]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/md/raid10.c
c5d88ef6a45c75084c0cf6bbf7f5c8f97246988e
[mirror_ubuntu-hirsute-kernel.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83 * for resync bio, r10bio pointer can be retrieved from the per-bio
84 * 'struct resync_pages'.
85 */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 struct r10conf *conf = data;
94 int size = offsetof(struct r10bio, devs[conf->copies]);
95
96 /* allocate a r10bio with room for raid_disks entries in the
97 * bios array */
98 return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110 * When performing a resync, we need to read and compare, so
111 * we need as many pages are there are copies.
112 * When performing a recovery, we need 2 bios, one for read,
113 * one for write (we recover only one drive per r10buf)
114 *
115 */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 struct r10conf *conf = data;
119 struct r10bio *r10_bio;
120 struct bio *bio;
121 int j;
122 int nalloc, nalloc_rp;
123 struct resync_pages *rps;
124
125 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 if (!r10_bio)
127 return NULL;
128
129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 nalloc = conf->copies; /* resync */
132 else
133 nalloc = 2; /* recovery */
134
135 /* allocate once for all bios */
136 if (!conf->have_replacement)
137 nalloc_rp = nalloc;
138 else
139 nalloc_rp = nalloc * 2;
140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 if (!rps)
142 goto out_free_r10bio;
143
144 /*
145 * Allocate bios.
146 */
147 for (j = nalloc ; j-- ; ) {
148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 if (!bio)
150 goto out_free_bio;
151 r10_bio->devs[j].bio = bio;
152 if (!conf->have_replacement)
153 continue;
154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 if (!bio)
156 goto out_free_bio;
157 r10_bio->devs[j].repl_bio = bio;
158 }
159 /*
160 * Allocate RESYNC_PAGES data pages and attach them
161 * where needed.
162 */
163 for (j = 0; j < nalloc; j++) {
164 struct bio *rbio = r10_bio->devs[j].repl_bio;
165 struct resync_pages *rp, *rp_repl;
166
167 rp = &rps[j];
168 if (rbio)
169 rp_repl = &rps[nalloc + j];
170
171 bio = r10_bio->devs[j].bio;
172
173 if (!j || test_bit(MD_RECOVERY_SYNC,
174 &conf->mddev->recovery)) {
175 if (resync_alloc_pages(rp, gfp_flags))
176 goto out_free_pages;
177 } else {
178 memcpy(rp, &rps[0], sizeof(*rp));
179 resync_get_all_pages(rp);
180 }
181
182 rp->raid_bio = r10_bio;
183 bio->bi_private = rp;
184 if (rbio) {
185 memcpy(rp_repl, rp, sizeof(*rp));
186 rbio->bi_private = rp_repl;
187 }
188 }
189
190 return r10_bio;
191
192 out_free_pages:
193 while (--j >= 0)
194 resync_free_pages(&rps[j]);
195
196 j = 0;
197 out_free_bio:
198 for ( ; j < nalloc; j++) {
199 if (r10_bio->devs[j].bio)
200 bio_put(r10_bio->devs[j].bio);
201 if (r10_bio->devs[j].repl_bio)
202 bio_put(r10_bio->devs[j].repl_bio);
203 }
204 kfree(rps);
205 out_free_r10bio:
206 rbio_pool_free(r10_bio, conf);
207 return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 struct r10conf *conf = data;
213 struct r10bio *r10bio = __r10_bio;
214 int j;
215 struct resync_pages *rp = NULL;
216
217 for (j = conf->copies; j--; ) {
218 struct bio *bio = r10bio->devs[j].bio;
219
220 if (bio) {
221 rp = get_resync_pages(bio);
222 resync_free_pages(rp);
223 bio_put(bio);
224 }
225
226 bio = r10bio->devs[j].repl_bio;
227 if (bio)
228 bio_put(bio);
229 }
230
231 /* resync pages array stored in the 1st bio's .bi_private */
232 kfree(rp);
233
234 rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 int i;
240
241 for (i = 0; i < conf->copies; i++) {
242 struct bio **bio = & r10_bio->devs[i].bio;
243 if (!BIO_SPECIAL(*bio))
244 bio_put(*bio);
245 *bio = NULL;
246 bio = &r10_bio->devs[i].repl_bio;
247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 struct r10conf *conf = r10_bio->mddev->private;
256
257 put_all_bios(conf, r10_bio);
258 mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 struct r10conf *conf = r10_bio->mddev->private;
264
265 mempool_free(r10_bio, &conf->r10buf_pool);
266
267 lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 unsigned long flags;
273 struct mddev *mddev = r10_bio->mddev;
274 struct r10conf *conf = mddev->private;
275
276 spin_lock_irqsave(&conf->device_lock, flags);
277 list_add(&r10_bio->retry_list, &conf->retry_list);
278 conf->nr_queued ++;
279 spin_unlock_irqrestore(&conf->device_lock, flags);
280
281 /* wake up frozen array... */
282 wake_up(&conf->wait_barrier);
283
284 md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288 * raid_end_bio_io() is called when we have finished servicing a mirrored
289 * operation and are ready to return a success/failure code to the buffer
290 * cache layer.
291 */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 struct bio *bio = r10_bio->master_bio;
295 struct r10conf *conf = r10_bio->mddev->private;
296
297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 bio->bi_status = BLK_STS_IOERR;
299
300 bio_endio(bio);
301 /*
302 * Wake up any possible resync thread that waits for the device
303 * to go idle.
304 */
305 allow_barrier(conf);
306
307 free_r10bio(r10_bio);
308 }
309
310 /*
311 * Update disk head position estimator based on IRQ completion info.
312 */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 struct r10conf *conf = r10_bio->mddev->private;
316
317 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320
321 /*
322 * Find the disk number which triggered given bio
323 */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 struct bio *bio, int *slotp, int *replp)
326 {
327 int slot;
328 int repl = 0;
329
330 for (slot = 0; slot < conf->copies; slot++) {
331 if (r10_bio->devs[slot].bio == bio)
332 break;
333 if (r10_bio->devs[slot].repl_bio == bio) {
334 repl = 1;
335 break;
336 }
337 }
338
339 BUG_ON(slot == conf->copies);
340 update_head_pos(slot, r10_bio);
341
342 if (slotp)
343 *slotp = slot;
344 if (replp)
345 *replp = repl;
346 return r10_bio->devs[slot].devnum;
347 }
348
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 int uptodate = !bio->bi_status;
352 struct r10bio *r10_bio = bio->bi_private;
353 int slot;
354 struct md_rdev *rdev;
355 struct r10conf *conf = r10_bio->mddev->private;
356
357 slot = r10_bio->read_slot;
358 rdev = r10_bio->devs[slot].rdev;
359 /*
360 * this branch is our 'one mirror IO has finished' event handler:
361 */
362 update_head_pos(slot, r10_bio);
363
364 if (uptodate) {
365 /*
366 * Set R10BIO_Uptodate in our master bio, so that
367 * we will return a good error code to the higher
368 * levels even if IO on some other mirrored buffer fails.
369 *
370 * The 'master' represents the composite IO operation to
371 * user-side. So if something waits for IO, then it will
372 * wait for the 'master' bio.
373 */
374 set_bit(R10BIO_Uptodate, &r10_bio->state);
375 } else {
376 /* If all other devices that store this block have
377 * failed, we want to return the error upwards rather
378 * than fail the last device. Here we redefine
379 * "uptodate" to mean "Don't want to retry"
380 */
381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 rdev->raid_disk))
383 uptodate = 1;
384 }
385 if (uptodate) {
386 raid_end_bio_io(r10_bio);
387 rdev_dec_pending(rdev, conf->mddev);
388 } else {
389 /*
390 * oops, read error - keep the refcount on the rdev
391 */
392 char b[BDEVNAME_SIZE];
393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 mdname(conf->mddev),
395 bdevname(rdev->bdev, b),
396 (unsigned long long)r10_bio->sector);
397 set_bit(R10BIO_ReadError, &r10_bio->state);
398 reschedule_retry(r10_bio);
399 }
400 }
401
402 static void close_write(struct r10bio *r10_bio)
403 {
404 /* clear the bitmap if all writes complete successfully */
405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 r10_bio->sectors,
407 !test_bit(R10BIO_Degraded, &r10_bio->state),
408 0);
409 md_write_end(r10_bio->mddev);
410 }
411
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 if (atomic_dec_and_test(&r10_bio->remaining)) {
415 if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 reschedule_retry(r10_bio);
417 else {
418 close_write(r10_bio);
419 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 reschedule_retry(r10_bio);
421 else
422 raid_end_bio_io(r10_bio);
423 }
424 }
425 }
426
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 struct r10bio *r10_bio = bio->bi_private;
430 int dev;
431 int dec_rdev = 1;
432 struct r10conf *conf = r10_bio->mddev->private;
433 int slot, repl;
434 struct md_rdev *rdev = NULL;
435 struct bio *to_put = NULL;
436 bool discard_error;
437
438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439
440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441
442 if (repl)
443 rdev = conf->mirrors[dev].replacement;
444 if (!rdev) {
445 smp_rmb();
446 repl = 0;
447 rdev = conf->mirrors[dev].rdev;
448 }
449 /*
450 * this branch is our 'one mirror IO has finished' event handler:
451 */
452 if (bio->bi_status && !discard_error) {
453 if (repl)
454 /* Never record new bad blocks to replacement,
455 * just fail it.
456 */
457 md_error(rdev->mddev, rdev);
458 else {
459 set_bit(WriteErrorSeen, &rdev->flags);
460 if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 set_bit(MD_RECOVERY_NEEDED,
462 &rdev->mddev->recovery);
463
464 dec_rdev = 0;
465 if (test_bit(FailFast, &rdev->flags) &&
466 (bio->bi_opf & MD_FAILFAST)) {
467 md_error(rdev->mddev, rdev);
468 }
469
470 /*
471 * When the device is faulty, it is not necessary to
472 * handle write error.
473 * For failfast, this is the only remaining device,
474 * We need to retry the write without FailFast.
475 */
476 if (!test_bit(Faulty, &rdev->flags))
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 else {
479 r10_bio->devs[slot].bio = NULL;
480 to_put = bio;
481 dec_rdev = 1;
482 }
483 }
484 } else {
485 /*
486 * Set R10BIO_Uptodate in our master bio, so that
487 * we will return a good error code for to the higher
488 * levels even if IO on some other mirrored buffer fails.
489 *
490 * The 'master' represents the composite IO operation to
491 * user-side. So if something waits for IO, then it will
492 * wait for the 'master' bio.
493 */
494 sector_t first_bad;
495 int bad_sectors;
496
497 /*
498 * Do not set R10BIO_Uptodate if the current device is
499 * rebuilding or Faulty. This is because we cannot use
500 * such device for properly reading the data back (we could
501 * potentially use it, if the current write would have felt
502 * before rdev->recovery_offset, but for simplicity we don't
503 * check this here.
504 */
505 if (test_bit(In_sync, &rdev->flags) &&
506 !test_bit(Faulty, &rdev->flags))
507 set_bit(R10BIO_Uptodate, &r10_bio->state);
508
509 /* Maybe we can clear some bad blocks. */
510 if (is_badblock(rdev,
511 r10_bio->devs[slot].addr,
512 r10_bio->sectors,
513 &first_bad, &bad_sectors) && !discard_error) {
514 bio_put(bio);
515 if (repl)
516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 else
518 r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 dec_rdev = 0;
520 set_bit(R10BIO_MadeGood, &r10_bio->state);
521 }
522 }
523
524 /*
525 *
526 * Let's see if all mirrored write operations have finished
527 * already.
528 */
529 one_write_done(r10_bio);
530 if (dec_rdev)
531 rdev_dec_pending(rdev, conf->mddev);
532 if (to_put)
533 bio_put(to_put);
534 }
535
536 /*
537 * RAID10 layout manager
538 * As well as the chunksize and raid_disks count, there are two
539 * parameters: near_copies and far_copies.
540 * near_copies * far_copies must be <= raid_disks.
541 * Normally one of these will be 1.
542 * If both are 1, we get raid0.
543 * If near_copies == raid_disks, we get raid1.
544 *
545 * Chunks are laid out in raid0 style with near_copies copies of the
546 * first chunk, followed by near_copies copies of the next chunk and
547 * so on.
548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
549 * as described above, we start again with a device offset of near_copies.
550 * So we effectively have another copy of the whole array further down all
551 * the drives, but with blocks on different drives.
552 * With this layout, and block is never stored twice on the one device.
553 *
554 * raid10_find_phys finds the sector offset of a given virtual sector
555 * on each device that it is on.
556 *
557 * raid10_find_virt does the reverse mapping, from a device and a
558 * sector offset to a virtual address
559 */
560
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 int n,f;
564 sector_t sector;
565 sector_t chunk;
566 sector_t stripe;
567 int dev;
568 int slot = 0;
569 int last_far_set_start, last_far_set_size;
570
571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 last_far_set_start *= geo->far_set_size;
573
574 last_far_set_size = geo->far_set_size;
575 last_far_set_size += (geo->raid_disks % geo->far_set_size);
576
577 /* now calculate first sector/dev */
578 chunk = r10bio->sector >> geo->chunk_shift;
579 sector = r10bio->sector & geo->chunk_mask;
580
581 chunk *= geo->near_copies;
582 stripe = chunk;
583 dev = sector_div(stripe, geo->raid_disks);
584 if (geo->far_offset)
585 stripe *= geo->far_copies;
586
587 sector += stripe << geo->chunk_shift;
588
589 /* and calculate all the others */
590 for (n = 0; n < geo->near_copies; n++) {
591 int d = dev;
592 int set;
593 sector_t s = sector;
594 r10bio->devs[slot].devnum = d;
595 r10bio->devs[slot].addr = s;
596 slot++;
597
598 for (f = 1; f < geo->far_copies; f++) {
599 set = d / geo->far_set_size;
600 d += geo->near_copies;
601
602 if ((geo->raid_disks % geo->far_set_size) &&
603 (d > last_far_set_start)) {
604 d -= last_far_set_start;
605 d %= last_far_set_size;
606 d += last_far_set_start;
607 } else {
608 d %= geo->far_set_size;
609 d += geo->far_set_size * set;
610 }
611 s += geo->stride;
612 r10bio->devs[slot].devnum = d;
613 r10bio->devs[slot].addr = s;
614 slot++;
615 }
616 dev++;
617 if (dev >= geo->raid_disks) {
618 dev = 0;
619 sector += (geo->chunk_mask + 1);
620 }
621 }
622 }
623
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 struct geom *geo = &conf->geo;
627
628 if (conf->reshape_progress != MaxSector &&
629 ((r10bio->sector >= conf->reshape_progress) !=
630 conf->mddev->reshape_backwards)) {
631 set_bit(R10BIO_Previous, &r10bio->state);
632 geo = &conf->prev;
633 } else
634 clear_bit(R10BIO_Previous, &r10bio->state);
635
636 __raid10_find_phys(geo, r10bio);
637 }
638
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 sector_t offset, chunk, vchunk;
642 /* Never use conf->prev as this is only called during resync
643 * or recovery, so reshape isn't happening
644 */
645 struct geom *geo = &conf->geo;
646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 int far_set_size = geo->far_set_size;
648 int last_far_set_start;
649
650 if (geo->raid_disks % geo->far_set_size) {
651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 last_far_set_start *= geo->far_set_size;
653
654 if (dev >= last_far_set_start) {
655 far_set_size = geo->far_set_size;
656 far_set_size += (geo->raid_disks % geo->far_set_size);
657 far_set_start = last_far_set_start;
658 }
659 }
660
661 offset = sector & geo->chunk_mask;
662 if (geo->far_offset) {
663 int fc;
664 chunk = sector >> geo->chunk_shift;
665 fc = sector_div(chunk, geo->far_copies);
666 dev -= fc * geo->near_copies;
667 if (dev < far_set_start)
668 dev += far_set_size;
669 } else {
670 while (sector >= geo->stride) {
671 sector -= geo->stride;
672 if (dev < (geo->near_copies + far_set_start))
673 dev += far_set_size - geo->near_copies;
674 else
675 dev -= geo->near_copies;
676 }
677 chunk = sector >> geo->chunk_shift;
678 }
679 vchunk = chunk * geo->raid_disks + dev;
680 sector_div(vchunk, geo->near_copies);
681 return (vchunk << geo->chunk_shift) + offset;
682 }
683
684 /*
685 * This routine returns the disk from which the requested read should
686 * be done. There is a per-array 'next expected sequential IO' sector
687 * number - if this matches on the next IO then we use the last disk.
688 * There is also a per-disk 'last know head position' sector that is
689 * maintained from IRQ contexts, both the normal and the resync IO
690 * completion handlers update this position correctly. If there is no
691 * perfect sequential match then we pick the disk whose head is closest.
692 *
693 * If there are 2 mirrors in the same 2 devices, performance degrades
694 * because position is mirror, not device based.
695 *
696 * The rdev for the device selected will have nr_pending incremented.
697 */
698
699 /*
700 * FIXME: possibly should rethink readbalancing and do it differently
701 * depending on near_copies / far_copies geometry.
702 */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704 struct r10bio *r10_bio,
705 int *max_sectors)
706 {
707 const sector_t this_sector = r10_bio->sector;
708 int disk, slot;
709 int sectors = r10_bio->sectors;
710 int best_good_sectors;
711 sector_t new_distance, best_dist;
712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 int do_balance;
714 int best_dist_slot, best_pending_slot;
715 bool has_nonrot_disk = false;
716 unsigned int min_pending;
717 struct geom *geo = &conf->geo;
718
719 raid10_find_phys(conf, r10_bio);
720 rcu_read_lock();
721 best_dist_slot = -1;
722 min_pending = UINT_MAX;
723 best_dist_rdev = NULL;
724 best_pending_rdev = NULL;
725 best_dist = MaxSector;
726 best_good_sectors = 0;
727 do_balance = 1;
728 clear_bit(R10BIO_FailFast, &r10_bio->state);
729 /*
730 * Check if we can balance. We can balance on the whole
731 * device if no resync is going on (recovery is ok), or below
732 * the resync window. We take the first readable disk when
733 * above the resync window.
734 */
735 if ((conf->mddev->recovery_cp < MaxSector
736 && (this_sector + sectors >= conf->next_resync)) ||
737 (mddev_is_clustered(conf->mddev) &&
738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 this_sector + sectors)))
740 do_balance = 0;
741
742 for (slot = 0; slot < conf->copies ; slot++) {
743 sector_t first_bad;
744 int bad_sectors;
745 sector_t dev_sector;
746 unsigned int pending;
747 bool nonrot;
748
749 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 continue;
751 disk = r10_bio->devs[slot].devnum;
752 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 if (rdev == NULL ||
757 test_bit(Faulty, &rdev->flags))
758 continue;
759 if (!test_bit(In_sync, &rdev->flags) &&
760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 continue;
762
763 dev_sector = r10_bio->devs[slot].addr;
764 if (is_badblock(rdev, dev_sector, sectors,
765 &first_bad, &bad_sectors)) {
766 if (best_dist < MaxSector)
767 /* Already have a better slot */
768 continue;
769 if (first_bad <= dev_sector) {
770 /* Cannot read here. If this is the
771 * 'primary' device, then we must not read
772 * beyond 'bad_sectors' from another device.
773 */
774 bad_sectors -= (dev_sector - first_bad);
775 if (!do_balance && sectors > bad_sectors)
776 sectors = bad_sectors;
777 if (best_good_sectors > sectors)
778 best_good_sectors = sectors;
779 } else {
780 sector_t good_sectors =
781 first_bad - dev_sector;
782 if (good_sectors > best_good_sectors) {
783 best_good_sectors = good_sectors;
784 best_dist_slot = slot;
785 best_dist_rdev = rdev;
786 }
787 if (!do_balance)
788 /* Must read from here */
789 break;
790 }
791 continue;
792 } else
793 best_good_sectors = sectors;
794
795 if (!do_balance)
796 break;
797
798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 has_nonrot_disk |= nonrot;
800 pending = atomic_read(&rdev->nr_pending);
801 if (min_pending > pending && nonrot) {
802 min_pending = pending;
803 best_pending_slot = slot;
804 best_pending_rdev = rdev;
805 }
806
807 if (best_dist_slot >= 0)
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast, &r10_bio->state);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
813 */
814 if (geo->near_copies > 1 && !pending)
815 new_distance = 0;
816
817 /* for far > 1 always use the lowest address */
818 else if (geo->far_copies > 1)
819 new_distance = r10_bio->devs[slot].addr;
820 else
821 new_distance = abs(r10_bio->devs[slot].addr -
822 conf->mirrors[disk].head_position);
823
824 if (new_distance < best_dist) {
825 best_dist = new_distance;
826 best_dist_slot = slot;
827 best_dist_rdev = rdev;
828 }
829 }
830 if (slot >= conf->copies) {
831 if (has_nonrot_disk) {
832 slot = best_pending_slot;
833 rdev = best_pending_rdev;
834 } else {
835 slot = best_dist_slot;
836 rdev = best_dist_rdev;
837 }
838 }
839
840 if (slot >= 0) {
841 atomic_inc(&rdev->nr_pending);
842 r10_bio->read_slot = slot;
843 } else
844 rdev = NULL;
845 rcu_read_unlock();
846 *max_sectors = best_good_sectors;
847
848 return rdev;
849 }
850
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853 /* Any writes that have been queued but are awaiting
854 * bitmap updates get flushed here.
855 */
856 spin_lock_irq(&conf->device_lock);
857
858 if (conf->pending_bio_list.head) {
859 struct blk_plug plug;
860 struct bio *bio;
861
862 bio = bio_list_get(&conf->pending_bio_list);
863 conf->pending_count = 0;
864 spin_unlock_irq(&conf->device_lock);
865
866 /*
867 * As this is called in a wait_event() loop (see freeze_array),
868 * current->state might be TASK_UNINTERRUPTIBLE which will
869 * cause a warning when we prepare to wait again. As it is
870 * rare that this path is taken, it is perfectly safe to force
871 * us to go around the wait_event() loop again, so the warning
872 * is a false-positive. Silence the warning by resetting
873 * thread state
874 */
875 __set_current_state(TASK_RUNNING);
876
877 blk_start_plug(&plug);
878 /* flush any pending bitmap writes to disk
879 * before proceeding w/ I/O */
880 md_bitmap_unplug(conf->mddev->bitmap);
881 wake_up(&conf->wait_barrier);
882
883 while (bio) { /* submit pending writes */
884 struct bio *next = bio->bi_next;
885 struct md_rdev *rdev = (void*)bio->bi_disk;
886 bio->bi_next = NULL;
887 bio_set_dev(bio, rdev->bdev);
888 if (test_bit(Faulty, &rdev->flags)) {
889 bio_io_error(bio);
890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
891 !blk_queue_discard(bio->bi_disk->queue)))
892 /* Just ignore it */
893 bio_endio(bio);
894 else
895 submit_bio_noacct(bio);
896 bio = next;
897 }
898 blk_finish_plug(&plug);
899 } else
900 spin_unlock_irq(&conf->device_lock);
901 }
902
903 /* Barriers....
904 * Sometimes we need to suspend IO while we do something else,
905 * either some resync/recovery, or reconfigure the array.
906 * To do this we raise a 'barrier'.
907 * The 'barrier' is a counter that can be raised multiple times
908 * to count how many activities are happening which preclude
909 * normal IO.
910 * We can only raise the barrier if there is no pending IO.
911 * i.e. if nr_pending == 0.
912 * We choose only to raise the barrier if no-one is waiting for the
913 * barrier to go down. This means that as soon as an IO request
914 * is ready, no other operations which require a barrier will start
915 * until the IO request has had a chance.
916 *
917 * So: regular IO calls 'wait_barrier'. When that returns there
918 * is no backgroup IO happening, It must arrange to call
919 * allow_barrier when it has finished its IO.
920 * backgroup IO calls must call raise_barrier. Once that returns
921 * there is no normal IO happeing. It must arrange to call
922 * lower_barrier when the particular background IO completes.
923 */
924
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 BUG_ON(force && !conf->barrier);
928 spin_lock_irq(&conf->resync_lock);
929
930 /* Wait until no block IO is waiting (unless 'force') */
931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 conf->resync_lock);
933
934 /* block any new IO from starting */
935 conf->barrier++;
936
937 /* Now wait for all pending IO to complete */
938 wait_event_lock_irq(conf->wait_barrier,
939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 conf->resync_lock);
941
942 spin_unlock_irq(&conf->resync_lock);
943 }
944
945 static void lower_barrier(struct r10conf *conf)
946 {
947 unsigned long flags;
948 spin_lock_irqsave(&conf->resync_lock, flags);
949 conf->barrier--;
950 spin_unlock_irqrestore(&conf->resync_lock, flags);
951 wake_up(&conf->wait_barrier);
952 }
953
954 static void wait_barrier(struct r10conf *conf)
955 {
956 spin_lock_irq(&conf->resync_lock);
957 if (conf->barrier) {
958 struct bio_list *bio_list = current->bio_list;
959 conf->nr_waiting++;
960 /* Wait for the barrier to drop.
961 * However if there are already pending
962 * requests (preventing the barrier from
963 * rising completely), and the
964 * pre-process bio queue isn't empty,
965 * then don't wait, as we need to empty
966 * that queue to get the nr_pending
967 * count down.
968 */
969 raid10_log(conf->mddev, "wait barrier");
970 wait_event_lock_irq(conf->wait_barrier,
971 !conf->barrier ||
972 (atomic_read(&conf->nr_pending) &&
973 bio_list &&
974 (!bio_list_empty(&bio_list[0]) ||
975 !bio_list_empty(&bio_list[1]))) ||
976 /* move on if recovery thread is
977 * blocked by us
978 */
979 (conf->mddev->thread->tsk == current &&
980 test_bit(MD_RECOVERY_RUNNING,
981 &conf->mddev->recovery) &&
982 conf->nr_queued > 0),
983 conf->resync_lock);
984 conf->nr_waiting--;
985 if (!conf->nr_waiting)
986 wake_up(&conf->wait_barrier);
987 }
988 atomic_inc(&conf->nr_pending);
989 spin_unlock_irq(&conf->resync_lock);
990 }
991
992 static void allow_barrier(struct r10conf *conf)
993 {
994 if ((atomic_dec_and_test(&conf->nr_pending)) ||
995 (conf->array_freeze_pending))
996 wake_up(&conf->wait_barrier);
997 }
998
999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001 /* stop syncio and normal IO and wait for everything to
1002 * go quiet.
1003 * We increment barrier and nr_waiting, and then
1004 * wait until nr_pending match nr_queued+extra
1005 * This is called in the context of one normal IO request
1006 * that has failed. Thus any sync request that might be pending
1007 * will be blocked by nr_pending, and we need to wait for
1008 * pending IO requests to complete or be queued for re-try.
1009 * Thus the number queued (nr_queued) plus this request (extra)
1010 * must match the number of pending IOs (nr_pending) before
1011 * we continue.
1012 */
1013 spin_lock_irq(&conf->resync_lock);
1014 conf->array_freeze_pending++;
1015 conf->barrier++;
1016 conf->nr_waiting++;
1017 wait_event_lock_irq_cmd(conf->wait_barrier,
1018 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019 conf->resync_lock,
1020 flush_pending_writes(conf));
1021
1022 conf->array_freeze_pending--;
1023 spin_unlock_irq(&conf->resync_lock);
1024 }
1025
1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028 /* reverse the effect of the freeze */
1029 spin_lock_irq(&conf->resync_lock);
1030 conf->barrier--;
1031 conf->nr_waiting--;
1032 wake_up(&conf->wait_barrier);
1033 spin_unlock_irq(&conf->resync_lock);
1034 }
1035
1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037 struct md_rdev *rdev)
1038 {
1039 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040 test_bit(R10BIO_Previous, &r10_bio->state))
1041 return rdev->data_offset;
1042 else
1043 return rdev->new_data_offset;
1044 }
1045
1046 struct raid10_plug_cb {
1047 struct blk_plug_cb cb;
1048 struct bio_list pending;
1049 int pending_cnt;
1050 };
1051
1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055 cb);
1056 struct mddev *mddev = plug->cb.data;
1057 struct r10conf *conf = mddev->private;
1058 struct bio *bio;
1059
1060 if (from_schedule || current->bio_list) {
1061 spin_lock_irq(&conf->device_lock);
1062 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063 conf->pending_count += plug->pending_cnt;
1064 spin_unlock_irq(&conf->device_lock);
1065 wake_up(&conf->wait_barrier);
1066 md_wakeup_thread(mddev->thread);
1067 kfree(plug);
1068 return;
1069 }
1070
1071 /* we aren't scheduling, so we can do the write-out directly. */
1072 bio = bio_list_get(&plug->pending);
1073 md_bitmap_unplug(mddev->bitmap);
1074 wake_up(&conf->wait_barrier);
1075
1076 while (bio) { /* submit pending writes */
1077 struct bio *next = bio->bi_next;
1078 struct md_rdev *rdev = (void*)bio->bi_disk;
1079 bio->bi_next = NULL;
1080 bio_set_dev(bio, rdev->bdev);
1081 if (test_bit(Faulty, &rdev->flags)) {
1082 bio_io_error(bio);
1083 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1084 !blk_queue_discard(bio->bi_disk->queue)))
1085 /* Just ignore it */
1086 bio_endio(bio);
1087 else
1088 submit_bio_noacct(bio);
1089 bio = next;
1090 }
1091 kfree(plug);
1092 }
1093
1094 /*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1099 */
1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101 struct bio *bio, sector_t sectors)
1102 {
1103 wait_barrier(conf);
1104 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105 bio->bi_iter.bi_sector < conf->reshape_progress &&
1106 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107 raid10_log(conf->mddev, "wait reshape");
1108 allow_barrier(conf);
1109 wait_event(conf->wait_barrier,
1110 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111 conf->reshape_progress >= bio->bi_iter.bi_sector +
1112 sectors);
1113 wait_barrier(conf);
1114 }
1115 }
1116
1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118 struct r10bio *r10_bio)
1119 {
1120 struct r10conf *conf = mddev->private;
1121 struct bio *read_bio;
1122 const int op = bio_op(bio);
1123 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124 int max_sectors;
1125 struct md_rdev *rdev;
1126 char b[BDEVNAME_SIZE];
1127 int slot = r10_bio->read_slot;
1128 struct md_rdev *err_rdev = NULL;
1129 gfp_t gfp = GFP_NOIO;
1130
1131 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1132 /*
1133 * This is an error retry, but we cannot
1134 * safely dereference the rdev in the r10_bio,
1135 * we must use the one in conf.
1136 * If it has already been disconnected (unlikely)
1137 * we lose the device name in error messages.
1138 */
1139 int disk;
1140 /*
1141 * As we are blocking raid10, it is a little safer to
1142 * use __GFP_HIGH.
1143 */
1144 gfp = GFP_NOIO | __GFP_HIGH;
1145
1146 rcu_read_lock();
1147 disk = r10_bio->devs[slot].devnum;
1148 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149 if (err_rdev)
1150 bdevname(err_rdev->bdev, b);
1151 else {
1152 strcpy(b, "???");
1153 /* This never gets dereferenced */
1154 err_rdev = r10_bio->devs[slot].rdev;
1155 }
1156 rcu_read_unlock();
1157 }
1158
1159 regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160 rdev = read_balance(conf, r10_bio, &max_sectors);
1161 if (!rdev) {
1162 if (err_rdev) {
1163 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164 mdname(mddev), b,
1165 (unsigned long long)r10_bio->sector);
1166 }
1167 raid_end_bio_io(r10_bio);
1168 return;
1169 }
1170 if (err_rdev)
1171 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172 mdname(mddev),
1173 bdevname(rdev->bdev, b),
1174 (unsigned long long)r10_bio->sector);
1175 if (max_sectors < bio_sectors(bio)) {
1176 struct bio *split = bio_split(bio, max_sectors,
1177 gfp, &conf->bio_split);
1178 bio_chain(split, bio);
1179 allow_barrier(conf);
1180 submit_bio_noacct(bio);
1181 wait_barrier(conf);
1182 bio = split;
1183 r10_bio->master_bio = bio;
1184 r10_bio->sectors = max_sectors;
1185 }
1186 slot = r10_bio->read_slot;
1187
1188 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190 r10_bio->devs[slot].bio = read_bio;
1191 r10_bio->devs[slot].rdev = rdev;
1192
1193 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194 choose_data_offset(r10_bio, rdev);
1195 bio_set_dev(read_bio, rdev->bdev);
1196 read_bio->bi_end_io = raid10_end_read_request;
1197 bio_set_op_attrs(read_bio, op, do_sync);
1198 if (test_bit(FailFast, &rdev->flags) &&
1199 test_bit(R10BIO_FailFast, &r10_bio->state))
1200 read_bio->bi_opf |= MD_FAILFAST;
1201 read_bio->bi_private = r10_bio;
1202
1203 if (mddev->gendisk)
1204 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1205 r10_bio->sector);
1206 submit_bio_noacct(read_bio);
1207 return;
1208 }
1209
1210 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1211 struct bio *bio, bool replacement,
1212 int n_copy)
1213 {
1214 const int op = bio_op(bio);
1215 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1217 unsigned long flags;
1218 struct blk_plug_cb *cb;
1219 struct raid10_plug_cb *plug = NULL;
1220 struct r10conf *conf = mddev->private;
1221 struct md_rdev *rdev;
1222 int devnum = r10_bio->devs[n_copy].devnum;
1223 struct bio *mbio;
1224
1225 if (replacement) {
1226 rdev = conf->mirrors[devnum].replacement;
1227 if (rdev == NULL) {
1228 /* Replacement just got moved to main 'rdev' */
1229 smp_mb();
1230 rdev = conf->mirrors[devnum].rdev;
1231 }
1232 } else
1233 rdev = conf->mirrors[devnum].rdev;
1234
1235 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1236 if (replacement)
1237 r10_bio->devs[n_copy].repl_bio = mbio;
1238 else
1239 r10_bio->devs[n_copy].bio = mbio;
1240
1241 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1242 choose_data_offset(r10_bio, rdev));
1243 bio_set_dev(mbio, rdev->bdev);
1244 mbio->bi_end_io = raid10_end_write_request;
1245 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1246 if (!replacement && test_bit(FailFast,
1247 &conf->mirrors[devnum].rdev->flags)
1248 && enough(conf, devnum))
1249 mbio->bi_opf |= MD_FAILFAST;
1250 mbio->bi_private = r10_bio;
1251
1252 if (conf->mddev->gendisk)
1253 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1254 r10_bio->sector);
1255 /* flush_pending_writes() needs access to the rdev so...*/
1256 mbio->bi_disk = (void *)rdev;
1257
1258 atomic_inc(&r10_bio->remaining);
1259
1260 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1261 if (cb)
1262 plug = container_of(cb, struct raid10_plug_cb, cb);
1263 else
1264 plug = NULL;
1265 if (plug) {
1266 bio_list_add(&plug->pending, mbio);
1267 plug->pending_cnt++;
1268 } else {
1269 spin_lock_irqsave(&conf->device_lock, flags);
1270 bio_list_add(&conf->pending_bio_list, mbio);
1271 conf->pending_count++;
1272 spin_unlock_irqrestore(&conf->device_lock, flags);
1273 md_wakeup_thread(mddev->thread);
1274 }
1275 }
1276
1277 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1278 struct r10bio *r10_bio)
1279 {
1280 struct r10conf *conf = mddev->private;
1281 int i;
1282 struct md_rdev *blocked_rdev;
1283 sector_t sectors;
1284 int max_sectors;
1285
1286 if ((mddev_is_clustered(mddev) &&
1287 md_cluster_ops->area_resyncing(mddev, WRITE,
1288 bio->bi_iter.bi_sector,
1289 bio_end_sector(bio)))) {
1290 DEFINE_WAIT(w);
1291 for (;;) {
1292 prepare_to_wait(&conf->wait_barrier,
1293 &w, TASK_IDLE);
1294 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1295 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1296 break;
1297 schedule();
1298 }
1299 finish_wait(&conf->wait_barrier, &w);
1300 }
1301
1302 sectors = r10_bio->sectors;
1303 regular_request_wait(mddev, conf, bio, sectors);
1304 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305 (mddev->reshape_backwards
1306 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1307 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1308 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1309 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1310 /* Need to update reshape_position in metadata */
1311 mddev->reshape_position = conf->reshape_progress;
1312 set_mask_bits(&mddev->sb_flags, 0,
1313 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1314 md_wakeup_thread(mddev->thread);
1315 raid10_log(conf->mddev, "wait reshape metadata");
1316 wait_event(mddev->sb_wait,
1317 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1318
1319 conf->reshape_safe = mddev->reshape_position;
1320 }
1321
1322 if (conf->pending_count >= max_queued_requests) {
1323 md_wakeup_thread(mddev->thread);
1324 raid10_log(mddev, "wait queued");
1325 wait_event(conf->wait_barrier,
1326 conf->pending_count < max_queued_requests);
1327 }
1328 /* first select target devices under rcu_lock and
1329 * inc refcount on their rdev. Record them by setting
1330 * bios[x] to bio
1331 * If there are known/acknowledged bad blocks on any device
1332 * on which we have seen a write error, we want to avoid
1333 * writing to those blocks. This potentially requires several
1334 * writes to write around the bad blocks. Each set of writes
1335 * gets its own r10_bio with a set of bios attached.
1336 */
1337
1338 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1339 raid10_find_phys(conf, r10_bio);
1340 retry_write:
1341 blocked_rdev = NULL;
1342 rcu_read_lock();
1343 max_sectors = r10_bio->sectors;
1344
1345 for (i = 0; i < conf->copies; i++) {
1346 int d = r10_bio->devs[i].devnum;
1347 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1348 struct md_rdev *rrdev = rcu_dereference(
1349 conf->mirrors[d].replacement);
1350 if (rdev == rrdev)
1351 rrdev = NULL;
1352 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1353 atomic_inc(&rdev->nr_pending);
1354 blocked_rdev = rdev;
1355 break;
1356 }
1357 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1358 atomic_inc(&rrdev->nr_pending);
1359 blocked_rdev = rrdev;
1360 break;
1361 }
1362 if (rdev && (test_bit(Faulty, &rdev->flags)))
1363 rdev = NULL;
1364 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1365 rrdev = NULL;
1366
1367 r10_bio->devs[i].bio = NULL;
1368 r10_bio->devs[i].repl_bio = NULL;
1369
1370 if (!rdev && !rrdev) {
1371 set_bit(R10BIO_Degraded, &r10_bio->state);
1372 continue;
1373 }
1374 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1375 sector_t first_bad;
1376 sector_t dev_sector = r10_bio->devs[i].addr;
1377 int bad_sectors;
1378 int is_bad;
1379
1380 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1381 &first_bad, &bad_sectors);
1382 if (is_bad < 0) {
1383 /* Mustn't write here until the bad block
1384 * is acknowledged
1385 */
1386 atomic_inc(&rdev->nr_pending);
1387 set_bit(BlockedBadBlocks, &rdev->flags);
1388 blocked_rdev = rdev;
1389 break;
1390 }
1391 if (is_bad && first_bad <= dev_sector) {
1392 /* Cannot write here at all */
1393 bad_sectors -= (dev_sector - first_bad);
1394 if (bad_sectors < max_sectors)
1395 /* Mustn't write more than bad_sectors
1396 * to other devices yet
1397 */
1398 max_sectors = bad_sectors;
1399 /* We don't set R10BIO_Degraded as that
1400 * only applies if the disk is missing,
1401 * so it might be re-added, and we want to
1402 * know to recover this chunk.
1403 * In this case the device is here, and the
1404 * fact that this chunk is not in-sync is
1405 * recorded in the bad block log.
1406 */
1407 continue;
1408 }
1409 if (is_bad) {
1410 int good_sectors = first_bad - dev_sector;
1411 if (good_sectors < max_sectors)
1412 max_sectors = good_sectors;
1413 }
1414 }
1415 if (rdev) {
1416 r10_bio->devs[i].bio = bio;
1417 atomic_inc(&rdev->nr_pending);
1418 }
1419 if (rrdev) {
1420 r10_bio->devs[i].repl_bio = bio;
1421 atomic_inc(&rrdev->nr_pending);
1422 }
1423 }
1424 rcu_read_unlock();
1425
1426 if (unlikely(blocked_rdev)) {
1427 /* Have to wait for this device to get unblocked, then retry */
1428 int j;
1429 int d;
1430
1431 for (j = 0; j < i; j++) {
1432 if (r10_bio->devs[j].bio) {
1433 d = r10_bio->devs[j].devnum;
1434 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1435 }
1436 if (r10_bio->devs[j].repl_bio) {
1437 struct md_rdev *rdev;
1438 d = r10_bio->devs[j].devnum;
1439 rdev = conf->mirrors[d].replacement;
1440 if (!rdev) {
1441 /* Race with remove_disk */
1442 smp_mb();
1443 rdev = conf->mirrors[d].rdev;
1444 }
1445 rdev_dec_pending(rdev, mddev);
1446 }
1447 }
1448 allow_barrier(conf);
1449 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1450 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1451 wait_barrier(conf);
1452 goto retry_write;
1453 }
1454
1455 if (max_sectors < r10_bio->sectors)
1456 r10_bio->sectors = max_sectors;
1457
1458 if (r10_bio->sectors < bio_sectors(bio)) {
1459 struct bio *split = bio_split(bio, r10_bio->sectors,
1460 GFP_NOIO, &conf->bio_split);
1461 bio_chain(split, bio);
1462 allow_barrier(conf);
1463 submit_bio_noacct(bio);
1464 wait_barrier(conf);
1465 bio = split;
1466 r10_bio->master_bio = bio;
1467 }
1468
1469 atomic_set(&r10_bio->remaining, 1);
1470 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1471
1472 for (i = 0; i < conf->copies; i++) {
1473 if (r10_bio->devs[i].bio)
1474 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1475 if (r10_bio->devs[i].repl_bio)
1476 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1477 }
1478 one_write_done(r10_bio);
1479 }
1480
1481 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1482 {
1483 struct r10conf *conf = mddev->private;
1484 struct r10bio *r10_bio;
1485
1486 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1487
1488 r10_bio->master_bio = bio;
1489 r10_bio->sectors = sectors;
1490
1491 r10_bio->mddev = mddev;
1492 r10_bio->sector = bio->bi_iter.bi_sector;
1493 r10_bio->state = 0;
1494 r10_bio->read_slot = -1;
1495 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1496
1497 if (bio_data_dir(bio) == READ)
1498 raid10_read_request(mddev, bio, r10_bio);
1499 else
1500 raid10_write_request(mddev, bio, r10_bio);
1501 }
1502
1503 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1504 {
1505 struct r10conf *conf = mddev->private;
1506 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1507 int chunk_sects = chunk_mask + 1;
1508 int sectors = bio_sectors(bio);
1509
1510 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1511 && md_flush_request(mddev, bio))
1512 return true;
1513
1514 if (!md_write_start(mddev, bio))
1515 return false;
1516
1517 /*
1518 * If this request crosses a chunk boundary, we need to split
1519 * it.
1520 */
1521 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1522 sectors > chunk_sects
1523 && (conf->geo.near_copies < conf->geo.raid_disks
1524 || conf->prev.near_copies <
1525 conf->prev.raid_disks)))
1526 sectors = chunk_sects -
1527 (bio->bi_iter.bi_sector &
1528 (chunk_sects - 1));
1529 __make_request(mddev, bio, sectors);
1530
1531 /* In case raid10d snuck in to freeze_array */
1532 wake_up(&conf->wait_barrier);
1533 return true;
1534 }
1535
1536 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1537 {
1538 struct r10conf *conf = mddev->private;
1539 int i;
1540
1541 if (conf->geo.near_copies < conf->geo.raid_disks)
1542 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1543 if (conf->geo.near_copies > 1)
1544 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1545 if (conf->geo.far_copies > 1) {
1546 if (conf->geo.far_offset)
1547 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1548 else
1549 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1550 if (conf->geo.far_set_size != conf->geo.raid_disks)
1551 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1552 }
1553 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1554 conf->geo.raid_disks - mddev->degraded);
1555 rcu_read_lock();
1556 for (i = 0; i < conf->geo.raid_disks; i++) {
1557 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1558 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1559 }
1560 rcu_read_unlock();
1561 seq_printf(seq, "]");
1562 }
1563
1564 /* check if there are enough drives for
1565 * every block to appear on atleast one.
1566 * Don't consider the device numbered 'ignore'
1567 * as we might be about to remove it.
1568 */
1569 static int _enough(struct r10conf *conf, int previous, int ignore)
1570 {
1571 int first = 0;
1572 int has_enough = 0;
1573 int disks, ncopies;
1574 if (previous) {
1575 disks = conf->prev.raid_disks;
1576 ncopies = conf->prev.near_copies;
1577 } else {
1578 disks = conf->geo.raid_disks;
1579 ncopies = conf->geo.near_copies;
1580 }
1581
1582 rcu_read_lock();
1583 do {
1584 int n = conf->copies;
1585 int cnt = 0;
1586 int this = first;
1587 while (n--) {
1588 struct md_rdev *rdev;
1589 if (this != ignore &&
1590 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1591 test_bit(In_sync, &rdev->flags))
1592 cnt++;
1593 this = (this+1) % disks;
1594 }
1595 if (cnt == 0)
1596 goto out;
1597 first = (first + ncopies) % disks;
1598 } while (first != 0);
1599 has_enough = 1;
1600 out:
1601 rcu_read_unlock();
1602 return has_enough;
1603 }
1604
1605 static int enough(struct r10conf *conf, int ignore)
1606 {
1607 /* when calling 'enough', both 'prev' and 'geo' must
1608 * be stable.
1609 * This is ensured if ->reconfig_mutex or ->device_lock
1610 * is held.
1611 */
1612 return _enough(conf, 0, ignore) &&
1613 _enough(conf, 1, ignore);
1614 }
1615
1616 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1617 {
1618 char b[BDEVNAME_SIZE];
1619 struct r10conf *conf = mddev->private;
1620 unsigned long flags;
1621
1622 /*
1623 * If it is not operational, then we have already marked it as dead
1624 * else if it is the last working disks with "fail_last_dev == false",
1625 * ignore the error, let the next level up know.
1626 * else mark the drive as failed
1627 */
1628 spin_lock_irqsave(&conf->device_lock, flags);
1629 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1630 && !enough(conf, rdev->raid_disk)) {
1631 /*
1632 * Don't fail the drive, just return an IO error.
1633 */
1634 spin_unlock_irqrestore(&conf->device_lock, flags);
1635 return;
1636 }
1637 if (test_and_clear_bit(In_sync, &rdev->flags))
1638 mddev->degraded++;
1639 /*
1640 * If recovery is running, make sure it aborts.
1641 */
1642 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1643 set_bit(Blocked, &rdev->flags);
1644 set_bit(Faulty, &rdev->flags);
1645 set_mask_bits(&mddev->sb_flags, 0,
1646 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1647 spin_unlock_irqrestore(&conf->device_lock, flags);
1648 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1649 "md/raid10:%s: Operation continuing on %d devices.\n",
1650 mdname(mddev), bdevname(rdev->bdev, b),
1651 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1652 }
1653
1654 static void print_conf(struct r10conf *conf)
1655 {
1656 int i;
1657 struct md_rdev *rdev;
1658
1659 pr_debug("RAID10 conf printout:\n");
1660 if (!conf) {
1661 pr_debug("(!conf)\n");
1662 return;
1663 }
1664 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1665 conf->geo.raid_disks);
1666
1667 /* This is only called with ->reconfix_mutex held, so
1668 * rcu protection of rdev is not needed */
1669 for (i = 0; i < conf->geo.raid_disks; i++) {
1670 char b[BDEVNAME_SIZE];
1671 rdev = conf->mirrors[i].rdev;
1672 if (rdev)
1673 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1674 i, !test_bit(In_sync, &rdev->flags),
1675 !test_bit(Faulty, &rdev->flags),
1676 bdevname(rdev->bdev,b));
1677 }
1678 }
1679
1680 static void close_sync(struct r10conf *conf)
1681 {
1682 wait_barrier(conf);
1683 allow_barrier(conf);
1684
1685 mempool_exit(&conf->r10buf_pool);
1686 }
1687
1688 static int raid10_spare_active(struct mddev *mddev)
1689 {
1690 int i;
1691 struct r10conf *conf = mddev->private;
1692 struct raid10_info *tmp;
1693 int count = 0;
1694 unsigned long flags;
1695
1696 /*
1697 * Find all non-in_sync disks within the RAID10 configuration
1698 * and mark them in_sync
1699 */
1700 for (i = 0; i < conf->geo.raid_disks; i++) {
1701 tmp = conf->mirrors + i;
1702 if (tmp->replacement
1703 && tmp->replacement->recovery_offset == MaxSector
1704 && !test_bit(Faulty, &tmp->replacement->flags)
1705 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1706 /* Replacement has just become active */
1707 if (!tmp->rdev
1708 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1709 count++;
1710 if (tmp->rdev) {
1711 /* Replaced device not technically faulty,
1712 * but we need to be sure it gets removed
1713 * and never re-added.
1714 */
1715 set_bit(Faulty, &tmp->rdev->flags);
1716 sysfs_notify_dirent_safe(
1717 tmp->rdev->sysfs_state);
1718 }
1719 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1720 } else if (tmp->rdev
1721 && tmp->rdev->recovery_offset == MaxSector
1722 && !test_bit(Faulty, &tmp->rdev->flags)
1723 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1724 count++;
1725 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1726 }
1727 }
1728 spin_lock_irqsave(&conf->device_lock, flags);
1729 mddev->degraded -= count;
1730 spin_unlock_irqrestore(&conf->device_lock, flags);
1731
1732 print_conf(conf);
1733 return count;
1734 }
1735
1736 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1737 {
1738 struct r10conf *conf = mddev->private;
1739 int err = -EEXIST;
1740 int mirror;
1741 int first = 0;
1742 int last = conf->geo.raid_disks - 1;
1743
1744 if (mddev->recovery_cp < MaxSector)
1745 /* only hot-add to in-sync arrays, as recovery is
1746 * very different from resync
1747 */
1748 return -EBUSY;
1749 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1750 return -EINVAL;
1751
1752 if (md_integrity_add_rdev(rdev, mddev))
1753 return -ENXIO;
1754
1755 if (rdev->raid_disk >= 0)
1756 first = last = rdev->raid_disk;
1757
1758 if (rdev->saved_raid_disk >= first &&
1759 rdev->saved_raid_disk < conf->geo.raid_disks &&
1760 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1761 mirror = rdev->saved_raid_disk;
1762 else
1763 mirror = first;
1764 for ( ; mirror <= last ; mirror++) {
1765 struct raid10_info *p = &conf->mirrors[mirror];
1766 if (p->recovery_disabled == mddev->recovery_disabled)
1767 continue;
1768 if (p->rdev) {
1769 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1770 p->replacement != NULL)
1771 continue;
1772 clear_bit(In_sync, &rdev->flags);
1773 set_bit(Replacement, &rdev->flags);
1774 rdev->raid_disk = mirror;
1775 err = 0;
1776 if (mddev->gendisk)
1777 disk_stack_limits(mddev->gendisk, rdev->bdev,
1778 rdev->data_offset << 9);
1779 conf->fullsync = 1;
1780 rcu_assign_pointer(p->replacement, rdev);
1781 break;
1782 }
1783
1784 if (mddev->gendisk)
1785 disk_stack_limits(mddev->gendisk, rdev->bdev,
1786 rdev->data_offset << 9);
1787
1788 p->head_position = 0;
1789 p->recovery_disabled = mddev->recovery_disabled - 1;
1790 rdev->raid_disk = mirror;
1791 err = 0;
1792 if (rdev->saved_raid_disk != mirror)
1793 conf->fullsync = 1;
1794 rcu_assign_pointer(p->rdev, rdev);
1795 break;
1796 }
1797 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1798 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1799
1800 print_conf(conf);
1801 return err;
1802 }
1803
1804 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1805 {
1806 struct r10conf *conf = mddev->private;
1807 int err = 0;
1808 int number = rdev->raid_disk;
1809 struct md_rdev **rdevp;
1810 struct raid10_info *p = conf->mirrors + number;
1811
1812 print_conf(conf);
1813 if (rdev == p->rdev)
1814 rdevp = &p->rdev;
1815 else if (rdev == p->replacement)
1816 rdevp = &p->replacement;
1817 else
1818 return 0;
1819
1820 if (test_bit(In_sync, &rdev->flags) ||
1821 atomic_read(&rdev->nr_pending)) {
1822 err = -EBUSY;
1823 goto abort;
1824 }
1825 /* Only remove non-faulty devices if recovery
1826 * is not possible.
1827 */
1828 if (!test_bit(Faulty, &rdev->flags) &&
1829 mddev->recovery_disabled != p->recovery_disabled &&
1830 (!p->replacement || p->replacement == rdev) &&
1831 number < conf->geo.raid_disks &&
1832 enough(conf, -1)) {
1833 err = -EBUSY;
1834 goto abort;
1835 }
1836 *rdevp = NULL;
1837 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1838 synchronize_rcu();
1839 if (atomic_read(&rdev->nr_pending)) {
1840 /* lost the race, try later */
1841 err = -EBUSY;
1842 *rdevp = rdev;
1843 goto abort;
1844 }
1845 }
1846 if (p->replacement) {
1847 /* We must have just cleared 'rdev' */
1848 p->rdev = p->replacement;
1849 clear_bit(Replacement, &p->replacement->flags);
1850 smp_mb(); /* Make sure other CPUs may see both as identical
1851 * but will never see neither -- if they are careful.
1852 */
1853 p->replacement = NULL;
1854 }
1855
1856 clear_bit(WantReplacement, &rdev->flags);
1857 err = md_integrity_register(mddev);
1858
1859 abort:
1860
1861 print_conf(conf);
1862 return err;
1863 }
1864
1865 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1866 {
1867 struct r10conf *conf = r10_bio->mddev->private;
1868
1869 if (!bio->bi_status)
1870 set_bit(R10BIO_Uptodate, &r10_bio->state);
1871 else
1872 /* The write handler will notice the lack of
1873 * R10BIO_Uptodate and record any errors etc
1874 */
1875 atomic_add(r10_bio->sectors,
1876 &conf->mirrors[d].rdev->corrected_errors);
1877
1878 /* for reconstruct, we always reschedule after a read.
1879 * for resync, only after all reads
1880 */
1881 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1882 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1883 atomic_dec_and_test(&r10_bio->remaining)) {
1884 /* we have read all the blocks,
1885 * do the comparison in process context in raid10d
1886 */
1887 reschedule_retry(r10_bio);
1888 }
1889 }
1890
1891 static void end_sync_read(struct bio *bio)
1892 {
1893 struct r10bio *r10_bio = get_resync_r10bio(bio);
1894 struct r10conf *conf = r10_bio->mddev->private;
1895 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1896
1897 __end_sync_read(r10_bio, bio, d);
1898 }
1899
1900 static void end_reshape_read(struct bio *bio)
1901 {
1902 /* reshape read bio isn't allocated from r10buf_pool */
1903 struct r10bio *r10_bio = bio->bi_private;
1904
1905 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1906 }
1907
1908 static void end_sync_request(struct r10bio *r10_bio)
1909 {
1910 struct mddev *mddev = r10_bio->mddev;
1911
1912 while (atomic_dec_and_test(&r10_bio->remaining)) {
1913 if (r10_bio->master_bio == NULL) {
1914 /* the primary of several recovery bios */
1915 sector_t s = r10_bio->sectors;
1916 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1917 test_bit(R10BIO_WriteError, &r10_bio->state))
1918 reschedule_retry(r10_bio);
1919 else
1920 put_buf(r10_bio);
1921 md_done_sync(mddev, s, 1);
1922 break;
1923 } else {
1924 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1925 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1926 test_bit(R10BIO_WriteError, &r10_bio->state))
1927 reschedule_retry(r10_bio);
1928 else
1929 put_buf(r10_bio);
1930 r10_bio = r10_bio2;
1931 }
1932 }
1933 }
1934
1935 static void end_sync_write(struct bio *bio)
1936 {
1937 struct r10bio *r10_bio = get_resync_r10bio(bio);
1938 struct mddev *mddev = r10_bio->mddev;
1939 struct r10conf *conf = mddev->private;
1940 int d;
1941 sector_t first_bad;
1942 int bad_sectors;
1943 int slot;
1944 int repl;
1945 struct md_rdev *rdev = NULL;
1946
1947 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1948 if (repl)
1949 rdev = conf->mirrors[d].replacement;
1950 else
1951 rdev = conf->mirrors[d].rdev;
1952
1953 if (bio->bi_status) {
1954 if (repl)
1955 md_error(mddev, rdev);
1956 else {
1957 set_bit(WriteErrorSeen, &rdev->flags);
1958 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1959 set_bit(MD_RECOVERY_NEEDED,
1960 &rdev->mddev->recovery);
1961 set_bit(R10BIO_WriteError, &r10_bio->state);
1962 }
1963 } else if (is_badblock(rdev,
1964 r10_bio->devs[slot].addr,
1965 r10_bio->sectors,
1966 &first_bad, &bad_sectors))
1967 set_bit(R10BIO_MadeGood, &r10_bio->state);
1968
1969 rdev_dec_pending(rdev, mddev);
1970
1971 end_sync_request(r10_bio);
1972 }
1973
1974 /*
1975 * Note: sync and recover and handled very differently for raid10
1976 * This code is for resync.
1977 * For resync, we read through virtual addresses and read all blocks.
1978 * If there is any error, we schedule a write. The lowest numbered
1979 * drive is authoritative.
1980 * However requests come for physical address, so we need to map.
1981 * For every physical address there are raid_disks/copies virtual addresses,
1982 * which is always are least one, but is not necessarly an integer.
1983 * This means that a physical address can span multiple chunks, so we may
1984 * have to submit multiple io requests for a single sync request.
1985 */
1986 /*
1987 * We check if all blocks are in-sync and only write to blocks that
1988 * aren't in sync
1989 */
1990 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1991 {
1992 struct r10conf *conf = mddev->private;
1993 int i, first;
1994 struct bio *tbio, *fbio;
1995 int vcnt;
1996 struct page **tpages, **fpages;
1997
1998 atomic_set(&r10_bio->remaining, 1);
1999
2000 /* find the first device with a block */
2001 for (i=0; i<conf->copies; i++)
2002 if (!r10_bio->devs[i].bio->bi_status)
2003 break;
2004
2005 if (i == conf->copies)
2006 goto done;
2007
2008 first = i;
2009 fbio = r10_bio->devs[i].bio;
2010 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2011 fbio->bi_iter.bi_idx = 0;
2012 fpages = get_resync_pages(fbio)->pages;
2013
2014 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2015 /* now find blocks with errors */
2016 for (i=0 ; i < conf->copies ; i++) {
2017 int j, d;
2018 struct md_rdev *rdev;
2019 struct resync_pages *rp;
2020
2021 tbio = r10_bio->devs[i].bio;
2022
2023 if (tbio->bi_end_io != end_sync_read)
2024 continue;
2025 if (i == first)
2026 continue;
2027
2028 tpages = get_resync_pages(tbio)->pages;
2029 d = r10_bio->devs[i].devnum;
2030 rdev = conf->mirrors[d].rdev;
2031 if (!r10_bio->devs[i].bio->bi_status) {
2032 /* We know that the bi_io_vec layout is the same for
2033 * both 'first' and 'i', so we just compare them.
2034 * All vec entries are PAGE_SIZE;
2035 */
2036 int sectors = r10_bio->sectors;
2037 for (j = 0; j < vcnt; j++) {
2038 int len = PAGE_SIZE;
2039 if (sectors < (len / 512))
2040 len = sectors * 512;
2041 if (memcmp(page_address(fpages[j]),
2042 page_address(tpages[j]),
2043 len))
2044 break;
2045 sectors -= len/512;
2046 }
2047 if (j == vcnt)
2048 continue;
2049 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2050 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2051 /* Don't fix anything. */
2052 continue;
2053 } else if (test_bit(FailFast, &rdev->flags)) {
2054 /* Just give up on this device */
2055 md_error(rdev->mddev, rdev);
2056 continue;
2057 }
2058 /* Ok, we need to write this bio, either to correct an
2059 * inconsistency or to correct an unreadable block.
2060 * First we need to fixup bv_offset, bv_len and
2061 * bi_vecs, as the read request might have corrupted these
2062 */
2063 rp = get_resync_pages(tbio);
2064 bio_reset(tbio);
2065
2066 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2067
2068 rp->raid_bio = r10_bio;
2069 tbio->bi_private = rp;
2070 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2071 tbio->bi_end_io = end_sync_write;
2072 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2073
2074 bio_copy_data(tbio, fbio);
2075
2076 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2077 atomic_inc(&r10_bio->remaining);
2078 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2079
2080 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2081 tbio->bi_opf |= MD_FAILFAST;
2082 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2083 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2084 submit_bio_noacct(tbio);
2085 }
2086
2087 /* Now write out to any replacement devices
2088 * that are active
2089 */
2090 for (i = 0; i < conf->copies; i++) {
2091 int d;
2092
2093 tbio = r10_bio->devs[i].repl_bio;
2094 if (!tbio || !tbio->bi_end_io)
2095 continue;
2096 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2097 && r10_bio->devs[i].bio != fbio)
2098 bio_copy_data(tbio, fbio);
2099 d = r10_bio->devs[i].devnum;
2100 atomic_inc(&r10_bio->remaining);
2101 md_sync_acct(conf->mirrors[d].replacement->bdev,
2102 bio_sectors(tbio));
2103 submit_bio_noacct(tbio);
2104 }
2105
2106 done:
2107 if (atomic_dec_and_test(&r10_bio->remaining)) {
2108 md_done_sync(mddev, r10_bio->sectors, 1);
2109 put_buf(r10_bio);
2110 }
2111 }
2112
2113 /*
2114 * Now for the recovery code.
2115 * Recovery happens across physical sectors.
2116 * We recover all non-is_sync drives by finding the virtual address of
2117 * each, and then choose a working drive that also has that virt address.
2118 * There is a separate r10_bio for each non-in_sync drive.
2119 * Only the first two slots are in use. The first for reading,
2120 * The second for writing.
2121 *
2122 */
2123 static void fix_recovery_read_error(struct r10bio *r10_bio)
2124 {
2125 /* We got a read error during recovery.
2126 * We repeat the read in smaller page-sized sections.
2127 * If a read succeeds, write it to the new device or record
2128 * a bad block if we cannot.
2129 * If a read fails, record a bad block on both old and
2130 * new devices.
2131 */
2132 struct mddev *mddev = r10_bio->mddev;
2133 struct r10conf *conf = mddev->private;
2134 struct bio *bio = r10_bio->devs[0].bio;
2135 sector_t sect = 0;
2136 int sectors = r10_bio->sectors;
2137 int idx = 0;
2138 int dr = r10_bio->devs[0].devnum;
2139 int dw = r10_bio->devs[1].devnum;
2140 struct page **pages = get_resync_pages(bio)->pages;
2141
2142 while (sectors) {
2143 int s = sectors;
2144 struct md_rdev *rdev;
2145 sector_t addr;
2146 int ok;
2147
2148 if (s > (PAGE_SIZE>>9))
2149 s = PAGE_SIZE >> 9;
2150
2151 rdev = conf->mirrors[dr].rdev;
2152 addr = r10_bio->devs[0].addr + sect,
2153 ok = sync_page_io(rdev,
2154 addr,
2155 s << 9,
2156 pages[idx],
2157 REQ_OP_READ, 0, false);
2158 if (ok) {
2159 rdev = conf->mirrors[dw].rdev;
2160 addr = r10_bio->devs[1].addr + sect;
2161 ok = sync_page_io(rdev,
2162 addr,
2163 s << 9,
2164 pages[idx],
2165 REQ_OP_WRITE, 0, false);
2166 if (!ok) {
2167 set_bit(WriteErrorSeen, &rdev->flags);
2168 if (!test_and_set_bit(WantReplacement,
2169 &rdev->flags))
2170 set_bit(MD_RECOVERY_NEEDED,
2171 &rdev->mddev->recovery);
2172 }
2173 }
2174 if (!ok) {
2175 /* We don't worry if we cannot set a bad block -
2176 * it really is bad so there is no loss in not
2177 * recording it yet
2178 */
2179 rdev_set_badblocks(rdev, addr, s, 0);
2180
2181 if (rdev != conf->mirrors[dw].rdev) {
2182 /* need bad block on destination too */
2183 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2184 addr = r10_bio->devs[1].addr + sect;
2185 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2186 if (!ok) {
2187 /* just abort the recovery */
2188 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2189 mdname(mddev));
2190
2191 conf->mirrors[dw].recovery_disabled
2192 = mddev->recovery_disabled;
2193 set_bit(MD_RECOVERY_INTR,
2194 &mddev->recovery);
2195 break;
2196 }
2197 }
2198 }
2199
2200 sectors -= s;
2201 sect += s;
2202 idx++;
2203 }
2204 }
2205
2206 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2207 {
2208 struct r10conf *conf = mddev->private;
2209 int d;
2210 struct bio *wbio, *wbio2;
2211
2212 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2213 fix_recovery_read_error(r10_bio);
2214 end_sync_request(r10_bio);
2215 return;
2216 }
2217
2218 /*
2219 * share the pages with the first bio
2220 * and submit the write request
2221 */
2222 d = r10_bio->devs[1].devnum;
2223 wbio = r10_bio->devs[1].bio;
2224 wbio2 = r10_bio->devs[1].repl_bio;
2225 /* Need to test wbio2->bi_end_io before we call
2226 * submit_bio_noacct as if the former is NULL,
2227 * the latter is free to free wbio2.
2228 */
2229 if (wbio2 && !wbio2->bi_end_io)
2230 wbio2 = NULL;
2231 if (wbio->bi_end_io) {
2232 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2233 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2234 submit_bio_noacct(wbio);
2235 }
2236 if (wbio2) {
2237 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2238 md_sync_acct(conf->mirrors[d].replacement->bdev,
2239 bio_sectors(wbio2));
2240 submit_bio_noacct(wbio2);
2241 }
2242 }
2243
2244 /*
2245 * Used by fix_read_error() to decay the per rdev read_errors.
2246 * We halve the read error count for every hour that has elapsed
2247 * since the last recorded read error.
2248 *
2249 */
2250 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2251 {
2252 long cur_time_mon;
2253 unsigned long hours_since_last;
2254 unsigned int read_errors = atomic_read(&rdev->read_errors);
2255
2256 cur_time_mon = ktime_get_seconds();
2257
2258 if (rdev->last_read_error == 0) {
2259 /* first time we've seen a read error */
2260 rdev->last_read_error = cur_time_mon;
2261 return;
2262 }
2263
2264 hours_since_last = (long)(cur_time_mon -
2265 rdev->last_read_error) / 3600;
2266
2267 rdev->last_read_error = cur_time_mon;
2268
2269 /*
2270 * if hours_since_last is > the number of bits in read_errors
2271 * just set read errors to 0. We do this to avoid
2272 * overflowing the shift of read_errors by hours_since_last.
2273 */
2274 if (hours_since_last >= 8 * sizeof(read_errors))
2275 atomic_set(&rdev->read_errors, 0);
2276 else
2277 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2278 }
2279
2280 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2281 int sectors, struct page *page, int rw)
2282 {
2283 sector_t first_bad;
2284 int bad_sectors;
2285
2286 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2287 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2288 return -1;
2289 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2290 /* success */
2291 return 1;
2292 if (rw == WRITE) {
2293 set_bit(WriteErrorSeen, &rdev->flags);
2294 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2295 set_bit(MD_RECOVERY_NEEDED,
2296 &rdev->mddev->recovery);
2297 }
2298 /* need to record an error - either for the block or the device */
2299 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2300 md_error(rdev->mddev, rdev);
2301 return 0;
2302 }
2303
2304 /*
2305 * This is a kernel thread which:
2306 *
2307 * 1. Retries failed read operations on working mirrors.
2308 * 2. Updates the raid superblock when problems encounter.
2309 * 3. Performs writes following reads for array synchronising.
2310 */
2311
2312 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2313 {
2314 int sect = 0; /* Offset from r10_bio->sector */
2315 int sectors = r10_bio->sectors;
2316 struct md_rdev *rdev;
2317 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2318 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2319
2320 /* still own a reference to this rdev, so it cannot
2321 * have been cleared recently.
2322 */
2323 rdev = conf->mirrors[d].rdev;
2324
2325 if (test_bit(Faulty, &rdev->flags))
2326 /* drive has already been failed, just ignore any
2327 more fix_read_error() attempts */
2328 return;
2329
2330 check_decay_read_errors(mddev, rdev);
2331 atomic_inc(&rdev->read_errors);
2332 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2333 char b[BDEVNAME_SIZE];
2334 bdevname(rdev->bdev, b);
2335
2336 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2337 mdname(mddev), b,
2338 atomic_read(&rdev->read_errors), max_read_errors);
2339 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2340 mdname(mddev), b);
2341 md_error(mddev, rdev);
2342 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2343 return;
2344 }
2345
2346 while(sectors) {
2347 int s = sectors;
2348 int sl = r10_bio->read_slot;
2349 int success = 0;
2350 int start;
2351
2352 if (s > (PAGE_SIZE>>9))
2353 s = PAGE_SIZE >> 9;
2354
2355 rcu_read_lock();
2356 do {
2357 sector_t first_bad;
2358 int bad_sectors;
2359
2360 d = r10_bio->devs[sl].devnum;
2361 rdev = rcu_dereference(conf->mirrors[d].rdev);
2362 if (rdev &&
2363 test_bit(In_sync, &rdev->flags) &&
2364 !test_bit(Faulty, &rdev->flags) &&
2365 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2366 &first_bad, &bad_sectors) == 0) {
2367 atomic_inc(&rdev->nr_pending);
2368 rcu_read_unlock();
2369 success = sync_page_io(rdev,
2370 r10_bio->devs[sl].addr +
2371 sect,
2372 s<<9,
2373 conf->tmppage,
2374 REQ_OP_READ, 0, false);
2375 rdev_dec_pending(rdev, mddev);
2376 rcu_read_lock();
2377 if (success)
2378 break;
2379 }
2380 sl++;
2381 if (sl == conf->copies)
2382 sl = 0;
2383 } while (!success && sl != r10_bio->read_slot);
2384 rcu_read_unlock();
2385
2386 if (!success) {
2387 /* Cannot read from anywhere, just mark the block
2388 * as bad on the first device to discourage future
2389 * reads.
2390 */
2391 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2392 rdev = conf->mirrors[dn].rdev;
2393
2394 if (!rdev_set_badblocks(
2395 rdev,
2396 r10_bio->devs[r10_bio->read_slot].addr
2397 + sect,
2398 s, 0)) {
2399 md_error(mddev, rdev);
2400 r10_bio->devs[r10_bio->read_slot].bio
2401 = IO_BLOCKED;
2402 }
2403 break;
2404 }
2405
2406 start = sl;
2407 /* write it back and re-read */
2408 rcu_read_lock();
2409 while (sl != r10_bio->read_slot) {
2410 char b[BDEVNAME_SIZE];
2411
2412 if (sl==0)
2413 sl = conf->copies;
2414 sl--;
2415 d = r10_bio->devs[sl].devnum;
2416 rdev = rcu_dereference(conf->mirrors[d].rdev);
2417 if (!rdev ||
2418 test_bit(Faulty, &rdev->flags) ||
2419 !test_bit(In_sync, &rdev->flags))
2420 continue;
2421
2422 atomic_inc(&rdev->nr_pending);
2423 rcu_read_unlock();
2424 if (r10_sync_page_io(rdev,
2425 r10_bio->devs[sl].addr +
2426 sect,
2427 s, conf->tmppage, WRITE)
2428 == 0) {
2429 /* Well, this device is dead */
2430 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2431 mdname(mddev), s,
2432 (unsigned long long)(
2433 sect +
2434 choose_data_offset(r10_bio,
2435 rdev)),
2436 bdevname(rdev->bdev, b));
2437 pr_notice("md/raid10:%s: %s: failing drive\n",
2438 mdname(mddev),
2439 bdevname(rdev->bdev, b));
2440 }
2441 rdev_dec_pending(rdev, mddev);
2442 rcu_read_lock();
2443 }
2444 sl = start;
2445 while (sl != r10_bio->read_slot) {
2446 char b[BDEVNAME_SIZE];
2447
2448 if (sl==0)
2449 sl = conf->copies;
2450 sl--;
2451 d = r10_bio->devs[sl].devnum;
2452 rdev = rcu_dereference(conf->mirrors[d].rdev);
2453 if (!rdev ||
2454 test_bit(Faulty, &rdev->flags) ||
2455 !test_bit(In_sync, &rdev->flags))
2456 continue;
2457
2458 atomic_inc(&rdev->nr_pending);
2459 rcu_read_unlock();
2460 switch (r10_sync_page_io(rdev,
2461 r10_bio->devs[sl].addr +
2462 sect,
2463 s, conf->tmppage,
2464 READ)) {
2465 case 0:
2466 /* Well, this device is dead */
2467 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2468 mdname(mddev), s,
2469 (unsigned long long)(
2470 sect +
2471 choose_data_offset(r10_bio, rdev)),
2472 bdevname(rdev->bdev, b));
2473 pr_notice("md/raid10:%s: %s: failing drive\n",
2474 mdname(mddev),
2475 bdevname(rdev->bdev, b));
2476 break;
2477 case 1:
2478 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2479 mdname(mddev), s,
2480 (unsigned long long)(
2481 sect +
2482 choose_data_offset(r10_bio, rdev)),
2483 bdevname(rdev->bdev, b));
2484 atomic_add(s, &rdev->corrected_errors);
2485 }
2486
2487 rdev_dec_pending(rdev, mddev);
2488 rcu_read_lock();
2489 }
2490 rcu_read_unlock();
2491
2492 sectors -= s;
2493 sect += s;
2494 }
2495 }
2496
2497 static int narrow_write_error(struct r10bio *r10_bio, int i)
2498 {
2499 struct bio *bio = r10_bio->master_bio;
2500 struct mddev *mddev = r10_bio->mddev;
2501 struct r10conf *conf = mddev->private;
2502 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2503 /* bio has the data to be written to slot 'i' where
2504 * we just recently had a write error.
2505 * We repeatedly clone the bio and trim down to one block,
2506 * then try the write. Where the write fails we record
2507 * a bad block.
2508 * It is conceivable that the bio doesn't exactly align with
2509 * blocks. We must handle this.
2510 *
2511 * We currently own a reference to the rdev.
2512 */
2513
2514 int block_sectors;
2515 sector_t sector;
2516 int sectors;
2517 int sect_to_write = r10_bio->sectors;
2518 int ok = 1;
2519
2520 if (rdev->badblocks.shift < 0)
2521 return 0;
2522
2523 block_sectors = roundup(1 << rdev->badblocks.shift,
2524 bdev_logical_block_size(rdev->bdev) >> 9);
2525 sector = r10_bio->sector;
2526 sectors = ((r10_bio->sector + block_sectors)
2527 & ~(sector_t)(block_sectors - 1))
2528 - sector;
2529
2530 while (sect_to_write) {
2531 struct bio *wbio;
2532 sector_t wsector;
2533 if (sectors > sect_to_write)
2534 sectors = sect_to_write;
2535 /* Write at 'sector' for 'sectors' */
2536 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2537 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2538 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2539 wbio->bi_iter.bi_sector = wsector +
2540 choose_data_offset(r10_bio, rdev);
2541 bio_set_dev(wbio, rdev->bdev);
2542 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2543
2544 if (submit_bio_wait(wbio) < 0)
2545 /* Failure! */
2546 ok = rdev_set_badblocks(rdev, wsector,
2547 sectors, 0)
2548 && ok;
2549
2550 bio_put(wbio);
2551 sect_to_write -= sectors;
2552 sector += sectors;
2553 sectors = block_sectors;
2554 }
2555 return ok;
2556 }
2557
2558 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2559 {
2560 int slot = r10_bio->read_slot;
2561 struct bio *bio;
2562 struct r10conf *conf = mddev->private;
2563 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2564
2565 /* we got a read error. Maybe the drive is bad. Maybe just
2566 * the block and we can fix it.
2567 * We freeze all other IO, and try reading the block from
2568 * other devices. When we find one, we re-write
2569 * and check it that fixes the read error.
2570 * This is all done synchronously while the array is
2571 * frozen.
2572 */
2573 bio = r10_bio->devs[slot].bio;
2574 bio_put(bio);
2575 r10_bio->devs[slot].bio = NULL;
2576
2577 if (mddev->ro)
2578 r10_bio->devs[slot].bio = IO_BLOCKED;
2579 else if (!test_bit(FailFast, &rdev->flags)) {
2580 freeze_array(conf, 1);
2581 fix_read_error(conf, mddev, r10_bio);
2582 unfreeze_array(conf);
2583 } else
2584 md_error(mddev, rdev);
2585
2586 rdev_dec_pending(rdev, mddev);
2587 allow_barrier(conf);
2588 r10_bio->state = 0;
2589 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2590 }
2591
2592 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2593 {
2594 /* Some sort of write request has finished and it
2595 * succeeded in writing where we thought there was a
2596 * bad block. So forget the bad block.
2597 * Or possibly if failed and we need to record
2598 * a bad block.
2599 */
2600 int m;
2601 struct md_rdev *rdev;
2602
2603 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2604 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2605 for (m = 0; m < conf->copies; m++) {
2606 int dev = r10_bio->devs[m].devnum;
2607 rdev = conf->mirrors[dev].rdev;
2608 if (r10_bio->devs[m].bio == NULL ||
2609 r10_bio->devs[m].bio->bi_end_io == NULL)
2610 continue;
2611 if (!r10_bio->devs[m].bio->bi_status) {
2612 rdev_clear_badblocks(
2613 rdev,
2614 r10_bio->devs[m].addr,
2615 r10_bio->sectors, 0);
2616 } else {
2617 if (!rdev_set_badblocks(
2618 rdev,
2619 r10_bio->devs[m].addr,
2620 r10_bio->sectors, 0))
2621 md_error(conf->mddev, rdev);
2622 }
2623 rdev = conf->mirrors[dev].replacement;
2624 if (r10_bio->devs[m].repl_bio == NULL ||
2625 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2626 continue;
2627
2628 if (!r10_bio->devs[m].repl_bio->bi_status) {
2629 rdev_clear_badblocks(
2630 rdev,
2631 r10_bio->devs[m].addr,
2632 r10_bio->sectors, 0);
2633 } else {
2634 if (!rdev_set_badblocks(
2635 rdev,
2636 r10_bio->devs[m].addr,
2637 r10_bio->sectors, 0))
2638 md_error(conf->mddev, rdev);
2639 }
2640 }
2641 put_buf(r10_bio);
2642 } else {
2643 bool fail = false;
2644 for (m = 0; m < conf->copies; m++) {
2645 int dev = r10_bio->devs[m].devnum;
2646 struct bio *bio = r10_bio->devs[m].bio;
2647 rdev = conf->mirrors[dev].rdev;
2648 if (bio == IO_MADE_GOOD) {
2649 rdev_clear_badblocks(
2650 rdev,
2651 r10_bio->devs[m].addr,
2652 r10_bio->sectors, 0);
2653 rdev_dec_pending(rdev, conf->mddev);
2654 } else if (bio != NULL && bio->bi_status) {
2655 fail = true;
2656 if (!narrow_write_error(r10_bio, m)) {
2657 md_error(conf->mddev, rdev);
2658 set_bit(R10BIO_Degraded,
2659 &r10_bio->state);
2660 }
2661 rdev_dec_pending(rdev, conf->mddev);
2662 }
2663 bio = r10_bio->devs[m].repl_bio;
2664 rdev = conf->mirrors[dev].replacement;
2665 if (rdev && bio == IO_MADE_GOOD) {
2666 rdev_clear_badblocks(
2667 rdev,
2668 r10_bio->devs[m].addr,
2669 r10_bio->sectors, 0);
2670 rdev_dec_pending(rdev, conf->mddev);
2671 }
2672 }
2673 if (fail) {
2674 spin_lock_irq(&conf->device_lock);
2675 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2676 conf->nr_queued++;
2677 spin_unlock_irq(&conf->device_lock);
2678 /*
2679 * In case freeze_array() is waiting for condition
2680 * nr_pending == nr_queued + extra to be true.
2681 */
2682 wake_up(&conf->wait_barrier);
2683 md_wakeup_thread(conf->mddev->thread);
2684 } else {
2685 if (test_bit(R10BIO_WriteError,
2686 &r10_bio->state))
2687 close_write(r10_bio);
2688 raid_end_bio_io(r10_bio);
2689 }
2690 }
2691 }
2692
2693 static void raid10d(struct md_thread *thread)
2694 {
2695 struct mddev *mddev = thread->mddev;
2696 struct r10bio *r10_bio;
2697 unsigned long flags;
2698 struct r10conf *conf = mddev->private;
2699 struct list_head *head = &conf->retry_list;
2700 struct blk_plug plug;
2701
2702 md_check_recovery(mddev);
2703
2704 if (!list_empty_careful(&conf->bio_end_io_list) &&
2705 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2706 LIST_HEAD(tmp);
2707 spin_lock_irqsave(&conf->device_lock, flags);
2708 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2709 while (!list_empty(&conf->bio_end_io_list)) {
2710 list_move(conf->bio_end_io_list.prev, &tmp);
2711 conf->nr_queued--;
2712 }
2713 }
2714 spin_unlock_irqrestore(&conf->device_lock, flags);
2715 while (!list_empty(&tmp)) {
2716 r10_bio = list_first_entry(&tmp, struct r10bio,
2717 retry_list);
2718 list_del(&r10_bio->retry_list);
2719 if (mddev->degraded)
2720 set_bit(R10BIO_Degraded, &r10_bio->state);
2721
2722 if (test_bit(R10BIO_WriteError,
2723 &r10_bio->state))
2724 close_write(r10_bio);
2725 raid_end_bio_io(r10_bio);
2726 }
2727 }
2728
2729 blk_start_plug(&plug);
2730 for (;;) {
2731
2732 flush_pending_writes(conf);
2733
2734 spin_lock_irqsave(&conf->device_lock, flags);
2735 if (list_empty(head)) {
2736 spin_unlock_irqrestore(&conf->device_lock, flags);
2737 break;
2738 }
2739 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2740 list_del(head->prev);
2741 conf->nr_queued--;
2742 spin_unlock_irqrestore(&conf->device_lock, flags);
2743
2744 mddev = r10_bio->mddev;
2745 conf = mddev->private;
2746 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2747 test_bit(R10BIO_WriteError, &r10_bio->state))
2748 handle_write_completed(conf, r10_bio);
2749 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2750 reshape_request_write(mddev, r10_bio);
2751 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2752 sync_request_write(mddev, r10_bio);
2753 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2754 recovery_request_write(mddev, r10_bio);
2755 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2756 handle_read_error(mddev, r10_bio);
2757 else
2758 WARN_ON_ONCE(1);
2759
2760 cond_resched();
2761 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2762 md_check_recovery(mddev);
2763 }
2764 blk_finish_plug(&plug);
2765 }
2766
2767 static int init_resync(struct r10conf *conf)
2768 {
2769 int ret, buffs, i;
2770
2771 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2772 BUG_ON(mempool_initialized(&conf->r10buf_pool));
2773 conf->have_replacement = 0;
2774 for (i = 0; i < conf->geo.raid_disks; i++)
2775 if (conf->mirrors[i].replacement)
2776 conf->have_replacement = 1;
2777 ret = mempool_init(&conf->r10buf_pool, buffs,
2778 r10buf_pool_alloc, r10buf_pool_free, conf);
2779 if (ret)
2780 return ret;
2781 conf->next_resync = 0;
2782 return 0;
2783 }
2784
2785 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2786 {
2787 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2788 struct rsync_pages *rp;
2789 struct bio *bio;
2790 int nalloc;
2791 int i;
2792
2793 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2794 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2795 nalloc = conf->copies; /* resync */
2796 else
2797 nalloc = 2; /* recovery */
2798
2799 for (i = 0; i < nalloc; i++) {
2800 bio = r10bio->devs[i].bio;
2801 rp = bio->bi_private;
2802 bio_reset(bio);
2803 bio->bi_private = rp;
2804 bio = r10bio->devs[i].repl_bio;
2805 if (bio) {
2806 rp = bio->bi_private;
2807 bio_reset(bio);
2808 bio->bi_private = rp;
2809 }
2810 }
2811 return r10bio;
2812 }
2813
2814 /*
2815 * Set cluster_sync_high since we need other nodes to add the
2816 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2817 */
2818 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2819 {
2820 sector_t window_size;
2821 int extra_chunk, chunks;
2822
2823 /*
2824 * First, here we define "stripe" as a unit which across
2825 * all member devices one time, so we get chunks by use
2826 * raid_disks / near_copies. Otherwise, if near_copies is
2827 * close to raid_disks, then resync window could increases
2828 * linearly with the increase of raid_disks, which means
2829 * we will suspend a really large IO window while it is not
2830 * necessary. If raid_disks is not divisible by near_copies,
2831 * an extra chunk is needed to ensure the whole "stripe" is
2832 * covered.
2833 */
2834
2835 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2836 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2837 extra_chunk = 0;
2838 else
2839 extra_chunk = 1;
2840 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2841
2842 /*
2843 * At least use a 32M window to align with raid1's resync window
2844 */
2845 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2846 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2847
2848 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2849 }
2850
2851 /*
2852 * perform a "sync" on one "block"
2853 *
2854 * We need to make sure that no normal I/O request - particularly write
2855 * requests - conflict with active sync requests.
2856 *
2857 * This is achieved by tracking pending requests and a 'barrier' concept
2858 * that can be installed to exclude normal IO requests.
2859 *
2860 * Resync and recovery are handled very differently.
2861 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2862 *
2863 * For resync, we iterate over virtual addresses, read all copies,
2864 * and update if there are differences. If only one copy is live,
2865 * skip it.
2866 * For recovery, we iterate over physical addresses, read a good
2867 * value for each non-in_sync drive, and over-write.
2868 *
2869 * So, for recovery we may have several outstanding complex requests for a
2870 * given address, one for each out-of-sync device. We model this by allocating
2871 * a number of r10_bio structures, one for each out-of-sync device.
2872 * As we setup these structures, we collect all bio's together into a list
2873 * which we then process collectively to add pages, and then process again
2874 * to pass to submit_bio_noacct.
2875 *
2876 * The r10_bio structures are linked using a borrowed master_bio pointer.
2877 * This link is counted in ->remaining. When the r10_bio that points to NULL
2878 * has its remaining count decremented to 0, the whole complex operation
2879 * is complete.
2880 *
2881 */
2882
2883 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2884 int *skipped)
2885 {
2886 struct r10conf *conf = mddev->private;
2887 struct r10bio *r10_bio;
2888 struct bio *biolist = NULL, *bio;
2889 sector_t max_sector, nr_sectors;
2890 int i;
2891 int max_sync;
2892 sector_t sync_blocks;
2893 sector_t sectors_skipped = 0;
2894 int chunks_skipped = 0;
2895 sector_t chunk_mask = conf->geo.chunk_mask;
2896 int page_idx = 0;
2897
2898 if (!mempool_initialized(&conf->r10buf_pool))
2899 if (init_resync(conf))
2900 return 0;
2901
2902 /*
2903 * Allow skipping a full rebuild for incremental assembly
2904 * of a clean array, like RAID1 does.
2905 */
2906 if (mddev->bitmap == NULL &&
2907 mddev->recovery_cp == MaxSector &&
2908 mddev->reshape_position == MaxSector &&
2909 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2910 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2911 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2912 conf->fullsync == 0) {
2913 *skipped = 1;
2914 return mddev->dev_sectors - sector_nr;
2915 }
2916
2917 skipped:
2918 max_sector = mddev->dev_sectors;
2919 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2920 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2921 max_sector = mddev->resync_max_sectors;
2922 if (sector_nr >= max_sector) {
2923 conf->cluster_sync_low = 0;
2924 conf->cluster_sync_high = 0;
2925
2926 /* If we aborted, we need to abort the
2927 * sync on the 'current' bitmap chucks (there can
2928 * be several when recovering multiple devices).
2929 * as we may have started syncing it but not finished.
2930 * We can find the current address in
2931 * mddev->curr_resync, but for recovery,
2932 * we need to convert that to several
2933 * virtual addresses.
2934 */
2935 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2936 end_reshape(conf);
2937 close_sync(conf);
2938 return 0;
2939 }
2940
2941 if (mddev->curr_resync < max_sector) { /* aborted */
2942 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2943 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2944 &sync_blocks, 1);
2945 else for (i = 0; i < conf->geo.raid_disks; i++) {
2946 sector_t sect =
2947 raid10_find_virt(conf, mddev->curr_resync, i);
2948 md_bitmap_end_sync(mddev->bitmap, sect,
2949 &sync_blocks, 1);
2950 }
2951 } else {
2952 /* completed sync */
2953 if ((!mddev->bitmap || conf->fullsync)
2954 && conf->have_replacement
2955 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2956 /* Completed a full sync so the replacements
2957 * are now fully recovered.
2958 */
2959 rcu_read_lock();
2960 for (i = 0; i < conf->geo.raid_disks; i++) {
2961 struct md_rdev *rdev =
2962 rcu_dereference(conf->mirrors[i].replacement);
2963 if (rdev)
2964 rdev->recovery_offset = MaxSector;
2965 }
2966 rcu_read_unlock();
2967 }
2968 conf->fullsync = 0;
2969 }
2970 md_bitmap_close_sync(mddev->bitmap);
2971 close_sync(conf);
2972 *skipped = 1;
2973 return sectors_skipped;
2974 }
2975
2976 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2977 return reshape_request(mddev, sector_nr, skipped);
2978
2979 if (chunks_skipped >= conf->geo.raid_disks) {
2980 /* if there has been nothing to do on any drive,
2981 * then there is nothing to do at all..
2982 */
2983 *skipped = 1;
2984 return (max_sector - sector_nr) + sectors_skipped;
2985 }
2986
2987 if (max_sector > mddev->resync_max)
2988 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2989
2990 /* make sure whole request will fit in a chunk - if chunks
2991 * are meaningful
2992 */
2993 if (conf->geo.near_copies < conf->geo.raid_disks &&
2994 max_sector > (sector_nr | chunk_mask))
2995 max_sector = (sector_nr | chunk_mask) + 1;
2996
2997 /*
2998 * If there is non-resync activity waiting for a turn, then let it
2999 * though before starting on this new sync request.
3000 */
3001 if (conf->nr_waiting)
3002 schedule_timeout_uninterruptible(1);
3003
3004 /* Again, very different code for resync and recovery.
3005 * Both must result in an r10bio with a list of bios that
3006 * have bi_end_io, bi_sector, bi_disk set,
3007 * and bi_private set to the r10bio.
3008 * For recovery, we may actually create several r10bios
3009 * with 2 bios in each, that correspond to the bios in the main one.
3010 * In this case, the subordinate r10bios link back through a
3011 * borrowed master_bio pointer, and the counter in the master
3012 * includes a ref from each subordinate.
3013 */
3014 /* First, we decide what to do and set ->bi_end_io
3015 * To end_sync_read if we want to read, and
3016 * end_sync_write if we will want to write.
3017 */
3018
3019 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3020 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3021 /* recovery... the complicated one */
3022 int j;
3023 r10_bio = NULL;
3024
3025 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3026 int still_degraded;
3027 struct r10bio *rb2;
3028 sector_t sect;
3029 int must_sync;
3030 int any_working;
3031 int need_recover = 0;
3032 int need_replace = 0;
3033 struct raid10_info *mirror = &conf->mirrors[i];
3034 struct md_rdev *mrdev, *mreplace;
3035
3036 rcu_read_lock();
3037 mrdev = rcu_dereference(mirror->rdev);
3038 mreplace = rcu_dereference(mirror->replacement);
3039
3040 if (mrdev != NULL &&
3041 !test_bit(Faulty, &mrdev->flags) &&
3042 !test_bit(In_sync, &mrdev->flags))
3043 need_recover = 1;
3044 if (mreplace != NULL &&
3045 !test_bit(Faulty, &mreplace->flags))
3046 need_replace = 1;
3047
3048 if (!need_recover && !need_replace) {
3049 rcu_read_unlock();
3050 continue;
3051 }
3052
3053 still_degraded = 0;
3054 /* want to reconstruct this device */
3055 rb2 = r10_bio;
3056 sect = raid10_find_virt(conf, sector_nr, i);
3057 if (sect >= mddev->resync_max_sectors) {
3058 /* last stripe is not complete - don't
3059 * try to recover this sector.
3060 */
3061 rcu_read_unlock();
3062 continue;
3063 }
3064 if (mreplace && test_bit(Faulty, &mreplace->flags))
3065 mreplace = NULL;
3066 /* Unless we are doing a full sync, or a replacement
3067 * we only need to recover the block if it is set in
3068 * the bitmap
3069 */
3070 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3071 &sync_blocks, 1);
3072 if (sync_blocks < max_sync)
3073 max_sync = sync_blocks;
3074 if (!must_sync &&
3075 mreplace == NULL &&
3076 !conf->fullsync) {
3077 /* yep, skip the sync_blocks here, but don't assume
3078 * that there will never be anything to do here
3079 */
3080 chunks_skipped = -1;
3081 rcu_read_unlock();
3082 continue;
3083 }
3084 atomic_inc(&mrdev->nr_pending);
3085 if (mreplace)
3086 atomic_inc(&mreplace->nr_pending);
3087 rcu_read_unlock();
3088
3089 r10_bio = raid10_alloc_init_r10buf(conf);
3090 r10_bio->state = 0;
3091 raise_barrier(conf, rb2 != NULL);
3092 atomic_set(&r10_bio->remaining, 0);
3093
3094 r10_bio->master_bio = (struct bio*)rb2;
3095 if (rb2)
3096 atomic_inc(&rb2->remaining);
3097 r10_bio->mddev = mddev;
3098 set_bit(R10BIO_IsRecover, &r10_bio->state);
3099 r10_bio->sector = sect;
3100
3101 raid10_find_phys(conf, r10_bio);
3102
3103 /* Need to check if the array will still be
3104 * degraded
3105 */
3106 rcu_read_lock();
3107 for (j = 0; j < conf->geo.raid_disks; j++) {
3108 struct md_rdev *rdev = rcu_dereference(
3109 conf->mirrors[j].rdev);
3110 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3111 still_degraded = 1;
3112 break;
3113 }
3114 }
3115
3116 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3117 &sync_blocks, still_degraded);
3118
3119 any_working = 0;
3120 for (j=0; j<conf->copies;j++) {
3121 int k;
3122 int d = r10_bio->devs[j].devnum;
3123 sector_t from_addr, to_addr;
3124 struct md_rdev *rdev =
3125 rcu_dereference(conf->mirrors[d].rdev);
3126 sector_t sector, first_bad;
3127 int bad_sectors;
3128 if (!rdev ||
3129 !test_bit(In_sync, &rdev->flags))
3130 continue;
3131 /* This is where we read from */
3132 any_working = 1;
3133 sector = r10_bio->devs[j].addr;
3134
3135 if (is_badblock(rdev, sector, max_sync,
3136 &first_bad, &bad_sectors)) {
3137 if (first_bad > sector)
3138 max_sync = first_bad - sector;
3139 else {
3140 bad_sectors -= (sector
3141 - first_bad);
3142 if (max_sync > bad_sectors)
3143 max_sync = bad_sectors;
3144 continue;
3145 }
3146 }
3147 bio = r10_bio->devs[0].bio;
3148 bio->bi_next = biolist;
3149 biolist = bio;
3150 bio->bi_end_io = end_sync_read;
3151 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3152 if (test_bit(FailFast, &rdev->flags))
3153 bio->bi_opf |= MD_FAILFAST;
3154 from_addr = r10_bio->devs[j].addr;
3155 bio->bi_iter.bi_sector = from_addr +
3156 rdev->data_offset;
3157 bio_set_dev(bio, rdev->bdev);
3158 atomic_inc(&rdev->nr_pending);
3159 /* and we write to 'i' (if not in_sync) */
3160
3161 for (k=0; k<conf->copies; k++)
3162 if (r10_bio->devs[k].devnum == i)
3163 break;
3164 BUG_ON(k == conf->copies);
3165 to_addr = r10_bio->devs[k].addr;
3166 r10_bio->devs[0].devnum = d;
3167 r10_bio->devs[0].addr = from_addr;
3168 r10_bio->devs[1].devnum = i;
3169 r10_bio->devs[1].addr = to_addr;
3170
3171 if (need_recover) {
3172 bio = r10_bio->devs[1].bio;
3173 bio->bi_next = biolist;
3174 biolist = bio;
3175 bio->bi_end_io = end_sync_write;
3176 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3177 bio->bi_iter.bi_sector = to_addr
3178 + mrdev->data_offset;
3179 bio_set_dev(bio, mrdev->bdev);
3180 atomic_inc(&r10_bio->remaining);
3181 } else
3182 r10_bio->devs[1].bio->bi_end_io = NULL;
3183
3184 /* and maybe write to replacement */
3185 bio = r10_bio->devs[1].repl_bio;
3186 if (bio)
3187 bio->bi_end_io = NULL;
3188 /* Note: if need_replace, then bio
3189 * cannot be NULL as r10buf_pool_alloc will
3190 * have allocated it.
3191 */
3192 if (!need_replace)
3193 break;
3194 bio->bi_next = biolist;
3195 biolist = bio;
3196 bio->bi_end_io = end_sync_write;
3197 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3198 bio->bi_iter.bi_sector = to_addr +
3199 mreplace->data_offset;
3200 bio_set_dev(bio, mreplace->bdev);
3201 atomic_inc(&r10_bio->remaining);
3202 break;
3203 }
3204 rcu_read_unlock();
3205 if (j == conf->copies) {
3206 /* Cannot recover, so abort the recovery or
3207 * record a bad block */
3208 if (any_working) {
3209 /* problem is that there are bad blocks
3210 * on other device(s)
3211 */
3212 int k;
3213 for (k = 0; k < conf->copies; k++)
3214 if (r10_bio->devs[k].devnum == i)
3215 break;
3216 if (!test_bit(In_sync,
3217 &mrdev->flags)
3218 && !rdev_set_badblocks(
3219 mrdev,
3220 r10_bio->devs[k].addr,
3221 max_sync, 0))
3222 any_working = 0;
3223 if (mreplace &&
3224 !rdev_set_badblocks(
3225 mreplace,
3226 r10_bio->devs[k].addr,
3227 max_sync, 0))
3228 any_working = 0;
3229 }
3230 if (!any_working) {
3231 if (!test_and_set_bit(MD_RECOVERY_INTR,
3232 &mddev->recovery))
3233 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3234 mdname(mddev));
3235 mirror->recovery_disabled
3236 = mddev->recovery_disabled;
3237 }
3238 put_buf(r10_bio);
3239 if (rb2)
3240 atomic_dec(&rb2->remaining);
3241 r10_bio = rb2;
3242 rdev_dec_pending(mrdev, mddev);
3243 if (mreplace)
3244 rdev_dec_pending(mreplace, mddev);
3245 break;
3246 }
3247 rdev_dec_pending(mrdev, mddev);
3248 if (mreplace)
3249 rdev_dec_pending(mreplace, mddev);
3250 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3251 /* Only want this if there is elsewhere to
3252 * read from. 'j' is currently the first
3253 * readable copy.
3254 */
3255 int targets = 1;
3256 for (; j < conf->copies; j++) {
3257 int d = r10_bio->devs[j].devnum;
3258 if (conf->mirrors[d].rdev &&
3259 test_bit(In_sync,
3260 &conf->mirrors[d].rdev->flags))
3261 targets++;
3262 }
3263 if (targets == 1)
3264 r10_bio->devs[0].bio->bi_opf
3265 &= ~MD_FAILFAST;
3266 }
3267 }
3268 if (biolist == NULL) {
3269 while (r10_bio) {
3270 struct r10bio *rb2 = r10_bio;
3271 r10_bio = (struct r10bio*) rb2->master_bio;
3272 rb2->master_bio = NULL;
3273 put_buf(rb2);
3274 }
3275 goto giveup;
3276 }
3277 } else {
3278 /* resync. Schedule a read for every block at this virt offset */
3279 int count = 0;
3280
3281 /*
3282 * Since curr_resync_completed could probably not update in
3283 * time, and we will set cluster_sync_low based on it.
3284 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3285 * safety reason, which ensures curr_resync_completed is
3286 * updated in bitmap_cond_end_sync.
3287 */
3288 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3289 mddev_is_clustered(mddev) &&
3290 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3291
3292 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3293 &sync_blocks, mddev->degraded) &&
3294 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3295 &mddev->recovery)) {
3296 /* We can skip this block */
3297 *skipped = 1;
3298 return sync_blocks + sectors_skipped;
3299 }
3300 if (sync_blocks < max_sync)
3301 max_sync = sync_blocks;
3302 r10_bio = raid10_alloc_init_r10buf(conf);
3303 r10_bio->state = 0;
3304
3305 r10_bio->mddev = mddev;
3306 atomic_set(&r10_bio->remaining, 0);
3307 raise_barrier(conf, 0);
3308 conf->next_resync = sector_nr;
3309
3310 r10_bio->master_bio = NULL;
3311 r10_bio->sector = sector_nr;
3312 set_bit(R10BIO_IsSync, &r10_bio->state);
3313 raid10_find_phys(conf, r10_bio);
3314 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3315
3316 for (i = 0; i < conf->copies; i++) {
3317 int d = r10_bio->devs[i].devnum;
3318 sector_t first_bad, sector;
3319 int bad_sectors;
3320 struct md_rdev *rdev;
3321
3322 if (r10_bio->devs[i].repl_bio)
3323 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3324
3325 bio = r10_bio->devs[i].bio;
3326 bio->bi_status = BLK_STS_IOERR;
3327 rcu_read_lock();
3328 rdev = rcu_dereference(conf->mirrors[d].rdev);
3329 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3330 rcu_read_unlock();
3331 continue;
3332 }
3333 sector = r10_bio->devs[i].addr;
3334 if (is_badblock(rdev, sector, max_sync,
3335 &first_bad, &bad_sectors)) {
3336 if (first_bad > sector)
3337 max_sync = first_bad - sector;
3338 else {
3339 bad_sectors -= (sector - first_bad);
3340 if (max_sync > bad_sectors)
3341 max_sync = bad_sectors;
3342 rcu_read_unlock();
3343 continue;
3344 }
3345 }
3346 atomic_inc(&rdev->nr_pending);
3347 atomic_inc(&r10_bio->remaining);
3348 bio->bi_next = biolist;
3349 biolist = bio;
3350 bio->bi_end_io = end_sync_read;
3351 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3352 if (test_bit(FailFast, &rdev->flags))
3353 bio->bi_opf |= MD_FAILFAST;
3354 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3355 bio_set_dev(bio, rdev->bdev);
3356 count++;
3357
3358 rdev = rcu_dereference(conf->mirrors[d].replacement);
3359 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3360 rcu_read_unlock();
3361 continue;
3362 }
3363 atomic_inc(&rdev->nr_pending);
3364
3365 /* Need to set up for writing to the replacement */
3366 bio = r10_bio->devs[i].repl_bio;
3367 bio->bi_status = BLK_STS_IOERR;
3368
3369 sector = r10_bio->devs[i].addr;
3370 bio->bi_next = biolist;
3371 biolist = bio;
3372 bio->bi_end_io = end_sync_write;
3373 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3374 if (test_bit(FailFast, &rdev->flags))
3375 bio->bi_opf |= MD_FAILFAST;
3376 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3377 bio_set_dev(bio, rdev->bdev);
3378 count++;
3379 rcu_read_unlock();
3380 }
3381
3382 if (count < 2) {
3383 for (i=0; i<conf->copies; i++) {
3384 int d = r10_bio->devs[i].devnum;
3385 if (r10_bio->devs[i].bio->bi_end_io)
3386 rdev_dec_pending(conf->mirrors[d].rdev,
3387 mddev);
3388 if (r10_bio->devs[i].repl_bio &&
3389 r10_bio->devs[i].repl_bio->bi_end_io)
3390 rdev_dec_pending(
3391 conf->mirrors[d].replacement,
3392 mddev);
3393 }
3394 put_buf(r10_bio);
3395 biolist = NULL;
3396 goto giveup;
3397 }
3398 }
3399
3400 nr_sectors = 0;
3401 if (sector_nr + max_sync < max_sector)
3402 max_sector = sector_nr + max_sync;
3403 do {
3404 struct page *page;
3405 int len = PAGE_SIZE;
3406 if (sector_nr + (len>>9) > max_sector)
3407 len = (max_sector - sector_nr) << 9;
3408 if (len == 0)
3409 break;
3410 for (bio= biolist ; bio ; bio=bio->bi_next) {
3411 struct resync_pages *rp = get_resync_pages(bio);
3412 page = resync_fetch_page(rp, page_idx);
3413 /*
3414 * won't fail because the vec table is big enough
3415 * to hold all these pages
3416 */
3417 bio_add_page(bio, page, len, 0);
3418 }
3419 nr_sectors += len>>9;
3420 sector_nr += len>>9;
3421 } while (++page_idx < RESYNC_PAGES);
3422 r10_bio->sectors = nr_sectors;
3423
3424 if (mddev_is_clustered(mddev) &&
3425 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3426 /* It is resync not recovery */
3427 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3428 conf->cluster_sync_low = mddev->curr_resync_completed;
3429 raid10_set_cluster_sync_high(conf);
3430 /* Send resync message */
3431 md_cluster_ops->resync_info_update(mddev,
3432 conf->cluster_sync_low,
3433 conf->cluster_sync_high);
3434 }
3435 } else if (mddev_is_clustered(mddev)) {
3436 /* This is recovery not resync */
3437 sector_t sect_va1, sect_va2;
3438 bool broadcast_msg = false;
3439
3440 for (i = 0; i < conf->geo.raid_disks; i++) {
3441 /*
3442 * sector_nr is a device address for recovery, so we
3443 * need translate it to array address before compare
3444 * with cluster_sync_high.
3445 */
3446 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3447
3448 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3449 broadcast_msg = true;
3450 /*
3451 * curr_resync_completed is similar as
3452 * sector_nr, so make the translation too.
3453 */
3454 sect_va2 = raid10_find_virt(conf,
3455 mddev->curr_resync_completed, i);
3456
3457 if (conf->cluster_sync_low == 0 ||
3458 conf->cluster_sync_low > sect_va2)
3459 conf->cluster_sync_low = sect_va2;
3460 }
3461 }
3462 if (broadcast_msg) {
3463 raid10_set_cluster_sync_high(conf);
3464 md_cluster_ops->resync_info_update(mddev,
3465 conf->cluster_sync_low,
3466 conf->cluster_sync_high);
3467 }
3468 }
3469
3470 while (biolist) {
3471 bio = biolist;
3472 biolist = biolist->bi_next;
3473
3474 bio->bi_next = NULL;
3475 r10_bio = get_resync_r10bio(bio);
3476 r10_bio->sectors = nr_sectors;
3477
3478 if (bio->bi_end_io == end_sync_read) {
3479 md_sync_acct_bio(bio, nr_sectors);
3480 bio->bi_status = 0;
3481 submit_bio_noacct(bio);
3482 }
3483 }
3484
3485 if (sectors_skipped)
3486 /* pretend they weren't skipped, it makes
3487 * no important difference in this case
3488 */
3489 md_done_sync(mddev, sectors_skipped, 1);
3490
3491 return sectors_skipped + nr_sectors;
3492 giveup:
3493 /* There is nowhere to write, so all non-sync
3494 * drives must be failed or in resync, all drives
3495 * have a bad block, so try the next chunk...
3496 */
3497 if (sector_nr + max_sync < max_sector)
3498 max_sector = sector_nr + max_sync;
3499
3500 sectors_skipped += (max_sector - sector_nr);
3501 chunks_skipped ++;
3502 sector_nr = max_sector;
3503 goto skipped;
3504 }
3505
3506 static sector_t
3507 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3508 {
3509 sector_t size;
3510 struct r10conf *conf = mddev->private;
3511
3512 if (!raid_disks)
3513 raid_disks = min(conf->geo.raid_disks,
3514 conf->prev.raid_disks);
3515 if (!sectors)
3516 sectors = conf->dev_sectors;
3517
3518 size = sectors >> conf->geo.chunk_shift;
3519 sector_div(size, conf->geo.far_copies);
3520 size = size * raid_disks;
3521 sector_div(size, conf->geo.near_copies);
3522
3523 return size << conf->geo.chunk_shift;
3524 }
3525
3526 static void calc_sectors(struct r10conf *conf, sector_t size)
3527 {
3528 /* Calculate the number of sectors-per-device that will
3529 * actually be used, and set conf->dev_sectors and
3530 * conf->stride
3531 */
3532
3533 size = size >> conf->geo.chunk_shift;
3534 sector_div(size, conf->geo.far_copies);
3535 size = size * conf->geo.raid_disks;
3536 sector_div(size, conf->geo.near_copies);
3537 /* 'size' is now the number of chunks in the array */
3538 /* calculate "used chunks per device" */
3539 size = size * conf->copies;
3540
3541 /* We need to round up when dividing by raid_disks to
3542 * get the stride size.
3543 */
3544 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3545
3546 conf->dev_sectors = size << conf->geo.chunk_shift;
3547
3548 if (conf->geo.far_offset)
3549 conf->geo.stride = 1 << conf->geo.chunk_shift;
3550 else {
3551 sector_div(size, conf->geo.far_copies);
3552 conf->geo.stride = size << conf->geo.chunk_shift;
3553 }
3554 }
3555
3556 enum geo_type {geo_new, geo_old, geo_start};
3557 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3558 {
3559 int nc, fc, fo;
3560 int layout, chunk, disks;
3561 switch (new) {
3562 case geo_old:
3563 layout = mddev->layout;
3564 chunk = mddev->chunk_sectors;
3565 disks = mddev->raid_disks - mddev->delta_disks;
3566 break;
3567 case geo_new:
3568 layout = mddev->new_layout;
3569 chunk = mddev->new_chunk_sectors;
3570 disks = mddev->raid_disks;
3571 break;
3572 default: /* avoid 'may be unused' warnings */
3573 case geo_start: /* new when starting reshape - raid_disks not
3574 * updated yet. */
3575 layout = mddev->new_layout;
3576 chunk = mddev->new_chunk_sectors;
3577 disks = mddev->raid_disks + mddev->delta_disks;
3578 break;
3579 }
3580 if (layout >> 19)
3581 return -1;
3582 if (chunk < (PAGE_SIZE >> 9) ||
3583 !is_power_of_2(chunk))
3584 return -2;
3585 nc = layout & 255;
3586 fc = (layout >> 8) & 255;
3587 fo = layout & (1<<16);
3588 geo->raid_disks = disks;
3589 geo->near_copies = nc;
3590 geo->far_copies = fc;
3591 geo->far_offset = fo;
3592 switch (layout >> 17) {
3593 case 0: /* original layout. simple but not always optimal */
3594 geo->far_set_size = disks;
3595 break;
3596 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3597 * actually using this, but leave code here just in case.*/
3598 geo->far_set_size = disks/fc;
3599 WARN(geo->far_set_size < fc,
3600 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3601 break;
3602 case 2: /* "improved" layout fixed to match documentation */
3603 geo->far_set_size = fc * nc;
3604 break;
3605 default: /* Not a valid layout */
3606 return -1;
3607 }
3608 geo->chunk_mask = chunk - 1;
3609 geo->chunk_shift = ffz(~chunk);
3610 return nc*fc;
3611 }
3612
3613 static struct r10conf *setup_conf(struct mddev *mddev)
3614 {
3615 struct r10conf *conf = NULL;
3616 int err = -EINVAL;
3617 struct geom geo;
3618 int copies;
3619
3620 copies = setup_geo(&geo, mddev, geo_new);
3621
3622 if (copies == -2) {
3623 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3624 mdname(mddev), PAGE_SIZE);
3625 goto out;
3626 }
3627
3628 if (copies < 2 || copies > mddev->raid_disks) {
3629 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3630 mdname(mddev), mddev->new_layout);
3631 goto out;
3632 }
3633
3634 err = -ENOMEM;
3635 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3636 if (!conf)
3637 goto out;
3638
3639 /* FIXME calc properly */
3640 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3641 sizeof(struct raid10_info),
3642 GFP_KERNEL);
3643 if (!conf->mirrors)
3644 goto out;
3645
3646 conf->tmppage = alloc_page(GFP_KERNEL);
3647 if (!conf->tmppage)
3648 goto out;
3649
3650 conf->geo = geo;
3651 conf->copies = copies;
3652 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3653 rbio_pool_free, conf);
3654 if (err)
3655 goto out;
3656
3657 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3658 if (err)
3659 goto out;
3660
3661 calc_sectors(conf, mddev->dev_sectors);
3662 if (mddev->reshape_position == MaxSector) {
3663 conf->prev = conf->geo;
3664 conf->reshape_progress = MaxSector;
3665 } else {
3666 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3667 err = -EINVAL;
3668 goto out;
3669 }
3670 conf->reshape_progress = mddev->reshape_position;
3671 if (conf->prev.far_offset)
3672 conf->prev.stride = 1 << conf->prev.chunk_shift;
3673 else
3674 /* far_copies must be 1 */
3675 conf->prev.stride = conf->dev_sectors;
3676 }
3677 conf->reshape_safe = conf->reshape_progress;
3678 spin_lock_init(&conf->device_lock);
3679 INIT_LIST_HEAD(&conf->retry_list);
3680 INIT_LIST_HEAD(&conf->bio_end_io_list);
3681
3682 spin_lock_init(&conf->resync_lock);
3683 init_waitqueue_head(&conf->wait_barrier);
3684 atomic_set(&conf->nr_pending, 0);
3685
3686 err = -ENOMEM;
3687 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3688 if (!conf->thread)
3689 goto out;
3690
3691 conf->mddev = mddev;
3692 return conf;
3693
3694 out:
3695 if (conf) {
3696 mempool_exit(&conf->r10bio_pool);
3697 kfree(conf->mirrors);
3698 safe_put_page(conf->tmppage);
3699 bioset_exit(&conf->bio_split);
3700 kfree(conf);
3701 }
3702 return ERR_PTR(err);
3703 }
3704
3705 static void raid10_set_io_opt(struct r10conf *conf)
3706 {
3707 int raid_disks = conf->geo.raid_disks;
3708
3709 if (!(conf->geo.raid_disks % conf->geo.near_copies))
3710 raid_disks /= conf->geo.near_copies;
3711 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3712 raid_disks);
3713 }
3714
3715 static int raid10_run(struct mddev *mddev)
3716 {
3717 struct r10conf *conf;
3718 int i, disk_idx;
3719 struct raid10_info *disk;
3720 struct md_rdev *rdev;
3721 sector_t size;
3722 sector_t min_offset_diff = 0;
3723 int first = 1;
3724 bool discard_supported = false;
3725
3726 if (mddev_init_writes_pending(mddev) < 0)
3727 return -ENOMEM;
3728
3729 if (mddev->private == NULL) {
3730 conf = setup_conf(mddev);
3731 if (IS_ERR(conf))
3732 return PTR_ERR(conf);
3733 mddev->private = conf;
3734 }
3735 conf = mddev->private;
3736 if (!conf)
3737 goto out;
3738
3739 if (mddev_is_clustered(conf->mddev)) {
3740 int fc, fo;
3741
3742 fc = (mddev->layout >> 8) & 255;
3743 fo = mddev->layout & (1<<16);
3744 if (fc > 1 || fo > 0) {
3745 pr_err("only near layout is supported by clustered"
3746 " raid10\n");
3747 goto out_free_conf;
3748 }
3749 }
3750
3751 mddev->thread = conf->thread;
3752 conf->thread = NULL;
3753
3754 if (mddev->queue) {
3755 blk_queue_max_discard_sectors(mddev->queue,
3756 mddev->chunk_sectors);
3757 blk_queue_max_write_same_sectors(mddev->queue, 0);
3758 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3759 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3760 raid10_set_io_opt(conf);
3761 }
3762
3763 rdev_for_each(rdev, mddev) {
3764 long long diff;
3765
3766 disk_idx = rdev->raid_disk;
3767 if (disk_idx < 0)
3768 continue;
3769 if (disk_idx >= conf->geo.raid_disks &&
3770 disk_idx >= conf->prev.raid_disks)
3771 continue;
3772 disk = conf->mirrors + disk_idx;
3773
3774 if (test_bit(Replacement, &rdev->flags)) {
3775 if (disk->replacement)
3776 goto out_free_conf;
3777 disk->replacement = rdev;
3778 } else {
3779 if (disk->rdev)
3780 goto out_free_conf;
3781 disk->rdev = rdev;
3782 }
3783 diff = (rdev->new_data_offset - rdev->data_offset);
3784 if (!mddev->reshape_backwards)
3785 diff = -diff;
3786 if (diff < 0)
3787 diff = 0;
3788 if (first || diff < min_offset_diff)
3789 min_offset_diff = diff;
3790
3791 if (mddev->gendisk)
3792 disk_stack_limits(mddev->gendisk, rdev->bdev,
3793 rdev->data_offset << 9);
3794
3795 disk->head_position = 0;
3796
3797 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3798 discard_supported = true;
3799 first = 0;
3800 }
3801
3802 if (mddev->queue) {
3803 if (discard_supported)
3804 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3805 mddev->queue);
3806 else
3807 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3808 mddev->queue);
3809 }
3810 /* need to check that every block has at least one working mirror */
3811 if (!enough(conf, -1)) {
3812 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3813 mdname(mddev));
3814 goto out_free_conf;
3815 }
3816
3817 if (conf->reshape_progress != MaxSector) {
3818 /* must ensure that shape change is supported */
3819 if (conf->geo.far_copies != 1 &&
3820 conf->geo.far_offset == 0)
3821 goto out_free_conf;
3822 if (conf->prev.far_copies != 1 &&
3823 conf->prev.far_offset == 0)
3824 goto out_free_conf;
3825 }
3826
3827 mddev->degraded = 0;
3828 for (i = 0;
3829 i < conf->geo.raid_disks
3830 || i < conf->prev.raid_disks;
3831 i++) {
3832
3833 disk = conf->mirrors + i;
3834
3835 if (!disk->rdev && disk->replacement) {
3836 /* The replacement is all we have - use it */
3837 disk->rdev = disk->replacement;
3838 disk->replacement = NULL;
3839 clear_bit(Replacement, &disk->rdev->flags);
3840 }
3841
3842 if (!disk->rdev ||
3843 !test_bit(In_sync, &disk->rdev->flags)) {
3844 disk->head_position = 0;
3845 mddev->degraded++;
3846 if (disk->rdev &&
3847 disk->rdev->saved_raid_disk < 0)
3848 conf->fullsync = 1;
3849 }
3850
3851 if (disk->replacement &&
3852 !test_bit(In_sync, &disk->replacement->flags) &&
3853 disk->replacement->saved_raid_disk < 0) {
3854 conf->fullsync = 1;
3855 }
3856
3857 disk->recovery_disabled = mddev->recovery_disabled - 1;
3858 }
3859
3860 if (mddev->recovery_cp != MaxSector)
3861 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3862 mdname(mddev));
3863 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3864 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3865 conf->geo.raid_disks);
3866 /*
3867 * Ok, everything is just fine now
3868 */
3869 mddev->dev_sectors = conf->dev_sectors;
3870 size = raid10_size(mddev, 0, 0);
3871 md_set_array_sectors(mddev, size);
3872 mddev->resync_max_sectors = size;
3873 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3874
3875 if (md_integrity_register(mddev))
3876 goto out_free_conf;
3877
3878 if (conf->reshape_progress != MaxSector) {
3879 unsigned long before_length, after_length;
3880
3881 before_length = ((1 << conf->prev.chunk_shift) *
3882 conf->prev.far_copies);
3883 after_length = ((1 << conf->geo.chunk_shift) *
3884 conf->geo.far_copies);
3885
3886 if (max(before_length, after_length) > min_offset_diff) {
3887 /* This cannot work */
3888 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3889 goto out_free_conf;
3890 }
3891 conf->offset_diff = min_offset_diff;
3892
3893 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3894 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3895 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3896 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3897 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3898 "reshape");
3899 if (!mddev->sync_thread)
3900 goto out_free_conf;
3901 }
3902
3903 return 0;
3904
3905 out_free_conf:
3906 md_unregister_thread(&mddev->thread);
3907 mempool_exit(&conf->r10bio_pool);
3908 safe_put_page(conf->tmppage);
3909 kfree(conf->mirrors);
3910 kfree(conf);
3911 mddev->private = NULL;
3912 out:
3913 return -EIO;
3914 }
3915
3916 static void raid10_free(struct mddev *mddev, void *priv)
3917 {
3918 struct r10conf *conf = priv;
3919
3920 mempool_exit(&conf->r10bio_pool);
3921 safe_put_page(conf->tmppage);
3922 kfree(conf->mirrors);
3923 kfree(conf->mirrors_old);
3924 kfree(conf->mirrors_new);
3925 bioset_exit(&conf->bio_split);
3926 kfree(conf);
3927 }
3928
3929 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3930 {
3931 struct r10conf *conf = mddev->private;
3932
3933 if (quiesce)
3934 raise_barrier(conf, 0);
3935 else
3936 lower_barrier(conf);
3937 }
3938
3939 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3940 {
3941 /* Resize of 'far' arrays is not supported.
3942 * For 'near' and 'offset' arrays we can set the
3943 * number of sectors used to be an appropriate multiple
3944 * of the chunk size.
3945 * For 'offset', this is far_copies*chunksize.
3946 * For 'near' the multiplier is the LCM of
3947 * near_copies and raid_disks.
3948 * So if far_copies > 1 && !far_offset, fail.
3949 * Else find LCM(raid_disks, near_copy)*far_copies and
3950 * multiply by chunk_size. Then round to this number.
3951 * This is mostly done by raid10_size()
3952 */
3953 struct r10conf *conf = mddev->private;
3954 sector_t oldsize, size;
3955
3956 if (mddev->reshape_position != MaxSector)
3957 return -EBUSY;
3958
3959 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3960 return -EINVAL;
3961
3962 oldsize = raid10_size(mddev, 0, 0);
3963 size = raid10_size(mddev, sectors, 0);
3964 if (mddev->external_size &&
3965 mddev->array_sectors > size)
3966 return -EINVAL;
3967 if (mddev->bitmap) {
3968 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3969 if (ret)
3970 return ret;
3971 }
3972 md_set_array_sectors(mddev, size);
3973 if (sectors > mddev->dev_sectors &&
3974 mddev->recovery_cp > oldsize) {
3975 mddev->recovery_cp = oldsize;
3976 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3977 }
3978 calc_sectors(conf, sectors);
3979 mddev->dev_sectors = conf->dev_sectors;
3980 mddev->resync_max_sectors = size;
3981 return 0;
3982 }
3983
3984 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3985 {
3986 struct md_rdev *rdev;
3987 struct r10conf *conf;
3988
3989 if (mddev->degraded > 0) {
3990 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3991 mdname(mddev));
3992 return ERR_PTR(-EINVAL);
3993 }
3994 sector_div(size, devs);
3995
3996 /* Set new parameters */
3997 mddev->new_level = 10;
3998 /* new layout: far_copies = 1, near_copies = 2 */
3999 mddev->new_layout = (1<<8) + 2;
4000 mddev->new_chunk_sectors = mddev->chunk_sectors;
4001 mddev->delta_disks = mddev->raid_disks;
4002 mddev->raid_disks *= 2;
4003 /* make sure it will be not marked as dirty */
4004 mddev->recovery_cp = MaxSector;
4005 mddev->dev_sectors = size;
4006
4007 conf = setup_conf(mddev);
4008 if (!IS_ERR(conf)) {
4009 rdev_for_each(rdev, mddev)
4010 if (rdev->raid_disk >= 0) {
4011 rdev->new_raid_disk = rdev->raid_disk * 2;
4012 rdev->sectors = size;
4013 }
4014 conf->barrier = 1;
4015 }
4016
4017 return conf;
4018 }
4019
4020 static void *raid10_takeover(struct mddev *mddev)
4021 {
4022 struct r0conf *raid0_conf;
4023
4024 /* raid10 can take over:
4025 * raid0 - providing it has only two drives
4026 */
4027 if (mddev->level == 0) {
4028 /* for raid0 takeover only one zone is supported */
4029 raid0_conf = mddev->private;
4030 if (raid0_conf->nr_strip_zones > 1) {
4031 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4032 mdname(mddev));
4033 return ERR_PTR(-EINVAL);
4034 }
4035 return raid10_takeover_raid0(mddev,
4036 raid0_conf->strip_zone->zone_end,
4037 raid0_conf->strip_zone->nb_dev);
4038 }
4039 return ERR_PTR(-EINVAL);
4040 }
4041
4042 static int raid10_check_reshape(struct mddev *mddev)
4043 {
4044 /* Called when there is a request to change
4045 * - layout (to ->new_layout)
4046 * - chunk size (to ->new_chunk_sectors)
4047 * - raid_disks (by delta_disks)
4048 * or when trying to restart a reshape that was ongoing.
4049 *
4050 * We need to validate the request and possibly allocate
4051 * space if that might be an issue later.
4052 *
4053 * Currently we reject any reshape of a 'far' mode array,
4054 * allow chunk size to change if new is generally acceptable,
4055 * allow raid_disks to increase, and allow
4056 * a switch between 'near' mode and 'offset' mode.
4057 */
4058 struct r10conf *conf = mddev->private;
4059 struct geom geo;
4060
4061 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4062 return -EINVAL;
4063
4064 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4065 /* mustn't change number of copies */
4066 return -EINVAL;
4067 if (geo.far_copies > 1 && !geo.far_offset)
4068 /* Cannot switch to 'far' mode */
4069 return -EINVAL;
4070
4071 if (mddev->array_sectors & geo.chunk_mask)
4072 /* not factor of array size */
4073 return -EINVAL;
4074
4075 if (!enough(conf, -1))
4076 return -EINVAL;
4077
4078 kfree(conf->mirrors_new);
4079 conf->mirrors_new = NULL;
4080 if (mddev->delta_disks > 0) {
4081 /* allocate new 'mirrors' list */
4082 conf->mirrors_new =
4083 kcalloc(mddev->raid_disks + mddev->delta_disks,
4084 sizeof(struct raid10_info),
4085 GFP_KERNEL);
4086 if (!conf->mirrors_new)
4087 return -ENOMEM;
4088 }
4089 return 0;
4090 }
4091
4092 /*
4093 * Need to check if array has failed when deciding whether to:
4094 * - start an array
4095 * - remove non-faulty devices
4096 * - add a spare
4097 * - allow a reshape
4098 * This determination is simple when no reshape is happening.
4099 * However if there is a reshape, we need to carefully check
4100 * both the before and after sections.
4101 * This is because some failed devices may only affect one
4102 * of the two sections, and some non-in_sync devices may
4103 * be insync in the section most affected by failed devices.
4104 */
4105 static int calc_degraded(struct r10conf *conf)
4106 {
4107 int degraded, degraded2;
4108 int i;
4109
4110 rcu_read_lock();
4111 degraded = 0;
4112 /* 'prev' section first */
4113 for (i = 0; i < conf->prev.raid_disks; i++) {
4114 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4115 if (!rdev || test_bit(Faulty, &rdev->flags))
4116 degraded++;
4117 else if (!test_bit(In_sync, &rdev->flags))
4118 /* When we can reduce the number of devices in
4119 * an array, this might not contribute to
4120 * 'degraded'. It does now.
4121 */
4122 degraded++;
4123 }
4124 rcu_read_unlock();
4125 if (conf->geo.raid_disks == conf->prev.raid_disks)
4126 return degraded;
4127 rcu_read_lock();
4128 degraded2 = 0;
4129 for (i = 0; i < conf->geo.raid_disks; i++) {
4130 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4131 if (!rdev || test_bit(Faulty, &rdev->flags))
4132 degraded2++;
4133 else if (!test_bit(In_sync, &rdev->flags)) {
4134 /* If reshape is increasing the number of devices,
4135 * this section has already been recovered, so
4136 * it doesn't contribute to degraded.
4137 * else it does.
4138 */
4139 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4140 degraded2++;
4141 }
4142 }
4143 rcu_read_unlock();
4144 if (degraded2 > degraded)
4145 return degraded2;
4146 return degraded;
4147 }
4148
4149 static int raid10_start_reshape(struct mddev *mddev)
4150 {
4151 /* A 'reshape' has been requested. This commits
4152 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4153 * This also checks if there are enough spares and adds them
4154 * to the array.
4155 * We currently require enough spares to make the final
4156 * array non-degraded. We also require that the difference
4157 * between old and new data_offset - on each device - is
4158 * enough that we never risk over-writing.
4159 */
4160
4161 unsigned long before_length, after_length;
4162 sector_t min_offset_diff = 0;
4163 int first = 1;
4164 struct geom new;
4165 struct r10conf *conf = mddev->private;
4166 struct md_rdev *rdev;
4167 int spares = 0;
4168 int ret;
4169
4170 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4171 return -EBUSY;
4172
4173 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4174 return -EINVAL;
4175
4176 before_length = ((1 << conf->prev.chunk_shift) *
4177 conf->prev.far_copies);
4178 after_length = ((1 << conf->geo.chunk_shift) *
4179 conf->geo.far_copies);
4180
4181 rdev_for_each(rdev, mddev) {
4182 if (!test_bit(In_sync, &rdev->flags)
4183 && !test_bit(Faulty, &rdev->flags))
4184 spares++;
4185 if (rdev->raid_disk >= 0) {
4186 long long diff = (rdev->new_data_offset
4187 - rdev->data_offset);
4188 if (!mddev->reshape_backwards)
4189 diff = -diff;
4190 if (diff < 0)
4191 diff = 0;
4192 if (first || diff < min_offset_diff)
4193 min_offset_diff = diff;
4194 first = 0;
4195 }
4196 }
4197
4198 if (max(before_length, after_length) > min_offset_diff)
4199 return -EINVAL;
4200
4201 if (spares < mddev->delta_disks)
4202 return -EINVAL;
4203
4204 conf->offset_diff = min_offset_diff;
4205 spin_lock_irq(&conf->device_lock);
4206 if (conf->mirrors_new) {
4207 memcpy(conf->mirrors_new, conf->mirrors,
4208 sizeof(struct raid10_info)*conf->prev.raid_disks);
4209 smp_mb();
4210 kfree(conf->mirrors_old);
4211 conf->mirrors_old = conf->mirrors;
4212 conf->mirrors = conf->mirrors_new;
4213 conf->mirrors_new = NULL;
4214 }
4215 setup_geo(&conf->geo, mddev, geo_start);
4216 smp_mb();
4217 if (mddev->reshape_backwards) {
4218 sector_t size = raid10_size(mddev, 0, 0);
4219 if (size < mddev->array_sectors) {
4220 spin_unlock_irq(&conf->device_lock);
4221 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4222 mdname(mddev));
4223 return -EINVAL;
4224 }
4225 mddev->resync_max_sectors = size;
4226 conf->reshape_progress = size;
4227 } else
4228 conf->reshape_progress = 0;
4229 conf->reshape_safe = conf->reshape_progress;
4230 spin_unlock_irq(&conf->device_lock);
4231
4232 if (mddev->delta_disks && mddev->bitmap) {
4233 struct mdp_superblock_1 *sb = NULL;
4234 sector_t oldsize, newsize;
4235
4236 oldsize = raid10_size(mddev, 0, 0);
4237 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4238
4239 if (!mddev_is_clustered(mddev)) {
4240 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4241 if (ret)
4242 goto abort;
4243 else
4244 goto out;
4245 }
4246
4247 rdev_for_each(rdev, mddev) {
4248 if (rdev->raid_disk > -1 &&
4249 !test_bit(Faulty, &rdev->flags))
4250 sb = page_address(rdev->sb_page);
4251 }
4252
4253 /*
4254 * some node is already performing reshape, and no need to
4255 * call md_bitmap_resize again since it should be called when
4256 * receiving BITMAP_RESIZE msg
4257 */
4258 if ((sb && (le32_to_cpu(sb->feature_map) &
4259 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4260 goto out;
4261
4262 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4263 if (ret)
4264 goto abort;
4265
4266 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4267 if (ret) {
4268 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4269 goto abort;
4270 }
4271 }
4272 out:
4273 if (mddev->delta_disks > 0) {
4274 rdev_for_each(rdev, mddev)
4275 if (rdev->raid_disk < 0 &&
4276 !test_bit(Faulty, &rdev->flags)) {
4277 if (raid10_add_disk(mddev, rdev) == 0) {
4278 if (rdev->raid_disk >=
4279 conf->prev.raid_disks)
4280 set_bit(In_sync, &rdev->flags);
4281 else
4282 rdev->recovery_offset = 0;
4283
4284 /* Failure here is OK */
4285 sysfs_link_rdev(mddev, rdev);
4286 }
4287 } else if (rdev->raid_disk >= conf->prev.raid_disks
4288 && !test_bit(Faulty, &rdev->flags)) {
4289 /* This is a spare that was manually added */
4290 set_bit(In_sync, &rdev->flags);
4291 }
4292 }
4293 /* When a reshape changes the number of devices,
4294 * ->degraded is measured against the larger of the
4295 * pre and post numbers.
4296 */
4297 spin_lock_irq(&conf->device_lock);
4298 mddev->degraded = calc_degraded(conf);
4299 spin_unlock_irq(&conf->device_lock);
4300 mddev->raid_disks = conf->geo.raid_disks;
4301 mddev->reshape_position = conf->reshape_progress;
4302 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4303
4304 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4305 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4306 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4307 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4308 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4309
4310 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4311 "reshape");
4312 if (!mddev->sync_thread) {
4313 ret = -EAGAIN;
4314 goto abort;
4315 }
4316 conf->reshape_checkpoint = jiffies;
4317 md_wakeup_thread(mddev->sync_thread);
4318 md_new_event(mddev);
4319 return 0;
4320
4321 abort:
4322 mddev->recovery = 0;
4323 spin_lock_irq(&conf->device_lock);
4324 conf->geo = conf->prev;
4325 mddev->raid_disks = conf->geo.raid_disks;
4326 rdev_for_each(rdev, mddev)
4327 rdev->new_data_offset = rdev->data_offset;
4328 smp_wmb();
4329 conf->reshape_progress = MaxSector;
4330 conf->reshape_safe = MaxSector;
4331 mddev->reshape_position = MaxSector;
4332 spin_unlock_irq(&conf->device_lock);
4333 return ret;
4334 }
4335
4336 /* Calculate the last device-address that could contain
4337 * any block from the chunk that includes the array-address 's'
4338 * and report the next address.
4339 * i.e. the address returned will be chunk-aligned and after
4340 * any data that is in the chunk containing 's'.
4341 */
4342 static sector_t last_dev_address(sector_t s, struct geom *geo)
4343 {
4344 s = (s | geo->chunk_mask) + 1;
4345 s >>= geo->chunk_shift;
4346 s *= geo->near_copies;
4347 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4348 s *= geo->far_copies;
4349 s <<= geo->chunk_shift;
4350 return s;
4351 }
4352
4353 /* Calculate the first device-address that could contain
4354 * any block from the chunk that includes the array-address 's'.
4355 * This too will be the start of a chunk
4356 */
4357 static sector_t first_dev_address(sector_t s, struct geom *geo)
4358 {
4359 s >>= geo->chunk_shift;
4360 s *= geo->near_copies;
4361 sector_div(s, geo->raid_disks);
4362 s *= geo->far_copies;
4363 s <<= geo->chunk_shift;
4364 return s;
4365 }
4366
4367 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4368 int *skipped)
4369 {
4370 /* We simply copy at most one chunk (smallest of old and new)
4371 * at a time, possibly less if that exceeds RESYNC_PAGES,
4372 * or we hit a bad block or something.
4373 * This might mean we pause for normal IO in the middle of
4374 * a chunk, but that is not a problem as mddev->reshape_position
4375 * can record any location.
4376 *
4377 * If we will want to write to a location that isn't
4378 * yet recorded as 'safe' (i.e. in metadata on disk) then
4379 * we need to flush all reshape requests and update the metadata.
4380 *
4381 * When reshaping forwards (e.g. to more devices), we interpret
4382 * 'safe' as the earliest block which might not have been copied
4383 * down yet. We divide this by previous stripe size and multiply
4384 * by previous stripe length to get lowest device offset that we
4385 * cannot write to yet.
4386 * We interpret 'sector_nr' as an address that we want to write to.
4387 * From this we use last_device_address() to find where we might
4388 * write to, and first_device_address on the 'safe' position.
4389 * If this 'next' write position is after the 'safe' position,
4390 * we must update the metadata to increase the 'safe' position.
4391 *
4392 * When reshaping backwards, we round in the opposite direction
4393 * and perform the reverse test: next write position must not be
4394 * less than current safe position.
4395 *
4396 * In all this the minimum difference in data offsets
4397 * (conf->offset_diff - always positive) allows a bit of slack,
4398 * so next can be after 'safe', but not by more than offset_diff
4399 *
4400 * We need to prepare all the bios here before we start any IO
4401 * to ensure the size we choose is acceptable to all devices.
4402 * The means one for each copy for write-out and an extra one for
4403 * read-in.
4404 * We store the read-in bio in ->master_bio and the others in
4405 * ->devs[x].bio and ->devs[x].repl_bio.
4406 */
4407 struct r10conf *conf = mddev->private;
4408 struct r10bio *r10_bio;
4409 sector_t next, safe, last;
4410 int max_sectors;
4411 int nr_sectors;
4412 int s;
4413 struct md_rdev *rdev;
4414 int need_flush = 0;
4415 struct bio *blist;
4416 struct bio *bio, *read_bio;
4417 int sectors_done = 0;
4418 struct page **pages;
4419
4420 if (sector_nr == 0) {
4421 /* If restarting in the middle, skip the initial sectors */
4422 if (mddev->reshape_backwards &&
4423 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4424 sector_nr = (raid10_size(mddev, 0, 0)
4425 - conf->reshape_progress);
4426 } else if (!mddev->reshape_backwards &&
4427 conf->reshape_progress > 0)
4428 sector_nr = conf->reshape_progress;
4429 if (sector_nr) {
4430 mddev->curr_resync_completed = sector_nr;
4431 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4432 *skipped = 1;
4433 return sector_nr;
4434 }
4435 }
4436
4437 /* We don't use sector_nr to track where we are up to
4438 * as that doesn't work well for ->reshape_backwards.
4439 * So just use ->reshape_progress.
4440 */
4441 if (mddev->reshape_backwards) {
4442 /* 'next' is the earliest device address that we might
4443 * write to for this chunk in the new layout
4444 */
4445 next = first_dev_address(conf->reshape_progress - 1,
4446 &conf->geo);
4447
4448 /* 'safe' is the last device address that we might read from
4449 * in the old layout after a restart
4450 */
4451 safe = last_dev_address(conf->reshape_safe - 1,
4452 &conf->prev);
4453
4454 if (next + conf->offset_diff < safe)
4455 need_flush = 1;
4456
4457 last = conf->reshape_progress - 1;
4458 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4459 & conf->prev.chunk_mask);
4460 if (sector_nr + RESYNC_SECTORS < last)
4461 sector_nr = last + 1 - RESYNC_SECTORS;
4462 } else {
4463 /* 'next' is after the last device address that we
4464 * might write to for this chunk in the new layout
4465 */
4466 next = last_dev_address(conf->reshape_progress, &conf->geo);
4467
4468 /* 'safe' is the earliest device address that we might
4469 * read from in the old layout after a restart
4470 */
4471 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4472
4473 /* Need to update metadata if 'next' might be beyond 'safe'
4474 * as that would possibly corrupt data
4475 */
4476 if (next > safe + conf->offset_diff)
4477 need_flush = 1;
4478
4479 sector_nr = conf->reshape_progress;
4480 last = sector_nr | (conf->geo.chunk_mask
4481 & conf->prev.chunk_mask);
4482
4483 if (sector_nr + RESYNC_SECTORS <= last)
4484 last = sector_nr + RESYNC_SECTORS - 1;
4485 }
4486
4487 if (need_flush ||
4488 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4489 /* Need to update reshape_position in metadata */
4490 wait_barrier(conf);
4491 mddev->reshape_position = conf->reshape_progress;
4492 if (mddev->reshape_backwards)
4493 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4494 - conf->reshape_progress;
4495 else
4496 mddev->curr_resync_completed = conf->reshape_progress;
4497 conf->reshape_checkpoint = jiffies;
4498 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4499 md_wakeup_thread(mddev->thread);
4500 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4501 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4502 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4503 allow_barrier(conf);
4504 return sectors_done;
4505 }
4506 conf->reshape_safe = mddev->reshape_position;
4507 allow_barrier(conf);
4508 }
4509
4510 raise_barrier(conf, 0);
4511 read_more:
4512 /* Now schedule reads for blocks from sector_nr to last */
4513 r10_bio = raid10_alloc_init_r10buf(conf);
4514 r10_bio->state = 0;
4515 raise_barrier(conf, 1);
4516 atomic_set(&r10_bio->remaining, 0);
4517 r10_bio->mddev = mddev;
4518 r10_bio->sector = sector_nr;
4519 set_bit(R10BIO_IsReshape, &r10_bio->state);
4520 r10_bio->sectors = last - sector_nr + 1;
4521 rdev = read_balance(conf, r10_bio, &max_sectors);
4522 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4523
4524 if (!rdev) {
4525 /* Cannot read from here, so need to record bad blocks
4526 * on all the target devices.
4527 */
4528 // FIXME
4529 mempool_free(r10_bio, &conf->r10buf_pool);
4530 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4531 return sectors_done;
4532 }
4533
4534 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4535
4536 bio_set_dev(read_bio, rdev->bdev);
4537 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4538 + rdev->data_offset);
4539 read_bio->bi_private = r10_bio;
4540 read_bio->bi_end_io = end_reshape_read;
4541 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4542 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4543 read_bio->bi_status = 0;
4544 read_bio->bi_vcnt = 0;
4545 read_bio->bi_iter.bi_size = 0;
4546 r10_bio->master_bio = read_bio;
4547 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4548
4549 /*
4550 * Broadcast RESYNC message to other nodes, so all nodes would not
4551 * write to the region to avoid conflict.
4552 */
4553 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4554 struct mdp_superblock_1 *sb = NULL;
4555 int sb_reshape_pos = 0;
4556
4557 conf->cluster_sync_low = sector_nr;
4558 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4559 sb = page_address(rdev->sb_page);
4560 if (sb) {
4561 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4562 /*
4563 * Set cluster_sync_low again if next address for array
4564 * reshape is less than cluster_sync_low. Since we can't
4565 * update cluster_sync_low until it has finished reshape.
4566 */
4567 if (sb_reshape_pos < conf->cluster_sync_low)
4568 conf->cluster_sync_low = sb_reshape_pos;
4569 }
4570
4571 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4572 conf->cluster_sync_high);
4573 }
4574
4575 /* Now find the locations in the new layout */
4576 __raid10_find_phys(&conf->geo, r10_bio);
4577
4578 blist = read_bio;
4579 read_bio->bi_next = NULL;
4580
4581 rcu_read_lock();
4582 for (s = 0; s < conf->copies*2; s++) {
4583 struct bio *b;
4584 int d = r10_bio->devs[s/2].devnum;
4585 struct md_rdev *rdev2;
4586 if (s&1) {
4587 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4588 b = r10_bio->devs[s/2].repl_bio;
4589 } else {
4590 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4591 b = r10_bio->devs[s/2].bio;
4592 }
4593 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4594 continue;
4595
4596 bio_set_dev(b, rdev2->bdev);
4597 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4598 rdev2->new_data_offset;
4599 b->bi_end_io = end_reshape_write;
4600 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4601 b->bi_next = blist;
4602 blist = b;
4603 }
4604
4605 /* Now add as many pages as possible to all of these bios. */
4606
4607 nr_sectors = 0;
4608 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4609 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4610 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4611 int len = (max_sectors - s) << 9;
4612 if (len > PAGE_SIZE)
4613 len = PAGE_SIZE;
4614 for (bio = blist; bio ; bio = bio->bi_next) {
4615 /*
4616 * won't fail because the vec table is big enough
4617 * to hold all these pages
4618 */
4619 bio_add_page(bio, page, len, 0);
4620 }
4621 sector_nr += len >> 9;
4622 nr_sectors += len >> 9;
4623 }
4624 rcu_read_unlock();
4625 r10_bio->sectors = nr_sectors;
4626
4627 /* Now submit the read */
4628 md_sync_acct_bio(read_bio, r10_bio->sectors);
4629 atomic_inc(&r10_bio->remaining);
4630 read_bio->bi_next = NULL;
4631 submit_bio_noacct(read_bio);
4632 sectors_done += nr_sectors;
4633 if (sector_nr <= last)
4634 goto read_more;
4635
4636 lower_barrier(conf);
4637
4638 /* Now that we have done the whole section we can
4639 * update reshape_progress
4640 */
4641 if (mddev->reshape_backwards)
4642 conf->reshape_progress -= sectors_done;
4643 else
4644 conf->reshape_progress += sectors_done;
4645
4646 return sectors_done;
4647 }
4648
4649 static void end_reshape_request(struct r10bio *r10_bio);
4650 static int handle_reshape_read_error(struct mddev *mddev,
4651 struct r10bio *r10_bio);
4652 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4653 {
4654 /* Reshape read completed. Hopefully we have a block
4655 * to write out.
4656 * If we got a read error then we do sync 1-page reads from
4657 * elsewhere until we find the data - or give up.
4658 */
4659 struct r10conf *conf = mddev->private;
4660 int s;
4661
4662 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4663 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4664 /* Reshape has been aborted */
4665 md_done_sync(mddev, r10_bio->sectors, 0);
4666 return;
4667 }
4668
4669 /* We definitely have the data in the pages, schedule the
4670 * writes.
4671 */
4672 atomic_set(&r10_bio->remaining, 1);
4673 for (s = 0; s < conf->copies*2; s++) {
4674 struct bio *b;
4675 int d = r10_bio->devs[s/2].devnum;
4676 struct md_rdev *rdev;
4677 rcu_read_lock();
4678 if (s&1) {
4679 rdev = rcu_dereference(conf->mirrors[d].replacement);
4680 b = r10_bio->devs[s/2].repl_bio;
4681 } else {
4682 rdev = rcu_dereference(conf->mirrors[d].rdev);
4683 b = r10_bio->devs[s/2].bio;
4684 }
4685 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4686 rcu_read_unlock();
4687 continue;
4688 }
4689 atomic_inc(&rdev->nr_pending);
4690 rcu_read_unlock();
4691 md_sync_acct_bio(b, r10_bio->sectors);
4692 atomic_inc(&r10_bio->remaining);
4693 b->bi_next = NULL;
4694 submit_bio_noacct(b);
4695 }
4696 end_reshape_request(r10_bio);
4697 }
4698
4699 static void end_reshape(struct r10conf *conf)
4700 {
4701 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4702 return;
4703
4704 spin_lock_irq(&conf->device_lock);
4705 conf->prev = conf->geo;
4706 md_finish_reshape(conf->mddev);
4707 smp_wmb();
4708 conf->reshape_progress = MaxSector;
4709 conf->reshape_safe = MaxSector;
4710 spin_unlock_irq(&conf->device_lock);
4711
4712 if (conf->mddev->queue)
4713 raid10_set_io_opt(conf);
4714 conf->fullsync = 0;
4715 }
4716
4717 static void raid10_update_reshape_pos(struct mddev *mddev)
4718 {
4719 struct r10conf *conf = mddev->private;
4720 sector_t lo, hi;
4721
4722 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4723 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4724 || mddev->reshape_position == MaxSector)
4725 conf->reshape_progress = mddev->reshape_position;
4726 else
4727 WARN_ON_ONCE(1);
4728 }
4729
4730 static int handle_reshape_read_error(struct mddev *mddev,
4731 struct r10bio *r10_bio)
4732 {
4733 /* Use sync reads to get the blocks from somewhere else */
4734 int sectors = r10_bio->sectors;
4735 struct r10conf *conf = mddev->private;
4736 struct r10bio *r10b;
4737 int slot = 0;
4738 int idx = 0;
4739 struct page **pages;
4740
4741 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4742 if (!r10b) {
4743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4744 return -ENOMEM;
4745 }
4746
4747 /* reshape IOs share pages from .devs[0].bio */
4748 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4749
4750 r10b->sector = r10_bio->sector;
4751 __raid10_find_phys(&conf->prev, r10b);
4752
4753 while (sectors) {
4754 int s = sectors;
4755 int success = 0;
4756 int first_slot = slot;
4757
4758 if (s > (PAGE_SIZE >> 9))
4759 s = PAGE_SIZE >> 9;
4760
4761 rcu_read_lock();
4762 while (!success) {
4763 int d = r10b->devs[slot].devnum;
4764 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4765 sector_t addr;
4766 if (rdev == NULL ||
4767 test_bit(Faulty, &rdev->flags) ||
4768 !test_bit(In_sync, &rdev->flags))
4769 goto failed;
4770
4771 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4772 atomic_inc(&rdev->nr_pending);
4773 rcu_read_unlock();
4774 success = sync_page_io(rdev,
4775 addr,
4776 s << 9,
4777 pages[idx],
4778 REQ_OP_READ, 0, false);
4779 rdev_dec_pending(rdev, mddev);
4780 rcu_read_lock();
4781 if (success)
4782 break;
4783 failed:
4784 slot++;
4785 if (slot >= conf->copies)
4786 slot = 0;
4787 if (slot == first_slot)
4788 break;
4789 }
4790 rcu_read_unlock();
4791 if (!success) {
4792 /* couldn't read this block, must give up */
4793 set_bit(MD_RECOVERY_INTR,
4794 &mddev->recovery);
4795 kfree(r10b);
4796 return -EIO;
4797 }
4798 sectors -= s;
4799 idx++;
4800 }
4801 kfree(r10b);
4802 return 0;
4803 }
4804
4805 static void end_reshape_write(struct bio *bio)
4806 {
4807 struct r10bio *r10_bio = get_resync_r10bio(bio);
4808 struct mddev *mddev = r10_bio->mddev;
4809 struct r10conf *conf = mddev->private;
4810 int d;
4811 int slot;
4812 int repl;
4813 struct md_rdev *rdev = NULL;
4814
4815 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4816 if (repl)
4817 rdev = conf->mirrors[d].replacement;
4818 if (!rdev) {
4819 smp_mb();
4820 rdev = conf->mirrors[d].rdev;
4821 }
4822
4823 if (bio->bi_status) {
4824 /* FIXME should record badblock */
4825 md_error(mddev, rdev);
4826 }
4827
4828 rdev_dec_pending(rdev, mddev);
4829 end_reshape_request(r10_bio);
4830 }
4831
4832 static void end_reshape_request(struct r10bio *r10_bio)
4833 {
4834 if (!atomic_dec_and_test(&r10_bio->remaining))
4835 return;
4836 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4837 bio_put(r10_bio->master_bio);
4838 put_buf(r10_bio);
4839 }
4840
4841 static void raid10_finish_reshape(struct mddev *mddev)
4842 {
4843 struct r10conf *conf = mddev->private;
4844
4845 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4846 return;
4847
4848 if (mddev->delta_disks > 0) {
4849 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4850 mddev->recovery_cp = mddev->resync_max_sectors;
4851 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4852 }
4853 mddev->resync_max_sectors = mddev->array_sectors;
4854 } else {
4855 int d;
4856 rcu_read_lock();
4857 for (d = conf->geo.raid_disks ;
4858 d < conf->geo.raid_disks - mddev->delta_disks;
4859 d++) {
4860 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4861 if (rdev)
4862 clear_bit(In_sync, &rdev->flags);
4863 rdev = rcu_dereference(conf->mirrors[d].replacement);
4864 if (rdev)
4865 clear_bit(In_sync, &rdev->flags);
4866 }
4867 rcu_read_unlock();
4868 }
4869 mddev->layout = mddev->new_layout;
4870 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4871 mddev->reshape_position = MaxSector;
4872 mddev->delta_disks = 0;
4873 mddev->reshape_backwards = 0;
4874 }
4875
4876 static struct md_personality raid10_personality =
4877 {
4878 .name = "raid10",
4879 .level = 10,
4880 .owner = THIS_MODULE,
4881 .make_request = raid10_make_request,
4882 .run = raid10_run,
4883 .free = raid10_free,
4884 .status = raid10_status,
4885 .error_handler = raid10_error,
4886 .hot_add_disk = raid10_add_disk,
4887 .hot_remove_disk= raid10_remove_disk,
4888 .spare_active = raid10_spare_active,
4889 .sync_request = raid10_sync_request,
4890 .quiesce = raid10_quiesce,
4891 .size = raid10_size,
4892 .resize = raid10_resize,
4893 .takeover = raid10_takeover,
4894 .check_reshape = raid10_check_reshape,
4895 .start_reshape = raid10_start_reshape,
4896 .finish_reshape = raid10_finish_reshape,
4897 .update_reshape_pos = raid10_update_reshape_pos,
4898 };
4899
4900 static int __init raid_init(void)
4901 {
4902 return register_md_personality(&raid10_personality);
4903 }
4904
4905 static void raid_exit(void)
4906 {
4907 unregister_md_personality(&raid10_personality);
4908 }
4909
4910 module_init(raid_init);
4911 module_exit(raid_exit);
4912 MODULE_LICENSE("GPL");
4913 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4914 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4915 MODULE_ALIAS("md-raid10");
4916 MODULE_ALIAS("md-level-10");
4917
4918 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);