]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <linux/atalk.h>
109 #include <net/busy_poll.h>
110 #include <linux/errqueue.h>
111
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
116
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136 /*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .release = sock_close,
153 .fasync = sock_fasync,
154 .sendpage = sock_sendpage,
155 .splice_write = generic_splice_sendpage,
156 .splice_read = sock_splice_read,
157 };
158
159 /*
160 * The protocol list. Each protocol is registered in here.
161 */
162
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
165
166 /*
167 * Statistics counters of the socket lists
168 */
169
170 static DEFINE_PER_CPU(int, sockets_in_use);
171
172 /*
173 * Support routines.
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
176 */
177
178 /**
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
183 *
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
187 */
188
189 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 {
191 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 return -EINVAL;
193 if (ulen == 0)
194 return 0;
195 if (copy_from_user(kaddr, uaddr, ulen))
196 return -EFAULT;
197 return audit_sockaddr(ulen, kaddr);
198 }
199
200 /**
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
206 *
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
211 * accessible.
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
215 */
216
217 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 void __user *uaddr, int __user *ulen)
219 {
220 int err;
221 int len;
222
223 BUG_ON(klen > sizeof(struct sockaddr_storage));
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0)
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
236 }
237 /*
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
240 */
241 return __put_user(klen, ulen);
242 }
243
244 static struct kmem_cache *sock_inode_cachep __read_mostly;
245
246 static struct inode *sock_alloc_inode(struct super_block *sb)
247 {
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
250
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
258 }
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 wq->flags = 0;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271 }
272
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282 }
283
284 static void init_once(void *foo)
285 {
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289 }
290
291 static void init_inodecache(void)
292 {
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 init_once);
300 BUG_ON(sock_inode_cachep == NULL);
301 }
302
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
307 };
308
309 /*
310 * sockfs_dname() is called from d_path().
311 */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 d_inode(dentry)->i_ino);
316 }
317
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
320 };
321
322 static int sockfs_xattr_get(const struct xattr_handler *handler,
323 struct dentry *dentry, struct inode *inode,
324 const char *suffix, void *value, size_t size)
325 {
326 if (value) {
327 if (dentry->d_name.len + 1 > size)
328 return -ERANGE;
329 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
330 }
331 return dentry->d_name.len + 1;
332 }
333
334 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
335 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
336 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337
338 static const struct xattr_handler sockfs_xattr_handler = {
339 .name = XATTR_NAME_SOCKPROTONAME,
340 .get = sockfs_xattr_get,
341 };
342
343 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
344 struct dentry *dentry, struct inode *inode,
345 const char *suffix, const void *value,
346 size_t size, int flags)
347 {
348 /* Handled by LSM. */
349 return -EAGAIN;
350 }
351
352 static const struct xattr_handler sockfs_security_xattr_handler = {
353 .prefix = XATTR_SECURITY_PREFIX,
354 .set = sockfs_security_xattr_set,
355 };
356
357 static const struct xattr_handler *sockfs_xattr_handlers[] = {
358 &sockfs_xattr_handler,
359 &sockfs_security_xattr_handler,
360 NULL
361 };
362
363 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
364 int flags, const char *dev_name, void *data)
365 {
366 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
367 sockfs_xattr_handlers,
368 &sockfs_dentry_operations, SOCKFS_MAGIC);
369 }
370
371 static struct vfsmount *sock_mnt __read_mostly;
372
373 static struct file_system_type sock_fs_type = {
374 .name = "sockfs",
375 .mount = sockfs_mount,
376 .kill_sb = kill_anon_super,
377 };
378
379 /*
380 * Obtains the first available file descriptor and sets it up for use.
381 *
382 * These functions create file structures and maps them to fd space
383 * of the current process. On success it returns file descriptor
384 * and file struct implicitly stored in sock->file.
385 * Note that another thread may close file descriptor before we return
386 * from this function. We use the fact that now we do not refer
387 * to socket after mapping. If one day we will need it, this
388 * function will increment ref. count on file by 1.
389 *
390 * In any case returned fd MAY BE not valid!
391 * This race condition is unavoidable
392 * with shared fd spaces, we cannot solve it inside kernel,
393 * but we take care of internal coherence yet.
394 */
395
396 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
397 {
398 struct qstr name = { .name = "" };
399 struct path path;
400 struct file *file;
401
402 if (dname) {
403 name.name = dname;
404 name.len = strlen(name.name);
405 } else if (sock->sk) {
406 name.name = sock->sk->sk_prot_creator->name;
407 name.len = strlen(name.name);
408 }
409 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
410 if (unlikely(!path.dentry)) {
411 sock_release(sock);
412 return ERR_PTR(-ENOMEM);
413 }
414 path.mnt = mntget(sock_mnt);
415
416 d_instantiate(path.dentry, SOCK_INODE(sock));
417
418 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
419 &socket_file_ops);
420 if (IS_ERR(file)) {
421 /* drop dentry, keep inode for a bit */
422 ihold(d_inode(path.dentry));
423 path_put(&path);
424 /* ... and now kill it properly */
425 sock_release(sock);
426 return file;
427 }
428
429 sock->file = file;
430 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
431 file->private_data = sock;
432 return file;
433 }
434 EXPORT_SYMBOL(sock_alloc_file);
435
436 static int sock_map_fd(struct socket *sock, int flags)
437 {
438 struct file *newfile;
439 int fd = get_unused_fd_flags(flags);
440 if (unlikely(fd < 0)) {
441 sock_release(sock);
442 return fd;
443 }
444
445 newfile = sock_alloc_file(sock, flags, NULL);
446 if (likely(!IS_ERR(newfile))) {
447 fd_install(fd, newfile);
448 return fd;
449 }
450
451 put_unused_fd(fd);
452 return PTR_ERR(newfile);
453 }
454
455 struct socket *sock_from_file(struct file *file, int *err)
456 {
457 if (file->f_op == &socket_file_ops)
458 return file->private_data; /* set in sock_map_fd */
459
460 *err = -ENOTSOCK;
461 return NULL;
462 }
463 EXPORT_SYMBOL(sock_from_file);
464
465 /**
466 * sockfd_lookup - Go from a file number to its socket slot
467 * @fd: file handle
468 * @err: pointer to an error code return
469 *
470 * The file handle passed in is locked and the socket it is bound
471 * to is returned. If an error occurs the err pointer is overwritten
472 * with a negative errno code and NULL is returned. The function checks
473 * for both invalid handles and passing a handle which is not a socket.
474 *
475 * On a success the socket object pointer is returned.
476 */
477
478 struct socket *sockfd_lookup(int fd, int *err)
479 {
480 struct file *file;
481 struct socket *sock;
482
483 file = fget(fd);
484 if (!file) {
485 *err = -EBADF;
486 return NULL;
487 }
488
489 sock = sock_from_file(file, err);
490 if (!sock)
491 fput(file);
492 return sock;
493 }
494 EXPORT_SYMBOL(sockfd_lookup);
495
496 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
497 {
498 struct fd f = fdget(fd);
499 struct socket *sock;
500
501 *err = -EBADF;
502 if (f.file) {
503 sock = sock_from_file(f.file, err);
504 if (likely(sock)) {
505 *fput_needed = f.flags;
506 return sock;
507 }
508 fdput(f);
509 }
510 return NULL;
511 }
512
513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 size_t size)
515 {
516 ssize_t len;
517 ssize_t used = 0;
518
519 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 if (len < 0)
521 return len;
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 buffer += len;
527 }
528
529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 used += len;
531 if (buffer) {
532 if (size < used)
533 return -ERANGE;
534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 buffer += len;
536 }
537
538 return used;
539 }
540
541 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
542 {
543 int err = simple_setattr(dentry, iattr);
544
545 if (!err && (iattr->ia_valid & ATTR_UID)) {
546 struct socket *sock = SOCKET_I(d_inode(dentry));
547
548 if (sock->sk)
549 sock->sk->sk_uid = iattr->ia_uid;
550 else
551 err = -ENOENT;
552 }
553
554 return err;
555 }
556
557 static const struct inode_operations sockfs_inode_ops = {
558 .listxattr = sockfs_listxattr,
559 .setattr = sockfs_setattr,
560 };
561
562 /**
563 * sock_alloc - allocate a socket
564 *
565 * Allocate a new inode and socket object. The two are bound together
566 * and initialised. The socket is then returned. If we are out of inodes
567 * NULL is returned.
568 */
569
570 struct socket *sock_alloc(void)
571 {
572 struct inode *inode;
573 struct socket *sock;
574
575 inode = new_inode_pseudo(sock_mnt->mnt_sb);
576 if (!inode)
577 return NULL;
578
579 sock = SOCKET_I(inode);
580
581 inode->i_ino = get_next_ino();
582 inode->i_mode = S_IFSOCK | S_IRWXUGO;
583 inode->i_uid = current_fsuid();
584 inode->i_gid = current_fsgid();
585 inode->i_op = &sockfs_inode_ops;
586
587 this_cpu_add(sockets_in_use, 1);
588 return sock;
589 }
590 EXPORT_SYMBOL(sock_alloc);
591
592 /**
593 * sock_release - close a socket
594 * @sock: socket to close
595 *
596 * The socket is released from the protocol stack if it has a release
597 * callback, and the inode is then released if the socket is bound to
598 * an inode not a file.
599 */
600
601 static void __sock_release(struct socket *sock, struct inode *inode)
602 {
603 if (sock->ops) {
604 struct module *owner = sock->ops->owner;
605
606 if (inode)
607 inode_lock(inode);
608 sock->ops->release(sock);
609 sock->sk = NULL;
610 if (inode)
611 inode_unlock(inode);
612 sock->ops = NULL;
613 module_put(owner);
614 }
615
616 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
617 pr_err("%s: fasync list not empty!\n", __func__);
618
619 this_cpu_sub(sockets_in_use, 1);
620 if (!sock->file) {
621 iput(SOCK_INODE(sock));
622 return;
623 }
624 sock->file = NULL;
625 }
626
627 void sock_release(struct socket *sock)
628 {
629 __sock_release(sock, NULL);
630 }
631 EXPORT_SYMBOL(sock_release);
632
633 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
634 {
635 u8 flags = *tx_flags;
636
637 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
638 flags |= SKBTX_HW_TSTAMP;
639
640 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
641 flags |= SKBTX_SW_TSTAMP;
642
643 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
644 flags |= SKBTX_SCHED_TSTAMP;
645
646 *tx_flags = flags;
647 }
648 EXPORT_SYMBOL(__sock_tx_timestamp);
649
650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
651 {
652 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
653 BUG_ON(ret == -EIOCBQUEUED);
654 return ret;
655 }
656
657 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
658 {
659 int err = security_socket_sendmsg(sock, msg,
660 msg_data_left(msg));
661
662 return err ?: sock_sendmsg_nosec(sock, msg);
663 }
664 EXPORT_SYMBOL(sock_sendmsg);
665
666 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
667 struct kvec *vec, size_t num, size_t size)
668 {
669 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
670 return sock_sendmsg(sock, msg);
671 }
672 EXPORT_SYMBOL(kernel_sendmsg);
673
674 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
675 struct kvec *vec, size_t num, size_t size)
676 {
677 struct socket *sock = sk->sk_socket;
678
679 if (!sock->ops->sendmsg_locked)
680 return sock_no_sendmsg_locked(sk, msg, size);
681
682 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
683
684 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
685 }
686 EXPORT_SYMBOL(kernel_sendmsg_locked);
687
688 static bool skb_is_err_queue(const struct sk_buff *skb)
689 {
690 /* pkt_type of skbs enqueued on the error queue are set to
691 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
692 * in recvmsg, since skbs received on a local socket will never
693 * have a pkt_type of PACKET_OUTGOING.
694 */
695 return skb->pkt_type == PACKET_OUTGOING;
696 }
697
698 /* On transmit, software and hardware timestamps are returned independently.
699 * As the two skb clones share the hardware timestamp, which may be updated
700 * before the software timestamp is received, a hardware TX timestamp may be
701 * returned only if there is no software TX timestamp. Ignore false software
702 * timestamps, which may be made in the __sock_recv_timestamp() call when the
703 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
704 * hardware timestamp.
705 */
706 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
707 {
708 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
709 }
710
711 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
712 {
713 struct scm_ts_pktinfo ts_pktinfo;
714 struct net_device *orig_dev;
715
716 if (!skb_mac_header_was_set(skb))
717 return;
718
719 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
720
721 rcu_read_lock();
722 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
723 if (orig_dev)
724 ts_pktinfo.if_index = orig_dev->ifindex;
725 rcu_read_unlock();
726
727 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
728 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
729 sizeof(ts_pktinfo), &ts_pktinfo);
730 }
731
732 /*
733 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
734 */
735 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
736 struct sk_buff *skb)
737 {
738 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
739 struct scm_timestamping tss;
740 int empty = 1, false_tstamp = 0;
741 struct skb_shared_hwtstamps *shhwtstamps =
742 skb_hwtstamps(skb);
743
744 /* Race occurred between timestamp enabling and packet
745 receiving. Fill in the current time for now. */
746 if (need_software_tstamp && skb->tstamp == 0) {
747 __net_timestamp(skb);
748 false_tstamp = 1;
749 }
750
751 if (need_software_tstamp) {
752 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
753 struct timeval tv;
754 skb_get_timestamp(skb, &tv);
755 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
756 sizeof(tv), &tv);
757 } else {
758 struct timespec ts;
759 skb_get_timestampns(skb, &ts);
760 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
761 sizeof(ts), &ts);
762 }
763 }
764
765 memset(&tss, 0, sizeof(tss));
766 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
767 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
768 empty = 0;
769 if (shhwtstamps &&
770 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
771 !skb_is_swtx_tstamp(skb, false_tstamp) &&
772 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
773 empty = 0;
774 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
775 !skb_is_err_queue(skb))
776 put_ts_pktinfo(msg, skb);
777 }
778 if (!empty) {
779 put_cmsg(msg, SOL_SOCKET,
780 SCM_TIMESTAMPING, sizeof(tss), &tss);
781
782 if (skb_is_err_queue(skb) && skb->len &&
783 SKB_EXT_ERR(skb)->opt_stats)
784 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
785 skb->len, skb->data);
786 }
787 }
788 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
789
790 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
791 struct sk_buff *skb)
792 {
793 int ack;
794
795 if (!sock_flag(sk, SOCK_WIFI_STATUS))
796 return;
797 if (!skb->wifi_acked_valid)
798 return;
799
800 ack = skb->wifi_acked;
801
802 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
803 }
804 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
805
806 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
807 struct sk_buff *skb)
808 {
809 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
810 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
811 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
812 }
813
814 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
815 struct sk_buff *skb)
816 {
817 sock_recv_timestamp(msg, sk, skb);
818 sock_recv_drops(msg, sk, skb);
819 }
820 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
821
822 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
823 int flags)
824 {
825 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
826 }
827
828 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
829 {
830 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
831
832 return err ?: sock_recvmsg_nosec(sock, msg, flags);
833 }
834 EXPORT_SYMBOL(sock_recvmsg);
835
836 /**
837 * kernel_recvmsg - Receive a message from a socket (kernel space)
838 * @sock: The socket to receive the message from
839 * @msg: Received message
840 * @vec: Input s/g array for message data
841 * @num: Size of input s/g array
842 * @size: Number of bytes to read
843 * @flags: Message flags (MSG_DONTWAIT, etc...)
844 *
845 * On return the msg structure contains the scatter/gather array passed in the
846 * vec argument. The array is modified so that it consists of the unfilled
847 * portion of the original array.
848 *
849 * The returned value is the total number of bytes received, or an error.
850 */
851 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
852 struct kvec *vec, size_t num, size_t size, int flags)
853 {
854 mm_segment_t oldfs = get_fs();
855 int result;
856
857 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
858 set_fs(KERNEL_DS);
859 result = sock_recvmsg(sock, msg, flags);
860 set_fs(oldfs);
861 return result;
862 }
863 EXPORT_SYMBOL(kernel_recvmsg);
864
865 static ssize_t sock_sendpage(struct file *file, struct page *page,
866 int offset, size_t size, loff_t *ppos, int more)
867 {
868 struct socket *sock;
869 int flags;
870
871 sock = file->private_data;
872
873 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
874 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
875 flags |= more;
876
877 return kernel_sendpage(sock, page, offset, size, flags);
878 }
879
880 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
881 struct pipe_inode_info *pipe, size_t len,
882 unsigned int flags)
883 {
884 struct socket *sock = file->private_data;
885
886 if (unlikely(!sock->ops->splice_read))
887 return -EINVAL;
888
889 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
890 }
891
892 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
893 {
894 struct file *file = iocb->ki_filp;
895 struct socket *sock = file->private_data;
896 struct msghdr msg = {.msg_iter = *to,
897 .msg_iocb = iocb};
898 ssize_t res;
899
900 if (file->f_flags & O_NONBLOCK)
901 msg.msg_flags = MSG_DONTWAIT;
902
903 if (iocb->ki_pos != 0)
904 return -ESPIPE;
905
906 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
907 return 0;
908
909 res = sock_recvmsg(sock, &msg, msg.msg_flags);
910 *to = msg.msg_iter;
911 return res;
912 }
913
914 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
915 {
916 struct file *file = iocb->ki_filp;
917 struct socket *sock = file->private_data;
918 struct msghdr msg = {.msg_iter = *from,
919 .msg_iocb = iocb};
920 ssize_t res;
921
922 if (iocb->ki_pos != 0)
923 return -ESPIPE;
924
925 if (file->f_flags & O_NONBLOCK)
926 msg.msg_flags = MSG_DONTWAIT;
927
928 if (sock->type == SOCK_SEQPACKET)
929 msg.msg_flags |= MSG_EOR;
930
931 res = sock_sendmsg(sock, &msg);
932 *from = msg.msg_iter;
933 return res;
934 }
935
936 /*
937 * Atomic setting of ioctl hooks to avoid race
938 * with module unload.
939 */
940
941 static DEFINE_MUTEX(br_ioctl_mutex);
942 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
943
944 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
945 {
946 mutex_lock(&br_ioctl_mutex);
947 br_ioctl_hook = hook;
948 mutex_unlock(&br_ioctl_mutex);
949 }
950 EXPORT_SYMBOL(brioctl_set);
951
952 static DEFINE_MUTEX(vlan_ioctl_mutex);
953 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
954
955 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
956 {
957 mutex_lock(&vlan_ioctl_mutex);
958 vlan_ioctl_hook = hook;
959 mutex_unlock(&vlan_ioctl_mutex);
960 }
961 EXPORT_SYMBOL(vlan_ioctl_set);
962
963 static DEFINE_MUTEX(dlci_ioctl_mutex);
964 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
965
966 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
967 {
968 mutex_lock(&dlci_ioctl_mutex);
969 dlci_ioctl_hook = hook;
970 mutex_unlock(&dlci_ioctl_mutex);
971 }
972 EXPORT_SYMBOL(dlci_ioctl_set);
973
974 static long sock_do_ioctl(struct net *net, struct socket *sock,
975 unsigned int cmd, unsigned long arg)
976 {
977 int err;
978 void __user *argp = (void __user *)arg;
979
980 err = sock->ops->ioctl(sock, cmd, arg);
981
982 /*
983 * If this ioctl is unknown try to hand it down
984 * to the NIC driver.
985 */
986 if (err == -ENOIOCTLCMD)
987 err = dev_ioctl(net, cmd, argp);
988
989 return err;
990 }
991
992 /*
993 * With an ioctl, arg may well be a user mode pointer, but we don't know
994 * what to do with it - that's up to the protocol still.
995 */
996
997 static struct ns_common *get_net_ns(struct ns_common *ns)
998 {
999 return &get_net(container_of(ns, struct net, ns))->ns;
1000 }
1001
1002 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1003 {
1004 struct socket *sock;
1005 struct sock *sk;
1006 void __user *argp = (void __user *)arg;
1007 int pid, err;
1008 struct net *net;
1009
1010 sock = file->private_data;
1011 sk = sock->sk;
1012 net = sock_net(sk);
1013 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1014 err = dev_ioctl(net, cmd, argp);
1015 } else
1016 #ifdef CONFIG_WEXT_CORE
1017 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1018 err = dev_ioctl(net, cmd, argp);
1019 } else
1020 #endif
1021 switch (cmd) {
1022 case FIOSETOWN:
1023 case SIOCSPGRP:
1024 err = -EFAULT;
1025 if (get_user(pid, (int __user *)argp))
1026 break;
1027 err = f_setown(sock->file, pid, 1);
1028 break;
1029 case FIOGETOWN:
1030 case SIOCGPGRP:
1031 err = put_user(f_getown(sock->file),
1032 (int __user *)argp);
1033 break;
1034 case SIOCGIFBR:
1035 case SIOCSIFBR:
1036 case SIOCBRADDBR:
1037 case SIOCBRDELBR:
1038 err = -ENOPKG;
1039 if (!br_ioctl_hook)
1040 request_module("bridge");
1041
1042 mutex_lock(&br_ioctl_mutex);
1043 if (br_ioctl_hook)
1044 err = br_ioctl_hook(net, cmd, argp);
1045 mutex_unlock(&br_ioctl_mutex);
1046 break;
1047 case SIOCGIFVLAN:
1048 case SIOCSIFVLAN:
1049 err = -ENOPKG;
1050 if (!vlan_ioctl_hook)
1051 request_module("8021q");
1052
1053 mutex_lock(&vlan_ioctl_mutex);
1054 if (vlan_ioctl_hook)
1055 err = vlan_ioctl_hook(net, argp);
1056 mutex_unlock(&vlan_ioctl_mutex);
1057 break;
1058 case SIOCADDDLCI:
1059 case SIOCDELDLCI:
1060 err = -ENOPKG;
1061 if (!dlci_ioctl_hook)
1062 request_module("dlci");
1063
1064 mutex_lock(&dlci_ioctl_mutex);
1065 if (dlci_ioctl_hook)
1066 err = dlci_ioctl_hook(cmd, argp);
1067 mutex_unlock(&dlci_ioctl_mutex);
1068 break;
1069 case SIOCGSKNS:
1070 err = -EPERM;
1071 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1072 break;
1073
1074 err = open_related_ns(&net->ns, get_net_ns);
1075 break;
1076 default:
1077 err = sock_do_ioctl(net, sock, cmd, arg);
1078 break;
1079 }
1080 return err;
1081 }
1082
1083 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1084 {
1085 int err;
1086 struct socket *sock = NULL;
1087
1088 err = security_socket_create(family, type, protocol, 1);
1089 if (err)
1090 goto out;
1091
1092 sock = sock_alloc();
1093 if (!sock) {
1094 err = -ENOMEM;
1095 goto out;
1096 }
1097
1098 sock->type = type;
1099 err = security_socket_post_create(sock, family, type, protocol, 1);
1100 if (err)
1101 goto out_release;
1102
1103 out:
1104 *res = sock;
1105 return err;
1106 out_release:
1107 sock_release(sock);
1108 sock = NULL;
1109 goto out;
1110 }
1111 EXPORT_SYMBOL(sock_create_lite);
1112
1113 /* No kernel lock held - perfect */
1114 static unsigned int sock_poll(struct file *file, poll_table *wait)
1115 {
1116 unsigned int busy_flag = 0;
1117 struct socket *sock;
1118
1119 /*
1120 * We can't return errors to poll, so it's either yes or no.
1121 */
1122 sock = file->private_data;
1123
1124 if (sk_can_busy_loop(sock->sk)) {
1125 /* this socket can poll_ll so tell the system call */
1126 busy_flag = POLL_BUSY_LOOP;
1127
1128 /* once, only if requested by syscall */
1129 if (wait && (wait->_key & POLL_BUSY_LOOP))
1130 sk_busy_loop(sock->sk, 1);
1131 }
1132
1133 return busy_flag | sock->ops->poll(file, sock, wait);
1134 }
1135
1136 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1137 {
1138 struct socket *sock = file->private_data;
1139
1140 return sock->ops->mmap(file, sock, vma);
1141 }
1142
1143 static int sock_close(struct inode *inode, struct file *filp)
1144 {
1145 __sock_release(SOCKET_I(inode), inode);
1146 return 0;
1147 }
1148
1149 /*
1150 * Update the socket async list
1151 *
1152 * Fasync_list locking strategy.
1153 *
1154 * 1. fasync_list is modified only under process context socket lock
1155 * i.e. under semaphore.
1156 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1157 * or under socket lock
1158 */
1159
1160 static int sock_fasync(int fd, struct file *filp, int on)
1161 {
1162 struct socket *sock = filp->private_data;
1163 struct sock *sk = sock->sk;
1164 struct socket_wq *wq;
1165
1166 if (sk == NULL)
1167 return -EINVAL;
1168
1169 lock_sock(sk);
1170 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1171 fasync_helper(fd, filp, on, &wq->fasync_list);
1172
1173 if (!wq->fasync_list)
1174 sock_reset_flag(sk, SOCK_FASYNC);
1175 else
1176 sock_set_flag(sk, SOCK_FASYNC);
1177
1178 release_sock(sk);
1179 return 0;
1180 }
1181
1182 /* This function may be called only under rcu_lock */
1183
1184 int sock_wake_async(struct socket_wq *wq, int how, int band)
1185 {
1186 if (!wq || !wq->fasync_list)
1187 return -1;
1188
1189 switch (how) {
1190 case SOCK_WAKE_WAITD:
1191 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1192 break;
1193 goto call_kill;
1194 case SOCK_WAKE_SPACE:
1195 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1196 break;
1197 /* fall through */
1198 case SOCK_WAKE_IO:
1199 call_kill:
1200 kill_fasync(&wq->fasync_list, SIGIO, band);
1201 break;
1202 case SOCK_WAKE_URG:
1203 kill_fasync(&wq->fasync_list, SIGURG, band);
1204 }
1205
1206 return 0;
1207 }
1208 EXPORT_SYMBOL(sock_wake_async);
1209
1210 int __sock_create(struct net *net, int family, int type, int protocol,
1211 struct socket **res, int kern)
1212 {
1213 int err;
1214 struct socket *sock;
1215 const struct net_proto_family *pf;
1216
1217 /*
1218 * Check protocol is in range
1219 */
1220 if (family < 0 || family >= NPROTO)
1221 return -EAFNOSUPPORT;
1222 if (type < 0 || type >= SOCK_MAX)
1223 return -EINVAL;
1224
1225 /* Compatibility.
1226
1227 This uglymoron is moved from INET layer to here to avoid
1228 deadlock in module load.
1229 */
1230 if (family == PF_INET && type == SOCK_PACKET) {
1231 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1232 current->comm);
1233 family = PF_PACKET;
1234 }
1235
1236 err = security_socket_create(family, type, protocol, kern);
1237 if (err)
1238 return err;
1239
1240 /*
1241 * Allocate the socket and allow the family to set things up. if
1242 * the protocol is 0, the family is instructed to select an appropriate
1243 * default.
1244 */
1245 sock = sock_alloc();
1246 if (!sock) {
1247 net_warn_ratelimited("socket: no more sockets\n");
1248 return -ENFILE; /* Not exactly a match, but its the
1249 closest posix thing */
1250 }
1251
1252 sock->type = type;
1253
1254 #ifdef CONFIG_MODULES
1255 /* Attempt to load a protocol module if the find failed.
1256 *
1257 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1258 * requested real, full-featured networking support upon configuration.
1259 * Otherwise module support will break!
1260 */
1261 if (rcu_access_pointer(net_families[family]) == NULL)
1262 request_module("net-pf-%d", family);
1263 #endif
1264
1265 rcu_read_lock();
1266 pf = rcu_dereference(net_families[family]);
1267 err = -EAFNOSUPPORT;
1268 if (!pf)
1269 goto out_release;
1270
1271 /*
1272 * We will call the ->create function, that possibly is in a loadable
1273 * module, so we have to bump that loadable module refcnt first.
1274 */
1275 if (!try_module_get(pf->owner))
1276 goto out_release;
1277
1278 /* Now protected by module ref count */
1279 rcu_read_unlock();
1280
1281 err = pf->create(net, sock, protocol, kern);
1282 if (err < 0)
1283 goto out_module_put;
1284
1285 /*
1286 * Now to bump the refcnt of the [loadable] module that owns this
1287 * socket at sock_release time we decrement its refcnt.
1288 */
1289 if (!try_module_get(sock->ops->owner))
1290 goto out_module_busy;
1291
1292 /*
1293 * Now that we're done with the ->create function, the [loadable]
1294 * module can have its refcnt decremented
1295 */
1296 module_put(pf->owner);
1297 err = security_socket_post_create(sock, family, type, protocol, kern);
1298 if (err)
1299 goto out_sock_release;
1300 *res = sock;
1301
1302 return 0;
1303
1304 out_module_busy:
1305 err = -EAFNOSUPPORT;
1306 out_module_put:
1307 sock->ops = NULL;
1308 module_put(pf->owner);
1309 out_sock_release:
1310 sock_release(sock);
1311 return err;
1312
1313 out_release:
1314 rcu_read_unlock();
1315 goto out_sock_release;
1316 }
1317 EXPORT_SYMBOL(__sock_create);
1318
1319 int sock_create(int family, int type, int protocol, struct socket **res)
1320 {
1321 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1322 }
1323 EXPORT_SYMBOL(sock_create);
1324
1325 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1326 {
1327 return __sock_create(net, family, type, protocol, res, 1);
1328 }
1329 EXPORT_SYMBOL(sock_create_kern);
1330
1331 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1332 {
1333 int retval;
1334 struct socket *sock;
1335 int flags;
1336
1337 /* Check the SOCK_* constants for consistency. */
1338 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1339 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1340 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1341 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1342
1343 flags = type & ~SOCK_TYPE_MASK;
1344 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1345 return -EINVAL;
1346 type &= SOCK_TYPE_MASK;
1347
1348 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1349 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1350
1351 retval = sock_create(family, type, protocol, &sock);
1352 if (retval < 0)
1353 return retval;
1354
1355 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1356 }
1357
1358 /*
1359 * Create a pair of connected sockets.
1360 */
1361
1362 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1363 int __user *, usockvec)
1364 {
1365 struct socket *sock1, *sock2;
1366 int fd1, fd2, err;
1367 struct file *newfile1, *newfile2;
1368 int flags;
1369
1370 flags = type & ~SOCK_TYPE_MASK;
1371 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1372 return -EINVAL;
1373 type &= SOCK_TYPE_MASK;
1374
1375 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1376 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1377
1378 /*
1379 * reserve descriptors and make sure we won't fail
1380 * to return them to userland.
1381 */
1382 fd1 = get_unused_fd_flags(flags);
1383 if (unlikely(fd1 < 0))
1384 return fd1;
1385
1386 fd2 = get_unused_fd_flags(flags);
1387 if (unlikely(fd2 < 0)) {
1388 put_unused_fd(fd1);
1389 return fd2;
1390 }
1391
1392 err = put_user(fd1, &usockvec[0]);
1393 if (err)
1394 goto out;
1395
1396 err = put_user(fd2, &usockvec[1]);
1397 if (err)
1398 goto out;
1399
1400 /*
1401 * Obtain the first socket and check if the underlying protocol
1402 * supports the socketpair call.
1403 */
1404
1405 err = sock_create(family, type, protocol, &sock1);
1406 if (unlikely(err < 0))
1407 goto out;
1408
1409 err = sock_create(family, type, protocol, &sock2);
1410 if (unlikely(err < 0)) {
1411 sock_release(sock1);
1412 goto out;
1413 }
1414
1415 err = sock1->ops->socketpair(sock1, sock2);
1416 if (unlikely(err < 0)) {
1417 sock_release(sock2);
1418 sock_release(sock1);
1419 goto out;
1420 }
1421
1422 newfile1 = sock_alloc_file(sock1, flags, NULL);
1423 if (IS_ERR(newfile1)) {
1424 err = PTR_ERR(newfile1);
1425 sock_release(sock2);
1426 goto out;
1427 }
1428
1429 newfile2 = sock_alloc_file(sock2, flags, NULL);
1430 if (IS_ERR(newfile2)) {
1431 err = PTR_ERR(newfile2);
1432 fput(newfile1);
1433 goto out;
1434 }
1435
1436 audit_fd_pair(fd1, fd2);
1437
1438 fd_install(fd1, newfile1);
1439 fd_install(fd2, newfile2);
1440 return 0;
1441
1442 out:
1443 put_unused_fd(fd2);
1444 put_unused_fd(fd1);
1445 return err;
1446 }
1447
1448 /*
1449 * Bind a name to a socket. Nothing much to do here since it's
1450 * the protocol's responsibility to handle the local address.
1451 *
1452 * We move the socket address to kernel space before we call
1453 * the protocol layer (having also checked the address is ok).
1454 */
1455
1456 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1457 {
1458 struct socket *sock;
1459 struct sockaddr_storage address;
1460 int err, fput_needed;
1461
1462 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1463 if (sock) {
1464 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1465 if (err >= 0) {
1466 err = security_socket_bind(sock,
1467 (struct sockaddr *)&address,
1468 addrlen);
1469 if (!err)
1470 err = sock->ops->bind(sock,
1471 (struct sockaddr *)
1472 &address, addrlen);
1473 }
1474 fput_light(sock->file, fput_needed);
1475 }
1476 return err;
1477 }
1478
1479 /*
1480 * Perform a listen. Basically, we allow the protocol to do anything
1481 * necessary for a listen, and if that works, we mark the socket as
1482 * ready for listening.
1483 */
1484
1485 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1486 {
1487 struct socket *sock;
1488 int err, fput_needed;
1489 int somaxconn;
1490
1491 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1492 if (sock) {
1493 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1494 if ((unsigned int)backlog > somaxconn)
1495 backlog = somaxconn;
1496
1497 err = security_socket_listen(sock, backlog);
1498 if (!err)
1499 err = sock->ops->listen(sock, backlog);
1500
1501 fput_light(sock->file, fput_needed);
1502 }
1503 return err;
1504 }
1505
1506 /*
1507 * For accept, we attempt to create a new socket, set up the link
1508 * with the client, wake up the client, then return the new
1509 * connected fd. We collect the address of the connector in kernel
1510 * space and move it to user at the very end. This is unclean because
1511 * we open the socket then return an error.
1512 *
1513 * 1003.1g adds the ability to recvmsg() to query connection pending
1514 * status to recvmsg. We need to add that support in a way thats
1515 * clean when we restucture accept also.
1516 */
1517
1518 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1519 int __user *, upeer_addrlen, int, flags)
1520 {
1521 struct socket *sock, *newsock;
1522 struct file *newfile;
1523 int err, len, newfd, fput_needed;
1524 struct sockaddr_storage address;
1525
1526 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1527 return -EINVAL;
1528
1529 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1530 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1531
1532 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533 if (!sock)
1534 goto out;
1535
1536 err = -ENFILE;
1537 newsock = sock_alloc();
1538 if (!newsock)
1539 goto out_put;
1540
1541 newsock->type = sock->type;
1542 newsock->ops = sock->ops;
1543
1544 /*
1545 * We don't need try_module_get here, as the listening socket (sock)
1546 * has the protocol module (sock->ops->owner) held.
1547 */
1548 __module_get(newsock->ops->owner);
1549
1550 newfd = get_unused_fd_flags(flags);
1551 if (unlikely(newfd < 0)) {
1552 err = newfd;
1553 sock_release(newsock);
1554 goto out_put;
1555 }
1556 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1557 if (IS_ERR(newfile)) {
1558 err = PTR_ERR(newfile);
1559 put_unused_fd(newfd);
1560 goto out_put;
1561 }
1562
1563 err = security_socket_accept(sock, newsock);
1564 if (err)
1565 goto out_fd;
1566
1567 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1568 if (err < 0)
1569 goto out_fd;
1570
1571 if (upeer_sockaddr) {
1572 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1573 &len, 2) < 0) {
1574 err = -ECONNABORTED;
1575 goto out_fd;
1576 }
1577 err = move_addr_to_user(&address,
1578 len, upeer_sockaddr, upeer_addrlen);
1579 if (err < 0)
1580 goto out_fd;
1581 }
1582
1583 /* File flags are not inherited via accept() unlike another OSes. */
1584
1585 fd_install(newfd, newfile);
1586 err = newfd;
1587
1588 out_put:
1589 fput_light(sock->file, fput_needed);
1590 out:
1591 return err;
1592 out_fd:
1593 fput(newfile);
1594 put_unused_fd(newfd);
1595 goto out_put;
1596 }
1597
1598 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1599 int __user *, upeer_addrlen)
1600 {
1601 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1602 }
1603
1604 /*
1605 * Attempt to connect to a socket with the server address. The address
1606 * is in user space so we verify it is OK and move it to kernel space.
1607 *
1608 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1609 * break bindings
1610 *
1611 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1612 * other SEQPACKET protocols that take time to connect() as it doesn't
1613 * include the -EINPROGRESS status for such sockets.
1614 */
1615
1616 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1617 int, addrlen)
1618 {
1619 struct socket *sock;
1620 struct sockaddr_storage address;
1621 int err, fput_needed;
1622
1623 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1624 if (!sock)
1625 goto out;
1626 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1627 if (err < 0)
1628 goto out_put;
1629
1630 err =
1631 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1632 if (err)
1633 goto out_put;
1634
1635 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1636 sock->file->f_flags);
1637 out_put:
1638 fput_light(sock->file, fput_needed);
1639 out:
1640 return err;
1641 }
1642
1643 /*
1644 * Get the local address ('name') of a socket object. Move the obtained
1645 * name to user space.
1646 */
1647
1648 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1649 int __user *, usockaddr_len)
1650 {
1651 struct socket *sock;
1652 struct sockaddr_storage address;
1653 int len, err, fput_needed;
1654
1655 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656 if (!sock)
1657 goto out;
1658
1659 err = security_socket_getsockname(sock);
1660 if (err)
1661 goto out_put;
1662
1663 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1664 if (err)
1665 goto out_put;
1666 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1667
1668 out_put:
1669 fput_light(sock->file, fput_needed);
1670 out:
1671 return err;
1672 }
1673
1674 /*
1675 * Get the remote address ('name') of a socket object. Move the obtained
1676 * name to user space.
1677 */
1678
1679 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1680 int __user *, usockaddr_len)
1681 {
1682 struct socket *sock;
1683 struct sockaddr_storage address;
1684 int len, err, fput_needed;
1685
1686 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1687 if (sock != NULL) {
1688 err = security_socket_getpeername(sock);
1689 if (err) {
1690 fput_light(sock->file, fput_needed);
1691 return err;
1692 }
1693
1694 err =
1695 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1696 1);
1697 if (!err)
1698 err = move_addr_to_user(&address, len, usockaddr,
1699 usockaddr_len);
1700 fput_light(sock->file, fput_needed);
1701 }
1702 return err;
1703 }
1704
1705 /*
1706 * Send a datagram to a given address. We move the address into kernel
1707 * space and check the user space data area is readable before invoking
1708 * the protocol.
1709 */
1710
1711 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1712 unsigned int, flags, struct sockaddr __user *, addr,
1713 int, addr_len)
1714 {
1715 struct socket *sock;
1716 struct sockaddr_storage address;
1717 int err;
1718 struct msghdr msg;
1719 struct iovec iov;
1720 int fput_needed;
1721
1722 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1723 if (unlikely(err))
1724 return err;
1725 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 if (!sock)
1727 goto out;
1728
1729 msg.msg_name = NULL;
1730 msg.msg_control = NULL;
1731 msg.msg_controllen = 0;
1732 msg.msg_namelen = 0;
1733 if (addr) {
1734 err = move_addr_to_kernel(addr, addr_len, &address);
1735 if (err < 0)
1736 goto out_put;
1737 msg.msg_name = (struct sockaddr *)&address;
1738 msg.msg_namelen = addr_len;
1739 }
1740 if (sock->file->f_flags & O_NONBLOCK)
1741 flags |= MSG_DONTWAIT;
1742 msg.msg_flags = flags;
1743 err = sock_sendmsg(sock, &msg);
1744
1745 out_put:
1746 fput_light(sock->file, fput_needed);
1747 out:
1748 return err;
1749 }
1750
1751 /*
1752 * Send a datagram down a socket.
1753 */
1754
1755 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1756 unsigned int, flags)
1757 {
1758 return sys_sendto(fd, buff, len, flags, NULL, 0);
1759 }
1760
1761 /*
1762 * Receive a frame from the socket and optionally record the address of the
1763 * sender. We verify the buffers are writable and if needed move the
1764 * sender address from kernel to user space.
1765 */
1766
1767 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1768 unsigned int, flags, struct sockaddr __user *, addr,
1769 int __user *, addr_len)
1770 {
1771 struct socket *sock;
1772 struct iovec iov;
1773 struct msghdr msg;
1774 struct sockaddr_storage address;
1775 int err, err2;
1776 int fput_needed;
1777
1778 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1779 if (unlikely(err))
1780 return err;
1781 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1782 if (!sock)
1783 goto out;
1784
1785 msg.msg_control = NULL;
1786 msg.msg_controllen = 0;
1787 /* Save some cycles and don't copy the address if not needed */
1788 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1789 /* We assume all kernel code knows the size of sockaddr_storage */
1790 msg.msg_namelen = 0;
1791 msg.msg_iocb = NULL;
1792 msg.msg_flags = 0;
1793 if (sock->file->f_flags & O_NONBLOCK)
1794 flags |= MSG_DONTWAIT;
1795 err = sock_recvmsg(sock, &msg, flags);
1796
1797 if (err >= 0 && addr != NULL) {
1798 err2 = move_addr_to_user(&address,
1799 msg.msg_namelen, addr, addr_len);
1800 if (err2 < 0)
1801 err = err2;
1802 }
1803
1804 fput_light(sock->file, fput_needed);
1805 out:
1806 return err;
1807 }
1808
1809 /*
1810 * Receive a datagram from a socket.
1811 */
1812
1813 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1814 unsigned int, flags)
1815 {
1816 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1817 }
1818
1819 /*
1820 * Set a socket option. Because we don't know the option lengths we have
1821 * to pass the user mode parameter for the protocols to sort out.
1822 */
1823
1824 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1825 char __user *, optval, int, optlen)
1826 {
1827 int err, fput_needed;
1828 struct socket *sock;
1829
1830 if (optlen < 0)
1831 return -EINVAL;
1832
1833 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1834 if (sock != NULL) {
1835 err = security_socket_setsockopt(sock, level, optname);
1836 if (err)
1837 goto out_put;
1838
1839 if (level == SOL_SOCKET)
1840 err =
1841 sock_setsockopt(sock, level, optname, optval,
1842 optlen);
1843 else
1844 err =
1845 sock->ops->setsockopt(sock, level, optname, optval,
1846 optlen);
1847 out_put:
1848 fput_light(sock->file, fput_needed);
1849 }
1850 return err;
1851 }
1852
1853 /*
1854 * Get a socket option. Because we don't know the option lengths we have
1855 * to pass a user mode parameter for the protocols to sort out.
1856 */
1857
1858 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1859 char __user *, optval, int __user *, optlen)
1860 {
1861 int err, fput_needed;
1862 struct socket *sock;
1863
1864 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1865 if (sock != NULL) {
1866 err = security_socket_getsockopt(sock, level, optname);
1867 if (err)
1868 goto out_put;
1869
1870 if (level == SOL_SOCKET)
1871 err =
1872 sock_getsockopt(sock, level, optname, optval,
1873 optlen);
1874 else
1875 err =
1876 sock->ops->getsockopt(sock, level, optname, optval,
1877 optlen);
1878 out_put:
1879 fput_light(sock->file, fput_needed);
1880 }
1881 return err;
1882 }
1883
1884 /*
1885 * Shutdown a socket.
1886 */
1887
1888 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1889 {
1890 int err, fput_needed;
1891 struct socket *sock;
1892
1893 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1894 if (sock != NULL) {
1895 err = security_socket_shutdown(sock, how);
1896 if (!err)
1897 err = sock->ops->shutdown(sock, how);
1898 fput_light(sock->file, fput_needed);
1899 }
1900 return err;
1901 }
1902
1903 /* A couple of helpful macros for getting the address of the 32/64 bit
1904 * fields which are the same type (int / unsigned) on our platforms.
1905 */
1906 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1907 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1908 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1909
1910 struct used_address {
1911 struct sockaddr_storage name;
1912 unsigned int name_len;
1913 };
1914
1915 static int copy_msghdr_from_user(struct msghdr *kmsg,
1916 struct user_msghdr __user *umsg,
1917 struct sockaddr __user **save_addr,
1918 struct iovec **iov)
1919 {
1920 struct user_msghdr msg;
1921 ssize_t err;
1922
1923 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1924 return -EFAULT;
1925
1926 kmsg->msg_control = (void __force *)msg.msg_control;
1927 kmsg->msg_controllen = msg.msg_controllen;
1928 kmsg->msg_flags = msg.msg_flags;
1929
1930 kmsg->msg_namelen = msg.msg_namelen;
1931 if (!msg.msg_name)
1932 kmsg->msg_namelen = 0;
1933
1934 if (kmsg->msg_namelen < 0)
1935 return -EINVAL;
1936
1937 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1938 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1939
1940 if (save_addr)
1941 *save_addr = msg.msg_name;
1942
1943 if (msg.msg_name && kmsg->msg_namelen) {
1944 if (!save_addr) {
1945 err = move_addr_to_kernel(msg.msg_name,
1946 kmsg->msg_namelen,
1947 kmsg->msg_name);
1948 if (err < 0)
1949 return err;
1950 }
1951 } else {
1952 kmsg->msg_name = NULL;
1953 kmsg->msg_namelen = 0;
1954 }
1955
1956 if (msg.msg_iovlen > UIO_MAXIOV)
1957 return -EMSGSIZE;
1958
1959 kmsg->msg_iocb = NULL;
1960
1961 return import_iovec(save_addr ? READ : WRITE,
1962 msg.msg_iov, msg.msg_iovlen,
1963 UIO_FASTIOV, iov, &kmsg->msg_iter);
1964 }
1965
1966 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1967 struct msghdr *msg_sys, unsigned int flags,
1968 struct used_address *used_address,
1969 unsigned int allowed_msghdr_flags)
1970 {
1971 struct compat_msghdr __user *msg_compat =
1972 (struct compat_msghdr __user *)msg;
1973 struct sockaddr_storage address;
1974 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1975 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1976 __aligned(sizeof(__kernel_size_t));
1977 /* 20 is size of ipv6_pktinfo */
1978 unsigned char *ctl_buf = ctl;
1979 int ctl_len;
1980 ssize_t err;
1981
1982 msg_sys->msg_name = &address;
1983
1984 if (MSG_CMSG_COMPAT & flags)
1985 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1986 else
1987 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1988 if (err < 0)
1989 return err;
1990
1991 err = -ENOBUFS;
1992
1993 if (msg_sys->msg_controllen > INT_MAX)
1994 goto out_freeiov;
1995 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1996 ctl_len = msg_sys->msg_controllen;
1997 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1998 err =
1999 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2000 sizeof(ctl));
2001 if (err)
2002 goto out_freeiov;
2003 ctl_buf = msg_sys->msg_control;
2004 ctl_len = msg_sys->msg_controllen;
2005 } else if (ctl_len) {
2006 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2007 CMSG_ALIGN(sizeof(struct cmsghdr)));
2008 if (ctl_len > sizeof(ctl)) {
2009 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2010 if (ctl_buf == NULL)
2011 goto out_freeiov;
2012 }
2013 err = -EFAULT;
2014 /*
2015 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2016 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2017 * checking falls down on this.
2018 */
2019 if (copy_from_user(ctl_buf,
2020 (void __user __force *)msg_sys->msg_control,
2021 ctl_len))
2022 goto out_freectl;
2023 msg_sys->msg_control = ctl_buf;
2024 }
2025 msg_sys->msg_flags = flags;
2026
2027 if (sock->file->f_flags & O_NONBLOCK)
2028 msg_sys->msg_flags |= MSG_DONTWAIT;
2029 /*
2030 * If this is sendmmsg() and current destination address is same as
2031 * previously succeeded address, omit asking LSM's decision.
2032 * used_address->name_len is initialized to UINT_MAX so that the first
2033 * destination address never matches.
2034 */
2035 if (used_address && msg_sys->msg_name &&
2036 used_address->name_len == msg_sys->msg_namelen &&
2037 !memcmp(&used_address->name, msg_sys->msg_name,
2038 used_address->name_len)) {
2039 err = sock_sendmsg_nosec(sock, msg_sys);
2040 goto out_freectl;
2041 }
2042 err = sock_sendmsg(sock, msg_sys);
2043 /*
2044 * If this is sendmmsg() and sending to current destination address was
2045 * successful, remember it.
2046 */
2047 if (used_address && err >= 0) {
2048 used_address->name_len = msg_sys->msg_namelen;
2049 if (msg_sys->msg_name)
2050 memcpy(&used_address->name, msg_sys->msg_name,
2051 used_address->name_len);
2052 }
2053
2054 out_freectl:
2055 if (ctl_buf != ctl)
2056 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2057 out_freeiov:
2058 kfree(iov);
2059 return err;
2060 }
2061
2062 /*
2063 * BSD sendmsg interface
2064 */
2065
2066 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2067 {
2068 int fput_needed, err;
2069 struct msghdr msg_sys;
2070 struct socket *sock;
2071
2072 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2073 if (!sock)
2074 goto out;
2075
2076 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2077
2078 fput_light(sock->file, fput_needed);
2079 out:
2080 return err;
2081 }
2082
2083 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2084 {
2085 if (flags & MSG_CMSG_COMPAT)
2086 return -EINVAL;
2087 return __sys_sendmsg(fd, msg, flags);
2088 }
2089
2090 /*
2091 * Linux sendmmsg interface
2092 */
2093
2094 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2095 unsigned int flags)
2096 {
2097 int fput_needed, err, datagrams;
2098 struct socket *sock;
2099 struct mmsghdr __user *entry;
2100 struct compat_mmsghdr __user *compat_entry;
2101 struct msghdr msg_sys;
2102 struct used_address used_address;
2103 unsigned int oflags = flags;
2104
2105 if (vlen > UIO_MAXIOV)
2106 vlen = UIO_MAXIOV;
2107
2108 datagrams = 0;
2109
2110 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2111 if (!sock)
2112 return err;
2113
2114 used_address.name_len = UINT_MAX;
2115 entry = mmsg;
2116 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2117 err = 0;
2118 flags |= MSG_BATCH;
2119
2120 while (datagrams < vlen) {
2121 if (datagrams == vlen - 1)
2122 flags = oflags;
2123
2124 if (MSG_CMSG_COMPAT & flags) {
2125 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2126 &msg_sys, flags, &used_address, MSG_EOR);
2127 if (err < 0)
2128 break;
2129 err = __put_user(err, &compat_entry->msg_len);
2130 ++compat_entry;
2131 } else {
2132 err = ___sys_sendmsg(sock,
2133 (struct user_msghdr __user *)entry,
2134 &msg_sys, flags, &used_address, MSG_EOR);
2135 if (err < 0)
2136 break;
2137 err = put_user(err, &entry->msg_len);
2138 ++entry;
2139 }
2140
2141 if (err)
2142 break;
2143 ++datagrams;
2144 if (msg_data_left(&msg_sys))
2145 break;
2146 cond_resched();
2147 }
2148
2149 fput_light(sock->file, fput_needed);
2150
2151 /* We only return an error if no datagrams were able to be sent */
2152 if (datagrams != 0)
2153 return datagrams;
2154
2155 return err;
2156 }
2157
2158 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2159 unsigned int, vlen, unsigned int, flags)
2160 {
2161 if (flags & MSG_CMSG_COMPAT)
2162 return -EINVAL;
2163 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2164 }
2165
2166 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2167 struct msghdr *msg_sys, unsigned int flags, int nosec)
2168 {
2169 struct compat_msghdr __user *msg_compat =
2170 (struct compat_msghdr __user *)msg;
2171 struct iovec iovstack[UIO_FASTIOV];
2172 struct iovec *iov = iovstack;
2173 unsigned long cmsg_ptr;
2174 int len;
2175 ssize_t err;
2176
2177 /* kernel mode address */
2178 struct sockaddr_storage addr;
2179
2180 /* user mode address pointers */
2181 struct sockaddr __user *uaddr;
2182 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2183
2184 msg_sys->msg_name = &addr;
2185
2186 if (MSG_CMSG_COMPAT & flags)
2187 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2188 else
2189 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2190 if (err < 0)
2191 return err;
2192
2193 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2194 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2195
2196 /* We assume all kernel code knows the size of sockaddr_storage */
2197 msg_sys->msg_namelen = 0;
2198
2199 if (sock->file->f_flags & O_NONBLOCK)
2200 flags |= MSG_DONTWAIT;
2201 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2202 if (err < 0)
2203 goto out_freeiov;
2204 len = err;
2205
2206 if (uaddr != NULL) {
2207 err = move_addr_to_user(&addr,
2208 msg_sys->msg_namelen, uaddr,
2209 uaddr_len);
2210 if (err < 0)
2211 goto out_freeiov;
2212 }
2213 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2214 COMPAT_FLAGS(msg));
2215 if (err)
2216 goto out_freeiov;
2217 if (MSG_CMSG_COMPAT & flags)
2218 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2219 &msg_compat->msg_controllen);
2220 else
2221 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2222 &msg->msg_controllen);
2223 if (err)
2224 goto out_freeiov;
2225 err = len;
2226
2227 out_freeiov:
2228 kfree(iov);
2229 return err;
2230 }
2231
2232 /*
2233 * BSD recvmsg interface
2234 */
2235
2236 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2237 {
2238 int fput_needed, err;
2239 struct msghdr msg_sys;
2240 struct socket *sock;
2241
2242 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2243 if (!sock)
2244 goto out;
2245
2246 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2247
2248 fput_light(sock->file, fput_needed);
2249 out:
2250 return err;
2251 }
2252
2253 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2254 unsigned int, flags)
2255 {
2256 if (flags & MSG_CMSG_COMPAT)
2257 return -EINVAL;
2258 return __sys_recvmsg(fd, msg, flags);
2259 }
2260
2261 /*
2262 * Linux recvmmsg interface
2263 */
2264
2265 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2266 unsigned int flags, struct timespec *timeout)
2267 {
2268 int fput_needed, err, datagrams;
2269 struct socket *sock;
2270 struct mmsghdr __user *entry;
2271 struct compat_mmsghdr __user *compat_entry;
2272 struct msghdr msg_sys;
2273 struct timespec64 end_time;
2274 struct timespec64 timeout64;
2275
2276 if (timeout &&
2277 poll_select_set_timeout(&end_time, timeout->tv_sec,
2278 timeout->tv_nsec))
2279 return -EINVAL;
2280
2281 datagrams = 0;
2282
2283 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2284 if (!sock)
2285 return err;
2286
2287 err = sock_error(sock->sk);
2288 if (err) {
2289 datagrams = err;
2290 goto out_put;
2291 }
2292
2293 entry = mmsg;
2294 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2295
2296 while (datagrams < vlen) {
2297 /*
2298 * No need to ask LSM for more than the first datagram.
2299 */
2300 if (MSG_CMSG_COMPAT & flags) {
2301 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2302 &msg_sys, flags & ~MSG_WAITFORONE,
2303 datagrams);
2304 if (err < 0)
2305 break;
2306 err = __put_user(err, &compat_entry->msg_len);
2307 ++compat_entry;
2308 } else {
2309 err = ___sys_recvmsg(sock,
2310 (struct user_msghdr __user *)entry,
2311 &msg_sys, flags & ~MSG_WAITFORONE,
2312 datagrams);
2313 if (err < 0)
2314 break;
2315 err = put_user(err, &entry->msg_len);
2316 ++entry;
2317 }
2318
2319 if (err)
2320 break;
2321 ++datagrams;
2322
2323 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2324 if (flags & MSG_WAITFORONE)
2325 flags |= MSG_DONTWAIT;
2326
2327 if (timeout) {
2328 ktime_get_ts64(&timeout64);
2329 *timeout = timespec64_to_timespec(
2330 timespec64_sub(end_time, timeout64));
2331 if (timeout->tv_sec < 0) {
2332 timeout->tv_sec = timeout->tv_nsec = 0;
2333 break;
2334 }
2335
2336 /* Timeout, return less than vlen datagrams */
2337 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2338 break;
2339 }
2340
2341 /* Out of band data, return right away */
2342 if (msg_sys.msg_flags & MSG_OOB)
2343 break;
2344 cond_resched();
2345 }
2346
2347 if (err == 0)
2348 goto out_put;
2349
2350 if (datagrams == 0) {
2351 datagrams = err;
2352 goto out_put;
2353 }
2354
2355 /*
2356 * We may return less entries than requested (vlen) if the
2357 * sock is non block and there aren't enough datagrams...
2358 */
2359 if (err != -EAGAIN) {
2360 /*
2361 * ... or if recvmsg returns an error after we
2362 * received some datagrams, where we record the
2363 * error to return on the next call or if the
2364 * app asks about it using getsockopt(SO_ERROR).
2365 */
2366 sock->sk->sk_err = -err;
2367 }
2368 out_put:
2369 fput_light(sock->file, fput_needed);
2370
2371 return datagrams;
2372 }
2373
2374 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2375 unsigned int, vlen, unsigned int, flags,
2376 struct timespec __user *, timeout)
2377 {
2378 int datagrams;
2379 struct timespec timeout_sys;
2380
2381 if (flags & MSG_CMSG_COMPAT)
2382 return -EINVAL;
2383
2384 if (!timeout)
2385 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2386
2387 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2388 return -EFAULT;
2389
2390 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2391
2392 if (datagrams > 0 &&
2393 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2394 datagrams = -EFAULT;
2395
2396 return datagrams;
2397 }
2398
2399 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2400 /* Argument list sizes for sys_socketcall */
2401 #define AL(x) ((x) * sizeof(unsigned long))
2402 static const unsigned char nargs[21] = {
2403 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2404 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2405 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2406 AL(4), AL(5), AL(4)
2407 };
2408
2409 #undef AL
2410
2411 /*
2412 * System call vectors.
2413 *
2414 * Argument checking cleaned up. Saved 20% in size.
2415 * This function doesn't need to set the kernel lock because
2416 * it is set by the callees.
2417 */
2418
2419 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2420 {
2421 unsigned long a[AUDITSC_ARGS];
2422 unsigned long a0, a1;
2423 int err;
2424 unsigned int len;
2425
2426 if (call < 1 || call > SYS_SENDMMSG)
2427 return -EINVAL;
2428 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2429
2430 len = nargs[call];
2431 if (len > sizeof(a))
2432 return -EINVAL;
2433
2434 /* copy_from_user should be SMP safe. */
2435 if (copy_from_user(a, args, len))
2436 return -EFAULT;
2437
2438 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2439 if (err)
2440 return err;
2441
2442 a0 = a[0];
2443 a1 = a[1];
2444
2445 switch (call) {
2446 case SYS_SOCKET:
2447 err = sys_socket(a0, a1, a[2]);
2448 break;
2449 case SYS_BIND:
2450 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2451 break;
2452 case SYS_CONNECT:
2453 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2454 break;
2455 case SYS_LISTEN:
2456 err = sys_listen(a0, a1);
2457 break;
2458 case SYS_ACCEPT:
2459 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2460 (int __user *)a[2], 0);
2461 break;
2462 case SYS_GETSOCKNAME:
2463 err =
2464 sys_getsockname(a0, (struct sockaddr __user *)a1,
2465 (int __user *)a[2]);
2466 break;
2467 case SYS_GETPEERNAME:
2468 err =
2469 sys_getpeername(a0, (struct sockaddr __user *)a1,
2470 (int __user *)a[2]);
2471 break;
2472 case SYS_SOCKETPAIR:
2473 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2474 break;
2475 case SYS_SEND:
2476 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2477 break;
2478 case SYS_SENDTO:
2479 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2480 (struct sockaddr __user *)a[4], a[5]);
2481 break;
2482 case SYS_RECV:
2483 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2484 break;
2485 case SYS_RECVFROM:
2486 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2487 (struct sockaddr __user *)a[4],
2488 (int __user *)a[5]);
2489 break;
2490 case SYS_SHUTDOWN:
2491 err = sys_shutdown(a0, a1);
2492 break;
2493 case SYS_SETSOCKOPT:
2494 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2495 break;
2496 case SYS_GETSOCKOPT:
2497 err =
2498 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2499 (int __user *)a[4]);
2500 break;
2501 case SYS_SENDMSG:
2502 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2503 break;
2504 case SYS_SENDMMSG:
2505 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2506 break;
2507 case SYS_RECVMSG:
2508 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2509 break;
2510 case SYS_RECVMMSG:
2511 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2512 (struct timespec __user *)a[4]);
2513 break;
2514 case SYS_ACCEPT4:
2515 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2516 (int __user *)a[2], a[3]);
2517 break;
2518 default:
2519 err = -EINVAL;
2520 break;
2521 }
2522 return err;
2523 }
2524
2525 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2526
2527 /**
2528 * sock_register - add a socket protocol handler
2529 * @ops: description of protocol
2530 *
2531 * This function is called by a protocol handler that wants to
2532 * advertise its address family, and have it linked into the
2533 * socket interface. The value ops->family corresponds to the
2534 * socket system call protocol family.
2535 */
2536 int sock_register(const struct net_proto_family *ops)
2537 {
2538 int err;
2539
2540 if (ops->family >= NPROTO) {
2541 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2542 return -ENOBUFS;
2543 }
2544
2545 spin_lock(&net_family_lock);
2546 if (rcu_dereference_protected(net_families[ops->family],
2547 lockdep_is_held(&net_family_lock)))
2548 err = -EEXIST;
2549 else {
2550 rcu_assign_pointer(net_families[ops->family], ops);
2551 err = 0;
2552 }
2553 spin_unlock(&net_family_lock);
2554
2555 pr_info("NET: Registered protocol family %d\n", ops->family);
2556 return err;
2557 }
2558 EXPORT_SYMBOL(sock_register);
2559
2560 /**
2561 * sock_unregister - remove a protocol handler
2562 * @family: protocol family to remove
2563 *
2564 * This function is called by a protocol handler that wants to
2565 * remove its address family, and have it unlinked from the
2566 * new socket creation.
2567 *
2568 * If protocol handler is a module, then it can use module reference
2569 * counts to protect against new references. If protocol handler is not
2570 * a module then it needs to provide its own protection in
2571 * the ops->create routine.
2572 */
2573 void sock_unregister(int family)
2574 {
2575 BUG_ON(family < 0 || family >= NPROTO);
2576
2577 spin_lock(&net_family_lock);
2578 RCU_INIT_POINTER(net_families[family], NULL);
2579 spin_unlock(&net_family_lock);
2580
2581 synchronize_rcu();
2582
2583 pr_info("NET: Unregistered protocol family %d\n", family);
2584 }
2585 EXPORT_SYMBOL(sock_unregister);
2586
2587 static int __init sock_init(void)
2588 {
2589 int err;
2590 /*
2591 * Initialize the network sysctl infrastructure.
2592 */
2593 err = net_sysctl_init();
2594 if (err)
2595 goto out;
2596
2597 /*
2598 * Initialize skbuff SLAB cache
2599 */
2600 skb_init();
2601
2602 /*
2603 * Initialize the protocols module.
2604 */
2605
2606 init_inodecache();
2607
2608 err = register_filesystem(&sock_fs_type);
2609 if (err)
2610 goto out_fs;
2611 sock_mnt = kern_mount(&sock_fs_type);
2612 if (IS_ERR(sock_mnt)) {
2613 err = PTR_ERR(sock_mnt);
2614 goto out_mount;
2615 }
2616
2617 /* The real protocol initialization is performed in later initcalls.
2618 */
2619
2620 #ifdef CONFIG_NETFILTER
2621 err = netfilter_init();
2622 if (err)
2623 goto out;
2624 #endif
2625
2626 ptp_classifier_init();
2627
2628 out:
2629 return err;
2630
2631 out_mount:
2632 unregister_filesystem(&sock_fs_type);
2633 out_fs:
2634 goto out;
2635 }
2636
2637 core_initcall(sock_init); /* early initcall */
2638
2639 static int __init jit_init(void)
2640 {
2641 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2642 bpf_jit_enable = 1;
2643 #endif
2644 return 0;
2645 }
2646 pure_initcall(jit_init);
2647
2648 #ifdef CONFIG_PROC_FS
2649 void socket_seq_show(struct seq_file *seq)
2650 {
2651 int cpu;
2652 int counter = 0;
2653
2654 for_each_possible_cpu(cpu)
2655 counter += per_cpu(sockets_in_use, cpu);
2656
2657 /* It can be negative, by the way. 8) */
2658 if (counter < 0)
2659 counter = 0;
2660
2661 seq_printf(seq, "sockets: used %d\n", counter);
2662 }
2663 #endif /* CONFIG_PROC_FS */
2664
2665 #ifdef CONFIG_COMPAT
2666 static int do_siocgstamp(struct net *net, struct socket *sock,
2667 unsigned int cmd, void __user *up)
2668 {
2669 mm_segment_t old_fs = get_fs();
2670 struct timeval ktv;
2671 int err;
2672
2673 set_fs(KERNEL_DS);
2674 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2675 set_fs(old_fs);
2676 if (!err)
2677 err = compat_put_timeval(&ktv, up);
2678
2679 return err;
2680 }
2681
2682 static int do_siocgstampns(struct net *net, struct socket *sock,
2683 unsigned int cmd, void __user *up)
2684 {
2685 mm_segment_t old_fs = get_fs();
2686 struct timespec kts;
2687 int err;
2688
2689 set_fs(KERNEL_DS);
2690 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2691 set_fs(old_fs);
2692 if (!err)
2693 err = compat_put_timespec(&kts, up);
2694
2695 return err;
2696 }
2697
2698 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2699 {
2700 struct ifreq __user *uifr;
2701 int err;
2702
2703 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2704 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2705 return -EFAULT;
2706
2707 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2708 if (err)
2709 return err;
2710
2711 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2712 return -EFAULT;
2713
2714 return 0;
2715 }
2716
2717 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2718 {
2719 struct compat_ifconf ifc32;
2720 struct ifconf ifc;
2721 struct ifconf __user *uifc;
2722 struct compat_ifreq __user *ifr32;
2723 struct ifreq __user *ifr;
2724 unsigned int i, j;
2725 int err;
2726
2727 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2728 return -EFAULT;
2729
2730 memset(&ifc, 0, sizeof(ifc));
2731 if (ifc32.ifcbuf == 0) {
2732 ifc32.ifc_len = 0;
2733 ifc.ifc_len = 0;
2734 ifc.ifc_req = NULL;
2735 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2736 } else {
2737 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2738 sizeof(struct ifreq);
2739 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2740 ifc.ifc_len = len;
2741 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2742 ifr32 = compat_ptr(ifc32.ifcbuf);
2743 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2744 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2745 return -EFAULT;
2746 ifr++;
2747 ifr32++;
2748 }
2749 }
2750 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2751 return -EFAULT;
2752
2753 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2754 if (err)
2755 return err;
2756
2757 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2758 return -EFAULT;
2759
2760 ifr = ifc.ifc_req;
2761 ifr32 = compat_ptr(ifc32.ifcbuf);
2762 for (i = 0, j = 0;
2763 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2764 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2765 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2766 return -EFAULT;
2767 ifr32++;
2768 ifr++;
2769 }
2770
2771 if (ifc32.ifcbuf == 0) {
2772 /* Translate from 64-bit structure multiple to
2773 * a 32-bit one.
2774 */
2775 i = ifc.ifc_len;
2776 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2777 ifc32.ifc_len = i;
2778 } else {
2779 ifc32.ifc_len = i;
2780 }
2781 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2782 return -EFAULT;
2783
2784 return 0;
2785 }
2786
2787 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2788 {
2789 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2790 bool convert_in = false, convert_out = false;
2791 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2792 struct ethtool_rxnfc __user *rxnfc;
2793 struct ifreq __user *ifr;
2794 u32 rule_cnt = 0, actual_rule_cnt;
2795 u32 ethcmd;
2796 u32 data;
2797 int ret;
2798
2799 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2800 return -EFAULT;
2801
2802 compat_rxnfc = compat_ptr(data);
2803
2804 if (get_user(ethcmd, &compat_rxnfc->cmd))
2805 return -EFAULT;
2806
2807 /* Most ethtool structures are defined without padding.
2808 * Unfortunately struct ethtool_rxnfc is an exception.
2809 */
2810 switch (ethcmd) {
2811 default:
2812 break;
2813 case ETHTOOL_GRXCLSRLALL:
2814 /* Buffer size is variable */
2815 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2816 return -EFAULT;
2817 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2818 return -ENOMEM;
2819 buf_size += rule_cnt * sizeof(u32);
2820 /* fall through */
2821 case ETHTOOL_GRXRINGS:
2822 case ETHTOOL_GRXCLSRLCNT:
2823 case ETHTOOL_GRXCLSRULE:
2824 case ETHTOOL_SRXCLSRLINS:
2825 convert_out = true;
2826 /* fall through */
2827 case ETHTOOL_SRXCLSRLDEL:
2828 buf_size += sizeof(struct ethtool_rxnfc);
2829 convert_in = true;
2830 break;
2831 }
2832
2833 ifr = compat_alloc_user_space(buf_size);
2834 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2835
2836 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2837 return -EFAULT;
2838
2839 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2840 &ifr->ifr_ifru.ifru_data))
2841 return -EFAULT;
2842
2843 if (convert_in) {
2844 /* We expect there to be holes between fs.m_ext and
2845 * fs.ring_cookie and at the end of fs, but nowhere else.
2846 */
2847 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2848 sizeof(compat_rxnfc->fs.m_ext) !=
2849 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2850 sizeof(rxnfc->fs.m_ext));
2851 BUILD_BUG_ON(
2852 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2853 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2854 offsetof(struct ethtool_rxnfc, fs.location) -
2855 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2856
2857 if (copy_in_user(rxnfc, compat_rxnfc,
2858 (void __user *)(&rxnfc->fs.m_ext + 1) -
2859 (void __user *)rxnfc) ||
2860 copy_in_user(&rxnfc->fs.ring_cookie,
2861 &compat_rxnfc->fs.ring_cookie,
2862 (void __user *)(&rxnfc->fs.location + 1) -
2863 (void __user *)&rxnfc->fs.ring_cookie) ||
2864 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2865 sizeof(rxnfc->rule_cnt)))
2866 return -EFAULT;
2867 }
2868
2869 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2870 if (ret)
2871 return ret;
2872
2873 if (convert_out) {
2874 if (copy_in_user(compat_rxnfc, rxnfc,
2875 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2876 (const void __user *)rxnfc) ||
2877 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2878 &rxnfc->fs.ring_cookie,
2879 (const void __user *)(&rxnfc->fs.location + 1) -
2880 (const void __user *)&rxnfc->fs.ring_cookie) ||
2881 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2882 sizeof(rxnfc->rule_cnt)))
2883 return -EFAULT;
2884
2885 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2886 /* As an optimisation, we only copy the actual
2887 * number of rules that the underlying
2888 * function returned. Since Mallory might
2889 * change the rule count in user memory, we
2890 * check that it is less than the rule count
2891 * originally given (as the user buffer size),
2892 * which has been range-checked.
2893 */
2894 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2895 return -EFAULT;
2896 if (actual_rule_cnt < rule_cnt)
2897 rule_cnt = actual_rule_cnt;
2898 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2899 &rxnfc->rule_locs[0],
2900 rule_cnt * sizeof(u32)))
2901 return -EFAULT;
2902 }
2903 }
2904
2905 return 0;
2906 }
2907
2908 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2909 {
2910 void __user *uptr;
2911 compat_uptr_t uptr32;
2912 struct ifreq __user *uifr;
2913
2914 uifr = compat_alloc_user_space(sizeof(*uifr));
2915 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2916 return -EFAULT;
2917
2918 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2919 return -EFAULT;
2920
2921 uptr = compat_ptr(uptr32);
2922
2923 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2924 return -EFAULT;
2925
2926 return dev_ioctl(net, SIOCWANDEV, uifr);
2927 }
2928
2929 static int bond_ioctl(struct net *net, unsigned int cmd,
2930 struct compat_ifreq __user *ifr32)
2931 {
2932 struct ifreq kifr;
2933 mm_segment_t old_fs;
2934 int err;
2935
2936 switch (cmd) {
2937 case SIOCBONDENSLAVE:
2938 case SIOCBONDRELEASE:
2939 case SIOCBONDSETHWADDR:
2940 case SIOCBONDCHANGEACTIVE:
2941 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2942 return -EFAULT;
2943
2944 old_fs = get_fs();
2945 set_fs(KERNEL_DS);
2946 err = dev_ioctl(net, cmd,
2947 (struct ifreq __user __force *) &kifr);
2948 set_fs(old_fs);
2949
2950 return err;
2951 default:
2952 return -ENOIOCTLCMD;
2953 }
2954 }
2955
2956 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2957 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2958 struct compat_ifreq __user *u_ifreq32)
2959 {
2960 struct ifreq __user *u_ifreq64;
2961 char tmp_buf[IFNAMSIZ];
2962 void __user *data64;
2963 u32 data32;
2964
2965 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2966 IFNAMSIZ))
2967 return -EFAULT;
2968 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2969 return -EFAULT;
2970 data64 = compat_ptr(data32);
2971
2972 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2973
2974 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2975 IFNAMSIZ))
2976 return -EFAULT;
2977 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2978 return -EFAULT;
2979
2980 return dev_ioctl(net, cmd, u_ifreq64);
2981 }
2982
2983 static int dev_ifsioc(struct net *net, struct socket *sock,
2984 unsigned int cmd, struct compat_ifreq __user *uifr32)
2985 {
2986 struct ifreq __user *uifr;
2987 int err;
2988
2989 uifr = compat_alloc_user_space(sizeof(*uifr));
2990 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2991 return -EFAULT;
2992
2993 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2994
2995 if (!err) {
2996 switch (cmd) {
2997 case SIOCGIFFLAGS:
2998 case SIOCGIFMETRIC:
2999 case SIOCGIFMTU:
3000 case SIOCGIFMEM:
3001 case SIOCGIFHWADDR:
3002 case SIOCGIFINDEX:
3003 case SIOCGIFADDR:
3004 case SIOCGIFBRDADDR:
3005 case SIOCGIFDSTADDR:
3006 case SIOCGIFNETMASK:
3007 case SIOCGIFPFLAGS:
3008 case SIOCGIFTXQLEN:
3009 case SIOCGMIIPHY:
3010 case SIOCGMIIREG:
3011 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3012 err = -EFAULT;
3013 break;
3014 }
3015 }
3016 return err;
3017 }
3018
3019 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3020 struct compat_ifreq __user *uifr32)
3021 {
3022 struct ifreq ifr;
3023 struct compat_ifmap __user *uifmap32;
3024 mm_segment_t old_fs;
3025 int err;
3026
3027 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3028 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3029 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3030 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3031 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3032 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3033 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3034 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3035 if (err)
3036 return -EFAULT;
3037
3038 old_fs = get_fs();
3039 set_fs(KERNEL_DS);
3040 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3041 set_fs(old_fs);
3042
3043 if (cmd == SIOCGIFMAP && !err) {
3044 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3045 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3046 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3047 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3048 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3049 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3050 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3051 if (err)
3052 err = -EFAULT;
3053 }
3054 return err;
3055 }
3056
3057 struct rtentry32 {
3058 u32 rt_pad1;
3059 struct sockaddr rt_dst; /* target address */
3060 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3061 struct sockaddr rt_genmask; /* target network mask (IP) */
3062 unsigned short rt_flags;
3063 short rt_pad2;
3064 u32 rt_pad3;
3065 unsigned char rt_tos;
3066 unsigned char rt_class;
3067 short rt_pad4;
3068 short rt_metric; /* +1 for binary compatibility! */
3069 /* char * */ u32 rt_dev; /* forcing the device at add */
3070 u32 rt_mtu; /* per route MTU/Window */
3071 u32 rt_window; /* Window clamping */
3072 unsigned short rt_irtt; /* Initial RTT */
3073 };
3074
3075 struct in6_rtmsg32 {
3076 struct in6_addr rtmsg_dst;
3077 struct in6_addr rtmsg_src;
3078 struct in6_addr rtmsg_gateway;
3079 u32 rtmsg_type;
3080 u16 rtmsg_dst_len;
3081 u16 rtmsg_src_len;
3082 u32 rtmsg_metric;
3083 u32 rtmsg_info;
3084 u32 rtmsg_flags;
3085 s32 rtmsg_ifindex;
3086 };
3087
3088 static int routing_ioctl(struct net *net, struct socket *sock,
3089 unsigned int cmd, void __user *argp)
3090 {
3091 int ret;
3092 void *r = NULL;
3093 struct in6_rtmsg r6;
3094 struct rtentry r4;
3095 char devname[16];
3096 u32 rtdev;
3097 mm_segment_t old_fs = get_fs();
3098
3099 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3100 struct in6_rtmsg32 __user *ur6 = argp;
3101 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3102 3 * sizeof(struct in6_addr));
3103 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3104 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3105 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3106 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3107 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3108 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3109 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3110
3111 r = (void *) &r6;
3112 } else { /* ipv4 */
3113 struct rtentry32 __user *ur4 = argp;
3114 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3115 3 * sizeof(struct sockaddr));
3116 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3117 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3118 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3119 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3120 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3121 ret |= get_user(rtdev, &(ur4->rt_dev));
3122 if (rtdev) {
3123 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3124 r4.rt_dev = (char __user __force *)devname;
3125 devname[15] = 0;
3126 } else
3127 r4.rt_dev = NULL;
3128
3129 r = (void *) &r4;
3130 }
3131
3132 if (ret) {
3133 ret = -EFAULT;
3134 goto out;
3135 }
3136
3137 set_fs(KERNEL_DS);
3138 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3139 set_fs(old_fs);
3140
3141 out:
3142 return ret;
3143 }
3144
3145 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3146 * for some operations; this forces use of the newer bridge-utils that
3147 * use compatible ioctls
3148 */
3149 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3150 {
3151 compat_ulong_t tmp;
3152
3153 if (get_user(tmp, argp))
3154 return -EFAULT;
3155 if (tmp == BRCTL_GET_VERSION)
3156 return BRCTL_VERSION + 1;
3157 return -EINVAL;
3158 }
3159
3160 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3161 unsigned int cmd, unsigned long arg)
3162 {
3163 void __user *argp = compat_ptr(arg);
3164 struct sock *sk = sock->sk;
3165 struct net *net = sock_net(sk);
3166
3167 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3168 return compat_ifr_data_ioctl(net, cmd, argp);
3169
3170 switch (cmd) {
3171 case SIOCSIFBR:
3172 case SIOCGIFBR:
3173 return old_bridge_ioctl(argp);
3174 case SIOCGIFNAME:
3175 return dev_ifname32(net, argp);
3176 case SIOCGIFCONF:
3177 return dev_ifconf(net, argp);
3178 case SIOCETHTOOL:
3179 return ethtool_ioctl(net, argp);
3180 case SIOCWANDEV:
3181 return compat_siocwandev(net, argp);
3182 case SIOCGIFMAP:
3183 case SIOCSIFMAP:
3184 return compat_sioc_ifmap(net, cmd, argp);
3185 case SIOCBONDENSLAVE:
3186 case SIOCBONDRELEASE:
3187 case SIOCBONDSETHWADDR:
3188 case SIOCBONDCHANGEACTIVE:
3189 return bond_ioctl(net, cmd, argp);
3190 case SIOCADDRT:
3191 case SIOCDELRT:
3192 return routing_ioctl(net, sock, cmd, argp);
3193 case SIOCGSTAMP:
3194 return do_siocgstamp(net, sock, cmd, argp);
3195 case SIOCGSTAMPNS:
3196 return do_siocgstampns(net, sock, cmd, argp);
3197 case SIOCBONDSLAVEINFOQUERY:
3198 case SIOCBONDINFOQUERY:
3199 case SIOCSHWTSTAMP:
3200 case SIOCGHWTSTAMP:
3201 return compat_ifr_data_ioctl(net, cmd, argp);
3202
3203 case FIOSETOWN:
3204 case SIOCSPGRP:
3205 case FIOGETOWN:
3206 case SIOCGPGRP:
3207 case SIOCBRADDBR:
3208 case SIOCBRDELBR:
3209 case SIOCGIFVLAN:
3210 case SIOCSIFVLAN:
3211 case SIOCADDDLCI:
3212 case SIOCDELDLCI:
3213 case SIOCGSKNS:
3214 return sock_ioctl(file, cmd, arg);
3215
3216 case SIOCGIFFLAGS:
3217 case SIOCSIFFLAGS:
3218 case SIOCGIFMETRIC:
3219 case SIOCSIFMETRIC:
3220 case SIOCGIFMTU:
3221 case SIOCSIFMTU:
3222 case SIOCGIFMEM:
3223 case SIOCSIFMEM:
3224 case SIOCGIFHWADDR:
3225 case SIOCSIFHWADDR:
3226 case SIOCADDMULTI:
3227 case SIOCDELMULTI:
3228 case SIOCGIFINDEX:
3229 case SIOCGIFADDR:
3230 case SIOCSIFADDR:
3231 case SIOCSIFHWBROADCAST:
3232 case SIOCDIFADDR:
3233 case SIOCGIFBRDADDR:
3234 case SIOCSIFBRDADDR:
3235 case SIOCGIFDSTADDR:
3236 case SIOCSIFDSTADDR:
3237 case SIOCGIFNETMASK:
3238 case SIOCSIFNETMASK:
3239 case SIOCSIFPFLAGS:
3240 case SIOCGIFPFLAGS:
3241 case SIOCGIFTXQLEN:
3242 case SIOCSIFTXQLEN:
3243 case SIOCBRADDIF:
3244 case SIOCBRDELIF:
3245 case SIOCSIFNAME:
3246 case SIOCGMIIPHY:
3247 case SIOCGMIIREG:
3248 case SIOCSMIIREG:
3249 return dev_ifsioc(net, sock, cmd, argp);
3250
3251 case SIOCSARP:
3252 case SIOCGARP:
3253 case SIOCDARP:
3254 case SIOCATMARK:
3255 return sock_do_ioctl(net, sock, cmd, arg);
3256 }
3257
3258 return -ENOIOCTLCMD;
3259 }
3260
3261 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3262 unsigned long arg)
3263 {
3264 struct socket *sock = file->private_data;
3265 int ret = -ENOIOCTLCMD;
3266 struct sock *sk;
3267 struct net *net;
3268
3269 sk = sock->sk;
3270 net = sock_net(sk);
3271
3272 if (sock->ops->compat_ioctl)
3273 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3274
3275 if (ret == -ENOIOCTLCMD &&
3276 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3277 ret = compat_wext_handle_ioctl(net, cmd, arg);
3278
3279 if (ret == -ENOIOCTLCMD)
3280 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3281
3282 return ret;
3283 }
3284 #endif
3285
3286 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3287 {
3288 return sock->ops->bind(sock, addr, addrlen);
3289 }
3290 EXPORT_SYMBOL(kernel_bind);
3291
3292 int kernel_listen(struct socket *sock, int backlog)
3293 {
3294 return sock->ops->listen(sock, backlog);
3295 }
3296 EXPORT_SYMBOL(kernel_listen);
3297
3298 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3299 {
3300 struct sock *sk = sock->sk;
3301 int err;
3302
3303 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3304 newsock);
3305 if (err < 0)
3306 goto done;
3307
3308 err = sock->ops->accept(sock, *newsock, flags, true);
3309 if (err < 0) {
3310 sock_release(*newsock);
3311 *newsock = NULL;
3312 goto done;
3313 }
3314
3315 (*newsock)->ops = sock->ops;
3316 __module_get((*newsock)->ops->owner);
3317
3318 done:
3319 return err;
3320 }
3321 EXPORT_SYMBOL(kernel_accept);
3322
3323 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3324 int flags)
3325 {
3326 return sock->ops->connect(sock, addr, addrlen, flags);
3327 }
3328 EXPORT_SYMBOL(kernel_connect);
3329
3330 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3331 int *addrlen)
3332 {
3333 return sock->ops->getname(sock, addr, addrlen, 0);
3334 }
3335 EXPORT_SYMBOL(kernel_getsockname);
3336
3337 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3338 int *addrlen)
3339 {
3340 return sock->ops->getname(sock, addr, addrlen, 1);
3341 }
3342 EXPORT_SYMBOL(kernel_getpeername);
3343
3344 int kernel_getsockopt(struct socket *sock, int level, int optname,
3345 char *optval, int *optlen)
3346 {
3347 mm_segment_t oldfs = get_fs();
3348 char __user *uoptval;
3349 int __user *uoptlen;
3350 int err;
3351
3352 uoptval = (char __user __force *) optval;
3353 uoptlen = (int __user __force *) optlen;
3354
3355 set_fs(KERNEL_DS);
3356 if (level == SOL_SOCKET)
3357 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3358 else
3359 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3360 uoptlen);
3361 set_fs(oldfs);
3362 return err;
3363 }
3364 EXPORT_SYMBOL(kernel_getsockopt);
3365
3366 int kernel_setsockopt(struct socket *sock, int level, int optname,
3367 char *optval, unsigned int optlen)
3368 {
3369 mm_segment_t oldfs = get_fs();
3370 char __user *uoptval;
3371 int err;
3372
3373 uoptval = (char __user __force *) optval;
3374
3375 set_fs(KERNEL_DS);
3376 if (level == SOL_SOCKET)
3377 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3378 else
3379 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3380 optlen);
3381 set_fs(oldfs);
3382 return err;
3383 }
3384 EXPORT_SYMBOL(kernel_setsockopt);
3385
3386 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3387 size_t size, int flags)
3388 {
3389 if (sock->ops->sendpage)
3390 return sock->ops->sendpage(sock, page, offset, size, flags);
3391
3392 return sock_no_sendpage(sock, page, offset, size, flags);
3393 }
3394 EXPORT_SYMBOL(kernel_sendpage);
3395
3396 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3397 size_t size, int flags)
3398 {
3399 struct socket *sock = sk->sk_socket;
3400
3401 if (sock->ops->sendpage_locked)
3402 return sock->ops->sendpage_locked(sk, page, offset, size,
3403 flags);
3404
3405 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3406 }
3407 EXPORT_SYMBOL(kernel_sendpage_locked);
3408
3409 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3410 {
3411 mm_segment_t oldfs = get_fs();
3412 int err;
3413
3414 set_fs(KERNEL_DS);
3415 err = sock->ops->ioctl(sock, cmd, arg);
3416 set_fs(oldfs);
3417
3418 return err;
3419 }
3420 EXPORT_SYMBOL(kernel_sock_ioctl);
3421
3422 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3423 {
3424 return sock->ops->shutdown(sock, how);
3425 }
3426 EXPORT_SYMBOL(kernel_sock_shutdown);
3427
3428 /* This routine returns the IP overhead imposed by a socket i.e.
3429 * the length of the underlying IP header, depending on whether
3430 * this is an IPv4 or IPv6 socket and the length from IP options turned
3431 * on at the socket. Assumes that the caller has a lock on the socket.
3432 */
3433 u32 kernel_sock_ip_overhead(struct sock *sk)
3434 {
3435 struct inet_sock *inet;
3436 struct ip_options_rcu *opt;
3437 u32 overhead = 0;
3438 #if IS_ENABLED(CONFIG_IPV6)
3439 struct ipv6_pinfo *np;
3440 struct ipv6_txoptions *optv6 = NULL;
3441 #endif /* IS_ENABLED(CONFIG_IPV6) */
3442
3443 if (!sk)
3444 return overhead;
3445
3446 switch (sk->sk_family) {
3447 case AF_INET:
3448 inet = inet_sk(sk);
3449 overhead += sizeof(struct iphdr);
3450 opt = rcu_dereference_protected(inet->inet_opt,
3451 sock_owned_by_user(sk));
3452 if (opt)
3453 overhead += opt->opt.optlen;
3454 return overhead;
3455 #if IS_ENABLED(CONFIG_IPV6)
3456 case AF_INET6:
3457 np = inet6_sk(sk);
3458 overhead += sizeof(struct ipv6hdr);
3459 if (np)
3460 optv6 = rcu_dereference_protected(np->opt,
3461 sock_owned_by_user(sk));
3462 if (optv6)
3463 overhead += (optv6->opt_flen + optv6->opt_nflen);
3464 return overhead;
3465 #endif /* IS_ENABLED(CONFIG_IPV6) */
3466 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3467 return overhead;
3468 }
3469 }
3470 EXPORT_SYMBOL(kernel_sock_ip_overhead);