]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - zfs/module/zfs/spa.c
UBUNTU: SAUCE: (noup) Update zfs to 0.7.5-1ubuntu16.6
[mirror_ubuntu-bionic-kernel.git] / zfs / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2017 Joyent, Inc.
34 */
35
36 /*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_disk.h>
56 #include <sys/metaslab.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/mmp.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/dmu_traverse.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/unique.h>
65 #include <sys/dsl_pool.h>
66 #include <sys/dsl_dataset.h>
67 #include <sys/dsl_dir.h>
68 #include <sys/dsl_prop.h>
69 #include <sys/dsl_synctask.h>
70 #include <sys/fs/zfs.h>
71 #include <sys/arc.h>
72 #include <sys/callb.h>
73 #include <sys/systeminfo.h>
74 #include <sys/spa_boot.h>
75 #include <sys/zfs_ioctl.h>
76 #include <sys/dsl_scan.h>
77 #include <sys/zfeature.h>
78 #include <sys/dsl_destroy.h>
79 #include <sys/zvol.h>
80
81 #ifdef _KERNEL
82 #include <sys/fm/protocol.h>
83 #include <sys/fm/util.h>
84 #include <sys/bootprops.h>
85 #include <sys/callb.h>
86 #include <sys/cpupart.h>
87 #include <sys/pool.h>
88 #include <sys/sysdc.h>
89 #include <sys/zone.h>
90 #endif /* _KERNEL */
91
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
94
95 /*
96 * The interval, in seconds, at which failed configuration cache file writes
97 * should be retried.
98 */
99 static int zfs_ccw_retry_interval = 300;
100
101 typedef enum zti_modes {
102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
104 ZTI_MODE_NULL, /* don't create a taskq */
105 ZTI_NMODES
106 } zti_modes_t;
107
108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
109 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
110 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
111 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
112
113 #define ZTI_N(n) ZTI_P(n, 1)
114 #define ZTI_ONE ZTI_N(1)
115
116 typedef struct zio_taskq_info {
117 zti_modes_t zti_mode;
118 uint_t zti_value;
119 uint_t zti_count;
120 } zio_taskq_info_t;
121
122 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
123 "iss", "iss_h", "int", "int_h"
124 };
125
126 /*
127 * This table defines the taskq settings for each ZFS I/O type. When
128 * initializing a pool, we use this table to create an appropriately sized
129 * taskq. Some operations are low volume and therefore have a small, static
130 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
131 * macros. Other operations process a large amount of data; the ZTI_BATCH
132 * macro causes us to create a taskq oriented for throughput. Some operations
133 * are so high frequency and short-lived that the taskq itself can become a a
134 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
135 * additional degree of parallelism specified by the number of threads per-
136 * taskq and the number of taskqs; when dispatching an event in this case, the
137 * particular taskq is chosen at random.
138 *
139 * The different taskq priorities are to handle the different contexts (issue
140 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
141 * need to be handled with minimum delay.
142 */
143 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
144 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
145 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
146 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
147 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
148 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
151 };
152
153 static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
154 const char *name);
155 static void spa_event_post(sysevent_t *ev);
156 static void spa_sync_version(void *arg, dmu_tx_t *tx);
157 static void spa_sync_props(void *arg, dmu_tx_t *tx);
158 static boolean_t spa_has_active_shared_spare(spa_t *spa);
159 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
160 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
161 char **ereport);
162 static void spa_vdev_resilver_done(spa_t *spa);
163
164 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
165 id_t zio_taskq_psrset_bind = PS_NONE;
166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
167 uint_t zio_taskq_basedc = 80; /* base duty cycle */
168
169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
170
171 /*
172 * This (illegal) pool name is used when temporarily importing a spa_t in order
173 * to get the vdev stats associated with the imported devices.
174 */
175 #define TRYIMPORT_NAME "$import"
176
177 /*
178 * ==========================================================================
179 * SPA properties routines
180 * ==========================================================================
181 */
182
183 /*
184 * Add a (source=src, propname=propval) list to an nvlist.
185 */
186 static void
187 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
188 uint64_t intval, zprop_source_t src)
189 {
190 const char *propname = zpool_prop_to_name(prop);
191 nvlist_t *propval;
192
193 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
194 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
195
196 if (strval != NULL)
197 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
198 else
199 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
200
201 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
202 nvlist_free(propval);
203 }
204
205 /*
206 * Get property values from the spa configuration.
207 */
208 static void
209 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
210 {
211 vdev_t *rvd = spa->spa_root_vdev;
212 dsl_pool_t *pool = spa->spa_dsl_pool;
213 uint64_t size, alloc, cap, version;
214 const zprop_source_t src = ZPROP_SRC_NONE;
215 spa_config_dirent_t *dp;
216 metaslab_class_t *mc = spa_normal_class(spa);
217
218 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
219
220 if (rvd != NULL) {
221 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
222 size = metaslab_class_get_space(spa_normal_class(spa));
223 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
225 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
226 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
227 size - alloc, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
230 metaslab_class_fragmentation(mc), src);
231 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
232 metaslab_class_expandable_space(mc), src);
233 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
234 (spa_mode(spa) == FREAD), src);
235
236 cap = (size == 0) ? 0 : (alloc * 100 / size);
237 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
238
239 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
240 ddt_get_pool_dedup_ratio(spa), src);
241
242 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
243 rvd->vdev_state, src);
244
245 version = spa_version(spa);
246 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
247 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
248 version, ZPROP_SRC_DEFAULT);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
251 version, ZPROP_SRC_LOCAL);
252 }
253 }
254
255 if (pool != NULL) {
256 /*
257 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
258 * when opening pools before this version freedir will be NULL.
259 */
260 if (pool->dp_free_dir != NULL) {
261 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
262 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
263 src);
264 } else {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
266 NULL, 0, src);
267 }
268
269 if (pool->dp_leak_dir != NULL) {
270 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
271 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
272 src);
273 } else {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275 NULL, 0, src);
276 }
277 }
278
279 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280
281 if (spa->spa_comment != NULL) {
282 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283 0, ZPROP_SRC_LOCAL);
284 }
285
286 if (spa->spa_root != NULL)
287 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288 0, ZPROP_SRC_LOCAL);
289
290 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
291 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
293 } else {
294 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
296 }
297
298 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
299 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
300 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
301 } else {
302 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
303 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
304 }
305
306 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
307 if (dp->scd_path == NULL) {
308 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309 "none", 0, ZPROP_SRC_LOCAL);
310 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
311 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
312 dp->scd_path, 0, ZPROP_SRC_LOCAL);
313 }
314 }
315 }
316
317 /*
318 * Get zpool property values.
319 */
320 int
321 spa_prop_get(spa_t *spa, nvlist_t **nvp)
322 {
323 objset_t *mos = spa->spa_meta_objset;
324 zap_cursor_t zc;
325 zap_attribute_t za;
326 int err;
327
328 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
329 if (err)
330 return (err);
331
332 mutex_enter(&spa->spa_props_lock);
333
334 /*
335 * Get properties from the spa config.
336 */
337 spa_prop_get_config(spa, nvp);
338
339 /* If no pool property object, no more prop to get. */
340 if (mos == NULL || spa->spa_pool_props_object == 0) {
341 mutex_exit(&spa->spa_props_lock);
342 goto out;
343 }
344
345 /*
346 * Get properties from the MOS pool property object.
347 */
348 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
349 (err = zap_cursor_retrieve(&zc, &za)) == 0;
350 zap_cursor_advance(&zc)) {
351 uint64_t intval = 0;
352 char *strval = NULL;
353 zprop_source_t src = ZPROP_SRC_DEFAULT;
354 zpool_prop_t prop;
355
356 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
357 continue;
358
359 switch (za.za_integer_length) {
360 case 8:
361 /* integer property */
362 if (za.za_first_integer !=
363 zpool_prop_default_numeric(prop))
364 src = ZPROP_SRC_LOCAL;
365
366 if (prop == ZPOOL_PROP_BOOTFS) {
367 dsl_pool_t *dp;
368 dsl_dataset_t *ds = NULL;
369
370 dp = spa_get_dsl(spa);
371 dsl_pool_config_enter(dp, FTAG);
372 if ((err = dsl_dataset_hold_obj(dp,
373 za.za_first_integer, FTAG, &ds))) {
374 dsl_pool_config_exit(dp, FTAG);
375 break;
376 }
377
378 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
379 KM_SLEEP);
380 dsl_dataset_name(ds, strval);
381 dsl_dataset_rele(ds, FTAG);
382 dsl_pool_config_exit(dp, FTAG);
383 } else {
384 strval = NULL;
385 intval = za.za_first_integer;
386 }
387
388 spa_prop_add_list(*nvp, prop, strval, intval, src);
389
390 if (strval != NULL)
391 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
392
393 break;
394
395 case 1:
396 /* string property */
397 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
398 err = zap_lookup(mos, spa->spa_pool_props_object,
399 za.za_name, 1, za.za_num_integers, strval);
400 if (err) {
401 kmem_free(strval, za.za_num_integers);
402 break;
403 }
404 spa_prop_add_list(*nvp, prop, strval, 0, src);
405 kmem_free(strval, za.za_num_integers);
406 break;
407
408 default:
409 break;
410 }
411 }
412 zap_cursor_fini(&zc);
413 mutex_exit(&spa->spa_props_lock);
414 out:
415 if (err && err != ENOENT) {
416 nvlist_free(*nvp);
417 *nvp = NULL;
418 return (err);
419 }
420
421 return (0);
422 }
423
424 /*
425 * Validate the given pool properties nvlist and modify the list
426 * for the property values to be set.
427 */
428 static int
429 spa_prop_validate(spa_t *spa, nvlist_t *props)
430 {
431 nvpair_t *elem;
432 int error = 0, reset_bootfs = 0;
433 uint64_t objnum = 0;
434 boolean_t has_feature = B_FALSE;
435
436 elem = NULL;
437 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
438 uint64_t intval;
439 char *strval, *slash, *check, *fname;
440 const char *propname = nvpair_name(elem);
441 zpool_prop_t prop = zpool_name_to_prop(propname);
442
443 switch ((int)prop) {
444 case ZPROP_INVAL:
445 if (!zpool_prop_feature(propname)) {
446 error = SET_ERROR(EINVAL);
447 break;
448 }
449
450 /*
451 * Sanitize the input.
452 */
453 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
454 error = SET_ERROR(EINVAL);
455 break;
456 }
457
458 if (nvpair_value_uint64(elem, &intval) != 0) {
459 error = SET_ERROR(EINVAL);
460 break;
461 }
462
463 if (intval != 0) {
464 error = SET_ERROR(EINVAL);
465 break;
466 }
467
468 fname = strchr(propname, '@') + 1;
469 if (zfeature_lookup_name(fname, NULL) != 0) {
470 error = SET_ERROR(EINVAL);
471 break;
472 }
473
474 has_feature = B_TRUE;
475 break;
476
477 case ZPOOL_PROP_VERSION:
478 error = nvpair_value_uint64(elem, &intval);
479 if (!error &&
480 (intval < spa_version(spa) ||
481 intval > SPA_VERSION_BEFORE_FEATURES ||
482 has_feature))
483 error = SET_ERROR(EINVAL);
484 break;
485
486 case ZPOOL_PROP_DELEGATION:
487 case ZPOOL_PROP_AUTOREPLACE:
488 case ZPOOL_PROP_LISTSNAPS:
489 case ZPOOL_PROP_AUTOEXPAND:
490 error = nvpair_value_uint64(elem, &intval);
491 if (!error && intval > 1)
492 error = SET_ERROR(EINVAL);
493 break;
494
495 case ZPOOL_PROP_MULTIHOST:
496 error = nvpair_value_uint64(elem, &intval);
497 if (!error && intval > 1)
498 error = SET_ERROR(EINVAL);
499
500 if (!error && !spa_get_hostid())
501 error = SET_ERROR(ENOTSUP);
502
503 break;
504
505 case ZPOOL_PROP_BOOTFS:
506 /*
507 * If the pool version is less than SPA_VERSION_BOOTFS,
508 * or the pool is still being created (version == 0),
509 * the bootfs property cannot be set.
510 */
511 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
512 error = SET_ERROR(ENOTSUP);
513 break;
514 }
515
516 /*
517 * Make sure the vdev config is bootable
518 */
519 if (!vdev_is_bootable(spa->spa_root_vdev)) {
520 error = SET_ERROR(ENOTSUP);
521 break;
522 }
523
524 reset_bootfs = 1;
525
526 error = nvpair_value_string(elem, &strval);
527
528 if (!error) {
529 objset_t *os;
530 uint64_t propval;
531
532 if (strval == NULL || strval[0] == '\0') {
533 objnum = zpool_prop_default_numeric(
534 ZPOOL_PROP_BOOTFS);
535 break;
536 }
537
538 error = dmu_objset_hold(strval, FTAG, &os);
539 if (error)
540 break;
541
542 /*
543 * Must be ZPL, and its property settings
544 * must be supported by GRUB (compression
545 * is not gzip, and large blocks or large
546 * dnodes are not used).
547 */
548
549 if (dmu_objset_type(os) != DMU_OST_ZFS) {
550 error = SET_ERROR(ENOTSUP);
551 } else if ((error =
552 dsl_prop_get_int_ds(dmu_objset_ds(os),
553 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
554 &propval)) == 0 &&
555 !BOOTFS_COMPRESS_VALID(propval)) {
556 error = SET_ERROR(ENOTSUP);
557 } else if ((error =
558 dsl_prop_get_int_ds(dmu_objset_ds(os),
559 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
560 &propval)) == 0 &&
561 propval != ZFS_DNSIZE_LEGACY) {
562 error = SET_ERROR(ENOTSUP);
563 } else {
564 objnum = dmu_objset_id(os);
565 }
566 dmu_objset_rele(os, FTAG);
567 }
568 break;
569
570 case ZPOOL_PROP_FAILUREMODE:
571 error = nvpair_value_uint64(elem, &intval);
572 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
573 error = SET_ERROR(EINVAL);
574
575 /*
576 * This is a special case which only occurs when
577 * the pool has completely failed. This allows
578 * the user to change the in-core failmode property
579 * without syncing it out to disk (I/Os might
580 * currently be blocked). We do this by returning
581 * EIO to the caller (spa_prop_set) to trick it
582 * into thinking we encountered a property validation
583 * error.
584 */
585 if (!error && spa_suspended(spa)) {
586 spa->spa_failmode = intval;
587 error = SET_ERROR(EIO);
588 }
589 break;
590
591 case ZPOOL_PROP_CACHEFILE:
592 if ((error = nvpair_value_string(elem, &strval)) != 0)
593 break;
594
595 if (strval[0] == '\0')
596 break;
597
598 if (strcmp(strval, "none") == 0)
599 break;
600
601 if (strval[0] != '/') {
602 error = SET_ERROR(EINVAL);
603 break;
604 }
605
606 slash = strrchr(strval, '/');
607 ASSERT(slash != NULL);
608
609 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
610 strcmp(slash, "/..") == 0)
611 error = SET_ERROR(EINVAL);
612 break;
613
614 case ZPOOL_PROP_COMMENT:
615 if ((error = nvpair_value_string(elem, &strval)) != 0)
616 break;
617 for (check = strval; *check != '\0'; check++) {
618 if (!isprint(*check)) {
619 error = SET_ERROR(EINVAL);
620 break;
621 }
622 }
623 if (strlen(strval) > ZPROP_MAX_COMMENT)
624 error = SET_ERROR(E2BIG);
625 break;
626
627 case ZPOOL_PROP_DEDUPDITTO:
628 if (spa_version(spa) < SPA_VERSION_DEDUP)
629 error = SET_ERROR(ENOTSUP);
630 else
631 error = nvpair_value_uint64(elem, &intval);
632 if (error == 0 &&
633 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
634 error = SET_ERROR(EINVAL);
635 break;
636
637 default:
638 break;
639 }
640
641 if (error)
642 break;
643 }
644
645 if (!error && reset_bootfs) {
646 error = nvlist_remove(props,
647 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
648
649 if (!error) {
650 error = nvlist_add_uint64(props,
651 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
652 }
653 }
654
655 return (error);
656 }
657
658 void
659 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
660 {
661 char *cachefile;
662 spa_config_dirent_t *dp;
663
664 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
665 &cachefile) != 0)
666 return;
667
668 dp = kmem_alloc(sizeof (spa_config_dirent_t),
669 KM_SLEEP);
670
671 if (cachefile[0] == '\0')
672 dp->scd_path = spa_strdup(spa_config_path);
673 else if (strcmp(cachefile, "none") == 0)
674 dp->scd_path = NULL;
675 else
676 dp->scd_path = spa_strdup(cachefile);
677
678 list_insert_head(&spa->spa_config_list, dp);
679 if (need_sync)
680 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
681 }
682
683 int
684 spa_prop_set(spa_t *spa, nvlist_t *nvp)
685 {
686 int error;
687 nvpair_t *elem = NULL;
688 boolean_t need_sync = B_FALSE;
689
690 if ((error = spa_prop_validate(spa, nvp)) != 0)
691 return (error);
692
693 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
694 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
695
696 if (prop == ZPOOL_PROP_CACHEFILE ||
697 prop == ZPOOL_PROP_ALTROOT ||
698 prop == ZPOOL_PROP_READONLY)
699 continue;
700
701 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
702 uint64_t ver;
703
704 if (prop == ZPOOL_PROP_VERSION) {
705 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
706 } else {
707 ASSERT(zpool_prop_feature(nvpair_name(elem)));
708 ver = SPA_VERSION_FEATURES;
709 need_sync = B_TRUE;
710 }
711
712 /* Save time if the version is already set. */
713 if (ver == spa_version(spa))
714 continue;
715
716 /*
717 * In addition to the pool directory object, we might
718 * create the pool properties object, the features for
719 * read object, the features for write object, or the
720 * feature descriptions object.
721 */
722 error = dsl_sync_task(spa->spa_name, NULL,
723 spa_sync_version, &ver,
724 6, ZFS_SPACE_CHECK_RESERVED);
725 if (error)
726 return (error);
727 continue;
728 }
729
730 need_sync = B_TRUE;
731 break;
732 }
733
734 if (need_sync) {
735 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
736 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
737 }
738
739 return (0);
740 }
741
742 /*
743 * If the bootfs property value is dsobj, clear it.
744 */
745 void
746 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
747 {
748 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
749 VERIFY(zap_remove(spa->spa_meta_objset,
750 spa->spa_pool_props_object,
751 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
752 spa->spa_bootfs = 0;
753 }
754 }
755
756 /*ARGSUSED*/
757 static int
758 spa_change_guid_check(void *arg, dmu_tx_t *tx)
759 {
760 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
761 vdev_t *rvd = spa->spa_root_vdev;
762 uint64_t vdev_state;
763 ASSERTV(uint64_t *newguid = arg);
764
765 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
766 vdev_state = rvd->vdev_state;
767 spa_config_exit(spa, SCL_STATE, FTAG);
768
769 if (vdev_state != VDEV_STATE_HEALTHY)
770 return (SET_ERROR(ENXIO));
771
772 ASSERT3U(spa_guid(spa), !=, *newguid);
773
774 return (0);
775 }
776
777 static void
778 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
779 {
780 uint64_t *newguid = arg;
781 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
782 uint64_t oldguid;
783 vdev_t *rvd = spa->spa_root_vdev;
784
785 oldguid = spa_guid(spa);
786
787 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
788 rvd->vdev_guid = *newguid;
789 rvd->vdev_guid_sum += (*newguid - oldguid);
790 vdev_config_dirty(rvd);
791 spa_config_exit(spa, SCL_STATE, FTAG);
792
793 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
794 oldguid, *newguid);
795 }
796
797 /*
798 * Change the GUID for the pool. This is done so that we can later
799 * re-import a pool built from a clone of our own vdevs. We will modify
800 * the root vdev's guid, our own pool guid, and then mark all of our
801 * vdevs dirty. Note that we must make sure that all our vdevs are
802 * online when we do this, or else any vdevs that weren't present
803 * would be orphaned from our pool. We are also going to issue a
804 * sysevent to update any watchers.
805 */
806 int
807 spa_change_guid(spa_t *spa)
808 {
809 int error;
810 uint64_t guid;
811
812 mutex_enter(&spa->spa_vdev_top_lock);
813 mutex_enter(&spa_namespace_lock);
814 guid = spa_generate_guid(NULL);
815
816 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
817 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
818
819 if (error == 0) {
820 spa_config_sync(spa, B_FALSE, B_TRUE);
821 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
822 }
823
824 mutex_exit(&spa_namespace_lock);
825 mutex_exit(&spa->spa_vdev_top_lock);
826
827 return (error);
828 }
829
830 /*
831 * ==========================================================================
832 * SPA state manipulation (open/create/destroy/import/export)
833 * ==========================================================================
834 */
835
836 static int
837 spa_error_entry_compare(const void *a, const void *b)
838 {
839 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
840 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
841 int ret;
842
843 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
844 sizeof (zbookmark_phys_t));
845
846 return (AVL_ISIGN(ret));
847 }
848
849 /*
850 * Utility function which retrieves copies of the current logs and
851 * re-initializes them in the process.
852 */
853 void
854 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
855 {
856 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
857
858 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
859 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
860
861 avl_create(&spa->spa_errlist_scrub,
862 spa_error_entry_compare, sizeof (spa_error_entry_t),
863 offsetof(spa_error_entry_t, se_avl));
864 avl_create(&spa->spa_errlist_last,
865 spa_error_entry_compare, sizeof (spa_error_entry_t),
866 offsetof(spa_error_entry_t, se_avl));
867 }
868
869 static void
870 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
871 {
872 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
873 enum zti_modes mode = ztip->zti_mode;
874 uint_t value = ztip->zti_value;
875 uint_t count = ztip->zti_count;
876 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
877 char name[32];
878 uint_t i, flags = 0;
879 boolean_t batch = B_FALSE;
880
881 if (mode == ZTI_MODE_NULL) {
882 tqs->stqs_count = 0;
883 tqs->stqs_taskq = NULL;
884 return;
885 }
886
887 ASSERT3U(count, >, 0);
888
889 tqs->stqs_count = count;
890 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
891
892 switch (mode) {
893 case ZTI_MODE_FIXED:
894 ASSERT3U(value, >=, 1);
895 value = MAX(value, 1);
896 flags |= TASKQ_DYNAMIC;
897 break;
898
899 case ZTI_MODE_BATCH:
900 batch = B_TRUE;
901 flags |= TASKQ_THREADS_CPU_PCT;
902 value = MIN(zio_taskq_batch_pct, 100);
903 break;
904
905 default:
906 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
907 "spa_activate()",
908 zio_type_name[t], zio_taskq_types[q], mode, value);
909 break;
910 }
911
912 for (i = 0; i < count; i++) {
913 taskq_t *tq;
914
915 if (count > 1) {
916 (void) snprintf(name, sizeof (name), "%s_%s_%u",
917 zio_type_name[t], zio_taskq_types[q], i);
918 } else {
919 (void) snprintf(name, sizeof (name), "%s_%s",
920 zio_type_name[t], zio_taskq_types[q]);
921 }
922
923 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
924 if (batch)
925 flags |= TASKQ_DC_BATCH;
926
927 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
928 spa->spa_proc, zio_taskq_basedc, flags);
929 } else {
930 pri_t pri = maxclsyspri;
931 /*
932 * The write issue taskq can be extremely CPU
933 * intensive. Run it at slightly less important
934 * priority than the other taskqs. Under Linux this
935 * means incrementing the priority value on platforms
936 * like illumos it should be decremented.
937 */
938 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
939 pri++;
940
941 tq = taskq_create_proc(name, value, pri, 50,
942 INT_MAX, spa->spa_proc, flags);
943 }
944
945 tqs->stqs_taskq[i] = tq;
946 }
947 }
948
949 static void
950 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
951 {
952 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953 uint_t i;
954
955 if (tqs->stqs_taskq == NULL) {
956 ASSERT3U(tqs->stqs_count, ==, 0);
957 return;
958 }
959
960 for (i = 0; i < tqs->stqs_count; i++) {
961 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
962 taskq_destroy(tqs->stqs_taskq[i]);
963 }
964
965 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
966 tqs->stqs_taskq = NULL;
967 }
968
969 /*
970 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
971 * Note that a type may have multiple discrete taskqs to avoid lock contention
972 * on the taskq itself. In that case we choose which taskq at random by using
973 * the low bits of gethrtime().
974 */
975 void
976 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
977 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
978 {
979 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
980 taskq_t *tq;
981
982 ASSERT3P(tqs->stqs_taskq, !=, NULL);
983 ASSERT3U(tqs->stqs_count, !=, 0);
984
985 if (tqs->stqs_count == 1) {
986 tq = tqs->stqs_taskq[0];
987 } else {
988 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
989 }
990
991 taskq_dispatch_ent(tq, func, arg, flags, ent);
992 }
993
994 /*
995 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
996 */
997 void
998 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
999 task_func_t *func, void *arg, uint_t flags)
1000 {
1001 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1002 taskq_t *tq;
1003 taskqid_t id;
1004
1005 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1006 ASSERT3U(tqs->stqs_count, !=, 0);
1007
1008 if (tqs->stqs_count == 1) {
1009 tq = tqs->stqs_taskq[0];
1010 } else {
1011 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1012 }
1013
1014 id = taskq_dispatch(tq, func, arg, flags);
1015 if (id)
1016 taskq_wait_id(tq, id);
1017 }
1018
1019 static void
1020 spa_create_zio_taskqs(spa_t *spa)
1021 {
1022 int t, q;
1023
1024 for (t = 0; t < ZIO_TYPES; t++) {
1025 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1026 spa_taskqs_init(spa, t, q);
1027 }
1028 }
1029 }
1030
1031 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1032 static void
1033 spa_thread(void *arg)
1034 {
1035 callb_cpr_t cprinfo;
1036
1037 spa_t *spa = arg;
1038 user_t *pu = PTOU(curproc);
1039
1040 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1041 spa->spa_name);
1042
1043 ASSERT(curproc != &p0);
1044 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1045 "zpool-%s", spa->spa_name);
1046 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1047
1048 /* bind this thread to the requested psrset */
1049 if (zio_taskq_psrset_bind != PS_NONE) {
1050 pool_lock();
1051 mutex_enter(&cpu_lock);
1052 mutex_enter(&pidlock);
1053 mutex_enter(&curproc->p_lock);
1054
1055 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1056 0, NULL, NULL) == 0) {
1057 curthread->t_bind_pset = zio_taskq_psrset_bind;
1058 } else {
1059 cmn_err(CE_WARN,
1060 "Couldn't bind process for zfs pool \"%s\" to "
1061 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1062 }
1063
1064 mutex_exit(&curproc->p_lock);
1065 mutex_exit(&pidlock);
1066 mutex_exit(&cpu_lock);
1067 pool_unlock();
1068 }
1069
1070 if (zio_taskq_sysdc) {
1071 sysdc_thread_enter(curthread, 100, 0);
1072 }
1073
1074 spa->spa_proc = curproc;
1075 spa->spa_did = curthread->t_did;
1076
1077 spa_create_zio_taskqs(spa);
1078
1079 mutex_enter(&spa->spa_proc_lock);
1080 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1081
1082 spa->spa_proc_state = SPA_PROC_ACTIVE;
1083 cv_broadcast(&spa->spa_proc_cv);
1084
1085 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1086 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1087 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1088 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1089
1090 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1091 spa->spa_proc_state = SPA_PROC_GONE;
1092 spa->spa_proc = &p0;
1093 cv_broadcast(&spa->spa_proc_cv);
1094 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1095
1096 mutex_enter(&curproc->p_lock);
1097 lwp_exit();
1098 }
1099 #endif
1100
1101 /*
1102 * Activate an uninitialized pool.
1103 */
1104 static void
1105 spa_activate(spa_t *spa, int mode)
1106 {
1107 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1108
1109 spa->spa_state = POOL_STATE_ACTIVE;
1110 spa->spa_mode = mode;
1111
1112 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1113 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1114
1115 /* Try to create a covering process */
1116 mutex_enter(&spa->spa_proc_lock);
1117 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1118 ASSERT(spa->spa_proc == &p0);
1119 spa->spa_did = 0;
1120
1121 #ifdef HAVE_SPA_THREAD
1122 /* Only create a process if we're going to be around a while. */
1123 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1124 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1125 NULL, 0) == 0) {
1126 spa->spa_proc_state = SPA_PROC_CREATED;
1127 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1128 cv_wait(&spa->spa_proc_cv,
1129 &spa->spa_proc_lock);
1130 }
1131 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1132 ASSERT(spa->spa_proc != &p0);
1133 ASSERT(spa->spa_did != 0);
1134 } else {
1135 #ifdef _KERNEL
1136 cmn_err(CE_WARN,
1137 "Couldn't create process for zfs pool \"%s\"\n",
1138 spa->spa_name);
1139 #endif
1140 }
1141 }
1142 #endif /* HAVE_SPA_THREAD */
1143 mutex_exit(&spa->spa_proc_lock);
1144
1145 /* If we didn't create a process, we need to create our taskqs. */
1146 if (spa->spa_proc == &p0) {
1147 spa_create_zio_taskqs(spa);
1148 }
1149
1150 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1151 offsetof(vdev_t, vdev_config_dirty_node));
1152 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1153 offsetof(objset_t, os_evicting_node));
1154 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1155 offsetof(vdev_t, vdev_state_dirty_node));
1156
1157 txg_list_create(&spa->spa_vdev_txg_list, spa,
1158 offsetof(struct vdev, vdev_txg_node));
1159
1160 avl_create(&spa->spa_errlist_scrub,
1161 spa_error_entry_compare, sizeof (spa_error_entry_t),
1162 offsetof(spa_error_entry_t, se_avl));
1163 avl_create(&spa->spa_errlist_last,
1164 spa_error_entry_compare, sizeof (spa_error_entry_t),
1165 offsetof(spa_error_entry_t, se_avl));
1166
1167 /*
1168 * This taskq is used to perform zvol-minor-related tasks
1169 * asynchronously. This has several advantages, including easy
1170 * resolution of various deadlocks (zfsonlinux bug #3681).
1171 *
1172 * The taskq must be single threaded to ensure tasks are always
1173 * processed in the order in which they were dispatched.
1174 *
1175 * A taskq per pool allows one to keep the pools independent.
1176 * This way if one pool is suspended, it will not impact another.
1177 *
1178 * The preferred location to dispatch a zvol minor task is a sync
1179 * task. In this context, there is easy access to the spa_t and minimal
1180 * error handling is required because the sync task must succeed.
1181 */
1182 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1183 1, INT_MAX, 0);
1184
1185 /*
1186 * Taskq dedicated to prefetcher threads: this is used to prevent the
1187 * pool traverse code from monopolizing the global (and limited)
1188 * system_taskq by inappropriately scheduling long running tasks on it.
1189 */
1190 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1191 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1192
1193 /*
1194 * The taskq to upgrade datasets in this pool. Currently used by
1195 * feature SPA_FEATURE_USEROBJ_ACCOUNTING.
1196 */
1197 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1198 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1199 }
1200
1201 /*
1202 * Opposite of spa_activate().
1203 */
1204 static void
1205 spa_deactivate(spa_t *spa)
1206 {
1207 int t, q;
1208
1209 ASSERT(spa->spa_sync_on == B_FALSE);
1210 ASSERT(spa->spa_dsl_pool == NULL);
1211 ASSERT(spa->spa_root_vdev == NULL);
1212 ASSERT(spa->spa_async_zio_root == NULL);
1213 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1214
1215 spa_evicting_os_wait(spa);
1216
1217 if (spa->spa_zvol_taskq) {
1218 taskq_destroy(spa->spa_zvol_taskq);
1219 spa->spa_zvol_taskq = NULL;
1220 }
1221
1222 if (spa->spa_prefetch_taskq) {
1223 taskq_destroy(spa->spa_prefetch_taskq);
1224 spa->spa_prefetch_taskq = NULL;
1225 }
1226
1227 if (spa->spa_upgrade_taskq) {
1228 taskq_destroy(spa->spa_upgrade_taskq);
1229 spa->spa_upgrade_taskq = NULL;
1230 }
1231
1232 txg_list_destroy(&spa->spa_vdev_txg_list);
1233
1234 list_destroy(&spa->spa_config_dirty_list);
1235 list_destroy(&spa->spa_evicting_os_list);
1236 list_destroy(&spa->spa_state_dirty_list);
1237
1238 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1239
1240 for (t = 0; t < ZIO_TYPES; t++) {
1241 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1242 spa_taskqs_fini(spa, t, q);
1243 }
1244 }
1245
1246 metaslab_class_destroy(spa->spa_normal_class);
1247 spa->spa_normal_class = NULL;
1248
1249 metaslab_class_destroy(spa->spa_log_class);
1250 spa->spa_log_class = NULL;
1251
1252 /*
1253 * If this was part of an import or the open otherwise failed, we may
1254 * still have errors left in the queues. Empty them just in case.
1255 */
1256 spa_errlog_drain(spa);
1257
1258 avl_destroy(&spa->spa_errlist_scrub);
1259 avl_destroy(&spa->spa_errlist_last);
1260
1261 spa->spa_state = POOL_STATE_UNINITIALIZED;
1262
1263 mutex_enter(&spa->spa_proc_lock);
1264 if (spa->spa_proc_state != SPA_PROC_NONE) {
1265 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1266 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1267 cv_broadcast(&spa->spa_proc_cv);
1268 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1269 ASSERT(spa->spa_proc != &p0);
1270 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1271 }
1272 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1273 spa->spa_proc_state = SPA_PROC_NONE;
1274 }
1275 ASSERT(spa->spa_proc == &p0);
1276 mutex_exit(&spa->spa_proc_lock);
1277
1278 /*
1279 * We want to make sure spa_thread() has actually exited the ZFS
1280 * module, so that the module can't be unloaded out from underneath
1281 * it.
1282 */
1283 if (spa->spa_did != 0) {
1284 thread_join(spa->spa_did);
1285 spa->spa_did = 0;
1286 }
1287 }
1288
1289 /*
1290 * Verify a pool configuration, and construct the vdev tree appropriately. This
1291 * will create all the necessary vdevs in the appropriate layout, with each vdev
1292 * in the CLOSED state. This will prep the pool before open/creation/import.
1293 * All vdev validation is done by the vdev_alloc() routine.
1294 */
1295 static int
1296 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1297 uint_t id, int atype)
1298 {
1299 nvlist_t **child;
1300 uint_t children;
1301 int error;
1302 int c;
1303
1304 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1305 return (error);
1306
1307 if ((*vdp)->vdev_ops->vdev_op_leaf)
1308 return (0);
1309
1310 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1311 &child, &children);
1312
1313 if (error == ENOENT)
1314 return (0);
1315
1316 if (error) {
1317 vdev_free(*vdp);
1318 *vdp = NULL;
1319 return (SET_ERROR(EINVAL));
1320 }
1321
1322 for (c = 0; c < children; c++) {
1323 vdev_t *vd;
1324 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1325 atype)) != 0) {
1326 vdev_free(*vdp);
1327 *vdp = NULL;
1328 return (error);
1329 }
1330 }
1331
1332 ASSERT(*vdp != NULL);
1333
1334 return (0);
1335 }
1336
1337 /*
1338 * Opposite of spa_load().
1339 */
1340 static void
1341 spa_unload(spa_t *spa)
1342 {
1343 int i, c;
1344
1345 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1346
1347 /*
1348 * Stop async tasks.
1349 */
1350 spa_async_suspend(spa);
1351
1352 /*
1353 * Stop syncing.
1354 */
1355 if (spa->spa_sync_on) {
1356 txg_sync_stop(spa->spa_dsl_pool);
1357 spa->spa_sync_on = B_FALSE;
1358 }
1359
1360 /*
1361 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1362 * to call it earlier, before we wait for async i/o to complete.
1363 * This ensures that there is no async metaslab prefetching, by
1364 * calling taskq_wait(mg_taskq).
1365 */
1366 if (spa->spa_root_vdev != NULL) {
1367 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1368 for (c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1369 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1370 spa_config_exit(spa, SCL_ALL, FTAG);
1371 }
1372
1373 if (spa->spa_mmp.mmp_thread)
1374 mmp_thread_stop(spa);
1375
1376 /*
1377 * Wait for any outstanding async I/O to complete.
1378 */
1379 if (spa->spa_async_zio_root != NULL) {
1380 for (i = 0; i < max_ncpus; i++)
1381 (void) zio_wait(spa->spa_async_zio_root[i]);
1382 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1383 spa->spa_async_zio_root = NULL;
1384 }
1385
1386 bpobj_close(&spa->spa_deferred_bpobj);
1387
1388 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1389
1390 /*
1391 * Close all vdevs.
1392 */
1393 if (spa->spa_root_vdev)
1394 vdev_free(spa->spa_root_vdev);
1395 ASSERT(spa->spa_root_vdev == NULL);
1396
1397 /*
1398 * Close the dsl pool.
1399 */
1400 if (spa->spa_dsl_pool) {
1401 dsl_pool_close(spa->spa_dsl_pool);
1402 spa->spa_dsl_pool = NULL;
1403 spa->spa_meta_objset = NULL;
1404 }
1405
1406 ddt_unload(spa);
1407
1408 /*
1409 * Drop and purge level 2 cache
1410 */
1411 spa_l2cache_drop(spa);
1412
1413 for (i = 0; i < spa->spa_spares.sav_count; i++)
1414 vdev_free(spa->spa_spares.sav_vdevs[i]);
1415 if (spa->spa_spares.sav_vdevs) {
1416 kmem_free(spa->spa_spares.sav_vdevs,
1417 spa->spa_spares.sav_count * sizeof (void *));
1418 spa->spa_spares.sav_vdevs = NULL;
1419 }
1420 if (spa->spa_spares.sav_config) {
1421 nvlist_free(spa->spa_spares.sav_config);
1422 spa->spa_spares.sav_config = NULL;
1423 }
1424 spa->spa_spares.sav_count = 0;
1425
1426 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1427 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1428 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1429 }
1430 if (spa->spa_l2cache.sav_vdevs) {
1431 kmem_free(spa->spa_l2cache.sav_vdevs,
1432 spa->spa_l2cache.sav_count * sizeof (void *));
1433 spa->spa_l2cache.sav_vdevs = NULL;
1434 }
1435 if (spa->spa_l2cache.sav_config) {
1436 nvlist_free(spa->spa_l2cache.sav_config);
1437 spa->spa_l2cache.sav_config = NULL;
1438 }
1439 spa->spa_l2cache.sav_count = 0;
1440
1441 spa->spa_async_suspended = 0;
1442
1443 if (spa->spa_comment != NULL) {
1444 spa_strfree(spa->spa_comment);
1445 spa->spa_comment = NULL;
1446 }
1447
1448 spa_config_exit(spa, SCL_ALL, FTAG);
1449 }
1450
1451 /*
1452 * Load (or re-load) the current list of vdevs describing the active spares for
1453 * this pool. When this is called, we have some form of basic information in
1454 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1455 * then re-generate a more complete list including status information.
1456 */
1457 static void
1458 spa_load_spares(spa_t *spa)
1459 {
1460 nvlist_t **spares;
1461 uint_t nspares;
1462 int i;
1463 vdev_t *vd, *tvd;
1464
1465 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1466
1467 /*
1468 * First, close and free any existing spare vdevs.
1469 */
1470 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1471 vd = spa->spa_spares.sav_vdevs[i];
1472
1473 /* Undo the call to spa_activate() below */
1474 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1475 B_FALSE)) != NULL && tvd->vdev_isspare)
1476 spa_spare_remove(tvd);
1477 vdev_close(vd);
1478 vdev_free(vd);
1479 }
1480
1481 if (spa->spa_spares.sav_vdevs)
1482 kmem_free(spa->spa_spares.sav_vdevs,
1483 spa->spa_spares.sav_count * sizeof (void *));
1484
1485 if (spa->spa_spares.sav_config == NULL)
1486 nspares = 0;
1487 else
1488 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1489 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1490
1491 spa->spa_spares.sav_count = (int)nspares;
1492 spa->spa_spares.sav_vdevs = NULL;
1493
1494 if (nspares == 0)
1495 return;
1496
1497 /*
1498 * Construct the array of vdevs, opening them to get status in the
1499 * process. For each spare, there is potentially two different vdev_t
1500 * structures associated with it: one in the list of spares (used only
1501 * for basic validation purposes) and one in the active vdev
1502 * configuration (if it's spared in). During this phase we open and
1503 * validate each vdev on the spare list. If the vdev also exists in the
1504 * active configuration, then we also mark this vdev as an active spare.
1505 */
1506 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1507 KM_SLEEP);
1508 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1509 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1510 VDEV_ALLOC_SPARE) == 0);
1511 ASSERT(vd != NULL);
1512
1513 spa->spa_spares.sav_vdevs[i] = vd;
1514
1515 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1516 B_FALSE)) != NULL) {
1517 if (!tvd->vdev_isspare)
1518 spa_spare_add(tvd);
1519
1520 /*
1521 * We only mark the spare active if we were successfully
1522 * able to load the vdev. Otherwise, importing a pool
1523 * with a bad active spare would result in strange
1524 * behavior, because multiple pool would think the spare
1525 * is actively in use.
1526 *
1527 * There is a vulnerability here to an equally bizarre
1528 * circumstance, where a dead active spare is later
1529 * brought back to life (onlined or otherwise). Given
1530 * the rarity of this scenario, and the extra complexity
1531 * it adds, we ignore the possibility.
1532 */
1533 if (!vdev_is_dead(tvd))
1534 spa_spare_activate(tvd);
1535 }
1536
1537 vd->vdev_top = vd;
1538 vd->vdev_aux = &spa->spa_spares;
1539
1540 if (vdev_open(vd) != 0)
1541 continue;
1542
1543 if (vdev_validate_aux(vd) == 0)
1544 spa_spare_add(vd);
1545 }
1546
1547 /*
1548 * Recompute the stashed list of spares, with status information
1549 * this time.
1550 */
1551 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1552 DATA_TYPE_NVLIST_ARRAY) == 0);
1553
1554 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1555 KM_SLEEP);
1556 for (i = 0; i < spa->spa_spares.sav_count; i++)
1557 spares[i] = vdev_config_generate(spa,
1558 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1559 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1560 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1561 for (i = 0; i < spa->spa_spares.sav_count; i++)
1562 nvlist_free(spares[i]);
1563 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1564 }
1565
1566 /*
1567 * Load (or re-load) the current list of vdevs describing the active l2cache for
1568 * this pool. When this is called, we have some form of basic information in
1569 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1570 * then re-generate a more complete list including status information.
1571 * Devices which are already active have their details maintained, and are
1572 * not re-opened.
1573 */
1574 static void
1575 spa_load_l2cache(spa_t *spa)
1576 {
1577 nvlist_t **l2cache = NULL;
1578 uint_t nl2cache;
1579 int i, j, oldnvdevs;
1580 uint64_t guid;
1581 vdev_t *vd, **oldvdevs, **newvdevs;
1582 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1583
1584 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1585
1586 oldvdevs = sav->sav_vdevs;
1587 oldnvdevs = sav->sav_count;
1588 sav->sav_vdevs = NULL;
1589 sav->sav_count = 0;
1590
1591 if (sav->sav_config == NULL) {
1592 nl2cache = 0;
1593 newvdevs = NULL;
1594 goto out;
1595 }
1596
1597 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1598 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1599 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1600
1601 /*
1602 * Process new nvlist of vdevs.
1603 */
1604 for (i = 0; i < nl2cache; i++) {
1605 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1606 &guid) == 0);
1607
1608 newvdevs[i] = NULL;
1609 for (j = 0; j < oldnvdevs; j++) {
1610 vd = oldvdevs[j];
1611 if (vd != NULL && guid == vd->vdev_guid) {
1612 /*
1613 * Retain previous vdev for add/remove ops.
1614 */
1615 newvdevs[i] = vd;
1616 oldvdevs[j] = NULL;
1617 break;
1618 }
1619 }
1620
1621 if (newvdevs[i] == NULL) {
1622 /*
1623 * Create new vdev
1624 */
1625 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1626 VDEV_ALLOC_L2CACHE) == 0);
1627 ASSERT(vd != NULL);
1628 newvdevs[i] = vd;
1629
1630 /*
1631 * Commit this vdev as an l2cache device,
1632 * even if it fails to open.
1633 */
1634 spa_l2cache_add(vd);
1635
1636 vd->vdev_top = vd;
1637 vd->vdev_aux = sav;
1638
1639 spa_l2cache_activate(vd);
1640
1641 if (vdev_open(vd) != 0)
1642 continue;
1643
1644 (void) vdev_validate_aux(vd);
1645
1646 if (!vdev_is_dead(vd))
1647 l2arc_add_vdev(spa, vd);
1648 }
1649 }
1650
1651 sav->sav_vdevs = newvdevs;
1652 sav->sav_count = (int)nl2cache;
1653
1654 /*
1655 * Recompute the stashed list of l2cache devices, with status
1656 * information this time.
1657 */
1658 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1659 DATA_TYPE_NVLIST_ARRAY) == 0);
1660
1661 if (sav->sav_count > 0)
1662 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1663 KM_SLEEP);
1664 for (i = 0; i < sav->sav_count; i++)
1665 l2cache[i] = vdev_config_generate(spa,
1666 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1667 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1668 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1669
1670 out:
1671 /*
1672 * Purge vdevs that were dropped
1673 */
1674 for (i = 0; i < oldnvdevs; i++) {
1675 uint64_t pool;
1676
1677 vd = oldvdevs[i];
1678 if (vd != NULL) {
1679 ASSERT(vd->vdev_isl2cache);
1680
1681 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1682 pool != 0ULL && l2arc_vdev_present(vd))
1683 l2arc_remove_vdev(vd);
1684 vdev_clear_stats(vd);
1685 vdev_free(vd);
1686 }
1687 }
1688
1689 if (oldvdevs)
1690 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1691
1692 for (i = 0; i < sav->sav_count; i++)
1693 nvlist_free(l2cache[i]);
1694 if (sav->sav_count)
1695 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1696 }
1697
1698 static int
1699 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1700 {
1701 dmu_buf_t *db;
1702 char *packed = NULL;
1703 size_t nvsize = 0;
1704 int error;
1705 *value = NULL;
1706
1707 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1708 if (error)
1709 return (error);
1710
1711 nvsize = *(uint64_t *)db->db_data;
1712 dmu_buf_rele(db, FTAG);
1713
1714 packed = vmem_alloc(nvsize, KM_SLEEP);
1715 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1716 DMU_READ_PREFETCH);
1717 if (error == 0)
1718 error = nvlist_unpack(packed, nvsize, value, 0);
1719 vmem_free(packed, nvsize);
1720
1721 return (error);
1722 }
1723
1724 /*
1725 * Checks to see if the given vdev could not be opened, in which case we post a
1726 * sysevent to notify the autoreplace code that the device has been removed.
1727 */
1728 static void
1729 spa_check_removed(vdev_t *vd)
1730 {
1731 int c;
1732
1733 for (c = 0; c < vd->vdev_children; c++)
1734 spa_check_removed(vd->vdev_child[c]);
1735
1736 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1737 !vd->vdev_ishole) {
1738 zfs_post_autoreplace(vd->vdev_spa, vd);
1739 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1740 }
1741 }
1742
1743 static void
1744 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1745 {
1746 uint64_t i;
1747
1748 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1749
1750 vd->vdev_top_zap = mvd->vdev_top_zap;
1751 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1752
1753 for (i = 0; i < vd->vdev_children; i++) {
1754 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1755 }
1756 }
1757
1758 /*
1759 * Validate the current config against the MOS config
1760 */
1761 static boolean_t
1762 spa_config_valid(spa_t *spa, nvlist_t *config)
1763 {
1764 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1765 nvlist_t *nv;
1766 int c, i;
1767
1768 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1769
1770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1771 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1772
1773 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1774
1775 /*
1776 * If we're doing a normal import, then build up any additional
1777 * diagnostic information about missing devices in this config.
1778 * We'll pass this up to the user for further processing.
1779 */
1780 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1781 nvlist_t **child, *nv;
1782 uint64_t idx = 0;
1783
1784 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
1785 KM_SLEEP);
1786 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1787
1788 for (c = 0; c < rvd->vdev_children; c++) {
1789 vdev_t *tvd = rvd->vdev_child[c];
1790 vdev_t *mtvd = mrvd->vdev_child[c];
1791
1792 if (tvd->vdev_ops == &vdev_missing_ops &&
1793 mtvd->vdev_ops != &vdev_missing_ops &&
1794 mtvd->vdev_islog)
1795 child[idx++] = vdev_config_generate(spa, mtvd,
1796 B_FALSE, 0);
1797 }
1798
1799 if (idx) {
1800 VERIFY(nvlist_add_nvlist_array(nv,
1801 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1802 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1803 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1804
1805 for (i = 0; i < idx; i++)
1806 nvlist_free(child[i]);
1807 }
1808 nvlist_free(nv);
1809 kmem_free(child, rvd->vdev_children * sizeof (char **));
1810 }
1811
1812 /*
1813 * Compare the root vdev tree with the information we have
1814 * from the MOS config (mrvd). Check each top-level vdev
1815 * with the corresponding MOS config top-level (mtvd).
1816 */
1817 for (c = 0; c < rvd->vdev_children; c++) {
1818 vdev_t *tvd = rvd->vdev_child[c];
1819 vdev_t *mtvd = mrvd->vdev_child[c];
1820
1821 /*
1822 * Resolve any "missing" vdevs in the current configuration.
1823 * If we find that the MOS config has more accurate information
1824 * about the top-level vdev then use that vdev instead.
1825 */
1826 if (tvd->vdev_ops == &vdev_missing_ops &&
1827 mtvd->vdev_ops != &vdev_missing_ops) {
1828
1829 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1830 continue;
1831
1832 /*
1833 * Device specific actions.
1834 */
1835 if (mtvd->vdev_islog) {
1836 spa_set_log_state(spa, SPA_LOG_CLEAR);
1837 } else {
1838 /*
1839 * XXX - once we have 'readonly' pool
1840 * support we should be able to handle
1841 * missing data devices by transitioning
1842 * the pool to readonly.
1843 */
1844 continue;
1845 }
1846
1847 /*
1848 * Swap the missing vdev with the data we were
1849 * able to obtain from the MOS config.
1850 */
1851 vdev_remove_child(rvd, tvd);
1852 vdev_remove_child(mrvd, mtvd);
1853
1854 vdev_add_child(rvd, mtvd);
1855 vdev_add_child(mrvd, tvd);
1856
1857 spa_config_exit(spa, SCL_ALL, FTAG);
1858 vdev_load(mtvd);
1859 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1860
1861 vdev_reopen(rvd);
1862 } else {
1863 if (mtvd->vdev_islog) {
1864 /*
1865 * Load the slog device's state from the MOS
1866 * config since it's possible that the label
1867 * does not contain the most up-to-date
1868 * information.
1869 */
1870 vdev_load_log_state(tvd, mtvd);
1871 vdev_reopen(tvd);
1872 }
1873
1874 /*
1875 * Per-vdev ZAP info is stored exclusively in the MOS.
1876 */
1877 spa_config_valid_zaps(tvd, mtvd);
1878 }
1879 }
1880
1881 vdev_free(mrvd);
1882 spa_config_exit(spa, SCL_ALL, FTAG);
1883
1884 /*
1885 * Ensure we were able to validate the config.
1886 */
1887 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1888 }
1889
1890 /*
1891 * Check for missing log devices
1892 */
1893 static boolean_t
1894 spa_check_logs(spa_t *spa)
1895 {
1896 boolean_t rv = B_FALSE;
1897 dsl_pool_t *dp = spa_get_dsl(spa);
1898
1899 switch (spa->spa_log_state) {
1900 default:
1901 break;
1902 case SPA_LOG_MISSING:
1903 /* need to recheck in case slog has been restored */
1904 case SPA_LOG_UNKNOWN:
1905 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1906 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1907 if (rv)
1908 spa_set_log_state(spa, SPA_LOG_MISSING);
1909 break;
1910 }
1911 return (rv);
1912 }
1913
1914 static boolean_t
1915 spa_passivate_log(spa_t *spa)
1916 {
1917 vdev_t *rvd = spa->spa_root_vdev;
1918 boolean_t slog_found = B_FALSE;
1919 int c;
1920
1921 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1922
1923 if (!spa_has_slogs(spa))
1924 return (B_FALSE);
1925
1926 for (c = 0; c < rvd->vdev_children; c++) {
1927 vdev_t *tvd = rvd->vdev_child[c];
1928 metaslab_group_t *mg = tvd->vdev_mg;
1929
1930 if (tvd->vdev_islog) {
1931 metaslab_group_passivate(mg);
1932 slog_found = B_TRUE;
1933 }
1934 }
1935
1936 return (slog_found);
1937 }
1938
1939 static void
1940 spa_activate_log(spa_t *spa)
1941 {
1942 vdev_t *rvd = spa->spa_root_vdev;
1943 int c;
1944
1945 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1946
1947 for (c = 0; c < rvd->vdev_children; c++) {
1948 vdev_t *tvd = rvd->vdev_child[c];
1949 metaslab_group_t *mg = tvd->vdev_mg;
1950
1951 if (tvd->vdev_islog)
1952 metaslab_group_activate(mg);
1953 }
1954 }
1955
1956 int
1957 spa_offline_log(spa_t *spa)
1958 {
1959 int error;
1960
1961 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1962 NULL, DS_FIND_CHILDREN);
1963 if (error == 0) {
1964 /*
1965 * We successfully offlined the log device, sync out the
1966 * current txg so that the "stubby" block can be removed
1967 * by zil_sync().
1968 */
1969 txg_wait_synced(spa->spa_dsl_pool, 0);
1970 }
1971 return (error);
1972 }
1973
1974 static void
1975 spa_aux_check_removed(spa_aux_vdev_t *sav)
1976 {
1977 int i;
1978
1979 for (i = 0; i < sav->sav_count; i++)
1980 spa_check_removed(sav->sav_vdevs[i]);
1981 }
1982
1983 void
1984 spa_claim_notify(zio_t *zio)
1985 {
1986 spa_t *spa = zio->io_spa;
1987
1988 if (zio->io_error)
1989 return;
1990
1991 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1992 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1993 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1994 mutex_exit(&spa->spa_props_lock);
1995 }
1996
1997 typedef struct spa_load_error {
1998 uint64_t sle_meta_count;
1999 uint64_t sle_data_count;
2000 } spa_load_error_t;
2001
2002 static void
2003 spa_load_verify_done(zio_t *zio)
2004 {
2005 blkptr_t *bp = zio->io_bp;
2006 spa_load_error_t *sle = zio->io_private;
2007 dmu_object_type_t type = BP_GET_TYPE(bp);
2008 int error = zio->io_error;
2009 spa_t *spa = zio->io_spa;
2010
2011 abd_free(zio->io_abd);
2012 if (error) {
2013 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2014 type != DMU_OT_INTENT_LOG)
2015 atomic_inc_64(&sle->sle_meta_count);
2016 else
2017 atomic_inc_64(&sle->sle_data_count);
2018 }
2019
2020 mutex_enter(&spa->spa_scrub_lock);
2021 spa->spa_scrub_inflight--;
2022 cv_broadcast(&spa->spa_scrub_io_cv);
2023 mutex_exit(&spa->spa_scrub_lock);
2024 }
2025
2026 /*
2027 * Maximum number of concurrent scrub i/os to create while verifying
2028 * a pool while importing it.
2029 */
2030 int spa_load_verify_maxinflight = 10000;
2031 int spa_load_verify_metadata = B_TRUE;
2032 int spa_load_verify_data = B_TRUE;
2033
2034 /*ARGSUSED*/
2035 static int
2036 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2037 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2038 {
2039 zio_t *rio;
2040 size_t size;
2041
2042 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2043 return (0);
2044 /*
2045 * Note: normally this routine will not be called if
2046 * spa_load_verify_metadata is not set. However, it may be useful
2047 * to manually set the flag after the traversal has begun.
2048 */
2049 if (!spa_load_verify_metadata)
2050 return (0);
2051 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2052 return (0);
2053
2054 rio = arg;
2055 size = BP_GET_PSIZE(bp);
2056
2057 mutex_enter(&spa->spa_scrub_lock);
2058 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2059 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2060 spa->spa_scrub_inflight++;
2061 mutex_exit(&spa->spa_scrub_lock);
2062
2063 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2064 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2065 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2066 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2067 return (0);
2068 }
2069
2070 /* ARGSUSED */
2071 int
2072 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2073 {
2074 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2075 return (SET_ERROR(ENAMETOOLONG));
2076
2077 return (0);
2078 }
2079
2080 static int
2081 spa_load_verify(spa_t *spa)
2082 {
2083 zio_t *rio;
2084 spa_load_error_t sle = { 0 };
2085 zpool_rewind_policy_t policy;
2086 boolean_t verify_ok = B_FALSE;
2087 int error = 0;
2088
2089 zpool_get_rewind_policy(spa->spa_config, &policy);
2090
2091 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2092 return (0);
2093
2094 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2095 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2096 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2097 DS_FIND_CHILDREN);
2098 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2099 if (error != 0)
2100 return (error);
2101
2102 rio = zio_root(spa, NULL, &sle,
2103 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2104
2105 if (spa_load_verify_metadata) {
2106 error = traverse_pool(spa, spa->spa_verify_min_txg,
2107 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2108 spa_load_verify_cb, rio);
2109 }
2110
2111 (void) zio_wait(rio);
2112
2113 spa->spa_load_meta_errors = sle.sle_meta_count;
2114 spa->spa_load_data_errors = sle.sle_data_count;
2115
2116 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2117 sle.sle_data_count <= policy.zrp_maxdata) {
2118 int64_t loss = 0;
2119
2120 verify_ok = B_TRUE;
2121 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2122 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2123
2124 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2125 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2126 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2127 VERIFY(nvlist_add_int64(spa->spa_load_info,
2128 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2129 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2130 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2131 } else {
2132 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2133 }
2134
2135 if (error) {
2136 if (error != ENXIO && error != EIO)
2137 error = SET_ERROR(EIO);
2138 return (error);
2139 }
2140
2141 return (verify_ok ? 0 : EIO);
2142 }
2143
2144 /*
2145 * Find a value in the pool props object.
2146 */
2147 static void
2148 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2149 {
2150 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2151 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2152 }
2153
2154 /*
2155 * Find a value in the pool directory object.
2156 */
2157 static int
2158 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2159 {
2160 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2161 name, sizeof (uint64_t), 1, val));
2162 }
2163
2164 static int
2165 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2166 {
2167 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2168 return (err);
2169 }
2170
2171 /*
2172 * Fix up config after a partly-completed split. This is done with the
2173 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2174 * pool have that entry in their config, but only the splitting one contains
2175 * a list of all the guids of the vdevs that are being split off.
2176 *
2177 * This function determines what to do with that list: either rejoin
2178 * all the disks to the pool, or complete the splitting process. To attempt
2179 * the rejoin, each disk that is offlined is marked online again, and
2180 * we do a reopen() call. If the vdev label for every disk that was
2181 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2182 * then we call vdev_split() on each disk, and complete the split.
2183 *
2184 * Otherwise we leave the config alone, with all the vdevs in place in
2185 * the original pool.
2186 */
2187 static void
2188 spa_try_repair(spa_t *spa, nvlist_t *config)
2189 {
2190 uint_t extracted;
2191 uint64_t *glist;
2192 uint_t i, gcount;
2193 nvlist_t *nvl;
2194 vdev_t **vd;
2195 boolean_t attempt_reopen;
2196
2197 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2198 return;
2199
2200 /* check that the config is complete */
2201 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2202 &glist, &gcount) != 0)
2203 return;
2204
2205 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2206
2207 /* attempt to online all the vdevs & validate */
2208 attempt_reopen = B_TRUE;
2209 for (i = 0; i < gcount; i++) {
2210 if (glist[i] == 0) /* vdev is hole */
2211 continue;
2212
2213 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2214 if (vd[i] == NULL) {
2215 /*
2216 * Don't bother attempting to reopen the disks;
2217 * just do the split.
2218 */
2219 attempt_reopen = B_FALSE;
2220 } else {
2221 /* attempt to re-online it */
2222 vd[i]->vdev_offline = B_FALSE;
2223 }
2224 }
2225
2226 if (attempt_reopen) {
2227 vdev_reopen(spa->spa_root_vdev);
2228
2229 /* check each device to see what state it's in */
2230 for (extracted = 0, i = 0; i < gcount; i++) {
2231 if (vd[i] != NULL &&
2232 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2233 break;
2234 ++extracted;
2235 }
2236 }
2237
2238 /*
2239 * If every disk has been moved to the new pool, or if we never
2240 * even attempted to look at them, then we split them off for
2241 * good.
2242 */
2243 if (!attempt_reopen || gcount == extracted) {
2244 for (i = 0; i < gcount; i++)
2245 if (vd[i] != NULL)
2246 vdev_split(vd[i]);
2247 vdev_reopen(spa->spa_root_vdev);
2248 }
2249
2250 kmem_free(vd, gcount * sizeof (vdev_t *));
2251 }
2252
2253 static int
2254 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2255 boolean_t mosconfig)
2256 {
2257 nvlist_t *config = spa->spa_config;
2258 char *ereport = FM_EREPORT_ZFS_POOL;
2259 char *comment;
2260 int error;
2261 uint64_t pool_guid;
2262 nvlist_t *nvl;
2263
2264 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2265 return (SET_ERROR(EINVAL));
2266
2267 ASSERT(spa->spa_comment == NULL);
2268 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2269 spa->spa_comment = spa_strdup(comment);
2270
2271 /*
2272 * Versioning wasn't explicitly added to the label until later, so if
2273 * it's not present treat it as the initial version.
2274 */
2275 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2276 &spa->spa_ubsync.ub_version) != 0)
2277 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2278
2279 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2280 &spa->spa_config_txg);
2281
2282 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2283 spa_guid_exists(pool_guid, 0)) {
2284 error = SET_ERROR(EEXIST);
2285 } else {
2286 spa->spa_config_guid = pool_guid;
2287
2288 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2289 &nvl) == 0) {
2290 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2291 KM_SLEEP) == 0);
2292 }
2293
2294 nvlist_free(spa->spa_load_info);
2295 spa->spa_load_info = fnvlist_alloc();
2296
2297 gethrestime(&spa->spa_loaded_ts);
2298 error = spa_load_impl(spa, pool_guid, config, state, type,
2299 mosconfig, &ereport);
2300 }
2301
2302 /*
2303 * Don't count references from objsets that are already closed
2304 * and are making their way through the eviction process.
2305 */
2306 spa_evicting_os_wait(spa);
2307 spa->spa_minref = refcount_count(&spa->spa_refcount);
2308 if (error) {
2309 if (error != EEXIST) {
2310 spa->spa_loaded_ts.tv_sec = 0;
2311 spa->spa_loaded_ts.tv_nsec = 0;
2312 }
2313 if (error != EBADF) {
2314 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2315 }
2316 }
2317 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2318 spa->spa_ena = 0;
2319
2320 return (error);
2321 }
2322
2323 #ifdef ZFS_DEBUG
2324 /*
2325 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2326 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2327 * spa's per-vdev ZAP list.
2328 */
2329 static uint64_t
2330 vdev_count_verify_zaps(vdev_t *vd)
2331 {
2332 spa_t *spa = vd->vdev_spa;
2333 uint64_t total = 0;
2334 uint64_t i;
2335
2336 if (vd->vdev_top_zap != 0) {
2337 total++;
2338 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2339 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2340 }
2341 if (vd->vdev_leaf_zap != 0) {
2342 total++;
2343 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2344 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2345 }
2346
2347 for (i = 0; i < vd->vdev_children; i++) {
2348 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2349 }
2350
2351 return (total);
2352 }
2353 #endif
2354
2355 /*
2356 * Determine whether the activity check is required.
2357 */
2358 static boolean_t
2359 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2360 nvlist_t *config)
2361 {
2362 uint64_t state = 0;
2363 uint64_t hostid = 0;
2364 uint64_t tryconfig_txg = 0;
2365 uint64_t tryconfig_timestamp = 0;
2366 nvlist_t *nvinfo;
2367
2368 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2369 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2370 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2371 &tryconfig_txg);
2372 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2373 &tryconfig_timestamp);
2374 }
2375
2376 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2377
2378 /*
2379 * Disable the MMP activity check - This is used by zdb which
2380 * is intended to be used on potentially active pools.
2381 */
2382 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2383 return (B_FALSE);
2384
2385 /*
2386 * Skip the activity check when the MMP feature is disabled.
2387 */
2388 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2389 return (B_FALSE);
2390 /*
2391 * If the tryconfig_* values are nonzero, they are the results of an
2392 * earlier tryimport. If they match the uberblock we just found, then
2393 * the pool has not changed and we return false so we do not test a
2394 * second time.
2395 */
2396 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2397 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2398 return (B_FALSE);
2399
2400 /*
2401 * Allow the activity check to be skipped when importing the pool
2402 * on the same host which last imported it. Since the hostid from
2403 * configuration may be stale use the one read from the label.
2404 */
2405 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2406 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2407
2408 if (hostid == spa_get_hostid())
2409 return (B_FALSE);
2410
2411 /*
2412 * Skip the activity test when the pool was cleanly exported.
2413 */
2414 if (state != POOL_STATE_ACTIVE)
2415 return (B_FALSE);
2416
2417 return (B_TRUE);
2418 }
2419
2420 /*
2421 * Perform the import activity check. If the user canceled the import or
2422 * we detected activity then fail.
2423 */
2424 static int
2425 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2426 {
2427 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2428 uint64_t txg = ub->ub_txg;
2429 uint64_t timestamp = ub->ub_timestamp;
2430 uint64_t import_delay = NANOSEC;
2431 hrtime_t import_expire;
2432 nvlist_t *mmp_label = NULL;
2433 vdev_t *rvd = spa->spa_root_vdev;
2434 kcondvar_t cv;
2435 kmutex_t mtx;
2436 int error = 0;
2437
2438 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2439 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2440 mutex_enter(&mtx);
2441
2442 /*
2443 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2444 * during the earlier tryimport. If the txg recorded there is 0 then
2445 * the pool is known to be active on another host.
2446 *
2447 * Otherwise, the pool might be in use on another node. Check for
2448 * changes in the uberblocks on disk if necessary.
2449 */
2450 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2451 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2452 ZPOOL_CONFIG_LOAD_INFO);
2453
2454 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2455 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2456 vdev_uberblock_load(rvd, ub, &mmp_label);
2457 error = SET_ERROR(EREMOTEIO);
2458 goto out;
2459 }
2460 }
2461
2462 /*
2463 * Preferentially use the zfs_multihost_interval from the node which
2464 * last imported the pool. This value is stored in an MMP uberblock as.
2465 *
2466 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2467 */
2468 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2469 import_delay = MAX(import_delay, import_intervals *
2470 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2471
2472 /* Apply a floor using the local default values. */
2473 import_delay = MAX(import_delay, import_intervals *
2474 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2475
2476 /* Add a small random factor in case of simultaneous imports (0-25%) */
2477 import_expire = gethrtime() + import_delay +
2478 (import_delay * spa_get_random(250) / 1000);
2479
2480 while (gethrtime() < import_expire) {
2481 vdev_uberblock_load(rvd, ub, &mmp_label);
2482
2483 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2484 error = SET_ERROR(EREMOTEIO);
2485 break;
2486 }
2487
2488 if (mmp_label) {
2489 nvlist_free(mmp_label);
2490 mmp_label = NULL;
2491 }
2492
2493 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2494 if (error != -1) {
2495 error = SET_ERROR(EINTR);
2496 break;
2497 }
2498 error = 0;
2499 }
2500
2501 out:
2502 mutex_exit(&mtx);
2503 mutex_destroy(&mtx);
2504 cv_destroy(&cv);
2505
2506 /*
2507 * If the pool is determined to be active store the status in the
2508 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2509 * available from configuration read from disk store them as well.
2510 * This allows 'zpool import' to generate a more useful message.
2511 *
2512 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2513 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2514 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2515 */
2516 if (error == EREMOTEIO) {
2517 char *hostname = "<unknown>";
2518 uint64_t hostid = 0;
2519
2520 if (mmp_label) {
2521 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2522 hostname = fnvlist_lookup_string(mmp_label,
2523 ZPOOL_CONFIG_HOSTNAME);
2524 fnvlist_add_string(spa->spa_load_info,
2525 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2526 }
2527
2528 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2529 hostid = fnvlist_lookup_uint64(mmp_label,
2530 ZPOOL_CONFIG_HOSTID);
2531 fnvlist_add_uint64(spa->spa_load_info,
2532 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2533 }
2534 }
2535
2536 fnvlist_add_uint64(spa->spa_load_info,
2537 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2538 fnvlist_add_uint64(spa->spa_load_info,
2539 ZPOOL_CONFIG_MMP_TXG, 0);
2540
2541 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2542 }
2543
2544 if (mmp_label)
2545 nvlist_free(mmp_label);
2546
2547 return (error);
2548 }
2549
2550 /*
2551 * Load an existing storage pool, using the pool's builtin spa_config as a
2552 * source of configuration information.
2553 */
2554 __attribute__((always_inline))
2555 static inline int
2556 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2557 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2558 char **ereport)
2559 {
2560 int error = 0;
2561 nvlist_t *nvroot = NULL;
2562 nvlist_t *label;
2563 vdev_t *rvd;
2564 uberblock_t *ub = &spa->spa_uberblock;
2565 uint64_t children, config_cache_txg = spa->spa_config_txg;
2566 int orig_mode = spa->spa_mode;
2567 int parse, i;
2568 uint64_t obj;
2569 boolean_t missing_feat_write = B_FALSE;
2570 boolean_t activity_check = B_FALSE;
2571 nvlist_t *mos_config;
2572
2573 /*
2574 * If this is an untrusted config, access the pool in read-only mode.
2575 * This prevents things like resilvering recently removed devices.
2576 */
2577 if (!mosconfig)
2578 spa->spa_mode = FREAD;
2579
2580 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2581
2582 spa->spa_load_state = state;
2583
2584 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2585 return (SET_ERROR(EINVAL));
2586
2587 parse = (type == SPA_IMPORT_EXISTING ?
2588 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2589
2590 /*
2591 * Create "The Godfather" zio to hold all async IOs
2592 */
2593 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2594 KM_SLEEP);
2595 for (i = 0; i < max_ncpus; i++) {
2596 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2597 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2598 ZIO_FLAG_GODFATHER);
2599 }
2600
2601 /*
2602 * Parse the configuration into a vdev tree. We explicitly set the
2603 * value that will be returned by spa_version() since parsing the
2604 * configuration requires knowing the version number.
2605 */
2606 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2607 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2608 spa_config_exit(spa, SCL_ALL, FTAG);
2609
2610 if (error != 0)
2611 return (error);
2612
2613 ASSERT(spa->spa_root_vdev == rvd);
2614 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2615 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2616
2617 if (type != SPA_IMPORT_ASSEMBLE) {
2618 ASSERT(spa_guid(spa) == pool_guid);
2619 }
2620
2621 /*
2622 * Try to open all vdevs, loading each label in the process.
2623 */
2624 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2625 error = vdev_open(rvd);
2626 spa_config_exit(spa, SCL_ALL, FTAG);
2627 if (error != 0)
2628 return (error);
2629
2630 /*
2631 * We need to validate the vdev labels against the configuration that
2632 * we have in hand, which is dependent on the setting of mosconfig. If
2633 * mosconfig is true then we're validating the vdev labels based on
2634 * that config. Otherwise, we're validating against the cached config
2635 * (zpool.cache) that was read when we loaded the zfs module, and then
2636 * later we will recursively call spa_load() and validate against
2637 * the vdev config.
2638 *
2639 * If we're assembling a new pool that's been split off from an
2640 * existing pool, the labels haven't yet been updated so we skip
2641 * validation for now.
2642 */
2643 if (type != SPA_IMPORT_ASSEMBLE) {
2644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2645 error = vdev_validate(rvd, mosconfig);
2646 spa_config_exit(spa, SCL_ALL, FTAG);
2647
2648 if (error != 0)
2649 return (error);
2650
2651 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2652 return (SET_ERROR(ENXIO));
2653 }
2654
2655 /*
2656 * Find the best uberblock.
2657 */
2658 vdev_uberblock_load(rvd, ub, &label);
2659
2660 /*
2661 * If we weren't able to find a single valid uberblock, return failure.
2662 */
2663 if (ub->ub_txg == 0) {
2664 nvlist_free(label);
2665 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2666 }
2667
2668 /*
2669 * For pools which have the multihost property on determine if the
2670 * pool is truly inactive and can be safely imported. Prevent
2671 * hosts which don't have a hostid set from importing the pool.
2672 */
2673 activity_check = spa_activity_check_required(spa, ub, label, config);
2674 if (activity_check) {
2675 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2676 spa_get_hostid() == 0) {
2677 nvlist_free(label);
2678 fnvlist_add_uint64(spa->spa_load_info,
2679 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2680 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2681 }
2682
2683 error = spa_activity_check(spa, ub, config);
2684 if (error) {
2685 nvlist_free(label);
2686 return (error);
2687 }
2688
2689 fnvlist_add_uint64(spa->spa_load_info,
2690 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2691 fnvlist_add_uint64(spa->spa_load_info,
2692 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2693 }
2694
2695 /*
2696 * If the pool has an unsupported version we can't open it.
2697 */
2698 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2699 nvlist_free(label);
2700 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2701 }
2702
2703 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2704 nvlist_t *features;
2705
2706 /*
2707 * If we weren't able to find what's necessary for reading the
2708 * MOS in the label, return failure.
2709 */
2710 if (label == NULL || nvlist_lookup_nvlist(label,
2711 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2712 nvlist_free(label);
2713 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2714 ENXIO));
2715 }
2716
2717 /*
2718 * Update our in-core representation with the definitive values
2719 * from the label.
2720 */
2721 nvlist_free(spa->spa_label_features);
2722 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2723 }
2724
2725 nvlist_free(label);
2726
2727 /*
2728 * Look through entries in the label nvlist's features_for_read. If
2729 * there is a feature listed there which we don't understand then we
2730 * cannot open a pool.
2731 */
2732 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2733 nvlist_t *unsup_feat;
2734 nvpair_t *nvp;
2735
2736 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2737 0);
2738
2739 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2740 nvp != NULL;
2741 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2742 if (!zfeature_is_supported(nvpair_name(nvp))) {
2743 VERIFY(nvlist_add_string(unsup_feat,
2744 nvpair_name(nvp), "") == 0);
2745 }
2746 }
2747
2748 if (!nvlist_empty(unsup_feat)) {
2749 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2750 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2751 nvlist_free(unsup_feat);
2752 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2753 ENOTSUP));
2754 }
2755
2756 nvlist_free(unsup_feat);
2757 }
2758
2759 /*
2760 * If the vdev guid sum doesn't match the uberblock, we have an
2761 * incomplete configuration. We first check to see if the pool
2762 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2763 * If it is, defer the vdev_guid_sum check till later so we
2764 * can handle missing vdevs.
2765 */
2766 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2767 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2768 rvd->vdev_guid_sum != ub->ub_guid_sum)
2769 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2770
2771 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2772 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2773 spa_try_repair(spa, config);
2774 spa_config_exit(spa, SCL_ALL, FTAG);
2775 nvlist_free(spa->spa_config_splitting);
2776 spa->spa_config_splitting = NULL;
2777 }
2778
2779 /*
2780 * Initialize internal SPA structures.
2781 */
2782 spa->spa_state = POOL_STATE_ACTIVE;
2783 spa->spa_ubsync = spa->spa_uberblock;
2784 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2785 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2786 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2787 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2788 spa->spa_claim_max_txg = spa->spa_first_txg;
2789 spa->spa_prev_software_version = ub->ub_software_version;
2790
2791 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2792 if (error)
2793 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2794 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2795
2796 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2797 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2798
2799 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2800 boolean_t missing_feat_read = B_FALSE;
2801 nvlist_t *unsup_feat, *enabled_feat;
2802 spa_feature_t i;
2803
2804 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2805 &spa->spa_feat_for_read_obj) != 0) {
2806 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2807 }
2808
2809 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2810 &spa->spa_feat_for_write_obj) != 0) {
2811 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2812 }
2813
2814 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2815 &spa->spa_feat_desc_obj) != 0) {
2816 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2817 }
2818
2819 enabled_feat = fnvlist_alloc();
2820 unsup_feat = fnvlist_alloc();
2821
2822 if (!spa_features_check(spa, B_FALSE,
2823 unsup_feat, enabled_feat))
2824 missing_feat_read = B_TRUE;
2825
2826 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2827 if (!spa_features_check(spa, B_TRUE,
2828 unsup_feat, enabled_feat)) {
2829 missing_feat_write = B_TRUE;
2830 }
2831 }
2832
2833 fnvlist_add_nvlist(spa->spa_load_info,
2834 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2835
2836 if (!nvlist_empty(unsup_feat)) {
2837 fnvlist_add_nvlist(spa->spa_load_info,
2838 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2839 }
2840
2841 fnvlist_free(enabled_feat);
2842 fnvlist_free(unsup_feat);
2843
2844 if (!missing_feat_read) {
2845 fnvlist_add_boolean(spa->spa_load_info,
2846 ZPOOL_CONFIG_CAN_RDONLY);
2847 }
2848
2849 /*
2850 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2851 * twofold: to determine whether the pool is available for
2852 * import in read-write mode and (if it is not) whether the
2853 * pool is available for import in read-only mode. If the pool
2854 * is available for import in read-write mode, it is displayed
2855 * as available in userland; if it is not available for import
2856 * in read-only mode, it is displayed as unavailable in
2857 * userland. If the pool is available for import in read-only
2858 * mode but not read-write mode, it is displayed as unavailable
2859 * in userland with a special note that the pool is actually
2860 * available for open in read-only mode.
2861 *
2862 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2863 * missing a feature for write, we must first determine whether
2864 * the pool can be opened read-only before returning to
2865 * userland in order to know whether to display the
2866 * abovementioned note.
2867 */
2868 if (missing_feat_read || (missing_feat_write &&
2869 spa_writeable(spa))) {
2870 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2871 ENOTSUP));
2872 }
2873
2874 /*
2875 * Load refcounts for ZFS features from disk into an in-memory
2876 * cache during SPA initialization.
2877 */
2878 for (i = 0; i < SPA_FEATURES; i++) {
2879 uint64_t refcount;
2880
2881 error = feature_get_refcount_from_disk(spa,
2882 &spa_feature_table[i], &refcount);
2883 if (error == 0) {
2884 spa->spa_feat_refcount_cache[i] = refcount;
2885 } else if (error == ENOTSUP) {
2886 spa->spa_feat_refcount_cache[i] =
2887 SPA_FEATURE_DISABLED;
2888 } else {
2889 return (spa_vdev_err(rvd,
2890 VDEV_AUX_CORRUPT_DATA, EIO));
2891 }
2892 }
2893 }
2894
2895 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2896 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2897 &spa->spa_feat_enabled_txg_obj) != 0)
2898 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2899 }
2900
2901 spa->spa_is_initializing = B_TRUE;
2902 error = dsl_pool_open(spa->spa_dsl_pool);
2903 spa->spa_is_initializing = B_FALSE;
2904 if (error != 0)
2905 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2906
2907 if (!mosconfig) {
2908 uint64_t hostid;
2909 nvlist_t *policy = NULL, *nvconfig;
2910
2911 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2912 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2913
2914 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2915 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2916 char *hostname;
2917 unsigned long myhostid = 0;
2918
2919 VERIFY(nvlist_lookup_string(nvconfig,
2920 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2921
2922 myhostid = spa_get_hostid();
2923 if (hostid && myhostid && hostid != myhostid) {
2924 nvlist_free(nvconfig);
2925 return (SET_ERROR(EBADF));
2926 }
2927 }
2928 if (nvlist_lookup_nvlist(spa->spa_config,
2929 ZPOOL_REWIND_POLICY, &policy) == 0)
2930 VERIFY(nvlist_add_nvlist(nvconfig,
2931 ZPOOL_REWIND_POLICY, policy) == 0);
2932
2933 spa_config_set(spa, nvconfig);
2934 spa_unload(spa);
2935 spa_deactivate(spa);
2936 spa_activate(spa, orig_mode);
2937
2938 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2939 }
2940
2941 /* Grab the checksum salt from the MOS. */
2942 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2943 DMU_POOL_CHECKSUM_SALT, 1,
2944 sizeof (spa->spa_cksum_salt.zcs_bytes),
2945 spa->spa_cksum_salt.zcs_bytes);
2946 if (error == ENOENT) {
2947 /* Generate a new salt for subsequent use */
2948 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2949 sizeof (spa->spa_cksum_salt.zcs_bytes));
2950 } else if (error != 0) {
2951 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2952 }
2953
2954 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2955 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2956 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2957 if (error != 0)
2958 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2959
2960 /*
2961 * Load the bit that tells us to use the new accounting function
2962 * (raid-z deflation). If we have an older pool, this will not
2963 * be present.
2964 */
2965 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2966 if (error != 0 && error != ENOENT)
2967 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2968
2969 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2970 &spa->spa_creation_version);
2971 if (error != 0 && error != ENOENT)
2972 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2973
2974 /*
2975 * Load the persistent error log. If we have an older pool, this will
2976 * not be present.
2977 */
2978 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2979 if (error != 0 && error != ENOENT)
2980 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2981
2982 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2983 &spa->spa_errlog_scrub);
2984 if (error != 0 && error != ENOENT)
2985 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2986
2987 /*
2988 * Load the history object. If we have an older pool, this
2989 * will not be present.
2990 */
2991 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2992 if (error != 0 && error != ENOENT)
2993 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2994
2995 /*
2996 * Load the per-vdev ZAP map. If we have an older pool, this will not
2997 * be present; in this case, defer its creation to a later time to
2998 * avoid dirtying the MOS this early / out of sync context. See
2999 * spa_sync_config_object.
3000 */
3001
3002 /* The sentinel is only available in the MOS config. */
3003 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
3004 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3005
3006 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3007 &spa->spa_all_vdev_zaps);
3008
3009 if (error == ENOENT) {
3010 VERIFY(!nvlist_exists(mos_config,
3011 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3012 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3013 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3014 } else if (error != 0) {
3015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3016 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3017 /*
3018 * An older version of ZFS overwrote the sentinel value, so
3019 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3020 * destruction to later; see spa_sync_config_object.
3021 */
3022 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3023 /*
3024 * We're assuming that no vdevs have had their ZAPs created
3025 * before this. Better be sure of it.
3026 */
3027 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3028 }
3029 nvlist_free(mos_config);
3030
3031 /*
3032 * If we're assembling the pool from the split-off vdevs of
3033 * an existing pool, we don't want to attach the spares & cache
3034 * devices.
3035 */
3036
3037 /*
3038 * Load any hot spares for this pool.
3039 */
3040 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
3041 if (error != 0 && error != ENOENT)
3042 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3043 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3044 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3045 if (load_nvlist(spa, spa->spa_spares.sav_object,
3046 &spa->spa_spares.sav_config) != 0)
3047 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3048
3049 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3050 spa_load_spares(spa);
3051 spa_config_exit(spa, SCL_ALL, FTAG);
3052 } else if (error == 0) {
3053 spa->spa_spares.sav_sync = B_TRUE;
3054 }
3055
3056 /*
3057 * Load any level 2 ARC devices for this pool.
3058 */
3059 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3060 &spa->spa_l2cache.sav_object);
3061 if (error != 0 && error != ENOENT)
3062 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3063 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3064 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3065 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3066 &spa->spa_l2cache.sav_config) != 0)
3067 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3068
3069 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3070 spa_load_l2cache(spa);
3071 spa_config_exit(spa, SCL_ALL, FTAG);
3072 } else if (error == 0) {
3073 spa->spa_l2cache.sav_sync = B_TRUE;
3074 }
3075
3076 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3077
3078 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
3079 if (error && error != ENOENT)
3080 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3081
3082 if (error == 0) {
3083 uint64_t autoreplace = 0;
3084
3085 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3086 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3087 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3088 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3089 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3090 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3091 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3092 &spa->spa_dedup_ditto);
3093
3094 spa->spa_autoreplace = (autoreplace != 0);
3095 }
3096
3097 /*
3098 * If the 'multihost' property is set, then never allow a pool to
3099 * be imported when the system hostid is zero. The exception to
3100 * this rule is zdb which is always allowed to access pools.
3101 */
3102 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3103 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3104 fnvlist_add_uint64(spa->spa_load_info,
3105 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3106 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3107 }
3108
3109 /*
3110 * If the 'autoreplace' property is set, then post a resource notifying
3111 * the ZFS DE that it should not issue any faults for unopenable
3112 * devices. We also iterate over the vdevs, and post a sysevent for any
3113 * unopenable vdevs so that the normal autoreplace handler can take
3114 * over.
3115 */
3116 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
3117 spa_check_removed(spa->spa_root_vdev);
3118 /*
3119 * For the import case, this is done in spa_import(), because
3120 * at this point we're using the spare definitions from
3121 * the MOS config, not necessarily from the userland config.
3122 */
3123 if (state != SPA_LOAD_IMPORT) {
3124 spa_aux_check_removed(&spa->spa_spares);
3125 spa_aux_check_removed(&spa->spa_l2cache);
3126 }
3127 }
3128
3129 /*
3130 * Load the vdev state for all toplevel vdevs.
3131 */
3132 vdev_load(rvd);
3133
3134 /*
3135 * Propagate the leaf DTLs we just loaded all the way up the tree.
3136 */
3137 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3138 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3139 spa_config_exit(spa, SCL_ALL, FTAG);
3140
3141 /*
3142 * Load the DDTs (dedup tables).
3143 */
3144 error = ddt_load(spa);
3145 if (error != 0)
3146 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3147
3148 spa_update_dspace(spa);
3149
3150 /*
3151 * Validate the config, using the MOS config to fill in any
3152 * information which might be missing. If we fail to validate
3153 * the config then declare the pool unfit for use. If we're
3154 * assembling a pool from a split, the log is not transferred
3155 * over.
3156 */
3157 if (type != SPA_IMPORT_ASSEMBLE) {
3158 nvlist_t *nvconfig;
3159
3160 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
3161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3162
3163 if (!spa_config_valid(spa, nvconfig)) {
3164 nvlist_free(nvconfig);
3165 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3166 ENXIO));
3167 }
3168 nvlist_free(nvconfig);
3169
3170 /*
3171 * Now that we've validated the config, check the state of the
3172 * root vdev. If it can't be opened, it indicates one or
3173 * more toplevel vdevs are faulted.
3174 */
3175 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
3176 return (SET_ERROR(ENXIO));
3177
3178 if (spa_writeable(spa) && spa_check_logs(spa)) {
3179 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3180 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3181 }
3182 }
3183
3184 if (missing_feat_write) {
3185 ASSERT(state == SPA_LOAD_TRYIMPORT);
3186
3187 /*
3188 * At this point, we know that we can open the pool in
3189 * read-only mode but not read-write mode. We now have enough
3190 * information and can return to userland.
3191 */
3192 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
3193 }
3194
3195 /*
3196 * We've successfully opened the pool, verify that we're ready
3197 * to start pushing transactions.
3198 */
3199 if (state != SPA_LOAD_TRYIMPORT) {
3200 if ((error = spa_load_verify(spa)))
3201 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3202 error));
3203 }
3204
3205 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3206 spa->spa_load_max_txg == UINT64_MAX)) {
3207 dmu_tx_t *tx;
3208 int need_update = B_FALSE;
3209 dsl_pool_t *dp = spa_get_dsl(spa);
3210 int c;
3211
3212 ASSERT(state != SPA_LOAD_TRYIMPORT);
3213
3214 /*
3215 * Claim log blocks that haven't been committed yet.
3216 * This must all happen in a single txg.
3217 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3218 * invoked from zil_claim_log_block()'s i/o done callback.
3219 * Price of rollback is that we abandon the log.
3220 */
3221 spa->spa_claiming = B_TRUE;
3222
3223 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3224 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3225 zil_claim, tx, DS_FIND_CHILDREN);
3226 dmu_tx_commit(tx);
3227
3228 spa->spa_claiming = B_FALSE;
3229
3230 spa_set_log_state(spa, SPA_LOG_GOOD);
3231 spa->spa_sync_on = B_TRUE;
3232 txg_sync_start(spa->spa_dsl_pool);
3233 mmp_thread_start(spa);
3234
3235 /*
3236 * Wait for all claims to sync. We sync up to the highest
3237 * claimed log block birth time so that claimed log blocks
3238 * don't appear to be from the future. spa_claim_max_txg
3239 * will have been set for us by either zil_check_log_chain()
3240 * (invoked from spa_check_logs()) or zil_claim() above.
3241 */
3242 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3243
3244 /*
3245 * If the config cache is stale, or we have uninitialized
3246 * metaslabs (see spa_vdev_add()), then update the config.
3247 *
3248 * If this is a verbatim import, trust the current
3249 * in-core spa_config and update the disk labels.
3250 */
3251 if (config_cache_txg != spa->spa_config_txg ||
3252 state == SPA_LOAD_IMPORT ||
3253 state == SPA_LOAD_RECOVER ||
3254 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3255 need_update = B_TRUE;
3256
3257 for (c = 0; c < rvd->vdev_children; c++)
3258 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3259 need_update = B_TRUE;
3260
3261 /*
3262 * Update the config cache asychronously in case we're the
3263 * root pool, in which case the config cache isn't writable yet.
3264 */
3265 if (need_update)
3266 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3267
3268 /*
3269 * Check all DTLs to see if anything needs resilvering.
3270 */
3271 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3272 vdev_resilver_needed(rvd, NULL, NULL))
3273 spa_async_request(spa, SPA_ASYNC_RESILVER);
3274
3275 /*
3276 * Log the fact that we booted up (so that we can detect if
3277 * we rebooted in the middle of an operation).
3278 */
3279 spa_history_log_version(spa, "open", NULL);
3280
3281 /*
3282 * Delete any inconsistent datasets.
3283 */
3284 (void) dmu_objset_find(spa_name(spa),
3285 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3286
3287 /*
3288 * Clean up any stale temporary dataset userrefs.
3289 */
3290 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3291 }
3292
3293 return (0);
3294 }
3295
3296 static int
3297 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3298 {
3299 int mode = spa->spa_mode;
3300
3301 spa_unload(spa);
3302 spa_deactivate(spa);
3303
3304 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3305
3306 spa_activate(spa, mode);
3307 spa_async_suspend(spa);
3308
3309 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3310 }
3311
3312 /*
3313 * If spa_load() fails this function will try loading prior txg's. If
3314 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3315 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3316 * function will not rewind the pool and will return the same error as
3317 * spa_load().
3318 */
3319 static int
3320 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3321 uint64_t max_request, int rewind_flags)
3322 {
3323 nvlist_t *loadinfo = NULL;
3324 nvlist_t *config = NULL;
3325 int load_error, rewind_error;
3326 uint64_t safe_rewind_txg;
3327 uint64_t min_txg;
3328
3329 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3330 spa->spa_load_max_txg = spa->spa_load_txg;
3331 spa_set_log_state(spa, SPA_LOG_CLEAR);
3332 } else {
3333 spa->spa_load_max_txg = max_request;
3334 if (max_request != UINT64_MAX)
3335 spa->spa_extreme_rewind = B_TRUE;
3336 }
3337
3338 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3339 mosconfig);
3340 if (load_error == 0)
3341 return (0);
3342
3343 if (spa->spa_root_vdev != NULL)
3344 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3345
3346 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3347 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3348
3349 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3350 nvlist_free(config);
3351 return (load_error);
3352 }
3353
3354 if (state == SPA_LOAD_RECOVER) {
3355 /* Price of rolling back is discarding txgs, including log */
3356 spa_set_log_state(spa, SPA_LOG_CLEAR);
3357 } else {
3358 /*
3359 * If we aren't rolling back save the load info from our first
3360 * import attempt so that we can restore it after attempting
3361 * to rewind.
3362 */
3363 loadinfo = spa->spa_load_info;
3364 spa->spa_load_info = fnvlist_alloc();
3365 }
3366
3367 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3368 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3369 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3370 TXG_INITIAL : safe_rewind_txg;
3371
3372 /*
3373 * Continue as long as we're finding errors, we're still within
3374 * the acceptable rewind range, and we're still finding uberblocks
3375 */
3376 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3377 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3378 if (spa->spa_load_max_txg < safe_rewind_txg)
3379 spa->spa_extreme_rewind = B_TRUE;
3380 rewind_error = spa_load_retry(spa, state, mosconfig);
3381 }
3382
3383 spa->spa_extreme_rewind = B_FALSE;
3384 spa->spa_load_max_txg = UINT64_MAX;
3385
3386 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3387 spa_config_set(spa, config);
3388 else
3389 nvlist_free(config);
3390
3391 if (state == SPA_LOAD_RECOVER) {
3392 ASSERT3P(loadinfo, ==, NULL);
3393 return (rewind_error);
3394 } else {
3395 /* Store the rewind info as part of the initial load info */
3396 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3397 spa->spa_load_info);
3398
3399 /* Restore the initial load info */
3400 fnvlist_free(spa->spa_load_info);
3401 spa->spa_load_info = loadinfo;
3402
3403 return (load_error);
3404 }
3405 }
3406
3407 /*
3408 * Pool Open/Import
3409 *
3410 * The import case is identical to an open except that the configuration is sent
3411 * down from userland, instead of grabbed from the configuration cache. For the
3412 * case of an open, the pool configuration will exist in the
3413 * POOL_STATE_UNINITIALIZED state.
3414 *
3415 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3416 * the same time open the pool, without having to keep around the spa_t in some
3417 * ambiguous state.
3418 */
3419 static int
3420 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3421 nvlist_t **config)
3422 {
3423 spa_t *spa;
3424 spa_load_state_t state = SPA_LOAD_OPEN;
3425 int error;
3426 int locked = B_FALSE;
3427 int firstopen = B_FALSE;
3428
3429 *spapp = NULL;
3430
3431 /*
3432 * As disgusting as this is, we need to support recursive calls to this
3433 * function because dsl_dir_open() is called during spa_load(), and ends
3434 * up calling spa_open() again. The real fix is to figure out how to
3435 * avoid dsl_dir_open() calling this in the first place.
3436 */
3437 if (mutex_owner(&spa_namespace_lock) != curthread) {
3438 mutex_enter(&spa_namespace_lock);
3439 locked = B_TRUE;
3440 }
3441
3442 if ((spa = spa_lookup(pool)) == NULL) {
3443 if (locked)
3444 mutex_exit(&spa_namespace_lock);
3445 return (SET_ERROR(ENOENT));
3446 }
3447
3448 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3449 zpool_rewind_policy_t policy;
3450
3451 firstopen = B_TRUE;
3452
3453 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3454 &policy);
3455 if (policy.zrp_request & ZPOOL_DO_REWIND)
3456 state = SPA_LOAD_RECOVER;
3457
3458 spa_activate(spa, spa_mode_global);
3459
3460 if (state != SPA_LOAD_RECOVER)
3461 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3462
3463 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3464 policy.zrp_request);
3465
3466 if (error == EBADF) {
3467 /*
3468 * If vdev_validate() returns failure (indicated by
3469 * EBADF), it indicates that one of the vdevs indicates
3470 * that the pool has been exported or destroyed. If
3471 * this is the case, the config cache is out of sync and
3472 * we should remove the pool from the namespace.
3473 */
3474 spa_unload(spa);
3475 spa_deactivate(spa);
3476 spa_config_sync(spa, B_TRUE, B_TRUE);
3477 spa_remove(spa);
3478 if (locked)
3479 mutex_exit(&spa_namespace_lock);
3480 return (SET_ERROR(ENOENT));
3481 }
3482
3483 if (error) {
3484 /*
3485 * We can't open the pool, but we still have useful
3486 * information: the state of each vdev after the
3487 * attempted vdev_open(). Return this to the user.
3488 */
3489 if (config != NULL && spa->spa_config) {
3490 VERIFY(nvlist_dup(spa->spa_config, config,
3491 KM_SLEEP) == 0);
3492 VERIFY(nvlist_add_nvlist(*config,
3493 ZPOOL_CONFIG_LOAD_INFO,
3494 spa->spa_load_info) == 0);
3495 }
3496 spa_unload(spa);
3497 spa_deactivate(spa);
3498 spa->spa_last_open_failed = error;
3499 if (locked)
3500 mutex_exit(&spa_namespace_lock);
3501 *spapp = NULL;
3502 return (error);
3503 }
3504 }
3505
3506 spa_open_ref(spa, tag);
3507
3508 if (config != NULL)
3509 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3510
3511 /*
3512 * If we've recovered the pool, pass back any information we
3513 * gathered while doing the load.
3514 */
3515 if (state == SPA_LOAD_RECOVER) {
3516 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3517 spa->spa_load_info) == 0);
3518 }
3519
3520 if (locked) {
3521 spa->spa_last_open_failed = 0;
3522 spa->spa_last_ubsync_txg = 0;
3523 spa->spa_load_txg = 0;
3524 mutex_exit(&spa_namespace_lock);
3525 }
3526
3527 if (firstopen)
3528 zvol_create_minors(spa, spa_name(spa), B_TRUE);
3529
3530 *spapp = spa;
3531
3532 return (0);
3533 }
3534
3535 int
3536 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3537 nvlist_t **config)
3538 {
3539 return (spa_open_common(name, spapp, tag, policy, config));
3540 }
3541
3542 int
3543 spa_open(const char *name, spa_t **spapp, void *tag)
3544 {
3545 return (spa_open_common(name, spapp, tag, NULL, NULL));
3546 }
3547
3548 /*
3549 * Lookup the given spa_t, incrementing the inject count in the process,
3550 * preventing it from being exported or destroyed.
3551 */
3552 spa_t *
3553 spa_inject_addref(char *name)
3554 {
3555 spa_t *spa;
3556
3557 mutex_enter(&spa_namespace_lock);
3558 if ((spa = spa_lookup(name)) == NULL) {
3559 mutex_exit(&spa_namespace_lock);
3560 return (NULL);
3561 }
3562 spa->spa_inject_ref++;
3563 mutex_exit(&spa_namespace_lock);
3564
3565 return (spa);
3566 }
3567
3568 void
3569 spa_inject_delref(spa_t *spa)
3570 {
3571 mutex_enter(&spa_namespace_lock);
3572 spa->spa_inject_ref--;
3573 mutex_exit(&spa_namespace_lock);
3574 }
3575
3576 /*
3577 * Add spares device information to the nvlist.
3578 */
3579 static void
3580 spa_add_spares(spa_t *spa, nvlist_t *config)
3581 {
3582 nvlist_t **spares;
3583 uint_t i, nspares;
3584 nvlist_t *nvroot;
3585 uint64_t guid;
3586 vdev_stat_t *vs;
3587 uint_t vsc;
3588 uint64_t pool;
3589
3590 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3591
3592 if (spa->spa_spares.sav_count == 0)
3593 return;
3594
3595 VERIFY(nvlist_lookup_nvlist(config,
3596 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3597 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3598 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3599 if (nspares != 0) {
3600 VERIFY(nvlist_add_nvlist_array(nvroot,
3601 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3602 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3603 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3604
3605 /*
3606 * Go through and find any spares which have since been
3607 * repurposed as an active spare. If this is the case, update
3608 * their status appropriately.
3609 */
3610 for (i = 0; i < nspares; i++) {
3611 VERIFY(nvlist_lookup_uint64(spares[i],
3612 ZPOOL_CONFIG_GUID, &guid) == 0);
3613 if (spa_spare_exists(guid, &pool, NULL) &&
3614 pool != 0ULL) {
3615 VERIFY(nvlist_lookup_uint64_array(
3616 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3617 (uint64_t **)&vs, &vsc) == 0);
3618 vs->vs_state = VDEV_STATE_CANT_OPEN;
3619 vs->vs_aux = VDEV_AUX_SPARED;
3620 }
3621 }
3622 }
3623 }
3624
3625 /*
3626 * Add l2cache device information to the nvlist, including vdev stats.
3627 */
3628 static void
3629 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3630 {
3631 nvlist_t **l2cache;
3632 uint_t i, j, nl2cache;
3633 nvlist_t *nvroot;
3634 uint64_t guid;
3635 vdev_t *vd;
3636 vdev_stat_t *vs;
3637 uint_t vsc;
3638
3639 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3640
3641 if (spa->spa_l2cache.sav_count == 0)
3642 return;
3643
3644 VERIFY(nvlist_lookup_nvlist(config,
3645 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3646 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3647 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3648 if (nl2cache != 0) {
3649 VERIFY(nvlist_add_nvlist_array(nvroot,
3650 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3651 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3652 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3653
3654 /*
3655 * Update level 2 cache device stats.
3656 */
3657
3658 for (i = 0; i < nl2cache; i++) {
3659 VERIFY(nvlist_lookup_uint64(l2cache[i],
3660 ZPOOL_CONFIG_GUID, &guid) == 0);
3661
3662 vd = NULL;
3663 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3664 if (guid ==
3665 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3666 vd = spa->spa_l2cache.sav_vdevs[j];
3667 break;
3668 }
3669 }
3670 ASSERT(vd != NULL);
3671
3672 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3673 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3674 == 0);
3675 vdev_get_stats(vd, vs);
3676 vdev_config_generate_stats(vd, l2cache[i]);
3677
3678 }
3679 }
3680 }
3681
3682 static void
3683 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3684 {
3685 zap_cursor_t zc;
3686 zap_attribute_t za;
3687
3688 if (spa->spa_feat_for_read_obj != 0) {
3689 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3690 spa->spa_feat_for_read_obj);
3691 zap_cursor_retrieve(&zc, &za) == 0;
3692 zap_cursor_advance(&zc)) {
3693 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3694 za.za_num_integers == 1);
3695 VERIFY0(nvlist_add_uint64(features, za.za_name,
3696 za.za_first_integer));
3697 }
3698 zap_cursor_fini(&zc);
3699 }
3700
3701 if (spa->spa_feat_for_write_obj != 0) {
3702 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3703 spa->spa_feat_for_write_obj);
3704 zap_cursor_retrieve(&zc, &za) == 0;
3705 zap_cursor_advance(&zc)) {
3706 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3707 za.za_num_integers == 1);
3708 VERIFY0(nvlist_add_uint64(features, za.za_name,
3709 za.za_first_integer));
3710 }
3711 zap_cursor_fini(&zc);
3712 }
3713 }
3714
3715 static void
3716 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3717 {
3718 int i;
3719
3720 for (i = 0; i < SPA_FEATURES; i++) {
3721 zfeature_info_t feature = spa_feature_table[i];
3722 uint64_t refcount;
3723
3724 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3725 continue;
3726
3727 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3728 }
3729 }
3730
3731 /*
3732 * Store a list of pool features and their reference counts in the
3733 * config.
3734 *
3735 * The first time this is called on a spa, allocate a new nvlist, fetch
3736 * the pool features and reference counts from disk, then save the list
3737 * in the spa. In subsequent calls on the same spa use the saved nvlist
3738 * and refresh its values from the cached reference counts. This
3739 * ensures we don't block here on I/O on a suspended pool so 'zpool
3740 * clear' can resume the pool.
3741 */
3742 static void
3743 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3744 {
3745 nvlist_t *features;
3746
3747 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3748
3749 mutex_enter(&spa->spa_feat_stats_lock);
3750 features = spa->spa_feat_stats;
3751
3752 if (features != NULL) {
3753 spa_feature_stats_from_cache(spa, features);
3754 } else {
3755 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3756 spa->spa_feat_stats = features;
3757 spa_feature_stats_from_disk(spa, features);
3758 }
3759
3760 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3761 features));
3762
3763 mutex_exit(&spa->spa_feat_stats_lock);
3764 }
3765
3766 int
3767 spa_get_stats(const char *name, nvlist_t **config,
3768 char *altroot, size_t buflen)
3769 {
3770 int error;
3771 spa_t *spa;
3772
3773 *config = NULL;
3774 error = spa_open_common(name, &spa, FTAG, NULL, config);
3775
3776 if (spa != NULL) {
3777 /*
3778 * This still leaves a window of inconsistency where the spares
3779 * or l2cache devices could change and the config would be
3780 * self-inconsistent.
3781 */
3782 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3783
3784 if (*config != NULL) {
3785 uint64_t loadtimes[2];
3786
3787 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3788 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3789 VERIFY(nvlist_add_uint64_array(*config,
3790 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3791
3792 VERIFY(nvlist_add_uint64(*config,
3793 ZPOOL_CONFIG_ERRCOUNT,
3794 spa_get_errlog_size(spa)) == 0);
3795
3796 if (spa_suspended(spa))
3797 VERIFY(nvlist_add_uint64(*config,
3798 ZPOOL_CONFIG_SUSPENDED,
3799 spa->spa_failmode) == 0);
3800
3801 spa_add_spares(spa, *config);
3802 spa_add_l2cache(spa, *config);
3803 spa_add_feature_stats(spa, *config);
3804 }
3805 }
3806
3807 /*
3808 * We want to get the alternate root even for faulted pools, so we cheat
3809 * and call spa_lookup() directly.
3810 */
3811 if (altroot) {
3812 if (spa == NULL) {
3813 mutex_enter(&spa_namespace_lock);
3814 spa = spa_lookup(name);
3815 if (spa)
3816 spa_altroot(spa, altroot, buflen);
3817 else
3818 altroot[0] = '\0';
3819 spa = NULL;
3820 mutex_exit(&spa_namespace_lock);
3821 } else {
3822 spa_altroot(spa, altroot, buflen);
3823 }
3824 }
3825
3826 if (spa != NULL) {
3827 spa_config_exit(spa, SCL_CONFIG, FTAG);
3828 spa_close(spa, FTAG);
3829 }
3830
3831 return (error);
3832 }
3833
3834 /*
3835 * Validate that the auxiliary device array is well formed. We must have an
3836 * array of nvlists, each which describes a valid leaf vdev. If this is an
3837 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3838 * specified, as long as they are well-formed.
3839 */
3840 static int
3841 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3842 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3843 vdev_labeltype_t label)
3844 {
3845 nvlist_t **dev;
3846 uint_t i, ndev;
3847 vdev_t *vd;
3848 int error;
3849
3850 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3851
3852 /*
3853 * It's acceptable to have no devs specified.
3854 */
3855 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3856 return (0);
3857
3858 if (ndev == 0)
3859 return (SET_ERROR(EINVAL));
3860
3861 /*
3862 * Make sure the pool is formatted with a version that supports this
3863 * device type.
3864 */
3865 if (spa_version(spa) < version)
3866 return (SET_ERROR(ENOTSUP));
3867
3868 /*
3869 * Set the pending device list so we correctly handle device in-use
3870 * checking.
3871 */
3872 sav->sav_pending = dev;
3873 sav->sav_npending = ndev;
3874
3875 for (i = 0; i < ndev; i++) {
3876 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3877 mode)) != 0)
3878 goto out;
3879
3880 if (!vd->vdev_ops->vdev_op_leaf) {
3881 vdev_free(vd);
3882 error = SET_ERROR(EINVAL);
3883 goto out;
3884 }
3885
3886 vd->vdev_top = vd;
3887
3888 if ((error = vdev_open(vd)) == 0 &&
3889 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3890 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3891 vd->vdev_guid) == 0);
3892 }
3893
3894 vdev_free(vd);
3895
3896 if (error &&
3897 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3898 goto out;
3899 else
3900 error = 0;
3901 }
3902
3903 out:
3904 sav->sav_pending = NULL;
3905 sav->sav_npending = 0;
3906 return (error);
3907 }
3908
3909 static int
3910 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3911 {
3912 int error;
3913
3914 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3915
3916 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3917 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3918 VDEV_LABEL_SPARE)) != 0) {
3919 return (error);
3920 }
3921
3922 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3923 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3924 VDEV_LABEL_L2CACHE));
3925 }
3926
3927 static void
3928 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3929 const char *config)
3930 {
3931 int i;
3932
3933 if (sav->sav_config != NULL) {
3934 nvlist_t **olddevs;
3935 uint_t oldndevs;
3936 nvlist_t **newdevs;
3937
3938 /*
3939 * Generate new dev list by concatenating with the
3940 * current dev list.
3941 */
3942 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3943 &olddevs, &oldndevs) == 0);
3944
3945 newdevs = kmem_alloc(sizeof (void *) *
3946 (ndevs + oldndevs), KM_SLEEP);
3947 for (i = 0; i < oldndevs; i++)
3948 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3949 KM_SLEEP) == 0);
3950 for (i = 0; i < ndevs; i++)
3951 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3952 KM_SLEEP) == 0);
3953
3954 VERIFY(nvlist_remove(sav->sav_config, config,
3955 DATA_TYPE_NVLIST_ARRAY) == 0);
3956
3957 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3958 config, newdevs, ndevs + oldndevs) == 0);
3959 for (i = 0; i < oldndevs + ndevs; i++)
3960 nvlist_free(newdevs[i]);
3961 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3962 } else {
3963 /*
3964 * Generate a new dev list.
3965 */
3966 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3967 KM_SLEEP) == 0);
3968 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3969 devs, ndevs) == 0);
3970 }
3971 }
3972
3973 /*
3974 * Stop and drop level 2 ARC devices
3975 */
3976 void
3977 spa_l2cache_drop(spa_t *spa)
3978 {
3979 vdev_t *vd;
3980 int i;
3981 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3982
3983 for (i = 0; i < sav->sav_count; i++) {
3984 uint64_t pool;
3985
3986 vd = sav->sav_vdevs[i];
3987 ASSERT(vd != NULL);
3988
3989 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3990 pool != 0ULL && l2arc_vdev_present(vd))
3991 l2arc_remove_vdev(vd);
3992 }
3993 }
3994
3995 /*
3996 * Pool Creation
3997 */
3998 int
3999 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4000 nvlist_t *zplprops)
4001 {
4002 spa_t *spa;
4003 char *altroot = NULL;
4004 vdev_t *rvd;
4005 dsl_pool_t *dp;
4006 dmu_tx_t *tx;
4007 int error = 0;
4008 uint64_t txg = TXG_INITIAL;
4009 nvlist_t **spares, **l2cache;
4010 uint_t nspares, nl2cache;
4011 uint64_t version, obj;
4012 boolean_t has_features;
4013 nvpair_t *elem;
4014 int c, i;
4015 char *poolname;
4016 nvlist_t *nvl;
4017
4018 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
4019 poolname = (char *)pool;
4020
4021 /*
4022 * If this pool already exists, return failure.
4023 */
4024 mutex_enter(&spa_namespace_lock);
4025 if (spa_lookup(poolname) != NULL) {
4026 mutex_exit(&spa_namespace_lock);
4027 return (SET_ERROR(EEXIST));
4028 }
4029
4030 /*
4031 * Allocate a new spa_t structure.
4032 */
4033 nvl = fnvlist_alloc();
4034 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4035 (void) nvlist_lookup_string(props,
4036 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4037 spa = spa_add(poolname, nvl, altroot);
4038 fnvlist_free(nvl);
4039 spa_activate(spa, spa_mode_global);
4040
4041 if (props && (error = spa_prop_validate(spa, props))) {
4042 spa_deactivate(spa);
4043 spa_remove(spa);
4044 mutex_exit(&spa_namespace_lock);
4045 return (error);
4046 }
4047
4048 /*
4049 * Temporary pool names should never be written to disk.
4050 */
4051 if (poolname != pool)
4052 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4053
4054 has_features = B_FALSE;
4055 for (elem = nvlist_next_nvpair(props, NULL);
4056 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4057 if (zpool_prop_feature(nvpair_name(elem)))
4058 has_features = B_TRUE;
4059 }
4060
4061 if (has_features || nvlist_lookup_uint64(props,
4062 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4063 version = SPA_VERSION;
4064 }
4065 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4066
4067 spa->spa_first_txg = txg;
4068 spa->spa_uberblock.ub_txg = txg - 1;
4069 spa->spa_uberblock.ub_version = version;
4070 spa->spa_ubsync = spa->spa_uberblock;
4071 spa->spa_load_state = SPA_LOAD_CREATE;
4072
4073 /*
4074 * Create "The Godfather" zio to hold all async IOs
4075 */
4076 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4077 KM_SLEEP);
4078 for (i = 0; i < max_ncpus; i++) {
4079 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4080 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4081 ZIO_FLAG_GODFATHER);
4082 }
4083
4084 /*
4085 * Create the root vdev.
4086 */
4087 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4088
4089 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4090
4091 ASSERT(error != 0 || rvd != NULL);
4092 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4093
4094 if (error == 0 && !zfs_allocatable_devs(nvroot))
4095 error = SET_ERROR(EINVAL);
4096
4097 if (error == 0 &&
4098 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4099 (error = spa_validate_aux(spa, nvroot, txg,
4100 VDEV_ALLOC_ADD)) == 0) {
4101 for (c = 0; c < rvd->vdev_children; c++) {
4102 vdev_metaslab_set_size(rvd->vdev_child[c]);
4103 vdev_expand(rvd->vdev_child[c], txg);
4104 }
4105 }
4106
4107 spa_config_exit(spa, SCL_ALL, FTAG);
4108
4109 if (error != 0) {
4110 spa_unload(spa);
4111 spa_deactivate(spa);
4112 spa_remove(spa);
4113 mutex_exit(&spa_namespace_lock);
4114 return (error);
4115 }
4116
4117 /*
4118 * Get the list of spares, if specified.
4119 */
4120 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4121 &spares, &nspares) == 0) {
4122 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4123 KM_SLEEP) == 0);
4124 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4125 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4126 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4127 spa_load_spares(spa);
4128 spa_config_exit(spa, SCL_ALL, FTAG);
4129 spa->spa_spares.sav_sync = B_TRUE;
4130 }
4131
4132 /*
4133 * Get the list of level 2 cache devices, if specified.
4134 */
4135 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4136 &l2cache, &nl2cache) == 0) {
4137 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4138 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4139 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4140 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4141 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4142 spa_load_l2cache(spa);
4143 spa_config_exit(spa, SCL_ALL, FTAG);
4144 spa->spa_l2cache.sav_sync = B_TRUE;
4145 }
4146
4147 spa->spa_is_initializing = B_TRUE;
4148 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4149 spa->spa_meta_objset = dp->dp_meta_objset;
4150 spa->spa_is_initializing = B_FALSE;
4151
4152 /*
4153 * Create DDTs (dedup tables).
4154 */
4155 ddt_create(spa);
4156
4157 spa_update_dspace(spa);
4158
4159 tx = dmu_tx_create_assigned(dp, txg);
4160
4161 /*
4162 * Create the pool's history object.
4163 */
4164 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
4165 spa_history_create_obj(spa, tx);
4166
4167 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4168 spa_history_log_version(spa, "create", tx);
4169
4170 /*
4171 * Create the pool config object.
4172 */
4173 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4174 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4175 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4176
4177 if (zap_add(spa->spa_meta_objset,
4178 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4179 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4180 cmn_err(CE_PANIC, "failed to add pool config");
4181 }
4182
4183 if (spa_version(spa) >= SPA_VERSION_FEATURES)
4184 spa_feature_create_zap_objects(spa, tx);
4185
4186 if (zap_add(spa->spa_meta_objset,
4187 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4188 sizeof (uint64_t), 1, &version, tx) != 0) {
4189 cmn_err(CE_PANIC, "failed to add pool version");
4190 }
4191
4192 /* Newly created pools with the right version are always deflated. */
4193 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4194 spa->spa_deflate = TRUE;
4195 if (zap_add(spa->spa_meta_objset,
4196 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4197 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4198 cmn_err(CE_PANIC, "failed to add deflate");
4199 }
4200 }
4201
4202 /*
4203 * Create the deferred-free bpobj. Turn off compression
4204 * because sync-to-convergence takes longer if the blocksize
4205 * keeps changing.
4206 */
4207 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4208 dmu_object_set_compress(spa->spa_meta_objset, obj,
4209 ZIO_COMPRESS_OFF, tx);
4210 if (zap_add(spa->spa_meta_objset,
4211 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4212 sizeof (uint64_t), 1, &obj, tx) != 0) {
4213 cmn_err(CE_PANIC, "failed to add bpobj");
4214 }
4215 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4216 spa->spa_meta_objset, obj));
4217
4218 /*
4219 * Generate some random noise for salted checksums to operate on.
4220 */
4221 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4222 sizeof (spa->spa_cksum_salt.zcs_bytes));
4223
4224 /*
4225 * Set pool properties.
4226 */
4227 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4228 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4229 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4230 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4231 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
4232
4233 if (props != NULL) {
4234 spa_configfile_set(spa, props, B_FALSE);
4235 spa_sync_props(props, tx);
4236 }
4237
4238 dmu_tx_commit(tx);
4239
4240 spa->spa_sync_on = B_TRUE;
4241 txg_sync_start(spa->spa_dsl_pool);
4242 mmp_thread_start(spa);
4243
4244 /*
4245 * We explicitly wait for the first transaction to complete so that our
4246 * bean counters are appropriately updated.
4247 */
4248 txg_wait_synced(spa->spa_dsl_pool, txg);
4249
4250 spa_config_sync(spa, B_FALSE, B_TRUE);
4251
4252 /*
4253 * Don't count references from objsets that are already closed
4254 * and are making their way through the eviction process.
4255 */
4256 spa_evicting_os_wait(spa);
4257 spa->spa_minref = refcount_count(&spa->spa_refcount);
4258 spa->spa_load_state = SPA_LOAD_NONE;
4259
4260 mutex_exit(&spa_namespace_lock);
4261
4262 return (0);
4263 }
4264
4265 /*
4266 * Import a non-root pool into the system.
4267 */
4268 int
4269 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4270 {
4271 spa_t *spa;
4272 char *altroot = NULL;
4273 spa_load_state_t state = SPA_LOAD_IMPORT;
4274 zpool_rewind_policy_t policy;
4275 uint64_t mode = spa_mode_global;
4276 uint64_t readonly = B_FALSE;
4277 int error;
4278 nvlist_t *nvroot;
4279 nvlist_t **spares, **l2cache;
4280 uint_t nspares, nl2cache;
4281
4282 /*
4283 * If a pool with this name exists, return failure.
4284 */
4285 mutex_enter(&spa_namespace_lock);
4286 if (spa_lookup(pool) != NULL) {
4287 mutex_exit(&spa_namespace_lock);
4288 return (SET_ERROR(EEXIST));
4289 }
4290
4291 /*
4292 * Create and initialize the spa structure.
4293 */
4294 (void) nvlist_lookup_string(props,
4295 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4296 (void) nvlist_lookup_uint64(props,
4297 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4298 if (readonly)
4299 mode = FREAD;
4300 spa = spa_add(pool, config, altroot);
4301 spa->spa_import_flags = flags;
4302
4303 /*
4304 * Verbatim import - Take a pool and insert it into the namespace
4305 * as if it had been loaded at boot.
4306 */
4307 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4308 if (props != NULL)
4309 spa_configfile_set(spa, props, B_FALSE);
4310
4311 spa_config_sync(spa, B_FALSE, B_TRUE);
4312 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4313
4314 mutex_exit(&spa_namespace_lock);
4315 return (0);
4316 }
4317
4318 spa_activate(spa, mode);
4319
4320 /*
4321 * Don't start async tasks until we know everything is healthy.
4322 */
4323 spa_async_suspend(spa);
4324
4325 zpool_get_rewind_policy(config, &policy);
4326 if (policy.zrp_request & ZPOOL_DO_REWIND)
4327 state = SPA_LOAD_RECOVER;
4328
4329 /*
4330 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4331 * because the user-supplied config is actually the one to trust when
4332 * doing an import.
4333 */
4334 if (state != SPA_LOAD_RECOVER)
4335 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4336
4337 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4338 policy.zrp_request);
4339
4340 /*
4341 * Propagate anything learned while loading the pool and pass it
4342 * back to caller (i.e. rewind info, missing devices, etc).
4343 */
4344 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4345 spa->spa_load_info) == 0);
4346
4347 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4348 /*
4349 * Toss any existing sparelist, as it doesn't have any validity
4350 * anymore, and conflicts with spa_has_spare().
4351 */
4352 if (spa->spa_spares.sav_config) {
4353 nvlist_free(spa->spa_spares.sav_config);
4354 spa->spa_spares.sav_config = NULL;
4355 spa_load_spares(spa);
4356 }
4357 if (spa->spa_l2cache.sav_config) {
4358 nvlist_free(spa->spa_l2cache.sav_config);
4359 spa->spa_l2cache.sav_config = NULL;
4360 spa_load_l2cache(spa);
4361 }
4362
4363 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4364 &nvroot) == 0);
4365 spa_config_exit(spa, SCL_ALL, FTAG);
4366
4367 if (props != NULL)
4368 spa_configfile_set(spa, props, B_FALSE);
4369
4370 if (error != 0 || (props && spa_writeable(spa) &&
4371 (error = spa_prop_set(spa, props)))) {
4372 spa_unload(spa);
4373 spa_deactivate(spa);
4374 spa_remove(spa);
4375 mutex_exit(&spa_namespace_lock);
4376 return (error);
4377 }
4378
4379 spa_async_resume(spa);
4380
4381 /*
4382 * Override any spares and level 2 cache devices as specified by
4383 * the user, as these may have correct device names/devids, etc.
4384 */
4385 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4386 &spares, &nspares) == 0) {
4387 if (spa->spa_spares.sav_config)
4388 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4389 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4390 else
4391 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4392 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4393 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4394 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4396 spa_load_spares(spa);
4397 spa_config_exit(spa, SCL_ALL, FTAG);
4398 spa->spa_spares.sav_sync = B_TRUE;
4399 }
4400 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4401 &l2cache, &nl2cache) == 0) {
4402 if (spa->spa_l2cache.sav_config)
4403 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4404 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4405 else
4406 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4407 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4408 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4409 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4410 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4411 spa_load_l2cache(spa);
4412 spa_config_exit(spa, SCL_ALL, FTAG);
4413 spa->spa_l2cache.sav_sync = B_TRUE;
4414 }
4415
4416 /*
4417 * Check for any removed devices.
4418 */
4419 if (spa->spa_autoreplace) {
4420 spa_aux_check_removed(&spa->spa_spares);
4421 spa_aux_check_removed(&spa->spa_l2cache);
4422 }
4423
4424 if (spa_writeable(spa)) {
4425 /*
4426 * Update the config cache to include the newly-imported pool.
4427 */
4428 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4429 }
4430
4431 /*
4432 * It's possible that the pool was expanded while it was exported.
4433 * We kick off an async task to handle this for us.
4434 */
4435 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4436
4437 spa_history_log_version(spa, "import", NULL);
4438
4439 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4440
4441 zvol_create_minors(spa, pool, B_TRUE);
4442
4443 mutex_exit(&spa_namespace_lock);
4444
4445 return (0);
4446 }
4447
4448 nvlist_t *
4449 spa_tryimport(nvlist_t *tryconfig)
4450 {
4451 nvlist_t *config = NULL;
4452 char *poolname;
4453 spa_t *spa;
4454 uint64_t state;
4455 int error;
4456
4457 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4458 return (NULL);
4459
4460 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4461 return (NULL);
4462
4463 /*
4464 * Create and initialize the spa structure.
4465 */
4466 mutex_enter(&spa_namespace_lock);
4467 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4468 spa_activate(spa, FREAD);
4469
4470 /*
4471 * Pass off the heavy lifting to spa_load().
4472 * Pass TRUE for mosconfig because the user-supplied config
4473 * is actually the one to trust when doing an import.
4474 */
4475 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4476
4477 /*
4478 * If 'tryconfig' was at least parsable, return the current config.
4479 */
4480 if (spa->spa_root_vdev != NULL) {
4481 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4482 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4483 poolname) == 0);
4484 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4485 state) == 0);
4486 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4487 spa->spa_uberblock.ub_timestamp) == 0);
4488 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4489 spa->spa_load_info) == 0);
4490 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4491 spa->spa_errata) == 0);
4492
4493 /*
4494 * If the bootfs property exists on this pool then we
4495 * copy it out so that external consumers can tell which
4496 * pools are bootable.
4497 */
4498 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4499 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4500
4501 /*
4502 * We have to play games with the name since the
4503 * pool was opened as TRYIMPORT_NAME.
4504 */
4505 if (dsl_dsobj_to_dsname(spa_name(spa),
4506 spa->spa_bootfs, tmpname) == 0) {
4507 char *cp;
4508 char *dsname;
4509
4510 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4511
4512 cp = strchr(tmpname, '/');
4513 if (cp == NULL) {
4514 (void) strlcpy(dsname, tmpname,
4515 MAXPATHLEN);
4516 } else {
4517 (void) snprintf(dsname, MAXPATHLEN,
4518 "%s/%s", poolname, ++cp);
4519 }
4520 VERIFY(nvlist_add_string(config,
4521 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4522 kmem_free(dsname, MAXPATHLEN);
4523 }
4524 kmem_free(tmpname, MAXPATHLEN);
4525 }
4526
4527 /*
4528 * Add the list of hot spares and level 2 cache devices.
4529 */
4530 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4531 spa_add_spares(spa, config);
4532 spa_add_l2cache(spa, config);
4533 spa_config_exit(spa, SCL_CONFIG, FTAG);
4534 }
4535
4536 spa_unload(spa);
4537 spa_deactivate(spa);
4538 spa_remove(spa);
4539 mutex_exit(&spa_namespace_lock);
4540
4541 return (config);
4542 }
4543
4544 /*
4545 * Pool export/destroy
4546 *
4547 * The act of destroying or exporting a pool is very simple. We make sure there
4548 * is no more pending I/O and any references to the pool are gone. Then, we
4549 * update the pool state and sync all the labels to disk, removing the
4550 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4551 * we don't sync the labels or remove the configuration cache.
4552 */
4553 static int
4554 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4555 boolean_t force, boolean_t hardforce)
4556 {
4557 spa_t *spa;
4558
4559 if (oldconfig)
4560 *oldconfig = NULL;
4561
4562 if (!(spa_mode_global & FWRITE))
4563 return (SET_ERROR(EROFS));
4564
4565 mutex_enter(&spa_namespace_lock);
4566 if ((spa = spa_lookup(pool)) == NULL) {
4567 mutex_exit(&spa_namespace_lock);
4568 return (SET_ERROR(ENOENT));
4569 }
4570
4571 /*
4572 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4573 * reacquire the namespace lock, and see if we can export.
4574 */
4575 spa_open_ref(spa, FTAG);
4576 mutex_exit(&spa_namespace_lock);
4577 spa_async_suspend(spa);
4578 if (spa->spa_zvol_taskq) {
4579 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
4580 taskq_wait(spa->spa_zvol_taskq);
4581 }
4582 mutex_enter(&spa_namespace_lock);
4583 spa_close(spa, FTAG);
4584
4585 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4586 goto export_spa;
4587 /*
4588 * The pool will be in core if it's openable, in which case we can
4589 * modify its state. Objsets may be open only because they're dirty,
4590 * so we have to force it to sync before checking spa_refcnt.
4591 */
4592 if (spa->spa_sync_on) {
4593 txg_wait_synced(spa->spa_dsl_pool, 0);
4594 spa_evicting_os_wait(spa);
4595 }
4596
4597 /*
4598 * A pool cannot be exported or destroyed if there are active
4599 * references. If we are resetting a pool, allow references by
4600 * fault injection handlers.
4601 */
4602 if (!spa_refcount_zero(spa) ||
4603 (spa->spa_inject_ref != 0 &&
4604 new_state != POOL_STATE_UNINITIALIZED)) {
4605 spa_async_resume(spa);
4606 mutex_exit(&spa_namespace_lock);
4607 return (SET_ERROR(EBUSY));
4608 }
4609
4610 if (spa->spa_sync_on) {
4611 /*
4612 * A pool cannot be exported if it has an active shared spare.
4613 * This is to prevent other pools stealing the active spare
4614 * from an exported pool. At user's own will, such pool can
4615 * be forcedly exported.
4616 */
4617 if (!force && new_state == POOL_STATE_EXPORTED &&
4618 spa_has_active_shared_spare(spa)) {
4619 spa_async_resume(spa);
4620 mutex_exit(&spa_namespace_lock);
4621 return (SET_ERROR(EXDEV));
4622 }
4623
4624 /*
4625 * We want this to be reflected on every label,
4626 * so mark them all dirty. spa_unload() will do the
4627 * final sync that pushes these changes out.
4628 */
4629 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4630 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4631 spa->spa_state = new_state;
4632 spa->spa_final_txg = spa_last_synced_txg(spa) +
4633 TXG_DEFER_SIZE + 1;
4634 vdev_config_dirty(spa->spa_root_vdev);
4635 spa_config_exit(spa, SCL_ALL, FTAG);
4636 }
4637 }
4638
4639 export_spa:
4640 if (new_state == POOL_STATE_DESTROYED)
4641 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4642 else if (new_state == POOL_STATE_EXPORTED)
4643 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
4644
4645 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4646 spa_unload(spa);
4647 spa_deactivate(spa);
4648 }
4649
4650 if (oldconfig && spa->spa_config)
4651 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4652
4653 if (new_state != POOL_STATE_UNINITIALIZED) {
4654 if (!hardforce)
4655 spa_config_sync(spa, B_TRUE, B_TRUE);
4656 spa_remove(spa);
4657 }
4658 mutex_exit(&spa_namespace_lock);
4659
4660 return (0);
4661 }
4662
4663 /*
4664 * Destroy a storage pool.
4665 */
4666 int
4667 spa_destroy(char *pool)
4668 {
4669 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4670 B_FALSE, B_FALSE));
4671 }
4672
4673 /*
4674 * Export a storage pool.
4675 */
4676 int
4677 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4678 boolean_t hardforce)
4679 {
4680 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4681 force, hardforce));
4682 }
4683
4684 /*
4685 * Similar to spa_export(), this unloads the spa_t without actually removing it
4686 * from the namespace in any way.
4687 */
4688 int
4689 spa_reset(char *pool)
4690 {
4691 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4692 B_FALSE, B_FALSE));
4693 }
4694
4695 /*
4696 * ==========================================================================
4697 * Device manipulation
4698 * ==========================================================================
4699 */
4700
4701 /*
4702 * Add a device to a storage pool.
4703 */
4704 int
4705 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4706 {
4707 uint64_t txg, id;
4708 int error;
4709 vdev_t *rvd = spa->spa_root_vdev;
4710 vdev_t *vd, *tvd;
4711 nvlist_t **spares, **l2cache;
4712 uint_t nspares, nl2cache;
4713 int c;
4714
4715 ASSERT(spa_writeable(spa));
4716
4717 txg = spa_vdev_enter(spa);
4718
4719 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4720 VDEV_ALLOC_ADD)) != 0)
4721 return (spa_vdev_exit(spa, NULL, txg, error));
4722
4723 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4724
4725 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4726 &nspares) != 0)
4727 nspares = 0;
4728
4729 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4730 &nl2cache) != 0)
4731 nl2cache = 0;
4732
4733 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4734 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4735
4736 if (vd->vdev_children != 0 &&
4737 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4738 return (spa_vdev_exit(spa, vd, txg, error));
4739
4740 /*
4741 * We must validate the spares and l2cache devices after checking the
4742 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4743 */
4744 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4745 return (spa_vdev_exit(spa, vd, txg, error));
4746
4747 /*
4748 * Transfer each new top-level vdev from vd to rvd.
4749 */
4750 for (c = 0; c < vd->vdev_children; c++) {
4751
4752 /*
4753 * Set the vdev id to the first hole, if one exists.
4754 */
4755 for (id = 0; id < rvd->vdev_children; id++) {
4756 if (rvd->vdev_child[id]->vdev_ishole) {
4757 vdev_free(rvd->vdev_child[id]);
4758 break;
4759 }
4760 }
4761 tvd = vd->vdev_child[c];
4762 vdev_remove_child(vd, tvd);
4763 tvd->vdev_id = id;
4764 vdev_add_child(rvd, tvd);
4765 vdev_config_dirty(tvd);
4766 }
4767
4768 if (nspares != 0) {
4769 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4770 ZPOOL_CONFIG_SPARES);
4771 spa_load_spares(spa);
4772 spa->spa_spares.sav_sync = B_TRUE;
4773 }
4774
4775 if (nl2cache != 0) {
4776 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4777 ZPOOL_CONFIG_L2CACHE);
4778 spa_load_l2cache(spa);
4779 spa->spa_l2cache.sav_sync = B_TRUE;
4780 }
4781
4782 /*
4783 * We have to be careful when adding new vdevs to an existing pool.
4784 * If other threads start allocating from these vdevs before we
4785 * sync the config cache, and we lose power, then upon reboot we may
4786 * fail to open the pool because there are DVAs that the config cache
4787 * can't translate. Therefore, we first add the vdevs without
4788 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4789 * and then let spa_config_update() initialize the new metaslabs.
4790 *
4791 * spa_load() checks for added-but-not-initialized vdevs, so that
4792 * if we lose power at any point in this sequence, the remaining
4793 * steps will be completed the next time we load the pool.
4794 */
4795 (void) spa_vdev_exit(spa, vd, txg, 0);
4796
4797 mutex_enter(&spa_namespace_lock);
4798 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4799 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
4800 mutex_exit(&spa_namespace_lock);
4801
4802 return (0);
4803 }
4804
4805 /*
4806 * Attach a device to a mirror. The arguments are the path to any device
4807 * in the mirror, and the nvroot for the new device. If the path specifies
4808 * a device that is not mirrored, we automatically insert the mirror vdev.
4809 *
4810 * If 'replacing' is specified, the new device is intended to replace the
4811 * existing device; in this case the two devices are made into their own
4812 * mirror using the 'replacing' vdev, which is functionally identical to
4813 * the mirror vdev (it actually reuses all the same ops) but has a few
4814 * extra rules: you can't attach to it after it's been created, and upon
4815 * completion of resilvering, the first disk (the one being replaced)
4816 * is automatically detached.
4817 */
4818 int
4819 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4820 {
4821 uint64_t txg, dtl_max_txg;
4822 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4823 vdev_ops_t *pvops;
4824 char *oldvdpath, *newvdpath;
4825 int newvd_isspare;
4826 int error;
4827 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4828
4829 ASSERT(spa_writeable(spa));
4830
4831 txg = spa_vdev_enter(spa);
4832
4833 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4834
4835 if (oldvd == NULL)
4836 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4837
4838 if (!oldvd->vdev_ops->vdev_op_leaf)
4839 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4840
4841 pvd = oldvd->vdev_parent;
4842
4843 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4844 VDEV_ALLOC_ATTACH)) != 0)
4845 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4846
4847 if (newrootvd->vdev_children != 1)
4848 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4849
4850 newvd = newrootvd->vdev_child[0];
4851
4852 if (!newvd->vdev_ops->vdev_op_leaf)
4853 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4854
4855 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4856 return (spa_vdev_exit(spa, newrootvd, txg, error));
4857
4858 /*
4859 * Spares can't replace logs
4860 */
4861 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4862 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4863
4864 if (!replacing) {
4865 /*
4866 * For attach, the only allowable parent is a mirror or the root
4867 * vdev.
4868 */
4869 if (pvd->vdev_ops != &vdev_mirror_ops &&
4870 pvd->vdev_ops != &vdev_root_ops)
4871 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4872
4873 pvops = &vdev_mirror_ops;
4874 } else {
4875 /*
4876 * Active hot spares can only be replaced by inactive hot
4877 * spares.
4878 */
4879 if (pvd->vdev_ops == &vdev_spare_ops &&
4880 oldvd->vdev_isspare &&
4881 !spa_has_spare(spa, newvd->vdev_guid))
4882 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4883
4884 /*
4885 * If the source is a hot spare, and the parent isn't already a
4886 * spare, then we want to create a new hot spare. Otherwise, we
4887 * want to create a replacing vdev. The user is not allowed to
4888 * attach to a spared vdev child unless the 'isspare' state is
4889 * the same (spare replaces spare, non-spare replaces
4890 * non-spare).
4891 */
4892 if (pvd->vdev_ops == &vdev_replacing_ops &&
4893 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4894 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4895 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4896 newvd->vdev_isspare != oldvd->vdev_isspare) {
4897 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4898 }
4899
4900 if (newvd->vdev_isspare)
4901 pvops = &vdev_spare_ops;
4902 else
4903 pvops = &vdev_replacing_ops;
4904 }
4905
4906 /*
4907 * Make sure the new device is big enough.
4908 */
4909 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4910 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4911
4912 /*
4913 * The new device cannot have a higher alignment requirement
4914 * than the top-level vdev.
4915 */
4916 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4917 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4918
4919 /*
4920 * If this is an in-place replacement, update oldvd's path and devid
4921 * to make it distinguishable from newvd, and unopenable from now on.
4922 */
4923 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4924 spa_strfree(oldvd->vdev_path);
4925 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4926 KM_SLEEP);
4927 (void) sprintf(oldvd->vdev_path, "%s/%s",
4928 newvd->vdev_path, "old");
4929 if (oldvd->vdev_devid != NULL) {
4930 spa_strfree(oldvd->vdev_devid);
4931 oldvd->vdev_devid = NULL;
4932 }
4933 }
4934
4935 /* mark the device being resilvered */
4936 newvd->vdev_resilver_txg = txg;
4937
4938 /*
4939 * If the parent is not a mirror, or if we're replacing, insert the new
4940 * mirror/replacing/spare vdev above oldvd.
4941 */
4942 if (pvd->vdev_ops != pvops)
4943 pvd = vdev_add_parent(oldvd, pvops);
4944
4945 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4946 ASSERT(pvd->vdev_ops == pvops);
4947 ASSERT(oldvd->vdev_parent == pvd);
4948
4949 /*
4950 * Extract the new device from its root and add it to pvd.
4951 */
4952 vdev_remove_child(newrootvd, newvd);
4953 newvd->vdev_id = pvd->vdev_children;
4954 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4955 vdev_add_child(pvd, newvd);
4956
4957 /*
4958 * Reevaluate the parent vdev state.
4959 */
4960 vdev_propagate_state(pvd);
4961
4962 tvd = newvd->vdev_top;
4963 ASSERT(pvd->vdev_top == tvd);
4964 ASSERT(tvd->vdev_parent == rvd);
4965
4966 vdev_config_dirty(tvd);
4967
4968 /*
4969 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4970 * for any dmu_sync-ed blocks. It will propagate upward when
4971 * spa_vdev_exit() calls vdev_dtl_reassess().
4972 */
4973 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4974
4975 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4976 dtl_max_txg - TXG_INITIAL);
4977
4978 if (newvd->vdev_isspare) {
4979 spa_spare_activate(newvd);
4980 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
4981 }
4982
4983 oldvdpath = spa_strdup(oldvd->vdev_path);
4984 newvdpath = spa_strdup(newvd->vdev_path);
4985 newvd_isspare = newvd->vdev_isspare;
4986
4987 /*
4988 * Mark newvd's DTL dirty in this txg.
4989 */
4990 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4991
4992 /*
4993 * Schedule the resilver to restart in the future. We do this to
4994 * ensure that dmu_sync-ed blocks have been stitched into the
4995 * respective datasets.
4996 */
4997 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4998
4999 if (spa->spa_bootfs)
5000 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5001
5002 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5003
5004 /*
5005 * Commit the config
5006 */
5007 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5008
5009 spa_history_log_internal(spa, "vdev attach", NULL,
5010 "%s vdev=%s %s vdev=%s",
5011 replacing && newvd_isspare ? "spare in" :
5012 replacing ? "replace" : "attach", newvdpath,
5013 replacing ? "for" : "to", oldvdpath);
5014
5015 spa_strfree(oldvdpath);
5016 spa_strfree(newvdpath);
5017
5018 return (0);
5019 }
5020
5021 /*
5022 * Detach a device from a mirror or replacing vdev.
5023 *
5024 * If 'replace_done' is specified, only detach if the parent
5025 * is a replacing vdev.
5026 */
5027 int
5028 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5029 {
5030 uint64_t txg;
5031 int error;
5032 vdev_t *vd, *pvd, *cvd, *tvd;
5033 boolean_t unspare = B_FALSE;
5034 uint64_t unspare_guid = 0;
5035 char *vdpath;
5036 int c, t;
5037 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5038 ASSERT(spa_writeable(spa));
5039
5040 txg = spa_vdev_enter(spa);
5041
5042 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5043
5044 if (vd == NULL)
5045 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5046
5047 if (!vd->vdev_ops->vdev_op_leaf)
5048 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5049
5050 pvd = vd->vdev_parent;
5051
5052 /*
5053 * If the parent/child relationship is not as expected, don't do it.
5054 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5055 * vdev that's replacing B with C. The user's intent in replacing
5056 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5057 * the replace by detaching C, the expected behavior is to end up
5058 * M(A,B). But suppose that right after deciding to detach C,
5059 * the replacement of B completes. We would have M(A,C), and then
5060 * ask to detach C, which would leave us with just A -- not what
5061 * the user wanted. To prevent this, we make sure that the
5062 * parent/child relationship hasn't changed -- in this example,
5063 * that C's parent is still the replacing vdev R.
5064 */
5065 if (pvd->vdev_guid != pguid && pguid != 0)
5066 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5067
5068 /*
5069 * Only 'replacing' or 'spare' vdevs can be replaced.
5070 */
5071 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5072 pvd->vdev_ops != &vdev_spare_ops)
5073 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5074
5075 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5076 spa_version(spa) >= SPA_VERSION_SPARES);
5077
5078 /*
5079 * Only mirror, replacing, and spare vdevs support detach.
5080 */
5081 if (pvd->vdev_ops != &vdev_replacing_ops &&
5082 pvd->vdev_ops != &vdev_mirror_ops &&
5083 pvd->vdev_ops != &vdev_spare_ops)
5084 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5085
5086 /*
5087 * If this device has the only valid copy of some data,
5088 * we cannot safely detach it.
5089 */
5090 if (vdev_dtl_required(vd))
5091 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5092
5093 ASSERT(pvd->vdev_children >= 2);
5094
5095 /*
5096 * If we are detaching the second disk from a replacing vdev, then
5097 * check to see if we changed the original vdev's path to have "/old"
5098 * at the end in spa_vdev_attach(). If so, undo that change now.
5099 */
5100 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5101 vd->vdev_path != NULL) {
5102 size_t len = strlen(vd->vdev_path);
5103
5104 for (c = 0; c < pvd->vdev_children; c++) {
5105 cvd = pvd->vdev_child[c];
5106
5107 if (cvd == vd || cvd->vdev_path == NULL)
5108 continue;
5109
5110 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5111 strcmp(cvd->vdev_path + len, "/old") == 0) {
5112 spa_strfree(cvd->vdev_path);
5113 cvd->vdev_path = spa_strdup(vd->vdev_path);
5114 break;
5115 }
5116 }
5117 }
5118
5119 /*
5120 * If we are detaching the original disk from a spare, then it implies
5121 * that the spare should become a real disk, and be removed from the
5122 * active spare list for the pool.
5123 */
5124 if (pvd->vdev_ops == &vdev_spare_ops &&
5125 vd->vdev_id == 0 &&
5126 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5127 unspare = B_TRUE;
5128
5129 /*
5130 * Erase the disk labels so the disk can be used for other things.
5131 * This must be done after all other error cases are handled,
5132 * but before we disembowel vd (so we can still do I/O to it).
5133 * But if we can't do it, don't treat the error as fatal --
5134 * it may be that the unwritability of the disk is the reason
5135 * it's being detached!
5136 */
5137 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5138
5139 /*
5140 * Remove vd from its parent and compact the parent's children.
5141 */
5142 vdev_remove_child(pvd, vd);
5143 vdev_compact_children(pvd);
5144
5145 /*
5146 * Remember one of the remaining children so we can get tvd below.
5147 */
5148 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5149
5150 /*
5151 * If we need to remove the remaining child from the list of hot spares,
5152 * do it now, marking the vdev as no longer a spare in the process.
5153 * We must do this before vdev_remove_parent(), because that can
5154 * change the GUID if it creates a new toplevel GUID. For a similar
5155 * reason, we must remove the spare now, in the same txg as the detach;
5156 * otherwise someone could attach a new sibling, change the GUID, and
5157 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5158 */
5159 if (unspare) {
5160 ASSERT(cvd->vdev_isspare);
5161 spa_spare_remove(cvd);
5162 unspare_guid = cvd->vdev_guid;
5163 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5164 cvd->vdev_unspare = B_TRUE;
5165 }
5166
5167 /*
5168 * If the parent mirror/replacing vdev only has one child,
5169 * the parent is no longer needed. Remove it from the tree.
5170 */
5171 if (pvd->vdev_children == 1) {
5172 if (pvd->vdev_ops == &vdev_spare_ops)
5173 cvd->vdev_unspare = B_FALSE;
5174 vdev_remove_parent(cvd);
5175 }
5176
5177
5178 /*
5179 * We don't set tvd until now because the parent we just removed
5180 * may have been the previous top-level vdev.
5181 */
5182 tvd = cvd->vdev_top;
5183 ASSERT(tvd->vdev_parent == rvd);
5184
5185 /*
5186 * Reevaluate the parent vdev state.
5187 */
5188 vdev_propagate_state(cvd);
5189
5190 /*
5191 * If the 'autoexpand' property is set on the pool then automatically
5192 * try to expand the size of the pool. For example if the device we
5193 * just detached was smaller than the others, it may be possible to
5194 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5195 * first so that we can obtain the updated sizes of the leaf vdevs.
5196 */
5197 if (spa->spa_autoexpand) {
5198 vdev_reopen(tvd);
5199 vdev_expand(tvd, txg);
5200 }
5201
5202 vdev_config_dirty(tvd);
5203
5204 /*
5205 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5206 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5207 * But first make sure we're not on any *other* txg's DTL list, to
5208 * prevent vd from being accessed after it's freed.
5209 */
5210 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
5211 for (t = 0; t < TXG_SIZE; t++)
5212 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5213 vd->vdev_detached = B_TRUE;
5214 vdev_dirty(tvd, VDD_DTL, vd, txg);
5215
5216 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5217
5218 /* hang on to the spa before we release the lock */
5219 spa_open_ref(spa, FTAG);
5220
5221 error = spa_vdev_exit(spa, vd, txg, 0);
5222
5223 spa_history_log_internal(spa, "detach", NULL,
5224 "vdev=%s", vdpath);
5225 spa_strfree(vdpath);
5226
5227 /*
5228 * If this was the removal of the original device in a hot spare vdev,
5229 * then we want to go through and remove the device from the hot spare
5230 * list of every other pool.
5231 */
5232 if (unspare) {
5233 spa_t *altspa = NULL;
5234
5235 mutex_enter(&spa_namespace_lock);
5236 while ((altspa = spa_next(altspa)) != NULL) {
5237 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5238 altspa == spa)
5239 continue;
5240
5241 spa_open_ref(altspa, FTAG);
5242 mutex_exit(&spa_namespace_lock);
5243 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5244 mutex_enter(&spa_namespace_lock);
5245 spa_close(altspa, FTAG);
5246 }
5247 mutex_exit(&spa_namespace_lock);
5248
5249 /* search the rest of the vdevs for spares to remove */
5250 spa_vdev_resilver_done(spa);
5251 }
5252
5253 /* all done with the spa; OK to release */
5254 mutex_enter(&spa_namespace_lock);
5255 spa_close(spa, FTAG);
5256 mutex_exit(&spa_namespace_lock);
5257
5258 return (error);
5259 }
5260
5261 /*
5262 * Split a set of devices from their mirrors, and create a new pool from them.
5263 */
5264 int
5265 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5266 nvlist_t *props, boolean_t exp)
5267 {
5268 int error = 0;
5269 uint64_t txg, *glist;
5270 spa_t *newspa;
5271 uint_t c, children, lastlog;
5272 nvlist_t **child, *nvl, *tmp;
5273 dmu_tx_t *tx;
5274 char *altroot = NULL;
5275 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5276 boolean_t activate_slog;
5277
5278 ASSERT(spa_writeable(spa));
5279
5280 txg = spa_vdev_enter(spa);
5281
5282 /* clear the log and flush everything up to now */
5283 activate_slog = spa_passivate_log(spa);
5284 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5285 error = spa_offline_log(spa);
5286 txg = spa_vdev_config_enter(spa);
5287
5288 if (activate_slog)
5289 spa_activate_log(spa);
5290
5291 if (error != 0)
5292 return (spa_vdev_exit(spa, NULL, txg, error));
5293
5294 /* check new spa name before going any further */
5295 if (spa_lookup(newname) != NULL)
5296 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5297
5298 /*
5299 * scan through all the children to ensure they're all mirrors
5300 */
5301 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5302 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5303 &children) != 0)
5304 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5305
5306 /* first, check to ensure we've got the right child count */
5307 rvd = spa->spa_root_vdev;
5308 lastlog = 0;
5309 for (c = 0; c < rvd->vdev_children; c++) {
5310 vdev_t *vd = rvd->vdev_child[c];
5311
5312 /* don't count the holes & logs as children */
5313 if (vd->vdev_islog || vd->vdev_ishole) {
5314 if (lastlog == 0)
5315 lastlog = c;
5316 continue;
5317 }
5318
5319 lastlog = 0;
5320 }
5321 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5322 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5323
5324 /* next, ensure no spare or cache devices are part of the split */
5325 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5326 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5327 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5328
5329 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5330 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5331
5332 /* then, loop over each vdev and validate it */
5333 for (c = 0; c < children; c++) {
5334 uint64_t is_hole = 0;
5335
5336 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5337 &is_hole);
5338
5339 if (is_hole != 0) {
5340 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5341 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5342 continue;
5343 } else {
5344 error = SET_ERROR(EINVAL);
5345 break;
5346 }
5347 }
5348
5349 /* which disk is going to be split? */
5350 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5351 &glist[c]) != 0) {
5352 error = SET_ERROR(EINVAL);
5353 break;
5354 }
5355
5356 /* look it up in the spa */
5357 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5358 if (vml[c] == NULL) {
5359 error = SET_ERROR(ENODEV);
5360 break;
5361 }
5362
5363 /* make sure there's nothing stopping the split */
5364 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5365 vml[c]->vdev_islog ||
5366 vml[c]->vdev_ishole ||
5367 vml[c]->vdev_isspare ||
5368 vml[c]->vdev_isl2cache ||
5369 !vdev_writeable(vml[c]) ||
5370 vml[c]->vdev_children != 0 ||
5371 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5372 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5373 error = SET_ERROR(EINVAL);
5374 break;
5375 }
5376
5377 if (vdev_dtl_required(vml[c])) {
5378 error = SET_ERROR(EBUSY);
5379 break;
5380 }
5381
5382 /* we need certain info from the top level */
5383 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5384 vml[c]->vdev_top->vdev_ms_array) == 0);
5385 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5386 vml[c]->vdev_top->vdev_ms_shift) == 0);
5387 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5388 vml[c]->vdev_top->vdev_asize) == 0);
5389 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5390 vml[c]->vdev_top->vdev_ashift) == 0);
5391
5392 /* transfer per-vdev ZAPs */
5393 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5394 VERIFY0(nvlist_add_uint64(child[c],
5395 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5396
5397 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5398 VERIFY0(nvlist_add_uint64(child[c],
5399 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5400 vml[c]->vdev_parent->vdev_top_zap));
5401 }
5402
5403 if (error != 0) {
5404 kmem_free(vml, children * sizeof (vdev_t *));
5405 kmem_free(glist, children * sizeof (uint64_t));
5406 return (spa_vdev_exit(spa, NULL, txg, error));
5407 }
5408
5409 /* stop writers from using the disks */
5410 for (c = 0; c < children; c++) {
5411 if (vml[c] != NULL)
5412 vml[c]->vdev_offline = B_TRUE;
5413 }
5414 vdev_reopen(spa->spa_root_vdev);
5415
5416 /*
5417 * Temporarily record the splitting vdevs in the spa config. This
5418 * will disappear once the config is regenerated.
5419 */
5420 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5421 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5422 glist, children) == 0);
5423 kmem_free(glist, children * sizeof (uint64_t));
5424
5425 mutex_enter(&spa->spa_props_lock);
5426 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5427 nvl) == 0);
5428 mutex_exit(&spa->spa_props_lock);
5429 spa->spa_config_splitting = nvl;
5430 vdev_config_dirty(spa->spa_root_vdev);
5431
5432 /* configure and create the new pool */
5433 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5434 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5435 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5436 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5437 spa_version(spa)) == 0);
5438 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5439 spa->spa_config_txg) == 0);
5440 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5441 spa_generate_guid(NULL)) == 0);
5442 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5443 (void) nvlist_lookup_string(props,
5444 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5445
5446 /* add the new pool to the namespace */
5447 newspa = spa_add(newname, config, altroot);
5448 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5449 newspa->spa_config_txg = spa->spa_config_txg;
5450 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5451
5452 /* release the spa config lock, retaining the namespace lock */
5453 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5454
5455 if (zio_injection_enabled)
5456 zio_handle_panic_injection(spa, FTAG, 1);
5457
5458 spa_activate(newspa, spa_mode_global);
5459 spa_async_suspend(newspa);
5460
5461 /* create the new pool from the disks of the original pool */
5462 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5463 if (error)
5464 goto out;
5465
5466 /* if that worked, generate a real config for the new pool */
5467 if (newspa->spa_root_vdev != NULL) {
5468 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5469 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5470 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5471 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5472 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5473 B_TRUE));
5474 }
5475
5476 /* set the props */
5477 if (props != NULL) {
5478 spa_configfile_set(newspa, props, B_FALSE);
5479 error = spa_prop_set(newspa, props);
5480 if (error)
5481 goto out;
5482 }
5483
5484 /* flush everything */
5485 txg = spa_vdev_config_enter(newspa);
5486 vdev_config_dirty(newspa->spa_root_vdev);
5487 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5488
5489 if (zio_injection_enabled)
5490 zio_handle_panic_injection(spa, FTAG, 2);
5491
5492 spa_async_resume(newspa);
5493
5494 /* finally, update the original pool's config */
5495 txg = spa_vdev_config_enter(spa);
5496 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5497 error = dmu_tx_assign(tx, TXG_WAIT);
5498 if (error != 0)
5499 dmu_tx_abort(tx);
5500 for (c = 0; c < children; c++) {
5501 if (vml[c] != NULL) {
5502 vdev_split(vml[c]);
5503 if (error == 0)
5504 spa_history_log_internal(spa, "detach", tx,
5505 "vdev=%s", vml[c]->vdev_path);
5506
5507 vdev_free(vml[c]);
5508 }
5509 }
5510 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5511 vdev_config_dirty(spa->spa_root_vdev);
5512 spa->spa_config_splitting = NULL;
5513 nvlist_free(nvl);
5514 if (error == 0)
5515 dmu_tx_commit(tx);
5516 (void) spa_vdev_exit(spa, NULL, txg, 0);
5517
5518 if (zio_injection_enabled)
5519 zio_handle_panic_injection(spa, FTAG, 3);
5520
5521 /* split is complete; log a history record */
5522 spa_history_log_internal(newspa, "split", NULL,
5523 "from pool %s", spa_name(spa));
5524
5525 kmem_free(vml, children * sizeof (vdev_t *));
5526
5527 /* if we're not going to mount the filesystems in userland, export */
5528 if (exp)
5529 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5530 B_FALSE, B_FALSE);
5531
5532 return (error);
5533
5534 out:
5535 spa_unload(newspa);
5536 spa_deactivate(newspa);
5537 spa_remove(newspa);
5538
5539 txg = spa_vdev_config_enter(spa);
5540
5541 /* re-online all offlined disks */
5542 for (c = 0; c < children; c++) {
5543 if (vml[c] != NULL)
5544 vml[c]->vdev_offline = B_FALSE;
5545 }
5546 vdev_reopen(spa->spa_root_vdev);
5547
5548 nvlist_free(spa->spa_config_splitting);
5549 spa->spa_config_splitting = NULL;
5550 (void) spa_vdev_exit(spa, NULL, txg, error);
5551
5552 kmem_free(vml, children * sizeof (vdev_t *));
5553 return (error);
5554 }
5555
5556 static nvlist_t *
5557 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5558 {
5559 int i;
5560
5561 for (i = 0; i < count; i++) {
5562 uint64_t guid;
5563
5564 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5565 &guid) == 0);
5566
5567 if (guid == target_guid)
5568 return (nvpp[i]);
5569 }
5570
5571 return (NULL);
5572 }
5573
5574 static void
5575 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5576 nvlist_t *dev_to_remove)
5577 {
5578 nvlist_t **newdev = NULL;
5579 int i, j;
5580
5581 if (count > 1)
5582 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5583
5584 for (i = 0, j = 0; i < count; i++) {
5585 if (dev[i] == dev_to_remove)
5586 continue;
5587 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5588 }
5589
5590 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5591 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5592
5593 for (i = 0; i < count - 1; i++)
5594 nvlist_free(newdev[i]);
5595
5596 if (count > 1)
5597 kmem_free(newdev, (count - 1) * sizeof (void *));
5598 }
5599
5600 /*
5601 * Evacuate the device.
5602 */
5603 static int
5604 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5605 {
5606 uint64_t txg;
5607 int error = 0;
5608
5609 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5610 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5611 ASSERT(vd == vd->vdev_top);
5612
5613 /*
5614 * Evacuate the device. We don't hold the config lock as writer
5615 * since we need to do I/O but we do keep the
5616 * spa_namespace_lock held. Once this completes the device
5617 * should no longer have any blocks allocated on it.
5618 */
5619 if (vd->vdev_islog) {
5620 if (vd->vdev_stat.vs_alloc != 0)
5621 error = spa_offline_log(spa);
5622 } else {
5623 error = SET_ERROR(ENOTSUP);
5624 }
5625
5626 if (error)
5627 return (error);
5628
5629 /*
5630 * The evacuation succeeded. Remove any remaining MOS metadata
5631 * associated with this vdev, and wait for these changes to sync.
5632 */
5633 ASSERT0(vd->vdev_stat.vs_alloc);
5634 txg = spa_vdev_config_enter(spa);
5635 vd->vdev_removing = B_TRUE;
5636 vdev_dirty_leaves(vd, VDD_DTL, txg);
5637 vdev_config_dirty(vd);
5638 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5639
5640 return (0);
5641 }
5642
5643 /*
5644 * Complete the removal by cleaning up the namespace.
5645 */
5646 static void
5647 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5648 {
5649 vdev_t *rvd = spa->spa_root_vdev;
5650 uint64_t id = vd->vdev_id;
5651 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5652
5653 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5654 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5655 ASSERT(vd == vd->vdev_top);
5656
5657 /*
5658 * Only remove any devices which are empty.
5659 */
5660 if (vd->vdev_stat.vs_alloc != 0)
5661 return;
5662
5663 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5664
5665 if (list_link_active(&vd->vdev_state_dirty_node))
5666 vdev_state_clean(vd);
5667 if (list_link_active(&vd->vdev_config_dirty_node))
5668 vdev_config_clean(vd);
5669
5670 vdev_free(vd);
5671
5672 if (last_vdev) {
5673 vdev_compact_children(rvd);
5674 } else {
5675 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5676 vdev_add_child(rvd, vd);
5677 }
5678 vdev_config_dirty(rvd);
5679
5680 /*
5681 * Reassess the health of our root vdev.
5682 */
5683 vdev_reopen(rvd);
5684 }
5685
5686 /*
5687 * Remove a device from the pool -
5688 *
5689 * Removing a device from the vdev namespace requires several steps
5690 * and can take a significant amount of time. As a result we use
5691 * the spa_vdev_config_[enter/exit] functions which allow us to
5692 * grab and release the spa_config_lock while still holding the namespace
5693 * lock. During each step the configuration is synced out.
5694 *
5695 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5696 * devices.
5697 */
5698 int
5699 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5700 {
5701 vdev_t *vd;
5702 sysevent_t *ev = NULL;
5703 metaslab_group_t *mg;
5704 nvlist_t **spares, **l2cache, *nv;
5705 uint64_t txg = 0;
5706 uint_t nspares, nl2cache;
5707 int error = 0;
5708 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5709
5710 ASSERT(spa_writeable(spa));
5711
5712 if (!locked)
5713 txg = spa_vdev_enter(spa);
5714
5715 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5716
5717 if (spa->spa_spares.sav_vdevs != NULL &&
5718 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5719 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5720 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5721 /*
5722 * Only remove the hot spare if it's not currently in use
5723 * in this pool.
5724 */
5725 if (vd == NULL || unspare) {
5726 if (vd == NULL)
5727 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5728 ev = spa_event_create(spa, vd, NULL,
5729 ESC_ZFS_VDEV_REMOVE_AUX);
5730 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5731 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5732 spa_load_spares(spa);
5733 spa->spa_spares.sav_sync = B_TRUE;
5734 } else {
5735 error = SET_ERROR(EBUSY);
5736 }
5737 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5738 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5739 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5740 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5741 /*
5742 * Cache devices can always be removed.
5743 */
5744 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5745 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
5746 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5747 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5748 spa_load_l2cache(spa);
5749 spa->spa_l2cache.sav_sync = B_TRUE;
5750 } else if (vd != NULL && vd->vdev_islog) {
5751 ASSERT(!locked);
5752 ASSERT(vd == vd->vdev_top);
5753
5754 mg = vd->vdev_mg;
5755
5756 /*
5757 * Stop allocating from this vdev.
5758 */
5759 metaslab_group_passivate(mg);
5760
5761 /*
5762 * Wait for the youngest allocations and frees to sync,
5763 * and then wait for the deferral of those frees to finish.
5764 */
5765 spa_vdev_config_exit(spa, NULL,
5766 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5767
5768 /*
5769 * Attempt to evacuate the vdev.
5770 */
5771 error = spa_vdev_remove_evacuate(spa, vd);
5772
5773 txg = spa_vdev_config_enter(spa);
5774
5775 /*
5776 * If we couldn't evacuate the vdev, unwind.
5777 */
5778 if (error) {
5779 metaslab_group_activate(mg);
5780 return (spa_vdev_exit(spa, NULL, txg, error));
5781 }
5782
5783 /*
5784 * Clean up the vdev namespace.
5785 */
5786 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
5787 spa_vdev_remove_from_namespace(spa, vd);
5788
5789 } else if (vd != NULL) {
5790 /*
5791 * Normal vdevs cannot be removed (yet).
5792 */
5793 error = SET_ERROR(ENOTSUP);
5794 } else {
5795 /*
5796 * There is no vdev of any kind with the specified guid.
5797 */
5798 error = SET_ERROR(ENOENT);
5799 }
5800
5801 if (!locked)
5802 error = spa_vdev_exit(spa, NULL, txg, error);
5803
5804 if (ev)
5805 spa_event_post(ev);
5806
5807 return (error);
5808 }
5809
5810 /*
5811 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5812 * currently spared, so we can detach it.
5813 */
5814 static vdev_t *
5815 spa_vdev_resilver_done_hunt(vdev_t *vd)
5816 {
5817 vdev_t *newvd, *oldvd;
5818 int c;
5819
5820 for (c = 0; c < vd->vdev_children; c++) {
5821 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5822 if (oldvd != NULL)
5823 return (oldvd);
5824 }
5825
5826 /*
5827 * Check for a completed replacement. We always consider the first
5828 * vdev in the list to be the oldest vdev, and the last one to be
5829 * the newest (see spa_vdev_attach() for how that works). In
5830 * the case where the newest vdev is faulted, we will not automatically
5831 * remove it after a resilver completes. This is OK as it will require
5832 * user intervention to determine which disk the admin wishes to keep.
5833 */
5834 if (vd->vdev_ops == &vdev_replacing_ops) {
5835 ASSERT(vd->vdev_children > 1);
5836
5837 newvd = vd->vdev_child[vd->vdev_children - 1];
5838 oldvd = vd->vdev_child[0];
5839
5840 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5841 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5842 !vdev_dtl_required(oldvd))
5843 return (oldvd);
5844 }
5845
5846 /*
5847 * Check for a completed resilver with the 'unspare' flag set.
5848 */
5849 if (vd->vdev_ops == &vdev_spare_ops) {
5850 vdev_t *first = vd->vdev_child[0];
5851 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5852
5853 if (last->vdev_unspare) {
5854 oldvd = first;
5855 newvd = last;
5856 } else if (first->vdev_unspare) {
5857 oldvd = last;
5858 newvd = first;
5859 } else {
5860 oldvd = NULL;
5861 }
5862
5863 if (oldvd != NULL &&
5864 vdev_dtl_empty(newvd, DTL_MISSING) &&
5865 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5866 !vdev_dtl_required(oldvd))
5867 return (oldvd);
5868
5869 /*
5870 * If there are more than two spares attached to a disk,
5871 * and those spares are not required, then we want to
5872 * attempt to free them up now so that they can be used
5873 * by other pools. Once we're back down to a single
5874 * disk+spare, we stop removing them.
5875 */
5876 if (vd->vdev_children > 2) {
5877 newvd = vd->vdev_child[1];
5878
5879 if (newvd->vdev_isspare && last->vdev_isspare &&
5880 vdev_dtl_empty(last, DTL_MISSING) &&
5881 vdev_dtl_empty(last, DTL_OUTAGE) &&
5882 !vdev_dtl_required(newvd))
5883 return (newvd);
5884 }
5885 }
5886
5887 return (NULL);
5888 }
5889
5890 static void
5891 spa_vdev_resilver_done(spa_t *spa)
5892 {
5893 vdev_t *vd, *pvd, *ppvd;
5894 uint64_t guid, sguid, pguid, ppguid;
5895
5896 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5897
5898 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5899 pvd = vd->vdev_parent;
5900 ppvd = pvd->vdev_parent;
5901 guid = vd->vdev_guid;
5902 pguid = pvd->vdev_guid;
5903 ppguid = ppvd->vdev_guid;
5904 sguid = 0;
5905 /*
5906 * If we have just finished replacing a hot spared device, then
5907 * we need to detach the parent's first child (the original hot
5908 * spare) as well.
5909 */
5910 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5911 ppvd->vdev_children == 2) {
5912 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5913 sguid = ppvd->vdev_child[1]->vdev_guid;
5914 }
5915 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5916
5917 spa_config_exit(spa, SCL_ALL, FTAG);
5918 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5919 return;
5920 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5921 return;
5922 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5923 }
5924
5925 spa_config_exit(spa, SCL_ALL, FTAG);
5926 }
5927
5928 /*
5929 * Update the stored path or FRU for this vdev.
5930 */
5931 int
5932 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5933 boolean_t ispath)
5934 {
5935 vdev_t *vd;
5936 boolean_t sync = B_FALSE;
5937
5938 ASSERT(spa_writeable(spa));
5939
5940 spa_vdev_state_enter(spa, SCL_ALL);
5941
5942 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5943 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5944
5945 if (!vd->vdev_ops->vdev_op_leaf)
5946 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5947
5948 if (ispath) {
5949 if (strcmp(value, vd->vdev_path) != 0) {
5950 spa_strfree(vd->vdev_path);
5951 vd->vdev_path = spa_strdup(value);
5952 sync = B_TRUE;
5953 }
5954 } else {
5955 if (vd->vdev_fru == NULL) {
5956 vd->vdev_fru = spa_strdup(value);
5957 sync = B_TRUE;
5958 } else if (strcmp(value, vd->vdev_fru) != 0) {
5959 spa_strfree(vd->vdev_fru);
5960 vd->vdev_fru = spa_strdup(value);
5961 sync = B_TRUE;
5962 }
5963 }
5964
5965 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5966 }
5967
5968 int
5969 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5970 {
5971 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5972 }
5973
5974 int
5975 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5976 {
5977 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5978 }
5979
5980 /*
5981 * ==========================================================================
5982 * SPA Scanning
5983 * ==========================================================================
5984 */
5985 int
5986 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
5987 {
5988 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5989
5990 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5991 return (SET_ERROR(EBUSY));
5992
5993 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
5994 }
5995
5996 int
5997 spa_scan_stop(spa_t *spa)
5998 {
5999 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6000 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6001 return (SET_ERROR(EBUSY));
6002 return (dsl_scan_cancel(spa->spa_dsl_pool));
6003 }
6004
6005 int
6006 spa_scan(spa_t *spa, pool_scan_func_t func)
6007 {
6008 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6009
6010 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6011 return (SET_ERROR(ENOTSUP));
6012
6013 /*
6014 * If a resilver was requested, but there is no DTL on a
6015 * writeable leaf device, we have nothing to do.
6016 */
6017 if (func == POOL_SCAN_RESILVER &&
6018 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6019 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6020 return (0);
6021 }
6022
6023 return (dsl_scan(spa->spa_dsl_pool, func));
6024 }
6025
6026 /*
6027 * ==========================================================================
6028 * SPA async task processing
6029 * ==========================================================================
6030 */
6031
6032 static void
6033 spa_async_remove(spa_t *spa, vdev_t *vd)
6034 {
6035 int c;
6036
6037 if (vd->vdev_remove_wanted) {
6038 vd->vdev_remove_wanted = B_FALSE;
6039 vd->vdev_delayed_close = B_FALSE;
6040 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6041
6042 /*
6043 * We want to clear the stats, but we don't want to do a full
6044 * vdev_clear() as that will cause us to throw away
6045 * degraded/faulted state as well as attempt to reopen the
6046 * device, all of which is a waste.
6047 */
6048 vd->vdev_stat.vs_read_errors = 0;
6049 vd->vdev_stat.vs_write_errors = 0;
6050 vd->vdev_stat.vs_checksum_errors = 0;
6051
6052 vdev_state_dirty(vd->vdev_top);
6053 }
6054
6055 for (c = 0; c < vd->vdev_children; c++)
6056 spa_async_remove(spa, vd->vdev_child[c]);
6057 }
6058
6059 static void
6060 spa_async_probe(spa_t *spa, vdev_t *vd)
6061 {
6062 int c;
6063
6064 if (vd->vdev_probe_wanted) {
6065 vd->vdev_probe_wanted = B_FALSE;
6066 vdev_reopen(vd); /* vdev_open() does the actual probe */
6067 }
6068
6069 for (c = 0; c < vd->vdev_children; c++)
6070 spa_async_probe(spa, vd->vdev_child[c]);
6071 }
6072
6073 static void
6074 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6075 {
6076 int c;
6077
6078 if (!spa->spa_autoexpand)
6079 return;
6080
6081 for (c = 0; c < vd->vdev_children; c++) {
6082 vdev_t *cvd = vd->vdev_child[c];
6083 spa_async_autoexpand(spa, cvd);
6084 }
6085
6086 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6087 return;
6088
6089 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
6090 }
6091
6092 static void
6093 spa_async_thread(spa_t *spa)
6094 {
6095 int tasks, i;
6096
6097 ASSERT(spa->spa_sync_on);
6098
6099 mutex_enter(&spa->spa_async_lock);
6100 tasks = spa->spa_async_tasks;
6101 spa->spa_async_tasks = 0;
6102 mutex_exit(&spa->spa_async_lock);
6103
6104 /*
6105 * See if the config needs to be updated.
6106 */
6107 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6108 uint64_t old_space, new_space;
6109
6110 mutex_enter(&spa_namespace_lock);
6111 old_space = metaslab_class_get_space(spa_normal_class(spa));
6112 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6113 new_space = metaslab_class_get_space(spa_normal_class(spa));
6114 mutex_exit(&spa_namespace_lock);
6115
6116 /*
6117 * If the pool grew as a result of the config update,
6118 * then log an internal history event.
6119 */
6120 if (new_space != old_space) {
6121 spa_history_log_internal(spa, "vdev online", NULL,
6122 "pool '%s' size: %llu(+%llu)",
6123 spa_name(spa), new_space, new_space - old_space);
6124 }
6125 }
6126
6127 /*
6128 * See if any devices need to be marked REMOVED.
6129 */
6130 if (tasks & SPA_ASYNC_REMOVE) {
6131 spa_vdev_state_enter(spa, SCL_NONE);
6132 spa_async_remove(spa, spa->spa_root_vdev);
6133 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
6134 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6135 for (i = 0; i < spa->spa_spares.sav_count; i++)
6136 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6137 (void) spa_vdev_state_exit(spa, NULL, 0);
6138 }
6139
6140 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6141 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6142 spa_async_autoexpand(spa, spa->spa_root_vdev);
6143 spa_config_exit(spa, SCL_CONFIG, FTAG);
6144 }
6145
6146 /*
6147 * See if any devices need to be probed.
6148 */
6149 if (tasks & SPA_ASYNC_PROBE) {
6150 spa_vdev_state_enter(spa, SCL_NONE);
6151 spa_async_probe(spa, spa->spa_root_vdev);
6152 (void) spa_vdev_state_exit(spa, NULL, 0);
6153 }
6154
6155 /*
6156 * If any devices are done replacing, detach them.
6157 */
6158 if (tasks & SPA_ASYNC_RESILVER_DONE)
6159 spa_vdev_resilver_done(spa);
6160
6161 /*
6162 * Kick off a resilver.
6163 */
6164 if (tasks & SPA_ASYNC_RESILVER)
6165 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6166
6167 /*
6168 * Let the world know that we're done.
6169 */
6170 mutex_enter(&spa->spa_async_lock);
6171 spa->spa_async_thread = NULL;
6172 cv_broadcast(&spa->spa_async_cv);
6173 mutex_exit(&spa->spa_async_lock);
6174 thread_exit();
6175 }
6176
6177 void
6178 spa_async_suspend(spa_t *spa)
6179 {
6180 mutex_enter(&spa->spa_async_lock);
6181 spa->spa_async_suspended++;
6182 while (spa->spa_async_thread != NULL)
6183 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6184 mutex_exit(&spa->spa_async_lock);
6185 }
6186
6187 void
6188 spa_async_resume(spa_t *spa)
6189 {
6190 mutex_enter(&spa->spa_async_lock);
6191 ASSERT(spa->spa_async_suspended != 0);
6192 spa->spa_async_suspended--;
6193 mutex_exit(&spa->spa_async_lock);
6194 }
6195
6196 static boolean_t
6197 spa_async_tasks_pending(spa_t *spa)
6198 {
6199 uint_t non_config_tasks;
6200 uint_t config_task;
6201 boolean_t config_task_suspended;
6202
6203 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6204 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6205 if (spa->spa_ccw_fail_time == 0) {
6206 config_task_suspended = B_FALSE;
6207 } else {
6208 config_task_suspended =
6209 (gethrtime() - spa->spa_ccw_fail_time) <
6210 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
6211 }
6212
6213 return (non_config_tasks || (config_task && !config_task_suspended));
6214 }
6215
6216 static void
6217 spa_async_dispatch(spa_t *spa)
6218 {
6219 mutex_enter(&spa->spa_async_lock);
6220 if (spa_async_tasks_pending(spa) &&
6221 !spa->spa_async_suspended &&
6222 spa->spa_async_thread == NULL &&
6223 rootdir != NULL)
6224 spa->spa_async_thread = thread_create(NULL, 0,
6225 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6226 mutex_exit(&spa->spa_async_lock);
6227 }
6228
6229 void
6230 spa_async_request(spa_t *spa, int task)
6231 {
6232 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6233 mutex_enter(&spa->spa_async_lock);
6234 spa->spa_async_tasks |= task;
6235 mutex_exit(&spa->spa_async_lock);
6236 }
6237
6238 /*
6239 * ==========================================================================
6240 * SPA syncing routines
6241 * ==========================================================================
6242 */
6243
6244 static int
6245 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6246 {
6247 bpobj_t *bpo = arg;
6248 bpobj_enqueue(bpo, bp, tx);
6249 return (0);
6250 }
6251
6252 static int
6253 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6254 {
6255 zio_t *zio = arg;
6256
6257 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6258 zio->io_flags));
6259 return (0);
6260 }
6261
6262 /*
6263 * Note: this simple function is not inlined to make it easier to dtrace the
6264 * amount of time spent syncing frees.
6265 */
6266 static void
6267 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6268 {
6269 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6270 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6271 VERIFY(zio_wait(zio) == 0);
6272 }
6273
6274 /*
6275 * Note: this simple function is not inlined to make it easier to dtrace the
6276 * amount of time spent syncing deferred frees.
6277 */
6278 static void
6279 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6280 {
6281 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6282 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6283 spa_free_sync_cb, zio, tx), ==, 0);
6284 VERIFY0(zio_wait(zio));
6285 }
6286
6287 static void
6288 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6289 {
6290 char *packed = NULL;
6291 size_t bufsize;
6292 size_t nvsize = 0;
6293 dmu_buf_t *db;
6294
6295 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6296
6297 /*
6298 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6299 * information. This avoids the dmu_buf_will_dirty() path and
6300 * saves us a pre-read to get data we don't actually care about.
6301 */
6302 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6303 packed = vmem_alloc(bufsize, KM_SLEEP);
6304
6305 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6306 KM_SLEEP) == 0);
6307 bzero(packed + nvsize, bufsize - nvsize);
6308
6309 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6310
6311 vmem_free(packed, bufsize);
6312
6313 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6314 dmu_buf_will_dirty(db, tx);
6315 *(uint64_t *)db->db_data = nvsize;
6316 dmu_buf_rele(db, FTAG);
6317 }
6318
6319 static void
6320 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6321 const char *config, const char *entry)
6322 {
6323 nvlist_t *nvroot;
6324 nvlist_t **list;
6325 int i;
6326
6327 if (!sav->sav_sync)
6328 return;
6329
6330 /*
6331 * Update the MOS nvlist describing the list of available devices.
6332 * spa_validate_aux() will have already made sure this nvlist is
6333 * valid and the vdevs are labeled appropriately.
6334 */
6335 if (sav->sav_object == 0) {
6336 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6337 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6338 sizeof (uint64_t), tx);
6339 VERIFY(zap_update(spa->spa_meta_objset,
6340 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6341 &sav->sav_object, tx) == 0);
6342 }
6343
6344 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6345 if (sav->sav_count == 0) {
6346 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6347 } else {
6348 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6349 for (i = 0; i < sav->sav_count; i++)
6350 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6351 B_FALSE, VDEV_CONFIG_L2CACHE);
6352 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6353 sav->sav_count) == 0);
6354 for (i = 0; i < sav->sav_count; i++)
6355 nvlist_free(list[i]);
6356 kmem_free(list, sav->sav_count * sizeof (void *));
6357 }
6358
6359 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6360 nvlist_free(nvroot);
6361
6362 sav->sav_sync = B_FALSE;
6363 }
6364
6365 /*
6366 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6367 * The all-vdev ZAP must be empty.
6368 */
6369 static void
6370 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6371 {
6372 spa_t *spa = vd->vdev_spa;
6373 uint64_t i;
6374
6375 if (vd->vdev_top_zap != 0) {
6376 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6377 vd->vdev_top_zap, tx));
6378 }
6379 if (vd->vdev_leaf_zap != 0) {
6380 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6381 vd->vdev_leaf_zap, tx));
6382 }
6383 for (i = 0; i < vd->vdev_children; i++) {
6384 spa_avz_build(vd->vdev_child[i], avz, tx);
6385 }
6386 }
6387
6388 static void
6389 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6390 {
6391 nvlist_t *config;
6392
6393 /*
6394 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6395 * its config may not be dirty but we still need to build per-vdev ZAPs.
6396 * Similarly, if the pool is being assembled (e.g. after a split), we
6397 * need to rebuild the AVZ although the config may not be dirty.
6398 */
6399 if (list_is_empty(&spa->spa_config_dirty_list) &&
6400 spa->spa_avz_action == AVZ_ACTION_NONE)
6401 return;
6402
6403 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6404
6405 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6406 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6407 spa->spa_all_vdev_zaps != 0);
6408
6409 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6410 zap_cursor_t zc;
6411 zap_attribute_t za;
6412
6413 /* Make and build the new AVZ */
6414 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6415 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6416 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6417
6418 /* Diff old AVZ with new one */
6419 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6420 spa->spa_all_vdev_zaps);
6421 zap_cursor_retrieve(&zc, &za) == 0;
6422 zap_cursor_advance(&zc)) {
6423 uint64_t vdzap = za.za_first_integer;
6424 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6425 vdzap) == ENOENT) {
6426 /*
6427 * ZAP is listed in old AVZ but not in new one;
6428 * destroy it
6429 */
6430 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6431 tx));
6432 }
6433 }
6434
6435 zap_cursor_fini(&zc);
6436
6437 /* Destroy the old AVZ */
6438 VERIFY0(zap_destroy(spa->spa_meta_objset,
6439 spa->spa_all_vdev_zaps, tx));
6440
6441 /* Replace the old AVZ in the dir obj with the new one */
6442 VERIFY0(zap_update(spa->spa_meta_objset,
6443 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6444 sizeof (new_avz), 1, &new_avz, tx));
6445
6446 spa->spa_all_vdev_zaps = new_avz;
6447 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6448 zap_cursor_t zc;
6449 zap_attribute_t za;
6450
6451 /* Walk through the AVZ and destroy all listed ZAPs */
6452 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6453 spa->spa_all_vdev_zaps);
6454 zap_cursor_retrieve(&zc, &za) == 0;
6455 zap_cursor_advance(&zc)) {
6456 uint64_t zap = za.za_first_integer;
6457 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6458 }
6459
6460 zap_cursor_fini(&zc);
6461
6462 /* Destroy and unlink the AVZ itself */
6463 VERIFY0(zap_destroy(spa->spa_meta_objset,
6464 spa->spa_all_vdev_zaps, tx));
6465 VERIFY0(zap_remove(spa->spa_meta_objset,
6466 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6467 spa->spa_all_vdev_zaps = 0;
6468 }
6469
6470 if (spa->spa_all_vdev_zaps == 0) {
6471 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6472 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6473 DMU_POOL_VDEV_ZAP_MAP, tx);
6474 }
6475 spa->spa_avz_action = AVZ_ACTION_NONE;
6476
6477 /* Create ZAPs for vdevs that don't have them. */
6478 vdev_construct_zaps(spa->spa_root_vdev, tx);
6479
6480 config = spa_config_generate(spa, spa->spa_root_vdev,
6481 dmu_tx_get_txg(tx), B_FALSE);
6482
6483 /*
6484 * If we're upgrading the spa version then make sure that
6485 * the config object gets updated with the correct version.
6486 */
6487 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6488 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6489 spa->spa_uberblock.ub_version);
6490
6491 spa_config_exit(spa, SCL_STATE, FTAG);
6492
6493 nvlist_free(spa->spa_config_syncing);
6494 spa->spa_config_syncing = config;
6495
6496 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6497 }
6498
6499 static void
6500 spa_sync_version(void *arg, dmu_tx_t *tx)
6501 {
6502 uint64_t *versionp = arg;
6503 uint64_t version = *versionp;
6504 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6505
6506 /*
6507 * Setting the version is special cased when first creating the pool.
6508 */
6509 ASSERT(tx->tx_txg != TXG_INITIAL);
6510
6511 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6512 ASSERT(version >= spa_version(spa));
6513
6514 spa->spa_uberblock.ub_version = version;
6515 vdev_config_dirty(spa->spa_root_vdev);
6516 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6517 }
6518
6519 /*
6520 * Set zpool properties.
6521 */
6522 static void
6523 spa_sync_props(void *arg, dmu_tx_t *tx)
6524 {
6525 nvlist_t *nvp = arg;
6526 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6527 objset_t *mos = spa->spa_meta_objset;
6528 nvpair_t *elem = NULL;
6529
6530 mutex_enter(&spa->spa_props_lock);
6531
6532 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6533 uint64_t intval;
6534 char *strval, *fname;
6535 zpool_prop_t prop;
6536 const char *propname;
6537 zprop_type_t proptype;
6538 spa_feature_t fid;
6539
6540 prop = zpool_name_to_prop(nvpair_name(elem));
6541 switch ((int)prop) {
6542 case ZPROP_INVAL:
6543 /*
6544 * We checked this earlier in spa_prop_validate().
6545 */
6546 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6547
6548 fname = strchr(nvpair_name(elem), '@') + 1;
6549 VERIFY0(zfeature_lookup_name(fname, &fid));
6550
6551 spa_feature_enable(spa, fid, tx);
6552 spa_history_log_internal(spa, "set", tx,
6553 "%s=enabled", nvpair_name(elem));
6554 break;
6555
6556 case ZPOOL_PROP_VERSION:
6557 intval = fnvpair_value_uint64(elem);
6558 /*
6559 * The version is synced separately before other
6560 * properties and should be correct by now.
6561 */
6562 ASSERT3U(spa_version(spa), >=, intval);
6563 break;
6564
6565 case ZPOOL_PROP_ALTROOT:
6566 /*
6567 * 'altroot' is a non-persistent property. It should
6568 * have been set temporarily at creation or import time.
6569 */
6570 ASSERT(spa->spa_root != NULL);
6571 break;
6572
6573 case ZPOOL_PROP_READONLY:
6574 case ZPOOL_PROP_CACHEFILE:
6575 /*
6576 * 'readonly' and 'cachefile' are also non-persisitent
6577 * properties.
6578 */
6579 break;
6580 case ZPOOL_PROP_COMMENT:
6581 strval = fnvpair_value_string(elem);
6582 if (spa->spa_comment != NULL)
6583 spa_strfree(spa->spa_comment);
6584 spa->spa_comment = spa_strdup(strval);
6585 /*
6586 * We need to dirty the configuration on all the vdevs
6587 * so that their labels get updated. It's unnecessary
6588 * to do this for pool creation since the vdev's
6589 * configuration has already been dirtied.
6590 */
6591 if (tx->tx_txg != TXG_INITIAL)
6592 vdev_config_dirty(spa->spa_root_vdev);
6593 spa_history_log_internal(spa, "set", tx,
6594 "%s=%s", nvpair_name(elem), strval);
6595 break;
6596 default:
6597 /*
6598 * Set pool property values in the poolprops mos object.
6599 */
6600 if (spa->spa_pool_props_object == 0) {
6601 spa->spa_pool_props_object =
6602 zap_create_link(mos, DMU_OT_POOL_PROPS,
6603 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6604 tx);
6605 }
6606
6607 /* normalize the property name */
6608 propname = zpool_prop_to_name(prop);
6609 proptype = zpool_prop_get_type(prop);
6610
6611 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6612 ASSERT(proptype == PROP_TYPE_STRING);
6613 strval = fnvpair_value_string(elem);
6614 VERIFY0(zap_update(mos,
6615 spa->spa_pool_props_object, propname,
6616 1, strlen(strval) + 1, strval, tx));
6617 spa_history_log_internal(spa, "set", tx,
6618 "%s=%s", nvpair_name(elem), strval);
6619 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6620 intval = fnvpair_value_uint64(elem);
6621
6622 if (proptype == PROP_TYPE_INDEX) {
6623 const char *unused;
6624 VERIFY0(zpool_prop_index_to_string(
6625 prop, intval, &unused));
6626 }
6627 VERIFY0(zap_update(mos,
6628 spa->spa_pool_props_object, propname,
6629 8, 1, &intval, tx));
6630 spa_history_log_internal(spa, "set", tx,
6631 "%s=%lld", nvpair_name(elem), intval);
6632 } else {
6633 ASSERT(0); /* not allowed */
6634 }
6635
6636 switch (prop) {
6637 case ZPOOL_PROP_DELEGATION:
6638 spa->spa_delegation = intval;
6639 break;
6640 case ZPOOL_PROP_BOOTFS:
6641 spa->spa_bootfs = intval;
6642 break;
6643 case ZPOOL_PROP_FAILUREMODE:
6644 spa->spa_failmode = intval;
6645 break;
6646 case ZPOOL_PROP_AUTOEXPAND:
6647 spa->spa_autoexpand = intval;
6648 if (tx->tx_txg != TXG_INITIAL)
6649 spa_async_request(spa,
6650 SPA_ASYNC_AUTOEXPAND);
6651 break;
6652 case ZPOOL_PROP_MULTIHOST:
6653 spa->spa_multihost = intval;
6654 break;
6655 case ZPOOL_PROP_DEDUPDITTO:
6656 spa->spa_dedup_ditto = intval;
6657 break;
6658 default:
6659 break;
6660 }
6661 }
6662
6663 }
6664
6665 mutex_exit(&spa->spa_props_lock);
6666 }
6667
6668 /*
6669 * Perform one-time upgrade on-disk changes. spa_version() does not
6670 * reflect the new version this txg, so there must be no changes this
6671 * txg to anything that the upgrade code depends on after it executes.
6672 * Therefore this must be called after dsl_pool_sync() does the sync
6673 * tasks.
6674 */
6675 static void
6676 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6677 {
6678 dsl_pool_t *dp = spa->spa_dsl_pool;
6679
6680 ASSERT(spa->spa_sync_pass == 1);
6681
6682 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6683
6684 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6685 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6686 dsl_pool_create_origin(dp, tx);
6687
6688 /* Keeping the origin open increases spa_minref */
6689 spa->spa_minref += 3;
6690 }
6691
6692 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6693 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6694 dsl_pool_upgrade_clones(dp, tx);
6695 }
6696
6697 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6698 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6699 dsl_pool_upgrade_dir_clones(dp, tx);
6700
6701 /* Keeping the freedir open increases spa_minref */
6702 spa->spa_minref += 3;
6703 }
6704
6705 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6706 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6707 spa_feature_create_zap_objects(spa, tx);
6708 }
6709
6710 /*
6711 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6712 * when possibility to use lz4 compression for metadata was added
6713 * Old pools that have this feature enabled must be upgraded to have
6714 * this feature active
6715 */
6716 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6717 boolean_t lz4_en = spa_feature_is_enabled(spa,
6718 SPA_FEATURE_LZ4_COMPRESS);
6719 boolean_t lz4_ac = spa_feature_is_active(spa,
6720 SPA_FEATURE_LZ4_COMPRESS);
6721
6722 if (lz4_en && !lz4_ac)
6723 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6724 }
6725
6726 /*
6727 * If we haven't written the salt, do so now. Note that the
6728 * feature may not be activated yet, but that's fine since
6729 * the presence of this ZAP entry is backwards compatible.
6730 */
6731 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6732 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6733 VERIFY0(zap_add(spa->spa_meta_objset,
6734 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6735 sizeof (spa->spa_cksum_salt.zcs_bytes),
6736 spa->spa_cksum_salt.zcs_bytes, tx));
6737 }
6738
6739 rrw_exit(&dp->dp_config_rwlock, FTAG);
6740 }
6741
6742 /*
6743 * Sync the specified transaction group. New blocks may be dirtied as
6744 * part of the process, so we iterate until it converges.
6745 */
6746 void
6747 spa_sync(spa_t *spa, uint64_t txg)
6748 {
6749 dsl_pool_t *dp = spa->spa_dsl_pool;
6750 objset_t *mos = spa->spa_meta_objset;
6751 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6752 metaslab_class_t *mc;
6753 vdev_t *rvd = spa->spa_root_vdev;
6754 vdev_t *vd;
6755 dmu_tx_t *tx;
6756 int error;
6757 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6758 zfs_vdev_queue_depth_pct / 100;
6759 uint64_t queue_depth_total;
6760 int c;
6761
6762 VERIFY(spa_writeable(spa));
6763
6764 /*
6765 * Lock out configuration changes.
6766 */
6767 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6768
6769 spa->spa_syncing_txg = txg;
6770 spa->spa_sync_pass = 0;
6771
6772 mutex_enter(&spa->spa_alloc_lock);
6773 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6774 mutex_exit(&spa->spa_alloc_lock);
6775
6776 /*
6777 * If there are any pending vdev state changes, convert them
6778 * into config changes that go out with this transaction group.
6779 */
6780 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6781 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6782 /*
6783 * We need the write lock here because, for aux vdevs,
6784 * calling vdev_config_dirty() modifies sav_config.
6785 * This is ugly and will become unnecessary when we
6786 * eliminate the aux vdev wart by integrating all vdevs
6787 * into the root vdev tree.
6788 */
6789 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6790 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6791 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6792 vdev_state_clean(vd);
6793 vdev_config_dirty(vd);
6794 }
6795 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6796 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6797 }
6798 spa_config_exit(spa, SCL_STATE, FTAG);
6799
6800 tx = dmu_tx_create_assigned(dp, txg);
6801
6802 spa->spa_sync_starttime = gethrtime();
6803 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
6804 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
6805 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6806 NSEC_TO_TICK(spa->spa_deadman_synctime));
6807
6808 /*
6809 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6810 * set spa_deflate if we have no raid-z vdevs.
6811 */
6812 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6813 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6814 int i;
6815
6816 for (i = 0; i < rvd->vdev_children; i++) {
6817 vd = rvd->vdev_child[i];
6818 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6819 break;
6820 }
6821 if (i == rvd->vdev_children) {
6822 spa->spa_deflate = TRUE;
6823 VERIFY(0 == zap_add(spa->spa_meta_objset,
6824 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6825 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6826 }
6827 }
6828
6829 /*
6830 * Set the top-level vdev's max queue depth. Evaluate each
6831 * top-level's async write queue depth in case it changed.
6832 * The max queue depth will not change in the middle of syncing
6833 * out this txg.
6834 */
6835 queue_depth_total = 0;
6836 for (c = 0; c < rvd->vdev_children; c++) {
6837 vdev_t *tvd = rvd->vdev_child[c];
6838 metaslab_group_t *mg = tvd->vdev_mg;
6839
6840 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6841 !metaslab_group_initialized(mg))
6842 continue;
6843
6844 /*
6845 * It is safe to do a lock-free check here because only async
6846 * allocations look at mg_max_alloc_queue_depth, and async
6847 * allocations all happen from spa_sync().
6848 */
6849 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6850 mg->mg_max_alloc_queue_depth = max_queue_depth;
6851 queue_depth_total += mg->mg_max_alloc_queue_depth;
6852 }
6853 mc = spa_normal_class(spa);
6854 ASSERT0(refcount_count(&mc->mc_alloc_slots));
6855 mc->mc_alloc_max_slots = queue_depth_total;
6856 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6857
6858 ASSERT3U(mc->mc_alloc_max_slots, <=,
6859 max_queue_depth * rvd->vdev_children);
6860
6861 /*
6862 * Iterate to convergence.
6863 */
6864 do {
6865 int pass = ++spa->spa_sync_pass;
6866
6867 spa_sync_config_object(spa, tx);
6868 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6869 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6870 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6871 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6872 spa_errlog_sync(spa, txg);
6873 dsl_pool_sync(dp, txg);
6874
6875 if (pass < zfs_sync_pass_deferred_free) {
6876 spa_sync_frees(spa, free_bpl, tx);
6877 } else {
6878 /*
6879 * We can not defer frees in pass 1, because
6880 * we sync the deferred frees later in pass 1.
6881 */
6882 ASSERT3U(pass, >, 1);
6883 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6884 &spa->spa_deferred_bpobj, tx);
6885 }
6886
6887 ddt_sync(spa, txg);
6888 dsl_scan_sync(dp, tx);
6889
6890 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6891 vdev_sync(vd, txg);
6892
6893 if (pass == 1) {
6894 spa_sync_upgrades(spa, tx);
6895 ASSERT3U(txg, >=,
6896 spa->spa_uberblock.ub_rootbp.blk_birth);
6897 /*
6898 * Note: We need to check if the MOS is dirty
6899 * because we could have marked the MOS dirty
6900 * without updating the uberblock (e.g. if we
6901 * have sync tasks but no dirty user data). We
6902 * need to check the uberblock's rootbp because
6903 * it is updated if we have synced out dirty
6904 * data (though in this case the MOS will most
6905 * likely also be dirty due to second order
6906 * effects, we don't want to rely on that here).
6907 */
6908 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6909 !dmu_objset_is_dirty(mos, txg)) {
6910 /*
6911 * Nothing changed on the first pass,
6912 * therefore this TXG is a no-op. Avoid
6913 * syncing deferred frees, so that we
6914 * can keep this TXG as a no-op.
6915 */
6916 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6917 txg));
6918 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6919 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6920 break;
6921 }
6922 spa_sync_deferred_frees(spa, tx);
6923 }
6924
6925 } while (dmu_objset_is_dirty(mos, txg));
6926
6927 #ifdef ZFS_DEBUG
6928 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6929 /*
6930 * Make sure that the number of ZAPs for all the vdevs matches
6931 * the number of ZAPs in the per-vdev ZAP list. This only gets
6932 * called if the config is dirty; otherwise there may be
6933 * outstanding AVZ operations that weren't completed in
6934 * spa_sync_config_object.
6935 */
6936 uint64_t all_vdev_zap_entry_count;
6937 ASSERT0(zap_count(spa->spa_meta_objset,
6938 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6939 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6940 all_vdev_zap_entry_count);
6941 }
6942 #endif
6943
6944 /*
6945 * Rewrite the vdev configuration (which includes the uberblock)
6946 * to commit the transaction group.
6947 *
6948 * If there are no dirty vdevs, we sync the uberblock to a few
6949 * random top-level vdevs that are known to be visible in the
6950 * config cache (see spa_vdev_add() for a complete description).
6951 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6952 */
6953 for (;;) {
6954 /*
6955 * We hold SCL_STATE to prevent vdev open/close/etc.
6956 * while we're attempting to write the vdev labels.
6957 */
6958 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6959
6960 if (list_is_empty(&spa->spa_config_dirty_list)) {
6961 vdev_t *svd[SPA_DVAS_PER_BP];
6962 int svdcount = 0;
6963 int children = rvd->vdev_children;
6964 int c0 = spa_get_random(children);
6965
6966 for (c = 0; c < children; c++) {
6967 vd = rvd->vdev_child[(c0 + c) % children];
6968 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6969 continue;
6970 svd[svdcount++] = vd;
6971 if (svdcount == SPA_DVAS_PER_BP)
6972 break;
6973 }
6974 error = vdev_config_sync(svd, svdcount, txg);
6975 } else {
6976 error = vdev_config_sync(rvd->vdev_child,
6977 rvd->vdev_children, txg);
6978 }
6979
6980 if (error == 0)
6981 spa->spa_last_synced_guid = rvd->vdev_guid;
6982
6983 spa_config_exit(spa, SCL_STATE, FTAG);
6984
6985 if (error == 0)
6986 break;
6987 zio_suspend(spa, NULL);
6988 zio_resume_wait(spa);
6989 }
6990 dmu_tx_commit(tx);
6991
6992 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
6993 spa->spa_deadman_tqid = 0;
6994
6995 /*
6996 * Clear the dirty config list.
6997 */
6998 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6999 vdev_config_clean(vd);
7000
7001 /*
7002 * Now that the new config has synced transactionally,
7003 * let it become visible to the config cache.
7004 */
7005 if (spa->spa_config_syncing != NULL) {
7006 spa_config_set(spa, spa->spa_config_syncing);
7007 spa->spa_config_txg = txg;
7008 spa->spa_config_syncing = NULL;
7009 }
7010
7011 dsl_pool_sync_done(dp, txg);
7012
7013 mutex_enter(&spa->spa_alloc_lock);
7014 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7015 mutex_exit(&spa->spa_alloc_lock);
7016
7017 /*
7018 * Update usable space statistics.
7019 */
7020 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
7021 vdev_sync_done(vd, txg);
7022
7023 spa_update_dspace(spa);
7024
7025 /*
7026 * It had better be the case that we didn't dirty anything
7027 * since vdev_config_sync().
7028 */
7029 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7030 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7031 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7032
7033 spa->spa_sync_pass = 0;
7034
7035 /*
7036 * Update the last synced uberblock here. We want to do this at
7037 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7038 * will be guaranteed that all the processing associated with
7039 * that txg has been completed.
7040 */
7041 spa->spa_ubsync = spa->spa_uberblock;
7042 spa_config_exit(spa, SCL_CONFIG, FTAG);
7043
7044 spa_handle_ignored_writes(spa);
7045
7046 /*
7047 * If any async tasks have been requested, kick them off.
7048 */
7049 spa_async_dispatch(spa);
7050 }
7051
7052 /*
7053 * Sync all pools. We don't want to hold the namespace lock across these
7054 * operations, so we take a reference on the spa_t and drop the lock during the
7055 * sync.
7056 */
7057 void
7058 spa_sync_allpools(void)
7059 {
7060 spa_t *spa = NULL;
7061 mutex_enter(&spa_namespace_lock);
7062 while ((spa = spa_next(spa)) != NULL) {
7063 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7064 !spa_writeable(spa) || spa_suspended(spa))
7065 continue;
7066 spa_open_ref(spa, FTAG);
7067 mutex_exit(&spa_namespace_lock);
7068 txg_wait_synced(spa_get_dsl(spa), 0);
7069 mutex_enter(&spa_namespace_lock);
7070 spa_close(spa, FTAG);
7071 }
7072 mutex_exit(&spa_namespace_lock);
7073 }
7074
7075 /*
7076 * ==========================================================================
7077 * Miscellaneous routines
7078 * ==========================================================================
7079 */
7080
7081 /*
7082 * Remove all pools in the system.
7083 */
7084 void
7085 spa_evict_all(void)
7086 {
7087 spa_t *spa;
7088
7089 /*
7090 * Remove all cached state. All pools should be closed now,
7091 * so every spa in the AVL tree should be unreferenced.
7092 */
7093 mutex_enter(&spa_namespace_lock);
7094 while ((spa = spa_next(NULL)) != NULL) {
7095 /*
7096 * Stop async tasks. The async thread may need to detach
7097 * a device that's been replaced, which requires grabbing
7098 * spa_namespace_lock, so we must drop it here.
7099 */
7100 spa_open_ref(spa, FTAG);
7101 mutex_exit(&spa_namespace_lock);
7102 spa_async_suspend(spa);
7103 mutex_enter(&spa_namespace_lock);
7104 spa_close(spa, FTAG);
7105
7106 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7107 spa_unload(spa);
7108 spa_deactivate(spa);
7109 }
7110 spa_remove(spa);
7111 }
7112 mutex_exit(&spa_namespace_lock);
7113 }
7114
7115 vdev_t *
7116 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7117 {
7118 vdev_t *vd;
7119 int i;
7120
7121 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7122 return (vd);
7123
7124 if (aux) {
7125 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7126 vd = spa->spa_l2cache.sav_vdevs[i];
7127 if (vd->vdev_guid == guid)
7128 return (vd);
7129 }
7130
7131 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7132 vd = spa->spa_spares.sav_vdevs[i];
7133 if (vd->vdev_guid == guid)
7134 return (vd);
7135 }
7136 }
7137
7138 return (NULL);
7139 }
7140
7141 void
7142 spa_upgrade(spa_t *spa, uint64_t version)
7143 {
7144 ASSERT(spa_writeable(spa));
7145
7146 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7147
7148 /*
7149 * This should only be called for a non-faulted pool, and since a
7150 * future version would result in an unopenable pool, this shouldn't be
7151 * possible.
7152 */
7153 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7154 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7155
7156 spa->spa_uberblock.ub_version = version;
7157 vdev_config_dirty(spa->spa_root_vdev);
7158
7159 spa_config_exit(spa, SCL_ALL, FTAG);
7160
7161 txg_wait_synced(spa_get_dsl(spa), 0);
7162 }
7163
7164 boolean_t
7165 spa_has_spare(spa_t *spa, uint64_t guid)
7166 {
7167 int i;
7168 uint64_t spareguid;
7169 spa_aux_vdev_t *sav = &spa->spa_spares;
7170
7171 for (i = 0; i < sav->sav_count; i++)
7172 if (sav->sav_vdevs[i]->vdev_guid == guid)
7173 return (B_TRUE);
7174
7175 for (i = 0; i < sav->sav_npending; i++) {
7176 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7177 &spareguid) == 0 && spareguid == guid)
7178 return (B_TRUE);
7179 }
7180
7181 return (B_FALSE);
7182 }
7183
7184 /*
7185 * Check if a pool has an active shared spare device.
7186 * Note: reference count of an active spare is 2, as a spare and as a replace
7187 */
7188 static boolean_t
7189 spa_has_active_shared_spare(spa_t *spa)
7190 {
7191 int i, refcnt;
7192 uint64_t pool;
7193 spa_aux_vdev_t *sav = &spa->spa_spares;
7194
7195 for (i = 0; i < sav->sav_count; i++) {
7196 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7197 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7198 refcnt > 2)
7199 return (B_TRUE);
7200 }
7201
7202 return (B_FALSE);
7203 }
7204
7205 static sysevent_t *
7206 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7207 {
7208 sysevent_t *ev = NULL;
7209 #ifdef _KERNEL
7210 nvlist_t *resource;
7211
7212 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
7213 if (resource) {
7214 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
7215 ev->resource = resource;
7216 }
7217 #endif
7218 return (ev);
7219 }
7220
7221 static void
7222 spa_event_post(sysevent_t *ev)
7223 {
7224 #ifdef _KERNEL
7225 if (ev) {
7226 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
7227 kmem_free(ev, sizeof (*ev));
7228 }
7229 #endif
7230 }
7231
7232 /*
7233 * Post a zevent corresponding to the given sysevent. The 'name' must be one
7234 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
7235 * filled in from the spa and (optionally) the vdev. This doesn't do anything
7236 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7237 * or zdb as real changes.
7238 */
7239 void
7240 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7241 {
7242 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7243 }
7244
7245 #if defined(_KERNEL) && defined(HAVE_SPL)
7246 /* state manipulation functions */
7247 EXPORT_SYMBOL(spa_open);
7248 EXPORT_SYMBOL(spa_open_rewind);
7249 EXPORT_SYMBOL(spa_get_stats);
7250 EXPORT_SYMBOL(spa_create);
7251 EXPORT_SYMBOL(spa_import);
7252 EXPORT_SYMBOL(spa_tryimport);
7253 EXPORT_SYMBOL(spa_destroy);
7254 EXPORT_SYMBOL(spa_export);
7255 EXPORT_SYMBOL(spa_reset);
7256 EXPORT_SYMBOL(spa_async_request);
7257 EXPORT_SYMBOL(spa_async_suspend);
7258 EXPORT_SYMBOL(spa_async_resume);
7259 EXPORT_SYMBOL(spa_inject_addref);
7260 EXPORT_SYMBOL(spa_inject_delref);
7261 EXPORT_SYMBOL(spa_scan_stat_init);
7262 EXPORT_SYMBOL(spa_scan_get_stats);
7263
7264 /* device maniion */
7265 EXPORT_SYMBOL(spa_vdev_add);
7266 EXPORT_SYMBOL(spa_vdev_attach);
7267 EXPORT_SYMBOL(spa_vdev_detach);
7268 EXPORT_SYMBOL(spa_vdev_remove);
7269 EXPORT_SYMBOL(spa_vdev_setpath);
7270 EXPORT_SYMBOL(spa_vdev_setfru);
7271 EXPORT_SYMBOL(spa_vdev_split_mirror);
7272
7273 /* spare statech is global across all pools) */
7274 EXPORT_SYMBOL(spa_spare_add);
7275 EXPORT_SYMBOL(spa_spare_remove);
7276 EXPORT_SYMBOL(spa_spare_exists);
7277 EXPORT_SYMBOL(spa_spare_activate);
7278
7279 /* L2ARC statech is global across all pools) */
7280 EXPORT_SYMBOL(spa_l2cache_add);
7281 EXPORT_SYMBOL(spa_l2cache_remove);
7282 EXPORT_SYMBOL(spa_l2cache_exists);
7283 EXPORT_SYMBOL(spa_l2cache_activate);
7284 EXPORT_SYMBOL(spa_l2cache_drop);
7285
7286 /* scanning */
7287 EXPORT_SYMBOL(spa_scan);
7288 EXPORT_SYMBOL(spa_scan_stop);
7289
7290 /* spa syncing */
7291 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
7292 EXPORT_SYMBOL(spa_sync_allpools);
7293
7294 /* properties */
7295 EXPORT_SYMBOL(spa_prop_set);
7296 EXPORT_SYMBOL(spa_prop_get);
7297 EXPORT_SYMBOL(spa_prop_clear_bootfs);
7298
7299 /* asynchronous event notification */
7300 EXPORT_SYMBOL(spa_event_notify);
7301 #endif
7302
7303 #if defined(_KERNEL) && defined(HAVE_SPL)
7304 module_param(spa_load_verify_maxinflight, int, 0644);
7305 MODULE_PARM_DESC(spa_load_verify_maxinflight,
7306 "Max concurrent traversal I/Os while verifying pool during import -X");
7307
7308 module_param(spa_load_verify_metadata, int, 0644);
7309 MODULE_PARM_DESC(spa_load_verify_metadata,
7310 "Set to traverse metadata on pool import");
7311
7312 module_param(spa_load_verify_data, int, 0644);
7313 MODULE_PARM_DESC(spa_load_verify_data,
7314 "Set to traverse data on pool import");
7315
7316 /* CSTYLED */
7317 module_param(zio_taskq_batch_pct, uint, 0444);
7318 MODULE_PARM_DESC(zio_taskq_batch_pct,
7319 "Percentage of CPUs to run an IO worker thread");
7320
7321 #endif