]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/cgroup/cgroup.c
cgroup: Allocate cgroup_file_ctx for kernfs_open_file->priv
[mirror_ubuntu-focal-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /*
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
160 */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163
164 /*
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
167 */
168 static bool cgrp_dfl_visible;
169
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185
186 /*
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
192 */
193 static u64 css_serial_nr_next = 1;
194
195 /*
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
198 */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 .count = REFCOUNT_INIT(2),
207 .user_ns = &init_user_ns,
208 .ns.ops = &cgroupns_operations,
209 .ns.inum = PROC_CGROUP_INIT_INO,
210 .root_cset = &init_css_set,
211 };
212
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
228
229 /**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237 bool cgroup_ssid_enabled(int ssid)
238 {
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
241
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244
245 /**
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
248 *
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
253 *
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
256 *
257 * List of changed behaviors:
258 *
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
261 *
262 * - When mounting an existing superblock, mount options should match.
263 *
264 * - Remount is disallowed.
265 *
266 * - rename(2) is disallowed.
267 *
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
270 *
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
273 *
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
276 *
277 * - "cgroup.clone_children" is removed.
278 *
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
283 *
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
287 *
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
290 *
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
293 *
294 * - blkcg: blk-throttle becomes properly hierarchical.
295 *
296 * - debug: disallowed on the default hierarchy.
297 */
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 return cgrp->root == &cgrp_dfl_root;
301 }
302
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
306 {
307 int ret;
308
309 idr_preload(gfp_mask);
310 spin_lock_bh(&cgroup_idr_lock);
311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 spin_unlock_bh(&cgroup_idr_lock);
313 idr_preload_end();
314 return ret;
315 }
316
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 void *ret;
320
321 spin_lock_bh(&cgroup_idr_lock);
322 ret = idr_replace(idr, ptr, id);
323 spin_unlock_bh(&cgroup_idr_lock);
324 return ret;
325 }
326
327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 spin_lock_bh(&cgroup_idr_lock);
330 idr_remove(idr, id);
331 spin_unlock_bh(&cgroup_idr_lock);
332 }
333
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 return cgrp->nr_populated_csets;
337 }
338
339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 return cgrp->dom_cgrp != cgrp;
342 }
343
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 /*
348 * Root isn't under domain level resource control exempting it from
349 * the no-internal-process constraint, so it can serve as a thread
350 * root and a parent of resource domains at the same time.
351 */
352 return !cgroup_parent(cgrp);
353 }
354
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 /* mixables don't care */
359 if (cgroup_is_mixable(cgrp))
360 return true;
361
362 /* domain roots can't be nested under threaded */
363 if (cgroup_is_threaded(cgrp))
364 return false;
365
366 /* can only have either domain or threaded children */
367 if (cgrp->nr_populated_domain_children)
368 return false;
369
370 /* and no domain controllers can be enabled */
371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 return false;
373
374 return true;
375 }
376
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 /* thread root should be a domain */
381 if (cgroup_is_threaded(cgrp))
382 return false;
383
384 /* a domain w/ threaded children is a thread root */
385 if (cgrp->nr_threaded_children)
386 return true;
387
388 /*
389 * A domain which has tasks and explicit threaded controllers
390 * enabled is a thread root.
391 */
392 if (cgroup_has_tasks(cgrp) &&
393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 return true;
395
396 return false;
397 }
398
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 /* the cgroup itself can be a thread root */
403 if (cgroup_is_threaded(cgrp))
404 return false;
405
406 /* but the ancestors can't be unless mixable */
407 while ((cgrp = cgroup_parent(cgrp))) {
408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 return false;
410 if (cgroup_is_threaded(cgrp))
411 return false;
412 }
413
414 return true;
415 }
416
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 struct cgroup *parent = cgroup_parent(cgrp);
421 u16 root_ss_mask = cgrp->root->subsys_mask;
422
423 if (parent) {
424 u16 ss_mask = parent->subtree_control;
425
426 /* threaded cgroups can only have threaded controllers */
427 if (cgroup_is_threaded(cgrp))
428 ss_mask &= cgrp_dfl_threaded_ss_mask;
429 return ss_mask;
430 }
431
432 if (cgroup_on_dfl(cgrp))
433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 cgrp_dfl_implicit_ss_mask);
435 return root_ss_mask;
436 }
437
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 struct cgroup *parent = cgroup_parent(cgrp);
442
443 if (parent) {
444 u16 ss_mask = parent->subtree_ss_mask;
445
446 /* threaded cgroups can only have threaded controllers */
447 if (cgroup_is_threaded(cgrp))
448 ss_mask &= cgrp_dfl_threaded_ss_mask;
449 return ss_mask;
450 }
451
452 return cgrp->root->subsys_mask;
453 }
454
455 /**
456 * cgroup_css - obtain a cgroup's css for the specified subsystem
457 * @cgrp: the cgroup of interest
458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459 *
460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
461 * function must be called either under cgroup_mutex or rcu_read_lock() and
462 * the caller is responsible for pinning the returned css if it wants to
463 * keep accessing it outside the said locks. This function may return
464 * %NULL if @cgrp doesn't have @subsys_id enabled.
465 */
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 struct cgroup_subsys *ss)
468 {
469 if (ss)
470 return rcu_dereference_check(cgrp->subsys[ss->id],
471 lockdep_is_held(&cgroup_mutex));
472 else
473 return &cgrp->self;
474 }
475
476 /**
477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest
480 *
481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
482 * or is offline, %NULL is returned.
483 */
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 struct cgroup_subsys *ss)
486 {
487 struct cgroup_subsys_state *css;
488
489 rcu_read_lock();
490 css = cgroup_css(cgrp, ss);
491 if (css && !css_tryget_online(css))
492 css = NULL;
493 rcu_read_unlock();
494
495 return css;
496 }
497
498 /**
499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500 * @cgrp: the cgroup of interest
501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502 *
503 * Similar to cgroup_css() but returns the effective css, which is defined
504 * as the matching css of the nearest ancestor including self which has @ss
505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
506 * function is guaranteed to return non-NULL css.
507 */
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 struct cgroup_subsys *ss)
510 {
511 lockdep_assert_held(&cgroup_mutex);
512
513 if (!ss)
514 return &cgrp->self;
515
516 /*
517 * This function is used while updating css associations and thus
518 * can't test the csses directly. Test ss_mask.
519 */
520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 cgrp = cgroup_parent(cgrp);
522 if (!cgrp)
523 return NULL;
524 }
525
526 return cgroup_css(cgrp, ss);
527 }
528
529 /**
530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531 * @cgrp: the cgroup of interest
532 * @ss: the subsystem of interest
533 *
534 * Find and get the effective css of @cgrp for @ss. The effective css is
535 * defined as the matching css of the nearest ancestor including self which
536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
537 * the root css is returned, so this function always returns a valid css.
538 *
539 * The returned css is not guaranteed to be online, and therefore it is the
540 * callers responsiblity to tryget a reference for it.
541 */
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 struct cgroup_subsys *ss)
544 {
545 struct cgroup_subsys_state *css;
546
547 do {
548 css = cgroup_css(cgrp, ss);
549
550 if (css)
551 return css;
552 cgrp = cgroup_parent(cgrp);
553 } while (cgrp);
554
555 return init_css_set.subsys[ss->id];
556 }
557
558 /**
559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560 * @cgrp: the cgroup of interest
561 * @ss: the subsystem of interest
562 *
563 * Find and get the effective css of @cgrp for @ss. The effective css is
564 * defined as the matching css of the nearest ancestor including self which
565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
566 * the root css is returned, so this function always returns a valid css.
567 * The returned css must be put using css_put().
568 */
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 struct cgroup_subsys *ss)
571 {
572 struct cgroup_subsys_state *css;
573
574 rcu_read_lock();
575
576 do {
577 css = cgroup_css(cgrp, ss);
578
579 if (css && css_tryget_online(css))
580 goto out_unlock;
581 cgrp = cgroup_parent(cgrp);
582 } while (cgrp);
583
584 css = init_css_set.subsys[ss->id];
585 css_get(css);
586 out_unlock:
587 rcu_read_unlock();
588 return css;
589 }
590
591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 css_get(&cgrp->self);
595 }
596
597 /**
598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599 * is responsible for taking the css_set_lock.
600 * @cgrp: the cgroup in question
601 */
602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 int count = 0;
605 struct cgrp_cset_link *link;
606
607 lockdep_assert_held(&css_set_lock);
608
609 list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 count += link->cset->nr_tasks;
611
612 return count;
613 }
614
615 /**
616 * cgroup_task_count - count the number of tasks in a cgroup.
617 * @cgrp: the cgroup in question
618 */
619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 int count;
622
623 spin_lock_irq(&css_set_lock);
624 count = __cgroup_task_count(cgrp);
625 spin_unlock_irq(&css_set_lock);
626
627 return count;
628 }
629
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 struct cgroup *cgrp = of->kn->parent->priv;
633 struct cftype *cft = of_cft(of);
634
635 /*
636 * This is open and unprotected implementation of cgroup_css().
637 * seq_css() is only called from a kernfs file operation which has
638 * an active reference on the file. Because all the subsystem
639 * files are drained before a css is disassociated with a cgroup,
640 * the matching css from the cgroup's subsys table is guaranteed to
641 * be and stay valid until the enclosing operation is complete.
642 */
643 if (cft->ss)
644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 else
646 return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649
650 /**
651 * for_each_css - iterate all css's of a cgroup
652 * @css: the iteration cursor
653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654 * @cgrp: the target cgroup to iterate css's of
655 *
656 * Should be called under cgroup_[tree_]mutex.
657 */
658 #define for_each_css(css, ssid, cgrp) \
659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
660 if (!((css) = rcu_dereference_check( \
661 (cgrp)->subsys[(ssid)], \
662 lockdep_is_held(&cgroup_mutex)))) { } \
663 else
664
665 /**
666 * for_each_e_css - iterate all effective css's of a cgroup
667 * @css: the iteration cursor
668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669 * @cgrp: the target cgroup to iterate css's of
670 *
671 * Should be called under cgroup_[tree_]mutex.
672 */
673 #define for_each_e_css(css, ssid, cgrp) \
674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
675 if (!((css) = cgroup_e_css_by_mask(cgrp, \
676 cgroup_subsys[(ssid)]))) \
677 ; \
678 else
679
680 /**
681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
682 * @ss: the iteration cursor
683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684 * @ss_mask: the bitmask
685 *
686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
687 * @ss_mask is set.
688 */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
690 unsigned long __ss_mask = (ss_mask); \
691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
692 (ssid) = 0; \
693 break; \
694 } \
695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
696 (ss) = cgroup_subsys[ssid]; \
697 {
698
699 #define while_each_subsys_mask() \
700 } \
701 } \
702 } while (false)
703
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp) \
706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 if (({ lockdep_assert_held(&cgroup_mutex); \
708 cgroup_is_dead(child); })) \
709 ; \
710 else
711
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
718 ; \
719 else
720
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
724 if (({ lockdep_assert_held(&cgroup_mutex); \
725 (dsct) = (d_css)->cgroup; \
726 cgroup_is_dead(dsct); })) \
727 ; \
728 else
729
730 /*
731 * The default css_set - used by init and its children prior to any
732 * hierarchies being mounted. It contains a pointer to the root state
733 * for each subsystem. Also used to anchor the list of css_sets. Not
734 * reference-counted, to improve performance when child cgroups
735 * haven't been created.
736 */
737 struct css_set init_css_set = {
738 .refcount = REFCOUNT_INIT(1),
739 .dom_cset = &init_css_set,
740 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
748
749 /*
750 * The following field is re-initialized when this cset gets linked
751 * in cgroup_init(). However, let's initialize the field
752 * statically too so that the default cgroup can be accessed safely
753 * early during boot.
754 */
755 .dfl_cgrp = &cgrp_dfl_root.cgrp,
756 };
757
758 static int css_set_count = 1; /* 1 for init_css_set */
759
760 static bool css_set_threaded(struct css_set *cset)
761 {
762 return cset->dom_cset != cset;
763 }
764
765 /**
766 * css_set_populated - does a css_set contain any tasks?
767 * @cset: target css_set
768 *
769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
770 * state. However, css_set_populated() can be called while a task is being
771 * added to or removed from the linked list before the nr_tasks is
772 * properly updated. Hence, we can't just look at ->nr_tasks here.
773 */
774 static bool css_set_populated(struct css_set *cset)
775 {
776 lockdep_assert_held(&css_set_lock);
777
778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780
781 /**
782 * cgroup_update_populated - update the populated count of a cgroup
783 * @cgrp: the target cgroup
784 * @populated: inc or dec populated count
785 *
786 * One of the css_sets associated with @cgrp is either getting its first
787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
788 * count is propagated towards root so that a given cgroup's
789 * nr_populated_children is zero iff none of its descendants contain any
790 * tasks.
791 *
792 * @cgrp's interface file "cgroup.populated" is zero if both
793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794 * 1 otherwise. When the sum changes from or to zero, userland is notified
795 * that the content of the interface file has changed. This can be used to
796 * detect when @cgrp and its descendants become populated or empty.
797 */
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 struct cgroup *child = NULL;
801 int adj = populated ? 1 : -1;
802
803 lockdep_assert_held(&css_set_lock);
804
805 do {
806 bool was_populated = cgroup_is_populated(cgrp);
807
808 if (!child) {
809 cgrp->nr_populated_csets += adj;
810 } else {
811 if (cgroup_is_threaded(child))
812 cgrp->nr_populated_threaded_children += adj;
813 else
814 cgrp->nr_populated_domain_children += adj;
815 }
816
817 if (was_populated == cgroup_is_populated(cgrp))
818 break;
819
820 cgroup1_check_for_release(cgrp);
821 TRACE_CGROUP_PATH(notify_populated, cgrp,
822 cgroup_is_populated(cgrp));
823 cgroup_file_notify(&cgrp->events_file);
824
825 child = cgrp;
826 cgrp = cgroup_parent(cgrp);
827 } while (cgrp);
828 }
829
830 /**
831 * css_set_update_populated - update populated state of a css_set
832 * @cset: target css_set
833 * @populated: whether @cset is populated or depopulated
834 *
835 * @cset is either getting the first task or losing the last. Update the
836 * populated counters of all associated cgroups accordingly.
837 */
838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 struct cgrp_cset_link *link;
841
842 lockdep_assert_held(&css_set_lock);
843
844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 cgroup_update_populated(link->cgrp, populated);
846 }
847
848 /*
849 * @task is leaving, advance task iterators which are pointing to it so
850 * that they can resume at the next position. Advancing an iterator might
851 * remove it from the list, use safe walk. See css_task_iter_skip() for
852 * details.
853 */
854 static void css_set_skip_task_iters(struct css_set *cset,
855 struct task_struct *task)
856 {
857 struct css_task_iter *it, *pos;
858
859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 css_task_iter_skip(it, task);
861 }
862
863 /**
864 * css_set_move_task - move a task from one css_set to another
865 * @task: task being moved
866 * @from_cset: css_set @task currently belongs to (may be NULL)
867 * @to_cset: new css_set @task is being moved to (may be NULL)
868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869 *
870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
871 * css_set, @from_cset can be NULL. If @task is being disassociated
872 * instead of moved, @to_cset can be NULL.
873 *
874 * This function automatically handles populated counter updates and
875 * css_task_iter adjustments but the caller is responsible for managing
876 * @from_cset and @to_cset's reference counts.
877 */
878 static void css_set_move_task(struct task_struct *task,
879 struct css_set *from_cset, struct css_set *to_cset,
880 bool use_mg_tasks)
881 {
882 lockdep_assert_held(&css_set_lock);
883
884 if (to_cset && !css_set_populated(to_cset))
885 css_set_update_populated(to_cset, true);
886
887 if (from_cset) {
888 WARN_ON_ONCE(list_empty(&task->cg_list));
889
890 css_set_skip_task_iters(from_cset, task);
891 list_del_init(&task->cg_list);
892 if (!css_set_populated(from_cset))
893 css_set_update_populated(from_cset, false);
894 } else {
895 WARN_ON_ONCE(!list_empty(&task->cg_list));
896 }
897
898 if (to_cset) {
899 /*
900 * We are synchronized through cgroup_threadgroup_rwsem
901 * against PF_EXITING setting such that we can't race
902 * against cgroup_exit() changing the css_set to
903 * init_css_set and dropping the old one.
904 */
905 WARN_ON_ONCE(task->flags & PF_EXITING);
906
907 cgroup_move_task(task, to_cset);
908 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
909 &to_cset->tasks);
910 }
911 }
912
913 /*
914 * hash table for cgroup groups. This improves the performance to find
915 * an existing css_set. This hash doesn't (currently) take into
916 * account cgroups in empty hierarchies.
917 */
918 #define CSS_SET_HASH_BITS 7
919 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
920
921 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
922 {
923 unsigned long key = 0UL;
924 struct cgroup_subsys *ss;
925 int i;
926
927 for_each_subsys(ss, i)
928 key += (unsigned long)css[i];
929 key = (key >> 16) ^ key;
930
931 return key;
932 }
933
934 void put_css_set_locked(struct css_set *cset)
935 {
936 struct cgrp_cset_link *link, *tmp_link;
937 struct cgroup_subsys *ss;
938 int ssid;
939
940 lockdep_assert_held(&css_set_lock);
941
942 if (!refcount_dec_and_test(&cset->refcount))
943 return;
944
945 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
946
947 /* This css_set is dead. unlink it and release cgroup and css refs */
948 for_each_subsys(ss, ssid) {
949 list_del(&cset->e_cset_node[ssid]);
950 css_put(cset->subsys[ssid]);
951 }
952 hash_del(&cset->hlist);
953 css_set_count--;
954
955 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
956 list_del(&link->cset_link);
957 list_del(&link->cgrp_link);
958 if (cgroup_parent(link->cgrp))
959 cgroup_put(link->cgrp);
960 kfree(link);
961 }
962
963 if (css_set_threaded(cset)) {
964 list_del(&cset->threaded_csets_node);
965 put_css_set_locked(cset->dom_cset);
966 }
967
968 kfree_rcu(cset, rcu_head);
969 }
970
971 /**
972 * compare_css_sets - helper function for find_existing_css_set().
973 * @cset: candidate css_set being tested
974 * @old_cset: existing css_set for a task
975 * @new_cgrp: cgroup that's being entered by the task
976 * @template: desired set of css pointers in css_set (pre-calculated)
977 *
978 * Returns true if "cset" matches "old_cset" except for the hierarchy
979 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
980 */
981 static bool compare_css_sets(struct css_set *cset,
982 struct css_set *old_cset,
983 struct cgroup *new_cgrp,
984 struct cgroup_subsys_state *template[])
985 {
986 struct cgroup *new_dfl_cgrp;
987 struct list_head *l1, *l2;
988
989 /*
990 * On the default hierarchy, there can be csets which are
991 * associated with the same set of cgroups but different csses.
992 * Let's first ensure that csses match.
993 */
994 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
995 return false;
996
997
998 /* @cset's domain should match the default cgroup's */
999 if (cgroup_on_dfl(new_cgrp))
1000 new_dfl_cgrp = new_cgrp;
1001 else
1002 new_dfl_cgrp = old_cset->dfl_cgrp;
1003
1004 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1005 return false;
1006
1007 /*
1008 * Compare cgroup pointers in order to distinguish between
1009 * different cgroups in hierarchies. As different cgroups may
1010 * share the same effective css, this comparison is always
1011 * necessary.
1012 */
1013 l1 = &cset->cgrp_links;
1014 l2 = &old_cset->cgrp_links;
1015 while (1) {
1016 struct cgrp_cset_link *link1, *link2;
1017 struct cgroup *cgrp1, *cgrp2;
1018
1019 l1 = l1->next;
1020 l2 = l2->next;
1021 /* See if we reached the end - both lists are equal length. */
1022 if (l1 == &cset->cgrp_links) {
1023 BUG_ON(l2 != &old_cset->cgrp_links);
1024 break;
1025 } else {
1026 BUG_ON(l2 == &old_cset->cgrp_links);
1027 }
1028 /* Locate the cgroups associated with these links. */
1029 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1030 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1031 cgrp1 = link1->cgrp;
1032 cgrp2 = link2->cgrp;
1033 /* Hierarchies should be linked in the same order. */
1034 BUG_ON(cgrp1->root != cgrp2->root);
1035
1036 /*
1037 * If this hierarchy is the hierarchy of the cgroup
1038 * that's changing, then we need to check that this
1039 * css_set points to the new cgroup; if it's any other
1040 * hierarchy, then this css_set should point to the
1041 * same cgroup as the old css_set.
1042 */
1043 if (cgrp1->root == new_cgrp->root) {
1044 if (cgrp1 != new_cgrp)
1045 return false;
1046 } else {
1047 if (cgrp1 != cgrp2)
1048 return false;
1049 }
1050 }
1051 return true;
1052 }
1053
1054 /**
1055 * find_existing_css_set - init css array and find the matching css_set
1056 * @old_cset: the css_set that we're using before the cgroup transition
1057 * @cgrp: the cgroup that we're moving into
1058 * @template: out param for the new set of csses, should be clear on entry
1059 */
1060 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1061 struct cgroup *cgrp,
1062 struct cgroup_subsys_state *template[])
1063 {
1064 struct cgroup_root *root = cgrp->root;
1065 struct cgroup_subsys *ss;
1066 struct css_set *cset;
1067 unsigned long key;
1068 int i;
1069
1070 /*
1071 * Build the set of subsystem state objects that we want to see in the
1072 * new css_set. while subsystems can change globally, the entries here
1073 * won't change, so no need for locking.
1074 */
1075 for_each_subsys(ss, i) {
1076 if (root->subsys_mask & (1UL << i)) {
1077 /*
1078 * @ss is in this hierarchy, so we want the
1079 * effective css from @cgrp.
1080 */
1081 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1082 } else {
1083 /*
1084 * @ss is not in this hierarchy, so we don't want
1085 * to change the css.
1086 */
1087 template[i] = old_cset->subsys[i];
1088 }
1089 }
1090
1091 key = css_set_hash(template);
1092 hash_for_each_possible(css_set_table, cset, hlist, key) {
1093 if (!compare_css_sets(cset, old_cset, cgrp, template))
1094 continue;
1095
1096 /* This css_set matches what we need */
1097 return cset;
1098 }
1099
1100 /* No existing cgroup group matched */
1101 return NULL;
1102 }
1103
1104 static void free_cgrp_cset_links(struct list_head *links_to_free)
1105 {
1106 struct cgrp_cset_link *link, *tmp_link;
1107
1108 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1109 list_del(&link->cset_link);
1110 kfree(link);
1111 }
1112 }
1113
1114 /**
1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116 * @count: the number of links to allocate
1117 * @tmp_links: list_head the allocated links are put on
1118 *
1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120 * through ->cset_link. Returns 0 on success or -errno.
1121 */
1122 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123 {
1124 struct cgrp_cset_link *link;
1125 int i;
1126
1127 INIT_LIST_HEAD(tmp_links);
1128
1129 for (i = 0; i < count; i++) {
1130 link = kzalloc(sizeof(*link), GFP_KERNEL);
1131 if (!link) {
1132 free_cgrp_cset_links(tmp_links);
1133 return -ENOMEM;
1134 }
1135 list_add(&link->cset_link, tmp_links);
1136 }
1137 return 0;
1138 }
1139
1140 /**
1141 * link_css_set - a helper function to link a css_set to a cgroup
1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143 * @cset: the css_set to be linked
1144 * @cgrp: the destination cgroup
1145 */
1146 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1147 struct cgroup *cgrp)
1148 {
1149 struct cgrp_cset_link *link;
1150
1151 BUG_ON(list_empty(tmp_links));
1152
1153 if (cgroup_on_dfl(cgrp))
1154 cset->dfl_cgrp = cgrp;
1155
1156 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1157 link->cset = cset;
1158 link->cgrp = cgrp;
1159
1160 /*
1161 * Always add links to the tail of the lists so that the lists are
1162 * in choronological order.
1163 */
1164 list_move_tail(&link->cset_link, &cgrp->cset_links);
1165 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166
1167 if (cgroup_parent(cgrp))
1168 cgroup_get_live(cgrp);
1169 }
1170
1171 /**
1172 * find_css_set - return a new css_set with one cgroup updated
1173 * @old_cset: the baseline css_set
1174 * @cgrp: the cgroup to be updated
1175 *
1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177 * substituted into the appropriate hierarchy.
1178 */
1179 static struct css_set *find_css_set(struct css_set *old_cset,
1180 struct cgroup *cgrp)
1181 {
1182 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1183 struct css_set *cset;
1184 struct list_head tmp_links;
1185 struct cgrp_cset_link *link;
1186 struct cgroup_subsys *ss;
1187 unsigned long key;
1188 int ssid;
1189
1190 lockdep_assert_held(&cgroup_mutex);
1191
1192 /* First see if we already have a cgroup group that matches
1193 * the desired set */
1194 spin_lock_irq(&css_set_lock);
1195 cset = find_existing_css_set(old_cset, cgrp, template);
1196 if (cset)
1197 get_css_set(cset);
1198 spin_unlock_irq(&css_set_lock);
1199
1200 if (cset)
1201 return cset;
1202
1203 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1204 if (!cset)
1205 return NULL;
1206
1207 /* Allocate all the cgrp_cset_link objects that we'll need */
1208 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1209 kfree(cset);
1210 return NULL;
1211 }
1212
1213 refcount_set(&cset->refcount, 1);
1214 cset->dom_cset = cset;
1215 INIT_LIST_HEAD(&cset->tasks);
1216 INIT_LIST_HEAD(&cset->mg_tasks);
1217 INIT_LIST_HEAD(&cset->dying_tasks);
1218 INIT_LIST_HEAD(&cset->task_iters);
1219 INIT_LIST_HEAD(&cset->threaded_csets);
1220 INIT_HLIST_NODE(&cset->hlist);
1221 INIT_LIST_HEAD(&cset->cgrp_links);
1222 INIT_LIST_HEAD(&cset->mg_preload_node);
1223 INIT_LIST_HEAD(&cset->mg_node);
1224
1225 /* Copy the set of subsystem state objects generated in
1226 * find_existing_css_set() */
1227 memcpy(cset->subsys, template, sizeof(cset->subsys));
1228
1229 spin_lock_irq(&css_set_lock);
1230 /* Add reference counts and links from the new css_set. */
1231 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1232 struct cgroup *c = link->cgrp;
1233
1234 if (c->root == cgrp->root)
1235 c = cgrp;
1236 link_css_set(&tmp_links, cset, c);
1237 }
1238
1239 BUG_ON(!list_empty(&tmp_links));
1240
1241 css_set_count++;
1242
1243 /* Add @cset to the hash table */
1244 key = css_set_hash(cset->subsys);
1245 hash_add(css_set_table, &cset->hlist, key);
1246
1247 for_each_subsys(ss, ssid) {
1248 struct cgroup_subsys_state *css = cset->subsys[ssid];
1249
1250 list_add_tail(&cset->e_cset_node[ssid],
1251 &css->cgroup->e_csets[ssid]);
1252 css_get(css);
1253 }
1254
1255 spin_unlock_irq(&css_set_lock);
1256
1257 /*
1258 * If @cset should be threaded, look up the matching dom_cset and
1259 * link them up. We first fully initialize @cset then look for the
1260 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1261 * to stay empty until we return.
1262 */
1263 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1264 struct css_set *dcset;
1265
1266 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1267 if (!dcset) {
1268 put_css_set(cset);
1269 return NULL;
1270 }
1271
1272 spin_lock_irq(&css_set_lock);
1273 cset->dom_cset = dcset;
1274 list_add_tail(&cset->threaded_csets_node,
1275 &dcset->threaded_csets);
1276 spin_unlock_irq(&css_set_lock);
1277 }
1278
1279 return cset;
1280 }
1281
1282 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283 {
1284 struct cgroup *root_cgrp = kf_root->kn->priv;
1285
1286 return root_cgrp->root;
1287 }
1288
1289 static int cgroup_init_root_id(struct cgroup_root *root)
1290 {
1291 int id;
1292
1293 lockdep_assert_held(&cgroup_mutex);
1294
1295 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1296 if (id < 0)
1297 return id;
1298
1299 root->hierarchy_id = id;
1300 return 0;
1301 }
1302
1303 static void cgroup_exit_root_id(struct cgroup_root *root)
1304 {
1305 lockdep_assert_held(&cgroup_mutex);
1306
1307 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1308 }
1309
1310 void cgroup_free_root(struct cgroup_root *root)
1311 {
1312 if (root) {
1313 idr_destroy(&root->cgroup_idr);
1314 kfree(root);
1315 }
1316 }
1317
1318 static void cgroup_destroy_root(struct cgroup_root *root)
1319 {
1320 struct cgroup *cgrp = &root->cgrp;
1321 struct cgrp_cset_link *link, *tmp_link;
1322
1323 trace_cgroup_destroy_root(root);
1324
1325 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1326
1327 BUG_ON(atomic_read(&root->nr_cgrps));
1328 BUG_ON(!list_empty(&cgrp->self.children));
1329
1330 /* Rebind all subsystems back to the default hierarchy */
1331 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1332
1333 /*
1334 * Release all the links from cset_links to this hierarchy's
1335 * root cgroup
1336 */
1337 spin_lock_irq(&css_set_lock);
1338
1339 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1340 list_del(&link->cset_link);
1341 list_del(&link->cgrp_link);
1342 kfree(link);
1343 }
1344
1345 spin_unlock_irq(&css_set_lock);
1346
1347 if (!list_empty(&root->root_list)) {
1348 list_del(&root->root_list);
1349 cgroup_root_count--;
1350 }
1351
1352 cgroup_exit_root_id(root);
1353
1354 mutex_unlock(&cgroup_mutex);
1355
1356 kernfs_destroy_root(root->kf_root);
1357 cgroup_free_root(root);
1358 }
1359
1360 /*
1361 * look up cgroup associated with current task's cgroup namespace on the
1362 * specified hierarchy
1363 */
1364 static struct cgroup *
1365 current_cgns_cgroup_from_root(struct cgroup_root *root)
1366 {
1367 struct cgroup *res = NULL;
1368 struct css_set *cset;
1369
1370 lockdep_assert_held(&css_set_lock);
1371
1372 rcu_read_lock();
1373
1374 cset = current->nsproxy->cgroup_ns->root_cset;
1375 if (cset == &init_css_set) {
1376 res = &root->cgrp;
1377 } else {
1378 struct cgrp_cset_link *link;
1379
1380 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1381 struct cgroup *c = link->cgrp;
1382
1383 if (c->root == root) {
1384 res = c;
1385 break;
1386 }
1387 }
1388 }
1389 rcu_read_unlock();
1390
1391 BUG_ON(!res);
1392 return res;
1393 }
1394
1395 /* look up cgroup associated with given css_set on the specified hierarchy */
1396 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1397 struct cgroup_root *root)
1398 {
1399 struct cgroup *res = NULL;
1400
1401 lockdep_assert_held(&cgroup_mutex);
1402 lockdep_assert_held(&css_set_lock);
1403
1404 if (cset == &init_css_set) {
1405 res = &root->cgrp;
1406 } else if (root == &cgrp_dfl_root) {
1407 res = cset->dfl_cgrp;
1408 } else {
1409 struct cgrp_cset_link *link;
1410
1411 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1412 struct cgroup *c = link->cgrp;
1413
1414 if (c->root == root) {
1415 res = c;
1416 break;
1417 }
1418 }
1419 }
1420
1421 BUG_ON(!res);
1422 return res;
1423 }
1424
1425 /*
1426 * Return the cgroup for "task" from the given hierarchy. Must be
1427 * called with cgroup_mutex and css_set_lock held.
1428 */
1429 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1430 struct cgroup_root *root)
1431 {
1432 /*
1433 * No need to lock the task - since we hold cgroup_mutex the
1434 * task can't change groups, so the only thing that can happen
1435 * is that it exits and its css is set back to init_css_set.
1436 */
1437 return cset_cgroup_from_root(task_css_set(task), root);
1438 }
1439
1440 /*
1441 * A task must hold cgroup_mutex to modify cgroups.
1442 *
1443 * Any task can increment and decrement the count field without lock.
1444 * So in general, code holding cgroup_mutex can't rely on the count
1445 * field not changing. However, if the count goes to zero, then only
1446 * cgroup_attach_task() can increment it again. Because a count of zero
1447 * means that no tasks are currently attached, therefore there is no
1448 * way a task attached to that cgroup can fork (the other way to
1449 * increment the count). So code holding cgroup_mutex can safely
1450 * assume that if the count is zero, it will stay zero. Similarly, if
1451 * a task holds cgroup_mutex on a cgroup with zero count, it
1452 * knows that the cgroup won't be removed, as cgroup_rmdir()
1453 * needs that mutex.
1454 *
1455 * A cgroup can only be deleted if both its 'count' of using tasks
1456 * is zero, and its list of 'children' cgroups is empty. Since all
1457 * tasks in the system use _some_ cgroup, and since there is always at
1458 * least one task in the system (init, pid == 1), therefore, root cgroup
1459 * always has either children cgroups and/or using tasks. So we don't
1460 * need a special hack to ensure that root cgroup cannot be deleted.
1461 *
1462 * P.S. One more locking exception. RCU is used to guard the
1463 * update of a tasks cgroup pointer by cgroup_attach_task()
1464 */
1465
1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1467
1468 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1469 char *buf)
1470 {
1471 struct cgroup_subsys *ss = cft->ss;
1472
1473 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1474 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1475 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1476
1477 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1478 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1479 cft->name);
1480 } else {
1481 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1482 }
1483 return buf;
1484 }
1485
1486 /**
1487 * cgroup_file_mode - deduce file mode of a control file
1488 * @cft: the control file in question
1489 *
1490 * S_IRUGO for read, S_IWUSR for write.
1491 */
1492 static umode_t cgroup_file_mode(const struct cftype *cft)
1493 {
1494 umode_t mode = 0;
1495
1496 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1497 mode |= S_IRUGO;
1498
1499 if (cft->write_u64 || cft->write_s64 || cft->write) {
1500 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1501 mode |= S_IWUGO;
1502 else
1503 mode |= S_IWUSR;
1504 }
1505
1506 return mode;
1507 }
1508
1509 /**
1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511 * @subtree_control: the new subtree_control mask to consider
1512 * @this_ss_mask: available subsystems
1513 *
1514 * On the default hierarchy, a subsystem may request other subsystems to be
1515 * enabled together through its ->depends_on mask. In such cases, more
1516 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1517 *
1518 * This function calculates which subsystems need to be enabled if
1519 * @subtree_control is to be applied while restricted to @this_ss_mask.
1520 */
1521 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1522 {
1523 u16 cur_ss_mask = subtree_control;
1524 struct cgroup_subsys *ss;
1525 int ssid;
1526
1527 lockdep_assert_held(&cgroup_mutex);
1528
1529 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1530
1531 while (true) {
1532 u16 new_ss_mask = cur_ss_mask;
1533
1534 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1535 new_ss_mask |= ss->depends_on;
1536 } while_each_subsys_mask();
1537
1538 /*
1539 * Mask out subsystems which aren't available. This can
1540 * happen only if some depended-upon subsystems were bound
1541 * to non-default hierarchies.
1542 */
1543 new_ss_mask &= this_ss_mask;
1544
1545 if (new_ss_mask == cur_ss_mask)
1546 break;
1547 cur_ss_mask = new_ss_mask;
1548 }
1549
1550 return cur_ss_mask;
1551 }
1552
1553 /**
1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555 * @kn: the kernfs_node being serviced
1556 *
1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558 * the method finishes if locking succeeded. Note that once this function
1559 * returns the cgroup returned by cgroup_kn_lock_live() may become
1560 * inaccessible any time. If the caller intends to continue to access the
1561 * cgroup, it should pin it before invoking this function.
1562 */
1563 void cgroup_kn_unlock(struct kernfs_node *kn)
1564 {
1565 struct cgroup *cgrp;
1566
1567 if (kernfs_type(kn) == KERNFS_DIR)
1568 cgrp = kn->priv;
1569 else
1570 cgrp = kn->parent->priv;
1571
1572 mutex_unlock(&cgroup_mutex);
1573
1574 kernfs_unbreak_active_protection(kn);
1575 cgroup_put(cgrp);
1576 }
1577
1578 /**
1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580 * @kn: the kernfs_node being serviced
1581 * @drain_offline: perform offline draining on the cgroup
1582 *
1583 * This helper is to be used by a cgroup kernfs method currently servicing
1584 * @kn. It breaks the active protection, performs cgroup locking and
1585 * verifies that the associated cgroup is alive. Returns the cgroup if
1586 * alive; otherwise, %NULL. A successful return should be undone by a
1587 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1588 * cgroup is drained of offlining csses before return.
1589 *
1590 * Any cgroup kernfs method implementation which requires locking the
1591 * associated cgroup should use this helper. It avoids nesting cgroup
1592 * locking under kernfs active protection and allows all kernfs operations
1593 * including self-removal.
1594 */
1595 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1596 {
1597 struct cgroup *cgrp;
1598
1599 if (kernfs_type(kn) == KERNFS_DIR)
1600 cgrp = kn->priv;
1601 else
1602 cgrp = kn->parent->priv;
1603
1604 /*
1605 * We're gonna grab cgroup_mutex which nests outside kernfs
1606 * active_ref. cgroup liveliness check alone provides enough
1607 * protection against removal. Ensure @cgrp stays accessible and
1608 * break the active_ref protection.
1609 */
1610 if (!cgroup_tryget(cgrp))
1611 return NULL;
1612 kernfs_break_active_protection(kn);
1613
1614 if (drain_offline)
1615 cgroup_lock_and_drain_offline(cgrp);
1616 else
1617 mutex_lock(&cgroup_mutex);
1618
1619 if (!cgroup_is_dead(cgrp))
1620 return cgrp;
1621
1622 cgroup_kn_unlock(kn);
1623 return NULL;
1624 }
1625
1626 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1627 {
1628 char name[CGROUP_FILE_NAME_MAX];
1629
1630 lockdep_assert_held(&cgroup_mutex);
1631
1632 if (cft->file_offset) {
1633 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1634 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1635
1636 spin_lock_irq(&cgroup_file_kn_lock);
1637 cfile->kn = NULL;
1638 spin_unlock_irq(&cgroup_file_kn_lock);
1639
1640 del_timer_sync(&cfile->notify_timer);
1641 }
1642
1643 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644 }
1645
1646 /**
1647 * css_clear_dir - remove subsys files in a cgroup directory
1648 * @css: taget css
1649 */
1650 static void css_clear_dir(struct cgroup_subsys_state *css)
1651 {
1652 struct cgroup *cgrp = css->cgroup;
1653 struct cftype *cfts;
1654
1655 if (!(css->flags & CSS_VISIBLE))
1656 return;
1657
1658 css->flags &= ~CSS_VISIBLE;
1659
1660 if (!css->ss) {
1661 if (cgroup_on_dfl(cgrp))
1662 cfts = cgroup_base_files;
1663 else
1664 cfts = cgroup1_base_files;
1665
1666 cgroup_addrm_files(css, cgrp, cfts, false);
1667 } else {
1668 list_for_each_entry(cfts, &css->ss->cfts, node)
1669 cgroup_addrm_files(css, cgrp, cfts, false);
1670 }
1671 }
1672
1673 /**
1674 * css_populate_dir - create subsys files in a cgroup directory
1675 * @css: target css
1676 *
1677 * On failure, no file is added.
1678 */
1679 static int css_populate_dir(struct cgroup_subsys_state *css)
1680 {
1681 struct cgroup *cgrp = css->cgroup;
1682 struct cftype *cfts, *failed_cfts;
1683 int ret;
1684
1685 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1686 return 0;
1687
1688 if (!css->ss) {
1689 if (cgroup_on_dfl(cgrp))
1690 cfts = cgroup_base_files;
1691 else
1692 cfts = cgroup1_base_files;
1693
1694 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1695 if (ret < 0)
1696 return ret;
1697 } else {
1698 list_for_each_entry(cfts, &css->ss->cfts, node) {
1699 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1700 if (ret < 0) {
1701 failed_cfts = cfts;
1702 goto err;
1703 }
1704 }
1705 }
1706
1707 css->flags |= CSS_VISIBLE;
1708
1709 return 0;
1710 err:
1711 list_for_each_entry(cfts, &css->ss->cfts, node) {
1712 if (cfts == failed_cfts)
1713 break;
1714 cgroup_addrm_files(css, cgrp, cfts, false);
1715 }
1716 return ret;
1717 }
1718
1719 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1720 {
1721 struct cgroup *dcgrp = &dst_root->cgrp;
1722 struct cgroup_subsys *ss;
1723 int ssid, i, ret;
1724 u16 dfl_disable_ss_mask = 0;
1725
1726 lockdep_assert_held(&cgroup_mutex);
1727
1728 do_each_subsys_mask(ss, ssid, ss_mask) {
1729 /*
1730 * If @ss has non-root csses attached to it, can't move.
1731 * If @ss is an implicit controller, it is exempt from this
1732 * rule and can be stolen.
1733 */
1734 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1735 !ss->implicit_on_dfl)
1736 return -EBUSY;
1737
1738 /* can't move between two non-dummy roots either */
1739 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1740 return -EBUSY;
1741
1742 /*
1743 * Collect ssid's that need to be disabled from default
1744 * hierarchy.
1745 */
1746 if (ss->root == &cgrp_dfl_root)
1747 dfl_disable_ss_mask |= 1 << ssid;
1748
1749 } while_each_subsys_mask();
1750
1751 if (dfl_disable_ss_mask) {
1752 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1753
1754 /*
1755 * Controllers from default hierarchy that need to be rebound
1756 * are all disabled together in one go.
1757 */
1758 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1759 WARN_ON(cgroup_apply_control(scgrp));
1760 cgroup_finalize_control(scgrp, 0);
1761 }
1762
1763 do_each_subsys_mask(ss, ssid, ss_mask) {
1764 struct cgroup_root *src_root = ss->root;
1765 struct cgroup *scgrp = &src_root->cgrp;
1766 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1767 struct css_set *cset;
1768
1769 WARN_ON(!css || cgroup_css(dcgrp, ss));
1770
1771 if (src_root != &cgrp_dfl_root) {
1772 /* disable from the source */
1773 src_root->subsys_mask &= ~(1 << ssid);
1774 WARN_ON(cgroup_apply_control(scgrp));
1775 cgroup_finalize_control(scgrp, 0);
1776 }
1777
1778 /* rebind */
1779 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1780 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1781 ss->root = dst_root;
1782 css->cgroup = dcgrp;
1783
1784 spin_lock_irq(&css_set_lock);
1785 hash_for_each(css_set_table, i, cset, hlist)
1786 list_move_tail(&cset->e_cset_node[ss->id],
1787 &dcgrp->e_csets[ss->id]);
1788 spin_unlock_irq(&css_set_lock);
1789
1790 /* default hierarchy doesn't enable controllers by default */
1791 dst_root->subsys_mask |= 1 << ssid;
1792 if (dst_root == &cgrp_dfl_root) {
1793 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1794 } else {
1795 dcgrp->subtree_control |= 1 << ssid;
1796 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1797 }
1798
1799 ret = cgroup_apply_control(dcgrp);
1800 if (ret)
1801 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1802 ss->name, ret);
1803
1804 if (ss->bind)
1805 ss->bind(css);
1806 } while_each_subsys_mask();
1807
1808 kernfs_activate(dcgrp->kn);
1809 return 0;
1810 }
1811
1812 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1813 struct kernfs_root *kf_root)
1814 {
1815 int len = 0;
1816 char *buf = NULL;
1817 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1818 struct cgroup *ns_cgroup;
1819
1820 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1821 if (!buf)
1822 return -ENOMEM;
1823
1824 spin_lock_irq(&css_set_lock);
1825 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1826 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1827 spin_unlock_irq(&css_set_lock);
1828
1829 if (len >= PATH_MAX)
1830 len = -ERANGE;
1831 else if (len > 0) {
1832 seq_escape(sf, buf, " \t\n\\");
1833 len = 0;
1834 }
1835 kfree(buf);
1836 return len;
1837 }
1838
1839 enum cgroup2_param {
1840 Opt_nsdelegate,
1841 Opt_memory_localevents,
1842 nr__cgroup2_params
1843 };
1844
1845 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1846 fsparam_flag("nsdelegate", Opt_nsdelegate),
1847 fsparam_flag("memory_localevents", Opt_memory_localevents),
1848 {}
1849 };
1850
1851 static const struct fs_parameter_description cgroup2_fs_parameters = {
1852 .name = "cgroup2",
1853 .specs = cgroup2_param_specs,
1854 };
1855
1856 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1857 {
1858 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1859 struct fs_parse_result result;
1860 int opt;
1861
1862 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1863 if (opt < 0)
1864 return opt;
1865
1866 switch (opt) {
1867 case Opt_nsdelegate:
1868 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1869 return 0;
1870 case Opt_memory_localevents:
1871 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1872 return 0;
1873 }
1874 return -EINVAL;
1875 }
1876
1877 static void apply_cgroup_root_flags(unsigned int root_flags)
1878 {
1879 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1880 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1881 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1882 else
1883 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1884
1885 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1886 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1887 else
1888 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1889 }
1890 }
1891
1892 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1893 {
1894 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1895 seq_puts(seq, ",nsdelegate");
1896 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1897 seq_puts(seq, ",memory_localevents");
1898 return 0;
1899 }
1900
1901 static int cgroup_reconfigure(struct fs_context *fc)
1902 {
1903 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1904
1905 apply_cgroup_root_flags(ctx->flags);
1906 return 0;
1907 }
1908
1909 /*
1910 * To reduce the fork() overhead for systems that are not actually using
1911 * their cgroups capability, we don't maintain the lists running through
1912 * each css_set to its tasks until we see the list actually used - in other
1913 * words after the first mount.
1914 */
1915 static bool use_task_css_set_links __read_mostly;
1916
1917 void cgroup_enable_task_cg_lists(void)
1918 {
1919 struct task_struct *p, *g;
1920
1921 /*
1922 * We need tasklist_lock because RCU is not safe against
1923 * while_each_thread(). Besides, a forking task that has passed
1924 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1925 * is not guaranteed to have its child immediately visible in the
1926 * tasklist if we walk through it with RCU.
1927 */
1928 read_lock(&tasklist_lock);
1929 spin_lock_irq(&css_set_lock);
1930
1931 if (use_task_css_set_links)
1932 goto out_unlock;
1933
1934 use_task_css_set_links = true;
1935
1936 do_each_thread(g, p) {
1937 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1938 task_css_set(p) != &init_css_set);
1939
1940 /*
1941 * We should check if the process is exiting, otherwise
1942 * it will race with cgroup_exit() in that the list
1943 * entry won't be deleted though the process has exited.
1944 * Do it while holding siglock so that we don't end up
1945 * racing against cgroup_exit().
1946 *
1947 * Interrupts were already disabled while acquiring
1948 * the css_set_lock, so we do not need to disable it
1949 * again when acquiring the sighand->siglock here.
1950 */
1951 spin_lock(&p->sighand->siglock);
1952 if (!(p->flags & PF_EXITING)) {
1953 struct css_set *cset = task_css_set(p);
1954
1955 if (!css_set_populated(cset))
1956 css_set_update_populated(cset, true);
1957 list_add_tail(&p->cg_list, &cset->tasks);
1958 get_css_set(cset);
1959 cset->nr_tasks++;
1960 }
1961 spin_unlock(&p->sighand->siglock);
1962 } while_each_thread(g, p);
1963 out_unlock:
1964 spin_unlock_irq(&css_set_lock);
1965 read_unlock(&tasklist_lock);
1966 }
1967
1968 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1969 {
1970 struct cgroup_subsys *ss;
1971 int ssid;
1972
1973 INIT_LIST_HEAD(&cgrp->self.sibling);
1974 INIT_LIST_HEAD(&cgrp->self.children);
1975 INIT_LIST_HEAD(&cgrp->cset_links);
1976 INIT_LIST_HEAD(&cgrp->pidlists);
1977 mutex_init(&cgrp->pidlist_mutex);
1978 cgrp->self.cgroup = cgrp;
1979 cgrp->self.flags |= CSS_ONLINE;
1980 cgrp->dom_cgrp = cgrp;
1981 cgrp->max_descendants = INT_MAX;
1982 cgrp->max_depth = INT_MAX;
1983 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1984 prev_cputime_init(&cgrp->prev_cputime);
1985
1986 for_each_subsys(ss, ssid)
1987 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1988
1989 init_waitqueue_head(&cgrp->offline_waitq);
1990 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1991 }
1992
1993 void init_cgroup_root(struct cgroup_fs_context *ctx)
1994 {
1995 struct cgroup_root *root = ctx->root;
1996 struct cgroup *cgrp = &root->cgrp;
1997
1998 INIT_LIST_HEAD(&root->root_list);
1999 atomic_set(&root->nr_cgrps, 1);
2000 cgrp->root = root;
2001 init_cgroup_housekeeping(cgrp);
2002 idr_init(&root->cgroup_idr);
2003
2004 root->flags = ctx->flags;
2005 if (ctx->release_agent)
2006 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2007 if (ctx->name)
2008 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2009 if (ctx->cpuset_clone_children)
2010 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2011 }
2012
2013 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2014 {
2015 LIST_HEAD(tmp_links);
2016 struct cgroup *root_cgrp = &root->cgrp;
2017 struct kernfs_syscall_ops *kf_sops;
2018 struct css_set *cset;
2019 int i, ret;
2020
2021 lockdep_assert_held(&cgroup_mutex);
2022
2023 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2024 if (ret < 0)
2025 goto out;
2026 root_cgrp->id = ret;
2027 root_cgrp->ancestor_ids[0] = ret;
2028
2029 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2030 0, GFP_KERNEL);
2031 if (ret)
2032 goto out;
2033
2034 /*
2035 * We're accessing css_set_count without locking css_set_lock here,
2036 * but that's OK - it can only be increased by someone holding
2037 * cgroup_lock, and that's us. Later rebinding may disable
2038 * controllers on the default hierarchy and thus create new csets,
2039 * which can't be more than the existing ones. Allocate 2x.
2040 */
2041 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2042 if (ret)
2043 goto cancel_ref;
2044
2045 ret = cgroup_init_root_id(root);
2046 if (ret)
2047 goto cancel_ref;
2048
2049 kf_sops = root == &cgrp_dfl_root ?
2050 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2051
2052 root->kf_root = kernfs_create_root(kf_sops,
2053 KERNFS_ROOT_CREATE_DEACTIVATED |
2054 KERNFS_ROOT_SUPPORT_EXPORTOP,
2055 root_cgrp);
2056 if (IS_ERR(root->kf_root)) {
2057 ret = PTR_ERR(root->kf_root);
2058 goto exit_root_id;
2059 }
2060 root_cgrp->kn = root->kf_root->kn;
2061
2062 ret = css_populate_dir(&root_cgrp->self);
2063 if (ret)
2064 goto destroy_root;
2065
2066 ret = rebind_subsystems(root, ss_mask);
2067 if (ret)
2068 goto destroy_root;
2069
2070 ret = cgroup_bpf_inherit(root_cgrp);
2071 WARN_ON_ONCE(ret);
2072
2073 trace_cgroup_setup_root(root);
2074
2075 /*
2076 * There must be no failure case after here, since rebinding takes
2077 * care of subsystems' refcounts, which are explicitly dropped in
2078 * the failure exit path.
2079 */
2080 list_add(&root->root_list, &cgroup_roots);
2081 cgroup_root_count++;
2082
2083 /*
2084 * Link the root cgroup in this hierarchy into all the css_set
2085 * objects.
2086 */
2087 spin_lock_irq(&css_set_lock);
2088 hash_for_each(css_set_table, i, cset, hlist) {
2089 link_css_set(&tmp_links, cset, root_cgrp);
2090 if (css_set_populated(cset))
2091 cgroup_update_populated(root_cgrp, true);
2092 }
2093 spin_unlock_irq(&css_set_lock);
2094
2095 BUG_ON(!list_empty(&root_cgrp->self.children));
2096 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2097
2098 kernfs_activate(root_cgrp->kn);
2099 ret = 0;
2100 goto out;
2101
2102 destroy_root:
2103 kernfs_destroy_root(root->kf_root);
2104 root->kf_root = NULL;
2105 exit_root_id:
2106 cgroup_exit_root_id(root);
2107 cancel_ref:
2108 percpu_ref_exit(&root_cgrp->self.refcnt);
2109 out:
2110 free_cgrp_cset_links(&tmp_links);
2111 return ret;
2112 }
2113
2114 int cgroup_do_get_tree(struct fs_context *fc)
2115 {
2116 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2117 int ret;
2118
2119 ctx->kfc.root = ctx->root->kf_root;
2120 if (fc->fs_type == &cgroup2_fs_type)
2121 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2122 else
2123 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2124 ret = kernfs_get_tree(fc);
2125
2126 /*
2127 * In non-init cgroup namespace, instead of root cgroup's dentry,
2128 * we return the dentry corresponding to the cgroupns->root_cgrp.
2129 */
2130 if (!ret && ctx->ns != &init_cgroup_ns) {
2131 struct dentry *nsdentry;
2132 struct super_block *sb = fc->root->d_sb;
2133 struct cgroup *cgrp;
2134
2135 mutex_lock(&cgroup_mutex);
2136 spin_lock_irq(&css_set_lock);
2137
2138 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2139
2140 spin_unlock_irq(&css_set_lock);
2141 mutex_unlock(&cgroup_mutex);
2142
2143 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2144 dput(fc->root);
2145 if (IS_ERR(nsdentry)) {
2146 deactivate_locked_super(sb);
2147 ret = PTR_ERR(nsdentry);
2148 nsdentry = NULL;
2149 }
2150 fc->root = nsdentry;
2151 }
2152
2153 if (!ctx->kfc.new_sb_created)
2154 cgroup_put(&ctx->root->cgrp);
2155
2156 return ret;
2157 }
2158
2159 /*
2160 * Destroy a cgroup filesystem context.
2161 */
2162 static void cgroup_fs_context_free(struct fs_context *fc)
2163 {
2164 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2165
2166 kfree(ctx->name);
2167 kfree(ctx->release_agent);
2168 put_cgroup_ns(ctx->ns);
2169 kernfs_free_fs_context(fc);
2170 kfree(ctx);
2171 }
2172
2173 static int cgroup_get_tree(struct fs_context *fc)
2174 {
2175 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2176 int ret;
2177
2178 cgrp_dfl_visible = true;
2179 cgroup_get_live(&cgrp_dfl_root.cgrp);
2180 ctx->root = &cgrp_dfl_root;
2181
2182 ret = cgroup_do_get_tree(fc);
2183 if (!ret)
2184 apply_cgroup_root_flags(ctx->flags);
2185 return ret;
2186 }
2187
2188 static const struct fs_context_operations cgroup_fs_context_ops = {
2189 .free = cgroup_fs_context_free,
2190 .parse_param = cgroup2_parse_param,
2191 .get_tree = cgroup_get_tree,
2192 .reconfigure = cgroup_reconfigure,
2193 };
2194
2195 static const struct fs_context_operations cgroup1_fs_context_ops = {
2196 .free = cgroup_fs_context_free,
2197 .parse_param = cgroup1_parse_param,
2198 .get_tree = cgroup1_get_tree,
2199 .reconfigure = cgroup1_reconfigure,
2200 };
2201
2202 /*
2203 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2204 * we select the namespace we're going to use.
2205 */
2206 static int cgroup_init_fs_context(struct fs_context *fc)
2207 {
2208 struct cgroup_fs_context *ctx;
2209
2210 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2211 if (!ctx)
2212 return -ENOMEM;
2213
2214 /*
2215 * The first time anyone tries to mount a cgroup, enable the list
2216 * linking each css_set to its tasks and fix up all existing tasks.
2217 */
2218 if (!use_task_css_set_links)
2219 cgroup_enable_task_cg_lists();
2220
2221 ctx->ns = current->nsproxy->cgroup_ns;
2222 get_cgroup_ns(ctx->ns);
2223 fc->fs_private = &ctx->kfc;
2224 if (fc->fs_type == &cgroup2_fs_type)
2225 fc->ops = &cgroup_fs_context_ops;
2226 else
2227 fc->ops = &cgroup1_fs_context_ops;
2228 put_user_ns(fc->user_ns);
2229 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2230 fc->global = true;
2231 return 0;
2232 }
2233
2234 static void cgroup_kill_sb(struct super_block *sb)
2235 {
2236 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2237 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2238
2239 /*
2240 * If @root doesn't have any children, start killing it.
2241 * This prevents new mounts by disabling percpu_ref_tryget_live().
2242 * cgroup_mount() may wait for @root's release.
2243 *
2244 * And don't kill the default root.
2245 */
2246 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2247 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2248 percpu_ref_kill(&root->cgrp.self.refcnt);
2249 cgroup_put(&root->cgrp);
2250 kernfs_kill_sb(sb);
2251 }
2252
2253 struct file_system_type cgroup_fs_type = {
2254 .name = "cgroup",
2255 .init_fs_context = cgroup_init_fs_context,
2256 .parameters = &cgroup1_fs_parameters,
2257 .kill_sb = cgroup_kill_sb,
2258 .fs_flags = FS_USERNS_MOUNT,
2259 };
2260
2261 static struct file_system_type cgroup2_fs_type = {
2262 .name = "cgroup2",
2263 .init_fs_context = cgroup_init_fs_context,
2264 .parameters = &cgroup2_fs_parameters,
2265 .kill_sb = cgroup_kill_sb,
2266 .fs_flags = FS_USERNS_MOUNT,
2267 };
2268
2269 #ifdef CONFIG_CPUSETS
2270 static const struct fs_context_operations cpuset_fs_context_ops = {
2271 .get_tree = cgroup1_get_tree,
2272 .free = cgroup_fs_context_free,
2273 };
2274
2275 /*
2276 * This is ugly, but preserves the userspace API for existing cpuset
2277 * users. If someone tries to mount the "cpuset" filesystem, we
2278 * silently switch it to mount "cgroup" instead
2279 */
2280 static int cpuset_init_fs_context(struct fs_context *fc)
2281 {
2282 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2283 struct cgroup_fs_context *ctx;
2284 int err;
2285
2286 err = cgroup_init_fs_context(fc);
2287 if (err) {
2288 kfree(agent);
2289 return err;
2290 }
2291
2292 fc->ops = &cpuset_fs_context_ops;
2293
2294 ctx = cgroup_fc2context(fc);
2295 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2296 ctx->flags |= CGRP_ROOT_NOPREFIX;
2297 ctx->release_agent = agent;
2298
2299 get_filesystem(&cgroup_fs_type);
2300 put_filesystem(fc->fs_type);
2301 fc->fs_type = &cgroup_fs_type;
2302
2303 return 0;
2304 }
2305
2306 static struct file_system_type cpuset_fs_type = {
2307 .name = "cpuset",
2308 .init_fs_context = cpuset_init_fs_context,
2309 .fs_flags = FS_USERNS_MOUNT,
2310 };
2311 #endif
2312
2313 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2314 struct cgroup_namespace *ns)
2315 {
2316 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2317
2318 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2319 }
2320
2321 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2322 struct cgroup_namespace *ns)
2323 {
2324 int ret;
2325
2326 mutex_lock(&cgroup_mutex);
2327 spin_lock_irq(&css_set_lock);
2328
2329 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2330
2331 spin_unlock_irq(&css_set_lock);
2332 mutex_unlock(&cgroup_mutex);
2333
2334 return ret;
2335 }
2336 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2337
2338 /**
2339 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2340 * @task: target task
2341 * @buf: the buffer to write the path into
2342 * @buflen: the length of the buffer
2343 *
2344 * Determine @task's cgroup on the first (the one with the lowest non-zero
2345 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2346 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2347 * cgroup controller callbacks.
2348 *
2349 * Return value is the same as kernfs_path().
2350 */
2351 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2352 {
2353 struct cgroup_root *root;
2354 struct cgroup *cgrp;
2355 int hierarchy_id = 1;
2356 int ret;
2357
2358 mutex_lock(&cgroup_mutex);
2359 spin_lock_irq(&css_set_lock);
2360
2361 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2362
2363 if (root) {
2364 cgrp = task_cgroup_from_root(task, root);
2365 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2366 } else {
2367 /* if no hierarchy exists, everyone is in "/" */
2368 ret = strlcpy(buf, "/", buflen);
2369 }
2370
2371 spin_unlock_irq(&css_set_lock);
2372 mutex_unlock(&cgroup_mutex);
2373 return ret;
2374 }
2375 EXPORT_SYMBOL_GPL(task_cgroup_path);
2376
2377 /**
2378 * cgroup_migrate_add_task - add a migration target task to a migration context
2379 * @task: target task
2380 * @mgctx: target migration context
2381 *
2382 * Add @task, which is a migration target, to @mgctx->tset. This function
2383 * becomes noop if @task doesn't need to be migrated. @task's css_set
2384 * should have been added as a migration source and @task->cg_list will be
2385 * moved from the css_set's tasks list to mg_tasks one.
2386 */
2387 static void cgroup_migrate_add_task(struct task_struct *task,
2388 struct cgroup_mgctx *mgctx)
2389 {
2390 struct css_set *cset;
2391
2392 lockdep_assert_held(&css_set_lock);
2393
2394 /* @task either already exited or can't exit until the end */
2395 if (task->flags & PF_EXITING)
2396 return;
2397
2398 /* leave @task alone if post_fork() hasn't linked it yet */
2399 if (list_empty(&task->cg_list))
2400 return;
2401
2402 cset = task_css_set(task);
2403 if (!cset->mg_src_cgrp)
2404 return;
2405
2406 mgctx->tset.nr_tasks++;
2407
2408 list_move_tail(&task->cg_list, &cset->mg_tasks);
2409 if (list_empty(&cset->mg_node))
2410 list_add_tail(&cset->mg_node,
2411 &mgctx->tset.src_csets);
2412 if (list_empty(&cset->mg_dst_cset->mg_node))
2413 list_add_tail(&cset->mg_dst_cset->mg_node,
2414 &mgctx->tset.dst_csets);
2415 }
2416
2417 /**
2418 * cgroup_taskset_first - reset taskset and return the first task
2419 * @tset: taskset of interest
2420 * @dst_cssp: output variable for the destination css
2421 *
2422 * @tset iteration is initialized and the first task is returned.
2423 */
2424 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2425 struct cgroup_subsys_state **dst_cssp)
2426 {
2427 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2428 tset->cur_task = NULL;
2429
2430 return cgroup_taskset_next(tset, dst_cssp);
2431 }
2432
2433 /**
2434 * cgroup_taskset_next - iterate to the next task in taskset
2435 * @tset: taskset of interest
2436 * @dst_cssp: output variable for the destination css
2437 *
2438 * Return the next task in @tset. Iteration must have been initialized
2439 * with cgroup_taskset_first().
2440 */
2441 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2442 struct cgroup_subsys_state **dst_cssp)
2443 {
2444 struct css_set *cset = tset->cur_cset;
2445 struct task_struct *task = tset->cur_task;
2446
2447 while (&cset->mg_node != tset->csets) {
2448 if (!task)
2449 task = list_first_entry(&cset->mg_tasks,
2450 struct task_struct, cg_list);
2451 else
2452 task = list_next_entry(task, cg_list);
2453
2454 if (&task->cg_list != &cset->mg_tasks) {
2455 tset->cur_cset = cset;
2456 tset->cur_task = task;
2457
2458 /*
2459 * This function may be called both before and
2460 * after cgroup_taskset_migrate(). The two cases
2461 * can be distinguished by looking at whether @cset
2462 * has its ->mg_dst_cset set.
2463 */
2464 if (cset->mg_dst_cset)
2465 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2466 else
2467 *dst_cssp = cset->subsys[tset->ssid];
2468
2469 return task;
2470 }
2471
2472 cset = list_next_entry(cset, mg_node);
2473 task = NULL;
2474 }
2475
2476 return NULL;
2477 }
2478
2479 /**
2480 * cgroup_taskset_migrate - migrate a taskset
2481 * @mgctx: migration context
2482 *
2483 * Migrate tasks in @mgctx as setup by migration preparation functions.
2484 * This function fails iff one of the ->can_attach callbacks fails and
2485 * guarantees that either all or none of the tasks in @mgctx are migrated.
2486 * @mgctx is consumed regardless of success.
2487 */
2488 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2489 {
2490 struct cgroup_taskset *tset = &mgctx->tset;
2491 struct cgroup_subsys *ss;
2492 struct task_struct *task, *tmp_task;
2493 struct css_set *cset, *tmp_cset;
2494 int ssid, failed_ssid, ret;
2495
2496 /* check that we can legitimately attach to the cgroup */
2497 if (tset->nr_tasks) {
2498 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2499 if (ss->can_attach) {
2500 tset->ssid = ssid;
2501 ret = ss->can_attach(tset);
2502 if (ret) {
2503 failed_ssid = ssid;
2504 goto out_cancel_attach;
2505 }
2506 }
2507 } while_each_subsys_mask();
2508 }
2509
2510 /*
2511 * Now that we're guaranteed success, proceed to move all tasks to
2512 * the new cgroup. There are no failure cases after here, so this
2513 * is the commit point.
2514 */
2515 spin_lock_irq(&css_set_lock);
2516 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2517 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2518 struct css_set *from_cset = task_css_set(task);
2519 struct css_set *to_cset = cset->mg_dst_cset;
2520
2521 get_css_set(to_cset);
2522 to_cset->nr_tasks++;
2523 css_set_move_task(task, from_cset, to_cset, true);
2524 from_cset->nr_tasks--;
2525 /*
2526 * If the source or destination cgroup is frozen,
2527 * the task might require to change its state.
2528 */
2529 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2530 to_cset->dfl_cgrp);
2531 put_css_set_locked(from_cset);
2532
2533 }
2534 }
2535 spin_unlock_irq(&css_set_lock);
2536
2537 /*
2538 * Migration is committed, all target tasks are now on dst_csets.
2539 * Nothing is sensitive to fork() after this point. Notify
2540 * controllers that migration is complete.
2541 */
2542 tset->csets = &tset->dst_csets;
2543
2544 if (tset->nr_tasks) {
2545 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2546 if (ss->attach) {
2547 tset->ssid = ssid;
2548 ss->attach(tset);
2549 }
2550 } while_each_subsys_mask();
2551 }
2552
2553 ret = 0;
2554 goto out_release_tset;
2555
2556 out_cancel_attach:
2557 if (tset->nr_tasks) {
2558 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2559 if (ssid == failed_ssid)
2560 break;
2561 if (ss->cancel_attach) {
2562 tset->ssid = ssid;
2563 ss->cancel_attach(tset);
2564 }
2565 } while_each_subsys_mask();
2566 }
2567 out_release_tset:
2568 spin_lock_irq(&css_set_lock);
2569 list_splice_init(&tset->dst_csets, &tset->src_csets);
2570 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2571 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2572 list_del_init(&cset->mg_node);
2573 }
2574 spin_unlock_irq(&css_set_lock);
2575
2576 /*
2577 * Re-initialize the cgroup_taskset structure in case it is reused
2578 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2579 * iteration.
2580 */
2581 tset->nr_tasks = 0;
2582 tset->csets = &tset->src_csets;
2583 return ret;
2584 }
2585
2586 /**
2587 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2588 * @dst_cgrp: destination cgroup to test
2589 *
2590 * On the default hierarchy, except for the mixable, (possible) thread root
2591 * and threaded cgroups, subtree_control must be zero for migration
2592 * destination cgroups with tasks so that child cgroups don't compete
2593 * against tasks.
2594 */
2595 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2596 {
2597 /* v1 doesn't have any restriction */
2598 if (!cgroup_on_dfl(dst_cgrp))
2599 return 0;
2600
2601 /* verify @dst_cgrp can host resources */
2602 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2603 return -EOPNOTSUPP;
2604
2605 /* mixables don't care */
2606 if (cgroup_is_mixable(dst_cgrp))
2607 return 0;
2608
2609 /*
2610 * If @dst_cgrp is already or can become a thread root or is
2611 * threaded, it doesn't matter.
2612 */
2613 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2614 return 0;
2615
2616 /* apply no-internal-process constraint */
2617 if (dst_cgrp->subtree_control)
2618 return -EBUSY;
2619
2620 return 0;
2621 }
2622
2623 /**
2624 * cgroup_migrate_finish - cleanup after attach
2625 * @mgctx: migration context
2626 *
2627 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2628 * those functions for details.
2629 */
2630 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2631 {
2632 LIST_HEAD(preloaded);
2633 struct css_set *cset, *tmp_cset;
2634
2635 lockdep_assert_held(&cgroup_mutex);
2636
2637 spin_lock_irq(&css_set_lock);
2638
2639 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2640 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2641
2642 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2643 cset->mg_src_cgrp = NULL;
2644 cset->mg_dst_cgrp = NULL;
2645 cset->mg_dst_cset = NULL;
2646 list_del_init(&cset->mg_preload_node);
2647 put_css_set_locked(cset);
2648 }
2649
2650 spin_unlock_irq(&css_set_lock);
2651 }
2652
2653 /**
2654 * cgroup_migrate_add_src - add a migration source css_set
2655 * @src_cset: the source css_set to add
2656 * @dst_cgrp: the destination cgroup
2657 * @mgctx: migration context
2658 *
2659 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2660 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2661 * up by cgroup_migrate_finish().
2662 *
2663 * This function may be called without holding cgroup_threadgroup_rwsem
2664 * even if the target is a process. Threads may be created and destroyed
2665 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2666 * into play and the preloaded css_sets are guaranteed to cover all
2667 * migrations.
2668 */
2669 void cgroup_migrate_add_src(struct css_set *src_cset,
2670 struct cgroup *dst_cgrp,
2671 struct cgroup_mgctx *mgctx)
2672 {
2673 struct cgroup *src_cgrp;
2674
2675 lockdep_assert_held(&cgroup_mutex);
2676 lockdep_assert_held(&css_set_lock);
2677
2678 /*
2679 * If ->dead, @src_set is associated with one or more dead cgroups
2680 * and doesn't contain any migratable tasks. Ignore it early so
2681 * that the rest of migration path doesn't get confused by it.
2682 */
2683 if (src_cset->dead)
2684 return;
2685
2686 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2687
2688 if (!list_empty(&src_cset->mg_preload_node))
2689 return;
2690
2691 WARN_ON(src_cset->mg_src_cgrp);
2692 WARN_ON(src_cset->mg_dst_cgrp);
2693 WARN_ON(!list_empty(&src_cset->mg_tasks));
2694 WARN_ON(!list_empty(&src_cset->mg_node));
2695
2696 src_cset->mg_src_cgrp = src_cgrp;
2697 src_cset->mg_dst_cgrp = dst_cgrp;
2698 get_css_set(src_cset);
2699 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2700 }
2701
2702 /**
2703 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2704 * @mgctx: migration context
2705 *
2706 * Tasks are about to be moved and all the source css_sets have been
2707 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2708 * pins all destination css_sets, links each to its source, and append them
2709 * to @mgctx->preloaded_dst_csets.
2710 *
2711 * This function must be called after cgroup_migrate_add_src() has been
2712 * called on each migration source css_set. After migration is performed
2713 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2714 * @mgctx.
2715 */
2716 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2717 {
2718 struct css_set *src_cset, *tmp_cset;
2719
2720 lockdep_assert_held(&cgroup_mutex);
2721
2722 /* look up the dst cset for each src cset and link it to src */
2723 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2724 mg_preload_node) {
2725 struct css_set *dst_cset;
2726 struct cgroup_subsys *ss;
2727 int ssid;
2728
2729 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2730 if (!dst_cset)
2731 return -ENOMEM;
2732
2733 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2734
2735 /*
2736 * If src cset equals dst, it's noop. Drop the src.
2737 * cgroup_migrate() will skip the cset too. Note that we
2738 * can't handle src == dst as some nodes are used by both.
2739 */
2740 if (src_cset == dst_cset) {
2741 src_cset->mg_src_cgrp = NULL;
2742 src_cset->mg_dst_cgrp = NULL;
2743 list_del_init(&src_cset->mg_preload_node);
2744 put_css_set(src_cset);
2745 put_css_set(dst_cset);
2746 continue;
2747 }
2748
2749 src_cset->mg_dst_cset = dst_cset;
2750
2751 if (list_empty(&dst_cset->mg_preload_node))
2752 list_add_tail(&dst_cset->mg_preload_node,
2753 &mgctx->preloaded_dst_csets);
2754 else
2755 put_css_set(dst_cset);
2756
2757 for_each_subsys(ss, ssid)
2758 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2759 mgctx->ss_mask |= 1 << ssid;
2760 }
2761
2762 return 0;
2763 }
2764
2765 /**
2766 * cgroup_migrate - migrate a process or task to a cgroup
2767 * @leader: the leader of the process or the task to migrate
2768 * @threadgroup: whether @leader points to the whole process or a single task
2769 * @mgctx: migration context
2770 *
2771 * Migrate a process or task denoted by @leader. If migrating a process,
2772 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2773 * responsible for invoking cgroup_migrate_add_src() and
2774 * cgroup_migrate_prepare_dst() on the targets before invoking this
2775 * function and following up with cgroup_migrate_finish().
2776 *
2777 * As long as a controller's ->can_attach() doesn't fail, this function is
2778 * guaranteed to succeed. This means that, excluding ->can_attach()
2779 * failure, when migrating multiple targets, the success or failure can be
2780 * decided for all targets by invoking group_migrate_prepare_dst() before
2781 * actually starting migrating.
2782 */
2783 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2784 struct cgroup_mgctx *mgctx)
2785 {
2786 struct task_struct *task;
2787
2788 /*
2789 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2790 * already PF_EXITING could be freed from underneath us unless we
2791 * take an rcu_read_lock.
2792 */
2793 spin_lock_irq(&css_set_lock);
2794 rcu_read_lock();
2795 task = leader;
2796 do {
2797 cgroup_migrate_add_task(task, mgctx);
2798 if (!threadgroup)
2799 break;
2800 } while_each_thread(leader, task);
2801 rcu_read_unlock();
2802 spin_unlock_irq(&css_set_lock);
2803
2804 return cgroup_migrate_execute(mgctx);
2805 }
2806
2807 /**
2808 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2809 * @dst_cgrp: the cgroup to attach to
2810 * @leader: the task or the leader of the threadgroup to be attached
2811 * @threadgroup: attach the whole threadgroup?
2812 *
2813 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2814 */
2815 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2816 bool threadgroup)
2817 {
2818 DEFINE_CGROUP_MGCTX(mgctx);
2819 struct task_struct *task;
2820 int ret;
2821
2822 ret = cgroup_migrate_vet_dst(dst_cgrp);
2823 if (ret)
2824 return ret;
2825
2826 /* look up all src csets */
2827 spin_lock_irq(&css_set_lock);
2828 rcu_read_lock();
2829 task = leader;
2830 do {
2831 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2832 if (!threadgroup)
2833 break;
2834 } while_each_thread(leader, task);
2835 rcu_read_unlock();
2836 spin_unlock_irq(&css_set_lock);
2837
2838 /* prepare dst csets and commit */
2839 ret = cgroup_migrate_prepare_dst(&mgctx);
2840 if (!ret)
2841 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2842
2843 cgroup_migrate_finish(&mgctx);
2844
2845 if (!ret)
2846 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2847
2848 return ret;
2849 }
2850
2851 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2852 __acquires(&cgroup_threadgroup_rwsem)
2853 {
2854 struct task_struct *tsk;
2855 pid_t pid;
2856
2857 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2858 return ERR_PTR(-EINVAL);
2859
2860 percpu_down_write(&cgroup_threadgroup_rwsem);
2861
2862 rcu_read_lock();
2863 if (pid) {
2864 tsk = find_task_by_vpid(pid);
2865 if (!tsk) {
2866 tsk = ERR_PTR(-ESRCH);
2867 goto out_unlock_threadgroup;
2868 }
2869 } else {
2870 tsk = current;
2871 }
2872
2873 if (threadgroup)
2874 tsk = tsk->group_leader;
2875
2876 /*
2877 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2878 * If userland migrates such a kthread to a non-root cgroup, it can
2879 * become trapped in a cpuset, or RT kthread may be born in a
2880 * cgroup with no rt_runtime allocated. Just say no.
2881 */
2882 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2883 tsk = ERR_PTR(-EINVAL);
2884 goto out_unlock_threadgroup;
2885 }
2886
2887 get_task_struct(tsk);
2888 goto out_unlock_rcu;
2889
2890 out_unlock_threadgroup:
2891 percpu_up_write(&cgroup_threadgroup_rwsem);
2892 out_unlock_rcu:
2893 rcu_read_unlock();
2894 return tsk;
2895 }
2896
2897 void cgroup_procs_write_finish(struct task_struct *task)
2898 __releases(&cgroup_threadgroup_rwsem)
2899 {
2900 struct cgroup_subsys *ss;
2901 int ssid;
2902
2903 /* release reference from cgroup_procs_write_start() */
2904 put_task_struct(task);
2905
2906 percpu_up_write(&cgroup_threadgroup_rwsem);
2907 for_each_subsys(ss, ssid)
2908 if (ss->post_attach)
2909 ss->post_attach();
2910 }
2911
2912 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2913 {
2914 struct cgroup_subsys *ss;
2915 bool printed = false;
2916 int ssid;
2917
2918 do_each_subsys_mask(ss, ssid, ss_mask) {
2919 if (printed)
2920 seq_putc(seq, ' ');
2921 seq_puts(seq, ss->name);
2922 printed = true;
2923 } while_each_subsys_mask();
2924 if (printed)
2925 seq_putc(seq, '\n');
2926 }
2927
2928 /* show controllers which are enabled from the parent */
2929 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2930 {
2931 struct cgroup *cgrp = seq_css(seq)->cgroup;
2932
2933 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2934 return 0;
2935 }
2936
2937 /* show controllers which are enabled for a given cgroup's children */
2938 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2939 {
2940 struct cgroup *cgrp = seq_css(seq)->cgroup;
2941
2942 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2943 return 0;
2944 }
2945
2946 /**
2947 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2948 * @cgrp: root of the subtree to update csses for
2949 *
2950 * @cgrp's control masks have changed and its subtree's css associations
2951 * need to be updated accordingly. This function looks up all css_sets
2952 * which are attached to the subtree, creates the matching updated css_sets
2953 * and migrates the tasks to the new ones.
2954 */
2955 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2956 {
2957 DEFINE_CGROUP_MGCTX(mgctx);
2958 struct cgroup_subsys_state *d_css;
2959 struct cgroup *dsct;
2960 struct css_set *src_cset;
2961 int ret;
2962
2963 lockdep_assert_held(&cgroup_mutex);
2964
2965 percpu_down_write(&cgroup_threadgroup_rwsem);
2966
2967 /* look up all csses currently attached to @cgrp's subtree */
2968 spin_lock_irq(&css_set_lock);
2969 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2970 struct cgrp_cset_link *link;
2971
2972 list_for_each_entry(link, &dsct->cset_links, cset_link)
2973 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2974 }
2975 spin_unlock_irq(&css_set_lock);
2976
2977 /* NULL dst indicates self on default hierarchy */
2978 ret = cgroup_migrate_prepare_dst(&mgctx);
2979 if (ret)
2980 goto out_finish;
2981
2982 spin_lock_irq(&css_set_lock);
2983 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2984 struct task_struct *task, *ntask;
2985
2986 /* all tasks in src_csets need to be migrated */
2987 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2988 cgroup_migrate_add_task(task, &mgctx);
2989 }
2990 spin_unlock_irq(&css_set_lock);
2991
2992 ret = cgroup_migrate_execute(&mgctx);
2993 out_finish:
2994 cgroup_migrate_finish(&mgctx);
2995 percpu_up_write(&cgroup_threadgroup_rwsem);
2996 return ret;
2997 }
2998
2999 /**
3000 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3001 * @cgrp: root of the target subtree
3002 *
3003 * Because css offlining is asynchronous, userland may try to re-enable a
3004 * controller while the previous css is still around. This function grabs
3005 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3006 */
3007 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3008 __acquires(&cgroup_mutex)
3009 {
3010 struct cgroup *dsct;
3011 struct cgroup_subsys_state *d_css;
3012 struct cgroup_subsys *ss;
3013 int ssid;
3014
3015 restart:
3016 mutex_lock(&cgroup_mutex);
3017
3018 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3019 for_each_subsys(ss, ssid) {
3020 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3021 DEFINE_WAIT(wait);
3022
3023 if (!css || !percpu_ref_is_dying(&css->refcnt))
3024 continue;
3025
3026 cgroup_get_live(dsct);
3027 prepare_to_wait(&dsct->offline_waitq, &wait,
3028 TASK_UNINTERRUPTIBLE);
3029
3030 mutex_unlock(&cgroup_mutex);
3031 schedule();
3032 finish_wait(&dsct->offline_waitq, &wait);
3033
3034 cgroup_put(dsct);
3035 goto restart;
3036 }
3037 }
3038 }
3039
3040 /**
3041 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3042 * @cgrp: root of the target subtree
3043 *
3044 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3045 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3046 * itself.
3047 */
3048 static void cgroup_save_control(struct cgroup *cgrp)
3049 {
3050 struct cgroup *dsct;
3051 struct cgroup_subsys_state *d_css;
3052
3053 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3054 dsct->old_subtree_control = dsct->subtree_control;
3055 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3056 dsct->old_dom_cgrp = dsct->dom_cgrp;
3057 }
3058 }
3059
3060 /**
3061 * cgroup_propagate_control - refresh control masks of a subtree
3062 * @cgrp: root of the target subtree
3063 *
3064 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3065 * ->subtree_control and propagate controller availability through the
3066 * subtree so that descendants don't have unavailable controllers enabled.
3067 */
3068 static void cgroup_propagate_control(struct cgroup *cgrp)
3069 {
3070 struct cgroup *dsct;
3071 struct cgroup_subsys_state *d_css;
3072
3073 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3074 dsct->subtree_control &= cgroup_control(dsct);
3075 dsct->subtree_ss_mask =
3076 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3077 cgroup_ss_mask(dsct));
3078 }
3079 }
3080
3081 /**
3082 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3083 * @cgrp: root of the target subtree
3084 *
3085 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3086 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3087 * itself.
3088 */
3089 static void cgroup_restore_control(struct cgroup *cgrp)
3090 {
3091 struct cgroup *dsct;
3092 struct cgroup_subsys_state *d_css;
3093
3094 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3095 dsct->subtree_control = dsct->old_subtree_control;
3096 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3097 dsct->dom_cgrp = dsct->old_dom_cgrp;
3098 }
3099 }
3100
3101 static bool css_visible(struct cgroup_subsys_state *css)
3102 {
3103 struct cgroup_subsys *ss = css->ss;
3104 struct cgroup *cgrp = css->cgroup;
3105
3106 if (cgroup_control(cgrp) & (1 << ss->id))
3107 return true;
3108 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3109 return false;
3110 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3111 }
3112
3113 /**
3114 * cgroup_apply_control_enable - enable or show csses according to control
3115 * @cgrp: root of the target subtree
3116 *
3117 * Walk @cgrp's subtree and create new csses or make the existing ones
3118 * visible. A css is created invisible if it's being implicitly enabled
3119 * through dependency. An invisible css is made visible when the userland
3120 * explicitly enables it.
3121 *
3122 * Returns 0 on success, -errno on failure. On failure, csses which have
3123 * been processed already aren't cleaned up. The caller is responsible for
3124 * cleaning up with cgroup_apply_control_disable().
3125 */
3126 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3127 {
3128 struct cgroup *dsct;
3129 struct cgroup_subsys_state *d_css;
3130 struct cgroup_subsys *ss;
3131 int ssid, ret;
3132
3133 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3134 for_each_subsys(ss, ssid) {
3135 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3136
3137 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3138 continue;
3139
3140 if (!css) {
3141 css = css_create(dsct, ss);
3142 if (IS_ERR(css))
3143 return PTR_ERR(css);
3144 }
3145
3146 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3147
3148 if (css_visible(css)) {
3149 ret = css_populate_dir(css);
3150 if (ret)
3151 return ret;
3152 }
3153 }
3154 }
3155
3156 return 0;
3157 }
3158
3159 /**
3160 * cgroup_apply_control_disable - kill or hide csses according to control
3161 * @cgrp: root of the target subtree
3162 *
3163 * Walk @cgrp's subtree and kill and hide csses so that they match
3164 * cgroup_ss_mask() and cgroup_visible_mask().
3165 *
3166 * A css is hidden when the userland requests it to be disabled while other
3167 * subsystems are still depending on it. The css must not actively control
3168 * resources and be in the vanilla state if it's made visible again later.
3169 * Controllers which may be depended upon should provide ->css_reset() for
3170 * this purpose.
3171 */
3172 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3173 {
3174 struct cgroup *dsct;
3175 struct cgroup_subsys_state *d_css;
3176 struct cgroup_subsys *ss;
3177 int ssid;
3178
3179 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3180 for_each_subsys(ss, ssid) {
3181 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3182
3183 if (!css)
3184 continue;
3185
3186 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3187
3188 if (css->parent &&
3189 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3190 kill_css(css);
3191 } else if (!css_visible(css)) {
3192 css_clear_dir(css);
3193 if (ss->css_reset)
3194 ss->css_reset(css);
3195 }
3196 }
3197 }
3198 }
3199
3200 /**
3201 * cgroup_apply_control - apply control mask updates to the subtree
3202 * @cgrp: root of the target subtree
3203 *
3204 * subsystems can be enabled and disabled in a subtree using the following
3205 * steps.
3206 *
3207 * 1. Call cgroup_save_control() to stash the current state.
3208 * 2. Update ->subtree_control masks in the subtree as desired.
3209 * 3. Call cgroup_apply_control() to apply the changes.
3210 * 4. Optionally perform other related operations.
3211 * 5. Call cgroup_finalize_control() to finish up.
3212 *
3213 * This function implements step 3 and propagates the mask changes
3214 * throughout @cgrp's subtree, updates csses accordingly and perform
3215 * process migrations.
3216 */
3217 static int cgroup_apply_control(struct cgroup *cgrp)
3218 {
3219 int ret;
3220
3221 cgroup_propagate_control(cgrp);
3222
3223 ret = cgroup_apply_control_enable(cgrp);
3224 if (ret)
3225 return ret;
3226
3227 /*
3228 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3229 * making the following cgroup_update_dfl_csses() properly update
3230 * css associations of all tasks in the subtree.
3231 */
3232 ret = cgroup_update_dfl_csses(cgrp);
3233 if (ret)
3234 return ret;
3235
3236 return 0;
3237 }
3238
3239 /**
3240 * cgroup_finalize_control - finalize control mask update
3241 * @cgrp: root of the target subtree
3242 * @ret: the result of the update
3243 *
3244 * Finalize control mask update. See cgroup_apply_control() for more info.
3245 */
3246 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3247 {
3248 if (ret) {
3249 cgroup_restore_control(cgrp);
3250 cgroup_propagate_control(cgrp);
3251 }
3252
3253 cgroup_apply_control_disable(cgrp);
3254 }
3255
3256 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3257 {
3258 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3259
3260 /* if nothing is getting enabled, nothing to worry about */
3261 if (!enable)
3262 return 0;
3263
3264 /* can @cgrp host any resources? */
3265 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3266 return -EOPNOTSUPP;
3267
3268 /* mixables don't care */
3269 if (cgroup_is_mixable(cgrp))
3270 return 0;
3271
3272 if (domain_enable) {
3273 /* can't enable domain controllers inside a thread subtree */
3274 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3275 return -EOPNOTSUPP;
3276 } else {
3277 /*
3278 * Threaded controllers can handle internal competitions
3279 * and are always allowed inside a (prospective) thread
3280 * subtree.
3281 */
3282 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3283 return 0;
3284 }
3285
3286 /*
3287 * Controllers can't be enabled for a cgroup with tasks to avoid
3288 * child cgroups competing against tasks.
3289 */
3290 if (cgroup_has_tasks(cgrp))
3291 return -EBUSY;
3292
3293 return 0;
3294 }
3295
3296 /* change the enabled child controllers for a cgroup in the default hierarchy */
3297 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3298 char *buf, size_t nbytes,
3299 loff_t off)
3300 {
3301 u16 enable = 0, disable = 0;
3302 struct cgroup *cgrp, *child;
3303 struct cgroup_subsys *ss;
3304 char *tok;
3305 int ssid, ret;
3306
3307 /*
3308 * Parse input - space separated list of subsystem names prefixed
3309 * with either + or -.
3310 */
3311 buf = strstrip(buf);
3312 while ((tok = strsep(&buf, " "))) {
3313 if (tok[0] == '\0')
3314 continue;
3315 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3316 if (!cgroup_ssid_enabled(ssid) ||
3317 strcmp(tok + 1, ss->name))
3318 continue;
3319
3320 if (*tok == '+') {
3321 enable |= 1 << ssid;
3322 disable &= ~(1 << ssid);
3323 } else if (*tok == '-') {
3324 disable |= 1 << ssid;
3325 enable &= ~(1 << ssid);
3326 } else {
3327 return -EINVAL;
3328 }
3329 break;
3330 } while_each_subsys_mask();
3331 if (ssid == CGROUP_SUBSYS_COUNT)
3332 return -EINVAL;
3333 }
3334
3335 cgrp = cgroup_kn_lock_live(of->kn, true);
3336 if (!cgrp)
3337 return -ENODEV;
3338
3339 for_each_subsys(ss, ssid) {
3340 if (enable & (1 << ssid)) {
3341 if (cgrp->subtree_control & (1 << ssid)) {
3342 enable &= ~(1 << ssid);
3343 continue;
3344 }
3345
3346 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3347 ret = -ENOENT;
3348 goto out_unlock;
3349 }
3350 } else if (disable & (1 << ssid)) {
3351 if (!(cgrp->subtree_control & (1 << ssid))) {
3352 disable &= ~(1 << ssid);
3353 continue;
3354 }
3355
3356 /* a child has it enabled? */
3357 cgroup_for_each_live_child(child, cgrp) {
3358 if (child->subtree_control & (1 << ssid)) {
3359 ret = -EBUSY;
3360 goto out_unlock;
3361 }
3362 }
3363 }
3364 }
3365
3366 if (!enable && !disable) {
3367 ret = 0;
3368 goto out_unlock;
3369 }
3370
3371 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3372 if (ret)
3373 goto out_unlock;
3374
3375 /* save and update control masks and prepare csses */
3376 cgroup_save_control(cgrp);
3377
3378 cgrp->subtree_control |= enable;
3379 cgrp->subtree_control &= ~disable;
3380
3381 ret = cgroup_apply_control(cgrp);
3382 cgroup_finalize_control(cgrp, ret);
3383 if (ret)
3384 goto out_unlock;
3385
3386 kernfs_activate(cgrp->kn);
3387 out_unlock:
3388 cgroup_kn_unlock(of->kn);
3389 return ret ?: nbytes;
3390 }
3391
3392 /**
3393 * cgroup_enable_threaded - make @cgrp threaded
3394 * @cgrp: the target cgroup
3395 *
3396 * Called when "threaded" is written to the cgroup.type interface file and
3397 * tries to make @cgrp threaded and join the parent's resource domain.
3398 * This function is never called on the root cgroup as cgroup.type doesn't
3399 * exist on it.
3400 */
3401 static int cgroup_enable_threaded(struct cgroup *cgrp)
3402 {
3403 struct cgroup *parent = cgroup_parent(cgrp);
3404 struct cgroup *dom_cgrp = parent->dom_cgrp;
3405 struct cgroup *dsct;
3406 struct cgroup_subsys_state *d_css;
3407 int ret;
3408
3409 lockdep_assert_held(&cgroup_mutex);
3410
3411 /* noop if already threaded */
3412 if (cgroup_is_threaded(cgrp))
3413 return 0;
3414
3415 /*
3416 * If @cgroup is populated or has domain controllers enabled, it
3417 * can't be switched. While the below cgroup_can_be_thread_root()
3418 * test can catch the same conditions, that's only when @parent is
3419 * not mixable, so let's check it explicitly.
3420 */
3421 if (cgroup_is_populated(cgrp) ||
3422 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3423 return -EOPNOTSUPP;
3424
3425 /* we're joining the parent's domain, ensure its validity */
3426 if (!cgroup_is_valid_domain(dom_cgrp) ||
3427 !cgroup_can_be_thread_root(dom_cgrp))
3428 return -EOPNOTSUPP;
3429
3430 /*
3431 * The following shouldn't cause actual migrations and should
3432 * always succeed.
3433 */
3434 cgroup_save_control(cgrp);
3435
3436 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3437 if (dsct == cgrp || cgroup_is_threaded(dsct))
3438 dsct->dom_cgrp = dom_cgrp;
3439
3440 ret = cgroup_apply_control(cgrp);
3441 if (!ret)
3442 parent->nr_threaded_children++;
3443
3444 cgroup_finalize_control(cgrp, ret);
3445 return ret;
3446 }
3447
3448 static int cgroup_type_show(struct seq_file *seq, void *v)
3449 {
3450 struct cgroup *cgrp = seq_css(seq)->cgroup;
3451
3452 if (cgroup_is_threaded(cgrp))
3453 seq_puts(seq, "threaded\n");
3454 else if (!cgroup_is_valid_domain(cgrp))
3455 seq_puts(seq, "domain invalid\n");
3456 else if (cgroup_is_thread_root(cgrp))
3457 seq_puts(seq, "domain threaded\n");
3458 else
3459 seq_puts(seq, "domain\n");
3460
3461 return 0;
3462 }
3463
3464 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3465 size_t nbytes, loff_t off)
3466 {
3467 struct cgroup *cgrp;
3468 int ret;
3469
3470 /* only switching to threaded mode is supported */
3471 if (strcmp(strstrip(buf), "threaded"))
3472 return -EINVAL;
3473
3474 /* drain dying csses before we re-apply (threaded) subtree control */
3475 cgrp = cgroup_kn_lock_live(of->kn, true);
3476 if (!cgrp)
3477 return -ENOENT;
3478
3479 /* threaded can only be enabled */
3480 ret = cgroup_enable_threaded(cgrp);
3481
3482 cgroup_kn_unlock(of->kn);
3483 return ret ?: nbytes;
3484 }
3485
3486 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3487 {
3488 struct cgroup *cgrp = seq_css(seq)->cgroup;
3489 int descendants = READ_ONCE(cgrp->max_descendants);
3490
3491 if (descendants == INT_MAX)
3492 seq_puts(seq, "max\n");
3493 else
3494 seq_printf(seq, "%d\n", descendants);
3495
3496 return 0;
3497 }
3498
3499 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3500 char *buf, size_t nbytes, loff_t off)
3501 {
3502 struct cgroup *cgrp;
3503 int descendants;
3504 ssize_t ret;
3505
3506 buf = strstrip(buf);
3507 if (!strcmp(buf, "max")) {
3508 descendants = INT_MAX;
3509 } else {
3510 ret = kstrtoint(buf, 0, &descendants);
3511 if (ret)
3512 return ret;
3513 }
3514
3515 if (descendants < 0)
3516 return -ERANGE;
3517
3518 cgrp = cgroup_kn_lock_live(of->kn, false);
3519 if (!cgrp)
3520 return -ENOENT;
3521
3522 cgrp->max_descendants = descendants;
3523
3524 cgroup_kn_unlock(of->kn);
3525
3526 return nbytes;
3527 }
3528
3529 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3530 {
3531 struct cgroup *cgrp = seq_css(seq)->cgroup;
3532 int depth = READ_ONCE(cgrp->max_depth);
3533
3534 if (depth == INT_MAX)
3535 seq_puts(seq, "max\n");
3536 else
3537 seq_printf(seq, "%d\n", depth);
3538
3539 return 0;
3540 }
3541
3542 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3543 char *buf, size_t nbytes, loff_t off)
3544 {
3545 struct cgroup *cgrp;
3546 ssize_t ret;
3547 int depth;
3548
3549 buf = strstrip(buf);
3550 if (!strcmp(buf, "max")) {
3551 depth = INT_MAX;
3552 } else {
3553 ret = kstrtoint(buf, 0, &depth);
3554 if (ret)
3555 return ret;
3556 }
3557
3558 if (depth < 0)
3559 return -ERANGE;
3560
3561 cgrp = cgroup_kn_lock_live(of->kn, false);
3562 if (!cgrp)
3563 return -ENOENT;
3564
3565 cgrp->max_depth = depth;
3566
3567 cgroup_kn_unlock(of->kn);
3568
3569 return nbytes;
3570 }
3571
3572 static int cgroup_events_show(struct seq_file *seq, void *v)
3573 {
3574 struct cgroup *cgrp = seq_css(seq)->cgroup;
3575
3576 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3577 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3578
3579 return 0;
3580 }
3581
3582 static int cgroup_stat_show(struct seq_file *seq, void *v)
3583 {
3584 struct cgroup *cgroup = seq_css(seq)->cgroup;
3585
3586 seq_printf(seq, "nr_descendants %d\n",
3587 cgroup->nr_descendants);
3588 seq_printf(seq, "nr_dying_descendants %d\n",
3589 cgroup->nr_dying_descendants);
3590
3591 return 0;
3592 }
3593
3594 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3595 struct cgroup *cgrp, int ssid)
3596 {
3597 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3598 struct cgroup_subsys_state *css;
3599 int ret;
3600
3601 if (!ss->css_extra_stat_show)
3602 return 0;
3603
3604 css = cgroup_tryget_css(cgrp, ss);
3605 if (!css)
3606 return 0;
3607
3608 ret = ss->css_extra_stat_show(seq, css);
3609 css_put(css);
3610 return ret;
3611 }
3612
3613 static int cpu_stat_show(struct seq_file *seq, void *v)
3614 {
3615 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3616 int ret = 0;
3617
3618 cgroup_base_stat_cputime_show(seq);
3619 #ifdef CONFIG_CGROUP_SCHED
3620 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3621 #endif
3622 return ret;
3623 }
3624
3625 #ifdef CONFIG_PSI
3626 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3627 {
3628 struct cgroup *cgroup = seq_css(seq)->cgroup;
3629 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3630
3631 return psi_show(seq, psi, PSI_IO);
3632 }
3633 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3634 {
3635 struct cgroup *cgroup = seq_css(seq)->cgroup;
3636 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3637
3638 return psi_show(seq, psi, PSI_MEM);
3639 }
3640 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3641 {
3642 struct cgroup *cgroup = seq_css(seq)->cgroup;
3643 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3644
3645 return psi_show(seq, psi, PSI_CPU);
3646 }
3647
3648 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3649 size_t nbytes, enum psi_res res)
3650 {
3651 struct cgroup_file_ctx *ctx = of->priv;
3652 struct psi_trigger *new;
3653 struct cgroup *cgrp;
3654 struct psi_group *psi;
3655
3656 cgrp = cgroup_kn_lock_live(of->kn, false);
3657 if (!cgrp)
3658 return -ENODEV;
3659
3660 cgroup_get(cgrp);
3661 cgroup_kn_unlock(of->kn);
3662
3663 /* Allow only one trigger per file descriptor */
3664 if (ctx->psi.trigger) {
3665 cgroup_put(cgrp);
3666 return -EBUSY;
3667 }
3668
3669 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3670 new = psi_trigger_create(psi, buf, nbytes, res);
3671 if (IS_ERR(new)) {
3672 cgroup_put(cgrp);
3673 return PTR_ERR(new);
3674 }
3675
3676 smp_store_release(&ctx->psi.trigger, new);
3677 cgroup_put(cgrp);
3678
3679 return nbytes;
3680 }
3681
3682 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3683 char *buf, size_t nbytes,
3684 loff_t off)
3685 {
3686 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3687 }
3688
3689 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3690 char *buf, size_t nbytes,
3691 loff_t off)
3692 {
3693 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3694 }
3695
3696 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3697 char *buf, size_t nbytes,
3698 loff_t off)
3699 {
3700 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3701 }
3702
3703 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3704 poll_table *pt)
3705 {
3706 struct cgroup_file_ctx *ctx = of->priv;
3707 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3708 }
3709
3710 static void cgroup_pressure_release(struct kernfs_open_file *of)
3711 {
3712 struct cgroup_file_ctx *ctx = of->priv;
3713
3714 psi_trigger_destroy(ctx->psi.trigger);
3715 }
3716 #endif /* CONFIG_PSI */
3717
3718 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3719 {
3720 struct cgroup *cgrp = seq_css(seq)->cgroup;
3721
3722 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3723
3724 return 0;
3725 }
3726
3727 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3728 char *buf, size_t nbytes, loff_t off)
3729 {
3730 struct cgroup *cgrp;
3731 ssize_t ret;
3732 int freeze;
3733
3734 ret = kstrtoint(strstrip(buf), 0, &freeze);
3735 if (ret)
3736 return ret;
3737
3738 if (freeze < 0 || freeze > 1)
3739 return -ERANGE;
3740
3741 cgrp = cgroup_kn_lock_live(of->kn, false);
3742 if (!cgrp)
3743 return -ENOENT;
3744
3745 cgroup_freeze(cgrp, freeze);
3746
3747 cgroup_kn_unlock(of->kn);
3748
3749 return nbytes;
3750 }
3751
3752 static int cgroup_file_open(struct kernfs_open_file *of)
3753 {
3754 struct cftype *cft = of->kn->priv;
3755 struct cgroup_file_ctx *ctx;
3756 int ret;
3757
3758 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3759 if (!ctx)
3760 return -ENOMEM;
3761 of->priv = ctx;
3762
3763 if (!cft->open)
3764 return 0;
3765
3766 ret = cft->open(of);
3767 if (ret)
3768 kfree(ctx);
3769 return ret;
3770 }
3771
3772 static void cgroup_file_release(struct kernfs_open_file *of)
3773 {
3774 struct cftype *cft = of->kn->priv;
3775 struct cgroup_file_ctx *ctx = of->priv;
3776
3777 if (cft->release)
3778 cft->release(of);
3779 kfree(ctx);
3780 }
3781
3782 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3783 size_t nbytes, loff_t off)
3784 {
3785 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3786 struct cgroup *cgrp = of->kn->parent->priv;
3787 struct cftype *cft = of->kn->priv;
3788 struct cgroup_subsys_state *css;
3789 int ret;
3790
3791 /*
3792 * If namespaces are delegation boundaries, disallow writes to
3793 * files in an non-init namespace root from inside the namespace
3794 * except for the files explicitly marked delegatable -
3795 * cgroup.procs and cgroup.subtree_control.
3796 */
3797 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3798 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3799 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3800 return -EPERM;
3801
3802 if (cft->write)
3803 return cft->write(of, buf, nbytes, off);
3804
3805 /*
3806 * kernfs guarantees that a file isn't deleted with operations in
3807 * flight, which means that the matching css is and stays alive and
3808 * doesn't need to be pinned. The RCU locking is not necessary
3809 * either. It's just for the convenience of using cgroup_css().
3810 */
3811 rcu_read_lock();
3812 css = cgroup_css(cgrp, cft->ss);
3813 rcu_read_unlock();
3814
3815 if (cft->write_u64) {
3816 unsigned long long v;
3817 ret = kstrtoull(buf, 0, &v);
3818 if (!ret)
3819 ret = cft->write_u64(css, cft, v);
3820 } else if (cft->write_s64) {
3821 long long v;
3822 ret = kstrtoll(buf, 0, &v);
3823 if (!ret)
3824 ret = cft->write_s64(css, cft, v);
3825 } else {
3826 ret = -EINVAL;
3827 }
3828
3829 return ret ?: nbytes;
3830 }
3831
3832 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3833 {
3834 struct cftype *cft = of->kn->priv;
3835
3836 if (cft->poll)
3837 return cft->poll(of, pt);
3838
3839 return kernfs_generic_poll(of, pt);
3840 }
3841
3842 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3843 {
3844 return seq_cft(seq)->seq_start(seq, ppos);
3845 }
3846
3847 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3848 {
3849 return seq_cft(seq)->seq_next(seq, v, ppos);
3850 }
3851
3852 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3853 {
3854 if (seq_cft(seq)->seq_stop)
3855 seq_cft(seq)->seq_stop(seq, v);
3856 }
3857
3858 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3859 {
3860 struct cftype *cft = seq_cft(m);
3861 struct cgroup_subsys_state *css = seq_css(m);
3862
3863 if (cft->seq_show)
3864 return cft->seq_show(m, arg);
3865
3866 if (cft->read_u64)
3867 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3868 else if (cft->read_s64)
3869 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3870 else
3871 return -EINVAL;
3872 return 0;
3873 }
3874
3875 static struct kernfs_ops cgroup_kf_single_ops = {
3876 .atomic_write_len = PAGE_SIZE,
3877 .open = cgroup_file_open,
3878 .release = cgroup_file_release,
3879 .write = cgroup_file_write,
3880 .poll = cgroup_file_poll,
3881 .seq_show = cgroup_seqfile_show,
3882 };
3883
3884 static struct kernfs_ops cgroup_kf_ops = {
3885 .atomic_write_len = PAGE_SIZE,
3886 .open = cgroup_file_open,
3887 .release = cgroup_file_release,
3888 .write = cgroup_file_write,
3889 .poll = cgroup_file_poll,
3890 .seq_start = cgroup_seqfile_start,
3891 .seq_next = cgroup_seqfile_next,
3892 .seq_stop = cgroup_seqfile_stop,
3893 .seq_show = cgroup_seqfile_show,
3894 };
3895
3896 /* set uid and gid of cgroup dirs and files to that of the creator */
3897 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3898 {
3899 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3900 .ia_uid = current_fsuid(),
3901 .ia_gid = current_fsgid(), };
3902
3903 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3904 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3905 return 0;
3906
3907 return kernfs_setattr(kn, &iattr);
3908 }
3909
3910 static void cgroup_file_notify_timer(struct timer_list *timer)
3911 {
3912 cgroup_file_notify(container_of(timer, struct cgroup_file,
3913 notify_timer));
3914 }
3915
3916 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3917 struct cftype *cft)
3918 {
3919 char name[CGROUP_FILE_NAME_MAX];
3920 struct kernfs_node *kn;
3921 struct lock_class_key *key = NULL;
3922 int ret;
3923
3924 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3925 key = &cft->lockdep_key;
3926 #endif
3927 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3928 cgroup_file_mode(cft),
3929 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3930 0, cft->kf_ops, cft,
3931 NULL, key);
3932 if (IS_ERR(kn))
3933 return PTR_ERR(kn);
3934
3935 ret = cgroup_kn_set_ugid(kn);
3936 if (ret) {
3937 kernfs_remove(kn);
3938 return ret;
3939 }
3940
3941 if (cft->file_offset) {
3942 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3943
3944 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3945
3946 spin_lock_irq(&cgroup_file_kn_lock);
3947 cfile->kn = kn;
3948 spin_unlock_irq(&cgroup_file_kn_lock);
3949 }
3950
3951 return 0;
3952 }
3953
3954 /**
3955 * cgroup_addrm_files - add or remove files to a cgroup directory
3956 * @css: the target css
3957 * @cgrp: the target cgroup (usually css->cgroup)
3958 * @cfts: array of cftypes to be added
3959 * @is_add: whether to add or remove
3960 *
3961 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3962 * For removals, this function never fails.
3963 */
3964 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3965 struct cgroup *cgrp, struct cftype cfts[],
3966 bool is_add)
3967 {
3968 struct cftype *cft, *cft_end = NULL;
3969 int ret = 0;
3970
3971 lockdep_assert_held(&cgroup_mutex);
3972
3973 restart:
3974 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3975 /* does cft->flags tell us to skip this file on @cgrp? */
3976 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3977 continue;
3978 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3979 continue;
3980 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3981 continue;
3982 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3983 continue;
3984 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3985 continue;
3986 if (is_add) {
3987 ret = cgroup_add_file(css, cgrp, cft);
3988 if (ret) {
3989 pr_warn("%s: failed to add %s, err=%d\n",
3990 __func__, cft->name, ret);
3991 cft_end = cft;
3992 is_add = false;
3993 goto restart;
3994 }
3995 } else {
3996 cgroup_rm_file(cgrp, cft);
3997 }
3998 }
3999 return ret;
4000 }
4001
4002 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4003 {
4004 struct cgroup_subsys *ss = cfts[0].ss;
4005 struct cgroup *root = &ss->root->cgrp;
4006 struct cgroup_subsys_state *css;
4007 int ret = 0;
4008
4009 lockdep_assert_held(&cgroup_mutex);
4010
4011 /* add/rm files for all cgroups created before */
4012 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4013 struct cgroup *cgrp = css->cgroup;
4014
4015 if (!(css->flags & CSS_VISIBLE))
4016 continue;
4017
4018 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4019 if (ret)
4020 break;
4021 }
4022
4023 if (is_add && !ret)
4024 kernfs_activate(root->kn);
4025 return ret;
4026 }
4027
4028 static void cgroup_exit_cftypes(struct cftype *cfts)
4029 {
4030 struct cftype *cft;
4031
4032 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4033 /* free copy for custom atomic_write_len, see init_cftypes() */
4034 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4035 kfree(cft->kf_ops);
4036 cft->kf_ops = NULL;
4037 cft->ss = NULL;
4038
4039 /* revert flags set by cgroup core while adding @cfts */
4040 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4041 }
4042 }
4043
4044 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4045 {
4046 struct cftype *cft;
4047
4048 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4049 struct kernfs_ops *kf_ops;
4050
4051 WARN_ON(cft->ss || cft->kf_ops);
4052
4053 if (cft->seq_start)
4054 kf_ops = &cgroup_kf_ops;
4055 else
4056 kf_ops = &cgroup_kf_single_ops;
4057
4058 /*
4059 * Ugh... if @cft wants a custom max_write_len, we need to
4060 * make a copy of kf_ops to set its atomic_write_len.
4061 */
4062 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4063 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4064 if (!kf_ops) {
4065 cgroup_exit_cftypes(cfts);
4066 return -ENOMEM;
4067 }
4068 kf_ops->atomic_write_len = cft->max_write_len;
4069 }
4070
4071 cft->kf_ops = kf_ops;
4072 cft->ss = ss;
4073 }
4074
4075 return 0;
4076 }
4077
4078 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4079 {
4080 lockdep_assert_held(&cgroup_mutex);
4081
4082 if (!cfts || !cfts[0].ss)
4083 return -ENOENT;
4084
4085 list_del(&cfts->node);
4086 cgroup_apply_cftypes(cfts, false);
4087 cgroup_exit_cftypes(cfts);
4088 return 0;
4089 }
4090
4091 /**
4092 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4093 * @cfts: zero-length name terminated array of cftypes
4094 *
4095 * Unregister @cfts. Files described by @cfts are removed from all
4096 * existing cgroups and all future cgroups won't have them either. This
4097 * function can be called anytime whether @cfts' subsys is attached or not.
4098 *
4099 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4100 * registered.
4101 */
4102 int cgroup_rm_cftypes(struct cftype *cfts)
4103 {
4104 int ret;
4105
4106 mutex_lock(&cgroup_mutex);
4107 ret = cgroup_rm_cftypes_locked(cfts);
4108 mutex_unlock(&cgroup_mutex);
4109 return ret;
4110 }
4111
4112 /**
4113 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4114 * @ss: target cgroup subsystem
4115 * @cfts: zero-length name terminated array of cftypes
4116 *
4117 * Register @cfts to @ss. Files described by @cfts are created for all
4118 * existing cgroups to which @ss is attached and all future cgroups will
4119 * have them too. This function can be called anytime whether @ss is
4120 * attached or not.
4121 *
4122 * Returns 0 on successful registration, -errno on failure. Note that this
4123 * function currently returns 0 as long as @cfts registration is successful
4124 * even if some file creation attempts on existing cgroups fail.
4125 */
4126 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4127 {
4128 int ret;
4129
4130 if (!cgroup_ssid_enabled(ss->id))
4131 return 0;
4132
4133 if (!cfts || cfts[0].name[0] == '\0')
4134 return 0;
4135
4136 ret = cgroup_init_cftypes(ss, cfts);
4137 if (ret)
4138 return ret;
4139
4140 mutex_lock(&cgroup_mutex);
4141
4142 list_add_tail(&cfts->node, &ss->cfts);
4143 ret = cgroup_apply_cftypes(cfts, true);
4144 if (ret)
4145 cgroup_rm_cftypes_locked(cfts);
4146
4147 mutex_unlock(&cgroup_mutex);
4148 return ret;
4149 }
4150
4151 /**
4152 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4153 * @ss: target cgroup subsystem
4154 * @cfts: zero-length name terminated array of cftypes
4155 *
4156 * Similar to cgroup_add_cftypes() but the added files are only used for
4157 * the default hierarchy.
4158 */
4159 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4160 {
4161 struct cftype *cft;
4162
4163 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4164 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4165 return cgroup_add_cftypes(ss, cfts);
4166 }
4167
4168 /**
4169 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4170 * @ss: target cgroup subsystem
4171 * @cfts: zero-length name terminated array of cftypes
4172 *
4173 * Similar to cgroup_add_cftypes() but the added files are only used for
4174 * the legacy hierarchies.
4175 */
4176 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4177 {
4178 struct cftype *cft;
4179
4180 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4181 cft->flags |= __CFTYPE_NOT_ON_DFL;
4182 return cgroup_add_cftypes(ss, cfts);
4183 }
4184
4185 /**
4186 * cgroup_file_notify - generate a file modified event for a cgroup_file
4187 * @cfile: target cgroup_file
4188 *
4189 * @cfile must have been obtained by setting cftype->file_offset.
4190 */
4191 void cgroup_file_notify(struct cgroup_file *cfile)
4192 {
4193 unsigned long flags;
4194
4195 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4196 if (cfile->kn) {
4197 unsigned long last = cfile->notified_at;
4198 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4199
4200 if (time_in_range(jiffies, last, next)) {
4201 timer_reduce(&cfile->notify_timer, next);
4202 } else {
4203 kernfs_notify(cfile->kn);
4204 cfile->notified_at = jiffies;
4205 }
4206 }
4207 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4208 }
4209
4210 /**
4211 * css_next_child - find the next child of a given css
4212 * @pos: the current position (%NULL to initiate traversal)
4213 * @parent: css whose children to walk
4214 *
4215 * This function returns the next child of @parent and should be called
4216 * under either cgroup_mutex or RCU read lock. The only requirement is
4217 * that @parent and @pos are accessible. The next sibling is guaranteed to
4218 * be returned regardless of their states.
4219 *
4220 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4221 * css which finished ->css_online() is guaranteed to be visible in the
4222 * future iterations and will stay visible until the last reference is put.
4223 * A css which hasn't finished ->css_online() or already finished
4224 * ->css_offline() may show up during traversal. It's each subsystem's
4225 * responsibility to synchronize against on/offlining.
4226 */
4227 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4228 struct cgroup_subsys_state *parent)
4229 {
4230 struct cgroup_subsys_state *next;
4231
4232 cgroup_assert_mutex_or_rcu_locked();
4233
4234 /*
4235 * @pos could already have been unlinked from the sibling list.
4236 * Once a cgroup is removed, its ->sibling.next is no longer
4237 * updated when its next sibling changes. CSS_RELEASED is set when
4238 * @pos is taken off list, at which time its next pointer is valid,
4239 * and, as releases are serialized, the one pointed to by the next
4240 * pointer is guaranteed to not have started release yet. This
4241 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4242 * critical section, the one pointed to by its next pointer is
4243 * guaranteed to not have finished its RCU grace period even if we
4244 * have dropped rcu_read_lock() inbetween iterations.
4245 *
4246 * If @pos has CSS_RELEASED set, its next pointer can't be
4247 * dereferenced; however, as each css is given a monotonically
4248 * increasing unique serial number and always appended to the
4249 * sibling list, the next one can be found by walking the parent's
4250 * children until the first css with higher serial number than
4251 * @pos's. While this path can be slower, it happens iff iteration
4252 * races against release and the race window is very small.
4253 */
4254 if (!pos) {
4255 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4256 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4257 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4258 } else {
4259 list_for_each_entry_rcu(next, &parent->children, sibling)
4260 if (next->serial_nr > pos->serial_nr)
4261 break;
4262 }
4263
4264 /*
4265 * @next, if not pointing to the head, can be dereferenced and is
4266 * the next sibling.
4267 */
4268 if (&next->sibling != &parent->children)
4269 return next;
4270 return NULL;
4271 }
4272
4273 /**
4274 * css_next_descendant_pre - find the next descendant for pre-order walk
4275 * @pos: the current position (%NULL to initiate traversal)
4276 * @root: css whose descendants to walk
4277 *
4278 * To be used by css_for_each_descendant_pre(). Find the next descendant
4279 * to visit for pre-order traversal of @root's descendants. @root is
4280 * included in the iteration and the first node to be visited.
4281 *
4282 * While this function requires cgroup_mutex or RCU read locking, it
4283 * doesn't require the whole traversal to be contained in a single critical
4284 * section. This function will return the correct next descendant as long
4285 * as both @pos and @root are accessible and @pos is a descendant of @root.
4286 *
4287 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4288 * css which finished ->css_online() is guaranteed to be visible in the
4289 * future iterations and will stay visible until the last reference is put.
4290 * A css which hasn't finished ->css_online() or already finished
4291 * ->css_offline() may show up during traversal. It's each subsystem's
4292 * responsibility to synchronize against on/offlining.
4293 */
4294 struct cgroup_subsys_state *
4295 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4296 struct cgroup_subsys_state *root)
4297 {
4298 struct cgroup_subsys_state *next;
4299
4300 cgroup_assert_mutex_or_rcu_locked();
4301
4302 /* if first iteration, visit @root */
4303 if (!pos)
4304 return root;
4305
4306 /* visit the first child if exists */
4307 next = css_next_child(NULL, pos);
4308 if (next)
4309 return next;
4310
4311 /* no child, visit my or the closest ancestor's next sibling */
4312 while (pos != root) {
4313 next = css_next_child(pos, pos->parent);
4314 if (next)
4315 return next;
4316 pos = pos->parent;
4317 }
4318
4319 return NULL;
4320 }
4321 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4322
4323 /**
4324 * css_rightmost_descendant - return the rightmost descendant of a css
4325 * @pos: css of interest
4326 *
4327 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4328 * is returned. This can be used during pre-order traversal to skip
4329 * subtree of @pos.
4330 *
4331 * While this function requires cgroup_mutex or RCU read locking, it
4332 * doesn't require the whole traversal to be contained in a single critical
4333 * section. This function will return the correct rightmost descendant as
4334 * long as @pos is accessible.
4335 */
4336 struct cgroup_subsys_state *
4337 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4338 {
4339 struct cgroup_subsys_state *last, *tmp;
4340
4341 cgroup_assert_mutex_or_rcu_locked();
4342
4343 do {
4344 last = pos;
4345 /* ->prev isn't RCU safe, walk ->next till the end */
4346 pos = NULL;
4347 css_for_each_child(tmp, last)
4348 pos = tmp;
4349 } while (pos);
4350
4351 return last;
4352 }
4353
4354 static struct cgroup_subsys_state *
4355 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4356 {
4357 struct cgroup_subsys_state *last;
4358
4359 do {
4360 last = pos;
4361 pos = css_next_child(NULL, pos);
4362 } while (pos);
4363
4364 return last;
4365 }
4366
4367 /**
4368 * css_next_descendant_post - find the next descendant for post-order walk
4369 * @pos: the current position (%NULL to initiate traversal)
4370 * @root: css whose descendants to walk
4371 *
4372 * To be used by css_for_each_descendant_post(). Find the next descendant
4373 * to visit for post-order traversal of @root's descendants. @root is
4374 * included in the iteration and the last node to be visited.
4375 *
4376 * While this function requires cgroup_mutex or RCU read locking, it
4377 * doesn't require the whole traversal to be contained in a single critical
4378 * section. This function will return the correct next descendant as long
4379 * as both @pos and @cgroup are accessible and @pos is a descendant of
4380 * @cgroup.
4381 *
4382 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4383 * css which finished ->css_online() is guaranteed to be visible in the
4384 * future iterations and will stay visible until the last reference is put.
4385 * A css which hasn't finished ->css_online() or already finished
4386 * ->css_offline() may show up during traversal. It's each subsystem's
4387 * responsibility to synchronize against on/offlining.
4388 */
4389 struct cgroup_subsys_state *
4390 css_next_descendant_post(struct cgroup_subsys_state *pos,
4391 struct cgroup_subsys_state *root)
4392 {
4393 struct cgroup_subsys_state *next;
4394
4395 cgroup_assert_mutex_or_rcu_locked();
4396
4397 /* if first iteration, visit leftmost descendant which may be @root */
4398 if (!pos)
4399 return css_leftmost_descendant(root);
4400
4401 /* if we visited @root, we're done */
4402 if (pos == root)
4403 return NULL;
4404
4405 /* if there's an unvisited sibling, visit its leftmost descendant */
4406 next = css_next_child(pos, pos->parent);
4407 if (next)
4408 return css_leftmost_descendant(next);
4409
4410 /* no sibling left, visit parent */
4411 return pos->parent;
4412 }
4413
4414 /**
4415 * css_has_online_children - does a css have online children
4416 * @css: the target css
4417 *
4418 * Returns %true if @css has any online children; otherwise, %false. This
4419 * function can be called from any context but the caller is responsible
4420 * for synchronizing against on/offlining as necessary.
4421 */
4422 bool css_has_online_children(struct cgroup_subsys_state *css)
4423 {
4424 struct cgroup_subsys_state *child;
4425 bool ret = false;
4426
4427 rcu_read_lock();
4428 css_for_each_child(child, css) {
4429 if (child->flags & CSS_ONLINE) {
4430 ret = true;
4431 break;
4432 }
4433 }
4434 rcu_read_unlock();
4435 return ret;
4436 }
4437
4438 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4439 {
4440 struct list_head *l;
4441 struct cgrp_cset_link *link;
4442 struct css_set *cset;
4443
4444 lockdep_assert_held(&css_set_lock);
4445
4446 /* find the next threaded cset */
4447 if (it->tcset_pos) {
4448 l = it->tcset_pos->next;
4449
4450 if (l != it->tcset_head) {
4451 it->tcset_pos = l;
4452 return container_of(l, struct css_set,
4453 threaded_csets_node);
4454 }
4455
4456 it->tcset_pos = NULL;
4457 }
4458
4459 /* find the next cset */
4460 l = it->cset_pos;
4461 l = l->next;
4462 if (l == it->cset_head) {
4463 it->cset_pos = NULL;
4464 return NULL;
4465 }
4466
4467 if (it->ss) {
4468 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4469 } else {
4470 link = list_entry(l, struct cgrp_cset_link, cset_link);
4471 cset = link->cset;
4472 }
4473
4474 it->cset_pos = l;
4475
4476 /* initialize threaded css_set walking */
4477 if (it->flags & CSS_TASK_ITER_THREADED) {
4478 if (it->cur_dcset)
4479 put_css_set_locked(it->cur_dcset);
4480 it->cur_dcset = cset;
4481 get_css_set(cset);
4482
4483 it->tcset_head = &cset->threaded_csets;
4484 it->tcset_pos = &cset->threaded_csets;
4485 }
4486
4487 return cset;
4488 }
4489
4490 /**
4491 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4492 * @it: the iterator to advance
4493 *
4494 * Advance @it to the next css_set to walk.
4495 */
4496 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4497 {
4498 struct css_set *cset;
4499
4500 lockdep_assert_held(&css_set_lock);
4501
4502 /* Advance to the next non-empty css_set */
4503 do {
4504 cset = css_task_iter_next_css_set(it);
4505 if (!cset) {
4506 it->task_pos = NULL;
4507 return;
4508 }
4509 } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4510
4511 if (!list_empty(&cset->tasks)) {
4512 it->task_pos = cset->tasks.next;
4513 it->cur_tasks_head = &cset->tasks;
4514 } else if (!list_empty(&cset->mg_tasks)) {
4515 it->task_pos = cset->mg_tasks.next;
4516 it->cur_tasks_head = &cset->mg_tasks;
4517 } else {
4518 it->task_pos = cset->dying_tasks.next;
4519 it->cur_tasks_head = &cset->dying_tasks;
4520 }
4521
4522 it->tasks_head = &cset->tasks;
4523 it->mg_tasks_head = &cset->mg_tasks;
4524 it->dying_tasks_head = &cset->dying_tasks;
4525
4526 /*
4527 * We don't keep css_sets locked across iteration steps and thus
4528 * need to take steps to ensure that iteration can be resumed after
4529 * the lock is re-acquired. Iteration is performed at two levels -
4530 * css_sets and tasks in them.
4531 *
4532 * Once created, a css_set never leaves its cgroup lists, so a
4533 * pinned css_set is guaranteed to stay put and we can resume
4534 * iteration afterwards.
4535 *
4536 * Tasks may leave @cset across iteration steps. This is resolved
4537 * by registering each iterator with the css_set currently being
4538 * walked and making css_set_move_task() advance iterators whose
4539 * next task is leaving.
4540 */
4541 if (it->cur_cset) {
4542 list_del(&it->iters_node);
4543 put_css_set_locked(it->cur_cset);
4544 }
4545 get_css_set(cset);
4546 it->cur_cset = cset;
4547 list_add(&it->iters_node, &cset->task_iters);
4548 }
4549
4550 static void css_task_iter_skip(struct css_task_iter *it,
4551 struct task_struct *task)
4552 {
4553 lockdep_assert_held(&css_set_lock);
4554
4555 if (it->task_pos == &task->cg_list) {
4556 it->task_pos = it->task_pos->next;
4557 it->flags |= CSS_TASK_ITER_SKIPPED;
4558 }
4559 }
4560
4561 static void css_task_iter_advance(struct css_task_iter *it)
4562 {
4563 struct task_struct *task;
4564
4565 lockdep_assert_held(&css_set_lock);
4566 repeat:
4567 if (it->task_pos) {
4568 /*
4569 * Advance iterator to find next entry. cset->tasks is
4570 * consumed first and then ->mg_tasks. After ->mg_tasks,
4571 * we move onto the next cset.
4572 */
4573 if (it->flags & CSS_TASK_ITER_SKIPPED)
4574 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4575 else
4576 it->task_pos = it->task_pos->next;
4577
4578 if (it->task_pos == it->tasks_head) {
4579 it->task_pos = it->mg_tasks_head->next;
4580 it->cur_tasks_head = it->mg_tasks_head;
4581 }
4582 if (it->task_pos == it->mg_tasks_head) {
4583 it->task_pos = it->dying_tasks_head->next;
4584 it->cur_tasks_head = it->dying_tasks_head;
4585 }
4586 if (it->task_pos == it->dying_tasks_head)
4587 css_task_iter_advance_css_set(it);
4588 } else {
4589 /* called from start, proceed to the first cset */
4590 css_task_iter_advance_css_set(it);
4591 }
4592
4593 if (!it->task_pos)
4594 return;
4595
4596 task = list_entry(it->task_pos, struct task_struct, cg_list);
4597
4598 if (it->flags & CSS_TASK_ITER_PROCS) {
4599 /* if PROCS, skip over tasks which aren't group leaders */
4600 if (!thread_group_leader(task))
4601 goto repeat;
4602
4603 /* and dying leaders w/o live member threads */
4604 if (it->cur_tasks_head == it->dying_tasks_head &&
4605 !atomic_read(&task->signal->live))
4606 goto repeat;
4607 } else {
4608 /* skip all dying ones */
4609 if (it->cur_tasks_head == it->dying_tasks_head)
4610 goto repeat;
4611 }
4612 }
4613
4614 /**
4615 * css_task_iter_start - initiate task iteration
4616 * @css: the css to walk tasks of
4617 * @flags: CSS_TASK_ITER_* flags
4618 * @it: the task iterator to use
4619 *
4620 * Initiate iteration through the tasks of @css. The caller can call
4621 * css_task_iter_next() to walk through the tasks until the function
4622 * returns NULL. On completion of iteration, css_task_iter_end() must be
4623 * called.
4624 */
4625 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4626 struct css_task_iter *it)
4627 {
4628 /* no one should try to iterate before mounting cgroups */
4629 WARN_ON_ONCE(!use_task_css_set_links);
4630
4631 memset(it, 0, sizeof(*it));
4632
4633 spin_lock_irq(&css_set_lock);
4634
4635 it->ss = css->ss;
4636 it->flags = flags;
4637
4638 if (it->ss)
4639 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4640 else
4641 it->cset_pos = &css->cgroup->cset_links;
4642
4643 it->cset_head = it->cset_pos;
4644
4645 css_task_iter_advance(it);
4646
4647 spin_unlock_irq(&css_set_lock);
4648 }
4649
4650 /**
4651 * css_task_iter_next - return the next task for the iterator
4652 * @it: the task iterator being iterated
4653 *
4654 * The "next" function for task iteration. @it should have been
4655 * initialized via css_task_iter_start(). Returns NULL when the iteration
4656 * reaches the end.
4657 */
4658 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4659 {
4660 if (it->cur_task) {
4661 put_task_struct(it->cur_task);
4662 it->cur_task = NULL;
4663 }
4664
4665 spin_lock_irq(&css_set_lock);
4666
4667 /* @it may be half-advanced by skips, finish advancing */
4668 if (it->flags & CSS_TASK_ITER_SKIPPED)
4669 css_task_iter_advance(it);
4670
4671 if (it->task_pos) {
4672 it->cur_task = list_entry(it->task_pos, struct task_struct,
4673 cg_list);
4674 get_task_struct(it->cur_task);
4675 css_task_iter_advance(it);
4676 }
4677
4678 spin_unlock_irq(&css_set_lock);
4679
4680 return it->cur_task;
4681 }
4682
4683 /**
4684 * css_task_iter_end - finish task iteration
4685 * @it: the task iterator to finish
4686 *
4687 * Finish task iteration started by css_task_iter_start().
4688 */
4689 void css_task_iter_end(struct css_task_iter *it)
4690 {
4691 if (it->cur_cset) {
4692 spin_lock_irq(&css_set_lock);
4693 list_del(&it->iters_node);
4694 put_css_set_locked(it->cur_cset);
4695 spin_unlock_irq(&css_set_lock);
4696 }
4697
4698 if (it->cur_dcset)
4699 put_css_set(it->cur_dcset);
4700
4701 if (it->cur_task)
4702 put_task_struct(it->cur_task);
4703 }
4704
4705 static void cgroup_procs_release(struct kernfs_open_file *of)
4706 {
4707 struct cgroup_file_ctx *ctx = of->priv;
4708
4709 if (ctx->procs.started)
4710 css_task_iter_end(&ctx->procs.iter);
4711 }
4712
4713 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4714 {
4715 struct kernfs_open_file *of = s->private;
4716 struct cgroup_file_ctx *ctx = of->priv;
4717
4718 if (pos)
4719 (*pos)++;
4720
4721 return css_task_iter_next(&ctx->procs.iter);
4722 }
4723
4724 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4725 unsigned int iter_flags)
4726 {
4727 struct kernfs_open_file *of = s->private;
4728 struct cgroup *cgrp = seq_css(s)->cgroup;
4729 struct cgroup_file_ctx *ctx = of->priv;
4730 struct css_task_iter *it = &ctx->procs.iter;
4731
4732 /*
4733 * When a seq_file is seeked, it's always traversed sequentially
4734 * from position 0, so we can simply keep iterating on !0 *pos.
4735 */
4736 if (!ctx->procs.started) {
4737 if (WARN_ON_ONCE((*pos)))
4738 return ERR_PTR(-EINVAL);
4739 css_task_iter_start(&cgrp->self, iter_flags, it);
4740 ctx->procs.started = true;
4741 } else if (!(*pos)) {
4742 css_task_iter_end(it);
4743 css_task_iter_start(&cgrp->self, iter_flags, it);
4744 } else
4745 return it->cur_task;
4746
4747 return cgroup_procs_next(s, NULL, NULL);
4748 }
4749
4750 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4751 {
4752 struct cgroup *cgrp = seq_css(s)->cgroup;
4753
4754 /*
4755 * All processes of a threaded subtree belong to the domain cgroup
4756 * of the subtree. Only threads can be distributed across the
4757 * subtree. Reject reads on cgroup.procs in the subtree proper.
4758 * They're always empty anyway.
4759 */
4760 if (cgroup_is_threaded(cgrp))
4761 return ERR_PTR(-EOPNOTSUPP);
4762
4763 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4764 CSS_TASK_ITER_THREADED);
4765 }
4766
4767 static int cgroup_procs_show(struct seq_file *s, void *v)
4768 {
4769 seq_printf(s, "%d\n", task_pid_vnr(v));
4770 return 0;
4771 }
4772
4773 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4774 struct cgroup *dst_cgrp,
4775 struct super_block *sb)
4776 {
4777 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4778 struct cgroup *com_cgrp = src_cgrp;
4779 struct inode *inode;
4780 int ret;
4781
4782 lockdep_assert_held(&cgroup_mutex);
4783
4784 /* find the common ancestor */
4785 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4786 com_cgrp = cgroup_parent(com_cgrp);
4787
4788 /* %current should be authorized to migrate to the common ancestor */
4789 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4790 if (!inode)
4791 return -ENOMEM;
4792
4793 ret = inode_permission(inode, MAY_WRITE);
4794 iput(inode);
4795 if (ret)
4796 return ret;
4797
4798 /*
4799 * If namespaces are delegation boundaries, %current must be able
4800 * to see both source and destination cgroups from its namespace.
4801 */
4802 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4803 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4804 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4805 return -ENOENT;
4806
4807 return 0;
4808 }
4809
4810 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4811 char *buf, size_t nbytes, loff_t off)
4812 {
4813 struct cgroup *src_cgrp, *dst_cgrp;
4814 struct task_struct *task;
4815 const struct cred *saved_cred;
4816 ssize_t ret;
4817
4818 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4819 if (!dst_cgrp)
4820 return -ENODEV;
4821
4822 task = cgroup_procs_write_start(buf, true);
4823 ret = PTR_ERR_OR_ZERO(task);
4824 if (ret)
4825 goto out_unlock;
4826
4827 /* find the source cgroup */
4828 spin_lock_irq(&css_set_lock);
4829 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4830 spin_unlock_irq(&css_set_lock);
4831
4832 /*
4833 * Process and thread migrations follow same delegation rule. Check
4834 * permissions using the credentials from file open to protect against
4835 * inherited fd attacks.
4836 */
4837 saved_cred = override_creds(of->file->f_cred);
4838 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4839 of->file->f_path.dentry->d_sb);
4840 revert_creds(saved_cred);
4841 if (ret)
4842 goto out_finish;
4843
4844 ret = cgroup_attach_task(dst_cgrp, task, true);
4845
4846 out_finish:
4847 cgroup_procs_write_finish(task);
4848 out_unlock:
4849 cgroup_kn_unlock(of->kn);
4850
4851 return ret ?: nbytes;
4852 }
4853
4854 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4855 {
4856 return __cgroup_procs_start(s, pos, 0);
4857 }
4858
4859 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4860 char *buf, size_t nbytes, loff_t off)
4861 {
4862 struct cgroup *src_cgrp, *dst_cgrp;
4863 struct task_struct *task;
4864 const struct cred *saved_cred;
4865 ssize_t ret;
4866
4867 buf = strstrip(buf);
4868
4869 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4870 if (!dst_cgrp)
4871 return -ENODEV;
4872
4873 task = cgroup_procs_write_start(buf, false);
4874 ret = PTR_ERR_OR_ZERO(task);
4875 if (ret)
4876 goto out_unlock;
4877
4878 /* find the source cgroup */
4879 spin_lock_irq(&css_set_lock);
4880 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4881 spin_unlock_irq(&css_set_lock);
4882
4883 /*
4884 * Process and thread migrations follow same delegation rule. Check
4885 * permissions using the credentials from file open to protect against
4886 * inherited fd attacks.
4887 */
4888 saved_cred = override_creds(of->file->f_cred);
4889 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4890 of->file->f_path.dentry->d_sb);
4891 revert_creds(saved_cred);
4892 if (ret)
4893 goto out_finish;
4894
4895 /* and must be contained in the same domain */
4896 ret = -EOPNOTSUPP;
4897 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4898 goto out_finish;
4899
4900 ret = cgroup_attach_task(dst_cgrp, task, false);
4901
4902 out_finish:
4903 cgroup_procs_write_finish(task);
4904 out_unlock:
4905 cgroup_kn_unlock(of->kn);
4906
4907 return ret ?: nbytes;
4908 }
4909
4910 /* cgroup core interface files for the default hierarchy */
4911 static struct cftype cgroup_base_files[] = {
4912 {
4913 .name = "cgroup.type",
4914 .flags = CFTYPE_NOT_ON_ROOT,
4915 .seq_show = cgroup_type_show,
4916 .write = cgroup_type_write,
4917 },
4918 {
4919 .name = "cgroup.procs",
4920 .flags = CFTYPE_NS_DELEGATABLE,
4921 .file_offset = offsetof(struct cgroup, procs_file),
4922 .release = cgroup_procs_release,
4923 .seq_start = cgroup_procs_start,
4924 .seq_next = cgroup_procs_next,
4925 .seq_show = cgroup_procs_show,
4926 .write = cgroup_procs_write,
4927 },
4928 {
4929 .name = "cgroup.threads",
4930 .flags = CFTYPE_NS_DELEGATABLE,
4931 .release = cgroup_procs_release,
4932 .seq_start = cgroup_threads_start,
4933 .seq_next = cgroup_procs_next,
4934 .seq_show = cgroup_procs_show,
4935 .write = cgroup_threads_write,
4936 },
4937 {
4938 .name = "cgroup.controllers",
4939 .seq_show = cgroup_controllers_show,
4940 },
4941 {
4942 .name = "cgroup.subtree_control",
4943 .flags = CFTYPE_NS_DELEGATABLE,
4944 .seq_show = cgroup_subtree_control_show,
4945 .write = cgroup_subtree_control_write,
4946 },
4947 {
4948 .name = "cgroup.events",
4949 .flags = CFTYPE_NOT_ON_ROOT,
4950 .file_offset = offsetof(struct cgroup, events_file),
4951 .seq_show = cgroup_events_show,
4952 },
4953 {
4954 .name = "cgroup.max.descendants",
4955 .seq_show = cgroup_max_descendants_show,
4956 .write = cgroup_max_descendants_write,
4957 },
4958 {
4959 .name = "cgroup.max.depth",
4960 .seq_show = cgroup_max_depth_show,
4961 .write = cgroup_max_depth_write,
4962 },
4963 {
4964 .name = "cgroup.stat",
4965 .seq_show = cgroup_stat_show,
4966 },
4967 {
4968 .name = "cgroup.freeze",
4969 .flags = CFTYPE_NOT_ON_ROOT,
4970 .seq_show = cgroup_freeze_show,
4971 .write = cgroup_freeze_write,
4972 },
4973 {
4974 .name = "cpu.stat",
4975 .flags = CFTYPE_NOT_ON_ROOT,
4976 .seq_show = cpu_stat_show,
4977 },
4978 #ifdef CONFIG_PSI
4979 {
4980 .name = "io.pressure",
4981 .seq_show = cgroup_io_pressure_show,
4982 .write = cgroup_io_pressure_write,
4983 .poll = cgroup_pressure_poll,
4984 .release = cgroup_pressure_release,
4985 },
4986 {
4987 .name = "memory.pressure",
4988 .seq_show = cgroup_memory_pressure_show,
4989 .write = cgroup_memory_pressure_write,
4990 .poll = cgroup_pressure_poll,
4991 .release = cgroup_pressure_release,
4992 },
4993 {
4994 .name = "cpu.pressure",
4995 .seq_show = cgroup_cpu_pressure_show,
4996 .write = cgroup_cpu_pressure_write,
4997 .poll = cgroup_pressure_poll,
4998 .release = cgroup_pressure_release,
4999 },
5000 #endif /* CONFIG_PSI */
5001 { } /* terminate */
5002 };
5003
5004 /*
5005 * css destruction is four-stage process.
5006 *
5007 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5008 * Implemented in kill_css().
5009 *
5010 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5011 * and thus css_tryget_online() is guaranteed to fail, the css can be
5012 * offlined by invoking offline_css(). After offlining, the base ref is
5013 * put. Implemented in css_killed_work_fn().
5014 *
5015 * 3. When the percpu_ref reaches zero, the only possible remaining
5016 * accessors are inside RCU read sections. css_release() schedules the
5017 * RCU callback.
5018 *
5019 * 4. After the grace period, the css can be freed. Implemented in
5020 * css_free_work_fn().
5021 *
5022 * It is actually hairier because both step 2 and 4 require process context
5023 * and thus involve punting to css->destroy_work adding two additional
5024 * steps to the already complex sequence.
5025 */
5026 static void css_free_rwork_fn(struct work_struct *work)
5027 {
5028 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5029 struct cgroup_subsys_state, destroy_rwork);
5030 struct cgroup_subsys *ss = css->ss;
5031 struct cgroup *cgrp = css->cgroup;
5032
5033 percpu_ref_exit(&css->refcnt);
5034
5035 if (ss) {
5036 /* css free path */
5037 struct cgroup_subsys_state *parent = css->parent;
5038 int id = css->id;
5039
5040 ss->css_free(css);
5041 cgroup_idr_remove(&ss->css_idr, id);
5042 cgroup_put(cgrp);
5043
5044 if (parent)
5045 css_put(parent);
5046 } else {
5047 /* cgroup free path */
5048 atomic_dec(&cgrp->root->nr_cgrps);
5049 cgroup1_pidlist_destroy_all(cgrp);
5050 cancel_work_sync(&cgrp->release_agent_work);
5051
5052 if (cgroup_parent(cgrp)) {
5053 /*
5054 * We get a ref to the parent, and put the ref when
5055 * this cgroup is being freed, so it's guaranteed
5056 * that the parent won't be destroyed before its
5057 * children.
5058 */
5059 cgroup_put(cgroup_parent(cgrp));
5060 kernfs_put(cgrp->kn);
5061 psi_cgroup_free(cgrp);
5062 if (cgroup_on_dfl(cgrp))
5063 cgroup_rstat_exit(cgrp);
5064 kfree(cgrp);
5065 } else {
5066 /*
5067 * This is root cgroup's refcnt reaching zero,
5068 * which indicates that the root should be
5069 * released.
5070 */
5071 cgroup_destroy_root(cgrp->root);
5072 }
5073 }
5074 }
5075
5076 static void css_release_work_fn(struct work_struct *work)
5077 {
5078 struct cgroup_subsys_state *css =
5079 container_of(work, struct cgroup_subsys_state, destroy_work);
5080 struct cgroup_subsys *ss = css->ss;
5081 struct cgroup *cgrp = css->cgroup;
5082
5083 mutex_lock(&cgroup_mutex);
5084
5085 css->flags |= CSS_RELEASED;
5086 list_del_rcu(&css->sibling);
5087
5088 if (ss) {
5089 /* css release path */
5090 if (!list_empty(&css->rstat_css_node)) {
5091 cgroup_rstat_flush(cgrp);
5092 list_del_rcu(&css->rstat_css_node);
5093 }
5094
5095 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5096 if (ss->css_released)
5097 ss->css_released(css);
5098 } else {
5099 struct cgroup *tcgrp;
5100
5101 /* cgroup release path */
5102 TRACE_CGROUP_PATH(release, cgrp);
5103
5104 if (cgroup_on_dfl(cgrp))
5105 cgroup_rstat_flush(cgrp);
5106
5107 spin_lock_irq(&css_set_lock);
5108 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5109 tcgrp = cgroup_parent(tcgrp))
5110 tcgrp->nr_dying_descendants--;
5111 spin_unlock_irq(&css_set_lock);
5112
5113 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5114 cgrp->id = -1;
5115
5116 /*
5117 * There are two control paths which try to determine
5118 * cgroup from dentry without going through kernfs -
5119 * cgroupstats_build() and css_tryget_online_from_dir().
5120 * Those are supported by RCU protecting clearing of
5121 * cgrp->kn->priv backpointer.
5122 */
5123 if (cgrp->kn)
5124 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5125 NULL);
5126 }
5127
5128 mutex_unlock(&cgroup_mutex);
5129
5130 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5131 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5132 }
5133
5134 static void css_release(struct percpu_ref *ref)
5135 {
5136 struct cgroup_subsys_state *css =
5137 container_of(ref, struct cgroup_subsys_state, refcnt);
5138
5139 INIT_WORK(&css->destroy_work, css_release_work_fn);
5140 queue_work(cgroup_destroy_wq, &css->destroy_work);
5141 }
5142
5143 static void init_and_link_css(struct cgroup_subsys_state *css,
5144 struct cgroup_subsys *ss, struct cgroup *cgrp)
5145 {
5146 lockdep_assert_held(&cgroup_mutex);
5147
5148 cgroup_get_live(cgrp);
5149
5150 memset(css, 0, sizeof(*css));
5151 css->cgroup = cgrp;
5152 css->ss = ss;
5153 css->id = -1;
5154 INIT_LIST_HEAD(&css->sibling);
5155 INIT_LIST_HEAD(&css->children);
5156 INIT_LIST_HEAD(&css->rstat_css_node);
5157 css->serial_nr = css_serial_nr_next++;
5158 atomic_set(&css->online_cnt, 0);
5159
5160 if (cgroup_parent(cgrp)) {
5161 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5162 css_get(css->parent);
5163 }
5164
5165 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5166 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5167
5168 BUG_ON(cgroup_css(cgrp, ss));
5169 }
5170
5171 /* invoke ->css_online() on a new CSS and mark it online if successful */
5172 static int online_css(struct cgroup_subsys_state *css)
5173 {
5174 struct cgroup_subsys *ss = css->ss;
5175 int ret = 0;
5176
5177 lockdep_assert_held(&cgroup_mutex);
5178
5179 if (ss->css_online)
5180 ret = ss->css_online(css);
5181 if (!ret) {
5182 css->flags |= CSS_ONLINE;
5183 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5184
5185 atomic_inc(&css->online_cnt);
5186 if (css->parent)
5187 atomic_inc(&css->parent->online_cnt);
5188 }
5189 return ret;
5190 }
5191
5192 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5193 static void offline_css(struct cgroup_subsys_state *css)
5194 {
5195 struct cgroup_subsys *ss = css->ss;
5196
5197 lockdep_assert_held(&cgroup_mutex);
5198
5199 if (!(css->flags & CSS_ONLINE))
5200 return;
5201
5202 if (ss->css_offline)
5203 ss->css_offline(css);
5204
5205 css->flags &= ~CSS_ONLINE;
5206 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5207
5208 wake_up_all(&css->cgroup->offline_waitq);
5209 }
5210
5211 /**
5212 * css_create - create a cgroup_subsys_state
5213 * @cgrp: the cgroup new css will be associated with
5214 * @ss: the subsys of new css
5215 *
5216 * Create a new css associated with @cgrp - @ss pair. On success, the new
5217 * css is online and installed in @cgrp. This function doesn't create the
5218 * interface files. Returns 0 on success, -errno on failure.
5219 */
5220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5221 struct cgroup_subsys *ss)
5222 {
5223 struct cgroup *parent = cgroup_parent(cgrp);
5224 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5225 struct cgroup_subsys_state *css;
5226 int err;
5227
5228 lockdep_assert_held(&cgroup_mutex);
5229
5230 css = ss->css_alloc(parent_css);
5231 if (!css)
5232 css = ERR_PTR(-ENOMEM);
5233 if (IS_ERR(css))
5234 return css;
5235
5236 init_and_link_css(css, ss, cgrp);
5237
5238 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5239 if (err)
5240 goto err_free_css;
5241
5242 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5243 if (err < 0)
5244 goto err_free_css;
5245 css->id = err;
5246
5247 /* @css is ready to be brought online now, make it visible */
5248 list_add_tail_rcu(&css->sibling, &parent_css->children);
5249 cgroup_idr_replace(&ss->css_idr, css, css->id);
5250
5251 err = online_css(css);
5252 if (err)
5253 goto err_list_del;
5254
5255 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5256 cgroup_parent(parent)) {
5257 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5258 current->comm, current->pid, ss->name);
5259 if (!strcmp(ss->name, "memory"))
5260 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5261 ss->warned_broken_hierarchy = true;
5262 }
5263
5264 return css;
5265
5266 err_list_del:
5267 list_del_rcu(&css->sibling);
5268 err_free_css:
5269 list_del_rcu(&css->rstat_css_node);
5270 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5271 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5272 return ERR_PTR(err);
5273 }
5274
5275 /*
5276 * The returned cgroup is fully initialized including its control mask, but
5277 * it isn't associated with its kernfs_node and doesn't have the control
5278 * mask applied.
5279 */
5280 static struct cgroup *cgroup_create(struct cgroup *parent)
5281 {
5282 struct cgroup_root *root = parent->root;
5283 struct cgroup *cgrp, *tcgrp;
5284 int level = parent->level + 1;
5285 int ret;
5286
5287 /* allocate the cgroup and its ID, 0 is reserved for the root */
5288 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5289 GFP_KERNEL);
5290 if (!cgrp)
5291 return ERR_PTR(-ENOMEM);
5292
5293 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5294 if (ret)
5295 goto out_free_cgrp;
5296
5297 if (cgroup_on_dfl(parent)) {
5298 ret = cgroup_rstat_init(cgrp);
5299 if (ret)
5300 goto out_cancel_ref;
5301 }
5302
5303 /*
5304 * Temporarily set the pointer to NULL, so idr_find() won't return
5305 * a half-baked cgroup.
5306 */
5307 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5308 if (cgrp->id < 0) {
5309 ret = -ENOMEM;
5310 goto out_stat_exit;
5311 }
5312
5313 init_cgroup_housekeeping(cgrp);
5314
5315 cgrp->self.parent = &parent->self;
5316 cgrp->root = root;
5317 cgrp->level = level;
5318
5319 ret = psi_cgroup_alloc(cgrp);
5320 if (ret)
5321 goto out_idr_free;
5322
5323 ret = cgroup_bpf_inherit(cgrp);
5324 if (ret)
5325 goto out_psi_free;
5326
5327 /*
5328 * New cgroup inherits effective freeze counter, and
5329 * if the parent has to be frozen, the child has too.
5330 */
5331 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5332 if (cgrp->freezer.e_freeze) {
5333 /*
5334 * Set the CGRP_FREEZE flag, so when a process will be
5335 * attached to the child cgroup, it will become frozen.
5336 * At this point the new cgroup is unpopulated, so we can
5337 * consider it frozen immediately.
5338 */
5339 set_bit(CGRP_FREEZE, &cgrp->flags);
5340 set_bit(CGRP_FROZEN, &cgrp->flags);
5341 }
5342
5343 spin_lock_irq(&css_set_lock);
5344 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5345 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5346
5347 if (tcgrp != cgrp) {
5348 tcgrp->nr_descendants++;
5349
5350 /*
5351 * If the new cgroup is frozen, all ancestor cgroups
5352 * get a new frozen descendant, but their state can't
5353 * change because of this.
5354 */
5355 if (cgrp->freezer.e_freeze)
5356 tcgrp->freezer.nr_frozen_descendants++;
5357 }
5358 }
5359 spin_unlock_irq(&css_set_lock);
5360
5361 if (notify_on_release(parent))
5362 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5363
5364 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5365 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5366
5367 cgrp->self.serial_nr = css_serial_nr_next++;
5368
5369 /* allocation complete, commit to creation */
5370 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5371 atomic_inc(&root->nr_cgrps);
5372 cgroup_get_live(parent);
5373
5374 /*
5375 * @cgrp is now fully operational. If something fails after this
5376 * point, it'll be released via the normal destruction path.
5377 */
5378 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5379
5380 /*
5381 * On the default hierarchy, a child doesn't automatically inherit
5382 * subtree_control from the parent. Each is configured manually.
5383 */
5384 if (!cgroup_on_dfl(cgrp))
5385 cgrp->subtree_control = cgroup_control(cgrp);
5386
5387 cgroup_propagate_control(cgrp);
5388
5389 return cgrp;
5390
5391 out_psi_free:
5392 psi_cgroup_free(cgrp);
5393 out_idr_free:
5394 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5395 out_stat_exit:
5396 if (cgroup_on_dfl(parent))
5397 cgroup_rstat_exit(cgrp);
5398 out_cancel_ref:
5399 percpu_ref_exit(&cgrp->self.refcnt);
5400 out_free_cgrp:
5401 kfree(cgrp);
5402 return ERR_PTR(ret);
5403 }
5404
5405 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5406 {
5407 struct cgroup *cgroup;
5408 int ret = false;
5409 int level = 1;
5410
5411 lockdep_assert_held(&cgroup_mutex);
5412
5413 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5414 if (cgroup->nr_descendants >= cgroup->max_descendants)
5415 goto fail;
5416
5417 if (level > cgroup->max_depth)
5418 goto fail;
5419
5420 level++;
5421 }
5422
5423 ret = true;
5424 fail:
5425 return ret;
5426 }
5427
5428 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5429 {
5430 struct cgroup *parent, *cgrp;
5431 struct kernfs_node *kn;
5432 int ret;
5433
5434 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5435 if (strchr(name, '\n'))
5436 return -EINVAL;
5437
5438 parent = cgroup_kn_lock_live(parent_kn, false);
5439 if (!parent)
5440 return -ENODEV;
5441
5442 if (!cgroup_check_hierarchy_limits(parent)) {
5443 ret = -EAGAIN;
5444 goto out_unlock;
5445 }
5446
5447 cgrp = cgroup_create(parent);
5448 if (IS_ERR(cgrp)) {
5449 ret = PTR_ERR(cgrp);
5450 goto out_unlock;
5451 }
5452
5453 /* create the directory */
5454 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5455 if (IS_ERR(kn)) {
5456 ret = PTR_ERR(kn);
5457 goto out_destroy;
5458 }
5459 cgrp->kn = kn;
5460
5461 /*
5462 * This extra ref will be put in cgroup_free_fn() and guarantees
5463 * that @cgrp->kn is always accessible.
5464 */
5465 kernfs_get(kn);
5466
5467 ret = cgroup_kn_set_ugid(kn);
5468 if (ret)
5469 goto out_destroy;
5470
5471 ret = css_populate_dir(&cgrp->self);
5472 if (ret)
5473 goto out_destroy;
5474
5475 ret = cgroup_apply_control_enable(cgrp);
5476 if (ret)
5477 goto out_destroy;
5478
5479 TRACE_CGROUP_PATH(mkdir, cgrp);
5480
5481 /* let's create and online css's */
5482 kernfs_activate(kn);
5483
5484 ret = 0;
5485 goto out_unlock;
5486
5487 out_destroy:
5488 cgroup_destroy_locked(cgrp);
5489 out_unlock:
5490 cgroup_kn_unlock(parent_kn);
5491 return ret;
5492 }
5493
5494 /*
5495 * This is called when the refcnt of a css is confirmed to be killed.
5496 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5497 * initate destruction and put the css ref from kill_css().
5498 */
5499 static void css_killed_work_fn(struct work_struct *work)
5500 {
5501 struct cgroup_subsys_state *css =
5502 container_of(work, struct cgroup_subsys_state, destroy_work);
5503
5504 mutex_lock(&cgroup_mutex);
5505
5506 do {
5507 offline_css(css);
5508 css_put(css);
5509 /* @css can't go away while we're holding cgroup_mutex */
5510 css = css->parent;
5511 } while (css && atomic_dec_and_test(&css->online_cnt));
5512
5513 mutex_unlock(&cgroup_mutex);
5514 }
5515
5516 /* css kill confirmation processing requires process context, bounce */
5517 static void css_killed_ref_fn(struct percpu_ref *ref)
5518 {
5519 struct cgroup_subsys_state *css =
5520 container_of(ref, struct cgroup_subsys_state, refcnt);
5521
5522 if (atomic_dec_and_test(&css->online_cnt)) {
5523 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5524 queue_work(cgroup_destroy_wq, &css->destroy_work);
5525 }
5526 }
5527
5528 /**
5529 * kill_css - destroy a css
5530 * @css: css to destroy
5531 *
5532 * This function initiates destruction of @css by removing cgroup interface
5533 * files and putting its base reference. ->css_offline() will be invoked
5534 * asynchronously once css_tryget_online() is guaranteed to fail and when
5535 * the reference count reaches zero, @css will be released.
5536 */
5537 static void kill_css(struct cgroup_subsys_state *css)
5538 {
5539 lockdep_assert_held(&cgroup_mutex);
5540
5541 if (css->flags & CSS_DYING)
5542 return;
5543
5544 css->flags |= CSS_DYING;
5545
5546 /*
5547 * This must happen before css is disassociated with its cgroup.
5548 * See seq_css() for details.
5549 */
5550 css_clear_dir(css);
5551
5552 /*
5553 * Killing would put the base ref, but we need to keep it alive
5554 * until after ->css_offline().
5555 */
5556 css_get(css);
5557
5558 /*
5559 * cgroup core guarantees that, by the time ->css_offline() is
5560 * invoked, no new css reference will be given out via
5561 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5562 * proceed to offlining css's because percpu_ref_kill() doesn't
5563 * guarantee that the ref is seen as killed on all CPUs on return.
5564 *
5565 * Use percpu_ref_kill_and_confirm() to get notifications as each
5566 * css is confirmed to be seen as killed on all CPUs.
5567 */
5568 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5569 }
5570
5571 /**
5572 * cgroup_destroy_locked - the first stage of cgroup destruction
5573 * @cgrp: cgroup to be destroyed
5574 *
5575 * css's make use of percpu refcnts whose killing latency shouldn't be
5576 * exposed to userland and are RCU protected. Also, cgroup core needs to
5577 * guarantee that css_tryget_online() won't succeed by the time
5578 * ->css_offline() is invoked. To satisfy all the requirements,
5579 * destruction is implemented in the following two steps.
5580 *
5581 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5582 * userland visible parts and start killing the percpu refcnts of
5583 * css's. Set up so that the next stage will be kicked off once all
5584 * the percpu refcnts are confirmed to be killed.
5585 *
5586 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5587 * rest of destruction. Once all cgroup references are gone, the
5588 * cgroup is RCU-freed.
5589 *
5590 * This function implements s1. After this step, @cgrp is gone as far as
5591 * the userland is concerned and a new cgroup with the same name may be
5592 * created. As cgroup doesn't care about the names internally, this
5593 * doesn't cause any problem.
5594 */
5595 static int cgroup_destroy_locked(struct cgroup *cgrp)
5596 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5597 {
5598 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5599 struct cgroup_subsys_state *css;
5600 struct cgrp_cset_link *link;
5601 int ssid;
5602
5603 lockdep_assert_held(&cgroup_mutex);
5604
5605 /*
5606 * Only migration can raise populated from zero and we're already
5607 * holding cgroup_mutex.
5608 */
5609 if (cgroup_is_populated(cgrp))
5610 return -EBUSY;
5611
5612 /*
5613 * Make sure there's no live children. We can't test emptiness of
5614 * ->self.children as dead children linger on it while being
5615 * drained; otherwise, "rmdir parent/child parent" may fail.
5616 */
5617 if (css_has_online_children(&cgrp->self))
5618 return -EBUSY;
5619
5620 /*
5621 * Mark @cgrp and the associated csets dead. The former prevents
5622 * further task migration and child creation by disabling
5623 * cgroup_lock_live_group(). The latter makes the csets ignored by
5624 * the migration path.
5625 */
5626 cgrp->self.flags &= ~CSS_ONLINE;
5627
5628 spin_lock_irq(&css_set_lock);
5629 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5630 link->cset->dead = true;
5631 spin_unlock_irq(&css_set_lock);
5632
5633 /* initiate massacre of all css's */
5634 for_each_css(css, ssid, cgrp)
5635 kill_css(css);
5636
5637 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5638 css_clear_dir(&cgrp->self);
5639 kernfs_remove(cgrp->kn);
5640
5641 if (parent && cgroup_is_threaded(cgrp))
5642 parent->nr_threaded_children--;
5643
5644 spin_lock_irq(&css_set_lock);
5645 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5646 tcgrp->nr_descendants--;
5647 tcgrp->nr_dying_descendants++;
5648 /*
5649 * If the dying cgroup is frozen, decrease frozen descendants
5650 * counters of ancestor cgroups.
5651 */
5652 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5653 tcgrp->freezer.nr_frozen_descendants--;
5654 }
5655 spin_unlock_irq(&css_set_lock);
5656
5657 cgroup1_check_for_release(parent);
5658
5659 cgroup_bpf_offline(cgrp);
5660
5661 /* put the base reference */
5662 percpu_ref_kill(&cgrp->self.refcnt);
5663
5664 return 0;
5665 };
5666
5667 int cgroup_rmdir(struct kernfs_node *kn)
5668 {
5669 struct cgroup *cgrp;
5670 int ret = 0;
5671
5672 cgrp = cgroup_kn_lock_live(kn, false);
5673 if (!cgrp)
5674 return 0;
5675
5676 ret = cgroup_destroy_locked(cgrp);
5677 if (!ret)
5678 TRACE_CGROUP_PATH(rmdir, cgrp);
5679
5680 cgroup_kn_unlock(kn);
5681 return ret;
5682 }
5683
5684 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5685 .show_options = cgroup_show_options,
5686 .mkdir = cgroup_mkdir,
5687 .rmdir = cgroup_rmdir,
5688 .show_path = cgroup_show_path,
5689 };
5690
5691 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5692 {
5693 struct cgroup_subsys_state *css;
5694
5695 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5696
5697 mutex_lock(&cgroup_mutex);
5698
5699 idr_init(&ss->css_idr);
5700 INIT_LIST_HEAD(&ss->cfts);
5701
5702 /* Create the root cgroup state for this subsystem */
5703 ss->root = &cgrp_dfl_root;
5704 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5705 /* We don't handle early failures gracefully */
5706 BUG_ON(IS_ERR(css));
5707 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5708
5709 /*
5710 * Root csses are never destroyed and we can't initialize
5711 * percpu_ref during early init. Disable refcnting.
5712 */
5713 css->flags |= CSS_NO_REF;
5714
5715 if (early) {
5716 /* allocation can't be done safely during early init */
5717 css->id = 1;
5718 } else {
5719 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5720 BUG_ON(css->id < 0);
5721 }
5722
5723 /* Update the init_css_set to contain a subsys
5724 * pointer to this state - since the subsystem is
5725 * newly registered, all tasks and hence the
5726 * init_css_set is in the subsystem's root cgroup. */
5727 init_css_set.subsys[ss->id] = css;
5728
5729 have_fork_callback |= (bool)ss->fork << ss->id;
5730 have_exit_callback |= (bool)ss->exit << ss->id;
5731 have_release_callback |= (bool)ss->release << ss->id;
5732 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5733
5734 /* At system boot, before all subsystems have been
5735 * registered, no tasks have been forked, so we don't
5736 * need to invoke fork callbacks here. */
5737 BUG_ON(!list_empty(&init_task.tasks));
5738
5739 BUG_ON(online_css(css));
5740
5741 mutex_unlock(&cgroup_mutex);
5742 }
5743
5744 /**
5745 * cgroup_init_early - cgroup initialization at system boot
5746 *
5747 * Initialize cgroups at system boot, and initialize any
5748 * subsystems that request early init.
5749 */
5750 int __init cgroup_init_early(void)
5751 {
5752 static struct cgroup_fs_context __initdata ctx;
5753 struct cgroup_subsys *ss;
5754 int i;
5755
5756 ctx.root = &cgrp_dfl_root;
5757 init_cgroup_root(&ctx);
5758 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5759
5760 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5761
5762 for_each_subsys(ss, i) {
5763 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5764 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5765 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5766 ss->id, ss->name);
5767 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5768 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5769
5770 ss->id = i;
5771 ss->name = cgroup_subsys_name[i];
5772 if (!ss->legacy_name)
5773 ss->legacy_name = cgroup_subsys_name[i];
5774
5775 if (ss->early_init)
5776 cgroup_init_subsys(ss, true);
5777 }
5778 return 0;
5779 }
5780
5781 /**
5782 * cgroup_init - cgroup initialization
5783 *
5784 * Register cgroup filesystem and /proc file, and initialize
5785 * any subsystems that didn't request early init.
5786 */
5787 int __init cgroup_init(void)
5788 {
5789 struct cgroup_subsys *ss;
5790 int ssid;
5791
5792 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5793 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5794 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5795
5796 cgroup_rstat_boot();
5797
5798 /*
5799 * The latency of the synchronize_rcu() is too high for cgroups,
5800 * avoid it at the cost of forcing all readers into the slow path.
5801 */
5802 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5803
5804 get_user_ns(init_cgroup_ns.user_ns);
5805
5806 mutex_lock(&cgroup_mutex);
5807
5808 /*
5809 * Add init_css_set to the hash table so that dfl_root can link to
5810 * it during init.
5811 */
5812 hash_add(css_set_table, &init_css_set.hlist,
5813 css_set_hash(init_css_set.subsys));
5814
5815 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5816
5817 mutex_unlock(&cgroup_mutex);
5818
5819 for_each_subsys(ss, ssid) {
5820 if (ss->early_init) {
5821 struct cgroup_subsys_state *css =
5822 init_css_set.subsys[ss->id];
5823
5824 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5825 GFP_KERNEL);
5826 BUG_ON(css->id < 0);
5827 } else {
5828 cgroup_init_subsys(ss, false);
5829 }
5830
5831 list_add_tail(&init_css_set.e_cset_node[ssid],
5832 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5833
5834 /*
5835 * Setting dfl_root subsys_mask needs to consider the
5836 * disabled flag and cftype registration needs kmalloc,
5837 * both of which aren't available during early_init.
5838 */
5839 if (!cgroup_ssid_enabled(ssid))
5840 continue;
5841
5842 if (cgroup1_ssid_disabled(ssid))
5843 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5844 ss->name);
5845
5846 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5847
5848 /* implicit controllers must be threaded too */
5849 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5850
5851 if (ss->implicit_on_dfl)
5852 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5853 else if (!ss->dfl_cftypes)
5854 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5855
5856 if (ss->threaded)
5857 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5858
5859 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5860 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5861 } else {
5862 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5863 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5864 }
5865
5866 if (ss->bind)
5867 ss->bind(init_css_set.subsys[ssid]);
5868
5869 mutex_lock(&cgroup_mutex);
5870 css_populate_dir(init_css_set.subsys[ssid]);
5871 mutex_unlock(&cgroup_mutex);
5872 }
5873
5874 /* init_css_set.subsys[] has been updated, re-hash */
5875 hash_del(&init_css_set.hlist);
5876 hash_add(css_set_table, &init_css_set.hlist,
5877 css_set_hash(init_css_set.subsys));
5878
5879 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5880 WARN_ON(register_filesystem(&cgroup_fs_type));
5881 WARN_ON(register_filesystem(&cgroup2_fs_type));
5882 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5883 #ifdef CONFIG_CPUSETS
5884 WARN_ON(register_filesystem(&cpuset_fs_type));
5885 #endif
5886
5887 return 0;
5888 }
5889
5890 static int __init cgroup_wq_init(void)
5891 {
5892 /*
5893 * There isn't much point in executing destruction path in
5894 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5895 * Use 1 for @max_active.
5896 *
5897 * We would prefer to do this in cgroup_init() above, but that
5898 * is called before init_workqueues(): so leave this until after.
5899 */
5900 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5901 BUG_ON(!cgroup_destroy_wq);
5902 return 0;
5903 }
5904 core_initcall(cgroup_wq_init);
5905
5906 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5907 char *buf, size_t buflen)
5908 {
5909 struct kernfs_node *kn;
5910
5911 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5912 if (!kn)
5913 return;
5914 kernfs_path(kn, buf, buflen);
5915 kernfs_put(kn);
5916 }
5917
5918 /*
5919 * proc_cgroup_show()
5920 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5921 * - Used for /proc/<pid>/cgroup.
5922 */
5923 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5924 struct pid *pid, struct task_struct *tsk)
5925 {
5926 char *buf;
5927 int retval;
5928 struct cgroup_root *root;
5929
5930 retval = -ENOMEM;
5931 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5932 if (!buf)
5933 goto out;
5934
5935 mutex_lock(&cgroup_mutex);
5936 spin_lock_irq(&css_set_lock);
5937
5938 for_each_root(root) {
5939 struct cgroup_subsys *ss;
5940 struct cgroup *cgrp;
5941 int ssid, count = 0;
5942
5943 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5944 continue;
5945
5946 seq_printf(m, "%d:", root->hierarchy_id);
5947 if (root != &cgrp_dfl_root)
5948 for_each_subsys(ss, ssid)
5949 if (root->subsys_mask & (1 << ssid))
5950 seq_printf(m, "%s%s", count++ ? "," : "",
5951 ss->legacy_name);
5952 if (strlen(root->name))
5953 seq_printf(m, "%sname=%s", count ? "," : "",
5954 root->name);
5955 seq_putc(m, ':');
5956
5957 cgrp = task_cgroup_from_root(tsk, root);
5958
5959 /*
5960 * On traditional hierarchies, all zombie tasks show up as
5961 * belonging to the root cgroup. On the default hierarchy,
5962 * while a zombie doesn't show up in "cgroup.procs" and
5963 * thus can't be migrated, its /proc/PID/cgroup keeps
5964 * reporting the cgroup it belonged to before exiting. If
5965 * the cgroup is removed before the zombie is reaped,
5966 * " (deleted)" is appended to the cgroup path.
5967 */
5968 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5969 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5970 current->nsproxy->cgroup_ns);
5971 if (retval >= PATH_MAX)
5972 retval = -ENAMETOOLONG;
5973 if (retval < 0)
5974 goto out_unlock;
5975
5976 seq_puts(m, buf);
5977 } else {
5978 seq_puts(m, "/");
5979 }
5980
5981 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5982 seq_puts(m, " (deleted)\n");
5983 else
5984 seq_putc(m, '\n');
5985 }
5986
5987 retval = 0;
5988 out_unlock:
5989 spin_unlock_irq(&css_set_lock);
5990 mutex_unlock(&cgroup_mutex);
5991 kfree(buf);
5992 out:
5993 return retval;
5994 }
5995
5996 /**
5997 * cgroup_fork - initialize cgroup related fields during copy_process()
5998 * @child: pointer to task_struct of forking parent process.
5999 *
6000 * A task is associated with the init_css_set until cgroup_post_fork()
6001 * attaches it to the parent's css_set. Empty cg_list indicates that
6002 * @child isn't holding reference to its css_set.
6003 */
6004 void cgroup_fork(struct task_struct *child)
6005 {
6006 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6007 INIT_LIST_HEAD(&child->cg_list);
6008 }
6009
6010 /**
6011 * cgroup_can_fork - called on a new task before the process is exposed
6012 * @child: the task in question.
6013 *
6014 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
6015 * returns an error, the fork aborts with that error code. This allows for
6016 * a cgroup subsystem to conditionally allow or deny new forks.
6017 */
6018 int cgroup_can_fork(struct task_struct *child)
6019 {
6020 struct cgroup_subsys *ss;
6021 int i, j, ret;
6022
6023 do_each_subsys_mask(ss, i, have_canfork_callback) {
6024 ret = ss->can_fork(child);
6025 if (ret)
6026 goto out_revert;
6027 } while_each_subsys_mask();
6028
6029 return 0;
6030
6031 out_revert:
6032 for_each_subsys(ss, j) {
6033 if (j >= i)
6034 break;
6035 if (ss->cancel_fork)
6036 ss->cancel_fork(child);
6037 }
6038
6039 return ret;
6040 }
6041
6042 /**
6043 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6044 * @child: the task in question
6045 *
6046 * This calls the cancel_fork() callbacks if a fork failed *after*
6047 * cgroup_can_fork() succeded.
6048 */
6049 void cgroup_cancel_fork(struct task_struct *child)
6050 {
6051 struct cgroup_subsys *ss;
6052 int i;
6053
6054 for_each_subsys(ss, i)
6055 if (ss->cancel_fork)
6056 ss->cancel_fork(child);
6057 }
6058
6059 /**
6060 * cgroup_post_fork - called on a new task after adding it to the task list
6061 * @child: the task in question
6062 *
6063 * Adds the task to the list running through its css_set if necessary and
6064 * call the subsystem fork() callbacks. Has to be after the task is
6065 * visible on the task list in case we race with the first call to
6066 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
6067 * list.
6068 */
6069 void cgroup_post_fork(struct task_struct *child)
6070 {
6071 struct cgroup_subsys *ss;
6072 int i;
6073
6074 /*
6075 * This may race against cgroup_enable_task_cg_lists(). As that
6076 * function sets use_task_css_set_links before grabbing
6077 * tasklist_lock and we just went through tasklist_lock to add
6078 * @child, it's guaranteed that either we see the set
6079 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
6080 * @child during its iteration.
6081 *
6082 * If we won the race, @child is associated with %current's
6083 * css_set. Grabbing css_set_lock guarantees both that the
6084 * association is stable, and, on completion of the parent's
6085 * migration, @child is visible in the source of migration or
6086 * already in the destination cgroup. This guarantee is necessary
6087 * when implementing operations which need to migrate all tasks of
6088 * a cgroup to another.
6089 *
6090 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
6091 * will remain in init_css_set. This is safe because all tasks are
6092 * in the init_css_set before cg_links is enabled and there's no
6093 * operation which transfers all tasks out of init_css_set.
6094 */
6095 if (use_task_css_set_links) {
6096 struct css_set *cset;
6097
6098 spin_lock_irq(&css_set_lock);
6099 cset = task_css_set(current);
6100 if (list_empty(&child->cg_list)) {
6101 get_css_set(cset);
6102 cset->nr_tasks++;
6103 css_set_move_task(child, NULL, cset, false);
6104 }
6105
6106 /*
6107 * If the cgroup has to be frozen, the new task has too.
6108 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
6109 * the task into the frozen state.
6110 */
6111 if (unlikely(cgroup_task_freeze(child))) {
6112 spin_lock(&child->sighand->siglock);
6113 WARN_ON_ONCE(child->frozen);
6114 child->jobctl |= JOBCTL_TRAP_FREEZE;
6115 spin_unlock(&child->sighand->siglock);
6116
6117 /*
6118 * Calling cgroup_update_frozen() isn't required here,
6119 * because it will be called anyway a bit later
6120 * from do_freezer_trap(). So we avoid cgroup's
6121 * transient switch from the frozen state and back.
6122 */
6123 }
6124
6125 spin_unlock_irq(&css_set_lock);
6126 }
6127
6128 /*
6129 * Call ss->fork(). This must happen after @child is linked on
6130 * css_set; otherwise, @child might change state between ->fork()
6131 * and addition to css_set.
6132 */
6133 do_each_subsys_mask(ss, i, have_fork_callback) {
6134 ss->fork(child);
6135 } while_each_subsys_mask();
6136 }
6137
6138 /**
6139 * cgroup_exit - detach cgroup from exiting task
6140 * @tsk: pointer to task_struct of exiting process
6141 *
6142 * Description: Detach cgroup from @tsk and release it.
6143 *
6144 * Note that cgroups marked notify_on_release force every task in
6145 * them to take the global cgroup_mutex mutex when exiting.
6146 * This could impact scaling on very large systems. Be reluctant to
6147 * use notify_on_release cgroups where very high task exit scaling
6148 * is required on large systems.
6149 *
6150 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6151 * call cgroup_exit() while the task is still competent to handle
6152 * notify_on_release(), then leave the task attached to the root cgroup in
6153 * each hierarchy for the remainder of its exit. No need to bother with
6154 * init_css_set refcnting. init_css_set never goes away and we can't race
6155 * with migration path - PF_EXITING is visible to migration path.
6156 */
6157 void cgroup_exit(struct task_struct *tsk)
6158 {
6159 struct cgroup_subsys *ss;
6160 struct css_set *cset;
6161 int i;
6162
6163 /*
6164 * Unlink from @tsk from its css_set. As migration path can't race
6165 * with us, we can check css_set and cg_list without synchronization.
6166 */
6167 cset = task_css_set(tsk);
6168
6169 if (!list_empty(&tsk->cg_list)) {
6170 spin_lock_irq(&css_set_lock);
6171 css_set_move_task(tsk, cset, NULL, false);
6172 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6173 cset->nr_tasks--;
6174
6175 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6176 if (unlikely(cgroup_task_freeze(tsk)))
6177 cgroup_update_frozen(task_dfl_cgroup(tsk));
6178
6179 spin_unlock_irq(&css_set_lock);
6180 } else {
6181 get_css_set(cset);
6182 }
6183
6184 /* see cgroup_post_fork() for details */
6185 do_each_subsys_mask(ss, i, have_exit_callback) {
6186 ss->exit(tsk);
6187 } while_each_subsys_mask();
6188 }
6189
6190 void cgroup_release(struct task_struct *task)
6191 {
6192 struct cgroup_subsys *ss;
6193 int ssid;
6194
6195 do_each_subsys_mask(ss, ssid, have_release_callback) {
6196 ss->release(task);
6197 } while_each_subsys_mask();
6198
6199 if (use_task_css_set_links) {
6200 spin_lock_irq(&css_set_lock);
6201 css_set_skip_task_iters(task_css_set(task), task);
6202 list_del_init(&task->cg_list);
6203 spin_unlock_irq(&css_set_lock);
6204 }
6205 }
6206
6207 void cgroup_free(struct task_struct *task)
6208 {
6209 struct css_set *cset = task_css_set(task);
6210 put_css_set(cset);
6211 }
6212
6213 static int __init cgroup_disable(char *str)
6214 {
6215 struct cgroup_subsys *ss;
6216 char *token;
6217 int i;
6218
6219 while ((token = strsep(&str, ",")) != NULL) {
6220 if (!*token)
6221 continue;
6222
6223 for_each_subsys(ss, i) {
6224 if (strcmp(token, ss->name) &&
6225 strcmp(token, ss->legacy_name))
6226 continue;
6227
6228 static_branch_disable(cgroup_subsys_enabled_key[i]);
6229 pr_info("Disabling %s control group subsystem\n",
6230 ss->name);
6231 }
6232 }
6233 return 1;
6234 }
6235 __setup("cgroup_disable=", cgroup_disable);
6236
6237 void __init __weak enable_debug_cgroup(void) { }
6238
6239 static int __init enable_cgroup_debug(char *str)
6240 {
6241 cgroup_debug = true;
6242 enable_debug_cgroup();
6243 return 1;
6244 }
6245 __setup("cgroup_debug", enable_cgroup_debug);
6246
6247 /**
6248 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6249 * @dentry: directory dentry of interest
6250 * @ss: subsystem of interest
6251 *
6252 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6253 * to get the corresponding css and return it. If such css doesn't exist
6254 * or can't be pinned, an ERR_PTR value is returned.
6255 */
6256 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6257 struct cgroup_subsys *ss)
6258 {
6259 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6260 struct file_system_type *s_type = dentry->d_sb->s_type;
6261 struct cgroup_subsys_state *css = NULL;
6262 struct cgroup *cgrp;
6263
6264 /* is @dentry a cgroup dir? */
6265 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6266 !kn || kernfs_type(kn) != KERNFS_DIR)
6267 return ERR_PTR(-EBADF);
6268
6269 rcu_read_lock();
6270
6271 /*
6272 * This path doesn't originate from kernfs and @kn could already
6273 * have been or be removed at any point. @kn->priv is RCU
6274 * protected for this access. See css_release_work_fn() for details.
6275 */
6276 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6277 if (cgrp)
6278 css = cgroup_css(cgrp, ss);
6279
6280 if (!css || !css_tryget_online(css))
6281 css = ERR_PTR(-ENOENT);
6282
6283 rcu_read_unlock();
6284 return css;
6285 }
6286
6287 /**
6288 * css_from_id - lookup css by id
6289 * @id: the cgroup id
6290 * @ss: cgroup subsys to be looked into
6291 *
6292 * Returns the css if there's valid one with @id, otherwise returns NULL.
6293 * Should be called under rcu_read_lock().
6294 */
6295 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6296 {
6297 WARN_ON_ONCE(!rcu_read_lock_held());
6298 return idr_find(&ss->css_idr, id);
6299 }
6300
6301 /**
6302 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6303 * @path: path on the default hierarchy
6304 *
6305 * Find the cgroup at @path on the default hierarchy, increment its
6306 * reference count and return it. Returns pointer to the found cgroup on
6307 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6308 * if @path points to a non-directory.
6309 */
6310 struct cgroup *cgroup_get_from_path(const char *path)
6311 {
6312 struct kernfs_node *kn;
6313 struct cgroup *cgrp;
6314
6315 mutex_lock(&cgroup_mutex);
6316
6317 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6318 if (kn) {
6319 if (kernfs_type(kn) == KERNFS_DIR) {
6320 cgrp = kn->priv;
6321 cgroup_get_live(cgrp);
6322 } else {
6323 cgrp = ERR_PTR(-ENOTDIR);
6324 }
6325 kernfs_put(kn);
6326 } else {
6327 cgrp = ERR_PTR(-ENOENT);
6328 }
6329
6330 mutex_unlock(&cgroup_mutex);
6331 return cgrp;
6332 }
6333 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6334
6335 /**
6336 * cgroup_get_from_fd - get a cgroup pointer from a fd
6337 * @fd: fd obtained by open(cgroup2_dir)
6338 *
6339 * Find the cgroup from a fd which should be obtained
6340 * by opening a cgroup directory. Returns a pointer to the
6341 * cgroup on success. ERR_PTR is returned if the cgroup
6342 * cannot be found.
6343 */
6344 struct cgroup *cgroup_get_from_fd(int fd)
6345 {
6346 struct cgroup_subsys_state *css;
6347 struct cgroup *cgrp;
6348 struct file *f;
6349
6350 f = fget_raw(fd);
6351 if (!f)
6352 return ERR_PTR(-EBADF);
6353
6354 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6355 fput(f);
6356 if (IS_ERR(css))
6357 return ERR_CAST(css);
6358
6359 cgrp = css->cgroup;
6360 if (!cgroup_on_dfl(cgrp)) {
6361 cgroup_put(cgrp);
6362 return ERR_PTR(-EBADF);
6363 }
6364
6365 return cgrp;
6366 }
6367 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6368
6369 static u64 power_of_ten(int power)
6370 {
6371 u64 v = 1;
6372 while (power--)
6373 v *= 10;
6374 return v;
6375 }
6376
6377 /**
6378 * cgroup_parse_float - parse a floating number
6379 * @input: input string
6380 * @dec_shift: number of decimal digits to shift
6381 * @v: output
6382 *
6383 * Parse a decimal floating point number in @input and store the result in
6384 * @v with decimal point right shifted @dec_shift times. For example, if
6385 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6386 * Returns 0 on success, -errno otherwise.
6387 *
6388 * There's nothing cgroup specific about this function except that it's
6389 * currently the only user.
6390 */
6391 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6392 {
6393 s64 whole, frac = 0;
6394 int fstart = 0, fend = 0, flen;
6395
6396 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6397 return -EINVAL;
6398 if (frac < 0)
6399 return -EINVAL;
6400
6401 flen = fend > fstart ? fend - fstart : 0;
6402 if (flen < dec_shift)
6403 frac *= power_of_ten(dec_shift - flen);
6404 else
6405 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6406
6407 *v = whole * power_of_ten(dec_shift) + frac;
6408 return 0;
6409 }
6410
6411 /*
6412 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6413 * definition in cgroup-defs.h.
6414 */
6415 #ifdef CONFIG_SOCK_CGROUP_DATA
6416
6417 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6418
6419 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6420 static bool cgroup_sk_alloc_disabled __read_mostly;
6421
6422 void cgroup_sk_alloc_disable(void)
6423 {
6424 if (cgroup_sk_alloc_disabled)
6425 return;
6426 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6427 cgroup_sk_alloc_disabled = true;
6428 }
6429
6430 #else
6431
6432 #define cgroup_sk_alloc_disabled false
6433
6434 #endif
6435
6436 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6437 {
6438 if (cgroup_sk_alloc_disabled) {
6439 skcd->no_refcnt = 1;
6440 return;
6441 }
6442
6443 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6444 if (in_interrupt())
6445 return;
6446
6447 rcu_read_lock();
6448
6449 while (true) {
6450 struct css_set *cset;
6451
6452 cset = task_css_set(current);
6453 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6454 skcd->val = (unsigned long)cset->dfl_cgrp;
6455 cgroup_bpf_get(cset->dfl_cgrp);
6456 break;
6457 }
6458 cpu_relax();
6459 }
6460
6461 rcu_read_unlock();
6462 }
6463
6464 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6465 {
6466 if (skcd->val) {
6467 if (skcd->no_refcnt)
6468 return;
6469 /*
6470 * We might be cloning a socket which is left in an empty
6471 * cgroup and the cgroup might have already been rmdir'd.
6472 * Don't use cgroup_get_live().
6473 */
6474 cgroup_get(sock_cgroup_ptr(skcd));
6475 cgroup_bpf_get(sock_cgroup_ptr(skcd));
6476 }
6477 }
6478
6479 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6480 {
6481 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6482
6483 if (skcd->no_refcnt)
6484 return;
6485 cgroup_bpf_put(cgrp);
6486 cgroup_put(cgrp);
6487 }
6488
6489 #endif /* CONFIG_SOCK_CGROUP_DATA */
6490
6491 #ifdef CONFIG_CGROUP_BPF
6492 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6493 enum bpf_attach_type type, u32 flags)
6494 {
6495 int ret;
6496
6497 mutex_lock(&cgroup_mutex);
6498 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6499 mutex_unlock(&cgroup_mutex);
6500 return ret;
6501 }
6502 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6503 enum bpf_attach_type type, u32 flags)
6504 {
6505 int ret;
6506
6507 mutex_lock(&cgroup_mutex);
6508 ret = __cgroup_bpf_detach(cgrp, prog, type);
6509 mutex_unlock(&cgroup_mutex);
6510 return ret;
6511 }
6512 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6513 union bpf_attr __user *uattr)
6514 {
6515 int ret;
6516
6517 mutex_lock(&cgroup_mutex);
6518 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6519 mutex_unlock(&cgroup_mutex);
6520 return ret;
6521 }
6522 #endif /* CONFIG_CGROUP_BPF */
6523
6524 #ifdef CONFIG_SYSFS
6525 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6526 ssize_t size, const char *prefix)
6527 {
6528 struct cftype *cft;
6529 ssize_t ret = 0;
6530
6531 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6532 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6533 continue;
6534
6535 if (prefix)
6536 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6537
6538 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6539
6540 if (WARN_ON(ret >= size))
6541 break;
6542 }
6543
6544 return ret;
6545 }
6546
6547 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6548 char *buf)
6549 {
6550 struct cgroup_subsys *ss;
6551 int ssid;
6552 ssize_t ret = 0;
6553
6554 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6555 NULL);
6556
6557 for_each_subsys(ss, ssid)
6558 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6559 PAGE_SIZE - ret,
6560 cgroup_subsys_name[ssid]);
6561
6562 return ret;
6563 }
6564 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6565
6566 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6567 char *buf)
6568 {
6569 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6570 }
6571 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6572
6573 static struct attribute *cgroup_sysfs_attrs[] = {
6574 &cgroup_delegate_attr.attr,
6575 &cgroup_features_attr.attr,
6576 NULL,
6577 };
6578
6579 static const struct attribute_group cgroup_sysfs_attr_group = {
6580 .attrs = cgroup_sysfs_attrs,
6581 .name = "cgroup",
6582 };
6583
6584 static int __init cgroup_sysfs_init(void)
6585 {
6586 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6587 }
6588 subsys_initcall(cgroup_sysfs_init);
6589
6590 #endif /* CONFIG_SYSFS */