]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/socket.c
Merge tag 'mips_fixes_4.15_2' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[mirror_ubuntu-bionic-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry)) {
410 sock_release(sock);
411 return ERR_PTR(-ENOMEM);
412 }
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode for a bit */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 /* ... and now kill it properly */
424 sock_release(sock);
425 return file;
426 }
427
428 sock->file = file;
429 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
430 file->private_data = sock;
431 return file;
432 }
433 EXPORT_SYMBOL(sock_alloc_file);
434
435 static int sock_map_fd(struct socket *sock, int flags)
436 {
437 struct file *newfile;
438 int fd = get_unused_fd_flags(flags);
439 if (unlikely(fd < 0)) {
440 sock_release(sock);
441 return fd;
442 }
443
444 newfile = sock_alloc_file(sock, flags, NULL);
445 if (likely(!IS_ERR(newfile))) {
446 fd_install(fd, newfile);
447 return fd;
448 }
449
450 put_unused_fd(fd);
451 return PTR_ERR(newfile);
452 }
453
454 struct socket *sock_from_file(struct file *file, int *err)
455 {
456 if (file->f_op == &socket_file_ops)
457 return file->private_data; /* set in sock_map_fd */
458
459 *err = -ENOTSOCK;
460 return NULL;
461 }
462 EXPORT_SYMBOL(sock_from_file);
463
464 /**
465 * sockfd_lookup - Go from a file number to its socket slot
466 * @fd: file handle
467 * @err: pointer to an error code return
468 *
469 * The file handle passed in is locked and the socket it is bound
470 * to is returned. If an error occurs the err pointer is overwritten
471 * with a negative errno code and NULL is returned. The function checks
472 * for both invalid handles and passing a handle which is not a socket.
473 *
474 * On a success the socket object pointer is returned.
475 */
476
477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 struct file *file;
480 struct socket *sock;
481
482 file = fget(fd);
483 if (!file) {
484 *err = -EBADF;
485 return NULL;
486 }
487
488 sock = sock_from_file(file, err);
489 if (!sock)
490 fput(file);
491 return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494
495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file, err);
503 if (likely(sock)) {
504 *fput_needed = f.flags;
505 return sock;
506 }
507 fdput(f);
508 }
509 return NULL;
510 }
511
512 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
513 size_t size)
514 {
515 ssize_t len;
516 ssize_t used = 0;
517
518 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
519 if (len < 0)
520 return len;
521 used += len;
522 if (buffer) {
523 if (size < used)
524 return -ERANGE;
525 buffer += len;
526 }
527
528 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
529 used += len;
530 if (buffer) {
531 if (size < used)
532 return -ERANGE;
533 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 buffer += len;
535 }
536
537 return used;
538 }
539
540 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
541 {
542 int err = simple_setattr(dentry, iattr);
543
544 if (!err && (iattr->ia_valid & ATTR_UID)) {
545 struct socket *sock = SOCKET_I(d_inode(dentry));
546
547 sock->sk->sk_uid = iattr->ia_uid;
548 }
549
550 return err;
551 }
552
553 static const struct inode_operations sockfs_inode_ops = {
554 .listxattr = sockfs_listxattr,
555 .setattr = sockfs_setattr,
556 };
557
558 /**
559 * sock_alloc - allocate a socket
560 *
561 * Allocate a new inode and socket object. The two are bound together
562 * and initialised. The socket is then returned. If we are out of inodes
563 * NULL is returned.
564 */
565
566 struct socket *sock_alloc(void)
567 {
568 struct inode *inode;
569 struct socket *sock;
570
571 inode = new_inode_pseudo(sock_mnt->mnt_sb);
572 if (!inode)
573 return NULL;
574
575 sock = SOCKET_I(inode);
576
577 inode->i_ino = get_next_ino();
578 inode->i_mode = S_IFSOCK | S_IRWXUGO;
579 inode->i_uid = current_fsuid();
580 inode->i_gid = current_fsgid();
581 inode->i_op = &sockfs_inode_ops;
582
583 this_cpu_add(sockets_in_use, 1);
584 return sock;
585 }
586 EXPORT_SYMBOL(sock_alloc);
587
588 /**
589 * sock_release - close a socket
590 * @sock: socket to close
591 *
592 * The socket is released from the protocol stack if it has a release
593 * callback, and the inode is then released if the socket is bound to
594 * an inode not a file.
595 */
596
597 void sock_release(struct socket *sock)
598 {
599 if (sock->ops) {
600 struct module *owner = sock->ops->owner;
601
602 sock->ops->release(sock);
603 sock->ops = NULL;
604 module_put(owner);
605 }
606
607 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
608 pr_err("%s: fasync list not empty!\n", __func__);
609
610 this_cpu_sub(sockets_in_use, 1);
611 if (!sock->file) {
612 iput(SOCK_INODE(sock));
613 return;
614 }
615 sock->file = NULL;
616 }
617 EXPORT_SYMBOL(sock_release);
618
619 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
620 {
621 u8 flags = *tx_flags;
622
623 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
624 flags |= SKBTX_HW_TSTAMP;
625
626 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
627 flags |= SKBTX_SW_TSTAMP;
628
629 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
630 flags |= SKBTX_SCHED_TSTAMP;
631
632 *tx_flags = flags;
633 }
634 EXPORT_SYMBOL(__sock_tx_timestamp);
635
636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
637 {
638 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
639 BUG_ON(ret == -EIOCBQUEUED);
640 return ret;
641 }
642
643 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
644 {
645 int err = security_socket_sendmsg(sock, msg,
646 msg_data_left(msg));
647
648 return err ?: sock_sendmsg_nosec(sock, msg);
649 }
650 EXPORT_SYMBOL(sock_sendmsg);
651
652 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
653 struct kvec *vec, size_t num, size_t size)
654 {
655 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
656 return sock_sendmsg(sock, msg);
657 }
658 EXPORT_SYMBOL(kernel_sendmsg);
659
660 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
661 struct kvec *vec, size_t num, size_t size)
662 {
663 struct socket *sock = sk->sk_socket;
664
665 if (!sock->ops->sendmsg_locked)
666 return sock_no_sendmsg_locked(sk, msg, size);
667
668 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
669
670 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
671 }
672 EXPORT_SYMBOL(kernel_sendmsg_locked);
673
674 static bool skb_is_err_queue(const struct sk_buff *skb)
675 {
676 /* pkt_type of skbs enqueued on the error queue are set to
677 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
678 * in recvmsg, since skbs received on a local socket will never
679 * have a pkt_type of PACKET_OUTGOING.
680 */
681 return skb->pkt_type == PACKET_OUTGOING;
682 }
683
684 /* On transmit, software and hardware timestamps are returned independently.
685 * As the two skb clones share the hardware timestamp, which may be updated
686 * before the software timestamp is received, a hardware TX timestamp may be
687 * returned only if there is no software TX timestamp. Ignore false software
688 * timestamps, which may be made in the __sock_recv_timestamp() call when the
689 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
690 * hardware timestamp.
691 */
692 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
693 {
694 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
695 }
696
697 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
698 {
699 struct scm_ts_pktinfo ts_pktinfo;
700 struct net_device *orig_dev;
701
702 if (!skb_mac_header_was_set(skb))
703 return;
704
705 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
706
707 rcu_read_lock();
708 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
709 if (orig_dev)
710 ts_pktinfo.if_index = orig_dev->ifindex;
711 rcu_read_unlock();
712
713 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
714 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
715 sizeof(ts_pktinfo), &ts_pktinfo);
716 }
717
718 /*
719 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
720 */
721 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
722 struct sk_buff *skb)
723 {
724 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
725 struct scm_timestamping tss;
726 int empty = 1, false_tstamp = 0;
727 struct skb_shared_hwtstamps *shhwtstamps =
728 skb_hwtstamps(skb);
729
730 /* Race occurred between timestamp enabling and packet
731 receiving. Fill in the current time for now. */
732 if (need_software_tstamp && skb->tstamp == 0) {
733 __net_timestamp(skb);
734 false_tstamp = 1;
735 }
736
737 if (need_software_tstamp) {
738 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
739 struct timeval tv;
740 skb_get_timestamp(skb, &tv);
741 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
742 sizeof(tv), &tv);
743 } else {
744 struct timespec ts;
745 skb_get_timestampns(skb, &ts);
746 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
747 sizeof(ts), &ts);
748 }
749 }
750
751 memset(&tss, 0, sizeof(tss));
752 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
753 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
754 empty = 0;
755 if (shhwtstamps &&
756 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
757 !skb_is_swtx_tstamp(skb, false_tstamp) &&
758 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
759 empty = 0;
760 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
761 !skb_is_err_queue(skb))
762 put_ts_pktinfo(msg, skb);
763 }
764 if (!empty) {
765 put_cmsg(msg, SOL_SOCKET,
766 SCM_TIMESTAMPING, sizeof(tss), &tss);
767
768 if (skb_is_err_queue(skb) && skb->len &&
769 SKB_EXT_ERR(skb)->opt_stats)
770 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
771 skb->len, skb->data);
772 }
773 }
774 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
775
776 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
777 struct sk_buff *skb)
778 {
779 int ack;
780
781 if (!sock_flag(sk, SOCK_WIFI_STATUS))
782 return;
783 if (!skb->wifi_acked_valid)
784 return;
785
786 ack = skb->wifi_acked;
787
788 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
789 }
790 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
791
792 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
793 struct sk_buff *skb)
794 {
795 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
796 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
797 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
798 }
799
800 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
801 struct sk_buff *skb)
802 {
803 sock_recv_timestamp(msg, sk, skb);
804 sock_recv_drops(msg, sk, skb);
805 }
806 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
807
808 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
809 int flags)
810 {
811 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
812 }
813
814 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
815 {
816 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
817
818 return err ?: sock_recvmsg_nosec(sock, msg, flags);
819 }
820 EXPORT_SYMBOL(sock_recvmsg);
821
822 /**
823 * kernel_recvmsg - Receive a message from a socket (kernel space)
824 * @sock: The socket to receive the message from
825 * @msg: Received message
826 * @vec: Input s/g array for message data
827 * @num: Size of input s/g array
828 * @size: Number of bytes to read
829 * @flags: Message flags (MSG_DONTWAIT, etc...)
830 *
831 * On return the msg structure contains the scatter/gather array passed in the
832 * vec argument. The array is modified so that it consists of the unfilled
833 * portion of the original array.
834 *
835 * The returned value is the total number of bytes received, or an error.
836 */
837 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
838 struct kvec *vec, size_t num, size_t size, int flags)
839 {
840 mm_segment_t oldfs = get_fs();
841 int result;
842
843 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
844 set_fs(KERNEL_DS);
845 result = sock_recvmsg(sock, msg, flags);
846 set_fs(oldfs);
847 return result;
848 }
849 EXPORT_SYMBOL(kernel_recvmsg);
850
851 static ssize_t sock_sendpage(struct file *file, struct page *page,
852 int offset, size_t size, loff_t *ppos, int more)
853 {
854 struct socket *sock;
855 int flags;
856
857 sock = file->private_data;
858
859 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
860 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
861 flags |= more;
862
863 return kernel_sendpage(sock, page, offset, size, flags);
864 }
865
866 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
867 struct pipe_inode_info *pipe, size_t len,
868 unsigned int flags)
869 {
870 struct socket *sock = file->private_data;
871
872 if (unlikely(!sock->ops->splice_read))
873 return -EINVAL;
874
875 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
876 }
877
878 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
879 {
880 struct file *file = iocb->ki_filp;
881 struct socket *sock = file->private_data;
882 struct msghdr msg = {.msg_iter = *to,
883 .msg_iocb = iocb};
884 ssize_t res;
885
886 if (file->f_flags & O_NONBLOCK)
887 msg.msg_flags = MSG_DONTWAIT;
888
889 if (iocb->ki_pos != 0)
890 return -ESPIPE;
891
892 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
893 return 0;
894
895 res = sock_recvmsg(sock, &msg, msg.msg_flags);
896 *to = msg.msg_iter;
897 return res;
898 }
899
900 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
901 {
902 struct file *file = iocb->ki_filp;
903 struct socket *sock = file->private_data;
904 struct msghdr msg = {.msg_iter = *from,
905 .msg_iocb = iocb};
906 ssize_t res;
907
908 if (iocb->ki_pos != 0)
909 return -ESPIPE;
910
911 if (file->f_flags & O_NONBLOCK)
912 msg.msg_flags = MSG_DONTWAIT;
913
914 if (sock->type == SOCK_SEQPACKET)
915 msg.msg_flags |= MSG_EOR;
916
917 res = sock_sendmsg(sock, &msg);
918 *from = msg.msg_iter;
919 return res;
920 }
921
922 /*
923 * Atomic setting of ioctl hooks to avoid race
924 * with module unload.
925 */
926
927 static DEFINE_MUTEX(br_ioctl_mutex);
928 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
929
930 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
931 {
932 mutex_lock(&br_ioctl_mutex);
933 br_ioctl_hook = hook;
934 mutex_unlock(&br_ioctl_mutex);
935 }
936 EXPORT_SYMBOL(brioctl_set);
937
938 static DEFINE_MUTEX(vlan_ioctl_mutex);
939 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
940
941 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
942 {
943 mutex_lock(&vlan_ioctl_mutex);
944 vlan_ioctl_hook = hook;
945 mutex_unlock(&vlan_ioctl_mutex);
946 }
947 EXPORT_SYMBOL(vlan_ioctl_set);
948
949 static DEFINE_MUTEX(dlci_ioctl_mutex);
950 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
951
952 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
953 {
954 mutex_lock(&dlci_ioctl_mutex);
955 dlci_ioctl_hook = hook;
956 mutex_unlock(&dlci_ioctl_mutex);
957 }
958 EXPORT_SYMBOL(dlci_ioctl_set);
959
960 static long sock_do_ioctl(struct net *net, struct socket *sock,
961 unsigned int cmd, unsigned long arg)
962 {
963 int err;
964 void __user *argp = (void __user *)arg;
965
966 err = sock->ops->ioctl(sock, cmd, arg);
967
968 /*
969 * If this ioctl is unknown try to hand it down
970 * to the NIC driver.
971 */
972 if (err == -ENOIOCTLCMD)
973 err = dev_ioctl(net, cmd, argp);
974
975 return err;
976 }
977
978 /*
979 * With an ioctl, arg may well be a user mode pointer, but we don't know
980 * what to do with it - that's up to the protocol still.
981 */
982
983 static struct ns_common *get_net_ns(struct ns_common *ns)
984 {
985 return &get_net(container_of(ns, struct net, ns))->ns;
986 }
987
988 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
989 {
990 struct socket *sock;
991 struct sock *sk;
992 void __user *argp = (void __user *)arg;
993 int pid, err;
994 struct net *net;
995
996 sock = file->private_data;
997 sk = sock->sk;
998 net = sock_net(sk);
999 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1000 err = dev_ioctl(net, cmd, argp);
1001 } else
1002 #ifdef CONFIG_WEXT_CORE
1003 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1004 err = dev_ioctl(net, cmd, argp);
1005 } else
1006 #endif
1007 switch (cmd) {
1008 case FIOSETOWN:
1009 case SIOCSPGRP:
1010 err = -EFAULT;
1011 if (get_user(pid, (int __user *)argp))
1012 break;
1013 err = f_setown(sock->file, pid, 1);
1014 break;
1015 case FIOGETOWN:
1016 case SIOCGPGRP:
1017 err = put_user(f_getown(sock->file),
1018 (int __user *)argp);
1019 break;
1020 case SIOCGIFBR:
1021 case SIOCSIFBR:
1022 case SIOCBRADDBR:
1023 case SIOCBRDELBR:
1024 err = -ENOPKG;
1025 if (!br_ioctl_hook)
1026 request_module("bridge");
1027
1028 mutex_lock(&br_ioctl_mutex);
1029 if (br_ioctl_hook)
1030 err = br_ioctl_hook(net, cmd, argp);
1031 mutex_unlock(&br_ioctl_mutex);
1032 break;
1033 case SIOCGIFVLAN:
1034 case SIOCSIFVLAN:
1035 err = -ENOPKG;
1036 if (!vlan_ioctl_hook)
1037 request_module("8021q");
1038
1039 mutex_lock(&vlan_ioctl_mutex);
1040 if (vlan_ioctl_hook)
1041 err = vlan_ioctl_hook(net, argp);
1042 mutex_unlock(&vlan_ioctl_mutex);
1043 break;
1044 case SIOCADDDLCI:
1045 case SIOCDELDLCI:
1046 err = -ENOPKG;
1047 if (!dlci_ioctl_hook)
1048 request_module("dlci");
1049
1050 mutex_lock(&dlci_ioctl_mutex);
1051 if (dlci_ioctl_hook)
1052 err = dlci_ioctl_hook(cmd, argp);
1053 mutex_unlock(&dlci_ioctl_mutex);
1054 break;
1055 case SIOCGSKNS:
1056 err = -EPERM;
1057 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1058 break;
1059
1060 err = open_related_ns(&net->ns, get_net_ns);
1061 break;
1062 default:
1063 err = sock_do_ioctl(net, sock, cmd, arg);
1064 break;
1065 }
1066 return err;
1067 }
1068
1069 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1070 {
1071 int err;
1072 struct socket *sock = NULL;
1073
1074 err = security_socket_create(family, type, protocol, 1);
1075 if (err)
1076 goto out;
1077
1078 sock = sock_alloc();
1079 if (!sock) {
1080 err = -ENOMEM;
1081 goto out;
1082 }
1083
1084 sock->type = type;
1085 err = security_socket_post_create(sock, family, type, protocol, 1);
1086 if (err)
1087 goto out_release;
1088
1089 out:
1090 *res = sock;
1091 return err;
1092 out_release:
1093 sock_release(sock);
1094 sock = NULL;
1095 goto out;
1096 }
1097 EXPORT_SYMBOL(sock_create_lite);
1098
1099 /* No kernel lock held - perfect */
1100 static unsigned int sock_poll(struct file *file, poll_table *wait)
1101 {
1102 unsigned int busy_flag = 0;
1103 struct socket *sock;
1104
1105 /*
1106 * We can't return errors to poll, so it's either yes or no.
1107 */
1108 sock = file->private_data;
1109
1110 if (sk_can_busy_loop(sock->sk)) {
1111 /* this socket can poll_ll so tell the system call */
1112 busy_flag = POLL_BUSY_LOOP;
1113
1114 /* once, only if requested by syscall */
1115 if (wait && (wait->_key & POLL_BUSY_LOOP))
1116 sk_busy_loop(sock->sk, 1);
1117 }
1118
1119 return busy_flag | sock->ops->poll(file, sock, wait);
1120 }
1121
1122 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1123 {
1124 struct socket *sock = file->private_data;
1125
1126 return sock->ops->mmap(file, sock, vma);
1127 }
1128
1129 static int sock_close(struct inode *inode, struct file *filp)
1130 {
1131 sock_release(SOCKET_I(inode));
1132 return 0;
1133 }
1134
1135 /*
1136 * Update the socket async list
1137 *
1138 * Fasync_list locking strategy.
1139 *
1140 * 1. fasync_list is modified only under process context socket lock
1141 * i.e. under semaphore.
1142 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1143 * or under socket lock
1144 */
1145
1146 static int sock_fasync(int fd, struct file *filp, int on)
1147 {
1148 struct socket *sock = filp->private_data;
1149 struct sock *sk = sock->sk;
1150 struct socket_wq *wq;
1151
1152 if (sk == NULL)
1153 return -EINVAL;
1154
1155 lock_sock(sk);
1156 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1157 fasync_helper(fd, filp, on, &wq->fasync_list);
1158
1159 if (!wq->fasync_list)
1160 sock_reset_flag(sk, SOCK_FASYNC);
1161 else
1162 sock_set_flag(sk, SOCK_FASYNC);
1163
1164 release_sock(sk);
1165 return 0;
1166 }
1167
1168 /* This function may be called only under rcu_lock */
1169
1170 int sock_wake_async(struct socket_wq *wq, int how, int band)
1171 {
1172 if (!wq || !wq->fasync_list)
1173 return -1;
1174
1175 switch (how) {
1176 case SOCK_WAKE_WAITD:
1177 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1178 break;
1179 goto call_kill;
1180 case SOCK_WAKE_SPACE:
1181 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1182 break;
1183 /* fall through */
1184 case SOCK_WAKE_IO:
1185 call_kill:
1186 kill_fasync(&wq->fasync_list, SIGIO, band);
1187 break;
1188 case SOCK_WAKE_URG:
1189 kill_fasync(&wq->fasync_list, SIGURG, band);
1190 }
1191
1192 return 0;
1193 }
1194 EXPORT_SYMBOL(sock_wake_async);
1195
1196 int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1198 {
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1202
1203 /*
1204 * Check protocol is in range
1205 */
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1210
1211 /* Compatibility.
1212
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1215 */
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1218 current->comm);
1219 family = PF_PACKET;
1220 }
1221
1222 err = security_socket_create(family, type, protocol, kern);
1223 if (err)
1224 return err;
1225
1226 /*
1227 * Allocate the socket and allow the family to set things up. if
1228 * the protocol is 0, the family is instructed to select an appropriate
1229 * default.
1230 */
1231 sock = sock_alloc();
1232 if (!sock) {
1233 net_warn_ratelimited("socket: no more sockets\n");
1234 return -ENFILE; /* Not exactly a match, but its the
1235 closest posix thing */
1236 }
1237
1238 sock->type = type;
1239
1240 #ifdef CONFIG_MODULES
1241 /* Attempt to load a protocol module if the find failed.
1242 *
1243 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1244 * requested real, full-featured networking support upon configuration.
1245 * Otherwise module support will break!
1246 */
1247 if (rcu_access_pointer(net_families[family]) == NULL)
1248 request_module("net-pf-%d", family);
1249 #endif
1250
1251 rcu_read_lock();
1252 pf = rcu_dereference(net_families[family]);
1253 err = -EAFNOSUPPORT;
1254 if (!pf)
1255 goto out_release;
1256
1257 /*
1258 * We will call the ->create function, that possibly is in a loadable
1259 * module, so we have to bump that loadable module refcnt first.
1260 */
1261 if (!try_module_get(pf->owner))
1262 goto out_release;
1263
1264 /* Now protected by module ref count */
1265 rcu_read_unlock();
1266
1267 err = pf->create(net, sock, protocol, kern);
1268 if (err < 0)
1269 goto out_module_put;
1270
1271 /*
1272 * Now to bump the refcnt of the [loadable] module that owns this
1273 * socket at sock_release time we decrement its refcnt.
1274 */
1275 if (!try_module_get(sock->ops->owner))
1276 goto out_module_busy;
1277
1278 /*
1279 * Now that we're done with the ->create function, the [loadable]
1280 * module can have its refcnt decremented
1281 */
1282 module_put(pf->owner);
1283 err = security_socket_post_create(sock, family, type, protocol, kern);
1284 if (err)
1285 goto out_sock_release;
1286 *res = sock;
1287
1288 return 0;
1289
1290 out_module_busy:
1291 err = -EAFNOSUPPORT;
1292 out_module_put:
1293 sock->ops = NULL;
1294 module_put(pf->owner);
1295 out_sock_release:
1296 sock_release(sock);
1297 return err;
1298
1299 out_release:
1300 rcu_read_unlock();
1301 goto out_sock_release;
1302 }
1303 EXPORT_SYMBOL(__sock_create);
1304
1305 int sock_create(int family, int type, int protocol, struct socket **res)
1306 {
1307 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1308 }
1309 EXPORT_SYMBOL(sock_create);
1310
1311 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1312 {
1313 return __sock_create(net, family, type, protocol, res, 1);
1314 }
1315 EXPORT_SYMBOL(sock_create_kern);
1316
1317 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1318 {
1319 int retval;
1320 struct socket *sock;
1321 int flags;
1322
1323 /* Check the SOCK_* constants for consistency. */
1324 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1325 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1326 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1327 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1328
1329 flags = type & ~SOCK_TYPE_MASK;
1330 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1331 return -EINVAL;
1332 type &= SOCK_TYPE_MASK;
1333
1334 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1335 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1336
1337 retval = sock_create(family, type, protocol, &sock);
1338 if (retval < 0)
1339 return retval;
1340
1341 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1342 }
1343
1344 /*
1345 * Create a pair of connected sockets.
1346 */
1347
1348 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1349 int __user *, usockvec)
1350 {
1351 struct socket *sock1, *sock2;
1352 int fd1, fd2, err;
1353 struct file *newfile1, *newfile2;
1354 int flags;
1355
1356 flags = type & ~SOCK_TYPE_MASK;
1357 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1358 return -EINVAL;
1359 type &= SOCK_TYPE_MASK;
1360
1361 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1362 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1363
1364 /*
1365 * reserve descriptors and make sure we won't fail
1366 * to return them to userland.
1367 */
1368 fd1 = get_unused_fd_flags(flags);
1369 if (unlikely(fd1 < 0))
1370 return fd1;
1371
1372 fd2 = get_unused_fd_flags(flags);
1373 if (unlikely(fd2 < 0)) {
1374 put_unused_fd(fd1);
1375 return fd2;
1376 }
1377
1378 err = put_user(fd1, &usockvec[0]);
1379 if (err)
1380 goto out;
1381
1382 err = put_user(fd2, &usockvec[1]);
1383 if (err)
1384 goto out;
1385
1386 /*
1387 * Obtain the first socket and check if the underlying protocol
1388 * supports the socketpair call.
1389 */
1390
1391 err = sock_create(family, type, protocol, &sock1);
1392 if (unlikely(err < 0))
1393 goto out;
1394
1395 err = sock_create(family, type, protocol, &sock2);
1396 if (unlikely(err < 0)) {
1397 sock_release(sock1);
1398 goto out;
1399 }
1400
1401 err = sock1->ops->socketpair(sock1, sock2);
1402 if (unlikely(err < 0)) {
1403 sock_release(sock2);
1404 sock_release(sock1);
1405 goto out;
1406 }
1407
1408 newfile1 = sock_alloc_file(sock1, flags, NULL);
1409 if (IS_ERR(newfile1)) {
1410 err = PTR_ERR(newfile1);
1411 sock_release(sock2);
1412 goto out;
1413 }
1414
1415 newfile2 = sock_alloc_file(sock2, flags, NULL);
1416 if (IS_ERR(newfile2)) {
1417 err = PTR_ERR(newfile2);
1418 fput(newfile1);
1419 goto out;
1420 }
1421
1422 audit_fd_pair(fd1, fd2);
1423
1424 fd_install(fd1, newfile1);
1425 fd_install(fd2, newfile2);
1426 return 0;
1427
1428 out:
1429 put_unused_fd(fd2);
1430 put_unused_fd(fd1);
1431 return err;
1432 }
1433
1434 /*
1435 * Bind a name to a socket. Nothing much to do here since it's
1436 * the protocol's responsibility to handle the local address.
1437 *
1438 * We move the socket address to kernel space before we call
1439 * the protocol layer (having also checked the address is ok).
1440 */
1441
1442 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1443 {
1444 struct socket *sock;
1445 struct sockaddr_storage address;
1446 int err, fput_needed;
1447
1448 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449 if (sock) {
1450 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1451 if (err >= 0) {
1452 err = security_socket_bind(sock,
1453 (struct sockaddr *)&address,
1454 addrlen);
1455 if (!err)
1456 err = sock->ops->bind(sock,
1457 (struct sockaddr *)
1458 &address, addrlen);
1459 }
1460 fput_light(sock->file, fput_needed);
1461 }
1462 return err;
1463 }
1464
1465 /*
1466 * Perform a listen. Basically, we allow the protocol to do anything
1467 * necessary for a listen, and if that works, we mark the socket as
1468 * ready for listening.
1469 */
1470
1471 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1472 {
1473 struct socket *sock;
1474 int err, fput_needed;
1475 int somaxconn;
1476
1477 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1478 if (sock) {
1479 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1480 if ((unsigned int)backlog > somaxconn)
1481 backlog = somaxconn;
1482
1483 err = security_socket_listen(sock, backlog);
1484 if (!err)
1485 err = sock->ops->listen(sock, backlog);
1486
1487 fput_light(sock->file, fput_needed);
1488 }
1489 return err;
1490 }
1491
1492 /*
1493 * For accept, we attempt to create a new socket, set up the link
1494 * with the client, wake up the client, then return the new
1495 * connected fd. We collect the address of the connector in kernel
1496 * space and move it to user at the very end. This is unclean because
1497 * we open the socket then return an error.
1498 *
1499 * 1003.1g adds the ability to recvmsg() to query connection pending
1500 * status to recvmsg. We need to add that support in a way thats
1501 * clean when we restucture accept also.
1502 */
1503
1504 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1505 int __user *, upeer_addrlen, int, flags)
1506 {
1507 struct socket *sock, *newsock;
1508 struct file *newfile;
1509 int err, len, newfd, fput_needed;
1510 struct sockaddr_storage address;
1511
1512 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1513 return -EINVAL;
1514
1515 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1516 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1517
1518 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1519 if (!sock)
1520 goto out;
1521
1522 err = -ENFILE;
1523 newsock = sock_alloc();
1524 if (!newsock)
1525 goto out_put;
1526
1527 newsock->type = sock->type;
1528 newsock->ops = sock->ops;
1529
1530 /*
1531 * We don't need try_module_get here, as the listening socket (sock)
1532 * has the protocol module (sock->ops->owner) held.
1533 */
1534 __module_get(newsock->ops->owner);
1535
1536 newfd = get_unused_fd_flags(flags);
1537 if (unlikely(newfd < 0)) {
1538 err = newfd;
1539 sock_release(newsock);
1540 goto out_put;
1541 }
1542 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1543 if (IS_ERR(newfile)) {
1544 err = PTR_ERR(newfile);
1545 put_unused_fd(newfd);
1546 goto out_put;
1547 }
1548
1549 err = security_socket_accept(sock, newsock);
1550 if (err)
1551 goto out_fd;
1552
1553 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1554 if (err < 0)
1555 goto out_fd;
1556
1557 if (upeer_sockaddr) {
1558 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1559 &len, 2) < 0) {
1560 err = -ECONNABORTED;
1561 goto out_fd;
1562 }
1563 err = move_addr_to_user(&address,
1564 len, upeer_sockaddr, upeer_addrlen);
1565 if (err < 0)
1566 goto out_fd;
1567 }
1568
1569 /* File flags are not inherited via accept() unlike another OSes. */
1570
1571 fd_install(newfd, newfile);
1572 err = newfd;
1573
1574 out_put:
1575 fput_light(sock->file, fput_needed);
1576 out:
1577 return err;
1578 out_fd:
1579 fput(newfile);
1580 put_unused_fd(newfd);
1581 goto out_put;
1582 }
1583
1584 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1585 int __user *, upeer_addrlen)
1586 {
1587 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1588 }
1589
1590 /*
1591 * Attempt to connect to a socket with the server address. The address
1592 * is in user space so we verify it is OK and move it to kernel space.
1593 *
1594 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1595 * break bindings
1596 *
1597 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1598 * other SEQPACKET protocols that take time to connect() as it doesn't
1599 * include the -EINPROGRESS status for such sockets.
1600 */
1601
1602 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1603 int, addrlen)
1604 {
1605 struct socket *sock;
1606 struct sockaddr_storage address;
1607 int err, fput_needed;
1608
1609 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 if (!sock)
1611 goto out;
1612 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1613 if (err < 0)
1614 goto out_put;
1615
1616 err =
1617 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1618 if (err)
1619 goto out_put;
1620
1621 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1622 sock->file->f_flags);
1623 out_put:
1624 fput_light(sock->file, fput_needed);
1625 out:
1626 return err;
1627 }
1628
1629 /*
1630 * Get the local address ('name') of a socket object. Move the obtained
1631 * name to user space.
1632 */
1633
1634 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1635 int __user *, usockaddr_len)
1636 {
1637 struct socket *sock;
1638 struct sockaddr_storage address;
1639 int len, err, fput_needed;
1640
1641 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1642 if (!sock)
1643 goto out;
1644
1645 err = security_socket_getsockname(sock);
1646 if (err)
1647 goto out_put;
1648
1649 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1650 if (err)
1651 goto out_put;
1652 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1653
1654 out_put:
1655 fput_light(sock->file, fput_needed);
1656 out:
1657 return err;
1658 }
1659
1660 /*
1661 * Get the remote address ('name') of a socket object. Move the obtained
1662 * name to user space.
1663 */
1664
1665 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1666 int __user *, usockaddr_len)
1667 {
1668 struct socket *sock;
1669 struct sockaddr_storage address;
1670 int len, err, fput_needed;
1671
1672 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 if (sock != NULL) {
1674 err = security_socket_getpeername(sock);
1675 if (err) {
1676 fput_light(sock->file, fput_needed);
1677 return err;
1678 }
1679
1680 err =
1681 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1682 1);
1683 if (!err)
1684 err = move_addr_to_user(&address, len, usockaddr,
1685 usockaddr_len);
1686 fput_light(sock->file, fput_needed);
1687 }
1688 return err;
1689 }
1690
1691 /*
1692 * Send a datagram to a given address. We move the address into kernel
1693 * space and check the user space data area is readable before invoking
1694 * the protocol.
1695 */
1696
1697 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1698 unsigned int, flags, struct sockaddr __user *, addr,
1699 int, addr_len)
1700 {
1701 struct socket *sock;
1702 struct sockaddr_storage address;
1703 int err;
1704 struct msghdr msg;
1705 struct iovec iov;
1706 int fput_needed;
1707
1708 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1709 if (unlikely(err))
1710 return err;
1711 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 if (!sock)
1713 goto out;
1714
1715 msg.msg_name = NULL;
1716 msg.msg_control = NULL;
1717 msg.msg_controllen = 0;
1718 msg.msg_namelen = 0;
1719 if (addr) {
1720 err = move_addr_to_kernel(addr, addr_len, &address);
1721 if (err < 0)
1722 goto out_put;
1723 msg.msg_name = (struct sockaddr *)&address;
1724 msg.msg_namelen = addr_len;
1725 }
1726 if (sock->file->f_flags & O_NONBLOCK)
1727 flags |= MSG_DONTWAIT;
1728 msg.msg_flags = flags;
1729 err = sock_sendmsg(sock, &msg);
1730
1731 out_put:
1732 fput_light(sock->file, fput_needed);
1733 out:
1734 return err;
1735 }
1736
1737 /*
1738 * Send a datagram down a socket.
1739 */
1740
1741 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1742 unsigned int, flags)
1743 {
1744 return sys_sendto(fd, buff, len, flags, NULL, 0);
1745 }
1746
1747 /*
1748 * Receive a frame from the socket and optionally record the address of the
1749 * sender. We verify the buffers are writable and if needed move the
1750 * sender address from kernel to user space.
1751 */
1752
1753 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1754 unsigned int, flags, struct sockaddr __user *, addr,
1755 int __user *, addr_len)
1756 {
1757 struct socket *sock;
1758 struct iovec iov;
1759 struct msghdr msg;
1760 struct sockaddr_storage address;
1761 int err, err2;
1762 int fput_needed;
1763
1764 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1765 if (unlikely(err))
1766 return err;
1767 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768 if (!sock)
1769 goto out;
1770
1771 msg.msg_control = NULL;
1772 msg.msg_controllen = 0;
1773 /* Save some cycles and don't copy the address if not needed */
1774 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1775 /* We assume all kernel code knows the size of sockaddr_storage */
1776 msg.msg_namelen = 0;
1777 msg.msg_iocb = NULL;
1778 msg.msg_flags = 0;
1779 if (sock->file->f_flags & O_NONBLOCK)
1780 flags |= MSG_DONTWAIT;
1781 err = sock_recvmsg(sock, &msg, flags);
1782
1783 if (err >= 0 && addr != NULL) {
1784 err2 = move_addr_to_user(&address,
1785 msg.msg_namelen, addr, addr_len);
1786 if (err2 < 0)
1787 err = err2;
1788 }
1789
1790 fput_light(sock->file, fput_needed);
1791 out:
1792 return err;
1793 }
1794
1795 /*
1796 * Receive a datagram from a socket.
1797 */
1798
1799 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1800 unsigned int, flags)
1801 {
1802 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1803 }
1804
1805 /*
1806 * Set a socket option. Because we don't know the option lengths we have
1807 * to pass the user mode parameter for the protocols to sort out.
1808 */
1809
1810 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1811 char __user *, optval, int, optlen)
1812 {
1813 int err, fput_needed;
1814 struct socket *sock;
1815
1816 if (optlen < 0)
1817 return -EINVAL;
1818
1819 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1820 if (sock != NULL) {
1821 err = security_socket_setsockopt(sock, level, optname);
1822 if (err)
1823 goto out_put;
1824
1825 if (level == SOL_SOCKET)
1826 err =
1827 sock_setsockopt(sock, level, optname, optval,
1828 optlen);
1829 else
1830 err =
1831 sock->ops->setsockopt(sock, level, optname, optval,
1832 optlen);
1833 out_put:
1834 fput_light(sock->file, fput_needed);
1835 }
1836 return err;
1837 }
1838
1839 /*
1840 * Get a socket option. Because we don't know the option lengths we have
1841 * to pass a user mode parameter for the protocols to sort out.
1842 */
1843
1844 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1845 char __user *, optval, int __user *, optlen)
1846 {
1847 int err, fput_needed;
1848 struct socket *sock;
1849
1850 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1851 if (sock != NULL) {
1852 err = security_socket_getsockopt(sock, level, optname);
1853 if (err)
1854 goto out_put;
1855
1856 if (level == SOL_SOCKET)
1857 err =
1858 sock_getsockopt(sock, level, optname, optval,
1859 optlen);
1860 else
1861 err =
1862 sock->ops->getsockopt(sock, level, optname, optval,
1863 optlen);
1864 out_put:
1865 fput_light(sock->file, fput_needed);
1866 }
1867 return err;
1868 }
1869
1870 /*
1871 * Shutdown a socket.
1872 */
1873
1874 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1875 {
1876 int err, fput_needed;
1877 struct socket *sock;
1878
1879 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 if (sock != NULL) {
1881 err = security_socket_shutdown(sock, how);
1882 if (!err)
1883 err = sock->ops->shutdown(sock, how);
1884 fput_light(sock->file, fput_needed);
1885 }
1886 return err;
1887 }
1888
1889 /* A couple of helpful macros for getting the address of the 32/64 bit
1890 * fields which are the same type (int / unsigned) on our platforms.
1891 */
1892 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1893 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1894 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1895
1896 struct used_address {
1897 struct sockaddr_storage name;
1898 unsigned int name_len;
1899 };
1900
1901 static int copy_msghdr_from_user(struct msghdr *kmsg,
1902 struct user_msghdr __user *umsg,
1903 struct sockaddr __user **save_addr,
1904 struct iovec **iov)
1905 {
1906 struct user_msghdr msg;
1907 ssize_t err;
1908
1909 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1910 return -EFAULT;
1911
1912 kmsg->msg_control = (void __force *)msg.msg_control;
1913 kmsg->msg_controllen = msg.msg_controllen;
1914 kmsg->msg_flags = msg.msg_flags;
1915
1916 kmsg->msg_namelen = msg.msg_namelen;
1917 if (!msg.msg_name)
1918 kmsg->msg_namelen = 0;
1919
1920 if (kmsg->msg_namelen < 0)
1921 return -EINVAL;
1922
1923 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1924 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1925
1926 if (save_addr)
1927 *save_addr = msg.msg_name;
1928
1929 if (msg.msg_name && kmsg->msg_namelen) {
1930 if (!save_addr) {
1931 err = move_addr_to_kernel(msg.msg_name,
1932 kmsg->msg_namelen,
1933 kmsg->msg_name);
1934 if (err < 0)
1935 return err;
1936 }
1937 } else {
1938 kmsg->msg_name = NULL;
1939 kmsg->msg_namelen = 0;
1940 }
1941
1942 if (msg.msg_iovlen > UIO_MAXIOV)
1943 return -EMSGSIZE;
1944
1945 kmsg->msg_iocb = NULL;
1946
1947 return import_iovec(save_addr ? READ : WRITE,
1948 msg.msg_iov, msg.msg_iovlen,
1949 UIO_FASTIOV, iov, &kmsg->msg_iter);
1950 }
1951
1952 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1953 struct msghdr *msg_sys, unsigned int flags,
1954 struct used_address *used_address,
1955 unsigned int allowed_msghdr_flags)
1956 {
1957 struct compat_msghdr __user *msg_compat =
1958 (struct compat_msghdr __user *)msg;
1959 struct sockaddr_storage address;
1960 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1961 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1962 __aligned(sizeof(__kernel_size_t));
1963 /* 20 is size of ipv6_pktinfo */
1964 unsigned char *ctl_buf = ctl;
1965 int ctl_len;
1966 ssize_t err;
1967
1968 msg_sys->msg_name = &address;
1969
1970 if (MSG_CMSG_COMPAT & flags)
1971 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1972 else
1973 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1974 if (err < 0)
1975 return err;
1976
1977 err = -ENOBUFS;
1978
1979 if (msg_sys->msg_controllen > INT_MAX)
1980 goto out_freeiov;
1981 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1982 ctl_len = msg_sys->msg_controllen;
1983 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1984 err =
1985 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1986 sizeof(ctl));
1987 if (err)
1988 goto out_freeiov;
1989 ctl_buf = msg_sys->msg_control;
1990 ctl_len = msg_sys->msg_controllen;
1991 } else if (ctl_len) {
1992 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
1993 CMSG_ALIGN(sizeof(struct cmsghdr)));
1994 if (ctl_len > sizeof(ctl)) {
1995 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1996 if (ctl_buf == NULL)
1997 goto out_freeiov;
1998 }
1999 err = -EFAULT;
2000 /*
2001 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2002 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2003 * checking falls down on this.
2004 */
2005 if (copy_from_user(ctl_buf,
2006 (void __user __force *)msg_sys->msg_control,
2007 ctl_len))
2008 goto out_freectl;
2009 msg_sys->msg_control = ctl_buf;
2010 }
2011 msg_sys->msg_flags = flags;
2012
2013 if (sock->file->f_flags & O_NONBLOCK)
2014 msg_sys->msg_flags |= MSG_DONTWAIT;
2015 /*
2016 * If this is sendmmsg() and current destination address is same as
2017 * previously succeeded address, omit asking LSM's decision.
2018 * used_address->name_len is initialized to UINT_MAX so that the first
2019 * destination address never matches.
2020 */
2021 if (used_address && msg_sys->msg_name &&
2022 used_address->name_len == msg_sys->msg_namelen &&
2023 !memcmp(&used_address->name, msg_sys->msg_name,
2024 used_address->name_len)) {
2025 err = sock_sendmsg_nosec(sock, msg_sys);
2026 goto out_freectl;
2027 }
2028 err = sock_sendmsg(sock, msg_sys);
2029 /*
2030 * If this is sendmmsg() and sending to current destination address was
2031 * successful, remember it.
2032 */
2033 if (used_address && err >= 0) {
2034 used_address->name_len = msg_sys->msg_namelen;
2035 if (msg_sys->msg_name)
2036 memcpy(&used_address->name, msg_sys->msg_name,
2037 used_address->name_len);
2038 }
2039
2040 out_freectl:
2041 if (ctl_buf != ctl)
2042 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2043 out_freeiov:
2044 kfree(iov);
2045 return err;
2046 }
2047
2048 /*
2049 * BSD sendmsg interface
2050 */
2051
2052 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2053 {
2054 int fput_needed, err;
2055 struct msghdr msg_sys;
2056 struct socket *sock;
2057
2058 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2059 if (!sock)
2060 goto out;
2061
2062 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2063
2064 fput_light(sock->file, fput_needed);
2065 out:
2066 return err;
2067 }
2068
2069 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2070 {
2071 if (flags & MSG_CMSG_COMPAT)
2072 return -EINVAL;
2073 return __sys_sendmsg(fd, msg, flags);
2074 }
2075
2076 /*
2077 * Linux sendmmsg interface
2078 */
2079
2080 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2081 unsigned int flags)
2082 {
2083 int fput_needed, err, datagrams;
2084 struct socket *sock;
2085 struct mmsghdr __user *entry;
2086 struct compat_mmsghdr __user *compat_entry;
2087 struct msghdr msg_sys;
2088 struct used_address used_address;
2089 unsigned int oflags = flags;
2090
2091 if (vlen > UIO_MAXIOV)
2092 vlen = UIO_MAXIOV;
2093
2094 datagrams = 0;
2095
2096 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2097 if (!sock)
2098 return err;
2099
2100 used_address.name_len = UINT_MAX;
2101 entry = mmsg;
2102 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2103 err = 0;
2104 flags |= MSG_BATCH;
2105
2106 while (datagrams < vlen) {
2107 if (datagrams == vlen - 1)
2108 flags = oflags;
2109
2110 if (MSG_CMSG_COMPAT & flags) {
2111 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2112 &msg_sys, flags, &used_address, MSG_EOR);
2113 if (err < 0)
2114 break;
2115 err = __put_user(err, &compat_entry->msg_len);
2116 ++compat_entry;
2117 } else {
2118 err = ___sys_sendmsg(sock,
2119 (struct user_msghdr __user *)entry,
2120 &msg_sys, flags, &used_address, MSG_EOR);
2121 if (err < 0)
2122 break;
2123 err = put_user(err, &entry->msg_len);
2124 ++entry;
2125 }
2126
2127 if (err)
2128 break;
2129 ++datagrams;
2130 if (msg_data_left(&msg_sys))
2131 break;
2132 cond_resched();
2133 }
2134
2135 fput_light(sock->file, fput_needed);
2136
2137 /* We only return an error if no datagrams were able to be sent */
2138 if (datagrams != 0)
2139 return datagrams;
2140
2141 return err;
2142 }
2143
2144 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2145 unsigned int, vlen, unsigned int, flags)
2146 {
2147 if (flags & MSG_CMSG_COMPAT)
2148 return -EINVAL;
2149 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2150 }
2151
2152 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2153 struct msghdr *msg_sys, unsigned int flags, int nosec)
2154 {
2155 struct compat_msghdr __user *msg_compat =
2156 (struct compat_msghdr __user *)msg;
2157 struct iovec iovstack[UIO_FASTIOV];
2158 struct iovec *iov = iovstack;
2159 unsigned long cmsg_ptr;
2160 int len;
2161 ssize_t err;
2162
2163 /* kernel mode address */
2164 struct sockaddr_storage addr;
2165
2166 /* user mode address pointers */
2167 struct sockaddr __user *uaddr;
2168 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2169
2170 msg_sys->msg_name = &addr;
2171
2172 if (MSG_CMSG_COMPAT & flags)
2173 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2174 else
2175 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2176 if (err < 0)
2177 return err;
2178
2179 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2180 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2181
2182 /* We assume all kernel code knows the size of sockaddr_storage */
2183 msg_sys->msg_namelen = 0;
2184
2185 if (sock->file->f_flags & O_NONBLOCK)
2186 flags |= MSG_DONTWAIT;
2187 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2188 if (err < 0)
2189 goto out_freeiov;
2190 len = err;
2191
2192 if (uaddr != NULL) {
2193 err = move_addr_to_user(&addr,
2194 msg_sys->msg_namelen, uaddr,
2195 uaddr_len);
2196 if (err < 0)
2197 goto out_freeiov;
2198 }
2199 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2200 COMPAT_FLAGS(msg));
2201 if (err)
2202 goto out_freeiov;
2203 if (MSG_CMSG_COMPAT & flags)
2204 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2205 &msg_compat->msg_controllen);
2206 else
2207 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2208 &msg->msg_controllen);
2209 if (err)
2210 goto out_freeiov;
2211 err = len;
2212
2213 out_freeiov:
2214 kfree(iov);
2215 return err;
2216 }
2217
2218 /*
2219 * BSD recvmsg interface
2220 */
2221
2222 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2223 {
2224 int fput_needed, err;
2225 struct msghdr msg_sys;
2226 struct socket *sock;
2227
2228 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2229 if (!sock)
2230 goto out;
2231
2232 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2233
2234 fput_light(sock->file, fput_needed);
2235 out:
2236 return err;
2237 }
2238
2239 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2240 unsigned int, flags)
2241 {
2242 if (flags & MSG_CMSG_COMPAT)
2243 return -EINVAL;
2244 return __sys_recvmsg(fd, msg, flags);
2245 }
2246
2247 /*
2248 * Linux recvmmsg interface
2249 */
2250
2251 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2252 unsigned int flags, struct timespec *timeout)
2253 {
2254 int fput_needed, err, datagrams;
2255 struct socket *sock;
2256 struct mmsghdr __user *entry;
2257 struct compat_mmsghdr __user *compat_entry;
2258 struct msghdr msg_sys;
2259 struct timespec64 end_time;
2260 struct timespec64 timeout64;
2261
2262 if (timeout &&
2263 poll_select_set_timeout(&end_time, timeout->tv_sec,
2264 timeout->tv_nsec))
2265 return -EINVAL;
2266
2267 datagrams = 0;
2268
2269 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2270 if (!sock)
2271 return err;
2272
2273 err = sock_error(sock->sk);
2274 if (err) {
2275 datagrams = err;
2276 goto out_put;
2277 }
2278
2279 entry = mmsg;
2280 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2281
2282 while (datagrams < vlen) {
2283 /*
2284 * No need to ask LSM for more than the first datagram.
2285 */
2286 if (MSG_CMSG_COMPAT & flags) {
2287 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2288 &msg_sys, flags & ~MSG_WAITFORONE,
2289 datagrams);
2290 if (err < 0)
2291 break;
2292 err = __put_user(err, &compat_entry->msg_len);
2293 ++compat_entry;
2294 } else {
2295 err = ___sys_recvmsg(sock,
2296 (struct user_msghdr __user *)entry,
2297 &msg_sys, flags & ~MSG_WAITFORONE,
2298 datagrams);
2299 if (err < 0)
2300 break;
2301 err = put_user(err, &entry->msg_len);
2302 ++entry;
2303 }
2304
2305 if (err)
2306 break;
2307 ++datagrams;
2308
2309 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2310 if (flags & MSG_WAITFORONE)
2311 flags |= MSG_DONTWAIT;
2312
2313 if (timeout) {
2314 ktime_get_ts64(&timeout64);
2315 *timeout = timespec64_to_timespec(
2316 timespec64_sub(end_time, timeout64));
2317 if (timeout->tv_sec < 0) {
2318 timeout->tv_sec = timeout->tv_nsec = 0;
2319 break;
2320 }
2321
2322 /* Timeout, return less than vlen datagrams */
2323 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2324 break;
2325 }
2326
2327 /* Out of band data, return right away */
2328 if (msg_sys.msg_flags & MSG_OOB)
2329 break;
2330 cond_resched();
2331 }
2332
2333 if (err == 0)
2334 goto out_put;
2335
2336 if (datagrams == 0) {
2337 datagrams = err;
2338 goto out_put;
2339 }
2340
2341 /*
2342 * We may return less entries than requested (vlen) if the
2343 * sock is non block and there aren't enough datagrams...
2344 */
2345 if (err != -EAGAIN) {
2346 /*
2347 * ... or if recvmsg returns an error after we
2348 * received some datagrams, where we record the
2349 * error to return on the next call or if the
2350 * app asks about it using getsockopt(SO_ERROR).
2351 */
2352 sock->sk->sk_err = -err;
2353 }
2354 out_put:
2355 fput_light(sock->file, fput_needed);
2356
2357 return datagrams;
2358 }
2359
2360 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2361 unsigned int, vlen, unsigned int, flags,
2362 struct timespec __user *, timeout)
2363 {
2364 int datagrams;
2365 struct timespec timeout_sys;
2366
2367 if (flags & MSG_CMSG_COMPAT)
2368 return -EINVAL;
2369
2370 if (!timeout)
2371 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2372
2373 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2374 return -EFAULT;
2375
2376 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2377
2378 if (datagrams > 0 &&
2379 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2380 datagrams = -EFAULT;
2381
2382 return datagrams;
2383 }
2384
2385 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2386 /* Argument list sizes for sys_socketcall */
2387 #define AL(x) ((x) * sizeof(unsigned long))
2388 static const unsigned char nargs[21] = {
2389 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2390 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2391 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2392 AL(4), AL(5), AL(4)
2393 };
2394
2395 #undef AL
2396
2397 /*
2398 * System call vectors.
2399 *
2400 * Argument checking cleaned up. Saved 20% in size.
2401 * This function doesn't need to set the kernel lock because
2402 * it is set by the callees.
2403 */
2404
2405 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2406 {
2407 unsigned long a[AUDITSC_ARGS];
2408 unsigned long a0, a1;
2409 int err;
2410 unsigned int len;
2411
2412 if (call < 1 || call > SYS_SENDMMSG)
2413 return -EINVAL;
2414
2415 len = nargs[call];
2416 if (len > sizeof(a))
2417 return -EINVAL;
2418
2419 /* copy_from_user should be SMP safe. */
2420 if (copy_from_user(a, args, len))
2421 return -EFAULT;
2422
2423 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2424 if (err)
2425 return err;
2426
2427 a0 = a[0];
2428 a1 = a[1];
2429
2430 switch (call) {
2431 case SYS_SOCKET:
2432 err = sys_socket(a0, a1, a[2]);
2433 break;
2434 case SYS_BIND:
2435 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2436 break;
2437 case SYS_CONNECT:
2438 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2439 break;
2440 case SYS_LISTEN:
2441 err = sys_listen(a0, a1);
2442 break;
2443 case SYS_ACCEPT:
2444 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2445 (int __user *)a[2], 0);
2446 break;
2447 case SYS_GETSOCKNAME:
2448 err =
2449 sys_getsockname(a0, (struct sockaddr __user *)a1,
2450 (int __user *)a[2]);
2451 break;
2452 case SYS_GETPEERNAME:
2453 err =
2454 sys_getpeername(a0, (struct sockaddr __user *)a1,
2455 (int __user *)a[2]);
2456 break;
2457 case SYS_SOCKETPAIR:
2458 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2459 break;
2460 case SYS_SEND:
2461 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2462 break;
2463 case SYS_SENDTO:
2464 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2465 (struct sockaddr __user *)a[4], a[5]);
2466 break;
2467 case SYS_RECV:
2468 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2469 break;
2470 case SYS_RECVFROM:
2471 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2472 (struct sockaddr __user *)a[4],
2473 (int __user *)a[5]);
2474 break;
2475 case SYS_SHUTDOWN:
2476 err = sys_shutdown(a0, a1);
2477 break;
2478 case SYS_SETSOCKOPT:
2479 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2480 break;
2481 case SYS_GETSOCKOPT:
2482 err =
2483 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2484 (int __user *)a[4]);
2485 break;
2486 case SYS_SENDMSG:
2487 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2488 break;
2489 case SYS_SENDMMSG:
2490 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2491 break;
2492 case SYS_RECVMSG:
2493 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2494 break;
2495 case SYS_RECVMMSG:
2496 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2497 (struct timespec __user *)a[4]);
2498 break;
2499 case SYS_ACCEPT4:
2500 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2501 (int __user *)a[2], a[3]);
2502 break;
2503 default:
2504 err = -EINVAL;
2505 break;
2506 }
2507 return err;
2508 }
2509
2510 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2511
2512 /**
2513 * sock_register - add a socket protocol handler
2514 * @ops: description of protocol
2515 *
2516 * This function is called by a protocol handler that wants to
2517 * advertise its address family, and have it linked into the
2518 * socket interface. The value ops->family corresponds to the
2519 * socket system call protocol family.
2520 */
2521 int sock_register(const struct net_proto_family *ops)
2522 {
2523 int err;
2524
2525 if (ops->family >= NPROTO) {
2526 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2527 return -ENOBUFS;
2528 }
2529
2530 spin_lock(&net_family_lock);
2531 if (rcu_dereference_protected(net_families[ops->family],
2532 lockdep_is_held(&net_family_lock)))
2533 err = -EEXIST;
2534 else {
2535 rcu_assign_pointer(net_families[ops->family], ops);
2536 err = 0;
2537 }
2538 spin_unlock(&net_family_lock);
2539
2540 pr_info("NET: Registered protocol family %d\n", ops->family);
2541 return err;
2542 }
2543 EXPORT_SYMBOL(sock_register);
2544
2545 /**
2546 * sock_unregister - remove a protocol handler
2547 * @family: protocol family to remove
2548 *
2549 * This function is called by a protocol handler that wants to
2550 * remove its address family, and have it unlinked from the
2551 * new socket creation.
2552 *
2553 * If protocol handler is a module, then it can use module reference
2554 * counts to protect against new references. If protocol handler is not
2555 * a module then it needs to provide its own protection in
2556 * the ops->create routine.
2557 */
2558 void sock_unregister(int family)
2559 {
2560 BUG_ON(family < 0 || family >= NPROTO);
2561
2562 spin_lock(&net_family_lock);
2563 RCU_INIT_POINTER(net_families[family], NULL);
2564 spin_unlock(&net_family_lock);
2565
2566 synchronize_rcu();
2567
2568 pr_info("NET: Unregistered protocol family %d\n", family);
2569 }
2570 EXPORT_SYMBOL(sock_unregister);
2571
2572 static int __init sock_init(void)
2573 {
2574 int err;
2575 /*
2576 * Initialize the network sysctl infrastructure.
2577 */
2578 err = net_sysctl_init();
2579 if (err)
2580 goto out;
2581
2582 /*
2583 * Initialize skbuff SLAB cache
2584 */
2585 skb_init();
2586
2587 /*
2588 * Initialize the protocols module.
2589 */
2590
2591 init_inodecache();
2592
2593 err = register_filesystem(&sock_fs_type);
2594 if (err)
2595 goto out_fs;
2596 sock_mnt = kern_mount(&sock_fs_type);
2597 if (IS_ERR(sock_mnt)) {
2598 err = PTR_ERR(sock_mnt);
2599 goto out_mount;
2600 }
2601
2602 /* The real protocol initialization is performed in later initcalls.
2603 */
2604
2605 #ifdef CONFIG_NETFILTER
2606 err = netfilter_init();
2607 if (err)
2608 goto out;
2609 #endif
2610
2611 ptp_classifier_init();
2612
2613 out:
2614 return err;
2615
2616 out_mount:
2617 unregister_filesystem(&sock_fs_type);
2618 out_fs:
2619 goto out;
2620 }
2621
2622 core_initcall(sock_init); /* early initcall */
2623
2624 static int __init jit_init(void)
2625 {
2626 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2627 bpf_jit_enable = 1;
2628 #endif
2629 return 0;
2630 }
2631 pure_initcall(jit_init);
2632
2633 #ifdef CONFIG_PROC_FS
2634 void socket_seq_show(struct seq_file *seq)
2635 {
2636 int cpu;
2637 int counter = 0;
2638
2639 for_each_possible_cpu(cpu)
2640 counter += per_cpu(sockets_in_use, cpu);
2641
2642 /* It can be negative, by the way. 8) */
2643 if (counter < 0)
2644 counter = 0;
2645
2646 seq_printf(seq, "sockets: used %d\n", counter);
2647 }
2648 #endif /* CONFIG_PROC_FS */
2649
2650 #ifdef CONFIG_COMPAT
2651 static int do_siocgstamp(struct net *net, struct socket *sock,
2652 unsigned int cmd, void __user *up)
2653 {
2654 mm_segment_t old_fs = get_fs();
2655 struct timeval ktv;
2656 int err;
2657
2658 set_fs(KERNEL_DS);
2659 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2660 set_fs(old_fs);
2661 if (!err)
2662 err = compat_put_timeval(&ktv, up);
2663
2664 return err;
2665 }
2666
2667 static int do_siocgstampns(struct net *net, struct socket *sock,
2668 unsigned int cmd, void __user *up)
2669 {
2670 mm_segment_t old_fs = get_fs();
2671 struct timespec kts;
2672 int err;
2673
2674 set_fs(KERNEL_DS);
2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2676 set_fs(old_fs);
2677 if (!err)
2678 err = compat_put_timespec(&kts, up);
2679
2680 return err;
2681 }
2682
2683 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2684 {
2685 struct ifreq __user *uifr;
2686 int err;
2687
2688 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2689 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2690 return -EFAULT;
2691
2692 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2693 if (err)
2694 return err;
2695
2696 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2697 return -EFAULT;
2698
2699 return 0;
2700 }
2701
2702 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2703 {
2704 struct compat_ifconf ifc32;
2705 struct ifconf ifc;
2706 struct ifconf __user *uifc;
2707 struct compat_ifreq __user *ifr32;
2708 struct ifreq __user *ifr;
2709 unsigned int i, j;
2710 int err;
2711
2712 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2713 return -EFAULT;
2714
2715 memset(&ifc, 0, sizeof(ifc));
2716 if (ifc32.ifcbuf == 0) {
2717 ifc32.ifc_len = 0;
2718 ifc.ifc_len = 0;
2719 ifc.ifc_req = NULL;
2720 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2721 } else {
2722 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2723 sizeof(struct ifreq);
2724 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2725 ifc.ifc_len = len;
2726 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2727 ifr32 = compat_ptr(ifc32.ifcbuf);
2728 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2729 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2730 return -EFAULT;
2731 ifr++;
2732 ifr32++;
2733 }
2734 }
2735 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2736 return -EFAULT;
2737
2738 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2739 if (err)
2740 return err;
2741
2742 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2743 return -EFAULT;
2744
2745 ifr = ifc.ifc_req;
2746 ifr32 = compat_ptr(ifc32.ifcbuf);
2747 for (i = 0, j = 0;
2748 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2749 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2750 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2751 return -EFAULT;
2752 ifr32++;
2753 ifr++;
2754 }
2755
2756 if (ifc32.ifcbuf == 0) {
2757 /* Translate from 64-bit structure multiple to
2758 * a 32-bit one.
2759 */
2760 i = ifc.ifc_len;
2761 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2762 ifc32.ifc_len = i;
2763 } else {
2764 ifc32.ifc_len = i;
2765 }
2766 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2767 return -EFAULT;
2768
2769 return 0;
2770 }
2771
2772 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2773 {
2774 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2775 bool convert_in = false, convert_out = false;
2776 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2777 struct ethtool_rxnfc __user *rxnfc;
2778 struct ifreq __user *ifr;
2779 u32 rule_cnt = 0, actual_rule_cnt;
2780 u32 ethcmd;
2781 u32 data;
2782 int ret;
2783
2784 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2785 return -EFAULT;
2786
2787 compat_rxnfc = compat_ptr(data);
2788
2789 if (get_user(ethcmd, &compat_rxnfc->cmd))
2790 return -EFAULT;
2791
2792 /* Most ethtool structures are defined without padding.
2793 * Unfortunately struct ethtool_rxnfc is an exception.
2794 */
2795 switch (ethcmd) {
2796 default:
2797 break;
2798 case ETHTOOL_GRXCLSRLALL:
2799 /* Buffer size is variable */
2800 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2801 return -EFAULT;
2802 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2803 return -ENOMEM;
2804 buf_size += rule_cnt * sizeof(u32);
2805 /* fall through */
2806 case ETHTOOL_GRXRINGS:
2807 case ETHTOOL_GRXCLSRLCNT:
2808 case ETHTOOL_GRXCLSRULE:
2809 case ETHTOOL_SRXCLSRLINS:
2810 convert_out = true;
2811 /* fall through */
2812 case ETHTOOL_SRXCLSRLDEL:
2813 buf_size += sizeof(struct ethtool_rxnfc);
2814 convert_in = true;
2815 break;
2816 }
2817
2818 ifr = compat_alloc_user_space(buf_size);
2819 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2820
2821 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2822 return -EFAULT;
2823
2824 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2825 &ifr->ifr_ifru.ifru_data))
2826 return -EFAULT;
2827
2828 if (convert_in) {
2829 /* We expect there to be holes between fs.m_ext and
2830 * fs.ring_cookie and at the end of fs, but nowhere else.
2831 */
2832 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2833 sizeof(compat_rxnfc->fs.m_ext) !=
2834 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2835 sizeof(rxnfc->fs.m_ext));
2836 BUILD_BUG_ON(
2837 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2838 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2839 offsetof(struct ethtool_rxnfc, fs.location) -
2840 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2841
2842 if (copy_in_user(rxnfc, compat_rxnfc,
2843 (void __user *)(&rxnfc->fs.m_ext + 1) -
2844 (void __user *)rxnfc) ||
2845 copy_in_user(&rxnfc->fs.ring_cookie,
2846 &compat_rxnfc->fs.ring_cookie,
2847 (void __user *)(&rxnfc->fs.location + 1) -
2848 (void __user *)&rxnfc->fs.ring_cookie) ||
2849 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2850 sizeof(rxnfc->rule_cnt)))
2851 return -EFAULT;
2852 }
2853
2854 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2855 if (ret)
2856 return ret;
2857
2858 if (convert_out) {
2859 if (copy_in_user(compat_rxnfc, rxnfc,
2860 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2861 (const void __user *)rxnfc) ||
2862 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2863 &rxnfc->fs.ring_cookie,
2864 (const void __user *)(&rxnfc->fs.location + 1) -
2865 (const void __user *)&rxnfc->fs.ring_cookie) ||
2866 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2867 sizeof(rxnfc->rule_cnt)))
2868 return -EFAULT;
2869
2870 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2871 /* As an optimisation, we only copy the actual
2872 * number of rules that the underlying
2873 * function returned. Since Mallory might
2874 * change the rule count in user memory, we
2875 * check that it is less than the rule count
2876 * originally given (as the user buffer size),
2877 * which has been range-checked.
2878 */
2879 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2880 return -EFAULT;
2881 if (actual_rule_cnt < rule_cnt)
2882 rule_cnt = actual_rule_cnt;
2883 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2884 &rxnfc->rule_locs[0],
2885 rule_cnt * sizeof(u32)))
2886 return -EFAULT;
2887 }
2888 }
2889
2890 return 0;
2891 }
2892
2893 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2894 {
2895 void __user *uptr;
2896 compat_uptr_t uptr32;
2897 struct ifreq __user *uifr;
2898
2899 uifr = compat_alloc_user_space(sizeof(*uifr));
2900 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2901 return -EFAULT;
2902
2903 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2904 return -EFAULT;
2905
2906 uptr = compat_ptr(uptr32);
2907
2908 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2909 return -EFAULT;
2910
2911 return dev_ioctl(net, SIOCWANDEV, uifr);
2912 }
2913
2914 static int bond_ioctl(struct net *net, unsigned int cmd,
2915 struct compat_ifreq __user *ifr32)
2916 {
2917 struct ifreq kifr;
2918 mm_segment_t old_fs;
2919 int err;
2920
2921 switch (cmd) {
2922 case SIOCBONDENSLAVE:
2923 case SIOCBONDRELEASE:
2924 case SIOCBONDSETHWADDR:
2925 case SIOCBONDCHANGEACTIVE:
2926 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2927 return -EFAULT;
2928
2929 old_fs = get_fs();
2930 set_fs(KERNEL_DS);
2931 err = dev_ioctl(net, cmd,
2932 (struct ifreq __user __force *) &kifr);
2933 set_fs(old_fs);
2934
2935 return err;
2936 default:
2937 return -ENOIOCTLCMD;
2938 }
2939 }
2940
2941 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2942 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2943 struct compat_ifreq __user *u_ifreq32)
2944 {
2945 struct ifreq __user *u_ifreq64;
2946 char tmp_buf[IFNAMSIZ];
2947 void __user *data64;
2948 u32 data32;
2949
2950 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2951 IFNAMSIZ))
2952 return -EFAULT;
2953 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2954 return -EFAULT;
2955 data64 = compat_ptr(data32);
2956
2957 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2958
2959 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2960 IFNAMSIZ))
2961 return -EFAULT;
2962 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2963 return -EFAULT;
2964
2965 return dev_ioctl(net, cmd, u_ifreq64);
2966 }
2967
2968 static int dev_ifsioc(struct net *net, struct socket *sock,
2969 unsigned int cmd, struct compat_ifreq __user *uifr32)
2970 {
2971 struct ifreq __user *uifr;
2972 int err;
2973
2974 uifr = compat_alloc_user_space(sizeof(*uifr));
2975 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2976 return -EFAULT;
2977
2978 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2979
2980 if (!err) {
2981 switch (cmd) {
2982 case SIOCGIFFLAGS:
2983 case SIOCGIFMETRIC:
2984 case SIOCGIFMTU:
2985 case SIOCGIFMEM:
2986 case SIOCGIFHWADDR:
2987 case SIOCGIFINDEX:
2988 case SIOCGIFADDR:
2989 case SIOCGIFBRDADDR:
2990 case SIOCGIFDSTADDR:
2991 case SIOCGIFNETMASK:
2992 case SIOCGIFPFLAGS:
2993 case SIOCGIFTXQLEN:
2994 case SIOCGMIIPHY:
2995 case SIOCGMIIREG:
2996 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2997 err = -EFAULT;
2998 break;
2999 }
3000 }
3001 return err;
3002 }
3003
3004 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3005 struct compat_ifreq __user *uifr32)
3006 {
3007 struct ifreq ifr;
3008 struct compat_ifmap __user *uifmap32;
3009 mm_segment_t old_fs;
3010 int err;
3011
3012 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3013 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3014 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3015 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3016 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3017 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3018 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3019 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3020 if (err)
3021 return -EFAULT;
3022
3023 old_fs = get_fs();
3024 set_fs(KERNEL_DS);
3025 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3026 set_fs(old_fs);
3027
3028 if (cmd == SIOCGIFMAP && !err) {
3029 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3030 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3031 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3032 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3033 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3034 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3035 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3036 if (err)
3037 err = -EFAULT;
3038 }
3039 return err;
3040 }
3041
3042 struct rtentry32 {
3043 u32 rt_pad1;
3044 struct sockaddr rt_dst; /* target address */
3045 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3046 struct sockaddr rt_genmask; /* target network mask (IP) */
3047 unsigned short rt_flags;
3048 short rt_pad2;
3049 u32 rt_pad3;
3050 unsigned char rt_tos;
3051 unsigned char rt_class;
3052 short rt_pad4;
3053 short rt_metric; /* +1 for binary compatibility! */
3054 /* char * */ u32 rt_dev; /* forcing the device at add */
3055 u32 rt_mtu; /* per route MTU/Window */
3056 u32 rt_window; /* Window clamping */
3057 unsigned short rt_irtt; /* Initial RTT */
3058 };
3059
3060 struct in6_rtmsg32 {
3061 struct in6_addr rtmsg_dst;
3062 struct in6_addr rtmsg_src;
3063 struct in6_addr rtmsg_gateway;
3064 u32 rtmsg_type;
3065 u16 rtmsg_dst_len;
3066 u16 rtmsg_src_len;
3067 u32 rtmsg_metric;
3068 u32 rtmsg_info;
3069 u32 rtmsg_flags;
3070 s32 rtmsg_ifindex;
3071 };
3072
3073 static int routing_ioctl(struct net *net, struct socket *sock,
3074 unsigned int cmd, void __user *argp)
3075 {
3076 int ret;
3077 void *r = NULL;
3078 struct in6_rtmsg r6;
3079 struct rtentry r4;
3080 char devname[16];
3081 u32 rtdev;
3082 mm_segment_t old_fs = get_fs();
3083
3084 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3085 struct in6_rtmsg32 __user *ur6 = argp;
3086 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3087 3 * sizeof(struct in6_addr));
3088 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3089 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3090 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3091 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3092 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3093 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3094 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3095
3096 r = (void *) &r6;
3097 } else { /* ipv4 */
3098 struct rtentry32 __user *ur4 = argp;
3099 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3100 3 * sizeof(struct sockaddr));
3101 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3102 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3103 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3104 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3105 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3106 ret |= get_user(rtdev, &(ur4->rt_dev));
3107 if (rtdev) {
3108 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3109 r4.rt_dev = (char __user __force *)devname;
3110 devname[15] = 0;
3111 } else
3112 r4.rt_dev = NULL;
3113
3114 r = (void *) &r4;
3115 }
3116
3117 if (ret) {
3118 ret = -EFAULT;
3119 goto out;
3120 }
3121
3122 set_fs(KERNEL_DS);
3123 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3124 set_fs(old_fs);
3125
3126 out:
3127 return ret;
3128 }
3129
3130 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3131 * for some operations; this forces use of the newer bridge-utils that
3132 * use compatible ioctls
3133 */
3134 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3135 {
3136 compat_ulong_t tmp;
3137
3138 if (get_user(tmp, argp))
3139 return -EFAULT;
3140 if (tmp == BRCTL_GET_VERSION)
3141 return BRCTL_VERSION + 1;
3142 return -EINVAL;
3143 }
3144
3145 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3146 unsigned int cmd, unsigned long arg)
3147 {
3148 void __user *argp = compat_ptr(arg);
3149 struct sock *sk = sock->sk;
3150 struct net *net = sock_net(sk);
3151
3152 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3153 return compat_ifr_data_ioctl(net, cmd, argp);
3154
3155 switch (cmd) {
3156 case SIOCSIFBR:
3157 case SIOCGIFBR:
3158 return old_bridge_ioctl(argp);
3159 case SIOCGIFNAME:
3160 return dev_ifname32(net, argp);
3161 case SIOCGIFCONF:
3162 return dev_ifconf(net, argp);
3163 case SIOCETHTOOL:
3164 return ethtool_ioctl(net, argp);
3165 case SIOCWANDEV:
3166 return compat_siocwandev(net, argp);
3167 case SIOCGIFMAP:
3168 case SIOCSIFMAP:
3169 return compat_sioc_ifmap(net, cmd, argp);
3170 case SIOCBONDENSLAVE:
3171 case SIOCBONDRELEASE:
3172 case SIOCBONDSETHWADDR:
3173 case SIOCBONDCHANGEACTIVE:
3174 return bond_ioctl(net, cmd, argp);
3175 case SIOCADDRT:
3176 case SIOCDELRT:
3177 return routing_ioctl(net, sock, cmd, argp);
3178 case SIOCGSTAMP:
3179 return do_siocgstamp(net, sock, cmd, argp);
3180 case SIOCGSTAMPNS:
3181 return do_siocgstampns(net, sock, cmd, argp);
3182 case SIOCBONDSLAVEINFOQUERY:
3183 case SIOCBONDINFOQUERY:
3184 case SIOCSHWTSTAMP:
3185 case SIOCGHWTSTAMP:
3186 return compat_ifr_data_ioctl(net, cmd, argp);
3187
3188 case FIOSETOWN:
3189 case SIOCSPGRP:
3190 case FIOGETOWN:
3191 case SIOCGPGRP:
3192 case SIOCBRADDBR:
3193 case SIOCBRDELBR:
3194 case SIOCGIFVLAN:
3195 case SIOCSIFVLAN:
3196 case SIOCADDDLCI:
3197 case SIOCDELDLCI:
3198 case SIOCGSKNS:
3199 return sock_ioctl(file, cmd, arg);
3200
3201 case SIOCGIFFLAGS:
3202 case SIOCSIFFLAGS:
3203 case SIOCGIFMETRIC:
3204 case SIOCSIFMETRIC:
3205 case SIOCGIFMTU:
3206 case SIOCSIFMTU:
3207 case SIOCGIFMEM:
3208 case SIOCSIFMEM:
3209 case SIOCGIFHWADDR:
3210 case SIOCSIFHWADDR:
3211 case SIOCADDMULTI:
3212 case SIOCDELMULTI:
3213 case SIOCGIFINDEX:
3214 case SIOCGIFADDR:
3215 case SIOCSIFADDR:
3216 case SIOCSIFHWBROADCAST:
3217 case SIOCDIFADDR:
3218 case SIOCGIFBRDADDR:
3219 case SIOCSIFBRDADDR:
3220 case SIOCGIFDSTADDR:
3221 case SIOCSIFDSTADDR:
3222 case SIOCGIFNETMASK:
3223 case SIOCSIFNETMASK:
3224 case SIOCSIFPFLAGS:
3225 case SIOCGIFPFLAGS:
3226 case SIOCGIFTXQLEN:
3227 case SIOCSIFTXQLEN:
3228 case SIOCBRADDIF:
3229 case SIOCBRDELIF:
3230 case SIOCSIFNAME:
3231 case SIOCGMIIPHY:
3232 case SIOCGMIIREG:
3233 case SIOCSMIIREG:
3234 return dev_ifsioc(net, sock, cmd, argp);
3235
3236 case SIOCSARP:
3237 case SIOCGARP:
3238 case SIOCDARP:
3239 case SIOCATMARK:
3240 return sock_do_ioctl(net, sock, cmd, arg);
3241 }
3242
3243 return -ENOIOCTLCMD;
3244 }
3245
3246 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3247 unsigned long arg)
3248 {
3249 struct socket *sock = file->private_data;
3250 int ret = -ENOIOCTLCMD;
3251 struct sock *sk;
3252 struct net *net;
3253
3254 sk = sock->sk;
3255 net = sock_net(sk);
3256
3257 if (sock->ops->compat_ioctl)
3258 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3259
3260 if (ret == -ENOIOCTLCMD &&
3261 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3262 ret = compat_wext_handle_ioctl(net, cmd, arg);
3263
3264 if (ret == -ENOIOCTLCMD)
3265 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3266
3267 return ret;
3268 }
3269 #endif
3270
3271 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3272 {
3273 return sock->ops->bind(sock, addr, addrlen);
3274 }
3275 EXPORT_SYMBOL(kernel_bind);
3276
3277 int kernel_listen(struct socket *sock, int backlog)
3278 {
3279 return sock->ops->listen(sock, backlog);
3280 }
3281 EXPORT_SYMBOL(kernel_listen);
3282
3283 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3284 {
3285 struct sock *sk = sock->sk;
3286 int err;
3287
3288 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3289 newsock);
3290 if (err < 0)
3291 goto done;
3292
3293 err = sock->ops->accept(sock, *newsock, flags, true);
3294 if (err < 0) {
3295 sock_release(*newsock);
3296 *newsock = NULL;
3297 goto done;
3298 }
3299
3300 (*newsock)->ops = sock->ops;
3301 __module_get((*newsock)->ops->owner);
3302
3303 done:
3304 return err;
3305 }
3306 EXPORT_SYMBOL(kernel_accept);
3307
3308 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3309 int flags)
3310 {
3311 return sock->ops->connect(sock, addr, addrlen, flags);
3312 }
3313 EXPORT_SYMBOL(kernel_connect);
3314
3315 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3316 int *addrlen)
3317 {
3318 return sock->ops->getname(sock, addr, addrlen, 0);
3319 }
3320 EXPORT_SYMBOL(kernel_getsockname);
3321
3322 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3323 int *addrlen)
3324 {
3325 return sock->ops->getname(sock, addr, addrlen, 1);
3326 }
3327 EXPORT_SYMBOL(kernel_getpeername);
3328
3329 int kernel_getsockopt(struct socket *sock, int level, int optname,
3330 char *optval, int *optlen)
3331 {
3332 mm_segment_t oldfs = get_fs();
3333 char __user *uoptval;
3334 int __user *uoptlen;
3335 int err;
3336
3337 uoptval = (char __user __force *) optval;
3338 uoptlen = (int __user __force *) optlen;
3339
3340 set_fs(KERNEL_DS);
3341 if (level == SOL_SOCKET)
3342 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3343 else
3344 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3345 uoptlen);
3346 set_fs(oldfs);
3347 return err;
3348 }
3349 EXPORT_SYMBOL(kernel_getsockopt);
3350
3351 int kernel_setsockopt(struct socket *sock, int level, int optname,
3352 char *optval, unsigned int optlen)
3353 {
3354 mm_segment_t oldfs = get_fs();
3355 char __user *uoptval;
3356 int err;
3357
3358 uoptval = (char __user __force *) optval;
3359
3360 set_fs(KERNEL_DS);
3361 if (level == SOL_SOCKET)
3362 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3363 else
3364 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3365 optlen);
3366 set_fs(oldfs);
3367 return err;
3368 }
3369 EXPORT_SYMBOL(kernel_setsockopt);
3370
3371 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3372 size_t size, int flags)
3373 {
3374 if (sock->ops->sendpage)
3375 return sock->ops->sendpage(sock, page, offset, size, flags);
3376
3377 return sock_no_sendpage(sock, page, offset, size, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_sendpage);
3380
3381 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3382 size_t size, int flags)
3383 {
3384 struct socket *sock = sk->sk_socket;
3385
3386 if (sock->ops->sendpage_locked)
3387 return sock->ops->sendpage_locked(sk, page, offset, size,
3388 flags);
3389
3390 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_sendpage_locked);
3393
3394 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3395 {
3396 mm_segment_t oldfs = get_fs();
3397 int err;
3398
3399 set_fs(KERNEL_DS);
3400 err = sock->ops->ioctl(sock, cmd, arg);
3401 set_fs(oldfs);
3402
3403 return err;
3404 }
3405 EXPORT_SYMBOL(kernel_sock_ioctl);
3406
3407 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3408 {
3409 return sock->ops->shutdown(sock, how);
3410 }
3411 EXPORT_SYMBOL(kernel_sock_shutdown);
3412
3413 /* This routine returns the IP overhead imposed by a socket i.e.
3414 * the length of the underlying IP header, depending on whether
3415 * this is an IPv4 or IPv6 socket and the length from IP options turned
3416 * on at the socket. Assumes that the caller has a lock on the socket.
3417 */
3418 u32 kernel_sock_ip_overhead(struct sock *sk)
3419 {
3420 struct inet_sock *inet;
3421 struct ip_options_rcu *opt;
3422 u32 overhead = 0;
3423 #if IS_ENABLED(CONFIG_IPV6)
3424 struct ipv6_pinfo *np;
3425 struct ipv6_txoptions *optv6 = NULL;
3426 #endif /* IS_ENABLED(CONFIG_IPV6) */
3427
3428 if (!sk)
3429 return overhead;
3430
3431 switch (sk->sk_family) {
3432 case AF_INET:
3433 inet = inet_sk(sk);
3434 overhead += sizeof(struct iphdr);
3435 opt = rcu_dereference_protected(inet->inet_opt,
3436 sock_owned_by_user(sk));
3437 if (opt)
3438 overhead += opt->opt.optlen;
3439 return overhead;
3440 #if IS_ENABLED(CONFIG_IPV6)
3441 case AF_INET6:
3442 np = inet6_sk(sk);
3443 overhead += sizeof(struct ipv6hdr);
3444 if (np)
3445 optv6 = rcu_dereference_protected(np->opt,
3446 sock_owned_by_user(sk));
3447 if (optv6)
3448 overhead += (optv6->opt_flen + optv6->opt_nflen);
3449 return overhead;
3450 #endif /* IS_ENABLED(CONFIG_IPV6) */
3451 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3452 return overhead;
3453 }
3454 }
3455 EXPORT_SYMBOL(kernel_sock_ip_overhead);