]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/security.c
UBUNTU: SAUCE: LSM stacking: fixup stacking kconfig
[mirror_ubuntu-bionic-kernel.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2016 Mellanox Technologies
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 */
14
15 #include <linux/bpf.h>
16 #include <linux/capability.h>
17 #include <linux/dcache.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/integrity.h>
23 #include <linux/ima.h>
24 #include <linux/evm.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mman.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/backing-dev.h>
30 #include <linux/string.h>
31 #include <linux/msg.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34
35 #define MAX_LSM_EVM_XATTR 2
36
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX 10
39 #define MODULE_STACK "(stacking)"
40
41 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
43
44 static struct kmem_cache *lsm_file_cache;
45 static struct kmem_cache *lsm_inode_cache;
46
47 char *lsm_names;
48 static struct lsm_blob_sizes blob_sizes;
49
50 /* Boot-time LSM user choice */
51 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
52 #ifdef CONFIG_SECURITY_STACKING
53 MODULE_STACK;
54 #else
55 CONFIG_DEFAULT_SECURITY;
56 #endif
57
58 static void __init do_security_initcalls(void)
59 {
60 initcall_t *call;
61 call = __security_initcall_start;
62 while (call < __security_initcall_end) {
63 (*call) ();
64 call++;
65 }
66 }
67
68 /**
69 * security_init - initializes the security framework
70 *
71 * This should be called early in the kernel initialization sequence.
72 */
73 int __init security_init(void)
74 {
75 int i;
76 struct list_head *list = (struct list_head *) &security_hook_heads;
77
78 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct list_head);
79 i++)
80 INIT_LIST_HEAD(&list[i]);
81 pr_info("Security Framework initialized\n");
82
83 /*
84 * Load minor LSMs, with the capability module always first.
85 */
86 capability_add_hooks();
87 yama_add_hooks();
88 loadpin_add_hooks();
89
90 /*
91 * The first call to a module specific init function
92 * updates the blob size requirements.
93 */
94 do_security_initcalls();
95
96 /*
97 * Create any kmem_caches needed for blobs
98 */
99 if (blob_sizes.lbs_file)
100 lsm_file_cache = kmem_cache_create("lsm_file_cache",
101 blob_sizes.lbs_file, 0,
102 SLAB_PANIC, NULL);
103 if (blob_sizes.lbs_inode)
104 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
105 blob_sizes.lbs_inode, 0,
106 SLAB_PANIC, NULL);
107 /*
108 * The second call to a module specific init function
109 * adds hooks to the hook lists and does any other early
110 * initializations required.
111 */
112 do_security_initcalls();
113
114 #ifdef CONFIG_SECURITY_LSM_DEBUG
115 pr_info("LSM: cred blob size = %d\n", blob_sizes.lbs_cred);
116 pr_info("LSM: file blob size = %d\n", blob_sizes.lbs_file);
117 pr_info("LSM: inode blob size = %d\n", blob_sizes.lbs_inode);
118 pr_info("LSM: ipc blob size = %d\n", blob_sizes.lbs_ipc);
119 #ifdef CONFIG_KEYS
120 pr_info("LSM: key blob size = %d\n", blob_sizes.lbs_key);
121 #endif /* CONFIG_KEYS */
122 pr_info("LSM: msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
123 pr_info("LSM: sock blob size = %d\n", blob_sizes.lbs_sock);
124 pr_info("LSM: superblock blob size = %d\n", blob_sizes.lbs_superblock);
125 pr_info("LSM: task blob size = %d\n", blob_sizes.lbs_task);
126 #endif /* CONFIG_SECURITY_LSM_DEBUG */
127
128 return 0;
129 }
130
131 /* Save user chosen LSM */
132 static int __init choose_lsm(char *str)
133 {
134 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
135 return 1;
136 }
137 __setup("security=", choose_lsm);
138
139 static bool match_last_lsm(const char *list, const char *lsm)
140 {
141 const char *last;
142
143 if (WARN_ON(!list || !lsm))
144 return false;
145 last = strrchr(list, ',');
146 if (last)
147 /* Pass the comma, strcmp() will check for '\0' */
148 last++;
149 else
150 last = list;
151 return !strcmp(last, lsm);
152 }
153
154 static int lsm_append(char *new, char **result)
155 {
156 char *cp;
157
158 if (*result == NULL) {
159 *result = kstrdup(new, GFP_KERNEL);
160 } else {
161 /* Check if it is the last registered name */
162 if (match_last_lsm(*result, new))
163 return 0;
164 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
165 if (cp == NULL)
166 return -ENOMEM;
167 kfree(*result);
168 *result = cp;
169 }
170 return 0;
171 }
172
173 /**
174 * security_module_enable - Load given security module on boot ?
175 * @module: the name of the module
176 * @stacked: indicates that the module wants to be stacked
177 *
178 * Each LSM must pass this method before registering its own operations
179 * to avoid security registration races. This method may also be used
180 * to check if your LSM is currently loaded during kernel initialization.
181 *
182 * Returns:
183 *
184 * true if:
185 *
186 * - The passed LSM is the one chosen by user at boot time,
187 * - or the passed LSM is configured as the default and the user did not
188 * choose an alternate LSM at boot time.
189 *
190 * Otherwise, return false.
191 */
192 bool __init security_module_enable(const char *lsm, const bool stacked)
193 {
194 #ifdef CONFIG_SECURITY_STACKING
195 /*
196 * Module defined on the command line security=XXXX
197 */
198 if (strcmp(chosen_lsm, MODULE_STACK)) {
199 if (!strcmp(lsm, chosen_lsm)) {
200 pr_info("Command line sets the %s security module.\n",
201 lsm);
202 return true;
203 }
204 return false;
205 }
206 /*
207 * Module configured as stacked.
208 */
209 return stacked;
210 #else
211 if (strcmp(lsm, chosen_lsm) == 0)
212 return true;
213 return false;
214 #endif
215 }
216
217 /**
218 * security_add_hooks - Add a modules hooks to the hook lists.
219 * @hooks: the hooks to add
220 * @count: the number of hooks to add
221 * @lsm: the name of the security module
222 *
223 * Each LSM has to register its hooks with the infrastructure.
224 */
225 void __init security_add_hooks(struct security_hook_list *hooks, int count,
226 char *lsm)
227 {
228 int i;
229
230 for (i = 0; i < count; i++) {
231 hooks[i].lsm = lsm;
232 list_add_tail_rcu(&hooks[i].list, hooks[i].head);
233 }
234 if (lsm_append(lsm, &lsm_names) < 0)
235 panic("%s - Cannot get early memory.\n", __func__);
236 }
237
238 int call_lsm_notifier(enum lsm_event event, void *data)
239 {
240 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
241 }
242 EXPORT_SYMBOL(call_lsm_notifier);
243
244 int register_lsm_notifier(struct notifier_block *nb)
245 {
246 return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
247 }
248 EXPORT_SYMBOL(register_lsm_notifier);
249
250 int unregister_lsm_notifier(struct notifier_block *nb)
251 {
252 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
253 }
254 EXPORT_SYMBOL(unregister_lsm_notifier);
255
256 /**
257 * lsm_cred_alloc - allocate a composite cred blob
258 * @cred: the cred that needs a blob
259 * @gfp: allocation type
260 *
261 * Allocate the cred blob for all the modules
262 *
263 * Returns 0, or -ENOMEM if memory can't be allocated.
264 */
265 int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
266 {
267 if (blob_sizes.lbs_cred == 0) {
268 cred->security = NULL;
269 return 0;
270 }
271
272 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
273 if (cred->security == NULL)
274 return -ENOMEM;
275 return 0;
276 }
277
278 /**
279 * lsm_early_cred - during initialization allocate a composite cred blob
280 * @cred: the cred that needs a blob
281 *
282 * Allocate the cred blob for all the modules if it's not already there
283 */
284 void lsm_early_cred(struct cred *cred)
285 {
286 int rc;
287
288 if (cred == NULL)
289 panic("%s: NULL cred.\n", __func__);
290 if (cred->security != NULL)
291 return;
292 rc = lsm_cred_alloc(cred, GFP_KERNEL);
293 if (rc)
294 panic("%s: Early cred alloc failed.\n", __func__);
295 }
296
297 static void __init lsm_set_size(int *need, int *lbs)
298 {
299 int offset;
300
301 if (*need > 0) {
302 offset = *lbs;
303 *lbs += *need;
304 *need = offset;
305 }
306 }
307
308 /**
309 * security_add_blobs - Report blob sizes
310 * @needed: the size of blobs needed by the module
311 *
312 * Each LSM has to register its blobs with the infrastructure.
313 * The "needed" data tells the infrastructure how much memory
314 * the module requires for each of its blobs. On return the
315 * structure is filled with the offset that module should use
316 * from the blob pointer.
317 */
318 void __init security_add_blobs(struct lsm_blob_sizes *needed)
319 {
320 lsm_set_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
321 lsm_set_size(&needed->lbs_file, &blob_sizes.lbs_file);
322 lsm_set_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
323 lsm_set_size(&needed->lbs_key, &blob_sizes.lbs_key);
324 lsm_set_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
325 lsm_set_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
326 lsm_set_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
327 lsm_set_size(&needed->lbs_task, &blob_sizes.lbs_task);
328 /*
329 * The inode blob gets an rcu_head in addition to
330 * what the modules might need.
331 */
332 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
333 blob_sizes.lbs_inode = sizeof(struct rcu_head);
334 lsm_set_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
335 }
336
337 /**
338 * lsm_file_alloc - allocate a composite file blob
339 * @file: the file that needs a blob
340 *
341 * Allocate the file blob for all the modules
342 *
343 * Returns 0, or -ENOMEM if memory can't be allocated.
344 */
345 int lsm_file_alloc(struct file *file)
346 {
347 if (!lsm_file_cache) {
348 file->f_security = NULL;
349 return 0;
350 }
351
352 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
353 if (file->f_security == NULL)
354 return -ENOMEM;
355 return 0;
356 }
357
358 /**
359 * lsm_task_alloc - allocate a composite task blob
360 * @task: the task that needs a blob
361 *
362 * Allocate the task blob for all the modules
363 *
364 * Returns 0, or -ENOMEM if memory can't be allocated.
365 */
366 int lsm_task_alloc(struct task_struct *task)
367 {
368 if (blob_sizes.lbs_task == 0) {
369 task->security = NULL;
370 return 0;
371 }
372
373 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
374 if (task->security == NULL)
375 return -ENOMEM;
376 return 0;
377 }
378
379 /**
380 * lsm_inode_alloc - allocate a composite inode blob
381 * @inode: the inode that needs a blob
382 *
383 * Allocate the inode blob for all the modules
384 *
385 * Returns 0, or -ENOMEM if memory can't be allocated.
386 */
387 int lsm_inode_alloc(struct inode *inode)
388 {
389 if (!lsm_inode_cache) {
390 inode->i_security = NULL;
391 return 0;
392 }
393
394 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_KERNEL);
395 if (inode->i_security == NULL)
396 return -ENOMEM;
397 return 0;
398 }
399
400 /**
401 * lsm_early_inode - during initialization allocate a composite inode blob
402 * @inode: the inode that needs a blob
403 *
404 * Allocate the inode blob for all the modules if it's not already there
405 */
406 void lsm_early_inode(struct inode *inode)
407 {
408 int rc;
409
410 if (inode == NULL)
411 panic("%s: NULL inode.\n", __func__);
412 if (inode->i_security != NULL)
413 return;
414 rc = lsm_inode_alloc(inode);
415 if (rc)
416 panic("%s: Early inode alloc failed.\n", __func__);
417 }
418
419 /**
420 * lsm_ipc_alloc - allocate a composite ipc blob
421 * @kip: the ipc that needs a blob
422 *
423 * Allocate the ipc blob for all the modules
424 *
425 * Returns 0, or -ENOMEM if memory can't be allocated.
426 */
427 int lsm_ipc_alloc(struct kern_ipc_perm *kip)
428 {
429 if (blob_sizes.lbs_ipc == 0) {
430 kip->security = NULL;
431 return 0;
432 }
433
434 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
435 if (kip->security == NULL)
436 return -ENOMEM;
437 return 0;
438 }
439
440 #ifdef CONFIG_KEYS
441 /**
442 * lsm_key_alloc - allocate a composite key blob
443 * @key: the key that needs a blob
444 *
445 * Allocate the key blob for all the modules
446 *
447 * Returns 0, or -ENOMEM if memory can't be allocated.
448 */
449 int lsm_key_alloc(struct key *key)
450 {
451 if (blob_sizes.lbs_key == 0) {
452 key->security = NULL;
453 return 0;
454 }
455
456 key->security = kzalloc(blob_sizes.lbs_key, GFP_KERNEL);
457 if (key->security == NULL)
458 return -ENOMEM;
459 return 0;
460 }
461 #endif /* CONFIG_KEYS */
462
463 /**
464 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
465 * @mp: the msg_msg that needs a blob
466 *
467 * Allocate the ipc blob for all the modules
468 *
469 * Returns 0, or -ENOMEM if memory can't be allocated.
470 */
471 int lsm_msg_msg_alloc(struct msg_msg *mp)
472 {
473 if (blob_sizes.lbs_msg_msg == 0) {
474 mp->security = NULL;
475 return 0;
476 }
477
478 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
479 if (mp->security == NULL)
480 return -ENOMEM;
481 return 0;
482 }
483
484 /**
485 * lsm_sock_alloc - allocate a composite sock blob
486 * @sock: the sock that needs a blob
487 * @priority: allocation mode
488 *
489 * Allocate the sock blob for all the modules
490 *
491 * Returns 0, or -ENOMEM if memory can't be allocated.
492 */
493 int lsm_sock_alloc(struct sock *sock, gfp_t priority)
494 {
495 if (blob_sizes.lbs_sock == 0) {
496 sock->sk_security = NULL;
497 return 0;
498 }
499
500 sock->sk_security = kzalloc(blob_sizes.lbs_sock, priority);
501 if (sock->sk_security == NULL)
502 return -ENOMEM;
503 return 0;
504 }
505
506 /**
507 * lsm_superblock_alloc - allocate a composite superblock blob
508 * @sb: the superblock that needs a blob
509 *
510 * Allocate the superblock blob for all the modules
511 *
512 * Returns 0, or -ENOMEM if memory can't be allocated.
513 */
514 int lsm_superblock_alloc(struct super_block *sb)
515 {
516 if (blob_sizes.lbs_superblock == 0) {
517 sb->s_security = NULL;
518 return 0;
519 }
520
521 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
522 if (sb->s_security == NULL)
523 return -ENOMEM;
524 return 0;
525 }
526
527 /*
528 * Hook list operation macros.
529 *
530 * call_void_hook:
531 * This is a hook that does not return a value.
532 *
533 * call_int_hook:
534 * This is a hook that returns a value.
535 */
536
537 #define call_void_hook(FUNC, ...) \
538 do { \
539 struct security_hook_list *P; \
540 \
541 list_for_each_entry(P, &security_hook_heads.FUNC, list) \
542 P->hook.FUNC(__VA_ARGS__); \
543 } while (0)
544
545 #define call_int_hook(FUNC, IRC, ...) ({ \
546 int RC = IRC; \
547 do { \
548 struct security_hook_list *P; \
549 \
550 list_for_each_entry(P, &security_hook_heads.FUNC, list) { \
551 RC = P->hook.FUNC(__VA_ARGS__); \
552 if (RC != 0) \
553 break; \
554 } \
555 } while (0); \
556 RC; \
557 })
558
559 /* Security operations */
560
561 int security_binder_set_context_mgr(struct task_struct *mgr)
562 {
563 return call_int_hook(binder_set_context_mgr, 0, mgr);
564 }
565
566 int security_binder_transaction(struct task_struct *from,
567 struct task_struct *to)
568 {
569 return call_int_hook(binder_transaction, 0, from, to);
570 }
571
572 int security_binder_transfer_binder(struct task_struct *from,
573 struct task_struct *to)
574 {
575 return call_int_hook(binder_transfer_binder, 0, from, to);
576 }
577
578 int security_binder_transfer_file(struct task_struct *from,
579 struct task_struct *to, struct file *file)
580 {
581 return call_int_hook(binder_transfer_file, 0, from, to, file);
582 }
583
584 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
585 {
586 return call_int_hook(ptrace_access_check, 0, child, mode);
587 }
588
589 int security_ptrace_traceme(struct task_struct *parent)
590 {
591 return call_int_hook(ptrace_traceme, 0, parent);
592 }
593
594 int security_capget(struct task_struct *target,
595 kernel_cap_t *effective,
596 kernel_cap_t *inheritable,
597 kernel_cap_t *permitted)
598 {
599 return call_int_hook(capget, 0, target,
600 effective, inheritable, permitted);
601 }
602
603 int security_capset(struct cred *new, const struct cred *old,
604 const kernel_cap_t *effective,
605 const kernel_cap_t *inheritable,
606 const kernel_cap_t *permitted)
607 {
608 return call_int_hook(capset, 0, new, old,
609 effective, inheritable, permitted);
610 }
611
612 int security_capable(const struct cred *cred, struct user_namespace *ns,
613 int cap)
614 {
615 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
616 }
617
618 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
619 int cap)
620 {
621 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
622 }
623
624 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
625 {
626 return call_int_hook(quotactl, 0, cmds, type, id, sb);
627 }
628
629 int security_quota_on(struct dentry *dentry)
630 {
631 return call_int_hook(quota_on, 0, dentry);
632 }
633
634 int security_syslog(int type)
635 {
636 return call_int_hook(syslog, 0, type);
637 }
638
639 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
640 {
641 return call_int_hook(settime, 0, ts, tz);
642 }
643
644 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
645 {
646 struct security_hook_list *hp;
647 int cap_sys_admin = 1;
648 int rc;
649
650 /*
651 * The module will respond with a positive value if
652 * it thinks the __vm_enough_memory() call should be
653 * made with the cap_sys_admin set. If all of the modules
654 * agree that it should be set it will. If any module
655 * thinks it should not be set it won't.
656 */
657 list_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
658 rc = hp->hook.vm_enough_memory(mm, pages);
659 if (rc <= 0) {
660 cap_sys_admin = 0;
661 break;
662 }
663 }
664 return __vm_enough_memory(mm, pages, cap_sys_admin);
665 }
666
667 int security_bprm_set_creds(struct linux_binprm *bprm)
668 {
669 return call_int_hook(bprm_set_creds, 0, bprm);
670 }
671
672 int security_bprm_check(struct linux_binprm *bprm)
673 {
674 int ret;
675
676 ret = call_int_hook(bprm_check_security, 0, bprm);
677 if (ret)
678 return ret;
679 return ima_bprm_check(bprm);
680 }
681
682 void security_bprm_committing_creds(struct linux_binprm *bprm)
683 {
684 call_void_hook(bprm_committing_creds, bprm);
685 }
686
687 void security_bprm_committed_creds(struct linux_binprm *bprm)
688 {
689 call_void_hook(bprm_committed_creds, bprm);
690 }
691
692 int security_sb_alloc(struct super_block *sb)
693 {
694 int rc = lsm_superblock_alloc(sb);
695
696 if (unlikely(rc))
697 return rc;
698 rc = call_int_hook(sb_alloc_security, 0, sb);
699 if (unlikely(rc))
700 security_sb_free(sb);
701 return rc;
702 }
703
704 void security_sb_free(struct super_block *sb)
705 {
706 call_void_hook(sb_free_security, sb);
707 kfree(sb->s_security);
708 sb->s_security = NULL;
709 }
710
711 int security_sb_copy_data(char *orig, char *copy)
712 {
713 return call_int_hook(sb_copy_data, 0, orig, copy);
714 }
715 EXPORT_SYMBOL(security_sb_copy_data);
716
717 int security_sb_remount(struct super_block *sb, void *data)
718 {
719 return call_int_hook(sb_remount, 0, sb, data);
720 }
721
722 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
723 {
724 return call_int_hook(sb_kern_mount, 0, sb, flags, data);
725 }
726
727 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
728 {
729 return call_int_hook(sb_show_options, 0, m, sb);
730 }
731
732 int security_sb_statfs(struct dentry *dentry)
733 {
734 return call_int_hook(sb_statfs, 0, dentry);
735 }
736
737 int security_sb_mount(const char *dev_name, const struct path *path,
738 const char *type, unsigned long flags, void *data)
739 {
740 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
741 }
742
743 int security_sb_umount(struct vfsmount *mnt, int flags)
744 {
745 return call_int_hook(sb_umount, 0, mnt, flags);
746 }
747
748 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
749 {
750 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
751 }
752
753 int security_sb_set_mnt_opts(struct super_block *sb,
754 struct security_mnt_opts *opts,
755 unsigned long kern_flags,
756 unsigned long *set_kern_flags)
757 {
758 return call_int_hook(sb_set_mnt_opts,
759 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
760 opts, kern_flags, set_kern_flags);
761 }
762 EXPORT_SYMBOL(security_sb_set_mnt_opts);
763
764 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
765 struct super_block *newsb,
766 unsigned long kern_flags,
767 unsigned long *set_kern_flags)
768 {
769 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
770 kern_flags, set_kern_flags);
771 }
772 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
773
774 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
775 {
776 return call_int_hook(sb_parse_opts_str, 0, options, opts);
777 }
778 EXPORT_SYMBOL(security_sb_parse_opts_str);
779
780 int security_inode_alloc(struct inode *inode)
781 {
782 int rc = lsm_inode_alloc(inode);
783
784 if (unlikely(rc))
785 return rc;
786 rc = call_int_hook(inode_alloc_security, 0, inode);
787 if (unlikely(rc))
788 security_inode_free(inode);
789 return rc;
790 }
791
792 static void inode_free_by_rcu(struct rcu_head *head)
793 {
794 /*
795 * The rcu head is at the start of the inode blob
796 */
797 kmem_cache_free(lsm_inode_cache, head);
798 }
799
800 void security_inode_free(struct inode *inode)
801 {
802 integrity_inode_free(inode);
803 call_void_hook(inode_free_security, inode);
804 /*
805 * The inode may still be referenced in a path walk and
806 * a call to security_inode_permission() can be made
807 * after inode_free_security() is called. Ideally, the VFS
808 * wouldn't do this, but fixing that is a much harder
809 * job. For now, simply free the i_security via RCU, and
810 * leave the current inode->i_security pointer intact.
811 * The inode will be freed after the RCU grace period too.
812 */
813 if (inode->i_security)
814 call_rcu((struct rcu_head *)inode->i_security,
815 inode_free_by_rcu);
816 }
817
818 int security_dentry_init_security(struct dentry *dentry, int mode,
819 const struct qstr *name, void **ctx,
820 u32 *ctxlen)
821 {
822 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
823 name, ctx, ctxlen);
824 }
825 EXPORT_SYMBOL(security_dentry_init_security);
826
827 int security_dentry_create_files_as(struct dentry *dentry, int mode,
828 struct qstr *name,
829 const struct cred *old, struct cred *new)
830 {
831 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
832 name, old, new);
833 }
834 EXPORT_SYMBOL(security_dentry_create_files_as);
835
836 int security_inode_init_security(struct inode *inode, struct inode *dir,
837 const struct qstr *qstr,
838 const initxattrs initxattrs, void *fs_data)
839 {
840 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
841 struct xattr *lsm_xattr, *evm_xattr, *xattr;
842 int ret;
843
844 if (unlikely(IS_PRIVATE(inode)))
845 return 0;
846
847 if (!initxattrs)
848 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
849 dir, qstr, NULL, NULL, NULL);
850 memset(new_xattrs, 0, sizeof(new_xattrs));
851 lsm_xattr = new_xattrs;
852 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
853 &lsm_xattr->name,
854 &lsm_xattr->value,
855 &lsm_xattr->value_len);
856 if (ret)
857 goto out;
858
859 evm_xattr = lsm_xattr + 1;
860 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
861 if (ret)
862 goto out;
863 ret = initxattrs(inode, new_xattrs, fs_data);
864 out:
865 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
866 kfree(xattr->value);
867 return (ret == -EOPNOTSUPP) ? 0 : ret;
868 }
869 EXPORT_SYMBOL(security_inode_init_security);
870
871 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
872 const struct qstr *qstr, const char **name,
873 void **value, size_t *len)
874 {
875 if (unlikely(IS_PRIVATE(inode)))
876 return -EOPNOTSUPP;
877 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
878 qstr, name, value, len);
879 }
880 EXPORT_SYMBOL(security_old_inode_init_security);
881
882 #ifdef CONFIG_SECURITY_PATH
883 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
884 unsigned int dev)
885 {
886 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
887 return 0;
888 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
889 }
890 EXPORT_SYMBOL(security_path_mknod);
891
892 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
893 {
894 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
895 return 0;
896 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
897 }
898 EXPORT_SYMBOL(security_path_mkdir);
899
900 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
901 {
902 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
903 return 0;
904 return call_int_hook(path_rmdir, 0, dir, dentry);
905 }
906 EXPORT_SYMBOL_GPL(security_path_rmdir);
907
908 int security_path_unlink(const struct path *dir, struct dentry *dentry)
909 {
910 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
911 return 0;
912 return call_int_hook(path_unlink, 0, dir, dentry);
913 }
914 EXPORT_SYMBOL(security_path_unlink);
915
916 int security_path_symlink(const struct path *dir, struct dentry *dentry,
917 const char *old_name)
918 {
919 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
920 return 0;
921 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
922 }
923 EXPORT_SYMBOL_GPL(security_path_symlink);
924
925 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
926 struct dentry *new_dentry)
927 {
928 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
929 return 0;
930 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
931 }
932 EXPORT_SYMBOL_GPL(security_path_link);
933
934 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
935 const struct path *new_dir, struct dentry *new_dentry,
936 unsigned int flags)
937 {
938 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
939 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
940 return 0;
941
942 if (flags & RENAME_EXCHANGE) {
943 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
944 old_dir, old_dentry);
945 if (err)
946 return err;
947 }
948
949 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
950 new_dentry);
951 }
952 EXPORT_SYMBOL(security_path_rename);
953
954 int security_path_truncate(const struct path *path)
955 {
956 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
957 return 0;
958 return call_int_hook(path_truncate, 0, path);
959 }
960 EXPORT_SYMBOL_GPL(security_path_truncate);
961
962 int security_path_chmod(const struct path *path, umode_t mode)
963 {
964 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
965 return 0;
966 return call_int_hook(path_chmod, 0, path, mode);
967 }
968 EXPORT_SYMBOL_GPL(security_path_chmod);
969
970 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
971 {
972 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
973 return 0;
974 return call_int_hook(path_chown, 0, path, uid, gid);
975 }
976 EXPORT_SYMBOL_GPL(security_path_chown);
977
978 int security_path_chroot(const struct path *path)
979 {
980 return call_int_hook(path_chroot, 0, path);
981 }
982 #endif
983
984 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
985 {
986 if (unlikely(IS_PRIVATE(dir)))
987 return 0;
988 return call_int_hook(inode_create, 0, dir, dentry, mode);
989 }
990 EXPORT_SYMBOL_GPL(security_inode_create);
991
992 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
993 struct dentry *new_dentry)
994 {
995 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
996 return 0;
997 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
998 }
999
1000 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1001 {
1002 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1003 return 0;
1004 return call_int_hook(inode_unlink, 0, dir, dentry);
1005 }
1006
1007 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1008 const char *old_name)
1009 {
1010 if (unlikely(IS_PRIVATE(dir)))
1011 return 0;
1012 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1013 }
1014
1015 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1016 {
1017 if (unlikely(IS_PRIVATE(dir)))
1018 return 0;
1019 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1020 }
1021 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1022
1023 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1024 {
1025 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1026 return 0;
1027 return call_int_hook(inode_rmdir, 0, dir, dentry);
1028 }
1029
1030 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1031 {
1032 if (unlikely(IS_PRIVATE(dir)))
1033 return 0;
1034 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1035 }
1036
1037 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1038 struct inode *new_dir, struct dentry *new_dentry,
1039 unsigned int flags)
1040 {
1041 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1042 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1043 return 0;
1044
1045 if (flags & RENAME_EXCHANGE) {
1046 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1047 old_dir, old_dentry);
1048 if (err)
1049 return err;
1050 }
1051
1052 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1053 new_dir, new_dentry);
1054 }
1055
1056 int security_inode_readlink(struct dentry *dentry)
1057 {
1058 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1059 return 0;
1060 return call_int_hook(inode_readlink, 0, dentry);
1061 }
1062 EXPORT_SYMBOL_GPL(security_inode_readlink);
1063
1064 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1065 bool rcu)
1066 {
1067 if (unlikely(IS_PRIVATE(inode)))
1068 return 0;
1069 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1070 }
1071
1072 int security_inode_permission(struct inode *inode, int mask)
1073 {
1074 if (unlikely(IS_PRIVATE(inode)))
1075 return 0;
1076 return call_int_hook(inode_permission, 0, inode, mask);
1077 }
1078 EXPORT_SYMBOL_GPL(security_inode_permission);
1079
1080 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1081 {
1082 int ret;
1083
1084 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1085 return 0;
1086 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1087 if (ret)
1088 return ret;
1089 return evm_inode_setattr(dentry, attr);
1090 }
1091 EXPORT_SYMBOL_GPL(security_inode_setattr);
1092
1093 int security_inode_getattr(const struct path *path)
1094 {
1095 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1096 return 0;
1097 return call_int_hook(inode_getattr, 0, path);
1098 }
1099
1100 int security_inode_setxattr(struct dentry *dentry, const char *name,
1101 const void *value, size_t size, int flags)
1102 {
1103 int ret;
1104
1105 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1106 return 0;
1107 /*
1108 * SELinux and Smack integrate the cap call,
1109 * so assume that all LSMs supplying this call do so.
1110 */
1111 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1112 flags);
1113
1114 if (ret == 1)
1115 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1116 if (ret)
1117 return ret;
1118 ret = ima_inode_setxattr(dentry, name, value, size);
1119 if (ret)
1120 return ret;
1121 return evm_inode_setxattr(dentry, name, value, size);
1122 }
1123
1124 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1125 const void *value, size_t size, int flags)
1126 {
1127 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1128 return;
1129 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1130 evm_inode_post_setxattr(dentry, name, value, size);
1131 }
1132
1133 int security_inode_getxattr(struct dentry *dentry, const char *name)
1134 {
1135 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1136 return 0;
1137 return call_int_hook(inode_getxattr, 0, dentry, name);
1138 }
1139
1140 int security_inode_listxattr(struct dentry *dentry)
1141 {
1142 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1143 return 0;
1144 return call_int_hook(inode_listxattr, 0, dentry);
1145 }
1146
1147 int security_inode_removexattr(struct dentry *dentry, const char *name)
1148 {
1149 int ret;
1150
1151 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1152 return 0;
1153 /*
1154 * SELinux and Smack integrate the cap call,
1155 * so assume that all LSMs supplying this call do so.
1156 */
1157 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1158 if (ret == 1)
1159 ret = cap_inode_removexattr(dentry, name);
1160 if (ret)
1161 return ret;
1162 ret = ima_inode_removexattr(dentry, name);
1163 if (ret)
1164 return ret;
1165 return evm_inode_removexattr(dentry, name);
1166 }
1167
1168 int security_inode_need_killpriv(struct dentry *dentry)
1169 {
1170 return call_int_hook(inode_need_killpriv, 0, dentry);
1171 }
1172
1173 int security_inode_killpriv(struct dentry *dentry)
1174 {
1175 return call_int_hook(inode_killpriv, 0, dentry);
1176 }
1177
1178 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1179 {
1180 struct security_hook_list *hp;
1181 int rc;
1182
1183 if (unlikely(IS_PRIVATE(inode)))
1184 return -EOPNOTSUPP;
1185 /*
1186 * Only one module will provide an attribute with a given name.
1187 */
1188 list_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1189 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1190 if (rc != -EOPNOTSUPP)
1191 return rc;
1192 }
1193 return -EOPNOTSUPP;
1194 }
1195
1196 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1197 {
1198 struct security_hook_list *hp;
1199 int rc;
1200
1201 if (unlikely(IS_PRIVATE(inode)))
1202 return -EOPNOTSUPP;
1203 /*
1204 * Only one module will provide an attribute with a given name.
1205 */
1206 list_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1207 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1208 flags);
1209 if (rc != -EOPNOTSUPP)
1210 return rc;
1211 }
1212 return -EOPNOTSUPP;
1213 }
1214
1215 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1216 {
1217 if (unlikely(IS_PRIVATE(inode)))
1218 return 0;
1219 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1220 }
1221 EXPORT_SYMBOL(security_inode_listsecurity);
1222
1223 void security_inode_getsecid(struct inode *inode, u32 *secid)
1224 {
1225 call_void_hook(inode_getsecid, inode, secid);
1226 }
1227
1228 int security_inode_copy_up(struct dentry *src, struct cred **new)
1229 {
1230 return call_int_hook(inode_copy_up, 0, src, new);
1231 }
1232 EXPORT_SYMBOL(security_inode_copy_up);
1233
1234 int security_inode_copy_up_xattr(const char *name)
1235 {
1236 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1237 }
1238 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1239
1240 int security_file_permission(struct file *file, int mask)
1241 {
1242 int ret;
1243
1244 ret = call_int_hook(file_permission, 0, file, mask);
1245 if (ret)
1246 return ret;
1247
1248 return fsnotify_perm(file, mask);
1249 }
1250 EXPORT_SYMBOL_GPL(security_file_permission);
1251
1252 int security_file_alloc(struct file *file)
1253 {
1254 int rc = lsm_file_alloc(file);
1255
1256 if (unlikely(rc))
1257 return rc;
1258 rc = call_int_hook(file_alloc_security, 0, file);
1259 if (unlikely(rc))
1260 security_file_free(file);
1261 return rc;
1262 }
1263
1264 void security_file_free(struct file *file)
1265 {
1266 void *blob;
1267
1268 if (!lsm_file_cache)
1269 return;
1270
1271 call_void_hook(file_free_security, file);
1272
1273 blob = file->f_security;
1274 file->f_security = NULL;
1275 kmem_cache_free(lsm_file_cache, blob);
1276 }
1277
1278 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1279 {
1280 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1281 }
1282
1283 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1284 {
1285 /*
1286 * Does we have PROT_READ and does the application expect
1287 * it to imply PROT_EXEC? If not, nothing to talk about...
1288 */
1289 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1290 return prot;
1291 if (!(current->personality & READ_IMPLIES_EXEC))
1292 return prot;
1293 /*
1294 * if that's an anonymous mapping, let it.
1295 */
1296 if (!file)
1297 return prot | PROT_EXEC;
1298 /*
1299 * ditto if it's not on noexec mount, except that on !MMU we need
1300 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1301 */
1302 if (!path_noexec(&file->f_path)) {
1303 #ifndef CONFIG_MMU
1304 if (file->f_op->mmap_capabilities) {
1305 unsigned caps = file->f_op->mmap_capabilities(file);
1306 if (!(caps & NOMMU_MAP_EXEC))
1307 return prot;
1308 }
1309 #endif
1310 return prot | PROT_EXEC;
1311 }
1312 /* anything on noexec mount won't get PROT_EXEC */
1313 return prot;
1314 }
1315
1316 int security_mmap_file(struct file *file, unsigned long prot,
1317 unsigned long flags)
1318 {
1319 int ret;
1320 ret = call_int_hook(mmap_file, 0, file, prot,
1321 mmap_prot(file, prot), flags);
1322 if (ret)
1323 return ret;
1324 return ima_file_mmap(file, prot);
1325 }
1326 EXPORT_SYMBOL_GPL(security_mmap_file);
1327
1328 int security_mmap_addr(unsigned long addr)
1329 {
1330 return call_int_hook(mmap_addr, 0, addr);
1331 }
1332
1333 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1334 unsigned long prot)
1335 {
1336 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1337 }
1338
1339 int security_file_lock(struct file *file, unsigned int cmd)
1340 {
1341 return call_int_hook(file_lock, 0, file, cmd);
1342 }
1343
1344 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1345 {
1346 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1347 }
1348
1349 void security_file_set_fowner(struct file *file)
1350 {
1351 call_void_hook(file_set_fowner, file);
1352 }
1353
1354 int security_file_send_sigiotask(struct task_struct *tsk,
1355 struct fown_struct *fown, int sig)
1356 {
1357 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1358 }
1359
1360 int security_file_receive(struct file *file)
1361 {
1362 return call_int_hook(file_receive, 0, file);
1363 }
1364
1365 int security_file_open(struct file *file, const struct cred *cred)
1366 {
1367 int ret;
1368
1369 ret = call_int_hook(file_open, 0, file, cred);
1370 if (ret)
1371 return ret;
1372
1373 return fsnotify_perm(file, MAY_OPEN);
1374 }
1375
1376 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1377 {
1378 int rc = lsm_task_alloc(task);
1379
1380 if (unlikely(rc))
1381 return rc;
1382 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1383 if (unlikely(rc))
1384 security_task_free(task);
1385 return rc;
1386 }
1387
1388 void security_task_free(struct task_struct *task)
1389 {
1390 call_void_hook(task_free, task);
1391
1392 kfree(task->security);
1393 task->security = NULL;
1394 }
1395
1396 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1397 {
1398 int rc = lsm_cred_alloc(cred, gfp);
1399
1400 if (unlikely(rc))
1401 return rc;
1402
1403 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1404 if (unlikely(rc))
1405 security_cred_free(cred);
1406 return rc;
1407 }
1408
1409 void security_cred_free(struct cred *cred)
1410 {
1411 call_void_hook(cred_free, cred);
1412
1413 kfree(cred->security);
1414 cred->security = NULL;
1415 }
1416
1417 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1418 {
1419 int rc = lsm_cred_alloc(new, gfp);
1420
1421 if (unlikely(rc))
1422 return rc;
1423
1424 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1425 if (unlikely(rc))
1426 security_cred_free(new);
1427 return rc;
1428 }
1429
1430 void security_transfer_creds(struct cred *new, const struct cred *old)
1431 {
1432 call_void_hook(cred_transfer, new, old);
1433 }
1434
1435 int security_kernel_act_as(struct cred *new, u32 secid)
1436 {
1437 return call_int_hook(kernel_act_as, 0, new, secid);
1438 }
1439
1440 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1441 {
1442 return call_int_hook(kernel_create_files_as, 0, new, inode);
1443 }
1444
1445 int security_kernel_module_request(char *kmod_name)
1446 {
1447 return call_int_hook(kernel_module_request, 0, kmod_name);
1448 }
1449
1450 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1451 {
1452 int ret;
1453
1454 ret = call_int_hook(kernel_read_file, 0, file, id);
1455 if (ret)
1456 return ret;
1457 return ima_read_file(file, id);
1458 }
1459 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1460
1461 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1462 enum kernel_read_file_id id)
1463 {
1464 int ret;
1465
1466 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1467 if (ret)
1468 return ret;
1469 return ima_post_read_file(file, buf, size, id);
1470 }
1471 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1472
1473 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1474 int flags)
1475 {
1476 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1477 }
1478
1479 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1480 {
1481 return call_int_hook(task_setpgid, 0, p, pgid);
1482 }
1483
1484 int security_task_getpgid(struct task_struct *p)
1485 {
1486 return call_int_hook(task_getpgid, 0, p);
1487 }
1488
1489 int security_task_getsid(struct task_struct *p)
1490 {
1491 return call_int_hook(task_getsid, 0, p);
1492 }
1493
1494 void security_task_getsecid(struct task_struct *p, u32 *secid)
1495 {
1496 *secid = 0;
1497 call_void_hook(task_getsecid, p, secid);
1498 }
1499 EXPORT_SYMBOL(security_task_getsecid);
1500
1501 int security_task_setnice(struct task_struct *p, int nice)
1502 {
1503 return call_int_hook(task_setnice, 0, p, nice);
1504 }
1505
1506 int security_task_setioprio(struct task_struct *p, int ioprio)
1507 {
1508 return call_int_hook(task_setioprio, 0, p, ioprio);
1509 }
1510
1511 int security_task_getioprio(struct task_struct *p)
1512 {
1513 return call_int_hook(task_getioprio, 0, p);
1514 }
1515
1516 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1517 unsigned int flags)
1518 {
1519 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1520 }
1521
1522 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1523 struct rlimit *new_rlim)
1524 {
1525 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1526 }
1527
1528 int security_task_setscheduler(struct task_struct *p)
1529 {
1530 return call_int_hook(task_setscheduler, 0, p);
1531 }
1532
1533 int security_task_getscheduler(struct task_struct *p)
1534 {
1535 return call_int_hook(task_getscheduler, 0, p);
1536 }
1537
1538 int security_task_movememory(struct task_struct *p)
1539 {
1540 return call_int_hook(task_movememory, 0, p);
1541 }
1542
1543 int security_task_kill(struct task_struct *p, struct siginfo *info,
1544 int sig, u32 secid)
1545 {
1546 return call_int_hook(task_kill, 0, p, info, sig, secid);
1547 }
1548
1549 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1550 unsigned long arg4, unsigned long arg5)
1551 {
1552 int thisrc;
1553 int rc = -ENOSYS;
1554 struct security_hook_list *hp;
1555
1556 list_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1557 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1558 if (thisrc != -ENOSYS) {
1559 rc = thisrc;
1560 if (thisrc != 0)
1561 break;
1562 }
1563 }
1564 return rc;
1565 }
1566
1567 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1568 {
1569 call_void_hook(task_to_inode, p, inode);
1570 }
1571
1572 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1573 {
1574 return call_int_hook(ipc_permission, 0, ipcp, flag);
1575 }
1576
1577 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1578 {
1579 *secid = 0;
1580 call_void_hook(ipc_getsecid, ipcp, secid);
1581 }
1582
1583 int security_msg_msg_alloc(struct msg_msg *msg)
1584 {
1585 int rc = lsm_msg_msg_alloc(msg);
1586
1587 if (unlikely(rc))
1588 return rc;
1589 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1590 if (unlikely(rc))
1591 security_msg_msg_free(msg);
1592 return rc;
1593 }
1594
1595 void security_msg_msg_free(struct msg_msg *msg)
1596 {
1597 call_void_hook(msg_msg_free_security, msg);
1598 kfree(msg->security);
1599 msg->security = NULL;
1600 }
1601
1602 int security_msg_queue_alloc(struct msg_queue *msq)
1603 {
1604 int rc = lsm_ipc_alloc(&msq->q_perm);
1605
1606 if (unlikely(rc))
1607 return rc;
1608 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1609 if (unlikely(rc))
1610 security_msg_queue_free(msq);
1611 return rc;
1612 }
1613
1614 void security_msg_queue_free(struct msg_queue *msq)
1615 {
1616 struct kern_ipc_perm *kip = &msq->q_perm;
1617
1618 call_void_hook(msg_queue_free_security, msq);
1619 kfree(kip->security);
1620 kip->security = NULL;
1621 }
1622
1623 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1624 {
1625 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1626 }
1627
1628 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1629 {
1630 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1631 }
1632
1633 int security_msg_queue_msgsnd(struct msg_queue *msq,
1634 struct msg_msg *msg, int msqflg)
1635 {
1636 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1637 }
1638
1639 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1640 struct task_struct *target, long type, int mode)
1641 {
1642 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1643 }
1644
1645 int security_shm_alloc(struct shmid_kernel *shp)
1646 {
1647 int rc = lsm_ipc_alloc(&shp->shm_perm);
1648
1649 if (unlikely(rc))
1650 return rc;
1651 rc = call_int_hook(shm_alloc_security, 0, shp);
1652 if (unlikely(rc))
1653 security_shm_free(shp);
1654 return rc;
1655 }
1656
1657 void security_shm_free(struct shmid_kernel *shp)
1658 {
1659 struct kern_ipc_perm *kip = &shp->shm_perm;
1660
1661 call_void_hook(shm_free_security, shp);
1662 kfree(kip->security);
1663 kip->security = NULL;
1664 }
1665
1666 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1667 {
1668 return call_int_hook(shm_associate, 0, shp, shmflg);
1669 }
1670
1671 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1672 {
1673 return call_int_hook(shm_shmctl, 0, shp, cmd);
1674 }
1675
1676 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1677 {
1678 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1679 }
1680
1681 int security_sem_alloc(struct sem_array *sma)
1682 {
1683 int rc = lsm_ipc_alloc(&sma->sem_perm);
1684
1685 if (unlikely(rc))
1686 return rc;
1687 rc = call_int_hook(sem_alloc_security, 0, sma);
1688 if (unlikely(rc))
1689 security_sem_free(sma);
1690 return rc;
1691 }
1692
1693 void security_sem_free(struct sem_array *sma)
1694 {
1695 struct kern_ipc_perm *kip = &sma->sem_perm;
1696
1697 call_void_hook(sem_free_security, sma);
1698 kfree(kip->security);
1699 kip->security = NULL;
1700 }
1701
1702 int security_sem_associate(struct sem_array *sma, int semflg)
1703 {
1704 return call_int_hook(sem_associate, 0, sma, semflg);
1705 }
1706
1707 int security_sem_semctl(struct sem_array *sma, int cmd)
1708 {
1709 return call_int_hook(sem_semctl, 0, sma, cmd);
1710 }
1711
1712 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1713 unsigned nsops, int alter)
1714 {
1715 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1716 }
1717
1718 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1719 {
1720 if (unlikely(inode && IS_PRIVATE(inode)))
1721 return;
1722 call_void_hook(d_instantiate, dentry, inode);
1723 }
1724 EXPORT_SYMBOL(security_d_instantiate);
1725
1726 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1727 char **value)
1728 {
1729 struct security_hook_list *hp;
1730
1731 list_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1732 if (lsm != NULL && strcmp(lsm, hp->lsm))
1733 continue;
1734 return hp->hook.getprocattr(p, name, value);
1735 }
1736 return -EINVAL;
1737 }
1738
1739 int security_setprocattr(const char *lsm, const char *name, void *value,
1740 size_t size)
1741 {
1742 struct security_hook_list *hp;
1743
1744 list_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1745 if (lsm != NULL && strcmp(lsm, hp->lsm))
1746 continue;
1747 return hp->hook.setprocattr(name, value, size);
1748 }
1749 return -EINVAL;
1750 }
1751
1752 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1753 {
1754 return call_int_hook(netlink_send, 0, sk, skb);
1755 }
1756
1757 int security_ismaclabel(const char *name)
1758 {
1759 return call_int_hook(ismaclabel, 0, name);
1760 }
1761 EXPORT_SYMBOL(security_ismaclabel);
1762
1763 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1764 {
1765 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1766 seclen);
1767 }
1768 EXPORT_SYMBOL(security_secid_to_secctx);
1769
1770 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1771 {
1772 *secid = 0;
1773 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1774 }
1775 EXPORT_SYMBOL(security_secctx_to_secid);
1776
1777 void security_release_secctx(char *secdata, u32 seclen)
1778 {
1779 call_void_hook(release_secctx, secdata, seclen);
1780 }
1781 EXPORT_SYMBOL(security_release_secctx);
1782
1783 void security_inode_invalidate_secctx(struct inode *inode)
1784 {
1785 call_void_hook(inode_invalidate_secctx, inode);
1786 }
1787 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1788
1789 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1790 {
1791 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1792 }
1793 EXPORT_SYMBOL(security_inode_notifysecctx);
1794
1795 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1796 {
1797 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1798 }
1799 EXPORT_SYMBOL(security_inode_setsecctx);
1800
1801 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1802 {
1803 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1804 }
1805 EXPORT_SYMBOL(security_inode_getsecctx);
1806
1807 #ifdef CONFIG_SECURITY_NETWORK
1808
1809 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1810 {
1811 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1812 }
1813 EXPORT_SYMBOL(security_unix_stream_connect);
1814
1815 int security_unix_may_send(struct socket *sock, struct socket *other)
1816 {
1817 return call_int_hook(unix_may_send, 0, sock, other);
1818 }
1819 EXPORT_SYMBOL(security_unix_may_send);
1820
1821 int security_socket_create(int family, int type, int protocol, int kern)
1822 {
1823 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1824 }
1825
1826 int security_socket_post_create(struct socket *sock, int family,
1827 int type, int protocol, int kern)
1828 {
1829 return call_int_hook(socket_post_create, 0, sock, family, type,
1830 protocol, kern);
1831 }
1832
1833 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1834 {
1835 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1836 }
1837
1838 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1839 {
1840 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1841 }
1842
1843 int security_socket_listen(struct socket *sock, int backlog)
1844 {
1845 return call_int_hook(socket_listen, 0, sock, backlog);
1846 }
1847
1848 int security_socket_accept(struct socket *sock, struct socket *newsock)
1849 {
1850 return call_int_hook(socket_accept, 0, sock, newsock);
1851 }
1852
1853 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1854 {
1855 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1856 }
1857
1858 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1859 int size, int flags)
1860 {
1861 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1862 }
1863
1864 int security_socket_getsockname(struct socket *sock)
1865 {
1866 return call_int_hook(socket_getsockname, 0, sock);
1867 }
1868
1869 int security_socket_getpeername(struct socket *sock)
1870 {
1871 return call_int_hook(socket_getpeername, 0, sock);
1872 }
1873
1874 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1875 {
1876 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1877 }
1878
1879 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1880 {
1881 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1882 }
1883
1884 int security_socket_shutdown(struct socket *sock, int how)
1885 {
1886 return call_int_hook(socket_shutdown, 0, sock, how);
1887 }
1888
1889 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1890 {
1891 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1892 }
1893 EXPORT_SYMBOL(security_sock_rcv_skb);
1894
1895 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1896 int __user *optlen, unsigned len)
1897 {
1898 #ifdef CONFIG_SECURITY_STACKING
1899 struct security_hook_list *hp;
1900 char *lsm = lsm_of_task(current);
1901
1902 list_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
1903 list) {
1904 if (!lsm || !lsm[0] || !strcmp(lsm, hp->lsm))
1905 return hp->hook.socket_getpeersec_stream(sock, optval,
1906 optlen, len);
1907 }
1908 return -ENOPROTOOPT;
1909 #else
1910 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1911 optval, optlen, len);
1912 #endif
1913 }
1914
1915 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1916 {
1917 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1918 skb, secid);
1919 }
1920 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1921
1922 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1923 {
1924 int rc = lsm_sock_alloc(sk, priority);
1925
1926 if (unlikely(rc))
1927 return rc;
1928 rc = call_int_hook(sk_alloc_security, 0, sk, family, priority);
1929 if (unlikely(rc))
1930 security_sk_free(sk);
1931 return rc;
1932 }
1933
1934 void security_sk_free(struct sock *sk)
1935 {
1936 call_void_hook(sk_free_security, sk);
1937 kfree(sk->sk_security);
1938 sk->sk_security = NULL;
1939 }
1940
1941 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1942 {
1943 call_void_hook(sk_clone_security, sk, newsk);
1944 }
1945 EXPORT_SYMBOL(security_sk_clone);
1946
1947 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1948 {
1949 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1950 }
1951 EXPORT_SYMBOL(security_sk_classify_flow);
1952
1953 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1954 {
1955 call_void_hook(req_classify_flow, req, fl);
1956 }
1957 EXPORT_SYMBOL(security_req_classify_flow);
1958
1959 void security_sock_graft(struct sock *sk, struct socket *parent)
1960 {
1961 call_void_hook(sock_graft, sk, parent);
1962 }
1963 EXPORT_SYMBOL(security_sock_graft);
1964
1965 int security_inet_conn_request(struct sock *sk,
1966 struct sk_buff *skb, struct request_sock *req)
1967 {
1968 return call_int_hook(inet_conn_request, 0, sk, skb, req);
1969 }
1970 EXPORT_SYMBOL(security_inet_conn_request);
1971
1972 void security_inet_csk_clone(struct sock *newsk,
1973 const struct request_sock *req)
1974 {
1975 call_void_hook(inet_csk_clone, newsk, req);
1976 }
1977
1978 void security_inet_conn_established(struct sock *sk,
1979 struct sk_buff *skb)
1980 {
1981 call_void_hook(inet_conn_established, sk, skb);
1982 }
1983
1984 int security_secmark_relabel_packet(u32 secid)
1985 {
1986 return call_int_hook(secmark_relabel_packet, 0, secid);
1987 }
1988 EXPORT_SYMBOL(security_secmark_relabel_packet);
1989
1990 void security_secmark_refcount_inc(void)
1991 {
1992 call_void_hook(secmark_refcount_inc);
1993 }
1994 EXPORT_SYMBOL(security_secmark_refcount_inc);
1995
1996 void security_secmark_refcount_dec(void)
1997 {
1998 call_void_hook(secmark_refcount_dec);
1999 }
2000 EXPORT_SYMBOL(security_secmark_refcount_dec);
2001
2002 int security_tun_dev_alloc_security(void **security)
2003 {
2004 return call_int_hook(tun_dev_alloc_security, 0, security);
2005 }
2006 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2007
2008 void security_tun_dev_free_security(void *security)
2009 {
2010 call_void_hook(tun_dev_free_security, security);
2011 }
2012 EXPORT_SYMBOL(security_tun_dev_free_security);
2013
2014 int security_tun_dev_create(void)
2015 {
2016 return call_int_hook(tun_dev_create, 0);
2017 }
2018 EXPORT_SYMBOL(security_tun_dev_create);
2019
2020 int security_tun_dev_attach_queue(void *security)
2021 {
2022 return call_int_hook(tun_dev_attach_queue, 0, security);
2023 }
2024 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2025
2026 int security_tun_dev_attach(struct sock *sk, void *security)
2027 {
2028 return call_int_hook(tun_dev_attach, 0, sk, security);
2029 }
2030 EXPORT_SYMBOL(security_tun_dev_attach);
2031
2032 int security_tun_dev_open(void *security)
2033 {
2034 return call_int_hook(tun_dev_open, 0, security);
2035 }
2036 EXPORT_SYMBOL(security_tun_dev_open);
2037
2038 #endif /* CONFIG_SECURITY_NETWORK */
2039
2040 #ifdef CONFIG_SECURITY_INFINIBAND
2041
2042 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2043 {
2044 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2045 }
2046 EXPORT_SYMBOL(security_ib_pkey_access);
2047
2048 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2049 {
2050 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2051 }
2052 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2053
2054 int security_ib_alloc_security(void **sec)
2055 {
2056 return call_int_hook(ib_alloc_security, 0, sec);
2057 }
2058 EXPORT_SYMBOL(security_ib_alloc_security);
2059
2060 void security_ib_free_security(void *sec)
2061 {
2062 call_void_hook(ib_free_security, sec);
2063 }
2064 EXPORT_SYMBOL(security_ib_free_security);
2065 #endif /* CONFIG_SECURITY_INFINIBAND */
2066
2067 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2068
2069 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2070 struct xfrm_user_sec_ctx *sec_ctx,
2071 gfp_t gfp)
2072 {
2073 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2074 }
2075 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2076
2077 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2078 struct xfrm_sec_ctx **new_ctxp)
2079 {
2080 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2081 }
2082
2083 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2084 {
2085 call_void_hook(xfrm_policy_free_security, ctx);
2086 }
2087 EXPORT_SYMBOL(security_xfrm_policy_free);
2088
2089 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2090 {
2091 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2092 }
2093
2094 int security_xfrm_state_alloc(struct xfrm_state *x,
2095 struct xfrm_user_sec_ctx *sec_ctx)
2096 {
2097 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2098 }
2099 EXPORT_SYMBOL(security_xfrm_state_alloc);
2100
2101 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2102 struct xfrm_sec_ctx *polsec, u32 secid)
2103 {
2104 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2105 }
2106
2107 int security_xfrm_state_delete(struct xfrm_state *x)
2108 {
2109 return call_int_hook(xfrm_state_delete_security, 0, x);
2110 }
2111 EXPORT_SYMBOL(security_xfrm_state_delete);
2112
2113 void security_xfrm_state_free(struct xfrm_state *x)
2114 {
2115 call_void_hook(xfrm_state_free_security, x);
2116 }
2117
2118 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2119 {
2120 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2121 }
2122
2123 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2124 struct xfrm_policy *xp,
2125 const struct flowi *fl)
2126 {
2127 struct security_hook_list *hp;
2128 int rc = 1;
2129
2130 /*
2131 * Since this function is expected to return 0 or 1, the judgment
2132 * becomes difficult if multiple LSMs supply this call. Fortunately,
2133 * we can use the first LSM's judgment because currently only SELinux
2134 * supplies this call.
2135 *
2136 * For speed optimization, we explicitly break the loop rather than
2137 * using the macro
2138 */
2139 list_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2140 list) {
2141 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2142 break;
2143 }
2144 return rc;
2145 }
2146
2147 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2148 {
2149 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2150 }
2151
2152 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2153 {
2154 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2155 0);
2156
2157 BUG_ON(rc);
2158 }
2159 EXPORT_SYMBOL(security_skb_classify_flow);
2160
2161 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2162
2163 #ifdef CONFIG_KEYS
2164
2165 int security_key_alloc(struct key *key, const struct cred *cred,
2166 unsigned long flags)
2167 {
2168 int rc = lsm_key_alloc(key);
2169
2170 if (unlikely(rc))
2171 return rc;
2172 rc = call_int_hook(key_alloc, 0, key, cred, flags);
2173 if (unlikely(rc))
2174 security_key_free(key);
2175 return rc;
2176 }
2177
2178 void security_key_free(struct key *key)
2179 {
2180 call_void_hook(key_free, key);
2181 kfree(key->security);
2182 key->security = NULL;
2183 }
2184
2185 int security_key_permission(key_ref_t key_ref,
2186 const struct cred *cred, unsigned perm)
2187 {
2188 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2189 }
2190
2191 int security_key_getsecurity(struct key *key, char **_buffer)
2192 {
2193 *_buffer = NULL;
2194 return call_int_hook(key_getsecurity, 0, key, _buffer);
2195 }
2196
2197 #endif /* CONFIG_KEYS */
2198
2199 #ifdef CONFIG_AUDIT
2200
2201 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2202 {
2203 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2204 }
2205
2206 int security_audit_rule_known(struct audit_krule *krule)
2207 {
2208 return call_int_hook(audit_rule_known, 0, krule);
2209 }
2210
2211 void security_audit_rule_free(void *lsmrule)
2212 {
2213 call_void_hook(audit_rule_free, lsmrule);
2214 }
2215
2216 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
2217 struct audit_context *actx)
2218 {
2219 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
2220 actx);
2221 }
2222 #endif /* CONFIG_AUDIT */
2223
2224 #ifdef CONFIG_BPF_SYSCALL
2225 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2226 {
2227 return call_int_hook(bpf, 0, cmd, attr, size);
2228 }
2229 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2230 {
2231 return call_int_hook(bpf_map, 0, map, fmode);
2232 }
2233 int security_bpf_prog(struct bpf_prog *prog)
2234 {
2235 return call_int_hook(bpf_prog, 0, prog);
2236 }
2237 int security_bpf_map_alloc(struct bpf_map *map)
2238 {
2239 return call_int_hook(bpf_map_alloc_security, 0, map);
2240 }
2241 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2242 {
2243 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2244 }
2245 void security_bpf_map_free(struct bpf_map *map)
2246 {
2247 call_void_hook(bpf_map_free_security, map);
2248 }
2249 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2250 {
2251 call_void_hook(bpf_prog_free_security, aux);
2252 }
2253 #endif /* CONFIG_BPF_SYSCALL */