]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/integrity/ima/ima_crypto.c
ac1cf1dffc62434cc3799bf7ba6265737b4cc4de
[mirror_ubuntu-bionic-kernel.git] / security / integrity / ima / ima_crypto.c
1 /*
2 * Copyright (C) 2005,2006,2007,2008 IBM Corporation
3 *
4 * Authors:
5 * Mimi Zohar <zohar@us.ibm.com>
6 * Kylene Hall <kjhall@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, version 2 of the License.
11 *
12 * File: ima_crypto.c
13 * Calculates md5/sha1 file hash, template hash, boot-aggreate hash
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/moduleparam.h>
20 #include <linux/ratelimit.h>
21 #include <linux/file.h>
22 #include <linux/crypto.h>
23 #include <linux/scatterlist.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <crypto/hash.h>
27
28 #include "ima.h"
29
30 /* minimum file size for ahash use */
31 static unsigned long ima_ahash_minsize;
32 module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644);
33 MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use");
34
35 /* default is 0 - 1 page. */
36 static int ima_maxorder;
37 static unsigned int ima_bufsize = PAGE_SIZE;
38
39 static int param_set_bufsize(const char *val, const struct kernel_param *kp)
40 {
41 unsigned long long size;
42 int order;
43
44 size = memparse(val, NULL);
45 order = get_order(size);
46 if (order >= MAX_ORDER)
47 return -EINVAL;
48 ima_maxorder = order;
49 ima_bufsize = PAGE_SIZE << order;
50 return 0;
51 }
52
53 static const struct kernel_param_ops param_ops_bufsize = {
54 .set = param_set_bufsize,
55 .get = param_get_uint,
56 };
57 #define param_check_bufsize(name, p) __param_check(name, p, unsigned int)
58
59 module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644);
60 MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size");
61
62 static struct crypto_shash *ima_shash_tfm;
63 static struct crypto_ahash *ima_ahash_tfm;
64
65 int __init ima_init_crypto(void)
66 {
67 long rc;
68
69 ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0);
70 if (IS_ERR(ima_shash_tfm)) {
71 rc = PTR_ERR(ima_shash_tfm);
72 pr_err("Can not allocate %s (reason: %ld)\n",
73 hash_algo_name[ima_hash_algo], rc);
74 return rc;
75 }
76 pr_info("Allocated hash algorithm: %s\n",
77 hash_algo_name[ima_hash_algo]);
78 return 0;
79 }
80
81 static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo)
82 {
83 struct crypto_shash *tfm = ima_shash_tfm;
84 int rc;
85
86 if (algo < 0 || algo >= HASH_ALGO__LAST)
87 algo = ima_hash_algo;
88
89 if (algo != ima_hash_algo) {
90 tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0);
91 if (IS_ERR(tfm)) {
92 rc = PTR_ERR(tfm);
93 pr_err("Can not allocate %s (reason: %d)\n",
94 hash_algo_name[algo], rc);
95 }
96 }
97 return tfm;
98 }
99
100 static void ima_free_tfm(struct crypto_shash *tfm)
101 {
102 if (tfm != ima_shash_tfm)
103 crypto_free_shash(tfm);
104 }
105
106 /**
107 * ima_alloc_pages() - Allocate contiguous pages.
108 * @max_size: Maximum amount of memory to allocate.
109 * @allocated_size: Returned size of actual allocation.
110 * @last_warn: Should the min_size allocation warn or not.
111 *
112 * Tries to do opportunistic allocation for memory first trying to allocate
113 * max_size amount of memory and then splitting that until zero order is
114 * reached. Allocation is tried without generating allocation warnings unless
115 * last_warn is set. Last_warn set affects only last allocation of zero order.
116 *
117 * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL)
118 *
119 * Return pointer to allocated memory, or NULL on failure.
120 */
121 static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size,
122 int last_warn)
123 {
124 void *ptr;
125 int order = ima_maxorder;
126 gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY;
127
128 if (order)
129 order = min(get_order(max_size), order);
130
131 for (; order; order--) {
132 ptr = (void *)__get_free_pages(gfp_mask, order);
133 if (ptr) {
134 *allocated_size = PAGE_SIZE << order;
135 return ptr;
136 }
137 }
138
139 /* order is zero - one page */
140
141 gfp_mask = GFP_KERNEL;
142
143 if (!last_warn)
144 gfp_mask |= __GFP_NOWARN;
145
146 ptr = (void *)__get_free_pages(gfp_mask, 0);
147 if (ptr) {
148 *allocated_size = PAGE_SIZE;
149 return ptr;
150 }
151
152 *allocated_size = 0;
153 return NULL;
154 }
155
156 /**
157 * ima_free_pages() - Free pages allocated by ima_alloc_pages().
158 * @ptr: Pointer to allocated pages.
159 * @size: Size of allocated buffer.
160 */
161 static void ima_free_pages(void *ptr, size_t size)
162 {
163 if (!ptr)
164 return;
165 free_pages((unsigned long)ptr, get_order(size));
166 }
167
168 static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo)
169 {
170 struct crypto_ahash *tfm = ima_ahash_tfm;
171 int rc;
172
173 if (algo < 0 || algo >= HASH_ALGO__LAST)
174 algo = ima_hash_algo;
175
176 if (algo != ima_hash_algo || !tfm) {
177 tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0);
178 if (!IS_ERR(tfm)) {
179 if (algo == ima_hash_algo)
180 ima_ahash_tfm = tfm;
181 } else {
182 rc = PTR_ERR(tfm);
183 pr_err("Can not allocate %s (reason: %d)\n",
184 hash_algo_name[algo], rc);
185 }
186 }
187 return tfm;
188 }
189
190 static void ima_free_atfm(struct crypto_ahash *tfm)
191 {
192 if (tfm != ima_ahash_tfm)
193 crypto_free_ahash(tfm);
194 }
195
196 static inline int ahash_wait(int err, struct crypto_wait *wait)
197 {
198
199 err = crypto_wait_req(err, wait);
200
201 if (err)
202 pr_crit_ratelimited("ahash calculation failed: err: %d\n", err);
203
204 return err;
205 }
206
207 static int ima_calc_file_hash_atfm(struct file *file,
208 struct ima_digest_data *hash,
209 struct crypto_ahash *tfm)
210 {
211 loff_t i_size, offset;
212 char *rbuf[2] = { NULL, };
213 int rc, rbuf_len, active = 0, ahash_rc = 0;
214 struct ahash_request *req;
215 struct scatterlist sg[1];
216 struct crypto_wait wait;
217 size_t rbuf_size[2];
218
219 hash->length = crypto_ahash_digestsize(tfm);
220
221 req = ahash_request_alloc(tfm, GFP_KERNEL);
222 if (!req)
223 return -ENOMEM;
224
225 crypto_init_wait(&wait);
226 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
227 CRYPTO_TFM_REQ_MAY_SLEEP,
228 crypto_req_done, &wait);
229
230 rc = ahash_wait(crypto_ahash_init(req), &wait);
231 if (rc)
232 goto out1;
233
234 i_size = i_size_read(file_inode(file));
235
236 if (i_size == 0)
237 goto out2;
238
239 /*
240 * Try to allocate maximum size of memory.
241 * Fail if even a single page cannot be allocated.
242 */
243 rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1);
244 if (!rbuf[0]) {
245 rc = -ENOMEM;
246 goto out1;
247 }
248
249 /* Only allocate one buffer if that is enough. */
250 if (i_size > rbuf_size[0]) {
251 /*
252 * Try to allocate secondary buffer. If that fails fallback to
253 * using single buffering. Use previous memory allocation size
254 * as baseline for possible allocation size.
255 */
256 rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0],
257 &rbuf_size[1], 0);
258 }
259
260 for (offset = 0; offset < i_size; offset += rbuf_len) {
261 if (!rbuf[1] && offset) {
262 /* Not using two buffers, and it is not the first
263 * read/request, wait for the completion of the
264 * previous ahash_update() request.
265 */
266 rc = ahash_wait(ahash_rc, &wait);
267 if (rc)
268 goto out3;
269 }
270 /* read buffer */
271 rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]);
272 rc = integrity_kernel_read(file, offset, rbuf[active],
273 rbuf_len);
274 if (rc != rbuf_len) {
275 if (rc >= 0)
276 rc = -EINVAL;
277 goto out3;
278 }
279
280 if (rbuf[1] && offset) {
281 /* Using two buffers, and it is not the first
282 * read/request, wait for the completion of the
283 * previous ahash_update() request.
284 */
285 rc = ahash_wait(ahash_rc, &wait);
286 if (rc)
287 goto out3;
288 }
289
290 sg_init_one(&sg[0], rbuf[active], rbuf_len);
291 ahash_request_set_crypt(req, sg, NULL, rbuf_len);
292
293 ahash_rc = crypto_ahash_update(req);
294
295 if (rbuf[1])
296 active = !active; /* swap buffers, if we use two */
297 }
298 /* wait for the last update request to complete */
299 rc = ahash_wait(ahash_rc, &wait);
300 out3:
301 ima_free_pages(rbuf[0], rbuf_size[0]);
302 ima_free_pages(rbuf[1], rbuf_size[1]);
303 out2:
304 if (!rc) {
305 ahash_request_set_crypt(req, NULL, hash->digest, 0);
306 rc = ahash_wait(crypto_ahash_final(req), &wait);
307 }
308 out1:
309 ahash_request_free(req);
310 return rc;
311 }
312
313 static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash)
314 {
315 struct crypto_ahash *tfm;
316 int rc;
317
318 tfm = ima_alloc_atfm(hash->algo);
319 if (IS_ERR(tfm))
320 return PTR_ERR(tfm);
321
322 rc = ima_calc_file_hash_atfm(file, hash, tfm);
323
324 ima_free_atfm(tfm);
325
326 return rc;
327 }
328
329 static int ima_calc_file_hash_tfm(struct file *file,
330 struct ima_digest_data *hash,
331 struct crypto_shash *tfm)
332 {
333 loff_t i_size, offset = 0;
334 char *rbuf;
335 int rc;
336 SHASH_DESC_ON_STACK(shash, tfm);
337
338 shash->tfm = tfm;
339 shash->flags = 0;
340
341 hash->length = crypto_shash_digestsize(tfm);
342
343 rc = crypto_shash_init(shash);
344 if (rc != 0)
345 return rc;
346
347 i_size = i_size_read(file_inode(file));
348
349 if (i_size == 0)
350 goto out;
351
352 rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL);
353 if (!rbuf)
354 return -ENOMEM;
355
356 while (offset < i_size) {
357 int rbuf_len;
358
359 rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE);
360 if (rbuf_len < 0) {
361 rc = rbuf_len;
362 break;
363 }
364 if (rbuf_len == 0)
365 break;
366 offset += rbuf_len;
367
368 rc = crypto_shash_update(shash, rbuf, rbuf_len);
369 if (rc)
370 break;
371 }
372 kfree(rbuf);
373 out:
374 if (!rc)
375 rc = crypto_shash_final(shash, hash->digest);
376 return rc;
377 }
378
379 static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash)
380 {
381 struct crypto_shash *tfm;
382 int rc;
383
384 tfm = ima_alloc_tfm(hash->algo);
385 if (IS_ERR(tfm))
386 return PTR_ERR(tfm);
387
388 rc = ima_calc_file_hash_tfm(file, hash, tfm);
389
390 ima_free_tfm(tfm);
391
392 return rc;
393 }
394
395 /*
396 * ima_calc_file_hash - calculate file hash
397 *
398 * Asynchronous hash (ahash) allows using HW acceleration for calculating
399 * a hash. ahash performance varies for different data sizes on different
400 * crypto accelerators. shash performance might be better for smaller files.
401 * The 'ima.ahash_minsize' module parameter allows specifying the best
402 * minimum file size for using ahash on the system.
403 *
404 * If the ima.ahash_minsize parameter is not specified, this function uses
405 * shash for the hash calculation. If ahash fails, it falls back to using
406 * shash.
407 */
408 int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash)
409 {
410 loff_t i_size;
411 int rc;
412 struct file *f = file;
413 bool new_file_instance = false, modified_flags = false;
414
415 /*
416 * For consistency, fail file's opened with the O_DIRECT flag on
417 * filesystems mounted with/without DAX option.
418 */
419 if (file->f_flags & O_DIRECT) {
420 hash->length = hash_digest_size[ima_hash_algo];
421 hash->algo = ima_hash_algo;
422 return -EINVAL;
423 }
424
425 /* Open a new file instance in O_RDONLY if we cannot read */
426 if (!(file->f_mode & FMODE_READ)) {
427 int flags = file->f_flags & ~(O_WRONLY | O_APPEND |
428 O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL);
429 flags |= O_RDONLY;
430 f = dentry_open(&file->f_path, flags, file->f_cred);
431 if (IS_ERR(f)) {
432 /*
433 * Cannot open the file again, lets modify f_flags
434 * of original and continue
435 */
436 pr_info_ratelimited("Unable to reopen file for reading.\n");
437 f = file;
438 f->f_flags |= FMODE_READ;
439 modified_flags = true;
440 } else {
441 new_file_instance = true;
442 }
443 }
444
445 i_size = i_size_read(file_inode(f));
446
447 if (ima_ahash_minsize && i_size >= ima_ahash_minsize) {
448 rc = ima_calc_file_ahash(f, hash);
449 if (!rc)
450 goto out;
451 }
452
453 rc = ima_calc_file_shash(f, hash);
454 out:
455 if (new_file_instance)
456 fput(f);
457 else if (modified_flags)
458 f->f_flags &= ~FMODE_READ;
459 return rc;
460 }
461
462 /*
463 * Calculate the hash of template data
464 */
465 static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data,
466 struct ima_template_desc *td,
467 int num_fields,
468 struct ima_digest_data *hash,
469 struct crypto_shash *tfm)
470 {
471 SHASH_DESC_ON_STACK(shash, tfm);
472 int rc, i;
473
474 shash->tfm = tfm;
475 shash->flags = 0;
476
477 hash->length = crypto_shash_digestsize(tfm);
478
479 rc = crypto_shash_init(shash);
480 if (rc != 0)
481 return rc;
482
483 for (i = 0; i < num_fields; i++) {
484 u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 };
485 u8 *data_to_hash = field_data[i].data;
486 u32 datalen = field_data[i].len;
487 u32 datalen_to_hash =
488 !ima_canonical_fmt ? datalen : cpu_to_le32(datalen);
489
490 if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) {
491 rc = crypto_shash_update(shash,
492 (const u8 *) &datalen_to_hash,
493 sizeof(datalen_to_hash));
494 if (rc)
495 break;
496 } else if (strcmp(td->fields[i]->field_id, "n") == 0) {
497 memcpy(buffer, data_to_hash, datalen);
498 data_to_hash = buffer;
499 datalen = IMA_EVENT_NAME_LEN_MAX + 1;
500 }
501 rc = crypto_shash_update(shash, data_to_hash, datalen);
502 if (rc)
503 break;
504 }
505
506 if (!rc)
507 rc = crypto_shash_final(shash, hash->digest);
508
509 return rc;
510 }
511
512 int ima_calc_field_array_hash(struct ima_field_data *field_data,
513 struct ima_template_desc *desc, int num_fields,
514 struct ima_digest_data *hash)
515 {
516 struct crypto_shash *tfm;
517 int rc;
518
519 tfm = ima_alloc_tfm(hash->algo);
520 if (IS_ERR(tfm))
521 return PTR_ERR(tfm);
522
523 rc = ima_calc_field_array_hash_tfm(field_data, desc, num_fields,
524 hash, tfm);
525
526 ima_free_tfm(tfm);
527
528 return rc;
529 }
530
531 static int calc_buffer_ahash_atfm(const void *buf, loff_t len,
532 struct ima_digest_data *hash,
533 struct crypto_ahash *tfm)
534 {
535 struct ahash_request *req;
536 struct scatterlist sg;
537 struct crypto_wait wait;
538 int rc, ahash_rc = 0;
539
540 hash->length = crypto_ahash_digestsize(tfm);
541
542 req = ahash_request_alloc(tfm, GFP_KERNEL);
543 if (!req)
544 return -ENOMEM;
545
546 crypto_init_wait(&wait);
547 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
548 CRYPTO_TFM_REQ_MAY_SLEEP,
549 crypto_req_done, &wait);
550
551 rc = ahash_wait(crypto_ahash_init(req), &wait);
552 if (rc)
553 goto out;
554
555 sg_init_one(&sg, buf, len);
556 ahash_request_set_crypt(req, &sg, NULL, len);
557
558 ahash_rc = crypto_ahash_update(req);
559
560 /* wait for the update request to complete */
561 rc = ahash_wait(ahash_rc, &wait);
562 if (!rc) {
563 ahash_request_set_crypt(req, NULL, hash->digest, 0);
564 rc = ahash_wait(crypto_ahash_final(req), &wait);
565 }
566 out:
567 ahash_request_free(req);
568 return rc;
569 }
570
571 static int calc_buffer_ahash(const void *buf, loff_t len,
572 struct ima_digest_data *hash)
573 {
574 struct crypto_ahash *tfm;
575 int rc;
576
577 tfm = ima_alloc_atfm(hash->algo);
578 if (IS_ERR(tfm))
579 return PTR_ERR(tfm);
580
581 rc = calc_buffer_ahash_atfm(buf, len, hash, tfm);
582
583 ima_free_atfm(tfm);
584
585 return rc;
586 }
587
588 static int calc_buffer_shash_tfm(const void *buf, loff_t size,
589 struct ima_digest_data *hash,
590 struct crypto_shash *tfm)
591 {
592 SHASH_DESC_ON_STACK(shash, tfm);
593 unsigned int len;
594 int rc;
595
596 shash->tfm = tfm;
597 shash->flags = 0;
598
599 hash->length = crypto_shash_digestsize(tfm);
600
601 rc = crypto_shash_init(shash);
602 if (rc != 0)
603 return rc;
604
605 while (size) {
606 len = size < PAGE_SIZE ? size : PAGE_SIZE;
607 rc = crypto_shash_update(shash, buf, len);
608 if (rc)
609 break;
610 buf += len;
611 size -= len;
612 }
613
614 if (!rc)
615 rc = crypto_shash_final(shash, hash->digest);
616 return rc;
617 }
618
619 static int calc_buffer_shash(const void *buf, loff_t len,
620 struct ima_digest_data *hash)
621 {
622 struct crypto_shash *tfm;
623 int rc;
624
625 tfm = ima_alloc_tfm(hash->algo);
626 if (IS_ERR(tfm))
627 return PTR_ERR(tfm);
628
629 rc = calc_buffer_shash_tfm(buf, len, hash, tfm);
630
631 ima_free_tfm(tfm);
632 return rc;
633 }
634
635 int ima_calc_buffer_hash(const void *buf, loff_t len,
636 struct ima_digest_data *hash)
637 {
638 int rc;
639
640 if (ima_ahash_minsize && len >= ima_ahash_minsize) {
641 rc = calc_buffer_ahash(buf, len, hash);
642 if (!rc)
643 return 0;
644 }
645
646 return calc_buffer_shash(buf, len, hash);
647 }
648
649 static void __init ima_pcrread(int idx, u8 *pcr)
650 {
651 if (!ima_used_chip)
652 return;
653
654 if (tpm_pcr_read(TPM_ANY_NUM, idx, pcr) != 0)
655 pr_err("Error Communicating to TPM chip\n");
656 }
657
658 /*
659 * Calculate the boot aggregate hash
660 */
661 static int __init ima_calc_boot_aggregate_tfm(char *digest,
662 struct crypto_shash *tfm)
663 {
664 u8 pcr_i[TPM_DIGEST_SIZE];
665 int rc, i;
666 SHASH_DESC_ON_STACK(shash, tfm);
667
668 shash->tfm = tfm;
669 shash->flags = 0;
670
671 rc = crypto_shash_init(shash);
672 if (rc != 0)
673 return rc;
674
675 /* cumulative sha1 over tpm registers 0-7 */
676 for (i = TPM_PCR0; i < TPM_PCR8; i++) {
677 ima_pcrread(i, pcr_i);
678 /* now accumulate with current aggregate */
679 rc = crypto_shash_update(shash, pcr_i, TPM_DIGEST_SIZE);
680 }
681 if (!rc)
682 crypto_shash_final(shash, digest);
683 return rc;
684 }
685
686 int __init ima_calc_boot_aggregate(struct ima_digest_data *hash)
687 {
688 struct crypto_shash *tfm;
689 int rc;
690
691 tfm = ima_alloc_tfm(hash->algo);
692 if (IS_ERR(tfm))
693 return PTR_ERR(tfm);
694
695 hash->length = crypto_shash_digestsize(tfm);
696 rc = ima_calc_boot_aggregate_tfm(hash->digest, tfm);
697
698 ima_free_tfm(tfm);
699
700 return rc;
701 }