfree_skb(skb);
1066 return 1;
1067 }
1068 EXPORT_SYMBOL(__neigh_event_send);
1069
1070 static void neigh_update_hhs(struct neighbour *neigh)
1071 {
1072 struct hh_cache *hh;
1073 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1074 = NULL;
1075
1076 if (neigh->dev->header_ops)
1077 update = neigh->dev->header_ops->cache_update;
1078
1079 if (update) {
1080 hh = &neigh->hh;
1081 if (hh->hh_len) {
1082 write_seqlock_bh(&hh->hh_lock);
1083 update(hh, neigh->dev, neigh->ha);
1084 write_sequnlock_bh(&hh->hh_lock);
1085 }
1086 }
1087 }
1088
1089
1090
1091 /* Generic update routine.
1092 -- lladdr is new lladdr or NULL, if it is not supplied.
1093 -- new is new state.
1094 -- flags
1095 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1096 if it is different.
1097 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1098 lladdr instead of overriding it
1099 if it is different.
1100 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1101
1102 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1103 NTF_ROUTER flag.
1104 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1105 a router.
1106
1107 Caller MUST hold reference count on the entry.
1108 */
1109
1110 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1111 u32 flags, u32 nlmsg_pid)
1112 {
1113 u8 old;
1114 int err;
1115 int notify = 0;
1116 struct net_device *dev;
1117 int update_isrouter = 0;
1118
1119 write_lock_bh(&neigh->lock);
1120
1121 dev = neigh->dev;
1122 old = neigh->nud_state;
1123 err = -EPERM;
1124
1125 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1126 (old & (NUD_NOARP | NUD_PERMANENT)))
1127 goto out;
1128 if (neigh->dead)
1129 goto out;
1130
1131 if (!(new & NUD_VALID)) {
1132 neigh_del_timer(neigh);
1133 if (old & NUD_CONNECTED)
1134 neigh_suspect(neigh);
1135 neigh->nud_state = new;
1136 err = 0;
1137 notify = old & NUD_VALID;
1138 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1139 (new & NUD_FAILED)) {
1140 neigh_invalidate(neigh);
1141 notify = 1;
1142 }
1143 goto out;
1144 }
1145
1146 /* Compare new lladdr with cached one */
1147 if (!dev->addr_len) {
1148 /* First case: device needs no address. */
1149 lladdr = neigh->ha;
1150 } else if (lladdr) {
1151 /* The second case: if something is already cached
1152 and a new address is proposed:
1153 - compare new & old
1154 - if they are different, check override flag
1155 */
1156 if ((old & NUD_VALID) &&
1157 !memcmp(lladdr, neigh->ha, dev->addr_len))
1158 lladdr = neigh->ha;
1159 } else {
1160 /* No address is supplied; if we know something,
1161 use it, otherwise discard the request.
1162 */
1163 err = -EINVAL;
1164 if (!(old & NUD_VALID))
1165 goto out;
1166 lladdr = neigh->ha;
1167 }
1168
1169 /* If entry was valid and address is not changed,
1170 do not change entry state, if new one is STALE.
1171 */
1172 err = 0;
1173 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1174 if (old & NUD_VALID) {
1175 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1176 update_isrouter = 0;
1177 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1178 (old & NUD_CONNECTED)) {
1179 lladdr = neigh->ha;
1180 new = NUD_STALE;
1181 } else
1182 goto out;
1183 } else {
1184 if (lladdr == neigh->ha && new == NUD_STALE &&
1185 !(flags & NEIGH_UPDATE_F_ADMIN))
1186 new = old;
1187 }
1188 }
1189
1190 /* Update timestamps only once we know we will make a change to the
1191 * neighbour entry. Otherwise we risk to move the locktime window with
1192 * noop updates and ignore relevant ARP updates.
1193 */
1194 if (new != old || lladdr != neigh->ha) {
1195 if (new & NUD_CONNECTED)
1196 neigh->confirmed = jiffies;
1197 neigh->updated = jiffies;
1198 }
1199
1200 if (new != old) {
1201 neigh_del_timer(neigh);
1202 if (new & NUD_PROBE)
1203 atomic_set(&neigh->probes, 0);
1204 if (new & NUD_IN_TIMER)
1205 neigh_add_timer(neigh, (jiffies +
1206 ((new & NUD_REACHABLE) ?
1207 neigh->parms->reachable_time :
1208 0)));
1209 neigh->nud_state = new;
1210 notify = 1;
1211 }
1212
1213 if (lladdr != neigh->ha) {
1214 write_seqlock(&neigh->ha_lock);
1215 memcpy(&neigh->ha, lladdr, dev->addr_len);
1216 write_sequnlock(&neigh->ha_lock);
1217 neigh_update_hhs(neigh);
1218 if (!(new & NUD_CONNECTED))
1219 neigh->confirmed = jiffies -
1220 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1221 notify = 1;
1222 }
1223 if (new == old)
1224 goto out;
1225 if (new & NUD_CONNECTED)
1226 neigh_connect(neigh);
1227 else
1228 neigh_suspect(neigh);
1229 if (!(old & NUD_VALID)) {
1230 struct sk_buff *skb;
1231
1232 /* Again: avoid dead loop if something went wrong */
1233
1234 while (neigh->nud_state & NUD_VALID &&
1235 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1236 struct dst_entry *dst = skb_dst(skb);
1237 struct neighbour *n2, *n1 = neigh;
1238 write_unlock_bh(&neigh->lock);
1239
1240 rcu_read_lock();
1241
1242 /* Why not just use 'neigh' as-is? The problem is that
1243 * things such as shaper, eql, and sch_teql can end up
1244 * using alternative, different, neigh objects to output
1245 * the packet in the output path. So what we need to do
1246 * here is re-lookup the top-level neigh in the path so
1247 * we can reinject the packet there.
1248 */
1249 n2 = NULL;
1250 if (dst) {
1251 n2 = dst_neigh_lookup_skb(dst, skb);
1252 if (n2)
1253 n1 = n2;
1254 }
1255 n1->output(n1, skb);
1256 if (n2)
1257 neigh_release(n2);
1258 rcu_read_unlock();
1259
1260 write_lock_bh(&neigh->lock);
1261 }
1262 __skb_queue_purge(&neigh->arp_queue);
1263 neigh->arp_queue_len_bytes = 0;
1264 }
1265 out:
1266 if (update_isrouter) {
1267 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1268 (neigh->flags | NTF_ROUTER) :
1269 (neigh->flags & ~NTF_ROUTER);
1270 }
1271 write_unlock_bh(&neigh->lock);
1272
1273 if (notify)
1274 neigh_update_notify(neigh, nlmsg_pid);
1275
1276 return err;
1277 }
1278 EXPORT_SYMBOL(neigh_update);
1279
1280 /* Update the neigh to listen temporarily for probe responses, even if it is
1281 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1282 */
1283 void __neigh_set_probe_once(struct neighbour *neigh)
1284 {
1285 if (neigh->dead)
1286 return;
1287 neigh->updated = jiffies;
1288 if (!(neigh->nud_state & NUD_FAILED))
1289 return;
1290 neigh->nud_state = NUD_INCOMPLETE;
1291 atomic_set(&neigh->probes, neigh_max_probes(neigh));
1292 neigh_add_timer(neigh,
1293 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME));
1294 }
1295 EXPORT_SYMBOL(__neigh_set_probe_once);
1296
1297 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1298 u8 *lladdr, void *saddr,
1299 struct net_device *dev)
1300 {
1301 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1302 lladdr || !dev->addr_len);
1303 if (neigh)
1304 neigh_update(neigh, lladdr, NUD_STALE,
1305 NEIGH_UPDATE_F_OVERRIDE, 0);
1306 return neigh;
1307 }
1308 EXPORT_SYMBOL(neigh_event_ns);
1309
1310 /* called with read_lock_bh(&n->lock); */
1311 static void neigh_hh_init(struct neighbour *n)
1312 {
1313 struct net_device *dev = n->dev;
1314 __be16 prot = n->tbl->protocol;
1315 struct hh_cache *hh = &n->hh;
1316
1317 write_lock_bh(&n->lock);
1318
1319 /* Only one thread can come in here and initialize the
1320 * hh_cache entry.
1321 */
1322 if (!hh->hh_len)
1323 dev->header_ops->cache(n, hh, prot);
1324
1325 write_unlock_bh(&n->lock);
1326 }
1327
1328 /* Slow and careful. */
1329
1330 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1331 {
1332 int rc = 0;
1333
1334 if (!neigh_event_send(neigh, skb)) {
1335 int err;
1336 struct net_device *dev = neigh->dev;
1337 unsigned int seq;
1338
1339 if (dev->header_ops->cache && !neigh->hh.hh_len)
1340 neigh_hh_init(neigh);
1341
1342 do {
1343 __skb_pull(skb, skb_network_offset(skb));
1344 seq = read_seqbegin(&neigh->ha_lock);
1345 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1346 neigh->ha, NULL, skb->len);
1347 } while (read_seqretry(&neigh->ha_lock, seq));
1348
1349 if (err >= 0)
1350 rc = dev_queue_xmit(skb);
1351 else
1352 goto out_kfree_skb;
1353 }
1354 out:
1355 return rc;
1356 out_kfree_skb:
1357 rc = -EINVAL;
1358 kfree_skb(skb);
1359 goto out;
1360 }
1361 EXPORT_SYMBOL(neigh_resolve_output);
1362
1363 /* As fast as possible without hh cache */
1364
1365 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1366 {
1367 struct net_device *dev = neigh->dev;
1368 unsigned int seq;
1369 int err;
1370
1371 do {
1372 __skb_pull(skb, skb_network_offset(skb));
1373 seq = read_seqbegin(&neigh->ha_lock);
1374 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1375 neigh->ha, NULL, skb->len);
1376 } while (read_seqretry(&neigh->ha_lock, seq));
1377
1378 if (err >= 0)
1379 err = dev_queue_xmit(skb);
1380 else {
1381 err = -EINVAL;
1382 kfree_skb(skb);
1383 }
1384 return err;
1385 }
1386 EXPORT_SYMBOL(neigh_connected_output);
1387
1388 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1389 {
1390 return dev_queue_xmit(skb);
1391 }
1392 EXPORT_SYMBOL(neigh_direct_output);
1393
1394 static void neigh_proxy_process(struct timer_list *t)
1395 {
1396 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1397 long sched_next = 0;
1398 unsigned long now = jiffies;
1399 struct sk_buff *skb, *n;
1400
1401 spin_lock(&tbl->proxy_queue.lock);
1402
1403 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1404 long tdif = NEIGH_CB(skb)->sched_next - now;
1405
1406 if (tdif <= 0) {
1407 struct net_device *dev = skb->dev;
1408
1409 __skb_unlink(skb, &tbl->proxy_queue);
1410 if (tbl->proxy_redo && netif_running(dev)) {
1411 rcu_read_lock();
1412 tbl->proxy_redo(skb);
1413 rcu_read_unlock();
1414 } else {
1415 kfree_skb(skb);
1416 }
1417
1418 dev_put(dev);
1419 } else if (!sched_next || tdif < sched_next)
1420 sched_next = tdif;
1421 }
1422 del_timer(&tbl->proxy_timer);
1423 if (sched_next)
1424 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1425 spin_unlock(&tbl->proxy_queue.lock);
1426 }
1427
1428 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1429 struct sk_buff *skb)
1430 {
1431 unsigned long now = jiffies;
1432
1433 unsigned long sched_next = now + (prandom_u32() %
1434 NEIGH_VAR(p, PROXY_DELAY));
1435
1436 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1437 kfree_skb(skb);
1438 return;
1439 }
1440
1441 NEIGH_CB(skb)->sched_next = sched_next;
1442 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1443
1444 spin_lock(&tbl->proxy_queue.lock);
1445 if (del_timer(&tbl->proxy_timer)) {
1446 if (time_before(tbl->proxy_timer.expires, sched_next))
1447 sched_next = tbl->proxy_timer.expires;
1448 }
1449 skb_dst_drop(skb);
1450 dev_hold(skb->dev);
1451 __skb_queue_tail(&tbl->proxy_queue, skb);
1452 mod_timer(&tbl->proxy_timer, sched_next);
1453 spin_unlock(&tbl->proxy_queue.lock);
1454 }
1455 EXPORT_SYMBOL(pneigh_enqueue);
1456
1457 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1458 struct net *net, int ifindex)
1459 {
1460 struct neigh_parms *p;
1461
1462 list_for_each_entry(p, &tbl->parms_list, list) {
1463 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1464 (!p->dev && !ifindex && net_eq(net, &init_net)))
1465 return p;
1466 }
1467
1468 return NULL;
1469 }
1470
1471 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1472 struct neigh_table *tbl)
1473 {
1474 struct neigh_parms *p;
1475 struct net *net = dev_net(dev);
1476 const struct net_device_ops *ops = dev->netdev_ops;
1477
1478 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1479 if (p) {
1480 p->tbl = tbl;
1481 refcount_set(&p->refcnt, 1);
1482 p->reachable_time =
1483 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1484 dev_hold(dev);
1485 p->dev = dev;
1486 write_pnet(&p->net, net);
1487 p->sysctl_table = NULL;
1488
1489 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1490 dev_put(dev);
1491 kfree(p);
1492 return NULL;
1493 }
1494
1495 write_lock_bh(&tbl->lock);
1496 list_add(&p->list, &tbl->parms.list);
1497 write_unlock_bh(&tbl->lock);
1498
1499 neigh_parms_data_state_cleanall(p);
1500 }
1501 return p;
1502 }
1503 EXPORT_SYMBOL(neigh_parms_alloc);
1504
1505 static void neigh_rcu_free_parms(struct rcu_head *head)
1506 {
1507 struct neigh_parms *parms =
1508 container_of(head, struct neigh_parms, rcu_head);
1509
1510 neigh_parms_put(parms);
1511 }
1512
1513 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1514 {
1515 if (!parms || parms == &tbl->parms)
1516 return;
1517 write_lock_bh(&tbl->lock);
1518 list_del(&parms->list);
1519 parms->dead = 1;
1520 write_unlock_bh(&tbl->lock);
1521 if (parms->dev)
1522 dev_put(parms->dev);
1523 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1524 }
1525 EXPORT_SYMBOL(neigh_parms_release);
1526
1527 static void neigh_parms_destroy(struct neigh_parms *parms)
1528 {
1529 kfree(parms);
1530 }
1531
1532 static struct lock_class_key neigh_table_proxy_queue_class;
1533
1534 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1535
1536 void neigh_table_init(int index, struct neigh_table *tbl)
1537 {
1538 unsigned long now = jiffies;
1539 unsigned long phsize;
1540
1541 INIT_LIST_HEAD(&tbl->parms_list);
1542 list_add(&tbl->parms.list, &tbl->parms_list);
1543 write_pnet(&tbl->parms.net, &init_net);
1544 refcount_set(&tbl->parms.refcnt, 1);
1545 tbl->parms.reachable_time =
1546 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1547
1548 tbl->stats = alloc_percpu(struct neigh_statistics);
1549 if (!tbl->stats)
1550 panic("cannot create neighbour cache statistics");
1551
1552 #ifdef CONFIG_PROC_FS
1553 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1554 &neigh_stat_seq_fops, tbl))
1555 panic("cannot create neighbour proc dir entry");
1556 #endif
1557
1558 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1559
1560 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1561 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1562
1563 if (!tbl->nht || !tbl->phash_buckets)
1564 panic("cannot allocate neighbour cache hashes");
1565
1566 if (!tbl->entry_size)
1567 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1568 tbl->key_len, NEIGH_PRIV_ALIGN);
1569 else
1570 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1571
1572 rwlock_init(&tbl->lock);
1573 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1574 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1575 tbl->parms.reachable_time);
1576 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1577 skb_queue_head_init_class(&tbl->proxy_queue,
1578 &neigh_table_proxy_queue_class);
1579
1580 tbl->last_flush = now;
1581 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1582
1583 neigh_tables[index] = tbl;
1584 }
1585 EXPORT_SYMBOL(neigh_table_init);
1586
1587 int neigh_table_clear(int index, struct neigh_table *tbl)
1588 {
1589 neigh_tables[index] = NULL;
1590 /* It is not clean... Fix it to unload IPv6 module safely */
1591 cancel_delayed_work_sync(&tbl->gc_work);
1592 del_timer_sync(&tbl->proxy_timer);
1593 pneigh_queue_purge(&tbl->proxy_queue);
1594 neigh_ifdown(tbl, NULL);
1595 if (atomic_read(&tbl->entries))
1596 pr_crit("neighbour leakage\n");
1597
1598 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1599 neigh_hash_free_rcu);
1600 tbl->nht = NULL;
1601
1602 kfree(tbl->phash_buckets);
1603 tbl->phash_buckets = NULL;
1604
1605 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1606
1607 free_percpu(tbl->stats);
1608 tbl->stats = NULL;
1609
1610 return 0;
1611 }
1612 EXPORT_SYMBOL(neigh_table_clear);
1613
1614 static struct neigh_table *neigh_find_table(int family)
1615 {
1616 struct neigh_table *tbl = NULL;
1617
1618 switch (family) {
1619 case AF_INET:
1620 tbl = neigh_tables[NEIGH_ARP_TABLE];
1621 break;
1622 case AF_INET6:
1623 tbl = neigh_tables[NEIGH_ND_TABLE];
1624 break;
1625 case AF_DECnet:
1626 tbl = neigh_tables[NEIGH_DN_TABLE];
1627 break;
1628 }
1629
1630 return tbl;
1631 }
1632
1633 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1634 struct netlink_ext_ack *extack)
1635 {
1636 struct net *net = sock_net(skb->sk);
1637 struct ndmsg *ndm;
1638 struct nlattr *dst_attr;
1639 struct neigh_table *tbl;
1640 struct neighbour *neigh;
1641 struct net_device *dev = NULL;
1642 int err = -EINVAL;
1643
1644 ASSERT_RTNL();
1645 if (nlmsg_len(nlh) < sizeof(*ndm))
1646 goto out;
1647
1648 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1649 if (dst_attr == NULL)
1650 goto out;
1651
1652 ndm = nlmsg_data(nlh);
1653 if (ndm->ndm_ifindex) {
1654 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1655 if (dev == NULL) {
1656 err = -ENODEV;
1657 goto out;
1658 }
1659 }
1660
1661 tbl = neigh_find_table(ndm->ndm_family);
1662 if (tbl == NULL)
1663 return -EAFNOSUPPORT;
1664
1665 if (nla_len(dst_attr) < (int)tbl->key_len)
1666 goto out;
1667
1668 if (ndm->ndm_flags & NTF_PROXY) {
1669 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1670 goto out;
1671 }
1672
1673 if (dev == NULL)
1674 goto out;
1675
1676 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1677 if (neigh == NULL) {
1678 err = -ENOENT;
1679 goto out;
1680 }
1681
1682 err = neigh_update(neigh, NULL, NUD_FAILED,
1683 NEIGH_UPDATE_F_OVERRIDE |
1684 NEIGH_UPDATE_F_ADMIN,
1685 NETLINK_CB(skb).portid);
1686 write_lock_bh(&tbl->lock);
1687 neigh_release(neigh);
1688 neigh_remove_one(neigh, tbl);
1689 write_unlock_bh(&tbl->lock);
1690
1691 out:
1692 return err;
1693 }
1694
1695 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1696 struct netlink_ext_ack *extack)
1697 {
1698 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1699 struct net *net = sock_net(skb->sk);
1700 struct ndmsg *ndm;
1701 struct nlattr *tb[NDA_MAX+1];
1702 struct neigh_table *tbl;
1703 struct net_device *dev = NULL;
1704 struct neighbour *neigh;
1705 void *dst, *lladdr;
1706 int err;
1707
1708 ASSERT_RTNL();
1709 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL, extack);
1710 if (err < 0)
1711 goto out;
1712
1713 err = -EINVAL;
1714 if (tb[NDA_DST] == NULL)
1715 goto out;
1716
1717 ndm = nlmsg_data(nlh);
1718 if (ndm->ndm_ifindex) {
1719 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1720 if (dev == NULL) {
1721 err = -ENODEV;
1722 goto out;
1723 }
1724
1725 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1726 goto out;
1727 }
1728
1729 tbl = neigh_find_table(ndm->ndm_family);
1730 if (tbl == NULL)
1731 return -EAFNOSUPPORT;
1732
1733 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len)
1734 goto out;
1735 dst = nla_data(tb[NDA_DST]);
1736 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1737
1738 if (ndm->ndm_flags & NTF_PROXY) {
1739 struct pneigh_entry *pn;
1740
1741 err = -ENOBUFS;
1742 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1743 if (pn) {
1744 pn->flags = ndm->ndm_flags;
1745 err = 0;
1746 }
1747 goto out;
1748 }
1749
1750 if (dev == NULL)
1751 goto out;
1752
1753 neigh = neigh_lookup(tbl, dst, dev);
1754 if (neigh == NULL) {
1755 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1756 err = -ENOENT;
1757 goto out;
1758 }
1759
1760 neigh = __neigh_lookup_errno(tbl, dst, dev);
1761 if (IS_ERR(neigh)) {
1762 err = PTR_ERR(neigh);
1763 goto out;
1764 }
1765 } else {
1766 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1767 err = -EEXIST;
1768 neigh_release(neigh);
1769 goto out;
1770 }
1771
1772 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1773 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1774 }
1775
1776 if (ndm->ndm_flags & NTF_USE) {
1777 neigh_event_send(neigh, NULL);
1778 err = 0;
1779 } else
1780 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags,
1781 NETLINK_CB(skb).portid);
1782 neigh_release(neigh);
1783
1784 out:
1785 return err;
1786 }
1787
1788 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1789 {
1790 struct nlattr *nest;
1791
1792 nest = nla_nest_start(skb, NDTA_PARMS);
1793 if (nest == NULL)
1794 return -ENOBUFS;
1795
1796 if ((parms->dev &&
1797 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1798 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
1799 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
1800 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
1801 /* approximative value for deprecated QUEUE_LEN (in packets) */
1802 nla_put_u32(skb, NDTPA_QUEUE_LEN,
1803 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
1804 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
1805 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
1806 nla_put_u32(skb, NDTPA_UCAST_PROBES,
1807 NEIGH_VAR(parms, UCAST_PROBES)) ||
1808 nla_put_u32(skb, NDTPA_MCAST_PROBES,
1809 NEIGH_VAR(parms, MCAST_PROBES)) ||
1810 nla_put_u32(skb, NDTPA_MCAST_REPROBES,
1811 NEIGH_VAR(parms, MCAST_REPROBES)) ||
1812 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
1813 NDTPA_PAD) ||
1814 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1815 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
1816 nla_put_msecs(skb, NDTPA_GC_STALETIME,
1817 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
1818 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1819 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
1820 nla_put_msecs(skb, NDTPA_RETRANS_TIME,
1821 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
1822 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
1823 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
1824 nla_put_msecs(skb, NDTPA_PROXY_DELAY,
1825 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
1826 nla_put_msecs(skb, NDTPA_LOCKTIME,
1827 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD))
1828 goto nla_put_failure;
1829 return nla_nest_end(skb, nest);
1830
1831 nla_put_failure:
1832 nla_nest_cancel(skb, nest);
1833 return -EMSGSIZE;
1834 }
1835
1836 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1837 u32 pid, u32 seq, int type, int flags)
1838 {
1839 struct nlmsghdr *nlh;
1840 struct ndtmsg *ndtmsg;
1841
1842 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1843 if (nlh == NULL)
1844 return -EMSGSIZE;
1845
1846 ndtmsg = nlmsg_data(nlh);
1847
1848 read_lock_bh(&tbl->lock);
1849 ndtmsg->ndtm_family = tbl->family;
1850 ndtmsg->ndtm_pad1 = 0;
1851 ndtmsg->ndtm_pad2 = 0;
1852
1853 if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1854 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) ||
1855 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1856 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1857 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1858 goto nla_put_failure;
1859 {
1860 unsigned long now = jiffies;
1861 unsigned int flush_delta = now - tbl->last_flush;
1862 unsigned int rand_delta = now - tbl->last_rand;
1863 struct neigh_hash_table *nht;
1864 struct ndt_config ndc = {
1865 .ndtc_key_len = tbl->key_len,
1866 .ndtc_entry_size = tbl->entry_size,
1867 .ndtc_entries = atomic_read(&tbl->entries),
1868 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1869 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1870 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1871 };
1872
1873 rcu_read_lock_bh();
1874 nht = rcu_dereference_bh(tbl->nht);
1875 ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1876 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1877 rcu_read_unlock_bh();
1878
1879 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1880 goto nla_put_failure;
1881 }
1882
1883 {
1884 int cpu;
1885 struct ndt_stats ndst;
1886
1887 memset(&ndst, 0, sizeof(ndst));
1888
1889 for_each_possible_cpu(cpu) {
1890 struct neigh_statistics *st;
1891
1892 st = per_cpu_ptr(tbl->stats, cpu);
1893 ndst.ndts_allocs += st->allocs;
1894 ndst.ndts_destroys += st->destroys;
1895 ndst.ndts_hash_grows += st->hash_grows;
1896 ndst.ndts_res_failed += st->res_failed;
1897 ndst.ndts_lookups += st->lookups;
1898 ndst.ndts_hits += st->hits;
1899 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1900 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1901 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1902 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1903 ndst.ndts_table_fulls += st->table_fulls;
1904 }
1905
1906 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
1907 NDTA_PAD))
1908 goto nla_put_failure;
1909 }
1910
1911 BUG_ON(tbl->parms.dev);
1912 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1913 goto nla_put_failure;
1914
1915 read_unlock_bh(&tbl->lock);
1916 nlmsg_end(skb, nlh);
1917 return 0;
1918
1919 nla_put_failure:
1920 read_unlock_bh(&tbl->lock);
1921 nlmsg_cancel(skb, nlh);
1922 return -EMSGSIZE;
1923 }
1924
1925 static int neightbl_fill_param_info(struct sk_buff *skb,
1926 struct neigh_table *tbl,
1927 struct neigh_parms *parms,
1928 u32 pid, u32 seq, int type,
1929 unsigned int flags)
1930 {
1931 struct ndtmsg *ndtmsg;
1932 struct nlmsghdr *nlh;
1933
1934 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1935 if (nlh == NULL)
1936 return -EMSGSIZE;
1937
1938 ndtmsg = nlmsg_data(nlh);
1939
1940 read_lock_bh(&tbl->lock);
1941 ndtmsg->ndtm_family = tbl->family;
1942 ndtmsg->ndtm_pad1 = 0;
1943 ndtmsg->ndtm_pad2 = 0;
1944
1945 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1946 neightbl_fill_parms(skb, parms) < 0)
1947 goto errout;
1948
1949 read_unlock_bh(&tbl->lock);
1950 nlmsg_end(skb, nlh);
1951 return 0;
1952 errout:
1953 read_unlock_bh(&tbl->lock);
1954 nlmsg_cancel(skb, nlh);
1955 return -EMSGSIZE;
1956 }
1957
1958 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1959 [NDTA_NAME] = { .type = NLA_STRING },
1960 [NDTA_THRESH1] = { .type = NLA_U32 },
1961 [NDTA_THRESH2] = { .type = NLA_U32 },
1962 [NDTA_THRESH3] = { .type = NLA_U32 },
1963 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1964 [NDTA_PARMS] = { .type = NLA_NESTED },
1965 };
1966
1967 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1968 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1969 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1970 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1971 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1972 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1973 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1974 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 },
1975 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1976 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1977 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1978 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1979 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1980 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1981 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1982 };
1983
1984 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
1985 struct netlink_ext_ack *extack)
1986 {
1987 struct net *net = sock_net(skb->sk);
1988 struct neigh_table *tbl;
1989 struct ndtmsg *ndtmsg;
1990 struct nlattr *tb[NDTA_MAX+1];
1991 bool found = false;
1992 int err, tidx;
1993
1994 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1995 nl_neightbl_policy, extack);
1996 if (err < 0)
1997 goto errout;
1998
1999 if (tb[NDTA_NAME] == NULL) {
2000 err = -EINVAL;
2001 goto errout;
2002 }
2003
2004 ndtmsg = nlmsg_data(nlh);
2005
2006 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2007 tbl = neigh_tables[tidx];
2008 if (!tbl)
2009 continue;
2010 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2011 continue;
2012 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2013 found = true;
2014 break;
2015 }
2016 }
2017
2018 if (!found)
2019 return -ENOENT;
2020
2021 /*
2022 * We acquire tbl->lock to be nice to the periodic timers and
2023 * make sure they always see a consistent set of values.
2024 */
2025 write_lock_bh(&tbl->lock);
2026
2027 if (tb[NDTA_PARMS]) {
2028 struct nlattr *tbp[NDTPA_MAX+1];
2029 struct neigh_parms *p;
2030 int i, ifindex = 0;
2031
2032 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2033 nl_ntbl_parm_policy, extack);
2034 if (err < 0)
2035 goto errout_tbl_lock;
2036
2037 if (tbp[NDTPA_IFINDEX])
2038 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2039
2040 p = lookup_neigh_parms(tbl, net, ifindex);
2041 if (p == NULL) {
2042 err = -ENOENT;
2043 goto errout_tbl_lock;
2044 }
2045
2046 for (i = 1; i <= NDTPA_MAX; i++) {
2047 if (tbp[i] == NULL)
2048 continue;
2049
2050 switch (i) {
2051 case NDTPA_QUEUE_LEN:
2052 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2053 nla_get_u32(tbp[i]) *
2054 SKB_TRUESIZE(ETH_FRAME_LEN));
2055 break;
2056 case NDTPA_QUEUE_LENBYTES:
2057 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2058 nla_get_u32(tbp[i]));
2059 break;
2060 case NDTPA_PROXY_QLEN:
2061 NEIGH_VAR_SET(p, PROXY_QLEN,
2062 nla_get_u32(tbp[i]));
2063 break;
2064 case NDTPA_APP_PROBES:
2065 NEIGH_VAR_SET(p, APP_PROBES,
2066 nla_get_u32(tbp[i]));
2067 break;
2068 case NDTPA_UCAST_PROBES:
2069 NEIGH_VAR_SET(p, UCAST_PROBES,
2070 nla_get_u32(tbp[i]));
2071 break;
2072 case NDTPA_MCAST_PROBES:
2073 NEIGH_VAR_SET(p, MCAST_PROBES,
2074 nla_get_u32(tbp[i]));
2075 break;
2076 case NDTPA_MCAST_REPROBES:
2077 NEIGH_VAR_SET(p, MCAST_REPROBES,
2078 nla_get_u32(tbp[i]));
2079 break;
2080 case NDTPA_BASE_REACHABLE_TIME:
2081 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2082 nla_get_msecs(tbp[i]));
2083 /* update reachable_time as well, otherwise, the change will
2084 * only be effective after the next time neigh_periodic_work
2085 * decides to recompute it (can be multiple minutes)
2086 */
2087 p->reachable_time =
2088 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2089 break;
2090 case NDTPA_GC_STALETIME:
2091 NEIGH_VAR_SET(p, GC_STALETIME,
2092 nla_get_msecs(tbp[i]));
2093 break;
2094 case NDTPA_DELAY_PROBE_TIME:
2095 NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2096 nla_get_msecs(tbp[i]));
2097 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2098 break;
2099 case NDTPA_RETRANS_TIME:
2100 NEIGH_VAR_SET(p, RETRANS_TIME,
2101 nla_get_msecs(tbp[i]));
2102 break;
2103 case NDTPA_ANYCAST_DELAY:
2104 NEIGH_VAR_SET(p, ANYCAST_DELAY,
2105 nla_get_msecs(tbp[i]));
2106 break;
2107 case NDTPA_PROXY_DELAY:
2108 NEIGH_VAR_SET(p, PROXY_DELAY,
2109 nla_get_msecs(tbp[i]));
2110 break;
2111 case NDTPA_LOCKTIME:
2112 NEIGH_VAR_SET(p, LOCKTIME,
2113 nla_get_msecs(tbp[i]));
2114 break;
2115 }
2116 }
2117 }
2118
2119 err = -ENOENT;
2120 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2121 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2122 !net_eq(net, &init_net))
2123 goto errout_tbl_lock;
2124
2125 if (tb[NDTA_THRESH1])
2126 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2127
2128 if (tb[NDTA_THRESH2])
2129 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2130
2131 if (tb[NDTA_THRESH3])
2132 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2133
2134 if (tb[NDTA_GC_INTERVAL])
2135 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2136
2137 err = 0;
2138
2139 errout_tbl_lock:
2140 write_unlock_bh(&tbl->lock);
2141 errout:
2142 return err;
2143 }
2144
2145 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2146 {
2147 struct net *net = sock_net(skb->sk);
2148 int family, tidx, nidx = 0;
2149 int tbl_skip = cb->args[0];
2150 int neigh_skip = cb->args[1];
2151 struct neigh_table *tbl;
2152
2153 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2154
2155 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2156 struct neigh_parms *p;
2157
2158 tbl = neigh_tables[tidx];
2159 if (!tbl)
2160 continue;
2161
2162 if (tidx < tbl_skip || (family && tbl->family != family))
2163 continue;
2164
2165 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2166 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2167 NLM_F_MULTI) < 0)
2168 break;
2169
2170 nidx = 0;
2171 p = list_next_entry(&tbl->parms, list);
2172 list_for_each_entry_from(p, &tbl->parms_list, list) {
2173 if (!net_eq(neigh_parms_net(p), net))
2174 continue;
2175
2176 if (nidx < neigh_skip)
2177 goto next;
2178
2179 if (neightbl_fill_param_info(skb, tbl, p,
2180 NETLINK_CB(cb->skb).portid,
2181 cb->nlh->nlmsg_seq,
2182 RTM_NEWNEIGHTBL,
2183 NLM_F_MULTI) < 0)
2184 goto out;
2185 next:
2186 nidx++;
2187 }
2188
2189 neigh_skip = 0;
2190 }
2191 out:
2192 cb->args[0] = tidx;
2193 cb->args[1] = nidx;
2194
2195 return skb->len;
2196 }
2197
2198 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2199 u32 pid, u32 seq, int type, unsigned int flags)
2200 {
2201 unsigned long now = jiffies;
2202 struct nda_cacheinfo ci;
2203 struct nlmsghdr *nlh;
2204 struct ndmsg *ndm;
2205
2206 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2207 if (nlh == NULL)
2208 return -EMSGSIZE;
2209
2210 ndm = nlmsg_data(nlh);
2211 ndm->ndm_family = neigh->ops->family;
2212 ndm->ndm_pad1 = 0;
2213 ndm->ndm_pad2 = 0;
2214 ndm->ndm_flags = neigh->flags;
2215 ndm->ndm_type = neigh->type;
2216 ndm->ndm_ifindex = neigh->dev->ifindex;
2217
2218 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2219 goto nla_put_failure;
2220
2221 read_lock_bh(&neigh->lock);
2222 ndm->ndm_state = neigh->nud_state;
2223 if (neigh->nud_state & NUD_VALID) {
2224 char haddr[MAX_ADDR_LEN];
2225
2226 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2227 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2228 read_unlock_bh(&neigh->lock);
2229 goto nla_put_failure;
2230 }
2231 }
2232
2233 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2234 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2235 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2236 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1;
2237 read_unlock_bh(&neigh->lock);
2238
2239 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2240 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2241 goto nla_put_failure;
2242
2243 nlmsg_end(skb, nlh);
2244 return 0;
2245
2246 nla_put_failure:
2247 nlmsg_cancel(skb, nlh);
2248 return -EMSGSIZE;
2249 }
2250
2251 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2252 u32 pid, u32 seq, int type, unsigned int flags,
2253 struct neigh_table *tbl)
2254 {
2255 struct nlmsghdr *nlh;
2256 struct ndmsg *ndm;
2257
2258 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2259 if (nlh == NULL)
2260 return -EMSGSIZE;
2261
2262 ndm = nlmsg_data(nlh);
2263 ndm->ndm_family = tbl->family;
2264 ndm->ndm_pad1 = 0;
2265 ndm->ndm_pad2 = 0;
2266 ndm->ndm_flags = pn->flags | NTF_PROXY;
2267 ndm->ndm_type = RTN_UNICAST;
2268 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2269 ndm->ndm_state = NUD_NONE;
2270
2271 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2272 goto nla_put_failure;
2273
2274 nlmsg_end(skb, nlh);
2275 return 0;
2276
2277 nla_put_failure:
2278 nlmsg_cancel(skb, nlh);
2279 return -EMSGSIZE;
2280 }
2281
2282 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2283 {
2284 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2285 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2286 }
2287
2288 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2289 {
2290 struct net_device *master;
2291
2292 if (!master_idx)
2293 return false;
2294
2295 master = netdev_master_upper_dev_get(dev);
2296 if (!master || master->ifindex != master_idx)
2297 return true;
2298
2299 return false;
2300 }
2301
2302 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2303 {
2304 if (filter_idx && dev->ifindex != filter_idx)
2305 return true;
2306
2307 return false;
2308 }
2309
2310 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2311 struct netlink_callback *cb)
2312 {
2313 struct net *net = sock_net(skb->sk);
2314 const struct nlmsghdr *nlh = cb->nlh;
2315 struct nlattr *tb[NDA_MAX + 1];
2316 struct neighbour *n;
2317 int rc, h, s_h = cb->args[1];
2318 int idx, s_idx = idx = cb->args[2];
2319 struct neigh_hash_table *nht;
2320 int filter_master_idx = 0, filter_idx = 0;
2321 unsigned int flags = NLM_F_MULTI;
2322 int err;
2323
2324 err = nlmsg_parse(nlh, sizeof(struct ndmsg), tb, NDA_MAX, NULL, NULL);
2325 if (!err) {
2326 if (tb[NDA_IFINDEX])
2327 filter_idx = nla_get_u32(tb[NDA_IFINDEX]);
2328
2329 if (tb[NDA_MASTER])
2330 filter_master_idx = nla_get_u32(tb[NDA_MASTER]);
2331
2332 if (filter_idx || filter_master_idx)
2333 flags |= NLM_F_DUMP_FILTERED;
2334 }
2335
2336 rcu_read_lock_bh();
2337 nht = rcu_dereference_bh(tbl->nht);
2338
2339 for (h = s_h; h < (1 << nht->hash_shift); h++) {
2340 if (h > s_h)
2341 s_idx = 0;
2342 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2343 n != NULL;
2344 n = rcu_dereference_bh(n->next)) {
2345 if (idx < s_idx || !net_eq(dev_net(n->dev), net))
2346 goto next;
2347 if (neigh_ifindex_filtered(n->dev, filter_idx) ||
2348 neigh_master_filtered(n->dev, filter_master_idx))
2349 goto next;
2350 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2351 cb->nlh->nlmsg_seq,
2352 RTM_NEWNEIGH,
2353 flags) < 0) {
2354 rc = -1;
2355 goto out;
2356 }
2357 next:
2358 idx++;
2359 }
2360 }
2361 rc = skb->len;
2362 out:
2363 rcu_read_unlock_bh();
2364 cb->args[1] = h;
2365 cb->args[2] = idx;
2366 return rc;
2367 }
2368
2369 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2370 struct netlink_callback *cb)
2371 {
2372 struct pneigh_entry *n;
2373 struct net *net = sock_net(skb->sk);
2374 int rc, h, s_h = cb->args[3];
2375 int idx, s_idx = idx = cb->args[4];
2376
2377 read_lock_bh(&tbl->lock);
2378
2379 for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2380 if (h > s_h)
2381 s_idx = 0;
2382 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2383 if (idx < s_idx || pneigh_net(n) != net)
2384 goto next;
2385 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2386 cb->nlh->nlmsg_seq,
2387 RTM_NEWNEIGH,
2388 NLM_F_MULTI, tbl) < 0) {
2389 read_unlock_bh(&tbl->lock);
2390 rc = -1;
2391 goto out;
2392 }
2393 next:
2394 idx++;
2395 }
2396 }
2397
2398 read_unlock_bh(&tbl->lock);
2399 rc = skb->len;
2400 out:
2401 cb->args[3] = h;
2402 cb->args[4] = idx;
2403 return rc;
2404
2405 }
2406
2407 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2408 {
2409 struct neigh_table *tbl;
2410 int t, family, s_t;
2411 int proxy = 0;
2412 int err;
2413
2414 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2415
2416 /* check for full ndmsg structure presence, family member is
2417 * the same for both structures
2418 */
2419 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2420 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2421 proxy = 1;
2422
2423 s_t = cb->args[0];
2424
2425 for (t = 0; t < NEIGH_NR_TABLES; t++) {
2426 tbl = neigh_tables[t];
2427
2428 if (!tbl)
2429 continue;
2430 if (t < s_t || (family && tbl->family != family))
2431 continue;
2432 if (t > s_t)
2433 memset(&cb->args[1], 0, sizeof(cb->args) -
2434 sizeof(cb->args[0]));
2435 if (proxy)
2436 err = pneigh_dump_table(tbl, skb, cb);
2437 else
2438 err = neigh_dump_table(tbl, skb, cb);
2439 if (err < 0)
2440 break;
2441 }
2442
2443 cb->args[0] = t;
2444 return skb->len;
2445 }
2446
2447 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2448 {
2449 int chain;
2450 struct neigh_hash_table *nht;
2451
2452 rcu_read_lock_bh();
2453 nht = rcu_dereference_bh(tbl->nht);
2454
2455 read_lock(&tbl->lock); /* avoid resizes */
2456 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2457 struct neighbour *n;
2458
2459 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2460 n != NULL;
2461 n = rcu_dereference_bh(n->next))
2462 cb(n, cookie);
2463 }
2464 read_unlock(&tbl->lock);
2465 rcu_read_unlock_bh();
2466 }
2467 EXPORT_SYMBOL(neigh_for_each);
2468
2469 /* The tbl->lock must be held as a writer and BH disabled. */
2470 void __neigh_for_each_release(struct neigh_table *tbl,
2471 int (*cb)(struct neighbour *))
2472 {
2473 int chain;
2474 struct neigh_hash_table *nht;
2475
2476 nht = rcu_dereference_protected(tbl->nht,
2477 lockdep_is_held(&tbl->lock));
2478 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2479 struct neighbour *n;
2480 struct neighbour __rcu **np;
2481
2482 np = &nht->hash_buckets[chain];
2483 while ((n = rcu_dereference_protected(*np,
2484 lockdep_is_held(&tbl->lock))) != NULL) {
2485 int release;
2486
2487 write_lock(&n->lock);
2488 release = cb(n);
2489 if (release) {
2490 rcu_assign_pointer(*np,
2491 rcu_dereference_protected(n->next,
2492 lockdep_is_held(&tbl->lock)));
2493 n->dead = 1;
2494 } else
2495 np = &n->next;
2496 write_unlock(&n->lock);
2497 if (release)
2498 neigh_cleanup_and_release(n);
2499 }
2500 }
2501 }
2502 EXPORT_SYMBOL(__neigh_for_each_release);
2503
2504 int neigh_xmit(int index, struct net_device *dev,
2505 const void *addr, struct sk_buff *skb)
2506 {
2507 int err = -EAFNOSUPPORT;
2508 if (likely(index < NEIGH_NR_TABLES)) {
2509 struct neigh_table *tbl;
2510 struct neighbour *neigh;
2511
2512 tbl = neigh_tables[index];
2513 if (!tbl)
2514 goto out;
2515 rcu_read_lock_bh();
2516 neigh = __neigh_lookup_noref(tbl, addr, dev);
2517 if (!neigh)
2518 neigh = __neigh_create(tbl, addr, dev, false);
2519 err = PTR_ERR(neigh);
2520 if (IS_ERR(neigh)) {
2521 rcu_read_unlock_bh();
2522 goto out_kfree_skb;
2523 }
2524 err = neigh->output(neigh, skb);
2525 rcu_read_unlock_bh();
2526 }
2527 else if (index == NEIGH_LINK_TABLE) {
2528 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
2529 addr, NULL, skb->len);
2530 if (err < 0)
2531 goto out_kfree_skb;
2532 err = dev_queue_xmit(skb);
2533 }
2534 out:
2535 return err;
2536 out_kfree_skb:
2537 kfree_skb(skb);
2538 goto out;
2539 }
2540 EXPORT_SYMBOL(neigh_xmit);
2541
2542 #ifdef CONFIG_PROC_FS
2543
2544 static struct neighbour *neigh_get_first(struct seq_file *seq)
2545 {
2546 struct neigh_seq_state *state = seq->private;
2547 struct net *net = seq_file_net(seq);
2548 struct neigh_hash_table *nht = state->nht;
2549 struct neighbour *n = NULL;
2550 int bucket = state->bucket;
2551
2552 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2553 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2554 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2555
2556 while (n) {
2557 if (!net_eq(dev_net(n->dev), net))
2558 goto next;
2559 if (state->neigh_sub_iter) {
2560 loff_t fakep = 0;
2561 void *v;
2562
2563 v = state->neigh_sub_iter(state, n, &fakep);
2564 if (!v)
2565 goto next;
2566 }
2567 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2568 break;
2569 if (n->nud_state & ~NUD_NOARP)
2570 break;
2571 next:
2572 n = rcu_dereference_bh(n->next);
2573 }
2574
2575 if (n)
2576 break;
2577 }
2578 state->bucket = bucket;
2579
2580 return n;
2581 }
2582
2583 static struct neighbour *neigh_get_next(struct seq_file *seq,
2584 struct neighbour *n,
2585 loff_t *pos)
2586 {
2587 struct neigh_seq_state *state = seq->private;
2588 struct net *net = seq_file_net(seq);
2589 struct neigh_hash_table *nht = state->nht;
2590
2591 if (state->neigh_sub_iter) {
2592 void *v = state->neigh_sub_iter(state, n, pos);
2593 if (v)
2594 return n;
2595 }
2596 n = rcu_dereference_bh(n->next);
2597
2598 while (1) {
2599 while (n) {
2600 if (!net_eq(dev_net(n->dev), net))
2601 goto next;
2602 if (state->neigh_sub_iter) {
2603 void *v = state->neigh_sub_iter(state, n, pos);
2604 if (v)
2605 return n;
2606 goto next;
2607 }
2608 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2609 break;
2610
2611 if (n->nud_state & ~NUD_NOARP)
2612 break;
2613 next:
2614 n = rcu_dereference_bh(n->next);
2615 }
2616
2617 if (n)
2618 break;
2619
2620 if (++state->bucket >= (1 << nht->hash_shift))
2621 break;
2622
2623 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2624 }
2625
2626 if (n && pos)
2627 --(*pos);
2628 return n;
2629 }
2630
2631 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2632 {
2633 struct neighbour *n = neigh_get_first(seq);
2634
2635 if (n) {
2636 --(*pos);
2637 while (*pos) {
2638 n = neigh_get_next(seq, n, pos);
2639 if (!n)
2640 break;
2641 }
2642 }
2643 return *pos ? NULL : n;
2644 }
2645
2646 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2647 {
2648 struct neigh_seq_state *state = seq->private;
2649 struct net *net = seq_file_net(seq);
2650 struct neigh_table *tbl = state->tbl;
2651 struct pneigh_entry *pn = NULL;
2652 int bucket = state->bucket;
2653
2654 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2655 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2656 pn = tbl->phash_buckets[bucket];
2657 while (pn && !net_eq(pneigh_net(pn), net))
2658 pn = pn->next;
2659 if (pn)
2660 break;
2661 }
2662 state->bucket = bucket;
2663
2664 return pn;
2665 }
2666
2667 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2668 struct pneigh_entry *pn,
2669 loff_t *pos)
2670 {
2671 struct neigh_seq_state *state = seq->private;
2672 struct net *net = seq_file_net(seq);
2673 struct neigh_table *tbl = state->tbl;
2674
2675 do {
2676 pn = pn->next;
2677 } while (pn && !net_eq(pneigh_net(pn), net));
2678
2679 while (!pn) {
2680 if (++state->bucket > PNEIGH_HASHMASK)
2681 break;
2682 pn = tbl->phash_buckets[state->bucket];
2683 while (pn && !net_eq(pneigh_net(pn), net))
2684 pn = pn->next;
2685 if (pn)
2686 break;
2687 }
2688
2689 if (pn && pos)
2690 --(*pos);
2691
2692 return pn;
2693 }
2694
2695 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2696 {
2697 struct pneigh_entry *pn = pneigh_get_first(seq);
2698
2699 if (pn) {
2700 --(*pos);
2701 while (*pos) {
2702 pn = pneigh_get_next(seq, pn, pos);
2703 if (!pn)
2704 break;
2705 }
2706 }
2707 return *pos ? NULL : pn;
2708 }
2709
2710 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2711 {
2712 struct neigh_seq_state *state = seq->private;
2713 void *rc;
2714 loff_t idxpos = *pos;
2715
2716 rc = neigh_get_idx(seq, &idxpos);
2717 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2718 rc = pneigh_get_idx(seq, &idxpos);
2719
2720 return rc;
2721 }
2722
2723 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2724 __acquires(rcu_bh)
2725 {
2726 struct neigh_seq_state *state = seq->private;
2727
2728 state->tbl = tbl;
2729 state->bucket = 0;
2730 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2731
2732 rcu_read_lock_bh();
2733 state->nht = rcu_dereference_bh(tbl->nht);
2734
2735 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2736 }
2737 EXPORT_SYMBOL(neigh_seq_start);
2738
2739 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2740 {
2741 struct neigh_seq_state *state;
2742 void *rc;
2743
2744 if (v == SEQ_START_TOKEN) {
2745 rc = neigh_get_first(seq);
2746 goto out;
2747 }
2748
2749 state = seq->private;
2750 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2751 rc = neigh_get_next(seq, v, NULL);
2752 if (rc)
2753 goto out;
2754 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2755 rc = pneigh_get_first(seq);
2756 } else {
2757 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2758 rc = pneigh_get_next(seq, v, NULL);
2759 }
2760 out:
2761 ++(*pos);
2762 return rc;
2763 }
2764 EXPORT_SYMBOL(neigh_seq_next);
2765
2766 void neigh_seq_stop(struct seq_file *seq, void *v)
2767 __releases(rcu_bh)
2768 {
2769 rcu_read_unlock_bh();
2770 }
2771 EXPORT_SYMBOL(neigh_seq_stop);
2772
2773 /* statistics via seq_file */
2774
2775 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2776 {
2777 struct neigh_table *tbl = seq->private;
2778 int cpu;
2779
2780 if (*pos == 0)
2781 return SEQ_START_TOKEN;
2782
2783 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2784 if (!cpu_possible(cpu))
2785 continue;
2786 *pos = cpu+1;
2787 return per_cpu_ptr(tbl->stats, cpu);
2788 }
2789 return NULL;
2790 }
2791
2792 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2793 {
2794 struct neigh_table *tbl = seq->private;
2795 int cpu;
2796
2797 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2798 if (!cpu_possible(cpu))
2799 continue;
2800 *pos = cpu+1;
2801 return per_cpu_ptr(tbl->stats, cpu);
2802 }
2803 return NULL;
2804 }
2805
2806 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2807 {
2808
2809 }
2810
2811 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2812 {
2813 struct neigh_table *tbl = seq->private;
2814 struct neigh_statistics *st = v;
2815
2816 if (v == SEQ_START_TOKEN) {
2817 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
2818 return 0;
2819 }
2820
2821 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2822 "%08lx %08lx %08lx %08lx %08lx %08lx\n",
2823 atomic_read(&tbl->entries),
2824
2825 st->allocs,
2826 st->destroys,
2827 st->hash_grows,
2828
2829 st->lookups,
2830 st->hits,
2831
2832 st->res_failed,
2833
2834 st->rcv_probes_mcast,
2835 st->rcv_probes_ucast,
2836
2837 st->periodic_gc_runs,
2838 st->forced_gc_runs,
2839 st->unres_discards,
2840 st->table_fulls
2841 );
2842
2843 return 0;
2844 }
2845
2846 static const struct seq_operations neigh_stat_seq_ops = {
2847 .start = neigh_stat_seq_start,
2848 .next = neigh_stat_seq_next,
2849 .stop = neigh_stat_seq_stop,
2850 .show = neigh_stat_seq_show,
2851 };
2852
2853 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2854 {
2855 int ret = seq_open(file, &neigh_stat_seq_ops);
2856
2857 if (!ret) {
2858 struct seq_file *sf = file->private_data;
2859 sf->private = PDE_DATA(inode);
2860 }
2861 return ret;
2862 };
2863
2864 static const struct file_operations neigh_stat_seq_fops = {
2865 .owner = THIS_MODULE,
2866 .open = neigh_stat_seq_open,
2867 .read = seq_read,
2868 .llseek = seq_lseek,
2869 .release = seq_release,
2870 };
2871
2872 #endif /* CONFIG_PROC_FS */
2873
2874 static inline size_t neigh_nlmsg_size(void)
2875 {
2876 return NLMSG_ALIGN(sizeof(struct ndmsg))
2877 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2878 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2879 + nla_total_size(sizeof(struct nda_cacheinfo))
2880 + nla_total_size(4); /* NDA_PROBES */
2881 }
2882
2883 static void __neigh_notify(struct neighbour *n, int type, int flags,
2884 u32 pid)
2885 {
2886 struct net *net = dev_net(n->dev);
2887 struct sk_buff *skb;
2888 int err = -ENOBUFS;
2889
2890 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2891 if (skb == NULL)
2892 goto errout;
2893
2894 err = neigh_fill_info(skb, n, pid, 0, type, flags);
2895 if (err < 0) {
2896 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2897 WARN_ON(err == -EMSGSIZE);
2898 kfree_skb(skb);
2899 goto errout;
2900 }
2901 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2902 return;
2903 errout:
2904 if (err < 0)
2905 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2906 }
2907
2908 void neigh_app_ns(struct neighbour *n)
2909 {
2910 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
2911 }
2912 EXPORT_SYMBOL(neigh_app_ns);
2913
2914 #ifdef CONFIG_SYSCTL
2915 static int zero;
2916 static int int_max = INT_MAX;
2917 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
2918
2919 static int proc_unres_qlen(struct ctl_table *ctl, int write,
2920 void __user *buffer, size_t *lenp, loff_t *ppos)
2921 {
2922 int size, ret;
2923 struct ctl_table tmp = *ctl;
2924
2925 tmp.extra1 = &zero;
2926 tmp.extra2 = &unres_qlen_max;
2927 tmp.data = &size;
2928
2929 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
2930 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2931
2932 if (write && !ret)
2933 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2934 return ret;
2935 }
2936
2937 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
2938 int family)
2939 {
2940 switch (family) {
2941 case AF_INET:
2942 return __in_dev_arp_parms_get_rcu(dev);
2943 case AF_INET6:
2944 return __in6_dev_nd_parms_get_rcu(dev);
2945 }
2946 return NULL;
2947 }
2948
2949 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
2950 int index)
2951 {
2952 struct net_device *dev;
2953 int family = neigh_parms_family(p);
2954
2955 rcu_read_lock();
2956 for_each_netdev_rcu(net, dev) {
2957 struct neigh_parms *dst_p =
2958 neigh_get_dev_parms_rcu(dev, family);
2959
2960 if (dst_p && !test_bit(index, dst_p->data_state))
2961 dst_p->data[index] = p->data[index];
2962 }
2963 rcu_read_unlock();
2964 }
2965
2966 static void neigh_proc_update(struct ctl_table *ctl, int write)
2967 {
2968 struct net_device *dev = ctl->extra1;
2969 struct neigh_parms *p = ctl->extra2;
2970 struct net *net = neigh_parms_net(p);
2971 int index = (int *) ctl->data - p->data;
2972
2973 if (!write)
2974 return;
2975
2976 set_bit(index, p->data_state);
2977 if (index == NEIGH_VAR_DELAY_PROBE_TIME)
2978 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2979 if (!dev) /* NULL dev means this is default value */
2980 neigh_copy_dflt_parms(net, p, index);
2981 }
2982
2983 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
2984 void __user *buffer,
2985 size_t *lenp, loff_t *ppos)
2986 {
2987 struct ctl_table tmp = *ctl;
2988 int ret;
2989
2990 tmp.extra1 = &zero;
2991 tmp.extra2 = &int_max;
2992
2993 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
2994 neigh_proc_update(ctl, write);
2995 return ret;
2996 }
2997
2998 int neigh_proc_dointvec(struct ctl_table *ctl, int write,
2999 void __user *buffer, size_t *lenp, loff_t *ppos)
3000 {
3001 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3002
3003 neigh_proc_update(ctl, write);
3004 return ret;
3005 }
3006 EXPORT_SYMBOL(neigh_proc_dointvec);
3007
3008 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write,
3009 void __user *buffer,
3010 size_t *lenp, loff_t *ppos)
3011 {
3012 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3013
3014 neigh_proc_update(ctl, write);
3015 return ret;
3016 }
3017 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3018
3019 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
3020 void __user *buffer,
3021 size_t *lenp, loff_t *ppos)
3022 {
3023 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3024
3025 neigh_proc_update(ctl, write);
3026 return ret;
3027 }
3028
3029 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
3030 void __user *buffer,
3031 size_t *lenp, loff_t *ppos)
3032 {
3033 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3034
3035 neigh_proc_update(ctl, write);
3036 return ret;
3037 }
3038 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3039
3040 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
3041 void __user *buffer,
3042 size_t *lenp, loff_t *ppos)
3043 {
3044 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3045
3046 neigh_proc_update(ctl, write);
3047 return ret;
3048 }
3049
3050 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3051 void __user *buffer,
3052 size_t *lenp, loff_t *ppos)
3053 {
3054 struct neigh_parms *p = ctl->extra2;
3055 int ret;
3056
3057 if (strcmp(ctl->procname, "base_reachable_time") == 0)
3058 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3059 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3060 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3061 else
3062 ret = -1;
3063
3064 if (write && ret == 0) {
3065 /* update reachable_time as well, otherwise, the change will
3066 * only be effective after the next time neigh_periodic_work
3067 * decides to recompute it
3068 */
3069 p->reachable_time =
3070 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3071 }
3072 return ret;
3073 }
3074
3075 #define NEIGH_PARMS_DATA_OFFSET(index) \
3076 (&((struct neigh_parms *) 0)->data[index])
3077
3078 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3079 [NEIGH_VAR_ ## attr] = { \
3080 .procname = name, \
3081 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3082 .maxlen = sizeof(int), \
3083 .mode = mval, \
3084 .proc_handler = proc, \
3085 }
3086
3087 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3088 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3089
3090 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3091 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3092
3093 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3094 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3095
3096 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \
3097 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3098
3099 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3100 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3101
3102 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3103 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3104
3105 static struct neigh_sysctl_table {
3106 struct ctl_table_header *sysctl_header;
3107 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
3108 } neigh_sysctl_template __read_mostly = {
3109 .neigh_vars = {
3110 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3111 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3112 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3113 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3114 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3115 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3116 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3117 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3118 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3119 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3120 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3121 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3122 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3123 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3124 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3125 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3126 [NEIGH_VAR_GC_INTERVAL] = {
3127 .procname = "gc_interval",
3128 .maxlen = sizeof(int),
3129 .mode = 0644,
3130 .proc_handler = proc_dointvec_jiffies,
3131 },
3132 [NEIGH_VAR_GC_THRESH1] = {
3133 .procname = "gc_thresh1",
3134 .maxlen = sizeof(int),
3135 .mode = 0644,
3136 .extra1 = &zero,
3137 .extra2 = &int_max,
3138 .proc_handler = proc_dointvec_minmax,
3139 },
3140 [NEIGH_VAR_GC_THRESH2] = {
3141 .procname = "gc_thresh2",
3142 .maxlen = sizeof(int),
3143 .mode = 0644,
3144 .extra1 = &zero,
3145 .extra2 = &int_max,
3146 .proc_handler = proc_dointvec_minmax,
3147 },
3148 [NEIGH_VAR_GC_THRESH3] = {
3149 .procname = "gc_thresh3",
3150 .maxlen = sizeof(int),
3151 .mode = 0644,
3152 .extra1 = &zero,
3153 .extra2 = &int_max,
3154 .proc_handler = proc_dointvec_minmax,
3155 },
3156 {},
3157 },
3158 };
3159
3160 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3161 proc_handler *handler)
3162 {
3163 int i;
3164 struct neigh_sysctl_table *t;
3165 const char *dev_name_source;
3166 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3167 char *p_name;
3168
3169 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
3170 if (!t)
3171 goto err;
3172
3173 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3174 t->neigh_vars[i].data += (long) p;
3175 t->neigh_vars[i].extra1 = dev;
3176 t->neigh_vars[i].extra2 = p;
3177 }
3178
3179 if (dev) {
3180 dev_name_source = dev->name;
3181 /* Terminate the table early */
3182 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3183 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3184 } else {
3185 struct neigh_table *tbl = p->tbl;
3186 dev_name_source = "default";
3187 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3188 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3189 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3190 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3191 }
3192
3193 if (handler) {
3194 /* RetransTime */
3195 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3196 /* ReachableTime */
3197 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3198 /* RetransTime (in milliseconds)*/
3199 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3200 /* ReachableTime (in milliseconds) */
3201 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3202 } else {
3203 /* Those handlers will update p->reachable_time after
3204 * base_reachable_time(_ms) is set to ensure the new timer starts being
3205 * applied after the next neighbour update instead of waiting for
3206 * neigh_periodic_work to update its value (can be multiple minutes)
3207 * So any handler that replaces them should do this as well
3208 */
3209 /* ReachableTime */
3210 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3211 neigh_proc_base_reachable_time;
3212 /* ReachableTime (in milliseconds) */
3213 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3214 neigh_proc_base_reachable_time;
3215 }
3216
3217 /* Don't export sysctls to unprivileged users */
3218 if (neigh_parms_net(p)->user_ns != &init_user_ns)
3219 t->neigh_vars[0].procname = NULL;
3220
3221 switch (neigh_parms_family(p)) {
3222 case AF_INET:
3223 p_name = "ipv4";
3224 break;
3225 case AF_INET6:
3226 p_name = "ipv6";
3227 break;
3228 default:
3229 BUG();
3230 }
3231
3232 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3233 p_name, dev_name_source);
3234 t->sysctl_header =
3235 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
3236 if (!t->sysctl_header)
3237 goto free;
3238
3239 p->sysctl_table = t;
3240 return 0;
3241
3242 free:
3243 kfree(t);
3244 err:
3245 return -ENOBUFS;
3246 }
3247 EXPORT_SYMBOL(neigh_sysctl_register);
3248
3249 void neigh_sysctl_unregister(struct neigh_parms *p)
3250 {
3251 if (p->sysctl_table) {
3252 struct neigh_sysctl_table *t = p->sysctl_table;
3253 p->sysctl_table = NULL;
3254 unregister_net_sysctl_table(t->sysctl_header);
3255 kfree(t);
3256 }
3257 }
3258 EXPORT_SYMBOL(neigh_sysctl_unregister);
3259
3260 #endif /* CONFIG_SYSCTL */
3261
3262 static int __init neigh_init(void)
3263 {
3264 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
3265 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
3266 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, 0);
3267
3268 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3269 0);
3270 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
3271
3272 return 0;
3273 }
3274
3275 subsys_initcall(neigh_init);
3276