]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/commitdiff
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel...
authorPaolo Bonzini <pbonzini@redhat.com>
Tue, 9 May 2017 10:51:49 +0000 (12:51 +0200)
committerPaolo Bonzini <pbonzini@redhat.com>
Tue, 9 May 2017 10:51:49 +0000 (12:51 +0200)
Second round of KVM/ARM Changes for v4.12.

Changes include:
 - A fix related to the 32-bit idmap stub
 - A fix to the bitmask used to deode the operands of an AArch32 CP
   instruction
 - We have moved the files shared between arch/arm/kvm and
   arch/arm64/kvm to virt/kvm/arm
 - We add support for saving/restoring the virtual ITS state to
   userspace

1  2 
arch/arm/include/uapi/asm/kvm.h
arch/arm64/include/uapi/asm/kvm.h
arch/arm64/kvm/sys_regs.c
include/kvm/arm_vgic.h
include/linux/kvm_host.h
virt/kvm/arm/arm.c
virt/kvm/arm/mmu.c
virt/kvm/arm/vgic/vgic-init.c
virt/kvm/arm/vgic/vgic.c
virt/kvm/arm/vgic/vgic.h

Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
index 0000000000000000000000000000000000000000,9f6f522a4bfc411adf8025f99466e40afd685bcc..3417e184c8e144d32e4d1fa3983b454754b51670
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,1480 +1,1480 @@@
 -      case KVM_CAP_COALESCED_MMIO:
 -              r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 -              break;
+ /*
+  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+  *
+  * This program is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License, version 2, as
+  * published by the Free Software Foundation.
+  *
+  * This program is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+  *
+  * You should have received a copy of the GNU General Public License
+  * along with this program; if not, write to the Free Software
+  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
+  */
+ #include <linux/cpu_pm.h>
+ #include <linux/errno.h>
+ #include <linux/err.h>
+ #include <linux/kvm_host.h>
+ #include <linux/list.h>
+ #include <linux/module.h>
+ #include <linux/vmalloc.h>
+ #include <linux/fs.h>
+ #include <linux/mman.h>
+ #include <linux/sched.h>
+ #include <linux/kvm.h>
+ #include <trace/events/kvm.h>
+ #include <kvm/arm_pmu.h>
+ #define CREATE_TRACE_POINTS
+ #include "trace.h"
+ #include <linux/uaccess.h>
+ #include <asm/ptrace.h>
+ #include <asm/mman.h>
+ #include <asm/tlbflush.h>
+ #include <asm/cacheflush.h>
+ #include <asm/virt.h>
+ #include <asm/kvm_arm.h>
+ #include <asm/kvm_asm.h>
+ #include <asm/kvm_mmu.h>
+ #include <asm/kvm_emulate.h>
+ #include <asm/kvm_coproc.h>
+ #include <asm/kvm_psci.h>
+ #include <asm/sections.h>
+ #ifdef REQUIRES_VIRT
+ __asm__(".arch_extension      virt");
+ #endif
+ static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+ static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
+ /* Per-CPU variable containing the currently running vcpu. */
+ static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
+ /* The VMID used in the VTTBR */
+ static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
+ static u32 kvm_next_vmid;
+ static unsigned int kvm_vmid_bits __read_mostly;
+ static DEFINE_SPINLOCK(kvm_vmid_lock);
+ static bool vgic_present;
+ static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
+ static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
+ {
+       BUG_ON(preemptible());
+       __this_cpu_write(kvm_arm_running_vcpu, vcpu);
+ }
+ /**
+  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
+  * Must be called from non-preemptible context
+  */
+ struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
+ {
+       BUG_ON(preemptible());
+       return __this_cpu_read(kvm_arm_running_vcpu);
+ }
+ /**
+  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
+  */
+ struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
+ {
+       return &kvm_arm_running_vcpu;
+ }
+ int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+ {
+       return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+ }
+ int kvm_arch_hardware_setup(void)
+ {
+       return 0;
+ }
+ void kvm_arch_check_processor_compat(void *rtn)
+ {
+       *(int *)rtn = 0;
+ }
+ /**
+  * kvm_arch_init_vm - initializes a VM data structure
+  * @kvm:      pointer to the KVM struct
+  */
+ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+ {
+       int ret, cpu;
+       if (type)
+               return -EINVAL;
+       kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
+       if (!kvm->arch.last_vcpu_ran)
+               return -ENOMEM;
+       for_each_possible_cpu(cpu)
+               *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
+       ret = kvm_alloc_stage2_pgd(kvm);
+       if (ret)
+               goto out_fail_alloc;
+       ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
+       if (ret)
+               goto out_free_stage2_pgd;
+       kvm_vgic_early_init(kvm);
+       /* Mark the initial VMID generation invalid */
+       kvm->arch.vmid_gen = 0;
+       /* The maximum number of VCPUs is limited by the host's GIC model */
+       kvm->arch.max_vcpus = vgic_present ?
+                               kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
+       return ret;
+ out_free_stage2_pgd:
+       kvm_free_stage2_pgd(kvm);
+ out_fail_alloc:
+       free_percpu(kvm->arch.last_vcpu_ran);
+       kvm->arch.last_vcpu_ran = NULL;
+       return ret;
+ }
+ bool kvm_arch_has_vcpu_debugfs(void)
+ {
+       return false;
+ }
+ int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
+ {
+       return 0;
+ }
+ int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+ {
+       return VM_FAULT_SIGBUS;
+ }
+ /**
+  * kvm_arch_destroy_vm - destroy the VM data structure
+  * @kvm:      pointer to the KVM struct
+  */
+ void kvm_arch_destroy_vm(struct kvm *kvm)
+ {
+       int i;
+       free_percpu(kvm->arch.last_vcpu_ran);
+       kvm->arch.last_vcpu_ran = NULL;
+       for (i = 0; i < KVM_MAX_VCPUS; ++i) {
+               if (kvm->vcpus[i]) {
+                       kvm_arch_vcpu_free(kvm->vcpus[i]);
+                       kvm->vcpus[i] = NULL;
+               }
+       }
+       kvm_vgic_destroy(kvm);
+ }
+ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+ {
+       int r;
+       switch (ext) {
+       case KVM_CAP_IRQCHIP:
+               r = vgic_present;
+               break;
+       case KVM_CAP_IOEVENTFD:
+       case KVM_CAP_DEVICE_CTRL:
+       case KVM_CAP_USER_MEMORY:
+       case KVM_CAP_SYNC_MMU:
+       case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+       case KVM_CAP_ONE_REG:
+       case KVM_CAP_ARM_PSCI:
+       case KVM_CAP_ARM_PSCI_0_2:
+       case KVM_CAP_READONLY_MEM:
+       case KVM_CAP_MP_STATE:
+       case KVM_CAP_IMMEDIATE_EXIT:
+               r = 1;
+               break;
+       case KVM_CAP_ARM_SET_DEVICE_ADDR:
+               r = 1;
+               break;
+       case KVM_CAP_NR_VCPUS:
+               r = num_online_cpus();
+               break;
+       case KVM_CAP_MAX_VCPUS:
+               r = KVM_MAX_VCPUS;
+               break;
+       case KVM_CAP_NR_MEMSLOTS:
+               r = KVM_USER_MEM_SLOTS;
+               break;
+       case KVM_CAP_MSI_DEVID:
+               if (!kvm)
+                       r = -EINVAL;
+               else
+                       r = kvm->arch.vgic.msis_require_devid;
+               break;
+       case KVM_CAP_ARM_USER_IRQ:
+               /*
+                * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
+                * (bump this number if adding more devices)
+                */
+               r = 1;
+               break;
+       default:
+               r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
+               break;
+       }
+       return r;
+ }
+ long kvm_arch_dev_ioctl(struct file *filp,
+                       unsigned int ioctl, unsigned long arg)
+ {
+       return -EINVAL;
+ }
+ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
+ {
+       int err;
+       struct kvm_vcpu *vcpu;
+       if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
+               err = -EBUSY;
+               goto out;
+       }
+       if (id >= kvm->arch.max_vcpus) {
+               err = -EINVAL;
+               goto out;
+       }
+       vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+       if (!vcpu) {
+               err = -ENOMEM;
+               goto out;
+       }
+       err = kvm_vcpu_init(vcpu, kvm, id);
+       if (err)
+               goto free_vcpu;
+       err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
+       if (err)
+               goto vcpu_uninit;
+       return vcpu;
+ vcpu_uninit:
+       kvm_vcpu_uninit(vcpu);
+ free_vcpu:
+       kmem_cache_free(kvm_vcpu_cache, vcpu);
+ out:
+       return ERR_PTR(err);
+ }
+ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+ {
+       kvm_vgic_vcpu_early_init(vcpu);
+ }
+ void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
+ {
+       kvm_mmu_free_memory_caches(vcpu);
+       kvm_timer_vcpu_terminate(vcpu);
+       kvm_vgic_vcpu_destroy(vcpu);
+       kvm_pmu_vcpu_destroy(vcpu);
+       kvm_vcpu_uninit(vcpu);
+       kmem_cache_free(kvm_vcpu_cache, vcpu);
+ }
+ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+ {
+       kvm_arch_vcpu_free(vcpu);
+ }
+ int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+ {
+       return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
+              kvm_timer_should_fire(vcpu_ptimer(vcpu));
+ }
+ void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
+ {
+       kvm_timer_schedule(vcpu);
+ }
+ void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
+ {
+       kvm_timer_unschedule(vcpu);
+ }
+ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
+ {
+       /* Force users to call KVM_ARM_VCPU_INIT */
+       vcpu->arch.target = -1;
+       bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+       /* Set up the timer */
+       kvm_timer_vcpu_init(vcpu);
+       kvm_arm_reset_debug_ptr(vcpu);
+       return kvm_vgic_vcpu_init(vcpu);
+ }
+ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+ {
+       int *last_ran;
+       last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
+       /*
+        * We might get preempted before the vCPU actually runs, but
+        * over-invalidation doesn't affect correctness.
+        */
+       if (*last_ran != vcpu->vcpu_id) {
+               kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
+               *last_ran = vcpu->vcpu_id;
+       }
+       vcpu->cpu = cpu;
+       vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
+       kvm_arm_set_running_vcpu(vcpu);
+       kvm_vgic_load(vcpu);
+ }
+ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+ {
+       kvm_vgic_put(vcpu);
+       vcpu->cpu = -1;
+       kvm_arm_set_running_vcpu(NULL);
+       kvm_timer_vcpu_put(vcpu);
+ }
+ int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+                                   struct kvm_mp_state *mp_state)
+ {
+       if (vcpu->arch.power_off)
+               mp_state->mp_state = KVM_MP_STATE_STOPPED;
+       else
+               mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+       return 0;
+ }
+ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+                                   struct kvm_mp_state *mp_state)
+ {
+       switch (mp_state->mp_state) {
+       case KVM_MP_STATE_RUNNABLE:
+               vcpu->arch.power_off = false;
+               break;
+       case KVM_MP_STATE_STOPPED:
+               vcpu->arch.power_off = true;
+               break;
+       default:
+               return -EINVAL;
+       }
+       return 0;
+ }
+ /**
+  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+  * @v:                The VCPU pointer
+  *
+  * If the guest CPU is not waiting for interrupts or an interrupt line is
+  * asserted, the CPU is by definition runnable.
+  */
+ int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+ {
+       return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
+               && !v->arch.power_off && !v->arch.pause);
+ }
+ /* Just ensure a guest exit from a particular CPU */
+ static void exit_vm_noop(void *info)
+ {
+ }
+ void force_vm_exit(const cpumask_t *mask)
+ {
+       preempt_disable();
+       smp_call_function_many(mask, exit_vm_noop, NULL, true);
+       preempt_enable();
+ }
+ /**
+  * need_new_vmid_gen - check that the VMID is still valid
+  * @kvm: The VM's VMID to check
+  *
+  * return true if there is a new generation of VMIDs being used
+  *
+  * The hardware supports only 256 values with the value zero reserved for the
+  * host, so we check if an assigned value belongs to a previous generation,
+  * which which requires us to assign a new value. If we're the first to use a
+  * VMID for the new generation, we must flush necessary caches and TLBs on all
+  * CPUs.
+  */
+ static bool need_new_vmid_gen(struct kvm *kvm)
+ {
+       return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
+ }
+ /**
+  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
+  * @kvm       The guest that we are about to run
+  *
+  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
+  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
+  * caches and TLBs.
+  */
+ static void update_vttbr(struct kvm *kvm)
+ {
+       phys_addr_t pgd_phys;
+       u64 vmid;
+       if (!need_new_vmid_gen(kvm))
+               return;
+       spin_lock(&kvm_vmid_lock);
+       /*
+        * We need to re-check the vmid_gen here to ensure that if another vcpu
+        * already allocated a valid vmid for this vm, then this vcpu should
+        * use the same vmid.
+        */
+       if (!need_new_vmid_gen(kvm)) {
+               spin_unlock(&kvm_vmid_lock);
+               return;
+       }
+       /* First user of a new VMID generation? */
+       if (unlikely(kvm_next_vmid == 0)) {
+               atomic64_inc(&kvm_vmid_gen);
+               kvm_next_vmid = 1;
+               /*
+                * On SMP we know no other CPUs can use this CPU's or each
+                * other's VMID after force_vm_exit returns since the
+                * kvm_vmid_lock blocks them from reentry to the guest.
+                */
+               force_vm_exit(cpu_all_mask);
+               /*
+                * Now broadcast TLB + ICACHE invalidation over the inner
+                * shareable domain to make sure all data structures are
+                * clean.
+                */
+               kvm_call_hyp(__kvm_flush_vm_context);
+       }
+       kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
+       kvm->arch.vmid = kvm_next_vmid;
+       kvm_next_vmid++;
+       kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
+       /* update vttbr to be used with the new vmid */
+       pgd_phys = virt_to_phys(kvm->arch.pgd);
+       BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
+       vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
+       kvm->arch.vttbr = pgd_phys | vmid;
+       spin_unlock(&kvm_vmid_lock);
+ }
+ static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
+ {
+       struct kvm *kvm = vcpu->kvm;
+       int ret = 0;
+       if (likely(vcpu->arch.has_run_once))
+               return 0;
+       vcpu->arch.has_run_once = true;
+       /*
+        * Map the VGIC hardware resources before running a vcpu the first
+        * time on this VM.
+        */
+       if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
+               ret = kvm_vgic_map_resources(kvm);
+               if (ret)
+                       return ret;
+       }
+       ret = kvm_timer_enable(vcpu);
+       return ret;
+ }
+ bool kvm_arch_intc_initialized(struct kvm *kvm)
+ {
+       return vgic_initialized(kvm);
+ }
+ void kvm_arm_halt_guest(struct kvm *kvm)
+ {
+       int i;
+       struct kvm_vcpu *vcpu;
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               vcpu->arch.pause = true;
+       kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
+ }
+ void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
+ {
+       vcpu->arch.pause = true;
+       kvm_vcpu_kick(vcpu);
+ }
+ void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
+ {
+       struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
+       vcpu->arch.pause = false;
+       swake_up(wq);
+ }
+ void kvm_arm_resume_guest(struct kvm *kvm)
+ {
+       int i;
+       struct kvm_vcpu *vcpu;
+       kvm_for_each_vcpu(i, vcpu, kvm)
+               kvm_arm_resume_vcpu(vcpu);
+ }
+ static void vcpu_sleep(struct kvm_vcpu *vcpu)
+ {
+       struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
+       swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
+                                      (!vcpu->arch.pause)));
+ }
+ static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+ {
+       return vcpu->arch.target >= 0;
+ }
+ /**
+  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+  * @vcpu:     The VCPU pointer
+  * @run:      The kvm_run structure pointer used for userspace state exchange
+  *
+  * This function is called through the VCPU_RUN ioctl called from user space. It
+  * will execute VM code in a loop until the time slice for the process is used
+  * or some emulation is needed from user space in which case the function will
+  * return with return value 0 and with the kvm_run structure filled in with the
+  * required data for the requested emulation.
+  */
+ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
+ {
+       int ret;
+       sigset_t sigsaved;
+       if (unlikely(!kvm_vcpu_initialized(vcpu)))
+               return -ENOEXEC;
+       ret = kvm_vcpu_first_run_init(vcpu);
+       if (ret)
+               return ret;
+       if (run->exit_reason == KVM_EXIT_MMIO) {
+               ret = kvm_handle_mmio_return(vcpu, vcpu->run);
+               if (ret)
+                       return ret;
+       }
+       if (run->immediate_exit)
+               return -EINTR;
+       if (vcpu->sigset_active)
+               sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
+       ret = 1;
+       run->exit_reason = KVM_EXIT_UNKNOWN;
+       while (ret > 0) {
+               /*
+                * Check conditions before entering the guest
+                */
+               cond_resched();
+               update_vttbr(vcpu->kvm);
+               if (vcpu->arch.power_off || vcpu->arch.pause)
+                       vcpu_sleep(vcpu);
+               /*
+                * Preparing the interrupts to be injected also
+                * involves poking the GIC, which must be done in a
+                * non-preemptible context.
+                */
+               preempt_disable();
+               kvm_pmu_flush_hwstate(vcpu);
+               kvm_timer_flush_hwstate(vcpu);
+               kvm_vgic_flush_hwstate(vcpu);
+               local_irq_disable();
+               /*
+                * If we have a singal pending, or need to notify a userspace
+                * irqchip about timer or PMU level changes, then we exit (and
+                * update the timer level state in kvm_timer_update_run
+                * below).
+                */
+               if (signal_pending(current) ||
+                   kvm_timer_should_notify_user(vcpu) ||
+                   kvm_pmu_should_notify_user(vcpu)) {
+                       ret = -EINTR;
+                       run->exit_reason = KVM_EXIT_INTR;
+               }
+               if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
+                       vcpu->arch.power_off || vcpu->arch.pause) {
+                       local_irq_enable();
+                       kvm_pmu_sync_hwstate(vcpu);
+                       kvm_timer_sync_hwstate(vcpu);
+                       kvm_vgic_sync_hwstate(vcpu);
+                       preempt_enable();
+                       continue;
+               }
+               kvm_arm_setup_debug(vcpu);
+               /**************************************************************
+                * Enter the guest
+                */
+               trace_kvm_entry(*vcpu_pc(vcpu));
+               guest_enter_irqoff();
+               vcpu->mode = IN_GUEST_MODE;
+               ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
+               vcpu->mode = OUTSIDE_GUEST_MODE;
+               vcpu->stat.exits++;
+               /*
+                * Back from guest
+                *************************************************************/
+               kvm_arm_clear_debug(vcpu);
+               /*
+                * We may have taken a host interrupt in HYP mode (ie
+                * while executing the guest). This interrupt is still
+                * pending, as we haven't serviced it yet!
+                *
+                * We're now back in SVC mode, with interrupts
+                * disabled.  Enabling the interrupts now will have
+                * the effect of taking the interrupt again, in SVC
+                * mode this time.
+                */
+               local_irq_enable();
+               /*
+                * We do local_irq_enable() before calling guest_exit() so
+                * that if a timer interrupt hits while running the guest we
+                * account that tick as being spent in the guest.  We enable
+                * preemption after calling guest_exit() so that if we get
+                * preempted we make sure ticks after that is not counted as
+                * guest time.
+                */
+               guest_exit();
+               trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+               /*
+                * We must sync the PMU and timer state before the vgic state so
+                * that the vgic can properly sample the updated state of the
+                * interrupt line.
+                */
+               kvm_pmu_sync_hwstate(vcpu);
+               kvm_timer_sync_hwstate(vcpu);
+               kvm_vgic_sync_hwstate(vcpu);
+               preempt_enable();
+               ret = handle_exit(vcpu, run, ret);
+       }
+       /* Tell userspace about in-kernel device output levels */
+       if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
+               kvm_timer_update_run(vcpu);
+               kvm_pmu_update_run(vcpu);
+       }
+       if (vcpu->sigset_active)
+               sigprocmask(SIG_SETMASK, &sigsaved, NULL);
+       return ret;
+ }
+ static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+ {
+       int bit_index;
+       bool set;
+       unsigned long *ptr;
+       if (number == KVM_ARM_IRQ_CPU_IRQ)
+               bit_index = __ffs(HCR_VI);
+       else /* KVM_ARM_IRQ_CPU_FIQ */
+               bit_index = __ffs(HCR_VF);
+       ptr = (unsigned long *)&vcpu->arch.irq_lines;
+       if (level)
+               set = test_and_set_bit(bit_index, ptr);
+       else
+               set = test_and_clear_bit(bit_index, ptr);
+       /*
+        * If we didn't change anything, no need to wake up or kick other CPUs
+        */
+       if (set == level)
+               return 0;
+       /*
+        * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+        * trigger a world-switch round on the running physical CPU to set the
+        * virtual IRQ/FIQ fields in the HCR appropriately.
+        */
+       kvm_vcpu_kick(vcpu);
+       return 0;
+ }
+ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+                         bool line_status)
+ {
+       u32 irq = irq_level->irq;
+       unsigned int irq_type, vcpu_idx, irq_num;
+       int nrcpus = atomic_read(&kvm->online_vcpus);
+       struct kvm_vcpu *vcpu = NULL;
+       bool level = irq_level->level;
+       irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+       vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+       irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+       trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+       switch (irq_type) {
+       case KVM_ARM_IRQ_TYPE_CPU:
+               if (irqchip_in_kernel(kvm))
+                       return -ENXIO;
+               if (vcpu_idx >= nrcpus)
+                       return -EINVAL;
+               vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+               if (!vcpu)
+                       return -EINVAL;
+               if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+                       return -EINVAL;
+               return vcpu_interrupt_line(vcpu, irq_num, level);
+       case KVM_ARM_IRQ_TYPE_PPI:
+               if (!irqchip_in_kernel(kvm))
+                       return -ENXIO;
+               if (vcpu_idx >= nrcpus)
+                       return -EINVAL;
+               vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+               if (!vcpu)
+                       return -EINVAL;
+               if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+                       return -EINVAL;
+               return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
+       case KVM_ARM_IRQ_TYPE_SPI:
+               if (!irqchip_in_kernel(kvm))
+                       return -ENXIO;
+               if (irq_num < VGIC_NR_PRIVATE_IRQS)
+                       return -EINVAL;
+               return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
+       }
+       return -EINVAL;
+ }
+ static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+                              const struct kvm_vcpu_init *init)
+ {
+       unsigned int i;
+       int phys_target = kvm_target_cpu();
+       if (init->target != phys_target)
+               return -EINVAL;
+       /*
+        * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+        * use the same target.
+        */
+       if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
+               return -EINVAL;
+       /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
+       for (i = 0; i < sizeof(init->features) * 8; i++) {
+               bool set = (init->features[i / 32] & (1 << (i % 32)));
+               if (set && i >= KVM_VCPU_MAX_FEATURES)
+                       return -ENOENT;
+               /*
+                * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+                * use the same feature set.
+                */
+               if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
+                   test_bit(i, vcpu->arch.features) != set)
+                       return -EINVAL;
+               if (set)
+                       set_bit(i, vcpu->arch.features);
+       }
+       vcpu->arch.target = phys_target;
+       /* Now we know what it is, we can reset it. */
+       return kvm_reset_vcpu(vcpu);
+ }
+ static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+                                        struct kvm_vcpu_init *init)
+ {
+       int ret;
+       ret = kvm_vcpu_set_target(vcpu, init);
+       if (ret)
+               return ret;
+       /*
+        * Ensure a rebooted VM will fault in RAM pages and detect if the
+        * guest MMU is turned off and flush the caches as needed.
+        */
+       if (vcpu->arch.has_run_once)
+               stage2_unmap_vm(vcpu->kvm);
+       vcpu_reset_hcr(vcpu);
+       /*
+        * Handle the "start in power-off" case.
+        */
+       if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
+               vcpu->arch.power_off = true;
+       else
+               vcpu->arch.power_off = false;
+       return 0;
+ }
+ static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
+                                struct kvm_device_attr *attr)
+ {
+       int ret = -ENXIO;
+       switch (attr->group) {
+       default:
+               ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
+               break;
+       }
+       return ret;
+ }
+ static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
+                                struct kvm_device_attr *attr)
+ {
+       int ret = -ENXIO;
+       switch (attr->group) {
+       default:
+               ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
+               break;
+       }
+       return ret;
+ }
+ static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
+                                struct kvm_device_attr *attr)
+ {
+       int ret = -ENXIO;
+       switch (attr->group) {
+       default:
+               ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
+               break;
+       }
+       return ret;
+ }
+ long kvm_arch_vcpu_ioctl(struct file *filp,
+                        unsigned int ioctl, unsigned long arg)
+ {
+       struct kvm_vcpu *vcpu = filp->private_data;
+       void __user *argp = (void __user *)arg;
+       struct kvm_device_attr attr;
+       switch (ioctl) {
+       case KVM_ARM_VCPU_INIT: {
+               struct kvm_vcpu_init init;
+               if (copy_from_user(&init, argp, sizeof(init)))
+                       return -EFAULT;
+               return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+       }
+       case KVM_SET_ONE_REG:
+       case KVM_GET_ONE_REG: {
+               struct kvm_one_reg reg;
+               if (unlikely(!kvm_vcpu_initialized(vcpu)))
+                       return -ENOEXEC;
+               if (copy_from_user(&reg, argp, sizeof(reg)))
+                       return -EFAULT;
+               if (ioctl == KVM_SET_ONE_REG)
+                       return kvm_arm_set_reg(vcpu, &reg);
+               else
+                       return kvm_arm_get_reg(vcpu, &reg);
+       }
+       case KVM_GET_REG_LIST: {
+               struct kvm_reg_list __user *user_list = argp;
+               struct kvm_reg_list reg_list;
+               unsigned n;
+               if (unlikely(!kvm_vcpu_initialized(vcpu)))
+                       return -ENOEXEC;
+               if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+                       return -EFAULT;
+               n = reg_list.n;
+               reg_list.n = kvm_arm_num_regs(vcpu);
+               if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+                       return -EFAULT;
+               if (n < reg_list.n)
+                       return -E2BIG;
+               return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+       }
+       case KVM_SET_DEVICE_ATTR: {
+               if (copy_from_user(&attr, argp, sizeof(attr)))
+                       return -EFAULT;
+               return kvm_arm_vcpu_set_attr(vcpu, &attr);
+       }
+       case KVM_GET_DEVICE_ATTR: {
+               if (copy_from_user(&attr, argp, sizeof(attr)))
+                       return -EFAULT;
+               return kvm_arm_vcpu_get_attr(vcpu, &attr);
+       }
+       case KVM_HAS_DEVICE_ATTR: {
+               if (copy_from_user(&attr, argp, sizeof(attr)))
+                       return -EFAULT;
+               return kvm_arm_vcpu_has_attr(vcpu, &attr);
+       }
+       default:
+               return -EINVAL;
+       }
+ }
+ /**
+  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+  * @kvm: kvm instance
+  * @log: slot id and address to which we copy the log
+  *
+  * Steps 1-4 below provide general overview of dirty page logging. See
+  * kvm_get_dirty_log_protect() function description for additional details.
+  *
+  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+  * always flush the TLB (step 4) even if previous step failed  and the dirty
+  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+  * writes will be marked dirty for next log read.
+  *
+  *   1. Take a snapshot of the bit and clear it if needed.
+  *   2. Write protect the corresponding page.
+  *   3. Copy the snapshot to the userspace.
+  *   4. Flush TLB's if needed.
+  */
+ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+ {
+       bool is_dirty = false;
+       int r;
+       mutex_lock(&kvm->slots_lock);
+       r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+       if (is_dirty)
+               kvm_flush_remote_tlbs(kvm);
+       mutex_unlock(&kvm->slots_lock);
+       return r;
+ }
+ static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+                                       struct kvm_arm_device_addr *dev_addr)
+ {
+       unsigned long dev_id, type;
+       dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
+               KVM_ARM_DEVICE_ID_SHIFT;
+       type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
+               KVM_ARM_DEVICE_TYPE_SHIFT;
+       switch (dev_id) {
+       case KVM_ARM_DEVICE_VGIC_V2:
+               if (!vgic_present)
+                       return -ENXIO;
+               return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
+       default:
+               return -ENODEV;
+       }
+ }
+ long kvm_arch_vm_ioctl(struct file *filp,
+                      unsigned int ioctl, unsigned long arg)
+ {
+       struct kvm *kvm = filp->private_data;
+       void __user *argp = (void __user *)arg;
+       switch (ioctl) {
+       case KVM_CREATE_IRQCHIP: {
+               int ret;
+               if (!vgic_present)
+                       return -ENXIO;
+               mutex_lock(&kvm->lock);
+               ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+               mutex_unlock(&kvm->lock);
+               return ret;
+       }
+       case KVM_ARM_SET_DEVICE_ADDR: {
+               struct kvm_arm_device_addr dev_addr;
+               if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+                       return -EFAULT;
+               return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+       }
+       case KVM_ARM_PREFERRED_TARGET: {
+               int err;
+               struct kvm_vcpu_init init;
+               err = kvm_vcpu_preferred_target(&init);
+               if (err)
+                       return err;
+               if (copy_to_user(argp, &init, sizeof(init)))
+                       return -EFAULT;
+               return 0;
+       }
+       default:
+               return -EINVAL;
+       }
+ }
+ static void cpu_init_hyp_mode(void *dummy)
+ {
+       phys_addr_t pgd_ptr;
+       unsigned long hyp_stack_ptr;
+       unsigned long stack_page;
+       unsigned long vector_ptr;
+       /* Switch from the HYP stub to our own HYP init vector */
+       __hyp_set_vectors(kvm_get_idmap_vector());
+       pgd_ptr = kvm_mmu_get_httbr();
+       stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
+       hyp_stack_ptr = stack_page + PAGE_SIZE;
+       vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
+       __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
+       __cpu_init_stage2();
+       if (is_kernel_in_hyp_mode())
+               kvm_timer_init_vhe();
+       kvm_arm_init_debug();
+ }
+ static void cpu_hyp_reset(void)
+ {
+       if (!is_kernel_in_hyp_mode())
+               __hyp_reset_vectors();
+ }
+ static void cpu_hyp_reinit(void)
+ {
+       cpu_hyp_reset();
+       if (is_kernel_in_hyp_mode()) {
+               /*
+                * __cpu_init_stage2() is safe to call even if the PM
+                * event was cancelled before the CPU was reset.
+                */
+               __cpu_init_stage2();
+       } else {
+               cpu_init_hyp_mode(NULL);
+       }
++
++      if (vgic_present)
++              kvm_vgic_init_cpu_hardware();
+ }
+ static void _kvm_arch_hardware_enable(void *discard)
+ {
+       if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
+               cpu_hyp_reinit();
+               __this_cpu_write(kvm_arm_hardware_enabled, 1);
+       }
+ }
+ int kvm_arch_hardware_enable(void)
+ {
+       _kvm_arch_hardware_enable(NULL);
+       return 0;
+ }
+ static void _kvm_arch_hardware_disable(void *discard)
+ {
+       if (__this_cpu_read(kvm_arm_hardware_enabled)) {
+               cpu_hyp_reset();
+               __this_cpu_write(kvm_arm_hardware_enabled, 0);
+       }
+ }
+ void kvm_arch_hardware_disable(void)
+ {
+       _kvm_arch_hardware_disable(NULL);
+ }
+ #ifdef CONFIG_CPU_PM
+ static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+                                   unsigned long cmd,
+                                   void *v)
+ {
+       /*
+        * kvm_arm_hardware_enabled is left with its old value over
+        * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
+        * re-enable hyp.
+        */
+       switch (cmd) {
+       case CPU_PM_ENTER:
+               if (__this_cpu_read(kvm_arm_hardware_enabled))
+                       /*
+                        * don't update kvm_arm_hardware_enabled here
+                        * so that the hardware will be re-enabled
+                        * when we resume. See below.
+                        */
+                       cpu_hyp_reset();
+               return NOTIFY_OK;
+       case CPU_PM_EXIT:
+               if (__this_cpu_read(kvm_arm_hardware_enabled))
+                       /* The hardware was enabled before suspend. */
+                       cpu_hyp_reinit();
+               return NOTIFY_OK;
+       default:
+               return NOTIFY_DONE;
+       }
+ }
+ static struct notifier_block hyp_init_cpu_pm_nb = {
+       .notifier_call = hyp_init_cpu_pm_notifier,
+ };
+ static void __init hyp_cpu_pm_init(void)
+ {
+       cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+ }
+ static void __init hyp_cpu_pm_exit(void)
+ {
+       cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
+ }
+ #else
+ static inline void hyp_cpu_pm_init(void)
+ {
+ }
+ static inline void hyp_cpu_pm_exit(void)
+ {
+ }
+ #endif
+ static void teardown_common_resources(void)
+ {
+       free_percpu(kvm_host_cpu_state);
+ }
+ static int init_common_resources(void)
+ {
+       kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
+       if (!kvm_host_cpu_state) {
+               kvm_err("Cannot allocate host CPU state\n");
+               return -ENOMEM;
+       }
+       /* set size of VMID supported by CPU */
+       kvm_vmid_bits = kvm_get_vmid_bits();
+       kvm_info("%d-bit VMID\n", kvm_vmid_bits);
+       return 0;
+ }
+ static int init_subsystems(void)
+ {
+       int err = 0;
+       /*
+        * Enable hardware so that subsystem initialisation can access EL2.
+        */
+       on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
+       /*
+        * Register CPU lower-power notifier
+        */
+       hyp_cpu_pm_init();
+       /*
+        * Init HYP view of VGIC
+        */
+       err = kvm_vgic_hyp_init();
+       switch (err) {
+       case 0:
+               vgic_present = true;
+               break;
+       case -ENODEV:
+       case -ENXIO:
+               vgic_present = false;
+               err = 0;
+               break;
+       default:
+               goto out;
+       }
+       /*
+        * Init HYP architected timer support
+        */
+       err = kvm_timer_hyp_init();
+       if (err)
+               goto out;
+       kvm_perf_init();
+       kvm_coproc_table_init();
+ out:
+       on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
+       return err;
+ }
+ static void teardown_hyp_mode(void)
+ {
+       int cpu;
+       if (is_kernel_in_hyp_mode())
+               return;
+       free_hyp_pgds();
+       for_each_possible_cpu(cpu)
+               free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+       hyp_cpu_pm_exit();
+ }
+ static int init_vhe_mode(void)
+ {
+       kvm_info("VHE mode initialized successfully\n");
+       return 0;
+ }
+ /**
+  * Inits Hyp-mode on all online CPUs
+  */
+ static int init_hyp_mode(void)
+ {
+       int cpu;
+       int err = 0;
+       /*
+        * Allocate Hyp PGD and setup Hyp identity mapping
+        */
+       err = kvm_mmu_init();
+       if (err)
+               goto out_err;
+       /*
+        * Allocate stack pages for Hypervisor-mode
+        */
+       for_each_possible_cpu(cpu) {
+               unsigned long stack_page;
+               stack_page = __get_free_page(GFP_KERNEL);
+               if (!stack_page) {
+                       err = -ENOMEM;
+                       goto out_err;
+               }
+               per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+       }
+       /*
+        * Map the Hyp-code called directly from the host
+        */
+       err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
+                                 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
+       if (err) {
+               kvm_err("Cannot map world-switch code\n");
+               goto out_err;
+       }
+       err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
+                                 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
+       if (err) {
+               kvm_err("Cannot map rodata section\n");
+               goto out_err;
+       }
+       err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
+                                 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
+       if (err) {
+               kvm_err("Cannot map bss section\n");
+               goto out_err;
+       }
+       /*
+        * Map the Hyp stack pages
+        */
+       for_each_possible_cpu(cpu) {
+               char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+               err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
+                                         PAGE_HYP);
+               if (err) {
+                       kvm_err("Cannot map hyp stack\n");
+                       goto out_err;
+               }
+       }
+       for_each_possible_cpu(cpu) {
+               kvm_cpu_context_t *cpu_ctxt;
+               cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
+               err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
+               if (err) {
+                       kvm_err("Cannot map host CPU state: %d\n", err);
+                       goto out_err;
+               }
+       }
+       kvm_info("Hyp mode initialized successfully\n");
+       return 0;
+ out_err:
+       teardown_hyp_mode();
+       kvm_err("error initializing Hyp mode: %d\n", err);
+       return err;
+ }
+ static void check_kvm_target_cpu(void *ret)
+ {
+       *(int *)ret = kvm_target_cpu();
+ }
+ struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+ {
+       struct kvm_vcpu *vcpu;
+       int i;
+       mpidr &= MPIDR_HWID_BITMASK;
+       kvm_for_each_vcpu(i, vcpu, kvm) {
+               if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+                       return vcpu;
+       }
+       return NULL;
+ }
+ /**
+  * Initialize Hyp-mode and memory mappings on all CPUs.
+  */
+ int kvm_arch_init(void *opaque)
+ {
+       int err;
+       int ret, cpu;
+       if (!is_hyp_mode_available()) {
+               kvm_err("HYP mode not available\n");
+               return -ENODEV;
+       }
+       for_each_online_cpu(cpu) {
+               smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
+               if (ret < 0) {
+                       kvm_err("Error, CPU %d not supported!\n", cpu);
+                       return -ENODEV;
+               }
+       }
+       err = init_common_resources();
+       if (err)
+               return err;
+       if (is_kernel_in_hyp_mode())
+               err = init_vhe_mode();
+       else
+               err = init_hyp_mode();
+       if (err)
+               goto out_err;
+       err = init_subsystems();
+       if (err)
+               goto out_hyp;
+       return 0;
+ out_hyp:
+       teardown_hyp_mode();
+ out_err:
+       teardown_common_resources();
+       return err;
+ }
+ /* NOP: Compiling as a module not supported */
+ void kvm_arch_exit(void)
+ {
+       kvm_perf_teardown();
+ }
+ static int arm_init(void)
+ {
+       int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+       return rc;
+ }
+ module_init(arm_init);
index 0000000000000000000000000000000000000000,efb4335aa5c4a067194d47521f503a48a8770b55..313ee646480f4d88264664d7393fcb39969609ba
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,1958 +1,1975 @@@
 -                      if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
 -                              return -EINVAL;
+ /*
+  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+  *
+  * This program is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License, version 2, as
+  * published by the Free Software Foundation.
+  *
+  * This program is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+  *
+  * You should have received a copy of the GNU General Public License
+  * along with this program; if not, write to the Free Software
+  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
+  */
+ #include <linux/mman.h>
+ #include <linux/kvm_host.h>
+ #include <linux/io.h>
+ #include <linux/hugetlb.h>
+ #include <trace/events/kvm.h>
+ #include <asm/pgalloc.h>
+ #include <asm/cacheflush.h>
+ #include <asm/kvm_arm.h>
+ #include <asm/kvm_mmu.h>
+ #include <asm/kvm_mmio.h>
+ #include <asm/kvm_asm.h>
+ #include <asm/kvm_emulate.h>
+ #include <asm/virt.h>
+ #include "trace.h"
+ static pgd_t *boot_hyp_pgd;
+ static pgd_t *hyp_pgd;
+ static pgd_t *merged_hyp_pgd;
+ static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
+ static unsigned long hyp_idmap_start;
+ static unsigned long hyp_idmap_end;
+ static phys_addr_t hyp_idmap_vector;
+ #define S2_PGD_SIZE   (PTRS_PER_S2_PGD * sizeof(pgd_t))
+ #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
+ #define KVM_S2PTE_FLAG_IS_IOMAP               (1UL << 0)
+ #define KVM_S2_FLAG_LOGGING_ACTIVE    (1UL << 1)
+ static bool memslot_is_logging(struct kvm_memory_slot *memslot)
+ {
+       return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
+ }
+ /**
+  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
+  * @kvm:      pointer to kvm structure.
+  *
+  * Interface to HYP function to flush all VM TLB entries
+  */
+ void kvm_flush_remote_tlbs(struct kvm *kvm)
+ {
+       kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
+ }
+ static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
+ {
+       kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
+ }
+ /*
+  * D-Cache management functions. They take the page table entries by
+  * value, as they are flushing the cache using the kernel mapping (or
+  * kmap on 32bit).
+  */
+ static void kvm_flush_dcache_pte(pte_t pte)
+ {
+       __kvm_flush_dcache_pte(pte);
+ }
+ static void kvm_flush_dcache_pmd(pmd_t pmd)
+ {
+       __kvm_flush_dcache_pmd(pmd);
+ }
+ static void kvm_flush_dcache_pud(pud_t pud)
+ {
+       __kvm_flush_dcache_pud(pud);
+ }
+ static bool kvm_is_device_pfn(unsigned long pfn)
+ {
+       return !pfn_valid(pfn);
+ }
+ /**
+  * stage2_dissolve_pmd() - clear and flush huge PMD entry
+  * @kvm:      pointer to kvm structure.
+  * @addr:     IPA
+  * @pmd:      pmd pointer for IPA
+  *
+  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
+  * pages in the range dirty.
+  */
+ static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
+ {
+       if (!pmd_thp_or_huge(*pmd))
+               return;
+       pmd_clear(pmd);
+       kvm_tlb_flush_vmid_ipa(kvm, addr);
+       put_page(virt_to_page(pmd));
+ }
+ static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+                                 int min, int max)
+ {
+       void *page;
+       BUG_ON(max > KVM_NR_MEM_OBJS);
+       if (cache->nobjs >= min)
+               return 0;
+       while (cache->nobjs < max) {
+               page = (void *)__get_free_page(PGALLOC_GFP);
+               if (!page)
+                       return -ENOMEM;
+               cache->objects[cache->nobjs++] = page;
+       }
+       return 0;
+ }
+ static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+ {
+       while (mc->nobjs)
+               free_page((unsigned long)mc->objects[--mc->nobjs]);
+ }
+ static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+ {
+       void *p;
+       BUG_ON(!mc || !mc->nobjs);
+       p = mc->objects[--mc->nobjs];
+       return p;
+ }
+ static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
+ {
+       pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
+       stage2_pgd_clear(pgd);
+       kvm_tlb_flush_vmid_ipa(kvm, addr);
+       stage2_pud_free(pud_table);
+       put_page(virt_to_page(pgd));
+ }
+ static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
+ {
+       pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
+       VM_BUG_ON(stage2_pud_huge(*pud));
+       stage2_pud_clear(pud);
+       kvm_tlb_flush_vmid_ipa(kvm, addr);
+       stage2_pmd_free(pmd_table);
+       put_page(virt_to_page(pud));
+ }
+ static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
+ {
+       pte_t *pte_table = pte_offset_kernel(pmd, 0);
+       VM_BUG_ON(pmd_thp_or_huge(*pmd));
+       pmd_clear(pmd);
+       kvm_tlb_flush_vmid_ipa(kvm, addr);
+       pte_free_kernel(NULL, pte_table);
+       put_page(virt_to_page(pmd));
+ }
+ /*
+  * Unmapping vs dcache management:
+  *
+  * If a guest maps certain memory pages as uncached, all writes will
+  * bypass the data cache and go directly to RAM.  However, the CPUs
+  * can still speculate reads (not writes) and fill cache lines with
+  * data.
+  *
+  * Those cache lines will be *clean* cache lines though, so a
+  * clean+invalidate operation is equivalent to an invalidate
+  * operation, because no cache lines are marked dirty.
+  *
+  * Those clean cache lines could be filled prior to an uncached write
+  * by the guest, and the cache coherent IO subsystem would therefore
+  * end up writing old data to disk.
+  *
+  * This is why right after unmapping a page/section and invalidating
+  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
+  * the IO subsystem will never hit in the cache.
+  */
+ static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
+                      phys_addr_t addr, phys_addr_t end)
+ {
+       phys_addr_t start_addr = addr;
+       pte_t *pte, *start_pte;
+       start_pte = pte = pte_offset_kernel(pmd, addr);
+       do {
+               if (!pte_none(*pte)) {
+                       pte_t old_pte = *pte;
+                       kvm_set_pte(pte, __pte(0));
+                       kvm_tlb_flush_vmid_ipa(kvm, addr);
+                       /* No need to invalidate the cache for device mappings */
+                       if (!kvm_is_device_pfn(pte_pfn(old_pte)))
+                               kvm_flush_dcache_pte(old_pte);
+                       put_page(virt_to_page(pte));
+               }
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+       if (stage2_pte_table_empty(start_pte))
+               clear_stage2_pmd_entry(kvm, pmd, start_addr);
+ }
+ static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
+                      phys_addr_t addr, phys_addr_t end)
+ {
+       phys_addr_t next, start_addr = addr;
+       pmd_t *pmd, *start_pmd;
+       start_pmd = pmd = stage2_pmd_offset(pud, addr);
+       do {
+               next = stage2_pmd_addr_end(addr, end);
+               if (!pmd_none(*pmd)) {
+                       if (pmd_thp_or_huge(*pmd)) {
+                               pmd_t old_pmd = *pmd;
+                               pmd_clear(pmd);
+                               kvm_tlb_flush_vmid_ipa(kvm, addr);
+                               kvm_flush_dcache_pmd(old_pmd);
+                               put_page(virt_to_page(pmd));
+                       } else {
+                               unmap_stage2_ptes(kvm, pmd, addr, next);
+                       }
+               }
+       } while (pmd++, addr = next, addr != end);
+       if (stage2_pmd_table_empty(start_pmd))
+               clear_stage2_pud_entry(kvm, pud, start_addr);
+ }
+ static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
+                      phys_addr_t addr, phys_addr_t end)
+ {
+       phys_addr_t next, start_addr = addr;
+       pud_t *pud, *start_pud;
+       start_pud = pud = stage2_pud_offset(pgd, addr);
+       do {
+               next = stage2_pud_addr_end(addr, end);
+               if (!stage2_pud_none(*pud)) {
+                       if (stage2_pud_huge(*pud)) {
+                               pud_t old_pud = *pud;
+                               stage2_pud_clear(pud);
+                               kvm_tlb_flush_vmid_ipa(kvm, addr);
+                               kvm_flush_dcache_pud(old_pud);
+                               put_page(virt_to_page(pud));
+                       } else {
+                               unmap_stage2_pmds(kvm, pud, addr, next);
+                       }
+               }
+       } while (pud++, addr = next, addr != end);
+       if (stage2_pud_table_empty(start_pud))
+               clear_stage2_pgd_entry(kvm, pgd, start_addr);
+ }
+ /**
+  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
+  * @kvm:   The VM pointer
+  * @start: The intermediate physical base address of the range to unmap
+  * @size:  The size of the area to unmap
+  *
+  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
+  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
+  * destroying the VM), otherwise another faulting VCPU may come in and mess
+  * with things behind our backs.
+  */
+ static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
+ {
+       pgd_t *pgd;
+       phys_addr_t addr = start, end = start + size;
+       phys_addr_t next;
++      assert_spin_locked(&kvm->mmu_lock);
+       pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+       do {
+               next = stage2_pgd_addr_end(addr, end);
+               if (!stage2_pgd_none(*pgd))
+                       unmap_stage2_puds(kvm, pgd, addr, next);
++              /*
++               * If the range is too large, release the kvm->mmu_lock
++               * to prevent starvation and lockup detector warnings.
++               */
++              if (next != end)
++                      cond_resched_lock(&kvm->mmu_lock);
+       } while (pgd++, addr = next, addr != end);
+ }
+ static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
+                             phys_addr_t addr, phys_addr_t end)
+ {
+       pte_t *pte;
+       pte = pte_offset_kernel(pmd, addr);
+       do {
+               if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
+                       kvm_flush_dcache_pte(*pte);
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+ }
+ static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
+                             phys_addr_t addr, phys_addr_t end)
+ {
+       pmd_t *pmd;
+       phys_addr_t next;
+       pmd = stage2_pmd_offset(pud, addr);
+       do {
+               next = stage2_pmd_addr_end(addr, end);
+               if (!pmd_none(*pmd)) {
+                       if (pmd_thp_or_huge(*pmd))
+                               kvm_flush_dcache_pmd(*pmd);
+                       else
+                               stage2_flush_ptes(kvm, pmd, addr, next);
+               }
+       } while (pmd++, addr = next, addr != end);
+ }
+ static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
+                             phys_addr_t addr, phys_addr_t end)
+ {
+       pud_t *pud;
+       phys_addr_t next;
+       pud = stage2_pud_offset(pgd, addr);
+       do {
+               next = stage2_pud_addr_end(addr, end);
+               if (!stage2_pud_none(*pud)) {
+                       if (stage2_pud_huge(*pud))
+                               kvm_flush_dcache_pud(*pud);
+                       else
+                               stage2_flush_pmds(kvm, pud, addr, next);
+               }
+       } while (pud++, addr = next, addr != end);
+ }
+ static void stage2_flush_memslot(struct kvm *kvm,
+                                struct kvm_memory_slot *memslot)
+ {
+       phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+       phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
+       phys_addr_t next;
+       pgd_t *pgd;
+       pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+       do {
+               next = stage2_pgd_addr_end(addr, end);
+               stage2_flush_puds(kvm, pgd, addr, next);
+       } while (pgd++, addr = next, addr != end);
+ }
+ /**
+  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
+  * @kvm: The struct kvm pointer
+  *
+  * Go through the stage 2 page tables and invalidate any cache lines
+  * backing memory already mapped to the VM.
+  */
+ static void stage2_flush_vm(struct kvm *kvm)
+ {
+       struct kvm_memslots *slots;
+       struct kvm_memory_slot *memslot;
+       int idx;
+       idx = srcu_read_lock(&kvm->srcu);
+       spin_lock(&kvm->mmu_lock);
+       slots = kvm_memslots(kvm);
+       kvm_for_each_memslot(memslot, slots)
+               stage2_flush_memslot(kvm, memslot);
+       spin_unlock(&kvm->mmu_lock);
+       srcu_read_unlock(&kvm->srcu, idx);
+ }
+ static void clear_hyp_pgd_entry(pgd_t *pgd)
+ {
+       pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
+       pgd_clear(pgd);
+       pud_free(NULL, pud_table);
+       put_page(virt_to_page(pgd));
+ }
+ static void clear_hyp_pud_entry(pud_t *pud)
+ {
+       pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
+       VM_BUG_ON(pud_huge(*pud));
+       pud_clear(pud);
+       pmd_free(NULL, pmd_table);
+       put_page(virt_to_page(pud));
+ }
+ static void clear_hyp_pmd_entry(pmd_t *pmd)
+ {
+       pte_t *pte_table = pte_offset_kernel(pmd, 0);
+       VM_BUG_ON(pmd_thp_or_huge(*pmd));
+       pmd_clear(pmd);
+       pte_free_kernel(NULL, pte_table);
+       put_page(virt_to_page(pmd));
+ }
+ static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+ {
+       pte_t *pte, *start_pte;
+       start_pte = pte = pte_offset_kernel(pmd, addr);
+       do {
+               if (!pte_none(*pte)) {
+                       kvm_set_pte(pte, __pte(0));
+                       put_page(virt_to_page(pte));
+               }
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+       if (hyp_pte_table_empty(start_pte))
+               clear_hyp_pmd_entry(pmd);
+ }
+ static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+ {
+       phys_addr_t next;
+       pmd_t *pmd, *start_pmd;
+       start_pmd = pmd = pmd_offset(pud, addr);
+       do {
+               next = pmd_addr_end(addr, end);
+               /* Hyp doesn't use huge pmds */
+               if (!pmd_none(*pmd))
+                       unmap_hyp_ptes(pmd, addr, next);
+       } while (pmd++, addr = next, addr != end);
+       if (hyp_pmd_table_empty(start_pmd))
+               clear_hyp_pud_entry(pud);
+ }
+ static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+ {
+       phys_addr_t next;
+       pud_t *pud, *start_pud;
+       start_pud = pud = pud_offset(pgd, addr);
+       do {
+               next = pud_addr_end(addr, end);
+               /* Hyp doesn't use huge puds */
+               if (!pud_none(*pud))
+                       unmap_hyp_pmds(pud, addr, next);
+       } while (pud++, addr = next, addr != end);
+       if (hyp_pud_table_empty(start_pud))
+               clear_hyp_pgd_entry(pgd);
+ }
+ static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
+ {
+       pgd_t *pgd;
+       phys_addr_t addr = start, end = start + size;
+       phys_addr_t next;
+       /*
+        * We don't unmap anything from HYP, except at the hyp tear down.
+        * Hence, we don't have to invalidate the TLBs here.
+        */
+       pgd = pgdp + pgd_index(addr);
+       do {
+               next = pgd_addr_end(addr, end);
+               if (!pgd_none(*pgd))
+                       unmap_hyp_puds(pgd, addr, next);
+       } while (pgd++, addr = next, addr != end);
+ }
+ /**
+  * free_hyp_pgds - free Hyp-mode page tables
+  *
+  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
+  * therefore contains either mappings in the kernel memory area (above
+  * PAGE_OFFSET), or device mappings in the vmalloc range (from
+  * VMALLOC_START to VMALLOC_END).
+  *
+  * boot_hyp_pgd should only map two pages for the init code.
+  */
+ void free_hyp_pgds(void)
+ {
+       unsigned long addr;
+       mutex_lock(&kvm_hyp_pgd_mutex);
+       if (boot_hyp_pgd) {
+               unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
+               free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
+               boot_hyp_pgd = NULL;
+       }
+       if (hyp_pgd) {
+               unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
+               for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
+                       unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
+               for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
+                       unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
+               free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
+               hyp_pgd = NULL;
+       }
+       if (merged_hyp_pgd) {
+               clear_page(merged_hyp_pgd);
+               free_page((unsigned long)merged_hyp_pgd);
+               merged_hyp_pgd = NULL;
+       }
+       mutex_unlock(&kvm_hyp_pgd_mutex);
+ }
+ static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
+                                   unsigned long end, unsigned long pfn,
+                                   pgprot_t prot)
+ {
+       pte_t *pte;
+       unsigned long addr;
+       addr = start;
+       do {
+               pte = pte_offset_kernel(pmd, addr);
+               kvm_set_pte(pte, pfn_pte(pfn, prot));
+               get_page(virt_to_page(pte));
+               kvm_flush_dcache_to_poc(pte, sizeof(*pte));
+               pfn++;
+       } while (addr += PAGE_SIZE, addr != end);
+ }
+ static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
+                                  unsigned long end, unsigned long pfn,
+                                  pgprot_t prot)
+ {
+       pmd_t *pmd;
+       pte_t *pte;
+       unsigned long addr, next;
+       addr = start;
+       do {
+               pmd = pmd_offset(pud, addr);
+               BUG_ON(pmd_sect(*pmd));
+               if (pmd_none(*pmd)) {
+                       pte = pte_alloc_one_kernel(NULL, addr);
+                       if (!pte) {
+                               kvm_err("Cannot allocate Hyp pte\n");
+                               return -ENOMEM;
+                       }
+                       pmd_populate_kernel(NULL, pmd, pte);
+                       get_page(virt_to_page(pmd));
+                       kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
+               }
+               next = pmd_addr_end(addr, end);
+               create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
+               pfn += (next - addr) >> PAGE_SHIFT;
+       } while (addr = next, addr != end);
+       return 0;
+ }
+ static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
+                                  unsigned long end, unsigned long pfn,
+                                  pgprot_t prot)
+ {
+       pud_t *pud;
+       pmd_t *pmd;
+       unsigned long addr, next;
+       int ret;
+       addr = start;
+       do {
+               pud = pud_offset(pgd, addr);
+               if (pud_none_or_clear_bad(pud)) {
+                       pmd = pmd_alloc_one(NULL, addr);
+                       if (!pmd) {
+                               kvm_err("Cannot allocate Hyp pmd\n");
+                               return -ENOMEM;
+                       }
+                       pud_populate(NULL, pud, pmd);
+                       get_page(virt_to_page(pud));
+                       kvm_flush_dcache_to_poc(pud, sizeof(*pud));
+               }
+               next = pud_addr_end(addr, end);
+               ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
+               if (ret)
+                       return ret;
+               pfn += (next - addr) >> PAGE_SHIFT;
+       } while (addr = next, addr != end);
+       return 0;
+ }
+ static int __create_hyp_mappings(pgd_t *pgdp,
+                                unsigned long start, unsigned long end,
+                                unsigned long pfn, pgprot_t prot)
+ {
+       pgd_t *pgd;
+       pud_t *pud;
+       unsigned long addr, next;
+       int err = 0;
+       mutex_lock(&kvm_hyp_pgd_mutex);
+       addr = start & PAGE_MASK;
+       end = PAGE_ALIGN(end);
+       do {
+               pgd = pgdp + pgd_index(addr);
+               if (pgd_none(*pgd)) {
+                       pud = pud_alloc_one(NULL, addr);
+                       if (!pud) {
+                               kvm_err("Cannot allocate Hyp pud\n");
+                               err = -ENOMEM;
+                               goto out;
+                       }
+                       pgd_populate(NULL, pgd, pud);
+                       get_page(virt_to_page(pgd));
+                       kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
+               }
+               next = pgd_addr_end(addr, end);
+               err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
+               if (err)
+                       goto out;
+               pfn += (next - addr) >> PAGE_SHIFT;
+       } while (addr = next, addr != end);
+ out:
+       mutex_unlock(&kvm_hyp_pgd_mutex);
+       return err;
+ }
+ static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
+ {
+       if (!is_vmalloc_addr(kaddr)) {
+               BUG_ON(!virt_addr_valid(kaddr));
+               return __pa(kaddr);
+       } else {
+               return page_to_phys(vmalloc_to_page(kaddr)) +
+                      offset_in_page(kaddr);
+       }
+ }
+ /**
+  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
+  * @from:     The virtual kernel start address of the range
+  * @to:               The virtual kernel end address of the range (exclusive)
+  * @prot:     The protection to be applied to this range
+  *
+  * The same virtual address as the kernel virtual address is also used
+  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
+  * physical pages.
+  */
+ int create_hyp_mappings(void *from, void *to, pgprot_t prot)
+ {
+       phys_addr_t phys_addr;
+       unsigned long virt_addr;
+       unsigned long start = kern_hyp_va((unsigned long)from);
+       unsigned long end = kern_hyp_va((unsigned long)to);
+       if (is_kernel_in_hyp_mode())
+               return 0;
+       start = start & PAGE_MASK;
+       end = PAGE_ALIGN(end);
+       for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
+               int err;
+               phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
+               err = __create_hyp_mappings(hyp_pgd, virt_addr,
+                                           virt_addr + PAGE_SIZE,
+                                           __phys_to_pfn(phys_addr),
+                                           prot);
+               if (err)
+                       return err;
+       }
+       return 0;
+ }
+ /**
+  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
+  * @from:     The kernel start VA of the range
+  * @to:               The kernel end VA of the range (exclusive)
+  * @phys_addr:        The physical start address which gets mapped
+  *
+  * The resulting HYP VA is the same as the kernel VA, modulo
+  * HYP_PAGE_OFFSET.
+  */
+ int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
+ {
+       unsigned long start = kern_hyp_va((unsigned long)from);
+       unsigned long end = kern_hyp_va((unsigned long)to);
+       if (is_kernel_in_hyp_mode())
+               return 0;
+       /* Check for a valid kernel IO mapping */
+       if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
+               return -EINVAL;
+       return __create_hyp_mappings(hyp_pgd, start, end,
+                                    __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
+ }
+ /**
+  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
+  * @kvm:      The KVM struct pointer for the VM.
+  *
+  * Allocates only the stage-2 HW PGD level table(s) (can support either full
+  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
+  * allocated pages.
+  *
+  * Note we don't need locking here as this is only called when the VM is
+  * created, which can only be done once.
+  */
+ int kvm_alloc_stage2_pgd(struct kvm *kvm)
+ {
+       pgd_t *pgd;
+       if (kvm->arch.pgd != NULL) {
+               kvm_err("kvm_arch already initialized?\n");
+               return -EINVAL;
+       }
+       /* Allocate the HW PGD, making sure that each page gets its own refcount */
+       pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
+       if (!pgd)
+               return -ENOMEM;
+       kvm->arch.pgd = pgd;
+       return 0;
+ }
+ static void stage2_unmap_memslot(struct kvm *kvm,
+                                struct kvm_memory_slot *memslot)
+ {
+       hva_t hva = memslot->userspace_addr;
+       phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+       phys_addr_t size = PAGE_SIZE * memslot->npages;
+       hva_t reg_end = hva + size;
+       /*
+        * A memory region could potentially cover multiple VMAs, and any holes
+        * between them, so iterate over all of them to find out if we should
+        * unmap any of them.
+        *
+        *     +--------------------------------------------+
+        * +---------------+----------------+   +----------------+
+        * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
+        * +---------------+----------------+   +----------------+
+        *     |               memory region                |
+        *     +--------------------------------------------+
+        */
+       do {
+               struct vm_area_struct *vma = find_vma(current->mm, hva);
+               hva_t vm_start, vm_end;
+               if (!vma || vma->vm_start >= reg_end)
+                       break;
+               /*
+                * Take the intersection of this VMA with the memory region
+                */
+               vm_start = max(hva, vma->vm_start);
+               vm_end = min(reg_end, vma->vm_end);
+               if (!(vma->vm_flags & VM_PFNMAP)) {
+                       gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
+                       unmap_stage2_range(kvm, gpa, vm_end - vm_start);
+               }
+               hva = vm_end;
+       } while (hva < reg_end);
+ }
+ /**
+  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
+  * @kvm: The struct kvm pointer
+  *
+  * Go through the memregions and unmap any reguler RAM
+  * backing memory already mapped to the VM.
+  */
+ void stage2_unmap_vm(struct kvm *kvm)
+ {
+       struct kvm_memslots *slots;
+       struct kvm_memory_slot *memslot;
+       int idx;
+       idx = srcu_read_lock(&kvm->srcu);
++      down_read(&current->mm->mmap_sem);
+       spin_lock(&kvm->mmu_lock);
+       slots = kvm_memslots(kvm);
+       kvm_for_each_memslot(memslot, slots)
+               stage2_unmap_memslot(kvm, memslot);
+       spin_unlock(&kvm->mmu_lock);
++      up_read(&current->mm->mmap_sem);
+       srcu_read_unlock(&kvm->srcu, idx);
+ }
+ /**
+  * kvm_free_stage2_pgd - free all stage-2 tables
+  * @kvm:      The KVM struct pointer for the VM.
+  *
+  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
+  * underlying level-2 and level-3 tables before freeing the actual level-1 table
+  * and setting the struct pointer to NULL.
+  *
+  * Note we don't need locking here as this is only called when the VM is
+  * destroyed, which can only be done once.
+  */
+ void kvm_free_stage2_pgd(struct kvm *kvm)
+ {
+       if (kvm->arch.pgd == NULL)
+               return;
++      spin_lock(&kvm->mmu_lock);
+       unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
++      spin_unlock(&kvm->mmu_lock);
++
+       /* Free the HW pgd, one page at a time */
+       free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
+       kvm->arch.pgd = NULL;
+ }
+ static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+                            phys_addr_t addr)
+ {
+       pgd_t *pgd;
+       pud_t *pud;
+       pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+       if (WARN_ON(stage2_pgd_none(*pgd))) {
+               if (!cache)
+                       return NULL;
+               pud = mmu_memory_cache_alloc(cache);
+               stage2_pgd_populate(pgd, pud);
+               get_page(virt_to_page(pgd));
+       }
+       return stage2_pud_offset(pgd, addr);
+ }
+ static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+                            phys_addr_t addr)
+ {
+       pud_t *pud;
+       pmd_t *pmd;
+       pud = stage2_get_pud(kvm, cache, addr);
+       if (stage2_pud_none(*pud)) {
+               if (!cache)
+                       return NULL;
+               pmd = mmu_memory_cache_alloc(cache);
+               stage2_pud_populate(pud, pmd);
+               get_page(virt_to_page(pud));
+       }
+       return stage2_pmd_offset(pud, addr);
+ }
+ static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
+                              *cache, phys_addr_t addr, const pmd_t *new_pmd)
+ {
+       pmd_t *pmd, old_pmd;
+       pmd = stage2_get_pmd(kvm, cache, addr);
+       VM_BUG_ON(!pmd);
+       /*
+        * Mapping in huge pages should only happen through a fault.  If a
+        * page is merged into a transparent huge page, the individual
+        * subpages of that huge page should be unmapped through MMU
+        * notifiers before we get here.
+        *
+        * Merging of CompoundPages is not supported; they should become
+        * splitting first, unmapped, merged, and mapped back in on-demand.
+        */
+       VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
+       old_pmd = *pmd;
+       if (pmd_present(old_pmd)) {
+               pmd_clear(pmd);
+               kvm_tlb_flush_vmid_ipa(kvm, addr);
+       } else {
+               get_page(virt_to_page(pmd));
+       }
+       kvm_set_pmd(pmd, *new_pmd);
+       return 0;
+ }
+ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+                         phys_addr_t addr, const pte_t *new_pte,
+                         unsigned long flags)
+ {
+       pmd_t *pmd;
+       pte_t *pte, old_pte;
+       bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
+       bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
+       VM_BUG_ON(logging_active && !cache);
+       /* Create stage-2 page table mapping - Levels 0 and 1 */
+       pmd = stage2_get_pmd(kvm, cache, addr);
+       if (!pmd) {
+               /*
+                * Ignore calls from kvm_set_spte_hva for unallocated
+                * address ranges.
+                */
+               return 0;
+       }
+       /*
+        * While dirty page logging - dissolve huge PMD, then continue on to
+        * allocate page.
+        */
+       if (logging_active)
+               stage2_dissolve_pmd(kvm, addr, pmd);
+       /* Create stage-2 page mappings - Level 2 */
+       if (pmd_none(*pmd)) {
+               if (!cache)
+                       return 0; /* ignore calls from kvm_set_spte_hva */
+               pte = mmu_memory_cache_alloc(cache);
+               pmd_populate_kernel(NULL, pmd, pte);
+               get_page(virt_to_page(pmd));
+       }
+       pte = pte_offset_kernel(pmd, addr);
+       if (iomap && pte_present(*pte))
+               return -EFAULT;
+       /* Create 2nd stage page table mapping - Level 3 */
+       old_pte = *pte;
+       if (pte_present(old_pte)) {
+               kvm_set_pte(pte, __pte(0));
+               kvm_tlb_flush_vmid_ipa(kvm, addr);
+       } else {
+               get_page(virt_to_page(pte));
+       }
+       kvm_set_pte(pte, *new_pte);
+       return 0;
+ }
+ #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
+ static int stage2_ptep_test_and_clear_young(pte_t *pte)
+ {
+       if (pte_young(*pte)) {
+               *pte = pte_mkold(*pte);
+               return 1;
+       }
+       return 0;
+ }
+ #else
+ static int stage2_ptep_test_and_clear_young(pte_t *pte)
+ {
+       return __ptep_test_and_clear_young(pte);
+ }
+ #endif
+ static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
+ {
+       return stage2_ptep_test_and_clear_young((pte_t *)pmd);
+ }
+ /**
+  * kvm_phys_addr_ioremap - map a device range to guest IPA
+  *
+  * @kvm:      The KVM pointer
+  * @guest_ipa:        The IPA at which to insert the mapping
+  * @pa:               The physical address of the device
+  * @size:     The size of the mapping
+  */
+ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+                         phys_addr_t pa, unsigned long size, bool writable)
+ {
+       phys_addr_t addr, end;
+       int ret = 0;
+       unsigned long pfn;
+       struct kvm_mmu_memory_cache cache = { 0, };
+       end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
+       pfn = __phys_to_pfn(pa);
+       for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
+               pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
+               if (writable)
+                       pte = kvm_s2pte_mkwrite(pte);
+               ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
+                                               KVM_NR_MEM_OBJS);
+               if (ret)
+                       goto out;
+               spin_lock(&kvm->mmu_lock);
+               ret = stage2_set_pte(kvm, &cache, addr, &pte,
+                                               KVM_S2PTE_FLAG_IS_IOMAP);
+               spin_unlock(&kvm->mmu_lock);
+               if (ret)
+                       goto out;
+               pfn++;
+       }
+ out:
+       mmu_free_memory_cache(&cache);
+       return ret;
+ }
+ static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
+ {
+       kvm_pfn_t pfn = *pfnp;
+       gfn_t gfn = *ipap >> PAGE_SHIFT;
+       if (PageTransCompoundMap(pfn_to_page(pfn))) {
+               unsigned long mask;
+               /*
+                * The address we faulted on is backed by a transparent huge
+                * page.  However, because we map the compound huge page and
+                * not the individual tail page, we need to transfer the
+                * refcount to the head page.  We have to be careful that the
+                * THP doesn't start to split while we are adjusting the
+                * refcounts.
+                *
+                * We are sure this doesn't happen, because mmu_notifier_retry
+                * was successful and we are holding the mmu_lock, so if this
+                * THP is trying to split, it will be blocked in the mmu
+                * notifier before touching any of the pages, specifically
+                * before being able to call __split_huge_page_refcount().
+                *
+                * We can therefore safely transfer the refcount from PG_tail
+                * to PG_head and switch the pfn from a tail page to the head
+                * page accordingly.
+                */
+               mask = PTRS_PER_PMD - 1;
+               VM_BUG_ON((gfn & mask) != (pfn & mask));
+               if (pfn & mask) {
+                       *ipap &= PMD_MASK;
+                       kvm_release_pfn_clean(pfn);
+                       pfn &= ~mask;
+                       kvm_get_pfn(pfn);
+                       *pfnp = pfn;
+               }
+               return true;
+       }
+       return false;
+ }
+ static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
+ {
+       if (kvm_vcpu_trap_is_iabt(vcpu))
+               return false;
+       return kvm_vcpu_dabt_iswrite(vcpu);
+ }
+ /**
+  * stage2_wp_ptes - write protect PMD range
+  * @pmd:      pointer to pmd entry
+  * @addr:     range start address
+  * @end:      range end address
+  */
+ static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+ {
+       pte_t *pte;
+       pte = pte_offset_kernel(pmd, addr);
+       do {
+               if (!pte_none(*pte)) {
+                       if (!kvm_s2pte_readonly(pte))
+                               kvm_set_s2pte_readonly(pte);
+               }
+       } while (pte++, addr += PAGE_SIZE, addr != end);
+ }
+ /**
+  * stage2_wp_pmds - write protect PUD range
+  * @pud:      pointer to pud entry
+  * @addr:     range start address
+  * @end:      range end address
+  */
+ static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+ {
+       pmd_t *pmd;
+       phys_addr_t next;
+       pmd = stage2_pmd_offset(pud, addr);
+       do {
+               next = stage2_pmd_addr_end(addr, end);
+               if (!pmd_none(*pmd)) {
+                       if (pmd_thp_or_huge(*pmd)) {
+                               if (!kvm_s2pmd_readonly(pmd))
+                                       kvm_set_s2pmd_readonly(pmd);
+                       } else {
+                               stage2_wp_ptes(pmd, addr, next);
+                       }
+               }
+       } while (pmd++, addr = next, addr != end);
+ }
+ /**
+   * stage2_wp_puds - write protect PGD range
+   * @pgd:     pointer to pgd entry
+   * @addr:    range start address
+   * @end:     range end address
+   *
+   * Process PUD entries, for a huge PUD we cause a panic.
+   */
+ static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+ {
+       pud_t *pud;
+       phys_addr_t next;
+       pud = stage2_pud_offset(pgd, addr);
+       do {
+               next = stage2_pud_addr_end(addr, end);
+               if (!stage2_pud_none(*pud)) {
+                       /* TODO:PUD not supported, revisit later if supported */
+                       BUG_ON(stage2_pud_huge(*pud));
+                       stage2_wp_pmds(pud, addr, next);
+               }
+       } while (pud++, addr = next, addr != end);
+ }
+ /**
+  * stage2_wp_range() - write protect stage2 memory region range
+  * @kvm:      The KVM pointer
+  * @addr:     Start address of range
+  * @end:      End address of range
+  */
+ static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+ {
+       pgd_t *pgd;
+       phys_addr_t next;
+       pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+       do {
+               /*
+                * Release kvm_mmu_lock periodically if the memory region is
+                * large. Otherwise, we may see kernel panics with
+                * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
+                * CONFIG_LOCKDEP. Additionally, holding the lock too long
+                * will also starve other vCPUs.
+                */
+               if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+                       cond_resched_lock(&kvm->mmu_lock);
+               next = stage2_pgd_addr_end(addr, end);
+               if (stage2_pgd_present(*pgd))
+                       stage2_wp_puds(pgd, addr, next);
+       } while (pgd++, addr = next, addr != end);
+ }
+ /**
+  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
+  * @kvm:      The KVM pointer
+  * @slot:     The memory slot to write protect
+  *
+  * Called to start logging dirty pages after memory region
+  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
+  * all present PMD and PTEs are write protected in the memory region.
+  * Afterwards read of dirty page log can be called.
+  *
+  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
+  * serializing operations for VM memory regions.
+  */
+ void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
+ {
+       struct kvm_memslots *slots = kvm_memslots(kvm);
+       struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
+       phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
+       phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+       spin_lock(&kvm->mmu_lock);
+       stage2_wp_range(kvm, start, end);
+       spin_unlock(&kvm->mmu_lock);
+       kvm_flush_remote_tlbs(kvm);
+ }
+ /**
+  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
+  * @kvm:      The KVM pointer
+  * @slot:     The memory slot associated with mask
+  * @gfn_offset:       The gfn offset in memory slot
+  * @mask:     The mask of dirty pages at offset 'gfn_offset' in this memory
+  *            slot to be write protected
+  *
+  * Walks bits set in mask write protects the associated pte's. Caller must
+  * acquire kvm_mmu_lock.
+  */
+ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+               struct kvm_memory_slot *slot,
+               gfn_t gfn_offset, unsigned long mask)
+ {
+       phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
+       phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
+       phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
+       stage2_wp_range(kvm, start, end);
+ }
+ /*
+  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
+  * dirty pages.
+  *
+  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
+  * enable dirty logging for them.
+  */
+ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+               struct kvm_memory_slot *slot,
+               gfn_t gfn_offset, unsigned long mask)
+ {
+       kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
+ }
+ static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
+                                     unsigned long size)
+ {
+       __coherent_cache_guest_page(vcpu, pfn, size);
+ }
+ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+                         struct kvm_memory_slot *memslot, unsigned long hva,
+                         unsigned long fault_status)
+ {
+       int ret;
+       bool write_fault, writable, hugetlb = false, force_pte = false;
+       unsigned long mmu_seq;
+       gfn_t gfn = fault_ipa >> PAGE_SHIFT;
+       struct kvm *kvm = vcpu->kvm;
+       struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
+       struct vm_area_struct *vma;
+       kvm_pfn_t pfn;
+       pgprot_t mem_type = PAGE_S2;
+       bool logging_active = memslot_is_logging(memslot);
+       unsigned long flags = 0;
+       write_fault = kvm_is_write_fault(vcpu);
+       if (fault_status == FSC_PERM && !write_fault) {
+               kvm_err("Unexpected L2 read permission error\n");
+               return -EFAULT;
+       }
+       /* Let's check if we will get back a huge page backed by hugetlbfs */
+       down_read(&current->mm->mmap_sem);
+       vma = find_vma_intersection(current->mm, hva, hva + 1);
+       if (unlikely(!vma)) {
+               kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
+               up_read(&current->mm->mmap_sem);
+               return -EFAULT;
+       }
+       if (is_vm_hugetlb_page(vma) && !logging_active) {
+               hugetlb = true;
+               gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
+       } else {
+               /*
+                * Pages belonging to memslots that don't have the same
+                * alignment for userspace and IPA cannot be mapped using
+                * block descriptors even if the pages belong to a THP for
+                * the process, because the stage-2 block descriptor will
+                * cover more than a single THP and we loose atomicity for
+                * unmapping, updates, and splits of the THP or other pages
+                * in the stage-2 block range.
+                */
+               if ((memslot->userspace_addr & ~PMD_MASK) !=
+                   ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
+                       force_pte = true;
+       }
+       up_read(&current->mm->mmap_sem);
+       /* We need minimum second+third level pages */
+       ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
+                                    KVM_NR_MEM_OBJS);
+       if (ret)
+               return ret;
+       mmu_seq = vcpu->kvm->mmu_notifier_seq;
+       /*
+        * Ensure the read of mmu_notifier_seq happens before we call
+        * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
+        * the page we just got a reference to gets unmapped before we have a
+        * chance to grab the mmu_lock, which ensure that if the page gets
+        * unmapped afterwards, the call to kvm_unmap_hva will take it away
+        * from us again properly. This smp_rmb() interacts with the smp_wmb()
+        * in kvm_mmu_notifier_invalidate_<page|range_end>.
+        */
+       smp_rmb();
+       pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
+       if (is_error_noslot_pfn(pfn))
+               return -EFAULT;
+       if (kvm_is_device_pfn(pfn)) {
+               mem_type = PAGE_S2_DEVICE;
+               flags |= KVM_S2PTE_FLAG_IS_IOMAP;
+       } else if (logging_active) {
+               /*
+                * Faults on pages in a memslot with logging enabled
+                * should not be mapped with huge pages (it introduces churn
+                * and performance degradation), so force a pte mapping.
+                */
+               force_pte = true;
+               flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
+               /*
+                * Only actually map the page as writable if this was a write
+                * fault.
+                */
+               if (!write_fault)
+                       writable = false;
+       }
+       spin_lock(&kvm->mmu_lock);
+       if (mmu_notifier_retry(kvm, mmu_seq))
+               goto out_unlock;
+       if (!hugetlb && !force_pte)
+               hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
+       if (hugetlb) {
+               pmd_t new_pmd = pfn_pmd(pfn, mem_type);
+               new_pmd = pmd_mkhuge(new_pmd);
+               if (writable) {
+                       new_pmd = kvm_s2pmd_mkwrite(new_pmd);
+                       kvm_set_pfn_dirty(pfn);
+               }
+               coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
+               ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
+       } else {
+               pte_t new_pte = pfn_pte(pfn, mem_type);
+               if (writable) {
+                       new_pte = kvm_s2pte_mkwrite(new_pte);
+                       kvm_set_pfn_dirty(pfn);
+                       mark_page_dirty(kvm, gfn);
+               }
+               coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
+               ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
+       }
+ out_unlock:
+       spin_unlock(&kvm->mmu_lock);
+       kvm_set_pfn_accessed(pfn);
+       kvm_release_pfn_clean(pfn);
+       return ret;
+ }
+ /*
+  * Resolve the access fault by making the page young again.
+  * Note that because the faulting entry is guaranteed not to be
+  * cached in the TLB, we don't need to invalidate anything.
+  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
+  * so there is no need for atomic (pte|pmd)_mkyoung operations.
+  */
+ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
+ {
+       pmd_t *pmd;
+       pte_t *pte;
+       kvm_pfn_t pfn;
+       bool pfn_valid = false;
+       trace_kvm_access_fault(fault_ipa);
+       spin_lock(&vcpu->kvm->mmu_lock);
+       pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
+       if (!pmd || pmd_none(*pmd))     /* Nothing there */
+               goto out;
+       if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
+               *pmd = pmd_mkyoung(*pmd);
+               pfn = pmd_pfn(*pmd);
+               pfn_valid = true;
+               goto out;
+       }
+       pte = pte_offset_kernel(pmd, fault_ipa);
+       if (pte_none(*pte))             /* Nothing there either */
+               goto out;
+       *pte = pte_mkyoung(*pte);       /* Just a page... */
+       pfn = pte_pfn(*pte);
+       pfn_valid = true;
+ out:
+       spin_unlock(&vcpu->kvm->mmu_lock);
+       if (pfn_valid)
+               kvm_set_pfn_accessed(pfn);
+ }
+ /**
+  * kvm_handle_guest_abort - handles all 2nd stage aborts
+  * @vcpu:     the VCPU pointer
+  * @run:      the kvm_run structure
+  *
+  * Any abort that gets to the host is almost guaranteed to be caused by a
+  * missing second stage translation table entry, which can mean that either the
+  * guest simply needs more memory and we must allocate an appropriate page or it
+  * can mean that the guest tried to access I/O memory, which is emulated by user
+  * space. The distinction is based on the IPA causing the fault and whether this
+  * memory region has been registered as standard RAM by user space.
+  */
+ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
+ {
+       unsigned long fault_status;
+       phys_addr_t fault_ipa;
+       struct kvm_memory_slot *memslot;
+       unsigned long hva;
+       bool is_iabt, write_fault, writable;
+       gfn_t gfn;
+       int ret, idx;
+       is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
+       if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
+               kvm_inject_vabt(vcpu);
+               return 1;
+       }
+       fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+       trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
+                             kvm_vcpu_get_hfar(vcpu), fault_ipa);
+       /* Check the stage-2 fault is trans. fault or write fault */
+       fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
+       if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
+           fault_status != FSC_ACCESS) {
+               kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
+                       kvm_vcpu_trap_get_class(vcpu),
+                       (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
+                       (unsigned long)kvm_vcpu_get_hsr(vcpu));
+               return -EFAULT;
+       }
+       idx = srcu_read_lock(&vcpu->kvm->srcu);
+       gfn = fault_ipa >> PAGE_SHIFT;
+       memslot = gfn_to_memslot(vcpu->kvm, gfn);
+       hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
+       write_fault = kvm_is_write_fault(vcpu);
+       if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
+               if (is_iabt) {
+                       /* Prefetch Abort on I/O address */
+                       kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+                       ret = 1;
+                       goto out_unlock;
+               }
+               /*
+                * Check for a cache maintenance operation. Since we
+                * ended-up here, we know it is outside of any memory
+                * slot. But we can't find out if that is for a device,
+                * or if the guest is just being stupid. The only thing
+                * we know for sure is that this range cannot be cached.
+                *
+                * So let's assume that the guest is just being
+                * cautious, and skip the instruction.
+                */
+               if (kvm_vcpu_dabt_is_cm(vcpu)) {
+                       kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+                       ret = 1;
+                       goto out_unlock;
+               }
+               /*
+                * The IPA is reported as [MAX:12], so we need to
+                * complement it with the bottom 12 bits from the
+                * faulting VA. This is always 12 bits, irrespective
+                * of the page size.
+                */
+               fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
+               ret = io_mem_abort(vcpu, run, fault_ipa);
+               goto out_unlock;
+       }
+       /* Userspace should not be able to register out-of-bounds IPAs */
+       VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
+       if (fault_status == FSC_ACCESS) {
+               handle_access_fault(vcpu, fault_ipa);
+               ret = 1;
+               goto out_unlock;
+       }
+       ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
+       if (ret == 0)
+               ret = 1;
+ out_unlock:
+       srcu_read_unlock(&vcpu->kvm->srcu, idx);
+       return ret;
+ }
+ static int handle_hva_to_gpa(struct kvm *kvm,
+                            unsigned long start,
+                            unsigned long end,
+                            int (*handler)(struct kvm *kvm,
+                                           gpa_t gpa, u64 size,
+                                           void *data),
+                            void *data)
+ {
+       struct kvm_memslots *slots;
+       struct kvm_memory_slot *memslot;
+       int ret = 0;
+       slots = kvm_memslots(kvm);
+       /* we only care about the pages that the guest sees */
+       kvm_for_each_memslot(memslot, slots) {
+               unsigned long hva_start, hva_end;
+               gfn_t gpa;
+               hva_start = max(start, memslot->userspace_addr);
+               hva_end = min(end, memslot->userspace_addr +
+                                       (memslot->npages << PAGE_SHIFT));
+               if (hva_start >= hva_end)
+                       continue;
+               gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
+               ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
+       }
+       return ret;
+ }
+ static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+ {
+       unmap_stage2_range(kvm, gpa, size);
+       return 0;
+ }
+ int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
+ {
+       unsigned long end = hva + PAGE_SIZE;
+       if (!kvm->arch.pgd)
+               return 0;
+       trace_kvm_unmap_hva(hva);
+       handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
+       return 0;
+ }
+ int kvm_unmap_hva_range(struct kvm *kvm,
+                       unsigned long start, unsigned long end)
+ {
+       if (!kvm->arch.pgd)
+               return 0;
+       trace_kvm_unmap_hva_range(start, end);
+       handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
+       return 0;
+ }
+ static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+ {
+       pte_t *pte = (pte_t *)data;
+       WARN_ON(size != PAGE_SIZE);
+       /*
+        * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
+        * flag clear because MMU notifiers will have unmapped a huge PMD before
+        * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
+        * therefore stage2_set_pte() never needs to clear out a huge PMD
+        * through this calling path.
+        */
+       stage2_set_pte(kvm, NULL, gpa, pte, 0);
+       return 0;
+ }
+ void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+ {
+       unsigned long end = hva + PAGE_SIZE;
+       pte_t stage2_pte;
+       if (!kvm->arch.pgd)
+               return;
+       trace_kvm_set_spte_hva(hva);
+       stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
+       handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
+ }
+ static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+ {
+       pmd_t *pmd;
+       pte_t *pte;
+       WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
+       pmd = stage2_get_pmd(kvm, NULL, gpa);
+       if (!pmd || pmd_none(*pmd))     /* Nothing there */
+               return 0;
+       if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
+               return stage2_pmdp_test_and_clear_young(pmd);
+       pte = pte_offset_kernel(pmd, gpa);
+       if (pte_none(*pte))
+               return 0;
+       return stage2_ptep_test_and_clear_young(pte);
+ }
+ static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+ {
+       pmd_t *pmd;
+       pte_t *pte;
+       WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
+       pmd = stage2_get_pmd(kvm, NULL, gpa);
+       if (!pmd || pmd_none(*pmd))     /* Nothing there */
+               return 0;
+       if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
+               return pmd_young(*pmd);
+       pte = pte_offset_kernel(pmd, gpa);
+       if (!pte_none(*pte))            /* Just a page... */
+               return pte_young(*pte);
+       return 0;
+ }
+ int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+ {
+       trace_kvm_age_hva(start, end);
+       return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
+ }
+ int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+ {
+       trace_kvm_test_age_hva(hva);
+       return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
+ }
+ void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+ {
+       mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
+ }
+ phys_addr_t kvm_mmu_get_httbr(void)
+ {
+       if (__kvm_cpu_uses_extended_idmap())
+               return virt_to_phys(merged_hyp_pgd);
+       else
+               return virt_to_phys(hyp_pgd);
+ }
+ phys_addr_t kvm_get_idmap_vector(void)
+ {
+       return hyp_idmap_vector;
+ }
+ static int kvm_map_idmap_text(pgd_t *pgd)
+ {
+       int err;
+       /* Create the idmap in the boot page tables */
+       err =   __create_hyp_mappings(pgd,
+                                     hyp_idmap_start, hyp_idmap_end,
+                                     __phys_to_pfn(hyp_idmap_start),
+                                     PAGE_HYP_EXEC);
+       if (err)
+               kvm_err("Failed to idmap %lx-%lx\n",
+                       hyp_idmap_start, hyp_idmap_end);
+       return err;
+ }
+ int kvm_mmu_init(void)
+ {
+       int err;
+       hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
+       hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
+       hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
+       /*
+        * We rely on the linker script to ensure at build time that the HYP
+        * init code does not cross a page boundary.
+        */
+       BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
+       kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
+       kvm_info("HYP VA range: %lx:%lx\n",
+                kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
+       if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
+           hyp_idmap_start <  kern_hyp_va(~0UL) &&
+           hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
+               /*
+                * The idmap page is intersecting with the VA space,
+                * it is not safe to continue further.
+                */
+               kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
+               err = -EINVAL;
+               goto out;
+       }
+       hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
+       if (!hyp_pgd) {
+               kvm_err("Hyp mode PGD not allocated\n");
+               err = -ENOMEM;
+               goto out;
+       }
+       if (__kvm_cpu_uses_extended_idmap()) {
+               boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
+                                                        hyp_pgd_order);
+               if (!boot_hyp_pgd) {
+                       kvm_err("Hyp boot PGD not allocated\n");
+                       err = -ENOMEM;
+                       goto out;
+               }
+               err = kvm_map_idmap_text(boot_hyp_pgd);
+               if (err)
+                       goto out;
+               merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
+               if (!merged_hyp_pgd) {
+                       kvm_err("Failed to allocate extra HYP pgd\n");
+                       goto out;
+               }
+               __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
+                                   hyp_idmap_start);
+       } else {
+               err = kvm_map_idmap_text(hyp_pgd);
+               if (err)
+                       goto out;
+       }
+       return 0;
+ out:
+       free_hyp_pgds();
+       return err;
+ }
+ void kvm_arch_commit_memory_region(struct kvm *kvm,
+                                  const struct kvm_userspace_memory_region *mem,
+                                  const struct kvm_memory_slot *old,
+                                  const struct kvm_memory_slot *new,
+                                  enum kvm_mr_change change)
+ {
+       /*
+        * At this point memslot has been committed and there is an
+        * allocated dirty_bitmap[], dirty pages will be be tracked while the
+        * memory slot is write protected.
+        */
+       if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
+               kvm_mmu_wp_memory_region(kvm, mem->slot);
+ }
+ int kvm_arch_prepare_memory_region(struct kvm *kvm,
+                                  struct kvm_memory_slot *memslot,
+                                  const struct kvm_userspace_memory_region *mem,
+                                  enum kvm_mr_change change)
+ {
+       hva_t hva = mem->userspace_addr;
+       hva_t reg_end = hva + mem->memory_size;
+       bool writable = !(mem->flags & KVM_MEM_READONLY);
+       int ret = 0;
+       if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
+                       change != KVM_MR_FLAGS_ONLY)
+               return 0;
+       /*
+        * Prevent userspace from creating a memory region outside of the IPA
+        * space addressable by the KVM guest IPA space.
+        */
+       if (memslot->base_gfn + memslot->npages >=
+           (KVM_PHYS_SIZE >> PAGE_SHIFT))
+               return -EFAULT;
++      down_read(&current->mm->mmap_sem);
+       /*
+        * A memory region could potentially cover multiple VMAs, and any holes
+        * between them, so iterate over all of them to find out if we can map
+        * any of them right now.
+        *
+        *     +--------------------------------------------+
+        * +---------------+----------------+   +----------------+
+        * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
+        * +---------------+----------------+   +----------------+
+        *     |               memory region                |
+        *     +--------------------------------------------+
+        */
+       do {
+               struct vm_area_struct *vma = find_vma(current->mm, hva);
+               hva_t vm_start, vm_end;
+               if (!vma || vma->vm_start >= reg_end)
+                       break;
+               /*
+                * Mapping a read-only VMA is only allowed if the
+                * memory region is configured as read-only.
+                */
+               if (writable && !(vma->vm_flags & VM_WRITE)) {
+                       ret = -EPERM;
+                       break;
+               }
+               /*
+                * Take the intersection of this VMA with the memory region
+                */
+               vm_start = max(hva, vma->vm_start);
+               vm_end = min(reg_end, vma->vm_end);
+               if (vma->vm_flags & VM_PFNMAP) {
+                       gpa_t gpa = mem->guest_phys_addr +
+                                   (vm_start - mem->userspace_addr);
+                       phys_addr_t pa;
+                       pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
+                       pa += vm_start - vma->vm_start;
+                       /* IO region dirty page logging not allowed */
 -              return ret;
++                      if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
++                              ret = -EINVAL;
++                              goto out;
++                      }
+                       ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
+                                                   vm_end - vm_start,
+                                                   writable);
+                       if (ret)
+                               break;
+               }
+               hva = vm_end;
+       } while (hva < reg_end);
+       if (change == KVM_MR_FLAGS_ONLY)
++              goto out;
+       spin_lock(&kvm->mmu_lock);
+       if (ret)
+               unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
+       else
+               stage2_flush_memslot(kvm, memslot);
+       spin_unlock(&kvm->mmu_lock);
++out:
++      up_read(&current->mm->mmap_sem);
+       return ret;
+ }
+ void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
+                          struct kvm_memory_slot *dont)
+ {
+ }
+ int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
+                           unsigned long npages)
+ {
+       return 0;
+ }
+ void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
+ {
+ }
+ void kvm_arch_flush_shadow_all(struct kvm *kvm)
+ {
+       kvm_free_stage2_pgd(kvm);
+ }
+ void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+                                  struct kvm_memory_slot *slot)
+ {
+       gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
+       phys_addr_t size = slot->npages << PAGE_SHIFT;
+       spin_lock(&kvm->mmu_lock);
+       unmap_stage2_range(kvm, gpa, size);
+       spin_unlock(&kvm->mmu_lock);
+ }
+ /*
+  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+  *
+  * Main problems:
+  * - S/W ops are local to a CPU (not broadcast)
+  * - We have line migration behind our back (speculation)
+  * - System caches don't support S/W at all (damn!)
+  *
+  * In the face of the above, the best we can do is to try and convert
+  * S/W ops to VA ops. Because the guest is not allowed to infer the
+  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
+  * which is a rather good thing for us.
+  *
+  * Also, it is only used when turning caches on/off ("The expected
+  * usage of the cache maintenance instructions that operate by set/way
+  * is associated with the cache maintenance instructions associated
+  * with the powerdown and powerup of caches, if this is required by
+  * the implementation.").
+  *
+  * We use the following policy:
+  *
+  * - If we trap a S/W operation, we enable VM trapping to detect
+  *   caches being turned on/off, and do a full clean.
+  *
+  * - We flush the caches on both caches being turned on and off.
+  *
+  * - Once the caches are enabled, we stop trapping VM ops.
+  */
+ void kvm_set_way_flush(struct kvm_vcpu *vcpu)
+ {
+       unsigned long hcr = vcpu_get_hcr(vcpu);
+       /*
+        * If this is the first time we do a S/W operation
+        * (i.e. HCR_TVM not set) flush the whole memory, and set the
+        * VM trapping.
+        *
+        * Otherwise, rely on the VM trapping to wait for the MMU +
+        * Caches to be turned off. At that point, we'll be able to
+        * clean the caches again.
+        */
+       if (!(hcr & HCR_TVM)) {
+               trace_kvm_set_way_flush(*vcpu_pc(vcpu),
+                                       vcpu_has_cache_enabled(vcpu));
+               stage2_flush_vm(vcpu->kvm);
+               vcpu_set_hcr(vcpu, hcr | HCR_TVM);
+       }
+ }
+ void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
+ {
+       bool now_enabled = vcpu_has_cache_enabled(vcpu);
+       /*
+        * If switching the MMU+caches on, need to invalidate the caches.
+        * If switching it off, need to clean the caches.
+        * Clean + invalidate does the trick always.
+        */
+       if (now_enabled != was_enabled)
+               stage2_flush_vm(vcpu->kvm);
+       /* Caches are now on, stop trapping VM ops (until a S/W op) */
+       if (now_enabled)
+               vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
+       trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
+ }
Simple merge
Simple merge
Simple merge