]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv6/ip6_fib.c
2e2804f5823e4ee0baeb42e0d7fdfce310397950
[mirror_ubuntu-bionic-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
42
43 struct fib6_cleaner {
44 struct fib6_walker w;
45 struct net *net;
46 int (*func)(struct rt6_info *, void *arg);
47 int sernum;
48 void *arg;
49 };
50
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65
66 /*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73 static void fib6_gc_timer_cb(unsigned long arg);
74
75 #define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91
92 static int fib6_new_sernum(struct net *net)
93 {
94 int new, old;
95
96 do {
97 old = atomic_read(&net->ipv6.fib6_sernum);
98 new = old < INT_MAX ? old + 1 : 1;
99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 old, new) != old);
101 return new;
102 }
103
104 enum {
105 FIB6_NO_SERNUM_CHANGE = 0,
106 };
107
108 void fib6_update_sernum(struct rt6_info *rt)
109 {
110 struct fib6_table *table = rt->rt6i_table;
111 struct net *net = dev_net(rt->dst.dev);
112 struct fib6_node *fn;
113
114 spin_lock_bh(&table->tb6_lock);
115 fn = rcu_dereference_protected(rt->rt6i_node,
116 lockdep_is_held(&table->tb6_lock));
117 if (fn)
118 fn->fn_sernum = fib6_new_sernum(net);
119 spin_unlock_bh(&table->tb6_lock);
120 }
121
122 /*
123 * Auxiliary address test functions for the radix tree.
124 *
125 * These assume a 32bit processor (although it will work on
126 * 64bit processors)
127 */
128
129 /*
130 * test bit
131 */
132 #if defined(__LITTLE_ENDIAN)
133 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
134 #else
135 # define BITOP_BE32_SWIZZLE 0
136 #endif
137
138 static __be32 addr_bit_set(const void *token, int fn_bit)
139 {
140 const __be32 *addr = token;
141 /*
142 * Here,
143 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
144 * is optimized version of
145 * htonl(1 << ((~fn_bit)&0x1F))
146 * See include/asm-generic/bitops/le.h.
147 */
148 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
149 addr[fn_bit >> 5];
150 }
151
152 static struct fib6_node *node_alloc(struct net *net)
153 {
154 struct fib6_node *fn;
155
156 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
157 if (fn)
158 net->ipv6.rt6_stats->fib_nodes++;
159
160 return fn;
161 }
162
163 static void node_free_immediate(struct net *net, struct fib6_node *fn)
164 {
165 kmem_cache_free(fib6_node_kmem, fn);
166 net->ipv6.rt6_stats->fib_nodes--;
167 }
168
169 static void node_free_rcu(struct rcu_head *head)
170 {
171 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
172
173 kmem_cache_free(fib6_node_kmem, fn);
174 }
175
176 static void node_free(struct net *net, struct fib6_node *fn)
177 {
178 call_rcu(&fn->rcu, node_free_rcu);
179 net->ipv6.rt6_stats->fib_nodes--;
180 }
181
182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
183 {
184 int cpu;
185
186 if (!non_pcpu_rt->rt6i_pcpu)
187 return;
188
189 for_each_possible_cpu(cpu) {
190 struct rt6_info **ppcpu_rt;
191 struct rt6_info *pcpu_rt;
192
193 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
194 pcpu_rt = *ppcpu_rt;
195 if (pcpu_rt) {
196 dst_dev_put(&pcpu_rt->dst);
197 dst_release(&pcpu_rt->dst);
198 *ppcpu_rt = NULL;
199 }
200 }
201 }
202 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
203
204 static void fib6_free_table(struct fib6_table *table)
205 {
206 inetpeer_invalidate_tree(&table->tb6_peers);
207 kfree(table);
208 }
209
210 static void fib6_link_table(struct net *net, struct fib6_table *tb)
211 {
212 unsigned int h;
213
214 /*
215 * Initialize table lock at a single place to give lockdep a key,
216 * tables aren't visible prior to being linked to the list.
217 */
218 spin_lock_init(&tb->tb6_lock);
219 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
220
221 /*
222 * No protection necessary, this is the only list mutatation
223 * operation, tables never disappear once they exist.
224 */
225 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
226 }
227
228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
229
230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
231 {
232 struct fib6_table *table;
233
234 table = kzalloc(sizeof(*table), GFP_ATOMIC);
235 if (table) {
236 table->tb6_id = id;
237 rcu_assign_pointer(table->tb6_root.leaf,
238 net->ipv6.ip6_null_entry);
239 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
240 inet_peer_base_init(&table->tb6_peers);
241 }
242
243 return table;
244 }
245
246 struct fib6_table *fib6_new_table(struct net *net, u32 id)
247 {
248 struct fib6_table *tb;
249
250 if (id == 0)
251 id = RT6_TABLE_MAIN;
252 tb = fib6_get_table(net, id);
253 if (tb)
254 return tb;
255
256 tb = fib6_alloc_table(net, id);
257 if (tb)
258 fib6_link_table(net, tb);
259
260 return tb;
261 }
262 EXPORT_SYMBOL_GPL(fib6_new_table);
263
264 struct fib6_table *fib6_get_table(struct net *net, u32 id)
265 {
266 struct fib6_table *tb;
267 struct hlist_head *head;
268 unsigned int h;
269
270 if (id == 0)
271 id = RT6_TABLE_MAIN;
272 h = id & (FIB6_TABLE_HASHSZ - 1);
273 rcu_read_lock();
274 head = &net->ipv6.fib_table_hash[h];
275 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
276 if (tb->tb6_id == id) {
277 rcu_read_unlock();
278 return tb;
279 }
280 }
281 rcu_read_unlock();
282
283 return NULL;
284 }
285 EXPORT_SYMBOL_GPL(fib6_get_table);
286
287 static void __net_init fib6_tables_init(struct net *net)
288 {
289 fib6_link_table(net, net->ipv6.fib6_main_tbl);
290 fib6_link_table(net, net->ipv6.fib6_local_tbl);
291 }
292 #else
293
294 struct fib6_table *fib6_new_table(struct net *net, u32 id)
295 {
296 return fib6_get_table(net, id);
297 }
298
299 struct fib6_table *fib6_get_table(struct net *net, u32 id)
300 {
301 return net->ipv6.fib6_main_tbl;
302 }
303
304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
305 int flags, pol_lookup_t lookup)
306 {
307 struct rt6_info *rt;
308
309 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
310 if (rt->dst.error == -EAGAIN) {
311 ip6_rt_put(rt);
312 rt = net->ipv6.ip6_null_entry;
313 dst_hold(&rt->dst);
314 }
315
316 return &rt->dst;
317 }
318
319 static void __net_init fib6_tables_init(struct net *net)
320 {
321 fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 }
323
324 #endif
325
326 unsigned int fib6_tables_seq_read(struct net *net)
327 {
328 unsigned int h, fib_seq = 0;
329
330 rcu_read_lock();
331 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
332 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
333 struct fib6_table *tb;
334
335 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
336 fib_seq += tb->fib_seq;
337 }
338 rcu_read_unlock();
339
340 return fib_seq;
341 }
342
343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
344 enum fib_event_type event_type,
345 struct rt6_info *rt)
346 {
347 struct fib6_entry_notifier_info info = {
348 .rt = rt,
349 };
350
351 return call_fib6_notifier(nb, net, event_type, &info.info);
352 }
353
354 static int call_fib6_entry_notifiers(struct net *net,
355 enum fib_event_type event_type,
356 struct rt6_info *rt,
357 struct netlink_ext_ack *extack)
358 {
359 struct fib6_entry_notifier_info info = {
360 .info.extack = extack,
361 .rt = rt,
362 };
363
364 rt->rt6i_table->fib_seq++;
365 return call_fib6_notifiers(net, event_type, &info.info);
366 }
367
368 struct fib6_dump_arg {
369 struct net *net;
370 struct notifier_block *nb;
371 };
372
373 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
374 {
375 if (rt == arg->net->ipv6.ip6_null_entry)
376 return;
377 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
378 }
379
380 static int fib6_node_dump(struct fib6_walker *w)
381 {
382 struct rt6_info *rt;
383
384 for_each_fib6_walker_rt(w)
385 fib6_rt_dump(rt, w->args);
386 w->leaf = NULL;
387 return 0;
388 }
389
390 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
391 struct fib6_walker *w)
392 {
393 w->root = &tb->tb6_root;
394 spin_lock_bh(&tb->tb6_lock);
395 fib6_walk(net, w);
396 spin_unlock_bh(&tb->tb6_lock);
397 }
398
399 /* Called with rcu_read_lock() */
400 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
401 {
402 struct fib6_dump_arg arg;
403 struct fib6_walker *w;
404 unsigned int h;
405
406 w = kzalloc(sizeof(*w), GFP_ATOMIC);
407 if (!w)
408 return -ENOMEM;
409
410 w->func = fib6_node_dump;
411 arg.net = net;
412 arg.nb = nb;
413 w->args = &arg;
414
415 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
416 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
417 struct fib6_table *tb;
418
419 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
420 fib6_table_dump(net, tb, w);
421 }
422
423 kfree(w);
424
425 return 0;
426 }
427
428 static int fib6_dump_node(struct fib6_walker *w)
429 {
430 int res;
431 struct rt6_info *rt;
432
433 for_each_fib6_walker_rt(w) {
434 res = rt6_dump_route(rt, w->args);
435 if (res < 0) {
436 /* Frame is full, suspend walking */
437 w->leaf = rt;
438 return 1;
439 }
440
441 /* Multipath routes are dumped in one route with the
442 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
443 * last sibling of this route (no need to dump the
444 * sibling routes again)
445 */
446 if (rt->rt6i_nsiblings)
447 rt = list_last_entry(&rt->rt6i_siblings,
448 struct rt6_info,
449 rt6i_siblings);
450 }
451 w->leaf = NULL;
452 return 0;
453 }
454
455 static void fib6_dump_end(struct netlink_callback *cb)
456 {
457 struct net *net = sock_net(cb->skb->sk);
458 struct fib6_walker *w = (void *)cb->args[2];
459
460 if (w) {
461 if (cb->args[4]) {
462 cb->args[4] = 0;
463 fib6_walker_unlink(net, w);
464 }
465 cb->args[2] = 0;
466 kfree(w);
467 }
468 cb->done = (void *)cb->args[3];
469 cb->args[1] = 3;
470 }
471
472 static int fib6_dump_done(struct netlink_callback *cb)
473 {
474 fib6_dump_end(cb);
475 return cb->done ? cb->done(cb) : 0;
476 }
477
478 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
479 struct netlink_callback *cb)
480 {
481 struct net *net = sock_net(skb->sk);
482 struct fib6_walker *w;
483 int res;
484
485 w = (void *)cb->args[2];
486 w->root = &table->tb6_root;
487
488 if (cb->args[4] == 0) {
489 w->count = 0;
490 w->skip = 0;
491
492 spin_lock_bh(&table->tb6_lock);
493 res = fib6_walk(net, w);
494 spin_unlock_bh(&table->tb6_lock);
495 if (res > 0) {
496 cb->args[4] = 1;
497 cb->args[5] = w->root->fn_sernum;
498 }
499 } else {
500 if (cb->args[5] != w->root->fn_sernum) {
501 /* Begin at the root if the tree changed */
502 cb->args[5] = w->root->fn_sernum;
503 w->state = FWS_INIT;
504 w->node = w->root;
505 w->skip = w->count;
506 } else
507 w->skip = 0;
508
509 spin_lock_bh(&table->tb6_lock);
510 res = fib6_walk_continue(w);
511 spin_unlock_bh(&table->tb6_lock);
512 if (res <= 0) {
513 fib6_walker_unlink(net, w);
514 cb->args[4] = 0;
515 }
516 }
517
518 return res;
519 }
520
521 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
522 {
523 struct net *net = sock_net(skb->sk);
524 unsigned int h, s_h;
525 unsigned int e = 0, s_e;
526 struct rt6_rtnl_dump_arg arg;
527 struct fib6_walker *w;
528 struct fib6_table *tb;
529 struct hlist_head *head;
530 int res = 0;
531
532 s_h = cb->args[0];
533 s_e = cb->args[1];
534
535 w = (void *)cb->args[2];
536 if (!w) {
537 /* New dump:
538 *
539 * 1. hook callback destructor.
540 */
541 cb->args[3] = (long)cb->done;
542 cb->done = fib6_dump_done;
543
544 /*
545 * 2. allocate and initialize walker.
546 */
547 w = kzalloc(sizeof(*w), GFP_ATOMIC);
548 if (!w)
549 return -ENOMEM;
550 w->func = fib6_dump_node;
551 cb->args[2] = (long)w;
552 }
553
554 arg.skb = skb;
555 arg.cb = cb;
556 arg.net = net;
557 w->args = &arg;
558
559 rcu_read_lock();
560 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
561 e = 0;
562 head = &net->ipv6.fib_table_hash[h];
563 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
564 if (e < s_e)
565 goto next;
566 res = fib6_dump_table(tb, skb, cb);
567 if (res != 0)
568 goto out;
569 next:
570 e++;
571 }
572 }
573 out:
574 rcu_read_unlock();
575 cb->args[1] = e;
576 cb->args[0] = h;
577
578 res = res < 0 ? res : skb->len;
579 if (res <= 0)
580 fib6_dump_end(cb);
581 return res;
582 }
583
584 /*
585 * Routing Table
586 *
587 * return the appropriate node for a routing tree "add" operation
588 * by either creating and inserting or by returning an existing
589 * node.
590 */
591
592 static struct fib6_node *fib6_add_1(struct net *net,
593 struct fib6_table *table,
594 struct fib6_node *root,
595 struct in6_addr *addr, int plen,
596 int offset, int allow_create,
597 int replace_required,
598 struct netlink_ext_ack *extack)
599 {
600 struct fib6_node *fn, *in, *ln;
601 struct fib6_node *pn = NULL;
602 struct rt6key *key;
603 int bit;
604 __be32 dir = 0;
605
606 RT6_TRACE("fib6_add_1\n");
607
608 /* insert node in tree */
609
610 fn = root;
611
612 do {
613 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
614 lockdep_is_held(&table->tb6_lock));
615 key = (struct rt6key *)((u8 *)leaf + offset);
616
617 /*
618 * Prefix match
619 */
620 if (plen < fn->fn_bit ||
621 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
622 if (!allow_create) {
623 if (replace_required) {
624 NL_SET_ERR_MSG(extack,
625 "Can not replace route - no match found");
626 pr_warn("Can't replace route, no match found\n");
627 return ERR_PTR(-ENOENT);
628 }
629 pr_warn("NLM_F_CREATE should be set when creating new route\n");
630 }
631 goto insert_above;
632 }
633
634 /*
635 * Exact match ?
636 */
637
638 if (plen == fn->fn_bit) {
639 /* clean up an intermediate node */
640 if (!(fn->fn_flags & RTN_RTINFO)) {
641 RCU_INIT_POINTER(fn->leaf, NULL);
642 rt6_release(leaf);
643 }
644
645 return fn;
646 }
647
648 /*
649 * We have more bits to go
650 */
651
652 /* Try to walk down on tree. */
653 dir = addr_bit_set(addr, fn->fn_bit);
654 pn = fn;
655 fn = dir ?
656 rcu_dereference_protected(fn->right,
657 lockdep_is_held(&table->tb6_lock)) :
658 rcu_dereference_protected(fn->left,
659 lockdep_is_held(&table->tb6_lock));
660 } while (fn);
661
662 if (!allow_create) {
663 /* We should not create new node because
664 * NLM_F_REPLACE was specified without NLM_F_CREATE
665 * I assume it is safe to require NLM_F_CREATE when
666 * REPLACE flag is used! Later we may want to remove the
667 * check for replace_required, because according
668 * to netlink specification, NLM_F_CREATE
669 * MUST be specified if new route is created.
670 * That would keep IPv6 consistent with IPv4
671 */
672 if (replace_required) {
673 NL_SET_ERR_MSG(extack,
674 "Can not replace route - no match found");
675 pr_warn("Can't replace route, no match found\n");
676 return ERR_PTR(-ENOENT);
677 }
678 pr_warn("NLM_F_CREATE should be set when creating new route\n");
679 }
680 /*
681 * We walked to the bottom of tree.
682 * Create new leaf node without children.
683 */
684
685 ln = node_alloc(net);
686
687 if (!ln)
688 return ERR_PTR(-ENOMEM);
689 ln->fn_bit = plen;
690 RCU_INIT_POINTER(ln->parent, pn);
691
692 if (dir)
693 rcu_assign_pointer(pn->right, ln);
694 else
695 rcu_assign_pointer(pn->left, ln);
696
697 return ln;
698
699
700 insert_above:
701 /*
702 * split since we don't have a common prefix anymore or
703 * we have a less significant route.
704 * we've to insert an intermediate node on the list
705 * this new node will point to the one we need to create
706 * and the current
707 */
708
709 pn = rcu_dereference_protected(fn->parent,
710 lockdep_is_held(&table->tb6_lock));
711
712 /* find 1st bit in difference between the 2 addrs.
713
714 See comment in __ipv6_addr_diff: bit may be an invalid value,
715 but if it is >= plen, the value is ignored in any case.
716 */
717
718 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
719
720 /*
721 * (intermediate)[in]
722 * / \
723 * (new leaf node)[ln] (old node)[fn]
724 */
725 if (plen > bit) {
726 in = node_alloc(net);
727 ln = node_alloc(net);
728
729 if (!in || !ln) {
730 if (in)
731 node_free_immediate(net, in);
732 if (ln)
733 node_free_immediate(net, ln);
734 return ERR_PTR(-ENOMEM);
735 }
736
737 /*
738 * new intermediate node.
739 * RTN_RTINFO will
740 * be off since that an address that chooses one of
741 * the branches would not match less specific routes
742 * in the other branch
743 */
744
745 in->fn_bit = bit;
746
747 RCU_INIT_POINTER(in->parent, pn);
748 in->leaf = fn->leaf;
749 atomic_inc(&rcu_dereference_protected(in->leaf,
750 lockdep_is_held(&table->tb6_lock))->rt6i_ref);
751
752 /* update parent pointer */
753 if (dir)
754 rcu_assign_pointer(pn->right, in);
755 else
756 rcu_assign_pointer(pn->left, in);
757
758 ln->fn_bit = plen;
759
760 RCU_INIT_POINTER(ln->parent, in);
761 rcu_assign_pointer(fn->parent, in);
762
763 if (addr_bit_set(addr, bit)) {
764 rcu_assign_pointer(in->right, ln);
765 rcu_assign_pointer(in->left, fn);
766 } else {
767 rcu_assign_pointer(in->left, ln);
768 rcu_assign_pointer(in->right, fn);
769 }
770 } else { /* plen <= bit */
771
772 /*
773 * (new leaf node)[ln]
774 * / \
775 * (old node)[fn] NULL
776 */
777
778 ln = node_alloc(net);
779
780 if (!ln)
781 return ERR_PTR(-ENOMEM);
782
783 ln->fn_bit = plen;
784
785 RCU_INIT_POINTER(ln->parent, pn);
786
787 if (addr_bit_set(&key->addr, plen))
788 RCU_INIT_POINTER(ln->right, fn);
789 else
790 RCU_INIT_POINTER(ln->left, fn);
791
792 rcu_assign_pointer(fn->parent, ln);
793
794 if (dir)
795 rcu_assign_pointer(pn->right, ln);
796 else
797 rcu_assign_pointer(pn->left, ln);
798 }
799 return ln;
800 }
801
802 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
803 {
804 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
805 RTF_GATEWAY;
806 }
807
808 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
809 {
810 int i;
811
812 for (i = 0; i < RTAX_MAX; i++) {
813 if (test_bit(i, mxc->mx_valid))
814 mp[i] = mxc->mx[i];
815 }
816 }
817
818 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
819 {
820 if (!mxc->mx)
821 return 0;
822
823 if (dst->flags & DST_HOST) {
824 u32 *mp = dst_metrics_write_ptr(dst);
825
826 if (unlikely(!mp))
827 return -ENOMEM;
828
829 fib6_copy_metrics(mp, mxc);
830 } else {
831 dst_init_metrics(dst, mxc->mx, false);
832
833 /* We've stolen mx now. */
834 mxc->mx = NULL;
835 }
836
837 return 0;
838 }
839
840 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
841 struct net *net)
842 {
843 struct fib6_table *table = rt->rt6i_table;
844
845 if (atomic_read(&rt->rt6i_ref) != 1) {
846 /* This route is used as dummy address holder in some split
847 * nodes. It is not leaked, but it still holds other resources,
848 * which must be released in time. So, scan ascendant nodes
849 * and replace dummy references to this route with references
850 * to still alive ones.
851 */
852 while (fn) {
853 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
854 lockdep_is_held(&table->tb6_lock));
855 struct rt6_info *new_leaf;
856 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
857 new_leaf = fib6_find_prefix(net, table, fn);
858 atomic_inc(&new_leaf->rt6i_ref);
859 rcu_assign_pointer(fn->leaf, new_leaf);
860 rt6_release(rt);
861 }
862 fn = rcu_dereference_protected(fn->parent,
863 lockdep_is_held(&table->tb6_lock));
864 }
865 }
866 }
867
868 /*
869 * Insert routing information in a node.
870 */
871
872 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
873 struct nl_info *info, struct mx6_config *mxc,
874 struct netlink_ext_ack *extack)
875 {
876 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
877 lockdep_is_held(&rt->rt6i_table->tb6_lock));
878 struct rt6_info *iter = NULL;
879 struct rt6_info __rcu **ins;
880 struct rt6_info __rcu **fallback_ins = NULL;
881 int replace = (info->nlh &&
882 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
883 int add = (!info->nlh ||
884 (info->nlh->nlmsg_flags & NLM_F_CREATE));
885 int found = 0;
886 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
887 u16 nlflags = NLM_F_EXCL;
888 int err;
889
890 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
891 nlflags |= NLM_F_APPEND;
892
893 ins = &fn->leaf;
894
895 for (iter = leaf; iter;
896 iter = rcu_dereference_protected(iter->dst.rt6_next,
897 lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
898 /*
899 * Search for duplicates
900 */
901
902 if (iter->rt6i_metric == rt->rt6i_metric) {
903 /*
904 * Same priority level
905 */
906 if (info->nlh &&
907 (info->nlh->nlmsg_flags & NLM_F_EXCL))
908 return -EEXIST;
909
910 nlflags &= ~NLM_F_EXCL;
911 if (replace) {
912 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
913 found++;
914 break;
915 }
916 if (rt_can_ecmp)
917 fallback_ins = fallback_ins ?: ins;
918 goto next_iter;
919 }
920
921 if (rt6_duplicate_nexthop(iter, rt)) {
922 if (rt->rt6i_nsiblings)
923 rt->rt6i_nsiblings = 0;
924 if (!(iter->rt6i_flags & RTF_EXPIRES))
925 return -EEXIST;
926 if (!(rt->rt6i_flags & RTF_EXPIRES))
927 rt6_clean_expires(iter);
928 else
929 rt6_set_expires(iter, rt->dst.expires);
930 iter->rt6i_pmtu = rt->rt6i_pmtu;
931 return -EEXIST;
932 }
933 /* If we have the same destination and the same metric,
934 * but not the same gateway, then the route we try to
935 * add is sibling to this route, increment our counter
936 * of siblings, and later we will add our route to the
937 * list.
938 * Only static routes (which don't have flag
939 * RTF_EXPIRES) are used for ECMPv6.
940 *
941 * To avoid long list, we only had siblings if the
942 * route have a gateway.
943 */
944 if (rt_can_ecmp &&
945 rt6_qualify_for_ecmp(iter))
946 rt->rt6i_nsiblings++;
947 }
948
949 if (iter->rt6i_metric > rt->rt6i_metric)
950 break;
951
952 next_iter:
953 ins = &iter->dst.rt6_next;
954 }
955
956 if (fallback_ins && !found) {
957 /* No ECMP-able route found, replace first non-ECMP one */
958 ins = fallback_ins;
959 iter = rcu_dereference_protected(*ins,
960 lockdep_is_held(&rt->rt6i_table->tb6_lock));
961 found++;
962 }
963
964 /* Reset round-robin state, if necessary */
965 if (ins == &fn->leaf)
966 fn->rr_ptr = NULL;
967
968 /* Link this route to others same route. */
969 if (rt->rt6i_nsiblings) {
970 unsigned int rt6i_nsiblings;
971 struct rt6_info *sibling, *temp_sibling;
972
973 /* Find the first route that have the same metric */
974 sibling = leaf;
975 while (sibling) {
976 if (sibling->rt6i_metric == rt->rt6i_metric &&
977 rt6_qualify_for_ecmp(sibling)) {
978 list_add_tail(&rt->rt6i_siblings,
979 &sibling->rt6i_siblings);
980 break;
981 }
982 sibling = rcu_dereference_protected(sibling->dst.rt6_next,
983 lockdep_is_held(&rt->rt6i_table->tb6_lock));
984 }
985 /* For each sibling in the list, increment the counter of
986 * siblings. BUG() if counters does not match, list of siblings
987 * is broken!
988 */
989 rt6i_nsiblings = 0;
990 list_for_each_entry_safe(sibling, temp_sibling,
991 &rt->rt6i_siblings, rt6i_siblings) {
992 sibling->rt6i_nsiblings++;
993 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
994 rt6i_nsiblings++;
995 }
996 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
997 }
998
999 /*
1000 * insert node
1001 */
1002 if (!replace) {
1003 if (!add)
1004 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1005
1006 add:
1007 nlflags |= NLM_F_CREATE;
1008 err = fib6_commit_metrics(&rt->dst, mxc);
1009 if (err)
1010 return err;
1011
1012 rcu_assign_pointer(rt->dst.rt6_next, iter);
1013 atomic_inc(&rt->rt6i_ref);
1014 rcu_assign_pointer(rt->rt6i_node, fn);
1015 rcu_assign_pointer(*ins, rt);
1016 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1017 rt, extack);
1018 if (!info->skip_notify)
1019 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1020 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1021
1022 if (!(fn->fn_flags & RTN_RTINFO)) {
1023 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1024 fn->fn_flags |= RTN_RTINFO;
1025 }
1026
1027 } else {
1028 int nsiblings;
1029
1030 if (!found) {
1031 if (add)
1032 goto add;
1033 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1034 return -ENOENT;
1035 }
1036
1037 err = fib6_commit_metrics(&rt->dst, mxc);
1038 if (err)
1039 return err;
1040
1041 atomic_inc(&rt->rt6i_ref);
1042 rcu_assign_pointer(rt->rt6i_node, fn);
1043 rt->dst.rt6_next = iter->dst.rt6_next;
1044 rcu_assign_pointer(*ins, rt);
1045 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1046 rt, extack);
1047 if (!info->skip_notify)
1048 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1049 if (!(fn->fn_flags & RTN_RTINFO)) {
1050 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1051 fn->fn_flags |= RTN_RTINFO;
1052 }
1053 nsiblings = iter->rt6i_nsiblings;
1054 iter->rt6i_node = NULL;
1055 fib6_purge_rt(iter, fn, info->nl_net);
1056 if (rcu_access_pointer(fn->rr_ptr) == iter)
1057 fn->rr_ptr = NULL;
1058 rt6_release(iter);
1059
1060 if (nsiblings) {
1061 /* Replacing an ECMP route, remove all siblings */
1062 ins = &rt->dst.rt6_next;
1063 iter = rcu_dereference_protected(*ins,
1064 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1065 while (iter) {
1066 if (iter->rt6i_metric > rt->rt6i_metric)
1067 break;
1068 if (rt6_qualify_for_ecmp(iter)) {
1069 *ins = iter->dst.rt6_next;
1070 iter->rt6i_node = NULL;
1071 fib6_purge_rt(iter, fn, info->nl_net);
1072 if (rcu_access_pointer(fn->rr_ptr) == iter)
1073 fn->rr_ptr = NULL;
1074 rt6_release(iter);
1075 nsiblings--;
1076 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1077 } else {
1078 ins = &iter->dst.rt6_next;
1079 }
1080 iter = rcu_dereference_protected(*ins,
1081 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1082 }
1083 WARN_ON(nsiblings != 0);
1084 }
1085 }
1086
1087 return 0;
1088 }
1089
1090 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1091 {
1092 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1093 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1094 mod_timer(&net->ipv6.ip6_fib_timer,
1095 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1096 }
1097
1098 void fib6_force_start_gc(struct net *net)
1099 {
1100 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1101 mod_timer(&net->ipv6.ip6_fib_timer,
1102 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1103 }
1104
1105 static void fib6_update_sernum_upto_root(struct rt6_info *rt,
1106 int sernum)
1107 {
1108 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1109 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1110
1111 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1112 smp_wmb();
1113 while (fn) {
1114 fn->fn_sernum = sernum;
1115 fn = rcu_dereference_protected(fn->parent,
1116 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1117 }
1118 }
1119
1120 /*
1121 * Add routing information to the routing tree.
1122 * <destination addr>/<source addr>
1123 * with source addr info in sub-trees
1124 * Need to own table->tb6_lock
1125 */
1126
1127 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1128 struct nl_info *info, struct mx6_config *mxc,
1129 struct netlink_ext_ack *extack)
1130 {
1131 struct fib6_table *table = rt->rt6i_table;
1132 struct fib6_node *fn, *pn = NULL;
1133 int err = -ENOMEM;
1134 int allow_create = 1;
1135 int replace_required = 0;
1136 int sernum = fib6_new_sernum(info->nl_net);
1137
1138 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1139 return -EINVAL;
1140 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1141 return -EINVAL;
1142
1143 if (info->nlh) {
1144 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1145 allow_create = 0;
1146 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1147 replace_required = 1;
1148 }
1149 if (!allow_create && !replace_required)
1150 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1151
1152 fn = fib6_add_1(info->nl_net, table, root,
1153 &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1154 offsetof(struct rt6_info, rt6i_dst), allow_create,
1155 replace_required, extack);
1156 if (IS_ERR(fn)) {
1157 err = PTR_ERR(fn);
1158 fn = NULL;
1159 goto out;
1160 }
1161
1162 pn = fn;
1163
1164 #ifdef CONFIG_IPV6_SUBTREES
1165 if (rt->rt6i_src.plen) {
1166 struct fib6_node *sn;
1167
1168 if (!rcu_access_pointer(fn->subtree)) {
1169 struct fib6_node *sfn;
1170
1171 /*
1172 * Create subtree.
1173 *
1174 * fn[main tree]
1175 * |
1176 * sfn[subtree root]
1177 * \
1178 * sn[new leaf node]
1179 */
1180
1181 /* Create subtree root node */
1182 sfn = node_alloc(info->nl_net);
1183 if (!sfn)
1184 goto failure;
1185
1186 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1187 rcu_assign_pointer(sfn->leaf,
1188 info->nl_net->ipv6.ip6_null_entry);
1189 sfn->fn_flags = RTN_ROOT;
1190
1191 /* Now add the first leaf node to new subtree */
1192
1193 sn = fib6_add_1(info->nl_net, table, sfn,
1194 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1195 offsetof(struct rt6_info, rt6i_src),
1196 allow_create, replace_required, extack);
1197
1198 if (IS_ERR(sn)) {
1199 /* If it is failed, discard just allocated
1200 root, and then (in failure) stale node
1201 in main tree.
1202 */
1203 node_free_immediate(info->nl_net, sfn);
1204 err = PTR_ERR(sn);
1205 goto failure;
1206 }
1207
1208 /* Now link new subtree to main tree */
1209 rcu_assign_pointer(sfn->parent, fn);
1210 rcu_assign_pointer(fn->subtree, sfn);
1211 } else {
1212 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1213 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1214 offsetof(struct rt6_info, rt6i_src),
1215 allow_create, replace_required, extack);
1216
1217 if (IS_ERR(sn)) {
1218 err = PTR_ERR(sn);
1219 goto failure;
1220 }
1221 }
1222
1223 if (!rcu_access_pointer(fn->leaf)) {
1224 atomic_inc(&rt->rt6i_ref);
1225 rcu_assign_pointer(fn->leaf, rt);
1226 }
1227 fn = sn;
1228 }
1229 #endif
1230
1231 err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1232 if (!err) {
1233 fib6_update_sernum_upto_root(rt, sernum);
1234 fib6_start_gc(info->nl_net, rt);
1235 }
1236
1237 out:
1238 if (err) {
1239 #ifdef CONFIG_IPV6_SUBTREES
1240 /*
1241 * If fib6_add_1 has cleared the old leaf pointer in the
1242 * super-tree leaf node we have to find a new one for it.
1243 */
1244 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1245 lockdep_is_held(&table->tb6_lock));
1246 if (pn != fn && pn_leaf == rt) {
1247 pn_leaf = NULL;
1248 RCU_INIT_POINTER(pn->leaf, NULL);
1249 atomic_dec(&rt->rt6i_ref);
1250 }
1251 if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1252 pn_leaf = fib6_find_prefix(info->nl_net, table, pn);
1253 #if RT6_DEBUG >= 2
1254 if (!pn_leaf) {
1255 WARN_ON(!pn_leaf);
1256 pn_leaf = info->nl_net->ipv6.ip6_null_entry;
1257 }
1258 #endif
1259 atomic_inc(&pn_leaf->rt6i_ref);
1260 rcu_assign_pointer(pn->leaf, pn_leaf);
1261 }
1262 #endif
1263 goto failure;
1264 }
1265 return err;
1266
1267 failure:
1268 /* fn->leaf could be NULL if fn is an intermediate node and we
1269 * failed to add the new route to it in both subtree creation
1270 * failure and fib6_add_rt2node() failure case.
1271 * In both cases, fib6_repair_tree() should be called to fix
1272 * fn->leaf.
1273 */
1274 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1275 fib6_repair_tree(info->nl_net, table, fn);
1276 /* Always release dst as dst->__refcnt is guaranteed
1277 * to be taken before entering this function
1278 */
1279 dst_release_immediate(&rt->dst);
1280 return err;
1281 }
1282
1283 /*
1284 * Routing tree lookup
1285 *
1286 */
1287
1288 struct lookup_args {
1289 int offset; /* key offset on rt6_info */
1290 const struct in6_addr *addr; /* search key */
1291 };
1292
1293 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1294 struct lookup_args *args)
1295 {
1296 struct fib6_node *fn;
1297 __be32 dir;
1298
1299 if (unlikely(args->offset == 0))
1300 return NULL;
1301
1302 /*
1303 * Descend on a tree
1304 */
1305
1306 fn = root;
1307
1308 for (;;) {
1309 struct fib6_node *next;
1310
1311 dir = addr_bit_set(args->addr, fn->fn_bit);
1312
1313 next = dir ? rcu_dereference(fn->right) :
1314 rcu_dereference(fn->left);
1315
1316 if (next) {
1317 fn = next;
1318 continue;
1319 }
1320 break;
1321 }
1322
1323 while (fn) {
1324 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1325
1326 if (subtree || fn->fn_flags & RTN_RTINFO) {
1327 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1328 struct rt6key *key;
1329
1330 if (!leaf)
1331 goto backtrack;
1332
1333 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1334
1335 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1336 #ifdef CONFIG_IPV6_SUBTREES
1337 if (subtree) {
1338 struct fib6_node *sfn;
1339 sfn = fib6_lookup_1(subtree, args + 1);
1340 if (!sfn)
1341 goto backtrack;
1342 fn = sfn;
1343 }
1344 #endif
1345 if (fn->fn_flags & RTN_RTINFO)
1346 return fn;
1347 }
1348 }
1349 backtrack:
1350 if (fn->fn_flags & RTN_ROOT)
1351 break;
1352
1353 fn = rcu_dereference(fn->parent);
1354 }
1355
1356 return NULL;
1357 }
1358
1359 /* called with rcu_read_lock() held
1360 */
1361 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1362 const struct in6_addr *saddr)
1363 {
1364 struct fib6_node *fn;
1365 struct lookup_args args[] = {
1366 {
1367 .offset = offsetof(struct rt6_info, rt6i_dst),
1368 .addr = daddr,
1369 },
1370 #ifdef CONFIG_IPV6_SUBTREES
1371 {
1372 .offset = offsetof(struct rt6_info, rt6i_src),
1373 .addr = saddr,
1374 },
1375 #endif
1376 {
1377 .offset = 0, /* sentinel */
1378 }
1379 };
1380
1381 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1382 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1383 fn = root;
1384
1385 return fn;
1386 }
1387
1388 /*
1389 * Get node with specified destination prefix (and source prefix,
1390 * if subtrees are used)
1391 * exact_match == true means we try to find fn with exact match of
1392 * the passed in prefix addr
1393 * exact_match == false means we try to find fn with longest prefix
1394 * match of the passed in prefix addr. This is useful for finding fn
1395 * for cached route as it will be stored in the exception table under
1396 * the node with longest prefix length.
1397 */
1398
1399
1400 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1401 const struct in6_addr *addr,
1402 int plen, int offset,
1403 bool exact_match)
1404 {
1405 struct fib6_node *fn, *prev = NULL;
1406
1407 for (fn = root; fn ; ) {
1408 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1409 struct rt6key *key;
1410
1411 /* This node is being deleted */
1412 if (!leaf) {
1413 if (plen <= fn->fn_bit)
1414 goto out;
1415 else
1416 goto next;
1417 }
1418
1419 key = (struct rt6key *)((u8 *)leaf + offset);
1420
1421 /*
1422 * Prefix match
1423 */
1424 if (plen < fn->fn_bit ||
1425 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1426 goto out;
1427
1428 if (plen == fn->fn_bit)
1429 return fn;
1430
1431 prev = fn;
1432
1433 next:
1434 /*
1435 * We have more bits to go
1436 */
1437 if (addr_bit_set(addr, fn->fn_bit))
1438 fn = rcu_dereference(fn->right);
1439 else
1440 fn = rcu_dereference(fn->left);
1441 }
1442 out:
1443 if (exact_match)
1444 return NULL;
1445 else
1446 return prev;
1447 }
1448
1449 struct fib6_node *fib6_locate(struct fib6_node *root,
1450 const struct in6_addr *daddr, int dst_len,
1451 const struct in6_addr *saddr, int src_len,
1452 bool exact_match)
1453 {
1454 struct fib6_node *fn;
1455
1456 fn = fib6_locate_1(root, daddr, dst_len,
1457 offsetof(struct rt6_info, rt6i_dst),
1458 exact_match);
1459
1460 #ifdef CONFIG_IPV6_SUBTREES
1461 if (src_len) {
1462 WARN_ON(saddr == NULL);
1463 if (fn) {
1464 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1465
1466 if (subtree) {
1467 fn = fib6_locate_1(subtree, saddr, src_len,
1468 offsetof(struct rt6_info, rt6i_src),
1469 exact_match);
1470 }
1471 }
1472 }
1473 #endif
1474
1475 if (fn && fn->fn_flags & RTN_RTINFO)
1476 return fn;
1477
1478 return NULL;
1479 }
1480
1481
1482 /*
1483 * Deletion
1484 *
1485 */
1486
1487 static struct rt6_info *fib6_find_prefix(struct net *net,
1488 struct fib6_table *table,
1489 struct fib6_node *fn)
1490 {
1491 struct fib6_node *child_left, *child_right;
1492
1493 if (fn->fn_flags & RTN_ROOT)
1494 return net->ipv6.ip6_null_entry;
1495
1496 while (fn) {
1497 child_left = rcu_dereference_protected(fn->left,
1498 lockdep_is_held(&table->tb6_lock));
1499 child_right = rcu_dereference_protected(fn->right,
1500 lockdep_is_held(&table->tb6_lock));
1501 if (child_left)
1502 return rcu_dereference_protected(child_left->leaf,
1503 lockdep_is_held(&table->tb6_lock));
1504 if (child_right)
1505 return rcu_dereference_protected(child_right->leaf,
1506 lockdep_is_held(&table->tb6_lock));
1507
1508 fn = FIB6_SUBTREE(fn);
1509 }
1510 return NULL;
1511 }
1512
1513 /*
1514 * Called to trim the tree of intermediate nodes when possible. "fn"
1515 * is the node we want to try and remove.
1516 * Need to own table->tb6_lock
1517 */
1518
1519 static struct fib6_node *fib6_repair_tree(struct net *net,
1520 struct fib6_table *table,
1521 struct fib6_node *fn)
1522 {
1523 int children;
1524 int nstate;
1525 struct fib6_node *child;
1526 struct fib6_walker *w;
1527 int iter = 0;
1528
1529 for (;;) {
1530 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1531 lockdep_is_held(&table->tb6_lock));
1532 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1533 lockdep_is_held(&table->tb6_lock));
1534 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1535 lockdep_is_held(&table->tb6_lock));
1536 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1537 lockdep_is_held(&table->tb6_lock));
1538 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1539 lockdep_is_held(&table->tb6_lock));
1540 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1541 lockdep_is_held(&table->tb6_lock));
1542 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1543 lockdep_is_held(&table->tb6_lock));
1544 struct rt6_info *new_fn_leaf;
1545
1546 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1547 iter++;
1548
1549 WARN_ON(fn->fn_flags & RTN_RTINFO);
1550 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1551 WARN_ON(fn_leaf);
1552
1553 children = 0;
1554 child = NULL;
1555 if (fn_r)
1556 child = fn_r, children |= 1;
1557 if (fn_l)
1558 child = fn_l, children |= 2;
1559
1560 if (children == 3 || FIB6_SUBTREE(fn)
1561 #ifdef CONFIG_IPV6_SUBTREES
1562 /* Subtree root (i.e. fn) may have one child */
1563 || (children && fn->fn_flags & RTN_ROOT)
1564 #endif
1565 ) {
1566 new_fn_leaf = fib6_find_prefix(net, table, fn);
1567 #if RT6_DEBUG >= 2
1568 if (!new_fn_leaf) {
1569 WARN_ON(!new_fn_leaf);
1570 new_fn_leaf = net->ipv6.ip6_null_entry;
1571 }
1572 #endif
1573 atomic_inc(&new_fn_leaf->rt6i_ref);
1574 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1575 return pn;
1576 }
1577
1578 #ifdef CONFIG_IPV6_SUBTREES
1579 if (FIB6_SUBTREE(pn) == fn) {
1580 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1581 RCU_INIT_POINTER(pn->subtree, NULL);
1582 nstate = FWS_L;
1583 } else {
1584 WARN_ON(fn->fn_flags & RTN_ROOT);
1585 #endif
1586 if (pn_r == fn)
1587 rcu_assign_pointer(pn->right, child);
1588 else if (pn_l == fn)
1589 rcu_assign_pointer(pn->left, child);
1590 #if RT6_DEBUG >= 2
1591 else
1592 WARN_ON(1);
1593 #endif
1594 if (child)
1595 rcu_assign_pointer(child->parent, pn);
1596 nstate = FWS_R;
1597 #ifdef CONFIG_IPV6_SUBTREES
1598 }
1599 #endif
1600
1601 read_lock(&net->ipv6.fib6_walker_lock);
1602 FOR_WALKERS(net, w) {
1603 if (!child) {
1604 if (w->node == fn) {
1605 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1606 w->node = pn;
1607 w->state = nstate;
1608 }
1609 } else {
1610 if (w->node == fn) {
1611 w->node = child;
1612 if (children&2) {
1613 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1614 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1615 } else {
1616 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1617 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1618 }
1619 }
1620 }
1621 }
1622 read_unlock(&net->ipv6.fib6_walker_lock);
1623
1624 node_free(net, fn);
1625 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1626 return pn;
1627
1628 RCU_INIT_POINTER(pn->leaf, NULL);
1629 rt6_release(pn_leaf);
1630 fn = pn;
1631 }
1632 }
1633
1634 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1635 struct rt6_info __rcu **rtp, struct nl_info *info)
1636 {
1637 struct fib6_walker *w;
1638 struct rt6_info *rt = rcu_dereference_protected(*rtp,
1639 lockdep_is_held(&table->tb6_lock));
1640 struct net *net = info->nl_net;
1641
1642 RT6_TRACE("fib6_del_route\n");
1643
1644 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1645
1646 /* Unlink it */
1647 *rtp = rt->dst.rt6_next;
1648 rt->rt6i_node = NULL;
1649 net->ipv6.rt6_stats->fib_rt_entries--;
1650 net->ipv6.rt6_stats->fib_discarded_routes++;
1651
1652 /* Flush all cached dst in exception table */
1653 rt6_flush_exceptions(rt);
1654
1655 /* Reset round-robin state, if necessary */
1656 if (rcu_access_pointer(fn->rr_ptr) == rt)
1657 fn->rr_ptr = NULL;
1658
1659 /* Remove this entry from other siblings */
1660 if (rt->rt6i_nsiblings) {
1661 struct rt6_info *sibling, *next_sibling;
1662
1663 list_for_each_entry_safe(sibling, next_sibling,
1664 &rt->rt6i_siblings, rt6i_siblings)
1665 sibling->rt6i_nsiblings--;
1666 rt->rt6i_nsiblings = 0;
1667 list_del_init(&rt->rt6i_siblings);
1668 }
1669
1670 /* Adjust walkers */
1671 read_lock(&net->ipv6.fib6_walker_lock);
1672 FOR_WALKERS(net, w) {
1673 if (w->state == FWS_C && w->leaf == rt) {
1674 RT6_TRACE("walker %p adjusted by delroute\n", w);
1675 w->leaf = rcu_dereference_protected(rt->dst.rt6_next,
1676 lockdep_is_held(&table->tb6_lock));
1677 if (!w->leaf)
1678 w->state = FWS_U;
1679 }
1680 }
1681 read_unlock(&net->ipv6.fib6_walker_lock);
1682
1683 /* If it was last route, expunge its radix tree node */
1684 if (!rcu_access_pointer(fn->leaf)) {
1685 fn->fn_flags &= ~RTN_RTINFO;
1686 net->ipv6.rt6_stats->fib_route_nodes--;
1687 fn = fib6_repair_tree(net, table, fn);
1688 }
1689
1690 fib6_purge_rt(rt, fn, net);
1691
1692 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1693 if (!info->skip_notify)
1694 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1695 rt6_release(rt);
1696 }
1697
1698 /* Need to own table->tb6_lock */
1699 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1700 {
1701 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1702 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1703 struct fib6_table *table = rt->rt6i_table;
1704 struct net *net = info->nl_net;
1705 struct rt6_info __rcu **rtp;
1706 struct rt6_info __rcu **rtp_next;
1707
1708 #if RT6_DEBUG >= 2
1709 if (rt->dst.obsolete > 0) {
1710 WARN_ON(fn);
1711 return -ENOENT;
1712 }
1713 #endif
1714 if (!fn || rt == net->ipv6.ip6_null_entry)
1715 return -ENOENT;
1716
1717 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1718
1719 /* remove cached dst from exception table */
1720 if (rt->rt6i_flags & RTF_CACHE)
1721 return rt6_remove_exception_rt(rt);
1722
1723 /*
1724 * Walk the leaf entries looking for ourself
1725 */
1726
1727 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1728 struct rt6_info *cur = rcu_dereference_protected(*rtp,
1729 lockdep_is_held(&table->tb6_lock));
1730 if (rt == cur) {
1731 fib6_del_route(table, fn, rtp, info);
1732 return 0;
1733 }
1734 rtp_next = &cur->dst.rt6_next;
1735 }
1736 return -ENOENT;
1737 }
1738
1739 /*
1740 * Tree traversal function.
1741 *
1742 * Certainly, it is not interrupt safe.
1743 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1744 * It means, that we can modify tree during walking
1745 * and use this function for garbage collection, clone pruning,
1746 * cleaning tree when a device goes down etc. etc.
1747 *
1748 * It guarantees that every node will be traversed,
1749 * and that it will be traversed only once.
1750 *
1751 * Callback function w->func may return:
1752 * 0 -> continue walking.
1753 * positive value -> walking is suspended (used by tree dumps,
1754 * and probably by gc, if it will be split to several slices)
1755 * negative value -> terminate walking.
1756 *
1757 * The function itself returns:
1758 * 0 -> walk is complete.
1759 * >0 -> walk is incomplete (i.e. suspended)
1760 * <0 -> walk is terminated by an error.
1761 *
1762 * This function is called with tb6_lock held.
1763 */
1764
1765 static int fib6_walk_continue(struct fib6_walker *w)
1766 {
1767 struct fib6_node *fn, *pn, *left, *right;
1768
1769 /* w->root should always be table->tb6_root */
1770 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1771
1772 for (;;) {
1773 fn = w->node;
1774 if (!fn)
1775 return 0;
1776
1777 switch (w->state) {
1778 #ifdef CONFIG_IPV6_SUBTREES
1779 case FWS_S:
1780 if (FIB6_SUBTREE(fn)) {
1781 w->node = FIB6_SUBTREE(fn);
1782 continue;
1783 }
1784 w->state = FWS_L;
1785 #endif
1786 /* fall through */
1787 case FWS_L:
1788 left = rcu_dereference_protected(fn->left, 1);
1789 if (left) {
1790 w->node = left;
1791 w->state = FWS_INIT;
1792 continue;
1793 }
1794 w->state = FWS_R;
1795 /* fall through */
1796 case FWS_R:
1797 right = rcu_dereference_protected(fn->right, 1);
1798 if (right) {
1799 w->node = right;
1800 w->state = FWS_INIT;
1801 continue;
1802 }
1803 w->state = FWS_C;
1804 w->leaf = rcu_dereference_protected(fn->leaf, 1);
1805 /* fall through */
1806 case FWS_C:
1807 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1808 int err;
1809
1810 if (w->skip) {
1811 w->skip--;
1812 goto skip;
1813 }
1814
1815 err = w->func(w);
1816 if (err)
1817 return err;
1818
1819 w->count++;
1820 continue;
1821 }
1822 skip:
1823 w->state = FWS_U;
1824 /* fall through */
1825 case FWS_U:
1826 if (fn == w->root)
1827 return 0;
1828 pn = rcu_dereference_protected(fn->parent, 1);
1829 left = rcu_dereference_protected(pn->left, 1);
1830 right = rcu_dereference_protected(pn->right, 1);
1831 w->node = pn;
1832 #ifdef CONFIG_IPV6_SUBTREES
1833 if (FIB6_SUBTREE(pn) == fn) {
1834 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1835 w->state = FWS_L;
1836 continue;
1837 }
1838 #endif
1839 if (left == fn) {
1840 w->state = FWS_R;
1841 continue;
1842 }
1843 if (right == fn) {
1844 w->state = FWS_C;
1845 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1846 continue;
1847 }
1848 #if RT6_DEBUG >= 2
1849 WARN_ON(1);
1850 #endif
1851 }
1852 }
1853 }
1854
1855 static int fib6_walk(struct net *net, struct fib6_walker *w)
1856 {
1857 int res;
1858
1859 w->state = FWS_INIT;
1860 w->node = w->root;
1861
1862 fib6_walker_link(net, w);
1863 res = fib6_walk_continue(w);
1864 if (res <= 0)
1865 fib6_walker_unlink(net, w);
1866 return res;
1867 }
1868
1869 static int fib6_clean_node(struct fib6_walker *w)
1870 {
1871 int res;
1872 struct rt6_info *rt;
1873 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1874 struct nl_info info = {
1875 .nl_net = c->net,
1876 };
1877
1878 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1879 w->node->fn_sernum != c->sernum)
1880 w->node->fn_sernum = c->sernum;
1881
1882 if (!c->func) {
1883 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1884 w->leaf = NULL;
1885 return 0;
1886 }
1887
1888 for_each_fib6_walker_rt(w) {
1889 res = c->func(rt, c->arg);
1890 if (res < 0) {
1891 w->leaf = rt;
1892 res = fib6_del(rt, &info);
1893 if (res) {
1894 #if RT6_DEBUG >= 2
1895 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1896 __func__, rt,
1897 rcu_access_pointer(rt->rt6i_node),
1898 res);
1899 #endif
1900 continue;
1901 }
1902 return 0;
1903 }
1904 WARN_ON(res != 0);
1905 }
1906 w->leaf = rt;
1907 return 0;
1908 }
1909
1910 /*
1911 * Convenient frontend to tree walker.
1912 *
1913 * func is called on each route.
1914 * It may return -1 -> delete this route.
1915 * 0 -> continue walking
1916 */
1917
1918 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1919 int (*func)(struct rt6_info *, void *arg),
1920 int sernum, void *arg)
1921 {
1922 struct fib6_cleaner c;
1923
1924 c.w.root = root;
1925 c.w.func = fib6_clean_node;
1926 c.w.count = 0;
1927 c.w.skip = 0;
1928 c.func = func;
1929 c.sernum = sernum;
1930 c.arg = arg;
1931 c.net = net;
1932
1933 fib6_walk(net, &c.w);
1934 }
1935
1936 static void __fib6_clean_all(struct net *net,
1937 int (*func)(struct rt6_info *, void *),
1938 int sernum, void *arg)
1939 {
1940 struct fib6_table *table;
1941 struct hlist_head *head;
1942 unsigned int h;
1943
1944 rcu_read_lock();
1945 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1946 head = &net->ipv6.fib_table_hash[h];
1947 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1948 spin_lock_bh(&table->tb6_lock);
1949 fib6_clean_tree(net, &table->tb6_root,
1950 func, sernum, arg);
1951 spin_unlock_bh(&table->tb6_lock);
1952 }
1953 }
1954 rcu_read_unlock();
1955 }
1956
1957 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1958 void *arg)
1959 {
1960 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1961 }
1962
1963 static void fib6_flush_trees(struct net *net)
1964 {
1965 int new_sernum = fib6_new_sernum(net);
1966
1967 __fib6_clean_all(net, NULL, new_sernum, NULL);
1968 }
1969
1970 /*
1971 * Garbage collection
1972 */
1973
1974 static int fib6_age(struct rt6_info *rt, void *arg)
1975 {
1976 struct fib6_gc_args *gc_args = arg;
1977 unsigned long now = jiffies;
1978
1979 /*
1980 * check addrconf expiration here.
1981 * Routes are expired even if they are in use.
1982 */
1983
1984 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1985 if (time_after(now, rt->dst.expires)) {
1986 RT6_TRACE("expiring %p\n", rt);
1987 return -1;
1988 }
1989 gc_args->more++;
1990 }
1991
1992 /* Also age clones in the exception table.
1993 * Note, that clones are aged out
1994 * only if they are not in use now.
1995 */
1996 rt6_age_exceptions(rt, gc_args, now);
1997
1998 return 0;
1999 }
2000
2001 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2002 {
2003 struct fib6_gc_args gc_args;
2004 unsigned long now;
2005
2006 if (force) {
2007 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2008 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2009 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2010 return;
2011 }
2012 gc_args.timeout = expires ? (int)expires :
2013 net->ipv6.sysctl.ip6_rt_gc_interval;
2014 gc_args.more = 0;
2015
2016 fib6_clean_all(net, fib6_age, &gc_args);
2017 now = jiffies;
2018 net->ipv6.ip6_rt_last_gc = now;
2019
2020 if (gc_args.more)
2021 mod_timer(&net->ipv6.ip6_fib_timer,
2022 round_jiffies(now
2023 + net->ipv6.sysctl.ip6_rt_gc_interval));
2024 else
2025 del_timer(&net->ipv6.ip6_fib_timer);
2026 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2027 }
2028
2029 static void fib6_gc_timer_cb(unsigned long arg)
2030 {
2031 fib6_run_gc(0, (struct net *)arg, true);
2032 }
2033
2034 static int __net_init fib6_net_init(struct net *net)
2035 {
2036 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2037 int err;
2038
2039 err = fib6_notifier_init(net);
2040 if (err)
2041 return err;
2042
2043 spin_lock_init(&net->ipv6.fib6_gc_lock);
2044 rwlock_init(&net->ipv6.fib6_walker_lock);
2045 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2046 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
2047
2048 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2049 if (!net->ipv6.rt6_stats)
2050 goto out_timer;
2051
2052 /* Avoid false sharing : Use at least a full cache line */
2053 size = max_t(size_t, size, L1_CACHE_BYTES);
2054
2055 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2056 if (!net->ipv6.fib_table_hash)
2057 goto out_rt6_stats;
2058
2059 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2060 GFP_KERNEL);
2061 if (!net->ipv6.fib6_main_tbl)
2062 goto out_fib_table_hash;
2063
2064 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2065 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2066 net->ipv6.ip6_null_entry);
2067 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2068 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2069 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2070
2071 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2072 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2073 GFP_KERNEL);
2074 if (!net->ipv6.fib6_local_tbl)
2075 goto out_fib6_main_tbl;
2076 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2077 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2078 net->ipv6.ip6_null_entry);
2079 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2080 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2081 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2082 #endif
2083 fib6_tables_init(net);
2084
2085 return 0;
2086
2087 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2088 out_fib6_main_tbl:
2089 kfree(net->ipv6.fib6_main_tbl);
2090 #endif
2091 out_fib_table_hash:
2092 kfree(net->ipv6.fib_table_hash);
2093 out_rt6_stats:
2094 kfree(net->ipv6.rt6_stats);
2095 out_timer:
2096 fib6_notifier_exit(net);
2097 return -ENOMEM;
2098 }
2099
2100 static void fib6_net_exit(struct net *net)
2101 {
2102 unsigned int i;
2103
2104 rt6_ifdown(net, NULL);
2105 del_timer_sync(&net->ipv6.ip6_fib_timer);
2106
2107 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2108 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2109 struct hlist_node *tmp;
2110 struct fib6_table *tb;
2111
2112 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2113 hlist_del(&tb->tb6_hlist);
2114 fib6_free_table(tb);
2115 }
2116 }
2117
2118 kfree(net->ipv6.fib_table_hash);
2119 kfree(net->ipv6.rt6_stats);
2120 fib6_notifier_exit(net);
2121 }
2122
2123 static struct pernet_operations fib6_net_ops = {
2124 .init = fib6_net_init,
2125 .exit = fib6_net_exit,
2126 };
2127
2128 int __init fib6_init(void)
2129 {
2130 int ret = -ENOMEM;
2131
2132 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2133 sizeof(struct fib6_node),
2134 0, SLAB_HWCACHE_ALIGN,
2135 NULL);
2136 if (!fib6_node_kmem)
2137 goto out;
2138
2139 ret = register_pernet_subsys(&fib6_net_ops);
2140 if (ret)
2141 goto out_kmem_cache_create;
2142
2143 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
2144 0);
2145 if (ret)
2146 goto out_unregister_subsys;
2147
2148 __fib6_flush_trees = fib6_flush_trees;
2149 out:
2150 return ret;
2151
2152 out_unregister_subsys:
2153 unregister_pernet_subsys(&fib6_net_ops);
2154 out_kmem_cache_create:
2155 kmem_cache_destroy(fib6_node_kmem);
2156 goto out;
2157 }
2158
2159 void fib6_gc_cleanup(void)
2160 {
2161 unregister_pernet_subsys(&fib6_net_ops);
2162 kmem_cache_destroy(fib6_node_kmem);
2163 }
2164
2165 #ifdef CONFIG_PROC_FS
2166
2167 struct ipv6_route_iter {
2168 struct seq_net_private p;
2169 struct fib6_walker w;
2170 loff_t skip;
2171 struct fib6_table *tbl;
2172 int sernum;
2173 };
2174
2175 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2176 {
2177 struct rt6_info *rt = v;
2178 struct ipv6_route_iter *iter = seq->private;
2179
2180 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2181
2182 #ifdef CONFIG_IPV6_SUBTREES
2183 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2184 #else
2185 seq_puts(seq, "00000000000000000000000000000000 00 ");
2186 #endif
2187 if (rt->rt6i_flags & RTF_GATEWAY)
2188 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2189 else
2190 seq_puts(seq, "00000000000000000000000000000000");
2191
2192 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2193 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2194 rt->dst.__use, rt->rt6i_flags,
2195 rt->dst.dev ? rt->dst.dev->name : "");
2196 iter->w.leaf = NULL;
2197 return 0;
2198 }
2199
2200 static int ipv6_route_yield(struct fib6_walker *w)
2201 {
2202 struct ipv6_route_iter *iter = w->args;
2203
2204 if (!iter->skip)
2205 return 1;
2206
2207 do {
2208 iter->w.leaf = rcu_dereference_protected(
2209 iter->w.leaf->dst.rt6_next,
2210 lockdep_is_held(&iter->tbl->tb6_lock));
2211 iter->skip--;
2212 if (!iter->skip && iter->w.leaf)
2213 return 1;
2214 } while (iter->w.leaf);
2215
2216 return 0;
2217 }
2218
2219 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2220 struct net *net)
2221 {
2222 memset(&iter->w, 0, sizeof(iter->w));
2223 iter->w.func = ipv6_route_yield;
2224 iter->w.root = &iter->tbl->tb6_root;
2225 iter->w.state = FWS_INIT;
2226 iter->w.node = iter->w.root;
2227 iter->w.args = iter;
2228 iter->sernum = iter->w.root->fn_sernum;
2229 INIT_LIST_HEAD(&iter->w.lh);
2230 fib6_walker_link(net, &iter->w);
2231 }
2232
2233 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2234 struct net *net)
2235 {
2236 unsigned int h;
2237 struct hlist_node *node;
2238
2239 if (tbl) {
2240 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2241 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2242 } else {
2243 h = 0;
2244 node = NULL;
2245 }
2246
2247 while (!node && h < FIB6_TABLE_HASHSZ) {
2248 node = rcu_dereference_bh(
2249 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2250 }
2251 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2252 }
2253
2254 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2255 {
2256 if (iter->sernum != iter->w.root->fn_sernum) {
2257 iter->sernum = iter->w.root->fn_sernum;
2258 iter->w.state = FWS_INIT;
2259 iter->w.node = iter->w.root;
2260 WARN_ON(iter->w.skip);
2261 iter->w.skip = iter->w.count;
2262 }
2263 }
2264
2265 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2266 {
2267 int r;
2268 struct rt6_info *n;
2269 struct net *net = seq_file_net(seq);
2270 struct ipv6_route_iter *iter = seq->private;
2271
2272 if (!v)
2273 goto iter_table;
2274
2275 n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next);
2276 if (n) {
2277 ++*pos;
2278 return n;
2279 }
2280
2281 iter_table:
2282 ipv6_route_check_sernum(iter);
2283 spin_lock_bh(&iter->tbl->tb6_lock);
2284 r = fib6_walk_continue(&iter->w);
2285 spin_unlock_bh(&iter->tbl->tb6_lock);
2286 if (r > 0) {
2287 if (v)
2288 ++*pos;
2289 return iter->w.leaf;
2290 } else if (r < 0) {
2291 fib6_walker_unlink(net, &iter->w);
2292 return NULL;
2293 }
2294 fib6_walker_unlink(net, &iter->w);
2295
2296 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2297 if (!iter->tbl)
2298 return NULL;
2299
2300 ipv6_route_seq_setup_walk(iter, net);
2301 goto iter_table;
2302 }
2303
2304 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2305 __acquires(RCU_BH)
2306 {
2307 struct net *net = seq_file_net(seq);
2308 struct ipv6_route_iter *iter = seq->private;
2309
2310 rcu_read_lock_bh();
2311 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2312 iter->skip = *pos;
2313
2314 if (iter->tbl) {
2315 ipv6_route_seq_setup_walk(iter, net);
2316 return ipv6_route_seq_next(seq, NULL, pos);
2317 } else {
2318 return NULL;
2319 }
2320 }
2321
2322 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2323 {
2324 struct fib6_walker *w = &iter->w;
2325 return w->node && !(w->state == FWS_U && w->node == w->root);
2326 }
2327
2328 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2329 __releases(RCU_BH)
2330 {
2331 struct net *net = seq_file_net(seq);
2332 struct ipv6_route_iter *iter = seq->private;
2333
2334 if (ipv6_route_iter_active(iter))
2335 fib6_walker_unlink(net, &iter->w);
2336
2337 rcu_read_unlock_bh();
2338 }
2339
2340 static const struct seq_operations ipv6_route_seq_ops = {
2341 .start = ipv6_route_seq_start,
2342 .next = ipv6_route_seq_next,
2343 .stop = ipv6_route_seq_stop,
2344 .show = ipv6_route_seq_show
2345 };
2346
2347 int ipv6_route_open(struct inode *inode, struct file *file)
2348 {
2349 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2350 sizeof(struct ipv6_route_iter));
2351 }
2352
2353 #endif /* CONFIG_PROC_FS */