]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/commoncap.c
Revert "apparmor: don't try to replace stale label in ptrace access check"
[mirror_ubuntu-bionic-kernel.git] / security / commoncap.c
1 /* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/lsm_hooks.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
33
34 /*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45 static void warn_setuid_and_fcaps_mixed(const char *fname)
46 {
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54 }
55
56 /**
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
70 */
71 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, unsigned int opts)
73 {
74 struct user_namespace *ns = targ_ns;
75
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
81 /* Do we have the necessary capabilities? */
82 if (ns == cred->user_ns)
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
85 /*
86 * If we're already at a lower level than we're looking for,
87 * we're done searching.
88 */
89 if (ns->level <= cred->user_ns->level)
90 return -EPERM;
91
92 /*
93 * The owner of the user namespace in the parent of the
94 * user namespace has all caps.
95 */
96 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
97 return 0;
98
99 /*
100 * If you have a capability in a parent user ns, then you have
101 * it over all children user namespaces as well.
102 */
103 ns = ns->parent;
104 }
105
106 /* We never get here */
107 }
108
109 /**
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
113 *
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
116 */
117 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
118 {
119 if (!capable(CAP_SYS_TIME))
120 return -EPERM;
121 return 0;
122 }
123
124 /**
125 * cap_ptrace_access_check - Determine whether the current process may access
126 * another
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
129 *
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
133 * access is allowed.
134 * Else denied.
135 *
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
138 */
139 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
140 {
141 int ret = 0;
142 const struct cred *cred, *child_cred;
143 const kernel_cap_t *caller_caps;
144
145 rcu_read_lock();
146 cred = current_cred();
147 child_cred = __task_cred(child);
148 if (mode & PTRACE_MODE_FSCREDS)
149 caller_caps = &cred->cap_effective;
150 else
151 caller_caps = &cred->cap_permitted;
152 if (cred->user_ns == child_cred->user_ns &&
153 cap_issubset(child_cred->cap_permitted, *caller_caps))
154 goto out;
155 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
156 goto out;
157 ret = -EPERM;
158 out:
159 rcu_read_unlock();
160 return ret;
161 }
162
163 /**
164 * cap_ptrace_traceme - Determine whether another process may trace the current
165 * @parent: The task proposed to be the tracer
166 *
167 * If parent is in the same or an ancestor user_ns and has all current's
168 * capabilities, then ptrace access is allowed.
169 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * access is allowed.
171 * Else denied.
172 *
173 * Determine whether the nominated task is permitted to trace the current
174 * process, returning 0 if permission is granted, -ve if denied.
175 */
176 int cap_ptrace_traceme(struct task_struct *parent)
177 {
178 int ret = 0;
179 const struct cred *cred, *child_cred;
180
181 rcu_read_lock();
182 cred = __task_cred(parent);
183 child_cred = current_cred();
184 if (cred->user_ns == child_cred->user_ns &&
185 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
186 goto out;
187 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
188 goto out;
189 ret = -EPERM;
190 out:
191 rcu_read_unlock();
192 return ret;
193 }
194
195 /**
196 * cap_capget - Retrieve a task's capability sets
197 * @target: The task from which to retrieve the capability sets
198 * @effective: The place to record the effective set
199 * @inheritable: The place to record the inheritable set
200 * @permitted: The place to record the permitted set
201 *
202 * This function retrieves the capabilities of the nominated task and returns
203 * them to the caller.
204 */
205 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
206 kernel_cap_t *inheritable, kernel_cap_t *permitted)
207 {
208 const struct cred *cred;
209
210 /* Derived from kernel/capability.c:sys_capget. */
211 rcu_read_lock();
212 cred = __task_cred(target);
213 *effective = cred->cap_effective;
214 *inheritable = cred->cap_inheritable;
215 *permitted = cred->cap_permitted;
216 rcu_read_unlock();
217 return 0;
218 }
219
220 /*
221 * Determine whether the inheritable capabilities are limited to the old
222 * permitted set. Returns 1 if they are limited, 0 if they are not.
223 */
224 static inline int cap_inh_is_capped(void)
225 {
226 /* they are so limited unless the current task has the CAP_SETPCAP
227 * capability
228 */
229 if (cap_capable(current_cred(), current_cred()->user_ns,
230 CAP_SETPCAP, CAP_OPT_NONE) == 0)
231 return 0;
232 return 1;
233 }
234
235 /**
236 * cap_capset - Validate and apply proposed changes to current's capabilities
237 * @new: The proposed new credentials; alterations should be made here
238 * @old: The current task's current credentials
239 * @effective: A pointer to the proposed new effective capabilities set
240 * @inheritable: A pointer to the proposed new inheritable capabilities set
241 * @permitted: A pointer to the proposed new permitted capabilities set
242 *
243 * This function validates and applies a proposed mass change to the current
244 * process's capability sets. The changes are made to the proposed new
245 * credentials, and assuming no error, will be committed by the caller of LSM.
246 */
247 int cap_capset(struct cred *new,
248 const struct cred *old,
249 const kernel_cap_t *effective,
250 const kernel_cap_t *inheritable,
251 const kernel_cap_t *permitted)
252 {
253 if (cap_inh_is_capped() &&
254 !cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_permitted)))
257 /* incapable of using this inheritable set */
258 return -EPERM;
259
260 if (!cap_issubset(*inheritable,
261 cap_combine(old->cap_inheritable,
262 old->cap_bset)))
263 /* no new pI capabilities outside bounding set */
264 return -EPERM;
265
266 /* verify restrictions on target's new Permitted set */
267 if (!cap_issubset(*permitted, old->cap_permitted))
268 return -EPERM;
269
270 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
271 if (!cap_issubset(*effective, *permitted))
272 return -EPERM;
273
274 new->cap_effective = *effective;
275 new->cap_inheritable = *inheritable;
276 new->cap_permitted = *permitted;
277
278 /*
279 * Mask off ambient bits that are no longer both permitted and
280 * inheritable.
281 */
282 new->cap_ambient = cap_intersect(new->cap_ambient,
283 cap_intersect(*permitted,
284 *inheritable));
285 if (WARN_ON(!cap_ambient_invariant_ok(new)))
286 return -EINVAL;
287 return 0;
288 }
289
290 /**
291 * cap_inode_need_killpriv - Determine if inode change affects privileges
292 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
293 *
294 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
295 * affects the security markings on that inode, and if it is, should
296 * inode_killpriv() be invoked or the change rejected.
297 *
298 * Returns 1 if security.capability has a value, meaning inode_killpriv()
299 * is required, 0 otherwise, meaning inode_killpriv() is not required.
300 */
301 int cap_inode_need_killpriv(struct dentry *dentry)
302 {
303 struct inode *inode = d_backing_inode(dentry);
304 int error;
305
306 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
307 return error > 0;
308 }
309
310 /**
311 * cap_inode_killpriv - Erase the security markings on an inode
312 * @dentry: The inode/dentry to alter
313 *
314 * Erase the privilege-enhancing security markings on an inode.
315 *
316 * Returns 0 if successful, -ve on error.
317 */
318 int cap_inode_killpriv(struct dentry *dentry)
319 {
320 int error;
321
322 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
323 if (error == -EOPNOTSUPP)
324 error = 0;
325 return error;
326 }
327
328 static bool rootid_owns_currentns(kuid_t kroot)
329 {
330 struct user_namespace *ns;
331
332 if (!uid_valid(kroot))
333 return false;
334
335 for (ns = current_user_ns(); ; ns = ns->parent) {
336 if (from_kuid(ns, kroot) == 0)
337 return true;
338 if (ns == &init_user_ns)
339 break;
340 }
341
342 return false;
343 }
344
345 static __u32 sansflags(__u32 m)
346 {
347 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
348 }
349
350 static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
351 {
352 if (size != XATTR_CAPS_SZ_2)
353 return false;
354 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
355 }
356
357 static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
358 {
359 if (size != XATTR_CAPS_SZ_3)
360 return false;
361 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
362 }
363
364 /*
365 * getsecurity: We are called for security.* before any attempt to read the
366 * xattr from the inode itself.
367 *
368 * This gives us a chance to read the on-disk value and convert it. If we
369 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
370 *
371 * Note we are not called by vfs_getxattr_alloc(), but that is only called
372 * by the integrity subsystem, which really wants the unconverted values -
373 * so that's good.
374 */
375 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
376 bool alloc)
377 {
378 int size, ret;
379 kuid_t kroot;
380 uid_t root, mappedroot;
381 char *tmpbuf = NULL;
382 struct vfs_cap_data *cap;
383 struct vfs_ns_cap_data *nscap;
384 struct dentry *dentry;
385 struct user_namespace *fs_ns;
386
387 if (strcmp(name, "capability") != 0)
388 return -EOPNOTSUPP;
389
390 dentry = d_find_any_alias(inode);
391 if (!dentry)
392 return -EINVAL;
393
394 size = sizeof(struct vfs_ns_cap_data);
395 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
396 &tmpbuf, size, GFP_NOFS);
397 dput(dentry);
398
399 if (ret < 0)
400 return ret;
401
402 fs_ns = inode->i_sb->s_user_ns;
403 cap = (struct vfs_cap_data *) tmpbuf;
404 if (is_v2header((size_t) ret, cap)) {
405 /* If this is sizeof(vfs_cap_data) then we're ok with the
406 * on-disk value, so return that. */
407 if (alloc)
408 *buffer = tmpbuf;
409 else
410 kfree(tmpbuf);
411 return ret;
412 } else if (!is_v3header((size_t) ret, cap)) {
413 kfree(tmpbuf);
414 return -EINVAL;
415 }
416
417 nscap = (struct vfs_ns_cap_data *) tmpbuf;
418 root = le32_to_cpu(nscap->rootid);
419 kroot = make_kuid(fs_ns, root);
420
421 /* If the root kuid maps to a valid uid in current ns, then return
422 * this as a nscap. */
423 mappedroot = from_kuid(current_user_ns(), kroot);
424 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
425 if (alloc) {
426 *buffer = tmpbuf;
427 nscap->rootid = cpu_to_le32(mappedroot);
428 } else
429 kfree(tmpbuf);
430 return size;
431 }
432
433 if (!rootid_owns_currentns(kroot)) {
434 kfree(tmpbuf);
435 return -EOPNOTSUPP;
436 }
437
438 /* This comes from a parent namespace. Return as a v2 capability */
439 size = sizeof(struct vfs_cap_data);
440 if (alloc) {
441 *buffer = kmalloc(size, GFP_ATOMIC);
442 if (*buffer) {
443 struct vfs_cap_data *cap = *buffer;
444 __le32 nsmagic, magic;
445 magic = VFS_CAP_REVISION_2;
446 nsmagic = le32_to_cpu(nscap->magic_etc);
447 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
448 magic |= VFS_CAP_FLAGS_EFFECTIVE;
449 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
450 cap->magic_etc = cpu_to_le32(magic);
451 } else {
452 size = -ENOMEM;
453 }
454 }
455 kfree(tmpbuf);
456 return size;
457 }
458
459 static kuid_t rootid_from_xattr(const void *value, size_t size,
460 struct user_namespace *task_ns)
461 {
462 const struct vfs_ns_cap_data *nscap = value;
463 uid_t rootid = 0;
464
465 if (size == XATTR_CAPS_SZ_3)
466 rootid = le32_to_cpu(nscap->rootid);
467
468 return make_kuid(task_ns, rootid);
469 }
470
471 static bool validheader(size_t size, const struct vfs_cap_data *cap)
472 {
473 return is_v2header(size, cap) || is_v3header(size, cap);
474 }
475
476 /*
477 * User requested a write of security.capability. If needed, update the
478 * xattr to change from v2 to v3, or to fixup the v3 rootid.
479 *
480 * If all is ok, we return the new size, on error return < 0.
481 */
482 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
483 {
484 struct vfs_ns_cap_data *nscap;
485 uid_t nsrootid;
486 const struct vfs_cap_data *cap = *ivalue;
487 __u32 magic, nsmagic;
488 struct inode *inode = d_backing_inode(dentry);
489 struct user_namespace *task_ns = current_user_ns(),
490 *fs_ns = inode->i_sb->s_user_ns;
491 kuid_t rootid;
492 size_t newsize;
493
494 if (!*ivalue)
495 return -EINVAL;
496 if (!validheader(size, cap))
497 return -EINVAL;
498 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
499 return -EPERM;
500 if (size == XATTR_CAPS_SZ_2)
501 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
502 /* user is privileged, just write the v2 */
503 return size;
504
505 rootid = rootid_from_xattr(*ivalue, size, task_ns);
506 if (!uid_valid(rootid))
507 return -EINVAL;
508
509 nsrootid = from_kuid(fs_ns, rootid);
510 if (nsrootid == -1)
511 return -EINVAL;
512
513 newsize = sizeof(struct vfs_ns_cap_data);
514 nscap = kmalloc(newsize, GFP_ATOMIC);
515 if (!nscap)
516 return -ENOMEM;
517 nscap->rootid = cpu_to_le32(nsrootid);
518 nsmagic = VFS_CAP_REVISION_3;
519 magic = le32_to_cpu(cap->magic_etc);
520 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
521 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
522 nscap->magic_etc = cpu_to_le32(nsmagic);
523 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
524
525 kvfree(*ivalue);
526 *ivalue = nscap;
527 return newsize;
528 }
529
530 /*
531 * Calculate the new process capability sets from the capability sets attached
532 * to a file.
533 */
534 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
535 struct linux_binprm *bprm,
536 bool *effective,
537 bool *has_fcap)
538 {
539 struct cred *new = bprm->cred;
540 unsigned i;
541 int ret = 0;
542
543 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
544 *effective = true;
545
546 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
547 *has_fcap = true;
548
549 CAP_FOR_EACH_U32(i) {
550 __u32 permitted = caps->permitted.cap[i];
551 __u32 inheritable = caps->inheritable.cap[i];
552
553 /*
554 * pP' = (X & fP) | (pI & fI)
555 * The addition of pA' is handled later.
556 */
557 new->cap_permitted.cap[i] =
558 (new->cap_bset.cap[i] & permitted) |
559 (new->cap_inheritable.cap[i] & inheritable);
560
561 if (permitted & ~new->cap_permitted.cap[i])
562 /* insufficient to execute correctly */
563 ret = -EPERM;
564 }
565
566 /*
567 * For legacy apps, with no internal support for recognizing they
568 * do not have enough capabilities, we return an error if they are
569 * missing some "forced" (aka file-permitted) capabilities.
570 */
571 return *effective ? ret : 0;
572 }
573
574 /*
575 * Extract the on-exec-apply capability sets for an executable file.
576 */
577 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
578 {
579 struct inode *inode = d_backing_inode(dentry);
580 __u32 magic_etc;
581 unsigned tocopy, i;
582 int size;
583 struct vfs_ns_cap_data data, *nscaps = &data;
584 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
585 kuid_t rootkuid;
586 struct user_namespace *fs_ns;
587
588 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
589
590 if (!inode)
591 return -ENODATA;
592
593 fs_ns = inode->i_sb->s_user_ns;
594 size = __vfs_getxattr((struct dentry *)dentry, inode,
595 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
596 if (size == -ENODATA || size == -EOPNOTSUPP)
597 /* no data, that's ok */
598 return -ENODATA;
599
600 if (size < 0)
601 return size;
602
603 if (size < sizeof(magic_etc))
604 return -EINVAL;
605
606 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
607
608 rootkuid = make_kuid(fs_ns, 0);
609 switch (magic_etc & VFS_CAP_REVISION_MASK) {
610 case VFS_CAP_REVISION_1:
611 if (size != XATTR_CAPS_SZ_1)
612 return -EINVAL;
613 tocopy = VFS_CAP_U32_1;
614 break;
615 case VFS_CAP_REVISION_2:
616 if (size != XATTR_CAPS_SZ_2)
617 return -EINVAL;
618 tocopy = VFS_CAP_U32_2;
619 break;
620 case VFS_CAP_REVISION_3:
621 if (size != XATTR_CAPS_SZ_3)
622 return -EINVAL;
623 tocopy = VFS_CAP_U32_3;
624 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
625 break;
626
627 default:
628 return -EINVAL;
629 }
630 /* Limit the caps to the mounter of the filesystem
631 * or the more limited uid specified in the xattr.
632 */
633 if (!rootid_owns_currentns(rootkuid))
634 return -ENODATA;
635
636 CAP_FOR_EACH_U32(i) {
637 if (i >= tocopy)
638 break;
639 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
640 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
641 }
642
643 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
644 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
645
646 return 0;
647 }
648
649 /*
650 * Attempt to get the on-exec apply capability sets for an executable file from
651 * its xattrs and, if present, apply them to the proposed credentials being
652 * constructed by execve().
653 */
654 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
655 {
656 int rc = 0;
657 struct cpu_vfs_cap_data vcaps;
658
659 cap_clear(bprm->cred->cap_permitted);
660
661 if (!file_caps_enabled)
662 return 0;
663
664 if (path_nosuid(&bprm->file->f_path))
665 return 0;
666
667 /*
668 * This check is redundant with mnt_may_suid() but is kept to make
669 * explicit that capability bits are limited to s_user_ns and its
670 * descendants.
671 */
672 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
673 return 0;
674
675 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
676 if (rc < 0) {
677 if (rc == -EINVAL)
678 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
679 bprm->filename);
680 else if (rc == -ENODATA)
681 rc = 0;
682 goto out;
683 }
684
685 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
686 if (rc == -EINVAL)
687 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
688 __func__, rc, bprm->filename);
689
690 out:
691 if (rc)
692 cap_clear(bprm->cred->cap_permitted);
693
694 return rc;
695 }
696
697 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
698
699 static inline bool __is_real(kuid_t uid, struct cred *cred)
700 { return uid_eq(cred->uid, uid); }
701
702 static inline bool __is_eff(kuid_t uid, struct cred *cred)
703 { return uid_eq(cred->euid, uid); }
704
705 static inline bool __is_suid(kuid_t uid, struct cred *cred)
706 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
707
708 /*
709 * handle_privileged_root - Handle case of privileged root
710 * @bprm: The execution parameters, including the proposed creds
711 * @has_fcap: Are any file capabilities set?
712 * @effective: Do we have effective root privilege?
713 * @root_uid: This namespace' root UID WRT initial USER namespace
714 *
715 * Handle the case where root is privileged and hasn't been neutered by
716 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
717 * set UID root and nothing is changed. If we are root, cap_permitted is
718 * updated. If we have become set UID root, the effective bit is set.
719 */
720 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
721 bool *effective, kuid_t root_uid)
722 {
723 const struct cred *old = current_cred();
724 struct cred *new = bprm->cred;
725
726 if (!root_privileged())
727 return;
728 /*
729 * If the legacy file capability is set, then don't set privs
730 * for a setuid root binary run by a non-root user. Do set it
731 * for a root user just to cause least surprise to an admin.
732 */
733 if (has_fcap && __is_suid(root_uid, new)) {
734 warn_setuid_and_fcaps_mixed(bprm->filename);
735 return;
736 }
737 /*
738 * To support inheritance of root-permissions and suid-root
739 * executables under compatibility mode, we override the
740 * capability sets for the file.
741 */
742 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
743 /* pP' = (cap_bset & ~0) | (pI & ~0) */
744 new->cap_permitted = cap_combine(old->cap_bset,
745 old->cap_inheritable);
746 }
747 /*
748 * If only the real uid is 0, we do not set the effective bit.
749 */
750 if (__is_eff(root_uid, new))
751 *effective = true;
752 }
753
754 #define __cap_gained(field, target, source) \
755 !cap_issubset(target->cap_##field, source->cap_##field)
756 #define __cap_grew(target, source, cred) \
757 !cap_issubset(cred->cap_##target, cred->cap_##source)
758 #define __cap_full(field, cred) \
759 cap_issubset(CAP_FULL_SET, cred->cap_##field)
760
761 static inline bool __is_setuid(struct cred *new, const struct cred *old)
762 { return !uid_eq(new->euid, old->uid); }
763
764 static inline bool __is_setgid(struct cred *new, const struct cred *old)
765 { return !gid_eq(new->egid, old->gid); }
766
767 /*
768 * 1) Audit candidate if current->cap_effective is set
769 *
770 * We do not bother to audit if 3 things are true:
771 * 1) cap_effective has all caps
772 * 2) we became root *OR* are were already root
773 * 3) root is supposed to have all caps (SECURE_NOROOT)
774 * Since this is just a normal root execing a process.
775 *
776 * Number 1 above might fail if you don't have a full bset, but I think
777 * that is interesting information to audit.
778 *
779 * A number of other conditions require logging:
780 * 2) something prevented setuid root getting all caps
781 * 3) non-setuid root gets fcaps
782 * 4) non-setuid root gets ambient
783 */
784 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
785 kuid_t root, bool has_fcap)
786 {
787 bool ret = false;
788
789 if ((__cap_grew(effective, ambient, new) &&
790 !(__cap_full(effective, new) &&
791 (__is_eff(root, new) || __is_real(root, new)) &&
792 root_privileged())) ||
793 (root_privileged() &&
794 __is_suid(root, new) &&
795 !__cap_full(effective, new)) ||
796 (!__is_setuid(new, old) &&
797 ((has_fcap &&
798 __cap_gained(permitted, new, old)) ||
799 __cap_gained(ambient, new, old))))
800
801 ret = true;
802
803 return ret;
804 }
805
806 /**
807 * cap_bprm_set_creds - Set up the proposed credentials for execve().
808 * @bprm: The execution parameters, including the proposed creds
809 *
810 * Set up the proposed credentials for a new execution context being
811 * constructed by execve(). The proposed creds in @bprm->cred is altered,
812 * which won't take effect immediately. Returns 0 if successful, -ve on error.
813 */
814 int cap_bprm_set_creds(struct linux_binprm *bprm)
815 {
816 const struct cred *old = current_cred();
817 struct cred *new = bprm->cred;
818 bool effective = false, has_fcap = false, is_setid;
819 int ret;
820 kuid_t root_uid;
821
822 if (WARN_ON(!cap_ambient_invariant_ok(old)))
823 return -EPERM;
824
825 ret = get_file_caps(bprm, &effective, &has_fcap);
826 if (ret < 0)
827 return ret;
828
829 root_uid = make_kuid(new->user_ns, 0);
830
831 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
832
833 /* if we have fs caps, clear dangerous personality flags */
834 if (__cap_gained(permitted, new, old))
835 bprm->per_clear |= PER_CLEAR_ON_SETID;
836
837 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
838 * credentials unless they have the appropriate permit.
839 *
840 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
841 */
842 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
843
844 if ((is_setid || __cap_gained(permitted, new, old)) &&
845 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
846 !ptracer_capable(current, new->user_ns))) {
847 /* downgrade; they get no more than they had, and maybe less */
848 if (!ns_capable(new->user_ns, CAP_SETUID) ||
849 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
850 new->euid = new->uid;
851 new->egid = new->gid;
852 }
853 new->cap_permitted = cap_intersect(new->cap_permitted,
854 old->cap_permitted);
855 }
856
857 new->suid = new->fsuid = new->euid;
858 new->sgid = new->fsgid = new->egid;
859
860 /* File caps or setid cancels ambient. */
861 if (has_fcap || is_setid)
862 cap_clear(new->cap_ambient);
863
864 /*
865 * Now that we've computed pA', update pP' to give:
866 * pP' = (X & fP) | (pI & fI) | pA'
867 */
868 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
869
870 /*
871 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
872 * this is the same as pE' = (fE ? pP' : 0) | pA'.
873 */
874 if (effective)
875 new->cap_effective = new->cap_permitted;
876 else
877 new->cap_effective = new->cap_ambient;
878
879 if (WARN_ON(!cap_ambient_invariant_ok(new)))
880 return -EPERM;
881
882 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
883 ret = audit_log_bprm_fcaps(bprm, new, old);
884 if (ret < 0)
885 return ret;
886 }
887
888 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
889
890 if (WARN_ON(!cap_ambient_invariant_ok(new)))
891 return -EPERM;
892
893 /* Check for privilege-elevated exec. */
894 bprm->cap_elevated = 0;
895 if (is_setid ||
896 (!__is_real(root_uid, new) &&
897 (effective ||
898 __cap_grew(permitted, ambient, new))))
899 bprm->cap_elevated = 1;
900
901 return 0;
902 }
903
904 /**
905 * cap_inode_setxattr - Determine whether an xattr may be altered
906 * @dentry: The inode/dentry being altered
907 * @name: The name of the xattr to be changed
908 * @value: The value that the xattr will be changed to
909 * @size: The size of value
910 * @flags: The replacement flag
911 *
912 * Determine whether an xattr may be altered or set on an inode, returning 0 if
913 * permission is granted, -ve if denied.
914 *
915 * This is used to make sure security xattrs don't get updated or set by those
916 * who aren't privileged to do so.
917 */
918 int cap_inode_setxattr(struct dentry *dentry, const char *name,
919 const void *value, size_t size, int flags)
920 {
921 /* Ignore non-security xattrs */
922 if (strncmp(name, XATTR_SECURITY_PREFIX,
923 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
924 return 0;
925
926 /*
927 * For XATTR_NAME_CAPS the check will be done in
928 * cap_convert_nscap(), called by setxattr()
929 */
930 if (strcmp(name, XATTR_NAME_CAPS) == 0)
931 return 0;
932
933 if (!ns_capable(dentry->d_sb->s_user_ns, CAP_SYS_ADMIN))
934 return -EPERM;
935 return 0;
936 }
937
938 /**
939 * cap_inode_removexattr - Determine whether an xattr may be removed
940 * @dentry: The inode/dentry being altered
941 * @name: The name of the xattr to be changed
942 *
943 * Determine whether an xattr may be removed from an inode, returning 0 if
944 * permission is granted, -ve if denied.
945 *
946 * This is used to make sure security xattrs don't get removed by those who
947 * aren't privileged to remove them.
948 */
949 int cap_inode_removexattr(struct dentry *dentry, const char *name)
950 {
951 /* Ignore non-security xattrs */
952 if (strncmp(name, XATTR_SECURITY_PREFIX,
953 sizeof(XATTR_SECURITY_PREFIX) - 1) != 0)
954 return 0;
955
956 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
957 /* security.capability gets namespaced */
958 struct inode *inode = d_backing_inode(dentry);
959 if (!inode)
960 return -EINVAL;
961 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
962 return -EPERM;
963 return 0;
964 }
965
966 if (!ns_capable(dentry->d_sb->s_user_ns, CAP_SYS_ADMIN))
967 return -EPERM;
968 return 0;
969 }
970
971 /*
972 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
973 * a process after a call to setuid, setreuid, or setresuid.
974 *
975 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
976 * {r,e,s}uid != 0, the permitted and effective capabilities are
977 * cleared.
978 *
979 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
980 * capabilities of the process are cleared.
981 *
982 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
983 * capabilities are set to the permitted capabilities.
984 *
985 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
986 * never happen.
987 *
988 * -astor
989 *
990 * cevans - New behaviour, Oct '99
991 * A process may, via prctl(), elect to keep its capabilities when it
992 * calls setuid() and switches away from uid==0. Both permitted and
993 * effective sets will be retained.
994 * Without this change, it was impossible for a daemon to drop only some
995 * of its privilege. The call to setuid(!=0) would drop all privileges!
996 * Keeping uid 0 is not an option because uid 0 owns too many vital
997 * files..
998 * Thanks to Olaf Kirch and Peter Benie for spotting this.
999 */
1000 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1001 {
1002 kuid_t root_uid = make_kuid(old->user_ns, 0);
1003
1004 if ((uid_eq(old->uid, root_uid) ||
1005 uid_eq(old->euid, root_uid) ||
1006 uid_eq(old->suid, root_uid)) &&
1007 (!uid_eq(new->uid, root_uid) &&
1008 !uid_eq(new->euid, root_uid) &&
1009 !uid_eq(new->suid, root_uid))) {
1010 if (!issecure(SECURE_KEEP_CAPS)) {
1011 cap_clear(new->cap_permitted);
1012 cap_clear(new->cap_effective);
1013 }
1014
1015 /*
1016 * Pre-ambient programs expect setresuid to nonroot followed
1017 * by exec to drop capabilities. We should make sure that
1018 * this remains the case.
1019 */
1020 cap_clear(new->cap_ambient);
1021 }
1022 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1023 cap_clear(new->cap_effective);
1024 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1025 new->cap_effective = new->cap_permitted;
1026 }
1027
1028 /**
1029 * cap_task_fix_setuid - Fix up the results of setuid() call
1030 * @new: The proposed credentials
1031 * @old: The current task's current credentials
1032 * @flags: Indications of what has changed
1033 *
1034 * Fix up the results of setuid() call before the credential changes are
1035 * actually applied, returning 0 to grant the changes, -ve to deny them.
1036 */
1037 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1038 {
1039 switch (flags) {
1040 case LSM_SETID_RE:
1041 case LSM_SETID_ID:
1042 case LSM_SETID_RES:
1043 /* juggle the capabilities to follow [RES]UID changes unless
1044 * otherwise suppressed */
1045 if (!issecure(SECURE_NO_SETUID_FIXUP))
1046 cap_emulate_setxuid(new, old);
1047 break;
1048
1049 case LSM_SETID_FS:
1050 /* juggle the capabilties to follow FSUID changes, unless
1051 * otherwise suppressed
1052 *
1053 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1054 * if not, we might be a bit too harsh here.
1055 */
1056 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1057 kuid_t root_uid = make_kuid(old->user_ns, 0);
1058 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1059 new->cap_effective =
1060 cap_drop_fs_set(new->cap_effective);
1061
1062 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1063 new->cap_effective =
1064 cap_raise_fs_set(new->cap_effective,
1065 new->cap_permitted);
1066 }
1067 break;
1068
1069 default:
1070 return -EINVAL;
1071 }
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * Rationale: code calling task_setscheduler, task_setioprio, and
1078 * task_setnice, assumes that
1079 * . if capable(cap_sys_nice), then those actions should be allowed
1080 * . if not capable(cap_sys_nice), but acting on your own processes,
1081 * then those actions should be allowed
1082 * This is insufficient now since you can call code without suid, but
1083 * yet with increased caps.
1084 * So we check for increased caps on the target process.
1085 */
1086 static int cap_safe_nice(struct task_struct *p)
1087 {
1088 int is_subset, ret = 0;
1089
1090 rcu_read_lock();
1091 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1092 current_cred()->cap_permitted);
1093 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1094 ret = -EPERM;
1095 rcu_read_unlock();
1096
1097 return ret;
1098 }
1099
1100 /**
1101 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1102 * @p: The task to affect
1103 *
1104 * Detemine if the requested scheduler policy change is permitted for the
1105 * specified task, returning 0 if permission is granted, -ve if denied.
1106 */
1107 int cap_task_setscheduler(struct task_struct *p)
1108 {
1109 return cap_safe_nice(p);
1110 }
1111
1112 /**
1113 * cap_task_ioprio - Detemine if I/O priority change is permitted
1114 * @p: The task to affect
1115 * @ioprio: The I/O priority to set
1116 *
1117 * Detemine if the requested I/O priority change is permitted for the specified
1118 * task, returning 0 if permission is granted, -ve if denied.
1119 */
1120 int cap_task_setioprio(struct task_struct *p, int ioprio)
1121 {
1122 return cap_safe_nice(p);
1123 }
1124
1125 /**
1126 * cap_task_ioprio - Detemine if task priority change is permitted
1127 * @p: The task to affect
1128 * @nice: The nice value to set
1129 *
1130 * Detemine if the requested task priority change is permitted for the
1131 * specified task, returning 0 if permission is granted, -ve if denied.
1132 */
1133 int cap_task_setnice(struct task_struct *p, int nice)
1134 {
1135 return cap_safe_nice(p);
1136 }
1137
1138 /*
1139 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1140 * the current task's bounding set. Returns 0 on success, -ve on error.
1141 */
1142 static int cap_prctl_drop(unsigned long cap)
1143 {
1144 struct cred *new;
1145
1146 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1147 return -EPERM;
1148 if (!cap_valid(cap))
1149 return -EINVAL;
1150
1151 new = prepare_creds();
1152 if (!new)
1153 return -ENOMEM;
1154 cap_lower(new->cap_bset, cap);
1155 return commit_creds(new);
1156 }
1157
1158 /**
1159 * cap_task_prctl - Implement process control functions for this security module
1160 * @option: The process control function requested
1161 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1162 *
1163 * Allow process control functions (sys_prctl()) to alter capabilities; may
1164 * also deny access to other functions not otherwise implemented here.
1165 *
1166 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1167 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1168 * modules will consider performing the function.
1169 */
1170 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1171 unsigned long arg4, unsigned long arg5)
1172 {
1173 const struct cred *old = current_cred();
1174 struct cred *new;
1175
1176 switch (option) {
1177 case PR_CAPBSET_READ:
1178 if (!cap_valid(arg2))
1179 return -EINVAL;
1180 return !!cap_raised(old->cap_bset, arg2);
1181
1182 case PR_CAPBSET_DROP:
1183 return cap_prctl_drop(arg2);
1184
1185 /*
1186 * The next four prctl's remain to assist with transitioning a
1187 * system from legacy UID=0 based privilege (when filesystem
1188 * capabilities are not in use) to a system using filesystem
1189 * capabilities only - as the POSIX.1e draft intended.
1190 *
1191 * Note:
1192 *
1193 * PR_SET_SECUREBITS =
1194 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1195 * | issecure_mask(SECURE_NOROOT)
1196 * | issecure_mask(SECURE_NOROOT_LOCKED)
1197 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1198 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1199 *
1200 * will ensure that the current process and all of its
1201 * children will be locked into a pure
1202 * capability-based-privilege environment.
1203 */
1204 case PR_SET_SECUREBITS:
1205 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1206 & (old->securebits ^ arg2)) /*[1]*/
1207 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1208 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1209 || (cap_capable(current_cred(),
1210 current_cred()->user_ns,
1211 CAP_SETPCAP,
1212 CAP_OPT_NONE) != 0) /*[4]*/
1213 /*
1214 * [1] no changing of bits that are locked
1215 * [2] no unlocking of locks
1216 * [3] no setting of unsupported bits
1217 * [4] doing anything requires privilege (go read about
1218 * the "sendmail capabilities bug")
1219 */
1220 )
1221 /* cannot change a locked bit */
1222 return -EPERM;
1223
1224 new = prepare_creds();
1225 if (!new)
1226 return -ENOMEM;
1227 new->securebits = arg2;
1228 return commit_creds(new);
1229
1230 case PR_GET_SECUREBITS:
1231 return old->securebits;
1232
1233 case PR_GET_KEEPCAPS:
1234 return !!issecure(SECURE_KEEP_CAPS);
1235
1236 case PR_SET_KEEPCAPS:
1237 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1238 return -EINVAL;
1239 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1240 return -EPERM;
1241
1242 new = prepare_creds();
1243 if (!new)
1244 return -ENOMEM;
1245 if (arg2)
1246 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1247 else
1248 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1249 return commit_creds(new);
1250
1251 case PR_CAP_AMBIENT:
1252 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1253 if (arg3 | arg4 | arg5)
1254 return -EINVAL;
1255
1256 new = prepare_creds();
1257 if (!new)
1258 return -ENOMEM;
1259 cap_clear(new->cap_ambient);
1260 return commit_creds(new);
1261 }
1262
1263 if (((!cap_valid(arg3)) | arg4 | arg5))
1264 return -EINVAL;
1265
1266 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1267 return !!cap_raised(current_cred()->cap_ambient, arg3);
1268 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1269 arg2 != PR_CAP_AMBIENT_LOWER) {
1270 return -EINVAL;
1271 } else {
1272 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1273 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1274 !cap_raised(current_cred()->cap_inheritable,
1275 arg3) ||
1276 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1277 return -EPERM;
1278
1279 new = prepare_creds();
1280 if (!new)
1281 return -ENOMEM;
1282 if (arg2 == PR_CAP_AMBIENT_RAISE)
1283 cap_raise(new->cap_ambient, arg3);
1284 else
1285 cap_lower(new->cap_ambient, arg3);
1286 return commit_creds(new);
1287 }
1288
1289 default:
1290 /* No functionality available - continue with default */
1291 return -ENOSYS;
1292 }
1293 }
1294
1295 /**
1296 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1297 * @mm: The VM space in which the new mapping is to be made
1298 * @pages: The size of the mapping
1299 *
1300 * Determine whether the allocation of a new virtual mapping by the current
1301 * task is permitted, returning 1 if permission is granted, 0 if not.
1302 */
1303 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1304 {
1305 int cap_sys_admin = 0;
1306
1307 if (cap_capable(current_cred(), &init_user_ns,
1308 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1309 cap_sys_admin = 1;
1310
1311 return cap_sys_admin;
1312 }
1313
1314 /*
1315 * cap_mmap_addr - check if able to map given addr
1316 * @addr: address attempting to be mapped
1317 *
1318 * If the process is attempting to map memory below dac_mmap_min_addr they need
1319 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1320 * capability security module. Returns 0 if this mapping should be allowed
1321 * -EPERM if not.
1322 */
1323 int cap_mmap_addr(unsigned long addr)
1324 {
1325 int ret = 0;
1326
1327 if (addr < dac_mmap_min_addr) {
1328 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1329 CAP_OPT_NONE);
1330 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1331 if (ret == 0)
1332 current->flags |= PF_SUPERPRIV;
1333 }
1334 return ret;
1335 }
1336 EXPORT_SYMBOL_GPL(cap_mmap_addr);
1337
1338 int cap_mmap_file(struct file *file, unsigned long reqprot,
1339 unsigned long prot, unsigned long flags)
1340 {
1341 return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(cap_mmap_file);
1344
1345 #ifdef CONFIG_SECURITY
1346
1347 struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1348 LSM_HOOK_INIT(capable, cap_capable),
1349 LSM_HOOK_INIT(settime, cap_settime),
1350 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1351 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1352 LSM_HOOK_INIT(capget, cap_capget),
1353 LSM_HOOK_INIT(capset, cap_capset),
1354 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1355 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1356 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1357 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1358 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1359 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1360 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1361 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1362 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1363 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1364 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1365 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1366 };
1367
1368 void __init capability_add_hooks(void)
1369 {
1370 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1371 "capability");
1372 }
1373
1374 #endif /* CONFIG_SECURITY */