]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - arch/x86/kvm/x86.c
ee0e827a044530560dc1e992b22b4dc81a9b9506
[mirror_ubuntu-impish-kernel.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <linux/kernel_stat.h>
69 #include <asm/fpu/internal.h> /* Ugh! */
70 #include <asm/pvclock.h>
71 #include <asm/div64.h>
72 #include <asm/irq_remapping.h>
73 #include <asm/mshyperv.h>
74 #include <asm/hypervisor.h>
75 #include <asm/tlbflush.h>
76 #include <asm/intel_pt.h>
77 #include <asm/emulate_prefix.h>
78 #include <asm/sgx.h>
79 #include <clocksource/hyperv_timer.h>
80
81 #define CREATE_TRACE_POINTS
82 #include "trace.h"
83
84 #define MAX_IO_MSRS 256
85 #define KVM_MAX_MCE_BANKS 32
86 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
87 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
88
89 #define emul_to_vcpu(ctxt) \
90 ((struct kvm_vcpu *)(ctxt)->vcpu)
91
92 /* EFER defaults:
93 * - enable syscall per default because its emulated by KVM
94 * - enable LME and LMA per default on 64 bit KVM
95 */
96 #ifdef CONFIG_X86_64
97 static
98 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
99 #else
100 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
101 #endif
102
103 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
104
105 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
106 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
107
108 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
109 static void process_nmi(struct kvm_vcpu *vcpu);
110 static void process_smi(struct kvm_vcpu *vcpu);
111 static void enter_smm(struct kvm_vcpu *vcpu);
112 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
113 static void store_regs(struct kvm_vcpu *vcpu);
114 static int sync_regs(struct kvm_vcpu *vcpu);
115
116 struct kvm_x86_ops kvm_x86_ops __read_mostly;
117 EXPORT_SYMBOL_GPL(kvm_x86_ops);
118
119 #define KVM_X86_OP(func) \
120 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
121 *(((struct kvm_x86_ops *)0)->func));
122 #define KVM_X86_OP_NULL KVM_X86_OP
123 #include <asm/kvm-x86-ops.h>
124 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
125 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
126 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
127
128 static bool __read_mostly ignore_msrs = 0;
129 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
130
131 bool __read_mostly report_ignored_msrs = true;
132 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
133 EXPORT_SYMBOL_GPL(report_ignored_msrs);
134
135 unsigned int min_timer_period_us = 200;
136 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly kvmclock_periodic_sync = true;
139 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
140
141 bool __read_mostly kvm_has_tsc_control;
142 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
143 u32 __read_mostly kvm_max_guest_tsc_khz;
144 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
145 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
146 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
147 u64 __read_mostly kvm_max_tsc_scaling_ratio;
148 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
149 u64 __read_mostly kvm_default_tsc_scaling_ratio;
150 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
151 bool __read_mostly kvm_has_bus_lock_exit;
152 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
153
154 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
155 static u32 __read_mostly tsc_tolerance_ppm = 250;
156 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
157
158 /*
159 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
160 * adaptive tuning starting from default advancement of 1000ns. '0' disables
161 * advancement entirely. Any other value is used as-is and disables adaptive
162 * tuning, i.e. allows privileged userspace to set an exact advancement time.
163 */
164 static int __read_mostly lapic_timer_advance_ns = -1;
165 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
166
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, S_IRUGO);
169
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, S_IRUGO);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173
174 static bool __read_mostly force_emulation_prefix = false;
175 module_param(force_emulation_prefix, bool, S_IRUGO);
176
177 int __read_mostly pi_inject_timer = -1;
178 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
179
180 /*
181 * Restoring the host value for MSRs that are only consumed when running in
182 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
183 * returns to userspace, i.e. the kernel can run with the guest's value.
184 */
185 #define KVM_MAX_NR_USER_RETURN_MSRS 16
186
187 struct kvm_user_return_msrs {
188 struct user_return_notifier urn;
189 bool registered;
190 struct kvm_user_return_msr_values {
191 u64 host;
192 u64 curr;
193 } values[KVM_MAX_NR_USER_RETURN_MSRS];
194 };
195
196 u32 __read_mostly kvm_nr_uret_msrs;
197 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
198 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
199 static struct kvm_user_return_msrs __percpu *user_return_msrs;
200
201 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
202 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
203 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
204 | XFEATURE_MASK_PKRU)
205
206 u64 __read_mostly host_efer;
207 EXPORT_SYMBOL_GPL(host_efer);
208
209 bool __read_mostly allow_smaller_maxphyaddr = 0;
210 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
211
212 u64 __read_mostly host_xss;
213 EXPORT_SYMBOL_GPL(host_xss);
214 u64 __read_mostly supported_xss;
215 EXPORT_SYMBOL_GPL(supported_xss);
216
217 struct kvm_stats_debugfs_item debugfs_entries[] = {
218 VCPU_STAT("pf_fixed", pf_fixed),
219 VCPU_STAT("pf_guest", pf_guest),
220 VCPU_STAT("tlb_flush", tlb_flush),
221 VCPU_STAT("invlpg", invlpg),
222 VCPU_STAT("exits", exits),
223 VCPU_STAT("io_exits", io_exits),
224 VCPU_STAT("mmio_exits", mmio_exits),
225 VCPU_STAT("signal_exits", signal_exits),
226 VCPU_STAT("irq_window", irq_window_exits),
227 VCPU_STAT("nmi_window", nmi_window_exits),
228 VCPU_STAT("halt_exits", halt_exits),
229 VCPU_STAT("halt_successful_poll", halt_successful_poll),
230 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
231 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
232 VCPU_STAT("halt_wakeup", halt_wakeup),
233 VCPU_STAT("hypercalls", hypercalls),
234 VCPU_STAT("request_irq", request_irq_exits),
235 VCPU_STAT("irq_exits", irq_exits),
236 VCPU_STAT("host_state_reload", host_state_reload),
237 VCPU_STAT("fpu_reload", fpu_reload),
238 VCPU_STAT("insn_emulation", insn_emulation),
239 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
240 VCPU_STAT("irq_injections", irq_injections),
241 VCPU_STAT("nmi_injections", nmi_injections),
242 VCPU_STAT("req_event", req_event),
243 VCPU_STAT("l1d_flush", l1d_flush),
244 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
245 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
246 VCPU_STAT("nested_run", nested_run),
247 VCPU_STAT("directed_yield_attempted", directed_yield_attempted),
248 VCPU_STAT("directed_yield_successful", directed_yield_successful),
249 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
250 VM_STAT("mmu_pte_write", mmu_pte_write),
251 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
252 VM_STAT("mmu_flooded", mmu_flooded),
253 VM_STAT("mmu_recycled", mmu_recycled),
254 VM_STAT("mmu_cache_miss", mmu_cache_miss),
255 VM_STAT("mmu_unsync", mmu_unsync),
256 VM_STAT("remote_tlb_flush", remote_tlb_flush),
257 VM_STAT("largepages", lpages, .mode = 0444),
258 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
259 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
260 { NULL }
261 };
262
263 u64 __read_mostly host_xcr0;
264 u64 __read_mostly supported_xcr0;
265 EXPORT_SYMBOL_GPL(supported_xcr0);
266
267 static struct kmem_cache *x86_fpu_cache;
268
269 static struct kmem_cache *x86_emulator_cache;
270
271 /*
272 * When called, it means the previous get/set msr reached an invalid msr.
273 * Return true if we want to ignore/silent this failed msr access.
274 */
275 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
276 {
277 const char *op = write ? "wrmsr" : "rdmsr";
278
279 if (ignore_msrs) {
280 if (report_ignored_msrs)
281 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
282 op, msr, data);
283 /* Mask the error */
284 return true;
285 } else {
286 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
287 op, msr, data);
288 return false;
289 }
290 }
291
292 static struct kmem_cache *kvm_alloc_emulator_cache(void)
293 {
294 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
295 unsigned int size = sizeof(struct x86_emulate_ctxt);
296
297 return kmem_cache_create_usercopy("x86_emulator", size,
298 __alignof__(struct x86_emulate_ctxt),
299 SLAB_ACCOUNT, useroffset,
300 size - useroffset, NULL);
301 }
302
303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
304
305 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
306 {
307 int i;
308 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
309 vcpu->arch.apf.gfns[i] = ~0;
310 }
311
312 static void kvm_on_user_return(struct user_return_notifier *urn)
313 {
314 unsigned slot;
315 struct kvm_user_return_msrs *msrs
316 = container_of(urn, struct kvm_user_return_msrs, urn);
317 struct kvm_user_return_msr_values *values;
318 unsigned long flags;
319
320 /*
321 * Disabling irqs at this point since the following code could be
322 * interrupted and executed through kvm_arch_hardware_disable()
323 */
324 local_irq_save(flags);
325 if (msrs->registered) {
326 msrs->registered = false;
327 user_return_notifier_unregister(urn);
328 }
329 local_irq_restore(flags);
330 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
331 values = &msrs->values[slot];
332 if (values->host != values->curr) {
333 wrmsrl(kvm_uret_msrs_list[slot], values->host);
334 values->curr = values->host;
335 }
336 }
337 }
338
339 static int kvm_probe_user_return_msr(u32 msr)
340 {
341 u64 val;
342 int ret;
343
344 preempt_disable();
345 ret = rdmsrl_safe(msr, &val);
346 if (ret)
347 goto out;
348 ret = wrmsrl_safe(msr, val);
349 out:
350 preempt_enable();
351 return ret;
352 }
353
354 int kvm_add_user_return_msr(u32 msr)
355 {
356 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
357
358 if (kvm_probe_user_return_msr(msr))
359 return -1;
360
361 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
362 return kvm_nr_uret_msrs++;
363 }
364 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
365
366 int kvm_find_user_return_msr(u32 msr)
367 {
368 int i;
369
370 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
371 if (kvm_uret_msrs_list[i] == msr)
372 return i;
373 }
374 return -1;
375 }
376 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
377
378 static void kvm_user_return_msr_cpu_online(void)
379 {
380 unsigned int cpu = smp_processor_id();
381 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
382 u64 value;
383 int i;
384
385 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
386 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
387 msrs->values[i].host = value;
388 msrs->values[i].curr = value;
389 }
390 }
391
392 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
393 {
394 unsigned int cpu = smp_processor_id();
395 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
396 int err;
397
398 value = (value & mask) | (msrs->values[slot].host & ~mask);
399 if (value == msrs->values[slot].curr)
400 return 0;
401 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
402 if (err)
403 return 1;
404
405 msrs->values[slot].curr = value;
406 if (!msrs->registered) {
407 msrs->urn.on_user_return = kvm_on_user_return;
408 user_return_notifier_register(&msrs->urn);
409 msrs->registered = true;
410 }
411 return 0;
412 }
413 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
414
415 static void drop_user_return_notifiers(void)
416 {
417 unsigned int cpu = smp_processor_id();
418 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
419
420 if (msrs->registered)
421 kvm_on_user_return(&msrs->urn);
422 }
423
424 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
425 {
426 return vcpu->arch.apic_base;
427 }
428 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
429
430 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
431 {
432 return kvm_apic_mode(kvm_get_apic_base(vcpu));
433 }
434 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
435
436 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
437 {
438 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
439 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
440 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
441 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
442
443 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
444 return 1;
445 if (!msr_info->host_initiated) {
446 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
447 return 1;
448 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
449 return 1;
450 }
451
452 kvm_lapic_set_base(vcpu, msr_info->data);
453 kvm_recalculate_apic_map(vcpu->kvm);
454 return 0;
455 }
456 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
457
458 asmlinkage __visible noinstr void kvm_spurious_fault(void)
459 {
460 /* Fault while not rebooting. We want the trace. */
461 BUG_ON(!kvm_rebooting);
462 }
463 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
464
465 #define EXCPT_BENIGN 0
466 #define EXCPT_CONTRIBUTORY 1
467 #define EXCPT_PF 2
468
469 static int exception_class(int vector)
470 {
471 switch (vector) {
472 case PF_VECTOR:
473 return EXCPT_PF;
474 case DE_VECTOR:
475 case TS_VECTOR:
476 case NP_VECTOR:
477 case SS_VECTOR:
478 case GP_VECTOR:
479 return EXCPT_CONTRIBUTORY;
480 default:
481 break;
482 }
483 return EXCPT_BENIGN;
484 }
485
486 #define EXCPT_FAULT 0
487 #define EXCPT_TRAP 1
488 #define EXCPT_ABORT 2
489 #define EXCPT_INTERRUPT 3
490
491 static int exception_type(int vector)
492 {
493 unsigned int mask;
494
495 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
496 return EXCPT_INTERRUPT;
497
498 mask = 1 << vector;
499
500 /* #DB is trap, as instruction watchpoints are handled elsewhere */
501 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
502 return EXCPT_TRAP;
503
504 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
505 return EXCPT_ABORT;
506
507 /* Reserved exceptions will result in fault */
508 return EXCPT_FAULT;
509 }
510
511 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
512 {
513 unsigned nr = vcpu->arch.exception.nr;
514 bool has_payload = vcpu->arch.exception.has_payload;
515 unsigned long payload = vcpu->arch.exception.payload;
516
517 if (!has_payload)
518 return;
519
520 switch (nr) {
521 case DB_VECTOR:
522 /*
523 * "Certain debug exceptions may clear bit 0-3. The
524 * remaining contents of the DR6 register are never
525 * cleared by the processor".
526 */
527 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
528 /*
529 * In order to reflect the #DB exception payload in guest
530 * dr6, three components need to be considered: active low
531 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
532 * DR6_BS and DR6_BT)
533 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
534 * In the target guest dr6:
535 * FIXED_1 bits should always be set.
536 * Active low bits should be cleared if 1-setting in payload.
537 * Active high bits should be set if 1-setting in payload.
538 *
539 * Note, the payload is compatible with the pending debug
540 * exceptions/exit qualification under VMX, that active_low bits
541 * are active high in payload.
542 * So they need to be flipped for DR6.
543 */
544 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
545 vcpu->arch.dr6 |= payload;
546 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
547
548 /*
549 * The #DB payload is defined as compatible with the 'pending
550 * debug exceptions' field under VMX, not DR6. While bit 12 is
551 * defined in the 'pending debug exceptions' field (enabled
552 * breakpoint), it is reserved and must be zero in DR6.
553 */
554 vcpu->arch.dr6 &= ~BIT(12);
555 break;
556 case PF_VECTOR:
557 vcpu->arch.cr2 = payload;
558 break;
559 }
560
561 vcpu->arch.exception.has_payload = false;
562 vcpu->arch.exception.payload = 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
565
566 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
567 unsigned nr, bool has_error, u32 error_code,
568 bool has_payload, unsigned long payload, bool reinject)
569 {
570 u32 prev_nr;
571 int class1, class2;
572
573 kvm_make_request(KVM_REQ_EVENT, vcpu);
574
575 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
576 queue:
577 if (reinject) {
578 /*
579 * On vmentry, vcpu->arch.exception.pending is only
580 * true if an event injection was blocked by
581 * nested_run_pending. In that case, however,
582 * vcpu_enter_guest requests an immediate exit,
583 * and the guest shouldn't proceed far enough to
584 * need reinjection.
585 */
586 WARN_ON_ONCE(vcpu->arch.exception.pending);
587 vcpu->arch.exception.injected = true;
588 if (WARN_ON_ONCE(has_payload)) {
589 /*
590 * A reinjected event has already
591 * delivered its payload.
592 */
593 has_payload = false;
594 payload = 0;
595 }
596 } else {
597 vcpu->arch.exception.pending = true;
598 vcpu->arch.exception.injected = false;
599 }
600 vcpu->arch.exception.has_error_code = has_error;
601 vcpu->arch.exception.nr = nr;
602 vcpu->arch.exception.error_code = error_code;
603 vcpu->arch.exception.has_payload = has_payload;
604 vcpu->arch.exception.payload = payload;
605 if (!is_guest_mode(vcpu))
606 kvm_deliver_exception_payload(vcpu);
607 return;
608 }
609
610 /* to check exception */
611 prev_nr = vcpu->arch.exception.nr;
612 if (prev_nr == DF_VECTOR) {
613 /* triple fault -> shutdown */
614 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
615 return;
616 }
617 class1 = exception_class(prev_nr);
618 class2 = exception_class(nr);
619 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
620 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
621 /*
622 * Generate double fault per SDM Table 5-5. Set
623 * exception.pending = true so that the double fault
624 * can trigger a nested vmexit.
625 */
626 vcpu->arch.exception.pending = true;
627 vcpu->arch.exception.injected = false;
628 vcpu->arch.exception.has_error_code = true;
629 vcpu->arch.exception.nr = DF_VECTOR;
630 vcpu->arch.exception.error_code = 0;
631 vcpu->arch.exception.has_payload = false;
632 vcpu->arch.exception.payload = 0;
633 } else
634 /* replace previous exception with a new one in a hope
635 that instruction re-execution will regenerate lost
636 exception */
637 goto queue;
638 }
639
640 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
641 {
642 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
643 }
644 EXPORT_SYMBOL_GPL(kvm_queue_exception);
645
646 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
647 {
648 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
649 }
650 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
651
652 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
653 unsigned long payload)
654 {
655 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
656 }
657 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
658
659 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
660 u32 error_code, unsigned long payload)
661 {
662 kvm_multiple_exception(vcpu, nr, true, error_code,
663 true, payload, false);
664 }
665
666 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
667 {
668 if (err)
669 kvm_inject_gp(vcpu, 0);
670 else
671 return kvm_skip_emulated_instruction(vcpu);
672
673 return 1;
674 }
675 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
676
677 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
678 {
679 ++vcpu->stat.pf_guest;
680 vcpu->arch.exception.nested_apf =
681 is_guest_mode(vcpu) && fault->async_page_fault;
682 if (vcpu->arch.exception.nested_apf) {
683 vcpu->arch.apf.nested_apf_token = fault->address;
684 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
685 } else {
686 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
687 fault->address);
688 }
689 }
690 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
691
692 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
693 struct x86_exception *fault)
694 {
695 struct kvm_mmu *fault_mmu;
696 WARN_ON_ONCE(fault->vector != PF_VECTOR);
697
698 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
699 vcpu->arch.walk_mmu;
700
701 /*
702 * Invalidate the TLB entry for the faulting address, if it exists,
703 * else the access will fault indefinitely (and to emulate hardware).
704 */
705 if ((fault->error_code & PFERR_PRESENT_MASK) &&
706 !(fault->error_code & PFERR_RSVD_MASK))
707 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
708 fault_mmu->root_hpa);
709
710 fault_mmu->inject_page_fault(vcpu, fault);
711 return fault->nested_page_fault;
712 }
713 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
714
715 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
716 {
717 atomic_inc(&vcpu->arch.nmi_queued);
718 kvm_make_request(KVM_REQ_NMI, vcpu);
719 }
720 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
721
722 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
723 {
724 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
725 }
726 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
727
728 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
729 {
730 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
731 }
732 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
733
734 /*
735 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
736 * a #GP and return false.
737 */
738 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
739 {
740 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
741 return true;
742 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
743 return false;
744 }
745 EXPORT_SYMBOL_GPL(kvm_require_cpl);
746
747 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
748 {
749 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750 return true;
751
752 kvm_queue_exception(vcpu, UD_VECTOR);
753 return false;
754 }
755 EXPORT_SYMBOL_GPL(kvm_require_dr);
756
757 /*
758 * This function will be used to read from the physical memory of the currently
759 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
760 * can read from guest physical or from the guest's guest physical memory.
761 */
762 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
763 gfn_t ngfn, void *data, int offset, int len,
764 u32 access)
765 {
766 struct x86_exception exception;
767 gfn_t real_gfn;
768 gpa_t ngpa;
769
770 ngpa = gfn_to_gpa(ngfn);
771 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
772 if (real_gfn == UNMAPPED_GVA)
773 return -EFAULT;
774
775 real_gfn = gpa_to_gfn(real_gfn);
776
777 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
778 }
779 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
780
781 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
782 void *data, int offset, int len, u32 access)
783 {
784 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
785 data, offset, len, access);
786 }
787
788 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
789 {
790 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
791 }
792
793 /*
794 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
795 */
796 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
797 {
798 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
799 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
800 int i;
801 int ret;
802 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
803
804 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
805 offset * sizeof(u64), sizeof(pdpte),
806 PFERR_USER_MASK|PFERR_WRITE_MASK);
807 if (ret < 0) {
808 ret = 0;
809 goto out;
810 }
811 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
812 if ((pdpte[i] & PT_PRESENT_MASK) &&
813 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
814 ret = 0;
815 goto out;
816 }
817 }
818 ret = 1;
819
820 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
821 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
822
823 out:
824
825 return ret;
826 }
827 EXPORT_SYMBOL_GPL(load_pdptrs);
828
829 bool pdptrs_changed(struct kvm_vcpu *vcpu)
830 {
831 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
832 int offset;
833 gfn_t gfn;
834 int r;
835
836 if (!is_pae_paging(vcpu))
837 return false;
838
839 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
840 return true;
841
842 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
843 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
844 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
845 PFERR_USER_MASK | PFERR_WRITE_MASK);
846 if (r < 0)
847 return true;
848
849 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
850 }
851 EXPORT_SYMBOL_GPL(pdptrs_changed);
852
853 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
854 {
855 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
856
857 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
858 kvm_clear_async_pf_completion_queue(vcpu);
859 kvm_async_pf_hash_reset(vcpu);
860 }
861
862 if ((cr0 ^ old_cr0) & update_bits)
863 kvm_mmu_reset_context(vcpu);
864
865 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
866 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
867 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
868 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
869 }
870 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
871
872 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
873 {
874 unsigned long old_cr0 = kvm_read_cr0(vcpu);
875 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
876
877 cr0 |= X86_CR0_ET;
878
879 #ifdef CONFIG_X86_64
880 if (cr0 & 0xffffffff00000000UL)
881 return 1;
882 #endif
883
884 cr0 &= ~CR0_RESERVED_BITS;
885
886 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
887 return 1;
888
889 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
890 return 1;
891
892 #ifdef CONFIG_X86_64
893 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
894 (cr0 & X86_CR0_PG)) {
895 int cs_db, cs_l;
896
897 if (!is_pae(vcpu))
898 return 1;
899 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
900 if (cs_l)
901 return 1;
902 }
903 #endif
904 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
905 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
906 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
907 return 1;
908
909 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
910 return 1;
911
912 static_call(kvm_x86_set_cr0)(vcpu, cr0);
913
914 kvm_post_set_cr0(vcpu, old_cr0, cr0);
915
916 return 0;
917 }
918 EXPORT_SYMBOL_GPL(kvm_set_cr0);
919
920 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
921 {
922 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
923 }
924 EXPORT_SYMBOL_GPL(kvm_lmsw);
925
926 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
927 {
928 if (vcpu->arch.guest_state_protected)
929 return;
930
931 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
932
933 if (vcpu->arch.xcr0 != host_xcr0)
934 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
935
936 if (vcpu->arch.xsaves_enabled &&
937 vcpu->arch.ia32_xss != host_xss)
938 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
939 }
940
941 if (static_cpu_has(X86_FEATURE_PKU) &&
942 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
943 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
944 vcpu->arch.pkru != vcpu->arch.host_pkru)
945 __write_pkru(vcpu->arch.pkru);
946 }
947 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
948
949 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
950 {
951 if (vcpu->arch.guest_state_protected)
952 return;
953
954 if (static_cpu_has(X86_FEATURE_PKU) &&
955 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
956 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
957 vcpu->arch.pkru = rdpkru();
958 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
959 __write_pkru(vcpu->arch.host_pkru);
960 }
961
962 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
963
964 if (vcpu->arch.xcr0 != host_xcr0)
965 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
966
967 if (vcpu->arch.xsaves_enabled &&
968 vcpu->arch.ia32_xss != host_xss)
969 wrmsrl(MSR_IA32_XSS, host_xss);
970 }
971
972 }
973 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
974
975 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
976 {
977 u64 xcr0 = xcr;
978 u64 old_xcr0 = vcpu->arch.xcr0;
979 u64 valid_bits;
980
981 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
982 if (index != XCR_XFEATURE_ENABLED_MASK)
983 return 1;
984 if (!(xcr0 & XFEATURE_MASK_FP))
985 return 1;
986 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
987 return 1;
988
989 /*
990 * Do not allow the guest to set bits that we do not support
991 * saving. However, xcr0 bit 0 is always set, even if the
992 * emulated CPU does not support XSAVE (see fx_init).
993 */
994 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
995 if (xcr0 & ~valid_bits)
996 return 1;
997
998 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
999 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1000 return 1;
1001
1002 if (xcr0 & XFEATURE_MASK_AVX512) {
1003 if (!(xcr0 & XFEATURE_MASK_YMM))
1004 return 1;
1005 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1006 return 1;
1007 }
1008 vcpu->arch.xcr0 = xcr0;
1009
1010 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1011 kvm_update_cpuid_runtime(vcpu);
1012 return 0;
1013 }
1014
1015 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1016 {
1017 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1018 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1019 kvm_inject_gp(vcpu, 0);
1020 return 1;
1021 }
1022
1023 return kvm_skip_emulated_instruction(vcpu);
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1026
1027 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1028 {
1029 if (cr4 & cr4_reserved_bits)
1030 return false;
1031
1032 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1033 return false;
1034
1035 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1038
1039 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1040 {
1041 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1042 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
1043
1044 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1045 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1046 kvm_mmu_reset_context(vcpu);
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1049
1050 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1051 {
1052 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1053 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1054 X86_CR4_SMEP;
1055
1056 if (!kvm_is_valid_cr4(vcpu, cr4))
1057 return 1;
1058
1059 if (is_long_mode(vcpu)) {
1060 if (!(cr4 & X86_CR4_PAE))
1061 return 1;
1062 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1063 return 1;
1064 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1065 && ((cr4 ^ old_cr4) & pdptr_bits)
1066 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1067 kvm_read_cr3(vcpu)))
1068 return 1;
1069
1070 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1071 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1072 return 1;
1073
1074 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1075 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1076 return 1;
1077 }
1078
1079 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1080
1081 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1082
1083 return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1086
1087 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1088 {
1089 bool skip_tlb_flush = false;
1090 #ifdef CONFIG_X86_64
1091 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1092
1093 if (pcid_enabled) {
1094 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1095 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1096 }
1097 #endif
1098
1099 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1100 if (!skip_tlb_flush) {
1101 kvm_mmu_sync_roots(vcpu);
1102 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1103 }
1104 return 0;
1105 }
1106
1107 /*
1108 * Do not condition the GPA check on long mode, this helper is used to
1109 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1110 * the current vCPU mode is accurate.
1111 */
1112 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1113 return 1;
1114
1115 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1116 return 1;
1117
1118 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
1119 vcpu->arch.cr3 = cr3;
1120 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1121
1122 return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1125
1126 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1127 {
1128 if (cr8 & CR8_RESERVED_BITS)
1129 return 1;
1130 if (lapic_in_kernel(vcpu))
1131 kvm_lapic_set_tpr(vcpu, cr8);
1132 else
1133 vcpu->arch.cr8 = cr8;
1134 return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1137
1138 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1139 {
1140 if (lapic_in_kernel(vcpu))
1141 return kvm_lapic_get_cr8(vcpu);
1142 else
1143 return vcpu->arch.cr8;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1146
1147 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1148 {
1149 int i;
1150
1151 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1152 for (i = 0; i < KVM_NR_DB_REGS; i++)
1153 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1154 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1155 }
1156 }
1157
1158 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1159 {
1160 unsigned long dr7;
1161
1162 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1163 dr7 = vcpu->arch.guest_debug_dr7;
1164 else
1165 dr7 = vcpu->arch.dr7;
1166 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1167 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1168 if (dr7 & DR7_BP_EN_MASK)
1169 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1170 }
1171 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1172
1173 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1174 {
1175 u64 fixed = DR6_FIXED_1;
1176
1177 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1178 fixed |= DR6_RTM;
1179
1180 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1181 fixed |= DR6_BUS_LOCK;
1182 return fixed;
1183 }
1184
1185 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1186 {
1187 size_t size = ARRAY_SIZE(vcpu->arch.db);
1188
1189 switch (dr) {
1190 case 0 ... 3:
1191 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1192 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1193 vcpu->arch.eff_db[dr] = val;
1194 break;
1195 case 4:
1196 case 6:
1197 if (!kvm_dr6_valid(val))
1198 return 1; /* #GP */
1199 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1200 break;
1201 case 5:
1202 default: /* 7 */
1203 if (!kvm_dr7_valid(val))
1204 return 1; /* #GP */
1205 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1206 kvm_update_dr7(vcpu);
1207 break;
1208 }
1209
1210 return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_dr);
1213
1214 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1215 {
1216 size_t size = ARRAY_SIZE(vcpu->arch.db);
1217
1218 switch (dr) {
1219 case 0 ... 3:
1220 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1221 break;
1222 case 4:
1223 case 6:
1224 *val = vcpu->arch.dr6;
1225 break;
1226 case 5:
1227 default: /* 7 */
1228 *val = vcpu->arch.dr7;
1229 break;
1230 }
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_dr);
1233
1234 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1235 {
1236 u32 ecx = kvm_rcx_read(vcpu);
1237 u64 data;
1238
1239 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1240 kvm_inject_gp(vcpu, 0);
1241 return 1;
1242 }
1243
1244 kvm_rax_write(vcpu, (u32)data);
1245 kvm_rdx_write(vcpu, data >> 32);
1246 return kvm_skip_emulated_instruction(vcpu);
1247 }
1248 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1249
1250 /*
1251 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1252 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1253 *
1254 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1255 * extract the supported MSRs from the related const lists.
1256 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1257 * capabilities of the host cpu. This capabilities test skips MSRs that are
1258 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1259 * may depend on host virtualization features rather than host cpu features.
1260 */
1261
1262 static const u32 msrs_to_save_all[] = {
1263 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1264 MSR_STAR,
1265 #ifdef CONFIG_X86_64
1266 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1267 #endif
1268 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1269 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1270 MSR_IA32_SPEC_CTRL,
1271 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1272 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1273 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1274 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1275 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1276 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1277 MSR_IA32_UMWAIT_CONTROL,
1278
1279 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1280 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1281 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1282 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1283 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1284 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1285 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1286 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1287 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1288 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1289 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1290 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1291 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1292 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1293 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1294 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1295 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1296 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1297 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1298 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1299 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1300 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1301
1302 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1303 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1304 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1305 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1306 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1307 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1308 };
1309
1310 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1311 static unsigned num_msrs_to_save;
1312
1313 static const u32 emulated_msrs_all[] = {
1314 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1315 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1316 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1317 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1318 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1319 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1320 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1321 HV_X64_MSR_RESET,
1322 HV_X64_MSR_VP_INDEX,
1323 HV_X64_MSR_VP_RUNTIME,
1324 HV_X64_MSR_SCONTROL,
1325 HV_X64_MSR_STIMER0_CONFIG,
1326 HV_X64_MSR_VP_ASSIST_PAGE,
1327 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1328 HV_X64_MSR_TSC_EMULATION_STATUS,
1329 HV_X64_MSR_SYNDBG_OPTIONS,
1330 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1331 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1332 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1333
1334 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1335 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1336
1337 MSR_IA32_TSC_ADJUST,
1338 MSR_IA32_TSC_DEADLINE,
1339 MSR_IA32_ARCH_CAPABILITIES,
1340 MSR_IA32_PERF_CAPABILITIES,
1341 MSR_IA32_MISC_ENABLE,
1342 MSR_IA32_MCG_STATUS,
1343 MSR_IA32_MCG_CTL,
1344 MSR_IA32_MCG_EXT_CTL,
1345 MSR_IA32_SMBASE,
1346 MSR_SMI_COUNT,
1347 MSR_PLATFORM_INFO,
1348 MSR_MISC_FEATURES_ENABLES,
1349 MSR_AMD64_VIRT_SPEC_CTRL,
1350 MSR_IA32_POWER_CTL,
1351 MSR_IA32_UCODE_REV,
1352
1353 /*
1354 * The following list leaves out MSRs whose values are determined
1355 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1356 * We always support the "true" VMX control MSRs, even if the host
1357 * processor does not, so I am putting these registers here rather
1358 * than in msrs_to_save_all.
1359 */
1360 MSR_IA32_VMX_BASIC,
1361 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1362 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1363 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1364 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1365 MSR_IA32_VMX_MISC,
1366 MSR_IA32_VMX_CR0_FIXED0,
1367 MSR_IA32_VMX_CR4_FIXED0,
1368 MSR_IA32_VMX_VMCS_ENUM,
1369 MSR_IA32_VMX_PROCBASED_CTLS2,
1370 MSR_IA32_VMX_EPT_VPID_CAP,
1371 MSR_IA32_VMX_VMFUNC,
1372
1373 MSR_K7_HWCR,
1374 MSR_KVM_POLL_CONTROL,
1375 };
1376
1377 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1378 static unsigned num_emulated_msrs;
1379
1380 /*
1381 * List of msr numbers which are used to expose MSR-based features that
1382 * can be used by a hypervisor to validate requested CPU features.
1383 */
1384 static const u32 msr_based_features_all[] = {
1385 MSR_IA32_VMX_BASIC,
1386 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1387 MSR_IA32_VMX_PINBASED_CTLS,
1388 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1389 MSR_IA32_VMX_PROCBASED_CTLS,
1390 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1391 MSR_IA32_VMX_EXIT_CTLS,
1392 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1393 MSR_IA32_VMX_ENTRY_CTLS,
1394 MSR_IA32_VMX_MISC,
1395 MSR_IA32_VMX_CR0_FIXED0,
1396 MSR_IA32_VMX_CR0_FIXED1,
1397 MSR_IA32_VMX_CR4_FIXED0,
1398 MSR_IA32_VMX_CR4_FIXED1,
1399 MSR_IA32_VMX_VMCS_ENUM,
1400 MSR_IA32_VMX_PROCBASED_CTLS2,
1401 MSR_IA32_VMX_EPT_VPID_CAP,
1402 MSR_IA32_VMX_VMFUNC,
1403
1404 MSR_F10H_DECFG,
1405 MSR_IA32_UCODE_REV,
1406 MSR_IA32_ARCH_CAPABILITIES,
1407 MSR_IA32_PERF_CAPABILITIES,
1408 };
1409
1410 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1411 static unsigned int num_msr_based_features;
1412
1413 static u64 kvm_get_arch_capabilities(void)
1414 {
1415 u64 data = 0;
1416
1417 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1418 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1419
1420 /*
1421 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1422 * the nested hypervisor runs with NX huge pages. If it is not,
1423 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1424 * L1 guests, so it need not worry about its own (L2) guests.
1425 */
1426 data |= ARCH_CAP_PSCHANGE_MC_NO;
1427
1428 /*
1429 * If we're doing cache flushes (either "always" or "cond")
1430 * we will do one whenever the guest does a vmlaunch/vmresume.
1431 * If an outer hypervisor is doing the cache flush for us
1432 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1433 * capability to the guest too, and if EPT is disabled we're not
1434 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1435 * require a nested hypervisor to do a flush of its own.
1436 */
1437 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1438 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1439
1440 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1441 data |= ARCH_CAP_RDCL_NO;
1442 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1443 data |= ARCH_CAP_SSB_NO;
1444 if (!boot_cpu_has_bug(X86_BUG_MDS))
1445 data |= ARCH_CAP_MDS_NO;
1446
1447 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1448 /*
1449 * If RTM=0 because the kernel has disabled TSX, the host might
1450 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1451 * and therefore knows that there cannot be TAA) but keep
1452 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1453 * and we want to allow migrating those guests to tsx=off hosts.
1454 */
1455 data &= ~ARCH_CAP_TAA_NO;
1456 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1457 data |= ARCH_CAP_TAA_NO;
1458 } else {
1459 /*
1460 * Nothing to do here; we emulate TSX_CTRL if present on the
1461 * host so the guest can choose between disabling TSX or
1462 * using VERW to clear CPU buffers.
1463 */
1464 }
1465
1466 return data;
1467 }
1468
1469 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1470 {
1471 switch (msr->index) {
1472 case MSR_IA32_ARCH_CAPABILITIES:
1473 msr->data = kvm_get_arch_capabilities();
1474 break;
1475 case MSR_IA32_UCODE_REV:
1476 rdmsrl_safe(msr->index, &msr->data);
1477 break;
1478 default:
1479 return static_call(kvm_x86_get_msr_feature)(msr);
1480 }
1481 return 0;
1482 }
1483
1484 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1485 {
1486 struct kvm_msr_entry msr;
1487 int r;
1488
1489 msr.index = index;
1490 r = kvm_get_msr_feature(&msr);
1491
1492 if (r == KVM_MSR_RET_INVALID) {
1493 /* Unconditionally clear the output for simplicity */
1494 *data = 0;
1495 if (kvm_msr_ignored_check(index, 0, false))
1496 r = 0;
1497 }
1498
1499 if (r)
1500 return r;
1501
1502 *data = msr.data;
1503
1504 return 0;
1505 }
1506
1507 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1508 {
1509 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1510 return false;
1511
1512 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1513 return false;
1514
1515 if (efer & (EFER_LME | EFER_LMA) &&
1516 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1517 return false;
1518
1519 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1520 return false;
1521
1522 return true;
1523
1524 }
1525 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1526 {
1527 if (efer & efer_reserved_bits)
1528 return false;
1529
1530 return __kvm_valid_efer(vcpu, efer);
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1533
1534 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1535 {
1536 u64 old_efer = vcpu->arch.efer;
1537 u64 efer = msr_info->data;
1538 int r;
1539
1540 if (efer & efer_reserved_bits)
1541 return 1;
1542
1543 if (!msr_info->host_initiated) {
1544 if (!__kvm_valid_efer(vcpu, efer))
1545 return 1;
1546
1547 if (is_paging(vcpu) &&
1548 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1549 return 1;
1550 }
1551
1552 efer &= ~EFER_LMA;
1553 efer |= vcpu->arch.efer & EFER_LMA;
1554
1555 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1556 if (r) {
1557 WARN_ON(r > 0);
1558 return r;
1559 }
1560
1561 /* Update reserved bits */
1562 if ((efer ^ old_efer) & EFER_NX)
1563 kvm_mmu_reset_context(vcpu);
1564
1565 return 0;
1566 }
1567
1568 void kvm_enable_efer_bits(u64 mask)
1569 {
1570 efer_reserved_bits &= ~mask;
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1573
1574 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1575 {
1576 struct kvm_x86_msr_filter *msr_filter;
1577 struct msr_bitmap_range *ranges;
1578 struct kvm *kvm = vcpu->kvm;
1579 bool allowed;
1580 int idx;
1581 u32 i;
1582
1583 /* x2APIC MSRs do not support filtering. */
1584 if (index >= 0x800 && index <= 0x8ff)
1585 return true;
1586
1587 idx = srcu_read_lock(&kvm->srcu);
1588
1589 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1590 if (!msr_filter) {
1591 allowed = true;
1592 goto out;
1593 }
1594
1595 allowed = msr_filter->default_allow;
1596 ranges = msr_filter->ranges;
1597
1598 for (i = 0; i < msr_filter->count; i++) {
1599 u32 start = ranges[i].base;
1600 u32 end = start + ranges[i].nmsrs;
1601 u32 flags = ranges[i].flags;
1602 unsigned long *bitmap = ranges[i].bitmap;
1603
1604 if ((index >= start) && (index < end) && (flags & type)) {
1605 allowed = !!test_bit(index - start, bitmap);
1606 break;
1607 }
1608 }
1609
1610 out:
1611 srcu_read_unlock(&kvm->srcu, idx);
1612
1613 return allowed;
1614 }
1615 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1616
1617 /*
1618 * Write @data into the MSR specified by @index. Select MSR specific fault
1619 * checks are bypassed if @host_initiated is %true.
1620 * Returns 0 on success, non-0 otherwise.
1621 * Assumes vcpu_load() was already called.
1622 */
1623 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1624 bool host_initiated)
1625 {
1626 struct msr_data msr;
1627
1628 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1629 return KVM_MSR_RET_FILTERED;
1630
1631 switch (index) {
1632 case MSR_FS_BASE:
1633 case MSR_GS_BASE:
1634 case MSR_KERNEL_GS_BASE:
1635 case MSR_CSTAR:
1636 case MSR_LSTAR:
1637 if (is_noncanonical_address(data, vcpu))
1638 return 1;
1639 break;
1640 case MSR_IA32_SYSENTER_EIP:
1641 case MSR_IA32_SYSENTER_ESP:
1642 /*
1643 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1644 * non-canonical address is written on Intel but not on
1645 * AMD (which ignores the top 32-bits, because it does
1646 * not implement 64-bit SYSENTER).
1647 *
1648 * 64-bit code should hence be able to write a non-canonical
1649 * value on AMD. Making the address canonical ensures that
1650 * vmentry does not fail on Intel after writing a non-canonical
1651 * value, and that something deterministic happens if the guest
1652 * invokes 64-bit SYSENTER.
1653 */
1654 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1655 break;
1656 case MSR_TSC_AUX:
1657 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1658 return 1;
1659
1660 if (!host_initiated &&
1661 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1662 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1663 return 1;
1664
1665 /*
1666 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1667 * incomplete and conflicting architectural behavior. Current
1668 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1669 * reserved and always read as zeros. Enforce Intel's reserved
1670 * bits check if and only if the guest CPU is Intel, and clear
1671 * the bits in all other cases. This ensures cross-vendor
1672 * migration will provide consistent behavior for the guest.
1673 */
1674 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1675 return 1;
1676
1677 data = (u32)data;
1678 break;
1679 }
1680
1681 msr.data = data;
1682 msr.index = index;
1683 msr.host_initiated = host_initiated;
1684
1685 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1686 }
1687
1688 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1689 u32 index, u64 data, bool host_initiated)
1690 {
1691 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1692
1693 if (ret == KVM_MSR_RET_INVALID)
1694 if (kvm_msr_ignored_check(index, data, true))
1695 ret = 0;
1696
1697 return ret;
1698 }
1699
1700 /*
1701 * Read the MSR specified by @index into @data. Select MSR specific fault
1702 * checks are bypassed if @host_initiated is %true.
1703 * Returns 0 on success, non-0 otherwise.
1704 * Assumes vcpu_load() was already called.
1705 */
1706 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1707 bool host_initiated)
1708 {
1709 struct msr_data msr;
1710 int ret;
1711
1712 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1713 return KVM_MSR_RET_FILTERED;
1714
1715 switch (index) {
1716 case MSR_TSC_AUX:
1717 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1718 return 1;
1719
1720 if (!host_initiated &&
1721 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1722 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1723 return 1;
1724 break;
1725 }
1726
1727 msr.index = index;
1728 msr.host_initiated = host_initiated;
1729
1730 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1731 if (!ret)
1732 *data = msr.data;
1733 return ret;
1734 }
1735
1736 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1737 u32 index, u64 *data, bool host_initiated)
1738 {
1739 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1740
1741 if (ret == KVM_MSR_RET_INVALID) {
1742 /* Unconditionally clear *data for simplicity */
1743 *data = 0;
1744 if (kvm_msr_ignored_check(index, 0, false))
1745 ret = 0;
1746 }
1747
1748 return ret;
1749 }
1750
1751 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1752 {
1753 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_get_msr);
1756
1757 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1758 {
1759 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1760 }
1761 EXPORT_SYMBOL_GPL(kvm_set_msr);
1762
1763 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1764 {
1765 int err = vcpu->run->msr.error;
1766 if (!err) {
1767 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1768 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1769 }
1770
1771 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1772 }
1773
1774 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1775 {
1776 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1777 }
1778
1779 static u64 kvm_msr_reason(int r)
1780 {
1781 switch (r) {
1782 case KVM_MSR_RET_INVALID:
1783 return KVM_MSR_EXIT_REASON_UNKNOWN;
1784 case KVM_MSR_RET_FILTERED:
1785 return KVM_MSR_EXIT_REASON_FILTER;
1786 default:
1787 return KVM_MSR_EXIT_REASON_INVAL;
1788 }
1789 }
1790
1791 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1792 u32 exit_reason, u64 data,
1793 int (*completion)(struct kvm_vcpu *vcpu),
1794 int r)
1795 {
1796 u64 msr_reason = kvm_msr_reason(r);
1797
1798 /* Check if the user wanted to know about this MSR fault */
1799 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1800 return 0;
1801
1802 vcpu->run->exit_reason = exit_reason;
1803 vcpu->run->msr.error = 0;
1804 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1805 vcpu->run->msr.reason = msr_reason;
1806 vcpu->run->msr.index = index;
1807 vcpu->run->msr.data = data;
1808 vcpu->arch.complete_userspace_io = completion;
1809
1810 return 1;
1811 }
1812
1813 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1814 {
1815 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1816 complete_emulated_rdmsr, r);
1817 }
1818
1819 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1820 {
1821 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1822 complete_emulated_wrmsr, r);
1823 }
1824
1825 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1826 {
1827 u32 ecx = kvm_rcx_read(vcpu);
1828 u64 data;
1829 int r;
1830
1831 r = kvm_get_msr(vcpu, ecx, &data);
1832
1833 /* MSR read failed? See if we should ask user space */
1834 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1835 /* Bounce to user space */
1836 return 0;
1837 }
1838
1839 if (!r) {
1840 trace_kvm_msr_read(ecx, data);
1841
1842 kvm_rax_write(vcpu, data & -1u);
1843 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1844 } else {
1845 trace_kvm_msr_read_ex(ecx);
1846 }
1847
1848 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1851
1852 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1853 {
1854 u32 ecx = kvm_rcx_read(vcpu);
1855 u64 data = kvm_read_edx_eax(vcpu);
1856 int r;
1857
1858 r = kvm_set_msr(vcpu, ecx, data);
1859
1860 /* MSR write failed? See if we should ask user space */
1861 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1862 /* Bounce to user space */
1863 return 0;
1864
1865 /* Signal all other negative errors to userspace */
1866 if (r < 0)
1867 return r;
1868
1869 if (!r)
1870 trace_kvm_msr_write(ecx, data);
1871 else
1872 trace_kvm_msr_write_ex(ecx, data);
1873
1874 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1877
1878 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1879 {
1880 return kvm_skip_emulated_instruction(vcpu);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1883
1884 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1885 {
1886 /* Treat an INVD instruction as a NOP and just skip it. */
1887 return kvm_emulate_as_nop(vcpu);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1890
1891 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1892 {
1893 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1894 return kvm_emulate_as_nop(vcpu);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1897
1898 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1899 {
1900 kvm_queue_exception(vcpu, UD_VECTOR);
1901 return 1;
1902 }
1903 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1904
1905 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1906 {
1907 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1908 return kvm_emulate_as_nop(vcpu);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1911
1912 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1913 {
1914 xfer_to_guest_mode_prepare();
1915 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1916 xfer_to_guest_mode_work_pending();
1917 }
1918
1919 /*
1920 * The fast path for frequent and performance sensitive wrmsr emulation,
1921 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1922 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1923 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1924 * other cases which must be called after interrupts are enabled on the host.
1925 */
1926 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1927 {
1928 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1929 return 1;
1930
1931 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1932 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1933 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1934 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1935
1936 data &= ~(1 << 12);
1937 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1938 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1939 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1940 trace_kvm_apic_write(APIC_ICR, (u32)data);
1941 return 0;
1942 }
1943
1944 return 1;
1945 }
1946
1947 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1948 {
1949 if (!kvm_can_use_hv_timer(vcpu))
1950 return 1;
1951
1952 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1953 return 0;
1954 }
1955
1956 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1957 {
1958 u32 msr = kvm_rcx_read(vcpu);
1959 u64 data;
1960 fastpath_t ret = EXIT_FASTPATH_NONE;
1961
1962 switch (msr) {
1963 case APIC_BASE_MSR + (APIC_ICR >> 4):
1964 data = kvm_read_edx_eax(vcpu);
1965 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1966 kvm_skip_emulated_instruction(vcpu);
1967 ret = EXIT_FASTPATH_EXIT_HANDLED;
1968 }
1969 break;
1970 case MSR_IA32_TSC_DEADLINE:
1971 data = kvm_read_edx_eax(vcpu);
1972 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1973 kvm_skip_emulated_instruction(vcpu);
1974 ret = EXIT_FASTPATH_REENTER_GUEST;
1975 }
1976 break;
1977 default:
1978 break;
1979 }
1980
1981 if (ret != EXIT_FASTPATH_NONE)
1982 trace_kvm_msr_write(msr, data);
1983
1984 return ret;
1985 }
1986 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1987
1988 /*
1989 * Adapt set_msr() to msr_io()'s calling convention
1990 */
1991 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1992 {
1993 return kvm_get_msr_ignored_check(vcpu, index, data, true);
1994 }
1995
1996 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1997 {
1998 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
1999 }
2000
2001 #ifdef CONFIG_X86_64
2002 struct pvclock_clock {
2003 int vclock_mode;
2004 u64 cycle_last;
2005 u64 mask;
2006 u32 mult;
2007 u32 shift;
2008 u64 base_cycles;
2009 u64 offset;
2010 };
2011
2012 struct pvclock_gtod_data {
2013 seqcount_t seq;
2014
2015 struct pvclock_clock clock; /* extract of a clocksource struct */
2016 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2017
2018 ktime_t offs_boot;
2019 u64 wall_time_sec;
2020 };
2021
2022 static struct pvclock_gtod_data pvclock_gtod_data;
2023
2024 static void update_pvclock_gtod(struct timekeeper *tk)
2025 {
2026 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2027
2028 write_seqcount_begin(&vdata->seq);
2029
2030 /* copy pvclock gtod data */
2031 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2032 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2033 vdata->clock.mask = tk->tkr_mono.mask;
2034 vdata->clock.mult = tk->tkr_mono.mult;
2035 vdata->clock.shift = tk->tkr_mono.shift;
2036 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2037 vdata->clock.offset = tk->tkr_mono.base;
2038
2039 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2040 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2041 vdata->raw_clock.mask = tk->tkr_raw.mask;
2042 vdata->raw_clock.mult = tk->tkr_raw.mult;
2043 vdata->raw_clock.shift = tk->tkr_raw.shift;
2044 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2045 vdata->raw_clock.offset = tk->tkr_raw.base;
2046
2047 vdata->wall_time_sec = tk->xtime_sec;
2048
2049 vdata->offs_boot = tk->offs_boot;
2050
2051 write_seqcount_end(&vdata->seq);
2052 }
2053
2054 static s64 get_kvmclock_base_ns(void)
2055 {
2056 /* Count up from boot time, but with the frequency of the raw clock. */
2057 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2058 }
2059 #else
2060 static s64 get_kvmclock_base_ns(void)
2061 {
2062 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2063 return ktime_get_boottime_ns();
2064 }
2065 #endif
2066
2067 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2068 {
2069 int version;
2070 int r;
2071 struct pvclock_wall_clock wc;
2072 u32 wc_sec_hi;
2073 u64 wall_nsec;
2074
2075 if (!wall_clock)
2076 return;
2077
2078 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2079 if (r)
2080 return;
2081
2082 if (version & 1)
2083 ++version; /* first time write, random junk */
2084
2085 ++version;
2086
2087 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2088 return;
2089
2090 /*
2091 * The guest calculates current wall clock time by adding
2092 * system time (updated by kvm_guest_time_update below) to the
2093 * wall clock specified here. We do the reverse here.
2094 */
2095 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2096
2097 wc.nsec = do_div(wall_nsec, 1000000000);
2098 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2099 wc.version = version;
2100
2101 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2102
2103 if (sec_hi_ofs) {
2104 wc_sec_hi = wall_nsec >> 32;
2105 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2106 &wc_sec_hi, sizeof(wc_sec_hi));
2107 }
2108
2109 version++;
2110 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2111 }
2112
2113 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2114 bool old_msr, bool host_initiated)
2115 {
2116 struct kvm_arch *ka = &vcpu->kvm->arch;
2117
2118 if (vcpu->vcpu_id == 0 && !host_initiated) {
2119 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2120 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2121
2122 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2123 }
2124
2125 vcpu->arch.time = system_time;
2126 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2127
2128 /* we verify if the enable bit is set... */
2129 vcpu->arch.pv_time_enabled = false;
2130 if (!(system_time & 1))
2131 return;
2132
2133 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2134 &vcpu->arch.pv_time, system_time & ~1ULL,
2135 sizeof(struct pvclock_vcpu_time_info)))
2136 vcpu->arch.pv_time_enabled = true;
2137
2138 return;
2139 }
2140
2141 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2142 {
2143 do_shl32_div32(dividend, divisor);
2144 return dividend;
2145 }
2146
2147 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2148 s8 *pshift, u32 *pmultiplier)
2149 {
2150 uint64_t scaled64;
2151 int32_t shift = 0;
2152 uint64_t tps64;
2153 uint32_t tps32;
2154
2155 tps64 = base_hz;
2156 scaled64 = scaled_hz;
2157 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2158 tps64 >>= 1;
2159 shift--;
2160 }
2161
2162 tps32 = (uint32_t)tps64;
2163 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2164 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2165 scaled64 >>= 1;
2166 else
2167 tps32 <<= 1;
2168 shift++;
2169 }
2170
2171 *pshift = shift;
2172 *pmultiplier = div_frac(scaled64, tps32);
2173 }
2174
2175 #ifdef CONFIG_X86_64
2176 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2177 #endif
2178
2179 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2180 static unsigned long max_tsc_khz;
2181
2182 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2183 {
2184 u64 v = (u64)khz * (1000000 + ppm);
2185 do_div(v, 1000000);
2186 return v;
2187 }
2188
2189 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2190 {
2191 u64 ratio;
2192
2193 /* Guest TSC same frequency as host TSC? */
2194 if (!scale) {
2195 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2196 return 0;
2197 }
2198
2199 /* TSC scaling supported? */
2200 if (!kvm_has_tsc_control) {
2201 if (user_tsc_khz > tsc_khz) {
2202 vcpu->arch.tsc_catchup = 1;
2203 vcpu->arch.tsc_always_catchup = 1;
2204 return 0;
2205 } else {
2206 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2207 return -1;
2208 }
2209 }
2210
2211 /* TSC scaling required - calculate ratio */
2212 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2213 user_tsc_khz, tsc_khz);
2214
2215 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2216 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2217 user_tsc_khz);
2218 return -1;
2219 }
2220
2221 vcpu->arch.tsc_scaling_ratio = ratio;
2222 return 0;
2223 }
2224
2225 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2226 {
2227 u32 thresh_lo, thresh_hi;
2228 int use_scaling = 0;
2229
2230 /* tsc_khz can be zero if TSC calibration fails */
2231 if (user_tsc_khz == 0) {
2232 /* set tsc_scaling_ratio to a safe value */
2233 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2234 return -1;
2235 }
2236
2237 /* Compute a scale to convert nanoseconds in TSC cycles */
2238 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2239 &vcpu->arch.virtual_tsc_shift,
2240 &vcpu->arch.virtual_tsc_mult);
2241 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2242
2243 /*
2244 * Compute the variation in TSC rate which is acceptable
2245 * within the range of tolerance and decide if the
2246 * rate being applied is within that bounds of the hardware
2247 * rate. If so, no scaling or compensation need be done.
2248 */
2249 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2250 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2251 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2252 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2253 use_scaling = 1;
2254 }
2255 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2256 }
2257
2258 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2259 {
2260 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2261 vcpu->arch.virtual_tsc_mult,
2262 vcpu->arch.virtual_tsc_shift);
2263 tsc += vcpu->arch.this_tsc_write;
2264 return tsc;
2265 }
2266
2267 static inline int gtod_is_based_on_tsc(int mode)
2268 {
2269 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2270 }
2271
2272 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2273 {
2274 #ifdef CONFIG_X86_64
2275 bool vcpus_matched;
2276 struct kvm_arch *ka = &vcpu->kvm->arch;
2277 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2278
2279 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2280 atomic_read(&vcpu->kvm->online_vcpus));
2281
2282 /*
2283 * Once the masterclock is enabled, always perform request in
2284 * order to update it.
2285 *
2286 * In order to enable masterclock, the host clocksource must be TSC
2287 * and the vcpus need to have matched TSCs. When that happens,
2288 * perform request to enable masterclock.
2289 */
2290 if (ka->use_master_clock ||
2291 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2292 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2293
2294 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2295 atomic_read(&vcpu->kvm->online_vcpus),
2296 ka->use_master_clock, gtod->clock.vclock_mode);
2297 #endif
2298 }
2299
2300 /*
2301 * Multiply tsc by a fixed point number represented by ratio.
2302 *
2303 * The most significant 64-N bits (mult) of ratio represent the
2304 * integral part of the fixed point number; the remaining N bits
2305 * (frac) represent the fractional part, ie. ratio represents a fixed
2306 * point number (mult + frac * 2^(-N)).
2307 *
2308 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2309 */
2310 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2311 {
2312 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2313 }
2314
2315 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2316 {
2317 u64 _tsc = tsc;
2318 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2319
2320 if (ratio != kvm_default_tsc_scaling_ratio)
2321 _tsc = __scale_tsc(ratio, tsc);
2322
2323 return _tsc;
2324 }
2325 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2326
2327 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2328 {
2329 u64 tsc;
2330
2331 tsc = kvm_scale_tsc(vcpu, rdtsc());
2332
2333 return target_tsc - tsc;
2334 }
2335
2336 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2337 {
2338 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
2339 }
2340 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2341
2342 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2343 {
2344 vcpu->arch.l1_tsc_offset = offset;
2345 vcpu->arch.tsc_offset = static_call(kvm_x86_write_l1_tsc_offset)(vcpu, offset);
2346 }
2347
2348 static inline bool kvm_check_tsc_unstable(void)
2349 {
2350 #ifdef CONFIG_X86_64
2351 /*
2352 * TSC is marked unstable when we're running on Hyper-V,
2353 * 'TSC page' clocksource is good.
2354 */
2355 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2356 return false;
2357 #endif
2358 return check_tsc_unstable();
2359 }
2360
2361 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2362 {
2363 struct kvm *kvm = vcpu->kvm;
2364 u64 offset, ns, elapsed;
2365 unsigned long flags;
2366 bool matched;
2367 bool already_matched;
2368 bool synchronizing = false;
2369
2370 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2371 offset = kvm_compute_tsc_offset(vcpu, data);
2372 ns = get_kvmclock_base_ns();
2373 elapsed = ns - kvm->arch.last_tsc_nsec;
2374
2375 if (vcpu->arch.virtual_tsc_khz) {
2376 if (data == 0) {
2377 /*
2378 * detection of vcpu initialization -- need to sync
2379 * with other vCPUs. This particularly helps to keep
2380 * kvm_clock stable after CPU hotplug
2381 */
2382 synchronizing = true;
2383 } else {
2384 u64 tsc_exp = kvm->arch.last_tsc_write +
2385 nsec_to_cycles(vcpu, elapsed);
2386 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2387 /*
2388 * Special case: TSC write with a small delta (1 second)
2389 * of virtual cycle time against real time is
2390 * interpreted as an attempt to synchronize the CPU.
2391 */
2392 synchronizing = data < tsc_exp + tsc_hz &&
2393 data + tsc_hz > tsc_exp;
2394 }
2395 }
2396
2397 /*
2398 * For a reliable TSC, we can match TSC offsets, and for an unstable
2399 * TSC, we add elapsed time in this computation. We could let the
2400 * compensation code attempt to catch up if we fall behind, but
2401 * it's better to try to match offsets from the beginning.
2402 */
2403 if (synchronizing &&
2404 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2405 if (!kvm_check_tsc_unstable()) {
2406 offset = kvm->arch.cur_tsc_offset;
2407 } else {
2408 u64 delta = nsec_to_cycles(vcpu, elapsed);
2409 data += delta;
2410 offset = kvm_compute_tsc_offset(vcpu, data);
2411 }
2412 matched = true;
2413 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2414 } else {
2415 /*
2416 * We split periods of matched TSC writes into generations.
2417 * For each generation, we track the original measured
2418 * nanosecond time, offset, and write, so if TSCs are in
2419 * sync, we can match exact offset, and if not, we can match
2420 * exact software computation in compute_guest_tsc()
2421 *
2422 * These values are tracked in kvm->arch.cur_xxx variables.
2423 */
2424 kvm->arch.cur_tsc_generation++;
2425 kvm->arch.cur_tsc_nsec = ns;
2426 kvm->arch.cur_tsc_write = data;
2427 kvm->arch.cur_tsc_offset = offset;
2428 matched = false;
2429 }
2430
2431 /*
2432 * We also track th most recent recorded KHZ, write and time to
2433 * allow the matching interval to be extended at each write.
2434 */
2435 kvm->arch.last_tsc_nsec = ns;
2436 kvm->arch.last_tsc_write = data;
2437 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2438
2439 vcpu->arch.last_guest_tsc = data;
2440
2441 /* Keep track of which generation this VCPU has synchronized to */
2442 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2443 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2444 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2445
2446 kvm_vcpu_write_tsc_offset(vcpu, offset);
2447 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2448
2449 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2450 if (!matched) {
2451 kvm->arch.nr_vcpus_matched_tsc = 0;
2452 } else if (!already_matched) {
2453 kvm->arch.nr_vcpus_matched_tsc++;
2454 }
2455
2456 kvm_track_tsc_matching(vcpu);
2457 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2458 }
2459
2460 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2461 s64 adjustment)
2462 {
2463 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2464 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2465 }
2466
2467 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2468 {
2469 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2470 WARN_ON(adjustment < 0);
2471 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2472 adjust_tsc_offset_guest(vcpu, adjustment);
2473 }
2474
2475 #ifdef CONFIG_X86_64
2476
2477 static u64 read_tsc(void)
2478 {
2479 u64 ret = (u64)rdtsc_ordered();
2480 u64 last = pvclock_gtod_data.clock.cycle_last;
2481
2482 if (likely(ret >= last))
2483 return ret;
2484
2485 /*
2486 * GCC likes to generate cmov here, but this branch is extremely
2487 * predictable (it's just a function of time and the likely is
2488 * very likely) and there's a data dependence, so force GCC
2489 * to generate a branch instead. I don't barrier() because
2490 * we don't actually need a barrier, and if this function
2491 * ever gets inlined it will generate worse code.
2492 */
2493 asm volatile ("");
2494 return last;
2495 }
2496
2497 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2498 int *mode)
2499 {
2500 long v;
2501 u64 tsc_pg_val;
2502
2503 switch (clock->vclock_mode) {
2504 case VDSO_CLOCKMODE_HVCLOCK:
2505 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2506 tsc_timestamp);
2507 if (tsc_pg_val != U64_MAX) {
2508 /* TSC page valid */
2509 *mode = VDSO_CLOCKMODE_HVCLOCK;
2510 v = (tsc_pg_val - clock->cycle_last) &
2511 clock->mask;
2512 } else {
2513 /* TSC page invalid */
2514 *mode = VDSO_CLOCKMODE_NONE;
2515 }
2516 break;
2517 case VDSO_CLOCKMODE_TSC:
2518 *mode = VDSO_CLOCKMODE_TSC;
2519 *tsc_timestamp = read_tsc();
2520 v = (*tsc_timestamp - clock->cycle_last) &
2521 clock->mask;
2522 break;
2523 default:
2524 *mode = VDSO_CLOCKMODE_NONE;
2525 }
2526
2527 if (*mode == VDSO_CLOCKMODE_NONE)
2528 *tsc_timestamp = v = 0;
2529
2530 return v * clock->mult;
2531 }
2532
2533 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2534 {
2535 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2536 unsigned long seq;
2537 int mode;
2538 u64 ns;
2539
2540 do {
2541 seq = read_seqcount_begin(&gtod->seq);
2542 ns = gtod->raw_clock.base_cycles;
2543 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2544 ns >>= gtod->raw_clock.shift;
2545 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2546 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2547 *t = ns;
2548
2549 return mode;
2550 }
2551
2552 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2553 {
2554 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2555 unsigned long seq;
2556 int mode;
2557 u64 ns;
2558
2559 do {
2560 seq = read_seqcount_begin(&gtod->seq);
2561 ts->tv_sec = gtod->wall_time_sec;
2562 ns = gtod->clock.base_cycles;
2563 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2564 ns >>= gtod->clock.shift;
2565 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2566
2567 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2568 ts->tv_nsec = ns;
2569
2570 return mode;
2571 }
2572
2573 /* returns true if host is using TSC based clocksource */
2574 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2575 {
2576 /* checked again under seqlock below */
2577 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2578 return false;
2579
2580 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2581 tsc_timestamp));
2582 }
2583
2584 /* returns true if host is using TSC based clocksource */
2585 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2586 u64 *tsc_timestamp)
2587 {
2588 /* checked again under seqlock below */
2589 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2590 return false;
2591
2592 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2593 }
2594 #endif
2595
2596 /*
2597 *
2598 * Assuming a stable TSC across physical CPUS, and a stable TSC
2599 * across virtual CPUs, the following condition is possible.
2600 * Each numbered line represents an event visible to both
2601 * CPUs at the next numbered event.
2602 *
2603 * "timespecX" represents host monotonic time. "tscX" represents
2604 * RDTSC value.
2605 *
2606 * VCPU0 on CPU0 | VCPU1 on CPU1
2607 *
2608 * 1. read timespec0,tsc0
2609 * 2. | timespec1 = timespec0 + N
2610 * | tsc1 = tsc0 + M
2611 * 3. transition to guest | transition to guest
2612 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2613 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2614 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2615 *
2616 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2617 *
2618 * - ret0 < ret1
2619 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2620 * ...
2621 * - 0 < N - M => M < N
2622 *
2623 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2624 * always the case (the difference between two distinct xtime instances
2625 * might be smaller then the difference between corresponding TSC reads,
2626 * when updating guest vcpus pvclock areas).
2627 *
2628 * To avoid that problem, do not allow visibility of distinct
2629 * system_timestamp/tsc_timestamp values simultaneously: use a master
2630 * copy of host monotonic time values. Update that master copy
2631 * in lockstep.
2632 *
2633 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2634 *
2635 */
2636
2637 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2638 {
2639 #ifdef CONFIG_X86_64
2640 struct kvm_arch *ka = &kvm->arch;
2641 int vclock_mode;
2642 bool host_tsc_clocksource, vcpus_matched;
2643
2644 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2645 atomic_read(&kvm->online_vcpus));
2646
2647 /*
2648 * If the host uses TSC clock, then passthrough TSC as stable
2649 * to the guest.
2650 */
2651 host_tsc_clocksource = kvm_get_time_and_clockread(
2652 &ka->master_kernel_ns,
2653 &ka->master_cycle_now);
2654
2655 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2656 && !ka->backwards_tsc_observed
2657 && !ka->boot_vcpu_runs_old_kvmclock;
2658
2659 if (ka->use_master_clock)
2660 atomic_set(&kvm_guest_has_master_clock, 1);
2661
2662 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2663 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2664 vcpus_matched);
2665 #endif
2666 }
2667
2668 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2669 {
2670 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2671 }
2672
2673 static void kvm_gen_update_masterclock(struct kvm *kvm)
2674 {
2675 #ifdef CONFIG_X86_64
2676 int i;
2677 struct kvm_vcpu *vcpu;
2678 struct kvm_arch *ka = &kvm->arch;
2679 unsigned long flags;
2680
2681 kvm_hv_invalidate_tsc_page(kvm);
2682
2683 kvm_make_mclock_inprogress_request(kvm);
2684
2685 /* no guest entries from this point */
2686 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2687 pvclock_update_vm_gtod_copy(kvm);
2688 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2689
2690 kvm_for_each_vcpu(i, vcpu, kvm)
2691 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2692
2693 /* guest entries allowed */
2694 kvm_for_each_vcpu(i, vcpu, kvm)
2695 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2696 #endif
2697 }
2698
2699 u64 get_kvmclock_ns(struct kvm *kvm)
2700 {
2701 struct kvm_arch *ka = &kvm->arch;
2702 struct pvclock_vcpu_time_info hv_clock;
2703 unsigned long flags;
2704 u64 ret;
2705
2706 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2707 if (!ka->use_master_clock) {
2708 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2709 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2710 }
2711
2712 hv_clock.tsc_timestamp = ka->master_cycle_now;
2713 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2714 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2715
2716 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2717 get_cpu();
2718
2719 if (__this_cpu_read(cpu_tsc_khz)) {
2720 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2721 &hv_clock.tsc_shift,
2722 &hv_clock.tsc_to_system_mul);
2723 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2724 } else
2725 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2726
2727 put_cpu();
2728
2729 return ret;
2730 }
2731
2732 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2733 struct gfn_to_hva_cache *cache,
2734 unsigned int offset)
2735 {
2736 struct kvm_vcpu_arch *vcpu = &v->arch;
2737 struct pvclock_vcpu_time_info guest_hv_clock;
2738
2739 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2740 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2741 return;
2742
2743 /* This VCPU is paused, but it's legal for a guest to read another
2744 * VCPU's kvmclock, so we really have to follow the specification where
2745 * it says that version is odd if data is being modified, and even after
2746 * it is consistent.
2747 *
2748 * Version field updates must be kept separate. This is because
2749 * kvm_write_guest_cached might use a "rep movs" instruction, and
2750 * writes within a string instruction are weakly ordered. So there
2751 * are three writes overall.
2752 *
2753 * As a small optimization, only write the version field in the first
2754 * and third write. The vcpu->pv_time cache is still valid, because the
2755 * version field is the first in the struct.
2756 */
2757 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2758
2759 if (guest_hv_clock.version & 1)
2760 ++guest_hv_clock.version; /* first time write, random junk */
2761
2762 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2763 kvm_write_guest_offset_cached(v->kvm, cache,
2764 &vcpu->hv_clock, offset,
2765 sizeof(vcpu->hv_clock.version));
2766
2767 smp_wmb();
2768
2769 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2770 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2771
2772 if (vcpu->pvclock_set_guest_stopped_request) {
2773 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2774 vcpu->pvclock_set_guest_stopped_request = false;
2775 }
2776
2777 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2778
2779 kvm_write_guest_offset_cached(v->kvm, cache,
2780 &vcpu->hv_clock, offset,
2781 sizeof(vcpu->hv_clock));
2782
2783 smp_wmb();
2784
2785 vcpu->hv_clock.version++;
2786 kvm_write_guest_offset_cached(v->kvm, cache,
2787 &vcpu->hv_clock, offset,
2788 sizeof(vcpu->hv_clock.version));
2789 }
2790
2791 static int kvm_guest_time_update(struct kvm_vcpu *v)
2792 {
2793 unsigned long flags, tgt_tsc_khz;
2794 struct kvm_vcpu_arch *vcpu = &v->arch;
2795 struct kvm_arch *ka = &v->kvm->arch;
2796 s64 kernel_ns;
2797 u64 tsc_timestamp, host_tsc;
2798 u8 pvclock_flags;
2799 bool use_master_clock;
2800
2801 kernel_ns = 0;
2802 host_tsc = 0;
2803
2804 /*
2805 * If the host uses TSC clock, then passthrough TSC as stable
2806 * to the guest.
2807 */
2808 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2809 use_master_clock = ka->use_master_clock;
2810 if (use_master_clock) {
2811 host_tsc = ka->master_cycle_now;
2812 kernel_ns = ka->master_kernel_ns;
2813 }
2814 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2815
2816 /* Keep irq disabled to prevent changes to the clock */
2817 local_irq_save(flags);
2818 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2819 if (unlikely(tgt_tsc_khz == 0)) {
2820 local_irq_restore(flags);
2821 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2822 return 1;
2823 }
2824 if (!use_master_clock) {
2825 host_tsc = rdtsc();
2826 kernel_ns = get_kvmclock_base_ns();
2827 }
2828
2829 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2830
2831 /*
2832 * We may have to catch up the TSC to match elapsed wall clock
2833 * time for two reasons, even if kvmclock is used.
2834 * 1) CPU could have been running below the maximum TSC rate
2835 * 2) Broken TSC compensation resets the base at each VCPU
2836 * entry to avoid unknown leaps of TSC even when running
2837 * again on the same CPU. This may cause apparent elapsed
2838 * time to disappear, and the guest to stand still or run
2839 * very slowly.
2840 */
2841 if (vcpu->tsc_catchup) {
2842 u64 tsc = compute_guest_tsc(v, kernel_ns);
2843 if (tsc > tsc_timestamp) {
2844 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2845 tsc_timestamp = tsc;
2846 }
2847 }
2848
2849 local_irq_restore(flags);
2850
2851 /* With all the info we got, fill in the values */
2852
2853 if (kvm_has_tsc_control)
2854 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2855
2856 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2857 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2858 &vcpu->hv_clock.tsc_shift,
2859 &vcpu->hv_clock.tsc_to_system_mul);
2860 vcpu->hw_tsc_khz = tgt_tsc_khz;
2861 }
2862
2863 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2864 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2865 vcpu->last_guest_tsc = tsc_timestamp;
2866
2867 /* If the host uses TSC clocksource, then it is stable */
2868 pvclock_flags = 0;
2869 if (use_master_clock)
2870 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2871
2872 vcpu->hv_clock.flags = pvclock_flags;
2873
2874 if (vcpu->pv_time_enabled)
2875 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2876 if (vcpu->xen.vcpu_info_set)
2877 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2878 offsetof(struct compat_vcpu_info, time));
2879 if (vcpu->xen.vcpu_time_info_set)
2880 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2881 if (v == kvm_get_vcpu(v->kvm, 0))
2882 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2883 return 0;
2884 }
2885
2886 /*
2887 * kvmclock updates which are isolated to a given vcpu, such as
2888 * vcpu->cpu migration, should not allow system_timestamp from
2889 * the rest of the vcpus to remain static. Otherwise ntp frequency
2890 * correction applies to one vcpu's system_timestamp but not
2891 * the others.
2892 *
2893 * So in those cases, request a kvmclock update for all vcpus.
2894 * We need to rate-limit these requests though, as they can
2895 * considerably slow guests that have a large number of vcpus.
2896 * The time for a remote vcpu to update its kvmclock is bound
2897 * by the delay we use to rate-limit the updates.
2898 */
2899
2900 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2901
2902 static void kvmclock_update_fn(struct work_struct *work)
2903 {
2904 int i;
2905 struct delayed_work *dwork = to_delayed_work(work);
2906 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2907 kvmclock_update_work);
2908 struct kvm *kvm = container_of(ka, struct kvm, arch);
2909 struct kvm_vcpu *vcpu;
2910
2911 kvm_for_each_vcpu(i, vcpu, kvm) {
2912 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2913 kvm_vcpu_kick(vcpu);
2914 }
2915 }
2916
2917 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2918 {
2919 struct kvm *kvm = v->kvm;
2920
2921 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2922 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2923 KVMCLOCK_UPDATE_DELAY);
2924 }
2925
2926 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2927
2928 static void kvmclock_sync_fn(struct work_struct *work)
2929 {
2930 struct delayed_work *dwork = to_delayed_work(work);
2931 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2932 kvmclock_sync_work);
2933 struct kvm *kvm = container_of(ka, struct kvm, arch);
2934
2935 if (!kvmclock_periodic_sync)
2936 return;
2937
2938 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2939 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2940 KVMCLOCK_SYNC_PERIOD);
2941 }
2942
2943 /*
2944 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2945 */
2946 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2947 {
2948 /* McStatusWrEn enabled? */
2949 if (guest_cpuid_is_amd_or_hygon(vcpu))
2950 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2951
2952 return false;
2953 }
2954
2955 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2956 {
2957 u64 mcg_cap = vcpu->arch.mcg_cap;
2958 unsigned bank_num = mcg_cap & 0xff;
2959 u32 msr = msr_info->index;
2960 u64 data = msr_info->data;
2961
2962 switch (msr) {
2963 case MSR_IA32_MCG_STATUS:
2964 vcpu->arch.mcg_status = data;
2965 break;
2966 case MSR_IA32_MCG_CTL:
2967 if (!(mcg_cap & MCG_CTL_P) &&
2968 (data || !msr_info->host_initiated))
2969 return 1;
2970 if (data != 0 && data != ~(u64)0)
2971 return 1;
2972 vcpu->arch.mcg_ctl = data;
2973 break;
2974 default:
2975 if (msr >= MSR_IA32_MC0_CTL &&
2976 msr < MSR_IA32_MCx_CTL(bank_num)) {
2977 u32 offset = array_index_nospec(
2978 msr - MSR_IA32_MC0_CTL,
2979 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2980
2981 /* only 0 or all 1s can be written to IA32_MCi_CTL
2982 * some Linux kernels though clear bit 10 in bank 4 to
2983 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2984 * this to avoid an uncatched #GP in the guest
2985 */
2986 if ((offset & 0x3) == 0 &&
2987 data != 0 && (data | (1 << 10)) != ~(u64)0)
2988 return -1;
2989
2990 /* MCi_STATUS */
2991 if (!msr_info->host_initiated &&
2992 (offset & 0x3) == 1 && data != 0) {
2993 if (!can_set_mci_status(vcpu))
2994 return -1;
2995 }
2996
2997 vcpu->arch.mce_banks[offset] = data;
2998 break;
2999 }
3000 return 1;
3001 }
3002 return 0;
3003 }
3004
3005 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3006 {
3007 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3008
3009 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3010 }
3011
3012 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3013 {
3014 gpa_t gpa = data & ~0x3f;
3015
3016 /* Bits 4:5 are reserved, Should be zero */
3017 if (data & 0x30)
3018 return 1;
3019
3020 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3021 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3022 return 1;
3023
3024 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3025 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3026 return 1;
3027
3028 if (!lapic_in_kernel(vcpu))
3029 return data ? 1 : 0;
3030
3031 vcpu->arch.apf.msr_en_val = data;
3032
3033 if (!kvm_pv_async_pf_enabled(vcpu)) {
3034 kvm_clear_async_pf_completion_queue(vcpu);
3035 kvm_async_pf_hash_reset(vcpu);
3036 return 0;
3037 }
3038
3039 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3040 sizeof(u64)))
3041 return 1;
3042
3043 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3044 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3045
3046 kvm_async_pf_wakeup_all(vcpu);
3047
3048 return 0;
3049 }
3050
3051 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3052 {
3053 /* Bits 8-63 are reserved */
3054 if (data >> 8)
3055 return 1;
3056
3057 if (!lapic_in_kernel(vcpu))
3058 return 1;
3059
3060 vcpu->arch.apf.msr_int_val = data;
3061
3062 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3063
3064 return 0;
3065 }
3066
3067 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3068 {
3069 vcpu->arch.pv_time_enabled = false;
3070 vcpu->arch.time = 0;
3071 }
3072
3073 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3074 {
3075 ++vcpu->stat.tlb_flush;
3076 static_call(kvm_x86_tlb_flush_all)(vcpu);
3077 }
3078
3079 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3080 {
3081 ++vcpu->stat.tlb_flush;
3082
3083 if (!tdp_enabled) {
3084 /*
3085 * A TLB flush on behalf of the guest is equivalent to
3086 * INVPCID(all), toggling CR4.PGE, etc., which requires
3087 * a forced sync of the shadow page tables. Unload the
3088 * entire MMU here and the subsequent load will sync the
3089 * shadow page tables, and also flush the TLB.
3090 */
3091 kvm_mmu_unload(vcpu);
3092 return;
3093 }
3094
3095 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3096 }
3097
3098
3099 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3100 {
3101 ++vcpu->stat.tlb_flush;
3102 static_call(kvm_x86_tlb_flush_current)(vcpu);
3103 }
3104
3105 /*
3106 * Service "local" TLB flush requests, which are specific to the current MMU
3107 * context. In addition to the generic event handling in vcpu_enter_guest(),
3108 * TLB flushes that are targeted at an MMU context also need to be serviced
3109 * prior before nested VM-Enter/VM-Exit.
3110 */
3111 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3112 {
3113 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3114 kvm_vcpu_flush_tlb_current(vcpu);
3115
3116 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3117 kvm_vcpu_flush_tlb_guest(vcpu);
3118 }
3119 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3120
3121 static void record_steal_time(struct kvm_vcpu *vcpu)
3122 {
3123 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3124 struct kvm_steal_time __user *st;
3125 struct kvm_memslots *slots;
3126 u64 steal;
3127 u32 version;
3128
3129 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3130 kvm_xen_runstate_set_running(vcpu);
3131 return;
3132 }
3133
3134 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3135 return;
3136
3137 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3138 return;
3139
3140 slots = kvm_memslots(vcpu->kvm);
3141
3142 if (unlikely(slots->generation != ghc->generation ||
3143 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3144 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3145
3146 /* We rely on the fact that it fits in a single page. */
3147 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3148
3149 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3150 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3151 return;
3152 }
3153
3154 st = (struct kvm_steal_time __user *)ghc->hva;
3155 /*
3156 * Doing a TLB flush here, on the guest's behalf, can avoid
3157 * expensive IPIs.
3158 */
3159 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3160 u8 st_preempted = 0;
3161 int err = -EFAULT;
3162
3163 if (!user_access_begin(st, sizeof(*st)))
3164 return;
3165
3166 asm volatile("1: xchgb %0, %2\n"
3167 "xor %1, %1\n"
3168 "2:\n"
3169 _ASM_EXTABLE_UA(1b, 2b)
3170 : "+q" (st_preempted),
3171 "+&r" (err),
3172 "+m" (st->preempted));
3173 if (err)
3174 goto out;
3175
3176 user_access_end();
3177
3178 vcpu->arch.st.preempted = 0;
3179
3180 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3181 st_preempted & KVM_VCPU_FLUSH_TLB);
3182 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3183 kvm_vcpu_flush_tlb_guest(vcpu);
3184
3185 if (!user_access_begin(st, sizeof(*st)))
3186 goto dirty;
3187 } else {
3188 if (!user_access_begin(st, sizeof(*st)))
3189 return;
3190
3191 unsafe_put_user(0, &st->preempted, out);
3192 vcpu->arch.st.preempted = 0;
3193 }
3194
3195 unsafe_get_user(version, &st->version, out);
3196 if (version & 1)
3197 version += 1; /* first time write, random junk */
3198
3199 version += 1;
3200 unsafe_put_user(version, &st->version, out);
3201
3202 smp_wmb();
3203
3204 unsafe_get_user(steal, &st->steal, out);
3205 steal += current->sched_info.run_delay -
3206 vcpu->arch.st.last_steal;
3207 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3208 unsafe_put_user(steal, &st->steal, out);
3209
3210 version += 1;
3211 unsafe_put_user(version, &st->version, out);
3212
3213 out:
3214 user_access_end();
3215 dirty:
3216 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3217 }
3218
3219 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3220 {
3221 bool pr = false;
3222 u32 msr = msr_info->index;
3223 u64 data = msr_info->data;
3224
3225 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3226 return kvm_xen_write_hypercall_page(vcpu, data);
3227
3228 switch (msr) {
3229 case MSR_AMD64_NB_CFG:
3230 case MSR_IA32_UCODE_WRITE:
3231 case MSR_VM_HSAVE_PA:
3232 case MSR_AMD64_PATCH_LOADER:
3233 case MSR_AMD64_BU_CFG2:
3234 case MSR_AMD64_DC_CFG:
3235 case MSR_F15H_EX_CFG:
3236 break;
3237
3238 case MSR_IA32_UCODE_REV:
3239 if (msr_info->host_initiated)
3240 vcpu->arch.microcode_version = data;
3241 break;
3242 case MSR_IA32_ARCH_CAPABILITIES:
3243 if (!msr_info->host_initiated)
3244 return 1;
3245 vcpu->arch.arch_capabilities = data;
3246 break;
3247 case MSR_IA32_PERF_CAPABILITIES: {
3248 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3249
3250 if (!msr_info->host_initiated)
3251 return 1;
3252 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3253 return 1;
3254 if (data & ~msr_ent.data)
3255 return 1;
3256
3257 vcpu->arch.perf_capabilities = data;
3258
3259 return 0;
3260 }
3261 case MSR_EFER:
3262 return set_efer(vcpu, msr_info);
3263 case MSR_K7_HWCR:
3264 data &= ~(u64)0x40; /* ignore flush filter disable */
3265 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3266 data &= ~(u64)0x8; /* ignore TLB cache disable */
3267
3268 /* Handle McStatusWrEn */
3269 if (data == BIT_ULL(18)) {
3270 vcpu->arch.msr_hwcr = data;
3271 } else if (data != 0) {
3272 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3273 data);
3274 return 1;
3275 }
3276 break;
3277 case MSR_FAM10H_MMIO_CONF_BASE:
3278 if (data != 0) {
3279 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3280 "0x%llx\n", data);
3281 return 1;
3282 }
3283 break;
3284 case 0x200 ... 0x2ff:
3285 return kvm_mtrr_set_msr(vcpu, msr, data);
3286 case MSR_IA32_APICBASE:
3287 return kvm_set_apic_base(vcpu, msr_info);
3288 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3289 return kvm_x2apic_msr_write(vcpu, msr, data);
3290 case MSR_IA32_TSC_DEADLINE:
3291 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3292 break;
3293 case MSR_IA32_TSC_ADJUST:
3294 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3295 if (!msr_info->host_initiated) {
3296 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3297 adjust_tsc_offset_guest(vcpu, adj);
3298 /* Before back to guest, tsc_timestamp must be adjusted
3299 * as well, otherwise guest's percpu pvclock time could jump.
3300 */
3301 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3302 }
3303 vcpu->arch.ia32_tsc_adjust_msr = data;
3304 }
3305 break;
3306 case MSR_IA32_MISC_ENABLE:
3307 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3308 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3309 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3310 return 1;
3311 vcpu->arch.ia32_misc_enable_msr = data;
3312 kvm_update_cpuid_runtime(vcpu);
3313 } else {
3314 vcpu->arch.ia32_misc_enable_msr = data;
3315 }
3316 break;
3317 case MSR_IA32_SMBASE:
3318 if (!msr_info->host_initiated)
3319 return 1;
3320 vcpu->arch.smbase = data;
3321 break;
3322 case MSR_IA32_POWER_CTL:
3323 vcpu->arch.msr_ia32_power_ctl = data;
3324 break;
3325 case MSR_IA32_TSC:
3326 if (msr_info->host_initiated) {
3327 kvm_synchronize_tsc(vcpu, data);
3328 } else {
3329 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3330 adjust_tsc_offset_guest(vcpu, adj);
3331 vcpu->arch.ia32_tsc_adjust_msr += adj;
3332 }
3333 break;
3334 case MSR_IA32_XSS:
3335 if (!msr_info->host_initiated &&
3336 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3337 return 1;
3338 /*
3339 * KVM supports exposing PT to the guest, but does not support
3340 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3341 * XSAVES/XRSTORS to save/restore PT MSRs.
3342 */
3343 if (data & ~supported_xss)
3344 return 1;
3345 vcpu->arch.ia32_xss = data;
3346 break;
3347 case MSR_SMI_COUNT:
3348 if (!msr_info->host_initiated)
3349 return 1;
3350 vcpu->arch.smi_count = data;
3351 break;
3352 case MSR_KVM_WALL_CLOCK_NEW:
3353 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3354 return 1;
3355
3356 vcpu->kvm->arch.wall_clock = data;
3357 kvm_write_wall_clock(vcpu->kvm, data, 0);
3358 break;
3359 case MSR_KVM_WALL_CLOCK:
3360 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3361 return 1;
3362
3363 vcpu->kvm->arch.wall_clock = data;
3364 kvm_write_wall_clock(vcpu->kvm, data, 0);
3365 break;
3366 case MSR_KVM_SYSTEM_TIME_NEW:
3367 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3368 return 1;
3369
3370 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3371 break;
3372 case MSR_KVM_SYSTEM_TIME:
3373 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3374 return 1;
3375
3376 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3377 break;
3378 case MSR_KVM_ASYNC_PF_EN:
3379 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3380 return 1;
3381
3382 if (kvm_pv_enable_async_pf(vcpu, data))
3383 return 1;
3384 break;
3385 case MSR_KVM_ASYNC_PF_INT:
3386 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3387 return 1;
3388
3389 if (kvm_pv_enable_async_pf_int(vcpu, data))
3390 return 1;
3391 break;
3392 case MSR_KVM_ASYNC_PF_ACK:
3393 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3394 return 1;
3395 if (data & 0x1) {
3396 vcpu->arch.apf.pageready_pending = false;
3397 kvm_check_async_pf_completion(vcpu);
3398 }
3399 break;
3400 case MSR_KVM_STEAL_TIME:
3401 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3402 return 1;
3403
3404 if (unlikely(!sched_info_on()))
3405 return 1;
3406
3407 if (data & KVM_STEAL_RESERVED_MASK)
3408 return 1;
3409
3410 vcpu->arch.st.msr_val = data;
3411
3412 if (!(data & KVM_MSR_ENABLED))
3413 break;
3414
3415 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3416
3417 break;
3418 case MSR_KVM_PV_EOI_EN:
3419 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3420 return 1;
3421
3422 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3423 return 1;
3424 break;
3425
3426 case MSR_KVM_POLL_CONTROL:
3427 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3428 return 1;
3429
3430 /* only enable bit supported */
3431 if (data & (-1ULL << 1))
3432 return 1;
3433
3434 vcpu->arch.msr_kvm_poll_control = data;
3435 break;
3436
3437 case MSR_IA32_MCG_CTL:
3438 case MSR_IA32_MCG_STATUS:
3439 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3440 return set_msr_mce(vcpu, msr_info);
3441
3442 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3443 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3444 pr = true;
3445 fallthrough;
3446 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3447 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3448 if (kvm_pmu_is_valid_msr(vcpu, msr))
3449 return kvm_pmu_set_msr(vcpu, msr_info);
3450
3451 if (pr || data != 0)
3452 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3453 "0x%x data 0x%llx\n", msr, data);
3454 break;
3455 case MSR_K7_CLK_CTL:
3456 /*
3457 * Ignore all writes to this no longer documented MSR.
3458 * Writes are only relevant for old K7 processors,
3459 * all pre-dating SVM, but a recommended workaround from
3460 * AMD for these chips. It is possible to specify the
3461 * affected processor models on the command line, hence
3462 * the need to ignore the workaround.
3463 */
3464 break;
3465 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3466 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3467 case HV_X64_MSR_SYNDBG_OPTIONS:
3468 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3469 case HV_X64_MSR_CRASH_CTL:
3470 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3471 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3472 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3473 case HV_X64_MSR_TSC_EMULATION_STATUS:
3474 return kvm_hv_set_msr_common(vcpu, msr, data,
3475 msr_info->host_initiated);
3476 case MSR_IA32_BBL_CR_CTL3:
3477 /* Drop writes to this legacy MSR -- see rdmsr
3478 * counterpart for further detail.
3479 */
3480 if (report_ignored_msrs)
3481 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3482 msr, data);
3483 break;
3484 case MSR_AMD64_OSVW_ID_LENGTH:
3485 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3486 return 1;
3487 vcpu->arch.osvw.length = data;
3488 break;
3489 case MSR_AMD64_OSVW_STATUS:
3490 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3491 return 1;
3492 vcpu->arch.osvw.status = data;
3493 break;
3494 case MSR_PLATFORM_INFO:
3495 if (!msr_info->host_initiated ||
3496 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3497 cpuid_fault_enabled(vcpu)))
3498 return 1;
3499 vcpu->arch.msr_platform_info = data;
3500 break;
3501 case MSR_MISC_FEATURES_ENABLES:
3502 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3503 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3504 !supports_cpuid_fault(vcpu)))
3505 return 1;
3506 vcpu->arch.msr_misc_features_enables = data;
3507 break;
3508 default:
3509 if (kvm_pmu_is_valid_msr(vcpu, msr))
3510 return kvm_pmu_set_msr(vcpu, msr_info);
3511 return KVM_MSR_RET_INVALID;
3512 }
3513 return 0;
3514 }
3515 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3516
3517 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3518 {
3519 u64 data;
3520 u64 mcg_cap = vcpu->arch.mcg_cap;
3521 unsigned bank_num = mcg_cap & 0xff;
3522
3523 switch (msr) {
3524 case MSR_IA32_P5_MC_ADDR:
3525 case MSR_IA32_P5_MC_TYPE:
3526 data = 0;
3527 break;
3528 case MSR_IA32_MCG_CAP:
3529 data = vcpu->arch.mcg_cap;
3530 break;
3531 case MSR_IA32_MCG_CTL:
3532 if (!(mcg_cap & MCG_CTL_P) && !host)
3533 return 1;
3534 data = vcpu->arch.mcg_ctl;
3535 break;
3536 case MSR_IA32_MCG_STATUS:
3537 data = vcpu->arch.mcg_status;
3538 break;
3539 default:
3540 if (msr >= MSR_IA32_MC0_CTL &&
3541 msr < MSR_IA32_MCx_CTL(bank_num)) {
3542 u32 offset = array_index_nospec(
3543 msr - MSR_IA32_MC0_CTL,
3544 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3545
3546 data = vcpu->arch.mce_banks[offset];
3547 break;
3548 }
3549 return 1;
3550 }
3551 *pdata = data;
3552 return 0;
3553 }
3554
3555 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3556 {
3557 switch (msr_info->index) {
3558 case MSR_IA32_PLATFORM_ID:
3559 case MSR_IA32_EBL_CR_POWERON:
3560 case MSR_IA32_LASTBRANCHFROMIP:
3561 case MSR_IA32_LASTBRANCHTOIP:
3562 case MSR_IA32_LASTINTFROMIP:
3563 case MSR_IA32_LASTINTTOIP:
3564 case MSR_AMD64_SYSCFG:
3565 case MSR_K8_TSEG_ADDR:
3566 case MSR_K8_TSEG_MASK:
3567 case MSR_VM_HSAVE_PA:
3568 case MSR_K8_INT_PENDING_MSG:
3569 case MSR_AMD64_NB_CFG:
3570 case MSR_FAM10H_MMIO_CONF_BASE:
3571 case MSR_AMD64_BU_CFG2:
3572 case MSR_IA32_PERF_CTL:
3573 case MSR_AMD64_DC_CFG:
3574 case MSR_F15H_EX_CFG:
3575 /*
3576 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3577 * limit) MSRs. Just return 0, as we do not want to expose the host
3578 * data here. Do not conditionalize this on CPUID, as KVM does not do
3579 * so for existing CPU-specific MSRs.
3580 */
3581 case MSR_RAPL_POWER_UNIT:
3582 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3583 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3584 case MSR_PKG_ENERGY_STATUS: /* Total package */
3585 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3586 msr_info->data = 0;
3587 break;
3588 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3589 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3590 return kvm_pmu_get_msr(vcpu, msr_info);
3591 if (!msr_info->host_initiated)
3592 return 1;
3593 msr_info->data = 0;
3594 break;
3595 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3596 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3597 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3598 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3599 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3600 return kvm_pmu_get_msr(vcpu, msr_info);
3601 msr_info->data = 0;
3602 break;
3603 case MSR_IA32_UCODE_REV:
3604 msr_info->data = vcpu->arch.microcode_version;
3605 break;
3606 case MSR_IA32_ARCH_CAPABILITIES:
3607 if (!msr_info->host_initiated &&
3608 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3609 return 1;
3610 msr_info->data = vcpu->arch.arch_capabilities;
3611 break;
3612 case MSR_IA32_PERF_CAPABILITIES:
3613 if (!msr_info->host_initiated &&
3614 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3615 return 1;
3616 msr_info->data = vcpu->arch.perf_capabilities;
3617 break;
3618 case MSR_IA32_POWER_CTL:
3619 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3620 break;
3621 case MSR_IA32_TSC: {
3622 /*
3623 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3624 * even when not intercepted. AMD manual doesn't explicitly
3625 * state this but appears to behave the same.
3626 *
3627 * On userspace reads and writes, however, we unconditionally
3628 * return L1's TSC value to ensure backwards-compatible
3629 * behavior for migration.
3630 */
3631 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3632 vcpu->arch.tsc_offset;
3633
3634 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
3635 break;
3636 }
3637 case MSR_MTRRcap:
3638 case 0x200 ... 0x2ff:
3639 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3640 case 0xcd: /* fsb frequency */
3641 msr_info->data = 3;
3642 break;
3643 /*
3644 * MSR_EBC_FREQUENCY_ID
3645 * Conservative value valid for even the basic CPU models.
3646 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3647 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3648 * and 266MHz for model 3, or 4. Set Core Clock
3649 * Frequency to System Bus Frequency Ratio to 1 (bits
3650 * 31:24) even though these are only valid for CPU
3651 * models > 2, however guests may end up dividing or
3652 * multiplying by zero otherwise.
3653 */
3654 case MSR_EBC_FREQUENCY_ID:
3655 msr_info->data = 1 << 24;
3656 break;
3657 case MSR_IA32_APICBASE:
3658 msr_info->data = kvm_get_apic_base(vcpu);
3659 break;
3660 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3661 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3662 case MSR_IA32_TSC_DEADLINE:
3663 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3664 break;
3665 case MSR_IA32_TSC_ADJUST:
3666 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3667 break;
3668 case MSR_IA32_MISC_ENABLE:
3669 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3670 break;
3671 case MSR_IA32_SMBASE:
3672 if (!msr_info->host_initiated)
3673 return 1;
3674 msr_info->data = vcpu->arch.smbase;
3675 break;
3676 case MSR_SMI_COUNT:
3677 msr_info->data = vcpu->arch.smi_count;
3678 break;
3679 case MSR_IA32_PERF_STATUS:
3680 /* TSC increment by tick */
3681 msr_info->data = 1000ULL;
3682 /* CPU multiplier */
3683 msr_info->data |= (((uint64_t)4ULL) << 40);
3684 break;
3685 case MSR_EFER:
3686 msr_info->data = vcpu->arch.efer;
3687 break;
3688 case MSR_KVM_WALL_CLOCK:
3689 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3690 return 1;
3691
3692 msr_info->data = vcpu->kvm->arch.wall_clock;
3693 break;
3694 case MSR_KVM_WALL_CLOCK_NEW:
3695 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3696 return 1;
3697
3698 msr_info->data = vcpu->kvm->arch.wall_clock;
3699 break;
3700 case MSR_KVM_SYSTEM_TIME:
3701 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3702 return 1;
3703
3704 msr_info->data = vcpu->arch.time;
3705 break;
3706 case MSR_KVM_SYSTEM_TIME_NEW:
3707 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3708 return 1;
3709
3710 msr_info->data = vcpu->arch.time;
3711 break;
3712 case MSR_KVM_ASYNC_PF_EN:
3713 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3714 return 1;
3715
3716 msr_info->data = vcpu->arch.apf.msr_en_val;
3717 break;
3718 case MSR_KVM_ASYNC_PF_INT:
3719 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3720 return 1;
3721
3722 msr_info->data = vcpu->arch.apf.msr_int_val;
3723 break;
3724 case MSR_KVM_ASYNC_PF_ACK:
3725 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3726 return 1;
3727
3728 msr_info->data = 0;
3729 break;
3730 case MSR_KVM_STEAL_TIME:
3731 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3732 return 1;
3733
3734 msr_info->data = vcpu->arch.st.msr_val;
3735 break;
3736 case MSR_KVM_PV_EOI_EN:
3737 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3738 return 1;
3739
3740 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3741 break;
3742 case MSR_KVM_POLL_CONTROL:
3743 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3744 return 1;
3745
3746 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3747 break;
3748 case MSR_IA32_P5_MC_ADDR:
3749 case MSR_IA32_P5_MC_TYPE:
3750 case MSR_IA32_MCG_CAP:
3751 case MSR_IA32_MCG_CTL:
3752 case MSR_IA32_MCG_STATUS:
3753 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3754 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3755 msr_info->host_initiated);
3756 case MSR_IA32_XSS:
3757 if (!msr_info->host_initiated &&
3758 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3759 return 1;
3760 msr_info->data = vcpu->arch.ia32_xss;
3761 break;
3762 case MSR_K7_CLK_CTL:
3763 /*
3764 * Provide expected ramp-up count for K7. All other
3765 * are set to zero, indicating minimum divisors for
3766 * every field.
3767 *
3768 * This prevents guest kernels on AMD host with CPU
3769 * type 6, model 8 and higher from exploding due to
3770 * the rdmsr failing.
3771 */
3772 msr_info->data = 0x20000000;
3773 break;
3774 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3775 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3776 case HV_X64_MSR_SYNDBG_OPTIONS:
3777 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3778 case HV_X64_MSR_CRASH_CTL:
3779 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3780 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3781 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3782 case HV_X64_MSR_TSC_EMULATION_STATUS:
3783 return kvm_hv_get_msr_common(vcpu,
3784 msr_info->index, &msr_info->data,
3785 msr_info->host_initiated);
3786 case MSR_IA32_BBL_CR_CTL3:
3787 /* This legacy MSR exists but isn't fully documented in current
3788 * silicon. It is however accessed by winxp in very narrow
3789 * scenarios where it sets bit #19, itself documented as
3790 * a "reserved" bit. Best effort attempt to source coherent
3791 * read data here should the balance of the register be
3792 * interpreted by the guest:
3793 *
3794 * L2 cache control register 3: 64GB range, 256KB size,
3795 * enabled, latency 0x1, configured
3796 */
3797 msr_info->data = 0xbe702111;
3798 break;
3799 case MSR_AMD64_OSVW_ID_LENGTH:
3800 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3801 return 1;
3802 msr_info->data = vcpu->arch.osvw.length;
3803 break;
3804 case MSR_AMD64_OSVW_STATUS:
3805 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3806 return 1;
3807 msr_info->data = vcpu->arch.osvw.status;
3808 break;
3809 case MSR_PLATFORM_INFO:
3810 if (!msr_info->host_initiated &&
3811 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3812 return 1;
3813 msr_info->data = vcpu->arch.msr_platform_info;
3814 break;
3815 case MSR_MISC_FEATURES_ENABLES:
3816 msr_info->data = vcpu->arch.msr_misc_features_enables;
3817 break;
3818 case MSR_K7_HWCR:
3819 msr_info->data = vcpu->arch.msr_hwcr;
3820 break;
3821 default:
3822 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3823 return kvm_pmu_get_msr(vcpu, msr_info);
3824 return KVM_MSR_RET_INVALID;
3825 }
3826 return 0;
3827 }
3828 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3829
3830 /*
3831 * Read or write a bunch of msrs. All parameters are kernel addresses.
3832 *
3833 * @return number of msrs set successfully.
3834 */
3835 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3836 struct kvm_msr_entry *entries,
3837 int (*do_msr)(struct kvm_vcpu *vcpu,
3838 unsigned index, u64 *data))
3839 {
3840 int i;
3841
3842 for (i = 0; i < msrs->nmsrs; ++i)
3843 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3844 break;
3845
3846 return i;
3847 }
3848
3849 /*
3850 * Read or write a bunch of msrs. Parameters are user addresses.
3851 *
3852 * @return number of msrs set successfully.
3853 */
3854 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3855 int (*do_msr)(struct kvm_vcpu *vcpu,
3856 unsigned index, u64 *data),
3857 int writeback)
3858 {
3859 struct kvm_msrs msrs;
3860 struct kvm_msr_entry *entries;
3861 int r, n;
3862 unsigned size;
3863
3864 r = -EFAULT;
3865 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3866 goto out;
3867
3868 r = -E2BIG;
3869 if (msrs.nmsrs >= MAX_IO_MSRS)
3870 goto out;
3871
3872 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3873 entries = memdup_user(user_msrs->entries, size);
3874 if (IS_ERR(entries)) {
3875 r = PTR_ERR(entries);
3876 goto out;
3877 }
3878
3879 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3880 if (r < 0)
3881 goto out_free;
3882
3883 r = -EFAULT;
3884 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3885 goto out_free;
3886
3887 r = n;
3888
3889 out_free:
3890 kfree(entries);
3891 out:
3892 return r;
3893 }
3894
3895 static inline bool kvm_can_mwait_in_guest(void)
3896 {
3897 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3898 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3899 boot_cpu_has(X86_FEATURE_ARAT);
3900 }
3901
3902 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3903 struct kvm_cpuid2 __user *cpuid_arg)
3904 {
3905 struct kvm_cpuid2 cpuid;
3906 int r;
3907
3908 r = -EFAULT;
3909 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3910 return r;
3911
3912 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3913 if (r)
3914 return r;
3915
3916 r = -EFAULT;
3917 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3918 return r;
3919
3920 return 0;
3921 }
3922
3923 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3924 {
3925 int r = 0;
3926
3927 switch (ext) {
3928 case KVM_CAP_IRQCHIP:
3929 case KVM_CAP_HLT:
3930 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3931 case KVM_CAP_SET_TSS_ADDR:
3932 case KVM_CAP_EXT_CPUID:
3933 case KVM_CAP_EXT_EMUL_CPUID:
3934 case KVM_CAP_CLOCKSOURCE:
3935 case KVM_CAP_PIT:
3936 case KVM_CAP_NOP_IO_DELAY:
3937 case KVM_CAP_MP_STATE:
3938 case KVM_CAP_SYNC_MMU:
3939 case KVM_CAP_USER_NMI:
3940 case KVM_CAP_REINJECT_CONTROL:
3941 case KVM_CAP_IRQ_INJECT_STATUS:
3942 case KVM_CAP_IOEVENTFD:
3943 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3944 case KVM_CAP_PIT2:
3945 case KVM_CAP_PIT_STATE2:
3946 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3947 case KVM_CAP_VCPU_EVENTS:
3948 case KVM_CAP_HYPERV:
3949 case KVM_CAP_HYPERV_VAPIC:
3950 case KVM_CAP_HYPERV_SPIN:
3951 case KVM_CAP_HYPERV_SYNIC:
3952 case KVM_CAP_HYPERV_SYNIC2:
3953 case KVM_CAP_HYPERV_VP_INDEX:
3954 case KVM_CAP_HYPERV_EVENTFD:
3955 case KVM_CAP_HYPERV_TLBFLUSH:
3956 case KVM_CAP_HYPERV_SEND_IPI:
3957 case KVM_CAP_HYPERV_CPUID:
3958 case KVM_CAP_SYS_HYPERV_CPUID:
3959 case KVM_CAP_PCI_SEGMENT:
3960 case KVM_CAP_DEBUGREGS:
3961 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3962 case KVM_CAP_XSAVE:
3963 case KVM_CAP_ASYNC_PF:
3964 case KVM_CAP_ASYNC_PF_INT:
3965 case KVM_CAP_GET_TSC_KHZ:
3966 case KVM_CAP_KVMCLOCK_CTRL:
3967 case KVM_CAP_READONLY_MEM:
3968 case KVM_CAP_HYPERV_TIME:
3969 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3970 case KVM_CAP_TSC_DEADLINE_TIMER:
3971 case KVM_CAP_DISABLE_QUIRKS:
3972 case KVM_CAP_SET_BOOT_CPU_ID:
3973 case KVM_CAP_SPLIT_IRQCHIP:
3974 case KVM_CAP_IMMEDIATE_EXIT:
3975 case KVM_CAP_PMU_EVENT_FILTER:
3976 case KVM_CAP_GET_MSR_FEATURES:
3977 case KVM_CAP_MSR_PLATFORM_INFO:
3978 case KVM_CAP_EXCEPTION_PAYLOAD:
3979 case KVM_CAP_SET_GUEST_DEBUG:
3980 case KVM_CAP_LAST_CPU:
3981 case KVM_CAP_X86_USER_SPACE_MSR:
3982 case KVM_CAP_X86_MSR_FILTER:
3983 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
3984 #ifdef CONFIG_X86_SGX_KVM
3985 case KVM_CAP_SGX_ATTRIBUTE:
3986 #endif
3987 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
3988 r = 1;
3989 break;
3990 case KVM_CAP_SET_GUEST_DEBUG2:
3991 return KVM_GUESTDBG_VALID_MASK;
3992 #ifdef CONFIG_KVM_XEN
3993 case KVM_CAP_XEN_HVM:
3994 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
3995 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
3996 KVM_XEN_HVM_CONFIG_SHARED_INFO;
3997 if (sched_info_on())
3998 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
3999 break;
4000 #endif
4001 case KVM_CAP_SYNC_REGS:
4002 r = KVM_SYNC_X86_VALID_FIELDS;
4003 break;
4004 case KVM_CAP_ADJUST_CLOCK:
4005 r = KVM_CLOCK_TSC_STABLE;
4006 break;
4007 case KVM_CAP_X86_DISABLE_EXITS:
4008 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4009 KVM_X86_DISABLE_EXITS_CSTATE;
4010 if(kvm_can_mwait_in_guest())
4011 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4012 break;
4013 case KVM_CAP_X86_SMM:
4014 /* SMBASE is usually relocated above 1M on modern chipsets,
4015 * and SMM handlers might indeed rely on 4G segment limits,
4016 * so do not report SMM to be available if real mode is
4017 * emulated via vm86 mode. Still, do not go to great lengths
4018 * to avoid userspace's usage of the feature, because it is a
4019 * fringe case that is not enabled except via specific settings
4020 * of the module parameters.
4021 */
4022 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4023 break;
4024 case KVM_CAP_VAPIC:
4025 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4026 break;
4027 case KVM_CAP_NR_VCPUS:
4028 r = KVM_SOFT_MAX_VCPUS;
4029 break;
4030 case KVM_CAP_MAX_VCPUS:
4031 r = KVM_MAX_VCPUS;
4032 break;
4033 case KVM_CAP_MAX_VCPU_ID:
4034 r = KVM_MAX_VCPU_ID;
4035 break;
4036 case KVM_CAP_PV_MMU: /* obsolete */
4037 r = 0;
4038 break;
4039 case KVM_CAP_MCE:
4040 r = KVM_MAX_MCE_BANKS;
4041 break;
4042 case KVM_CAP_XCRS:
4043 r = boot_cpu_has(X86_FEATURE_XSAVE);
4044 break;
4045 case KVM_CAP_TSC_CONTROL:
4046 r = kvm_has_tsc_control;
4047 break;
4048 case KVM_CAP_X2APIC_API:
4049 r = KVM_X2APIC_API_VALID_FLAGS;
4050 break;
4051 case KVM_CAP_NESTED_STATE:
4052 r = kvm_x86_ops.nested_ops->get_state ?
4053 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4054 break;
4055 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4056 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4057 break;
4058 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4059 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4060 break;
4061 case KVM_CAP_SMALLER_MAXPHYADDR:
4062 r = (int) allow_smaller_maxphyaddr;
4063 break;
4064 case KVM_CAP_STEAL_TIME:
4065 r = sched_info_on();
4066 break;
4067 case KVM_CAP_X86_BUS_LOCK_EXIT:
4068 if (kvm_has_bus_lock_exit)
4069 r = KVM_BUS_LOCK_DETECTION_OFF |
4070 KVM_BUS_LOCK_DETECTION_EXIT;
4071 else
4072 r = 0;
4073 break;
4074 default:
4075 break;
4076 }
4077 return r;
4078
4079 }
4080
4081 long kvm_arch_dev_ioctl(struct file *filp,
4082 unsigned int ioctl, unsigned long arg)
4083 {
4084 void __user *argp = (void __user *)arg;
4085 long r;
4086
4087 switch (ioctl) {
4088 case KVM_GET_MSR_INDEX_LIST: {
4089 struct kvm_msr_list __user *user_msr_list = argp;
4090 struct kvm_msr_list msr_list;
4091 unsigned n;
4092
4093 r = -EFAULT;
4094 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4095 goto out;
4096 n = msr_list.nmsrs;
4097 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4098 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4099 goto out;
4100 r = -E2BIG;
4101 if (n < msr_list.nmsrs)
4102 goto out;
4103 r = -EFAULT;
4104 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4105 num_msrs_to_save * sizeof(u32)))
4106 goto out;
4107 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4108 &emulated_msrs,
4109 num_emulated_msrs * sizeof(u32)))
4110 goto out;
4111 r = 0;
4112 break;
4113 }
4114 case KVM_GET_SUPPORTED_CPUID:
4115 case KVM_GET_EMULATED_CPUID: {
4116 struct kvm_cpuid2 __user *cpuid_arg = argp;
4117 struct kvm_cpuid2 cpuid;
4118
4119 r = -EFAULT;
4120 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4121 goto out;
4122
4123 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4124 ioctl);
4125 if (r)
4126 goto out;
4127
4128 r = -EFAULT;
4129 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4130 goto out;
4131 r = 0;
4132 break;
4133 }
4134 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4135 r = -EFAULT;
4136 if (copy_to_user(argp, &kvm_mce_cap_supported,
4137 sizeof(kvm_mce_cap_supported)))
4138 goto out;
4139 r = 0;
4140 break;
4141 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4142 struct kvm_msr_list __user *user_msr_list = argp;
4143 struct kvm_msr_list msr_list;
4144 unsigned int n;
4145
4146 r = -EFAULT;
4147 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4148 goto out;
4149 n = msr_list.nmsrs;
4150 msr_list.nmsrs = num_msr_based_features;
4151 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4152 goto out;
4153 r = -E2BIG;
4154 if (n < msr_list.nmsrs)
4155 goto out;
4156 r = -EFAULT;
4157 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4158 num_msr_based_features * sizeof(u32)))
4159 goto out;
4160 r = 0;
4161 break;
4162 }
4163 case KVM_GET_MSRS:
4164 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4165 break;
4166 case KVM_GET_SUPPORTED_HV_CPUID:
4167 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4168 break;
4169 default:
4170 r = -EINVAL;
4171 break;
4172 }
4173 out:
4174 return r;
4175 }
4176
4177 static void wbinvd_ipi(void *garbage)
4178 {
4179 wbinvd();
4180 }
4181
4182 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4183 {
4184 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4185 }
4186
4187 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4188 {
4189 /* Address WBINVD may be executed by guest */
4190 if (need_emulate_wbinvd(vcpu)) {
4191 if (static_call(kvm_x86_has_wbinvd_exit)())
4192 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4193 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4194 smp_call_function_single(vcpu->cpu,
4195 wbinvd_ipi, NULL, 1);
4196 }
4197
4198 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4199
4200 /* Save host pkru register if supported */
4201 vcpu->arch.host_pkru = read_pkru();
4202
4203 /* Apply any externally detected TSC adjustments (due to suspend) */
4204 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4205 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4206 vcpu->arch.tsc_offset_adjustment = 0;
4207 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4208 }
4209
4210 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4211 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4212 rdtsc() - vcpu->arch.last_host_tsc;
4213 if (tsc_delta < 0)
4214 mark_tsc_unstable("KVM discovered backwards TSC");
4215
4216 if (kvm_check_tsc_unstable()) {
4217 u64 offset = kvm_compute_tsc_offset(vcpu,
4218 vcpu->arch.last_guest_tsc);
4219 kvm_vcpu_write_tsc_offset(vcpu, offset);
4220 vcpu->arch.tsc_catchup = 1;
4221 }
4222
4223 if (kvm_lapic_hv_timer_in_use(vcpu))
4224 kvm_lapic_restart_hv_timer(vcpu);
4225
4226 /*
4227 * On a host with synchronized TSC, there is no need to update
4228 * kvmclock on vcpu->cpu migration
4229 */
4230 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4231 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4232 if (vcpu->cpu != cpu)
4233 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4234 vcpu->cpu = cpu;
4235 }
4236
4237 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4238 }
4239
4240 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4241 {
4242 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4243 struct kvm_steal_time __user *st;
4244 struct kvm_memslots *slots;
4245 static const u8 preempted = KVM_VCPU_PREEMPTED;
4246
4247 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4248 return;
4249
4250 if (vcpu->arch.st.preempted)
4251 return;
4252
4253 /* This happens on process exit */
4254 if (unlikely(current->mm != vcpu->kvm->mm))
4255 return;
4256
4257 slots = kvm_memslots(vcpu->kvm);
4258
4259 if (unlikely(slots->generation != ghc->generation ||
4260 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4261 return;
4262
4263 st = (struct kvm_steal_time __user *)ghc->hva;
4264 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4265
4266 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4267 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4268
4269 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4270 }
4271
4272 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4273 {
4274 int idx;
4275
4276 if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4277 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4278
4279 /*
4280 * Take the srcu lock as memslots will be accessed to check the gfn
4281 * cache generation against the memslots generation.
4282 */
4283 idx = srcu_read_lock(&vcpu->kvm->srcu);
4284 if (kvm_xen_msr_enabled(vcpu->kvm))
4285 kvm_xen_runstate_set_preempted(vcpu);
4286 else
4287 kvm_steal_time_set_preempted(vcpu);
4288 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4289
4290 static_call(kvm_x86_vcpu_put)(vcpu);
4291 vcpu->arch.last_host_tsc = rdtsc();
4292 /*
4293 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4294 * on every vmexit, but if not, we might have a stale dr6 from the
4295 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
4296 */
4297 set_debugreg(0, 6);
4298 }
4299
4300 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4301 struct kvm_lapic_state *s)
4302 {
4303 if (vcpu->arch.apicv_active)
4304 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4305
4306 return kvm_apic_get_state(vcpu, s);
4307 }
4308
4309 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4310 struct kvm_lapic_state *s)
4311 {
4312 int r;
4313
4314 r = kvm_apic_set_state(vcpu, s);
4315 if (r)
4316 return r;
4317 update_cr8_intercept(vcpu);
4318
4319 return 0;
4320 }
4321
4322 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4323 {
4324 /*
4325 * We can accept userspace's request for interrupt injection
4326 * as long as we have a place to store the interrupt number.
4327 * The actual injection will happen when the CPU is able to
4328 * deliver the interrupt.
4329 */
4330 if (kvm_cpu_has_extint(vcpu))
4331 return false;
4332
4333 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4334 return (!lapic_in_kernel(vcpu) ||
4335 kvm_apic_accept_pic_intr(vcpu));
4336 }
4337
4338 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4339 {
4340 /*
4341 * Do not cause an interrupt window exit if an exception
4342 * is pending or an event needs reinjection; userspace
4343 * might want to inject the interrupt manually using KVM_SET_REGS
4344 * or KVM_SET_SREGS. For that to work, we must be at an
4345 * instruction boundary and with no events half-injected.
4346 */
4347 return (kvm_arch_interrupt_allowed(vcpu) &&
4348 kvm_cpu_accept_dm_intr(vcpu) &&
4349 !kvm_event_needs_reinjection(vcpu) &&
4350 !vcpu->arch.exception.pending);
4351 }
4352
4353 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4354 struct kvm_interrupt *irq)
4355 {
4356 if (irq->irq >= KVM_NR_INTERRUPTS)
4357 return -EINVAL;
4358
4359 if (!irqchip_in_kernel(vcpu->kvm)) {
4360 kvm_queue_interrupt(vcpu, irq->irq, false);
4361 kvm_make_request(KVM_REQ_EVENT, vcpu);
4362 return 0;
4363 }
4364
4365 /*
4366 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4367 * fail for in-kernel 8259.
4368 */
4369 if (pic_in_kernel(vcpu->kvm))
4370 return -ENXIO;
4371
4372 if (vcpu->arch.pending_external_vector != -1)
4373 return -EEXIST;
4374
4375 vcpu->arch.pending_external_vector = irq->irq;
4376 kvm_make_request(KVM_REQ_EVENT, vcpu);
4377 return 0;
4378 }
4379
4380 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4381 {
4382 kvm_inject_nmi(vcpu);
4383
4384 return 0;
4385 }
4386
4387 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4388 {
4389 kvm_make_request(KVM_REQ_SMI, vcpu);
4390
4391 return 0;
4392 }
4393
4394 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4395 struct kvm_tpr_access_ctl *tac)
4396 {
4397 if (tac->flags)
4398 return -EINVAL;
4399 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4400 return 0;
4401 }
4402
4403 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4404 u64 mcg_cap)
4405 {
4406 int r;
4407 unsigned bank_num = mcg_cap & 0xff, bank;
4408
4409 r = -EINVAL;
4410 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4411 goto out;
4412 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4413 goto out;
4414 r = 0;
4415 vcpu->arch.mcg_cap = mcg_cap;
4416 /* Init IA32_MCG_CTL to all 1s */
4417 if (mcg_cap & MCG_CTL_P)
4418 vcpu->arch.mcg_ctl = ~(u64)0;
4419 /* Init IA32_MCi_CTL to all 1s */
4420 for (bank = 0; bank < bank_num; bank++)
4421 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4422
4423 static_call(kvm_x86_setup_mce)(vcpu);
4424 out:
4425 return r;
4426 }
4427
4428 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4429 struct kvm_x86_mce *mce)
4430 {
4431 u64 mcg_cap = vcpu->arch.mcg_cap;
4432 unsigned bank_num = mcg_cap & 0xff;
4433 u64 *banks = vcpu->arch.mce_banks;
4434
4435 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4436 return -EINVAL;
4437 /*
4438 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4439 * reporting is disabled
4440 */
4441 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4442 vcpu->arch.mcg_ctl != ~(u64)0)
4443 return 0;
4444 banks += 4 * mce->bank;
4445 /*
4446 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4447 * reporting is disabled for the bank
4448 */
4449 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4450 return 0;
4451 if (mce->status & MCI_STATUS_UC) {
4452 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4453 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4454 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4455 return 0;
4456 }
4457 if (banks[1] & MCI_STATUS_VAL)
4458 mce->status |= MCI_STATUS_OVER;
4459 banks[2] = mce->addr;
4460 banks[3] = mce->misc;
4461 vcpu->arch.mcg_status = mce->mcg_status;
4462 banks[1] = mce->status;
4463 kvm_queue_exception(vcpu, MC_VECTOR);
4464 } else if (!(banks[1] & MCI_STATUS_VAL)
4465 || !(banks[1] & MCI_STATUS_UC)) {
4466 if (banks[1] & MCI_STATUS_VAL)
4467 mce->status |= MCI_STATUS_OVER;
4468 banks[2] = mce->addr;
4469 banks[3] = mce->misc;
4470 banks[1] = mce->status;
4471 } else
4472 banks[1] |= MCI_STATUS_OVER;
4473 return 0;
4474 }
4475
4476 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4477 struct kvm_vcpu_events *events)
4478 {
4479 process_nmi(vcpu);
4480
4481 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4482 process_smi(vcpu);
4483
4484 /*
4485 * In guest mode, payload delivery should be deferred,
4486 * so that the L1 hypervisor can intercept #PF before
4487 * CR2 is modified (or intercept #DB before DR6 is
4488 * modified under nVMX). Unless the per-VM capability,
4489 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4490 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4491 * opportunistically defer the exception payload, deliver it if the
4492 * capability hasn't been requested before processing a
4493 * KVM_GET_VCPU_EVENTS.
4494 */
4495 if (!vcpu->kvm->arch.exception_payload_enabled &&
4496 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4497 kvm_deliver_exception_payload(vcpu);
4498
4499 /*
4500 * The API doesn't provide the instruction length for software
4501 * exceptions, so don't report them. As long as the guest RIP
4502 * isn't advanced, we should expect to encounter the exception
4503 * again.
4504 */
4505 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4506 events->exception.injected = 0;
4507 events->exception.pending = 0;
4508 } else {
4509 events->exception.injected = vcpu->arch.exception.injected;
4510 events->exception.pending = vcpu->arch.exception.pending;
4511 /*
4512 * For ABI compatibility, deliberately conflate
4513 * pending and injected exceptions when
4514 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4515 */
4516 if (!vcpu->kvm->arch.exception_payload_enabled)
4517 events->exception.injected |=
4518 vcpu->arch.exception.pending;
4519 }
4520 events->exception.nr = vcpu->arch.exception.nr;
4521 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4522 events->exception.error_code = vcpu->arch.exception.error_code;
4523 events->exception_has_payload = vcpu->arch.exception.has_payload;
4524 events->exception_payload = vcpu->arch.exception.payload;
4525
4526 events->interrupt.injected =
4527 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4528 events->interrupt.nr = vcpu->arch.interrupt.nr;
4529 events->interrupt.soft = 0;
4530 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4531
4532 events->nmi.injected = vcpu->arch.nmi_injected;
4533 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4534 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4535 events->nmi.pad = 0;
4536
4537 events->sipi_vector = 0; /* never valid when reporting to user space */
4538
4539 events->smi.smm = is_smm(vcpu);
4540 events->smi.pending = vcpu->arch.smi_pending;
4541 events->smi.smm_inside_nmi =
4542 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4543 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4544
4545 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4546 | KVM_VCPUEVENT_VALID_SHADOW
4547 | KVM_VCPUEVENT_VALID_SMM);
4548 if (vcpu->kvm->arch.exception_payload_enabled)
4549 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4550
4551 memset(&events->reserved, 0, sizeof(events->reserved));
4552 }
4553
4554 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
4555
4556 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4557 struct kvm_vcpu_events *events)
4558 {
4559 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4560 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4561 | KVM_VCPUEVENT_VALID_SHADOW
4562 | KVM_VCPUEVENT_VALID_SMM
4563 | KVM_VCPUEVENT_VALID_PAYLOAD))
4564 return -EINVAL;
4565
4566 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4567 if (!vcpu->kvm->arch.exception_payload_enabled)
4568 return -EINVAL;
4569 if (events->exception.pending)
4570 events->exception.injected = 0;
4571 else
4572 events->exception_has_payload = 0;
4573 } else {
4574 events->exception.pending = 0;
4575 events->exception_has_payload = 0;
4576 }
4577
4578 if ((events->exception.injected || events->exception.pending) &&
4579 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4580 return -EINVAL;
4581
4582 /* INITs are latched while in SMM */
4583 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4584 (events->smi.smm || events->smi.pending) &&
4585 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4586 return -EINVAL;
4587
4588 process_nmi(vcpu);
4589 vcpu->arch.exception.injected = events->exception.injected;
4590 vcpu->arch.exception.pending = events->exception.pending;
4591 vcpu->arch.exception.nr = events->exception.nr;
4592 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4593 vcpu->arch.exception.error_code = events->exception.error_code;
4594 vcpu->arch.exception.has_payload = events->exception_has_payload;
4595 vcpu->arch.exception.payload = events->exception_payload;
4596
4597 vcpu->arch.interrupt.injected = events->interrupt.injected;
4598 vcpu->arch.interrupt.nr = events->interrupt.nr;
4599 vcpu->arch.interrupt.soft = events->interrupt.soft;
4600 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4601 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4602 events->interrupt.shadow);
4603
4604 vcpu->arch.nmi_injected = events->nmi.injected;
4605 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4606 vcpu->arch.nmi_pending = events->nmi.pending;
4607 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4608
4609 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4610 lapic_in_kernel(vcpu))
4611 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4612
4613 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4614 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4615 if (events->smi.smm)
4616 vcpu->arch.hflags |= HF_SMM_MASK;
4617 else
4618 vcpu->arch.hflags &= ~HF_SMM_MASK;
4619 kvm_smm_changed(vcpu);
4620 }
4621
4622 vcpu->arch.smi_pending = events->smi.pending;
4623
4624 if (events->smi.smm) {
4625 if (events->smi.smm_inside_nmi)
4626 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4627 else
4628 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4629 }
4630
4631 if (lapic_in_kernel(vcpu)) {
4632 if (events->smi.latched_init)
4633 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4634 else
4635 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4636 }
4637 }
4638
4639 kvm_make_request(KVM_REQ_EVENT, vcpu);
4640
4641 return 0;
4642 }
4643
4644 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4645 struct kvm_debugregs *dbgregs)
4646 {
4647 unsigned long val;
4648
4649 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4650 kvm_get_dr(vcpu, 6, &val);
4651 dbgregs->dr6 = val;
4652 dbgregs->dr7 = vcpu->arch.dr7;
4653 dbgregs->flags = 0;
4654 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4655 }
4656
4657 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4658 struct kvm_debugregs *dbgregs)
4659 {
4660 if (dbgregs->flags)
4661 return -EINVAL;
4662
4663 if (!kvm_dr6_valid(dbgregs->dr6))
4664 return -EINVAL;
4665 if (!kvm_dr7_valid(dbgregs->dr7))
4666 return -EINVAL;
4667
4668 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4669 kvm_update_dr0123(vcpu);
4670 vcpu->arch.dr6 = dbgregs->dr6;
4671 vcpu->arch.dr7 = dbgregs->dr7;
4672 kvm_update_dr7(vcpu);
4673
4674 return 0;
4675 }
4676
4677 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4678
4679 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4680 {
4681 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4682 u64 xstate_bv = xsave->header.xfeatures;
4683 u64 valid;
4684
4685 /*
4686 * Copy legacy XSAVE area, to avoid complications with CPUID
4687 * leaves 0 and 1 in the loop below.
4688 */
4689 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4690
4691 /* Set XSTATE_BV */
4692 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4693 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4694
4695 /*
4696 * Copy each region from the possibly compacted offset to the
4697 * non-compacted offset.
4698 */
4699 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4700 while (valid) {
4701 u64 xfeature_mask = valid & -valid;
4702 int xfeature_nr = fls64(xfeature_mask) - 1;
4703 void *src = get_xsave_addr(xsave, xfeature_nr);
4704
4705 if (src) {
4706 u32 size, offset, ecx, edx;
4707 cpuid_count(XSTATE_CPUID, xfeature_nr,
4708 &size, &offset, &ecx, &edx);
4709 if (xfeature_nr == XFEATURE_PKRU)
4710 memcpy(dest + offset, &vcpu->arch.pkru,
4711 sizeof(vcpu->arch.pkru));
4712 else
4713 memcpy(dest + offset, src, size);
4714
4715 }
4716
4717 valid -= xfeature_mask;
4718 }
4719 }
4720
4721 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4722 {
4723 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4724 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4725 u64 valid;
4726
4727 /*
4728 * Copy legacy XSAVE area, to avoid complications with CPUID
4729 * leaves 0 and 1 in the loop below.
4730 */
4731 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4732
4733 /* Set XSTATE_BV and possibly XCOMP_BV. */
4734 xsave->header.xfeatures = xstate_bv;
4735 if (boot_cpu_has(X86_FEATURE_XSAVES))
4736 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4737
4738 /*
4739 * Copy each region from the non-compacted offset to the
4740 * possibly compacted offset.
4741 */
4742 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4743 while (valid) {
4744 u64 xfeature_mask = valid & -valid;
4745 int xfeature_nr = fls64(xfeature_mask) - 1;
4746 void *dest = get_xsave_addr(xsave, xfeature_nr);
4747
4748 if (dest) {
4749 u32 size, offset, ecx, edx;
4750 cpuid_count(XSTATE_CPUID, xfeature_nr,
4751 &size, &offset, &ecx, &edx);
4752 if (xfeature_nr == XFEATURE_PKRU)
4753 memcpy(&vcpu->arch.pkru, src + offset,
4754 sizeof(vcpu->arch.pkru));
4755 else
4756 memcpy(dest, src + offset, size);
4757 }
4758
4759 valid -= xfeature_mask;
4760 }
4761 }
4762
4763 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4764 struct kvm_xsave *guest_xsave)
4765 {
4766 if (!vcpu->arch.guest_fpu)
4767 return;
4768
4769 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4770 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4771 fill_xsave((u8 *) guest_xsave->region, vcpu);
4772 } else {
4773 memcpy(guest_xsave->region,
4774 &vcpu->arch.guest_fpu->state.fxsave,
4775 sizeof(struct fxregs_state));
4776 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4777 XFEATURE_MASK_FPSSE;
4778 }
4779 }
4780
4781 #define XSAVE_MXCSR_OFFSET 24
4782
4783 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4784 struct kvm_xsave *guest_xsave)
4785 {
4786 u64 xstate_bv;
4787 u32 mxcsr;
4788
4789 if (!vcpu->arch.guest_fpu)
4790 return 0;
4791
4792 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4793 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4794
4795 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4796 /*
4797 * Here we allow setting states that are not present in
4798 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4799 * with old userspace.
4800 */
4801 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4802 return -EINVAL;
4803 load_xsave(vcpu, (u8 *)guest_xsave->region);
4804 } else {
4805 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4806 mxcsr & ~mxcsr_feature_mask)
4807 return -EINVAL;
4808 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4809 guest_xsave->region, sizeof(struct fxregs_state));
4810 }
4811 return 0;
4812 }
4813
4814 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4815 struct kvm_xcrs *guest_xcrs)
4816 {
4817 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4818 guest_xcrs->nr_xcrs = 0;
4819 return;
4820 }
4821
4822 guest_xcrs->nr_xcrs = 1;
4823 guest_xcrs->flags = 0;
4824 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4825 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4826 }
4827
4828 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4829 struct kvm_xcrs *guest_xcrs)
4830 {
4831 int i, r = 0;
4832
4833 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4834 return -EINVAL;
4835
4836 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4837 return -EINVAL;
4838
4839 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4840 /* Only support XCR0 currently */
4841 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4842 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4843 guest_xcrs->xcrs[i].value);
4844 break;
4845 }
4846 if (r)
4847 r = -EINVAL;
4848 return r;
4849 }
4850
4851 /*
4852 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4853 * stopped by the hypervisor. This function will be called from the host only.
4854 * EINVAL is returned when the host attempts to set the flag for a guest that
4855 * does not support pv clocks.
4856 */
4857 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4858 {
4859 if (!vcpu->arch.pv_time_enabled)
4860 return -EINVAL;
4861 vcpu->arch.pvclock_set_guest_stopped_request = true;
4862 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4863 return 0;
4864 }
4865
4866 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4867 struct kvm_enable_cap *cap)
4868 {
4869 int r;
4870 uint16_t vmcs_version;
4871 void __user *user_ptr;
4872
4873 if (cap->flags)
4874 return -EINVAL;
4875
4876 switch (cap->cap) {
4877 case KVM_CAP_HYPERV_SYNIC2:
4878 if (cap->args[0])
4879 return -EINVAL;
4880 fallthrough;
4881
4882 case KVM_CAP_HYPERV_SYNIC:
4883 if (!irqchip_in_kernel(vcpu->kvm))
4884 return -EINVAL;
4885 return kvm_hv_activate_synic(vcpu, cap->cap ==
4886 KVM_CAP_HYPERV_SYNIC2);
4887 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4888 if (!kvm_x86_ops.nested_ops->enable_evmcs)
4889 return -ENOTTY;
4890 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4891 if (!r) {
4892 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4893 if (copy_to_user(user_ptr, &vmcs_version,
4894 sizeof(vmcs_version)))
4895 r = -EFAULT;
4896 }
4897 return r;
4898 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4899 if (!kvm_x86_ops.enable_direct_tlbflush)
4900 return -ENOTTY;
4901
4902 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4903
4904 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4905 vcpu->arch.pv_cpuid.enforce = cap->args[0];
4906 if (vcpu->arch.pv_cpuid.enforce)
4907 kvm_update_pv_runtime(vcpu);
4908
4909 return 0;
4910 default:
4911 return -EINVAL;
4912 }
4913 }
4914
4915 long kvm_arch_vcpu_ioctl(struct file *filp,
4916 unsigned int ioctl, unsigned long arg)
4917 {
4918 struct kvm_vcpu *vcpu = filp->private_data;
4919 void __user *argp = (void __user *)arg;
4920 int r;
4921 union {
4922 struct kvm_lapic_state *lapic;
4923 struct kvm_xsave *xsave;
4924 struct kvm_xcrs *xcrs;
4925 void *buffer;
4926 } u;
4927
4928 vcpu_load(vcpu);
4929
4930 u.buffer = NULL;
4931 switch (ioctl) {
4932 case KVM_GET_LAPIC: {
4933 r = -EINVAL;
4934 if (!lapic_in_kernel(vcpu))
4935 goto out;
4936 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4937 GFP_KERNEL_ACCOUNT);
4938
4939 r = -ENOMEM;
4940 if (!u.lapic)
4941 goto out;
4942 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4943 if (r)
4944 goto out;
4945 r = -EFAULT;
4946 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4947 goto out;
4948 r = 0;
4949 break;
4950 }
4951 case KVM_SET_LAPIC: {
4952 r = -EINVAL;
4953 if (!lapic_in_kernel(vcpu))
4954 goto out;
4955 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4956 if (IS_ERR(u.lapic)) {
4957 r = PTR_ERR(u.lapic);
4958 goto out_nofree;
4959 }
4960
4961 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4962 break;
4963 }
4964 case KVM_INTERRUPT: {
4965 struct kvm_interrupt irq;
4966
4967 r = -EFAULT;
4968 if (copy_from_user(&irq, argp, sizeof(irq)))
4969 goto out;
4970 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4971 break;
4972 }
4973 case KVM_NMI: {
4974 r = kvm_vcpu_ioctl_nmi(vcpu);
4975 break;
4976 }
4977 case KVM_SMI: {
4978 r = kvm_vcpu_ioctl_smi(vcpu);
4979 break;
4980 }
4981 case KVM_SET_CPUID: {
4982 struct kvm_cpuid __user *cpuid_arg = argp;
4983 struct kvm_cpuid cpuid;
4984
4985 r = -EFAULT;
4986 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4987 goto out;
4988 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4989 break;
4990 }
4991 case KVM_SET_CPUID2: {
4992 struct kvm_cpuid2 __user *cpuid_arg = argp;
4993 struct kvm_cpuid2 cpuid;
4994
4995 r = -EFAULT;
4996 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4997 goto out;
4998 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4999 cpuid_arg->entries);
5000 break;
5001 }
5002 case KVM_GET_CPUID2: {
5003 struct kvm_cpuid2 __user *cpuid_arg = argp;
5004 struct kvm_cpuid2 cpuid;
5005
5006 r = -EFAULT;
5007 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5008 goto out;
5009 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5010 cpuid_arg->entries);
5011 if (r)
5012 goto out;
5013 r = -EFAULT;
5014 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5015 goto out;
5016 r = 0;
5017 break;
5018 }
5019 case KVM_GET_MSRS: {
5020 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5021 r = msr_io(vcpu, argp, do_get_msr, 1);
5022 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5023 break;
5024 }
5025 case KVM_SET_MSRS: {
5026 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5027 r = msr_io(vcpu, argp, do_set_msr, 0);
5028 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5029 break;
5030 }
5031 case KVM_TPR_ACCESS_REPORTING: {
5032 struct kvm_tpr_access_ctl tac;
5033
5034 r = -EFAULT;
5035 if (copy_from_user(&tac, argp, sizeof(tac)))
5036 goto out;
5037 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5038 if (r)
5039 goto out;
5040 r = -EFAULT;
5041 if (copy_to_user(argp, &tac, sizeof(tac)))
5042 goto out;
5043 r = 0;
5044 break;
5045 };
5046 case KVM_SET_VAPIC_ADDR: {
5047 struct kvm_vapic_addr va;
5048 int idx;
5049
5050 r = -EINVAL;
5051 if (!lapic_in_kernel(vcpu))
5052 goto out;
5053 r = -EFAULT;
5054 if (copy_from_user(&va, argp, sizeof(va)))
5055 goto out;
5056 idx = srcu_read_lock(&vcpu->kvm->srcu);
5057 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5058 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5059 break;
5060 }
5061 case KVM_X86_SETUP_MCE: {
5062 u64 mcg_cap;
5063
5064 r = -EFAULT;
5065 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5066 goto out;
5067 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5068 break;
5069 }
5070 case KVM_X86_SET_MCE: {
5071 struct kvm_x86_mce mce;
5072
5073 r = -EFAULT;
5074 if (copy_from_user(&mce, argp, sizeof(mce)))
5075 goto out;
5076 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5077 break;
5078 }
5079 case KVM_GET_VCPU_EVENTS: {
5080 struct kvm_vcpu_events events;
5081
5082 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5083
5084 r = -EFAULT;
5085 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5086 break;
5087 r = 0;
5088 break;
5089 }
5090 case KVM_SET_VCPU_EVENTS: {
5091 struct kvm_vcpu_events events;
5092
5093 r = -EFAULT;
5094 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5095 break;
5096
5097 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5098 break;
5099 }
5100 case KVM_GET_DEBUGREGS: {
5101 struct kvm_debugregs dbgregs;
5102
5103 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5104
5105 r = -EFAULT;
5106 if (copy_to_user(argp, &dbgregs,
5107 sizeof(struct kvm_debugregs)))
5108 break;
5109 r = 0;
5110 break;
5111 }
5112 case KVM_SET_DEBUGREGS: {
5113 struct kvm_debugregs dbgregs;
5114
5115 r = -EFAULT;
5116 if (copy_from_user(&dbgregs, argp,
5117 sizeof(struct kvm_debugregs)))
5118 break;
5119
5120 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5121 break;
5122 }
5123 case KVM_GET_XSAVE: {
5124 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5125 r = -ENOMEM;
5126 if (!u.xsave)
5127 break;
5128
5129 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5130
5131 r = -EFAULT;
5132 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5133 break;
5134 r = 0;
5135 break;
5136 }
5137 case KVM_SET_XSAVE: {
5138 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5139 if (IS_ERR(u.xsave)) {
5140 r = PTR_ERR(u.xsave);
5141 goto out_nofree;
5142 }
5143
5144 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5145 break;
5146 }
5147 case KVM_GET_XCRS: {
5148 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5149 r = -ENOMEM;
5150 if (!u.xcrs)
5151 break;
5152
5153 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5154
5155 r = -EFAULT;
5156 if (copy_to_user(argp, u.xcrs,
5157 sizeof(struct kvm_xcrs)))
5158 break;
5159 r = 0;
5160 break;
5161 }
5162 case KVM_SET_XCRS: {
5163 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5164 if (IS_ERR(u.xcrs)) {
5165 r = PTR_ERR(u.xcrs);
5166 goto out_nofree;
5167 }
5168
5169 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5170 break;
5171 }
5172 case KVM_SET_TSC_KHZ: {
5173 u32 user_tsc_khz;
5174
5175 r = -EINVAL;
5176 user_tsc_khz = (u32)arg;
5177
5178 if (kvm_has_tsc_control &&
5179 user_tsc_khz >= kvm_max_guest_tsc_khz)
5180 goto out;
5181
5182 if (user_tsc_khz == 0)
5183 user_tsc_khz = tsc_khz;
5184
5185 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5186 r = 0;
5187
5188 goto out;
5189 }
5190 case KVM_GET_TSC_KHZ: {
5191 r = vcpu->arch.virtual_tsc_khz;
5192 goto out;
5193 }
5194 case KVM_KVMCLOCK_CTRL: {
5195 r = kvm_set_guest_paused(vcpu);
5196 goto out;
5197 }
5198 case KVM_ENABLE_CAP: {
5199 struct kvm_enable_cap cap;
5200
5201 r = -EFAULT;
5202 if (copy_from_user(&cap, argp, sizeof(cap)))
5203 goto out;
5204 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5205 break;
5206 }
5207 case KVM_GET_NESTED_STATE: {
5208 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5209 u32 user_data_size;
5210
5211 r = -EINVAL;
5212 if (!kvm_x86_ops.nested_ops->get_state)
5213 break;
5214
5215 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5216 r = -EFAULT;
5217 if (get_user(user_data_size, &user_kvm_nested_state->size))
5218 break;
5219
5220 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5221 user_data_size);
5222 if (r < 0)
5223 break;
5224
5225 if (r > user_data_size) {
5226 if (put_user(r, &user_kvm_nested_state->size))
5227 r = -EFAULT;
5228 else
5229 r = -E2BIG;
5230 break;
5231 }
5232
5233 r = 0;
5234 break;
5235 }
5236 case KVM_SET_NESTED_STATE: {
5237 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5238 struct kvm_nested_state kvm_state;
5239 int idx;
5240
5241 r = -EINVAL;
5242 if (!kvm_x86_ops.nested_ops->set_state)
5243 break;
5244
5245 r = -EFAULT;
5246 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5247 break;
5248
5249 r = -EINVAL;
5250 if (kvm_state.size < sizeof(kvm_state))
5251 break;
5252
5253 if (kvm_state.flags &
5254 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5255 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5256 | KVM_STATE_NESTED_GIF_SET))
5257 break;
5258
5259 /* nested_run_pending implies guest_mode. */
5260 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5261 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5262 break;
5263
5264 idx = srcu_read_lock(&vcpu->kvm->srcu);
5265 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5266 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5267 break;
5268 }
5269 case KVM_GET_SUPPORTED_HV_CPUID:
5270 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5271 break;
5272 #ifdef CONFIG_KVM_XEN
5273 case KVM_XEN_VCPU_GET_ATTR: {
5274 struct kvm_xen_vcpu_attr xva;
5275
5276 r = -EFAULT;
5277 if (copy_from_user(&xva, argp, sizeof(xva)))
5278 goto out;
5279 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5280 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5281 r = -EFAULT;
5282 break;
5283 }
5284 case KVM_XEN_VCPU_SET_ATTR: {
5285 struct kvm_xen_vcpu_attr xva;
5286
5287 r = -EFAULT;
5288 if (copy_from_user(&xva, argp, sizeof(xva)))
5289 goto out;
5290 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5291 break;
5292 }
5293 #endif
5294 default:
5295 r = -EINVAL;
5296 }
5297 out:
5298 kfree(u.buffer);
5299 out_nofree:
5300 vcpu_put(vcpu);
5301 return r;
5302 }
5303
5304 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5305 {
5306 return VM_FAULT_SIGBUS;
5307 }
5308
5309 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5310 {
5311 int ret;
5312
5313 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5314 return -EINVAL;
5315 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5316 return ret;
5317 }
5318
5319 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5320 u64 ident_addr)
5321 {
5322 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5323 }
5324
5325 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5326 unsigned long kvm_nr_mmu_pages)
5327 {
5328 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5329 return -EINVAL;
5330
5331 mutex_lock(&kvm->slots_lock);
5332
5333 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5334 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5335
5336 mutex_unlock(&kvm->slots_lock);
5337 return 0;
5338 }
5339
5340 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5341 {
5342 return kvm->arch.n_max_mmu_pages;
5343 }
5344
5345 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5346 {
5347 struct kvm_pic *pic = kvm->arch.vpic;
5348 int r;
5349
5350 r = 0;
5351 switch (chip->chip_id) {
5352 case KVM_IRQCHIP_PIC_MASTER:
5353 memcpy(&chip->chip.pic, &pic->pics[0],
5354 sizeof(struct kvm_pic_state));
5355 break;
5356 case KVM_IRQCHIP_PIC_SLAVE:
5357 memcpy(&chip->chip.pic, &pic->pics[1],
5358 sizeof(struct kvm_pic_state));
5359 break;
5360 case KVM_IRQCHIP_IOAPIC:
5361 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5362 break;
5363 default:
5364 r = -EINVAL;
5365 break;
5366 }
5367 return r;
5368 }
5369
5370 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5371 {
5372 struct kvm_pic *pic = kvm->arch.vpic;
5373 int r;
5374
5375 r = 0;
5376 switch (chip->chip_id) {
5377 case KVM_IRQCHIP_PIC_MASTER:
5378 spin_lock(&pic->lock);
5379 memcpy(&pic->pics[0], &chip->chip.pic,
5380 sizeof(struct kvm_pic_state));
5381 spin_unlock(&pic->lock);
5382 break;
5383 case KVM_IRQCHIP_PIC_SLAVE:
5384 spin_lock(&pic->lock);
5385 memcpy(&pic->pics[1], &chip->chip.pic,
5386 sizeof(struct kvm_pic_state));
5387 spin_unlock(&pic->lock);
5388 break;
5389 case KVM_IRQCHIP_IOAPIC:
5390 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5391 break;
5392 default:
5393 r = -EINVAL;
5394 break;
5395 }
5396 kvm_pic_update_irq(pic);
5397 return r;
5398 }
5399
5400 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5401 {
5402 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5403
5404 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5405
5406 mutex_lock(&kps->lock);
5407 memcpy(ps, &kps->channels, sizeof(*ps));
5408 mutex_unlock(&kps->lock);
5409 return 0;
5410 }
5411
5412 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5413 {
5414 int i;
5415 struct kvm_pit *pit = kvm->arch.vpit;
5416
5417 mutex_lock(&pit->pit_state.lock);
5418 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5419 for (i = 0; i < 3; i++)
5420 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5421 mutex_unlock(&pit->pit_state.lock);
5422 return 0;
5423 }
5424
5425 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5426 {
5427 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5428 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5429 sizeof(ps->channels));
5430 ps->flags = kvm->arch.vpit->pit_state.flags;
5431 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5432 memset(&ps->reserved, 0, sizeof(ps->reserved));
5433 return 0;
5434 }
5435
5436 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5437 {
5438 int start = 0;
5439 int i;
5440 u32 prev_legacy, cur_legacy;
5441 struct kvm_pit *pit = kvm->arch.vpit;
5442
5443 mutex_lock(&pit->pit_state.lock);
5444 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5445 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5446 if (!prev_legacy && cur_legacy)
5447 start = 1;
5448 memcpy(&pit->pit_state.channels, &ps->channels,
5449 sizeof(pit->pit_state.channels));
5450 pit->pit_state.flags = ps->flags;
5451 for (i = 0; i < 3; i++)
5452 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5453 start && i == 0);
5454 mutex_unlock(&pit->pit_state.lock);
5455 return 0;
5456 }
5457
5458 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5459 struct kvm_reinject_control *control)
5460 {
5461 struct kvm_pit *pit = kvm->arch.vpit;
5462
5463 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5464 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5465 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5466 */
5467 mutex_lock(&pit->pit_state.lock);
5468 kvm_pit_set_reinject(pit, control->pit_reinject);
5469 mutex_unlock(&pit->pit_state.lock);
5470
5471 return 0;
5472 }
5473
5474 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5475 {
5476
5477 /*
5478 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5479 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5480 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5481 * VM-Exit.
5482 */
5483 struct kvm_vcpu *vcpu;
5484 int i;
5485
5486 kvm_for_each_vcpu(i, vcpu, kvm)
5487 kvm_vcpu_kick(vcpu);
5488 }
5489
5490 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5491 bool line_status)
5492 {
5493 if (!irqchip_in_kernel(kvm))
5494 return -ENXIO;
5495
5496 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5497 irq_event->irq, irq_event->level,
5498 line_status);
5499 return 0;
5500 }
5501
5502 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5503 struct kvm_enable_cap *cap)
5504 {
5505 int r;
5506
5507 if (cap->flags)
5508 return -EINVAL;
5509
5510 switch (cap->cap) {
5511 case KVM_CAP_DISABLE_QUIRKS:
5512 kvm->arch.disabled_quirks = cap->args[0];
5513 r = 0;
5514 break;
5515 case KVM_CAP_SPLIT_IRQCHIP: {
5516 mutex_lock(&kvm->lock);
5517 r = -EINVAL;
5518 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5519 goto split_irqchip_unlock;
5520 r = -EEXIST;
5521 if (irqchip_in_kernel(kvm))
5522 goto split_irqchip_unlock;
5523 if (kvm->created_vcpus)
5524 goto split_irqchip_unlock;
5525 r = kvm_setup_empty_irq_routing(kvm);
5526 if (r)
5527 goto split_irqchip_unlock;
5528 /* Pairs with irqchip_in_kernel. */
5529 smp_wmb();
5530 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5531 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5532 r = 0;
5533 split_irqchip_unlock:
5534 mutex_unlock(&kvm->lock);
5535 break;
5536 }
5537 case KVM_CAP_X2APIC_API:
5538 r = -EINVAL;
5539 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5540 break;
5541
5542 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5543 kvm->arch.x2apic_format = true;
5544 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5545 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5546
5547 r = 0;
5548 break;
5549 case KVM_CAP_X86_DISABLE_EXITS:
5550 r = -EINVAL;
5551 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5552 break;
5553
5554 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5555 kvm_can_mwait_in_guest())
5556 kvm->arch.mwait_in_guest = true;
5557 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5558 kvm->arch.hlt_in_guest = true;
5559 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5560 kvm->arch.pause_in_guest = true;
5561 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5562 kvm->arch.cstate_in_guest = true;
5563 r = 0;
5564 break;
5565 case KVM_CAP_MSR_PLATFORM_INFO:
5566 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5567 r = 0;
5568 break;
5569 case KVM_CAP_EXCEPTION_PAYLOAD:
5570 kvm->arch.exception_payload_enabled = cap->args[0];
5571 r = 0;
5572 break;
5573 case KVM_CAP_X86_USER_SPACE_MSR:
5574 kvm->arch.user_space_msr_mask = cap->args[0];
5575 r = 0;
5576 break;
5577 case KVM_CAP_X86_BUS_LOCK_EXIT:
5578 r = -EINVAL;
5579 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5580 break;
5581
5582 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5583 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5584 break;
5585
5586 if (kvm_has_bus_lock_exit &&
5587 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5588 kvm->arch.bus_lock_detection_enabled = true;
5589 r = 0;
5590 break;
5591 #ifdef CONFIG_X86_SGX_KVM
5592 case KVM_CAP_SGX_ATTRIBUTE: {
5593 unsigned long allowed_attributes = 0;
5594
5595 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5596 if (r)
5597 break;
5598
5599 /* KVM only supports the PROVISIONKEY privileged attribute. */
5600 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5601 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5602 kvm->arch.sgx_provisioning_allowed = true;
5603 else
5604 r = -EINVAL;
5605 break;
5606 }
5607 #endif
5608 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5609 r = -EINVAL;
5610 if (kvm_x86_ops.vm_copy_enc_context_from)
5611 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5612 return r;
5613 default:
5614 r = -EINVAL;
5615 break;
5616 }
5617 return r;
5618 }
5619
5620 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5621 {
5622 struct kvm_x86_msr_filter *msr_filter;
5623
5624 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5625 if (!msr_filter)
5626 return NULL;
5627
5628 msr_filter->default_allow = default_allow;
5629 return msr_filter;
5630 }
5631
5632 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5633 {
5634 u32 i;
5635
5636 if (!msr_filter)
5637 return;
5638
5639 for (i = 0; i < msr_filter->count; i++)
5640 kfree(msr_filter->ranges[i].bitmap);
5641
5642 kfree(msr_filter);
5643 }
5644
5645 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5646 struct kvm_msr_filter_range *user_range)
5647 {
5648 unsigned long *bitmap = NULL;
5649 size_t bitmap_size;
5650
5651 if (!user_range->nmsrs)
5652 return 0;
5653
5654 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5655 return -EINVAL;
5656
5657 if (!user_range->flags)
5658 return -EINVAL;
5659
5660 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5661 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5662 return -EINVAL;
5663
5664 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5665 if (IS_ERR(bitmap))
5666 return PTR_ERR(bitmap);
5667
5668 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5669 .flags = user_range->flags,
5670 .base = user_range->base,
5671 .nmsrs = user_range->nmsrs,
5672 .bitmap = bitmap,
5673 };
5674
5675 msr_filter->count++;
5676 return 0;
5677 }
5678
5679 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5680 {
5681 struct kvm_msr_filter __user *user_msr_filter = argp;
5682 struct kvm_x86_msr_filter *new_filter, *old_filter;
5683 struct kvm_msr_filter filter;
5684 bool default_allow;
5685 bool empty = true;
5686 int r = 0;
5687 u32 i;
5688
5689 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5690 return -EFAULT;
5691
5692 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5693 empty &= !filter.ranges[i].nmsrs;
5694
5695 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5696 if (empty && !default_allow)
5697 return -EINVAL;
5698
5699 new_filter = kvm_alloc_msr_filter(default_allow);
5700 if (!new_filter)
5701 return -ENOMEM;
5702
5703 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5704 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5705 if (r) {
5706 kvm_free_msr_filter(new_filter);
5707 return r;
5708 }
5709 }
5710
5711 mutex_lock(&kvm->lock);
5712
5713 /* The per-VM filter is protected by kvm->lock... */
5714 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5715
5716 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5717 synchronize_srcu(&kvm->srcu);
5718
5719 kvm_free_msr_filter(old_filter);
5720
5721 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5722 mutex_unlock(&kvm->lock);
5723
5724 return 0;
5725 }
5726
5727 long kvm_arch_vm_ioctl(struct file *filp,
5728 unsigned int ioctl, unsigned long arg)
5729 {
5730 struct kvm *kvm = filp->private_data;
5731 void __user *argp = (void __user *)arg;
5732 int r = -ENOTTY;
5733 /*
5734 * This union makes it completely explicit to gcc-3.x
5735 * that these two variables' stack usage should be
5736 * combined, not added together.
5737 */
5738 union {
5739 struct kvm_pit_state ps;
5740 struct kvm_pit_state2 ps2;
5741 struct kvm_pit_config pit_config;
5742 } u;
5743
5744 switch (ioctl) {
5745 case KVM_SET_TSS_ADDR:
5746 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5747 break;
5748 case KVM_SET_IDENTITY_MAP_ADDR: {
5749 u64 ident_addr;
5750
5751 mutex_lock(&kvm->lock);
5752 r = -EINVAL;
5753 if (kvm->created_vcpus)
5754 goto set_identity_unlock;
5755 r = -EFAULT;
5756 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5757 goto set_identity_unlock;
5758 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5759 set_identity_unlock:
5760 mutex_unlock(&kvm->lock);
5761 break;
5762 }
5763 case KVM_SET_NR_MMU_PAGES:
5764 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5765 break;
5766 case KVM_GET_NR_MMU_PAGES:
5767 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5768 break;
5769 case KVM_CREATE_IRQCHIP: {
5770 mutex_lock(&kvm->lock);
5771
5772 r = -EEXIST;
5773 if (irqchip_in_kernel(kvm))
5774 goto create_irqchip_unlock;
5775
5776 r = -EINVAL;
5777 if (kvm->created_vcpus)
5778 goto create_irqchip_unlock;
5779
5780 r = kvm_pic_init(kvm);
5781 if (r)
5782 goto create_irqchip_unlock;
5783
5784 r = kvm_ioapic_init(kvm);
5785 if (r) {
5786 kvm_pic_destroy(kvm);
5787 goto create_irqchip_unlock;
5788 }
5789
5790 r = kvm_setup_default_irq_routing(kvm);
5791 if (r) {
5792 kvm_ioapic_destroy(kvm);
5793 kvm_pic_destroy(kvm);
5794 goto create_irqchip_unlock;
5795 }
5796 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5797 smp_wmb();
5798 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5799 create_irqchip_unlock:
5800 mutex_unlock(&kvm->lock);
5801 break;
5802 }
5803 case KVM_CREATE_PIT:
5804 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5805 goto create_pit;
5806 case KVM_CREATE_PIT2:
5807 r = -EFAULT;
5808 if (copy_from_user(&u.pit_config, argp,
5809 sizeof(struct kvm_pit_config)))
5810 goto out;
5811 create_pit:
5812 mutex_lock(&kvm->lock);
5813 r = -EEXIST;
5814 if (kvm->arch.vpit)
5815 goto create_pit_unlock;
5816 r = -ENOMEM;
5817 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5818 if (kvm->arch.vpit)
5819 r = 0;
5820 create_pit_unlock:
5821 mutex_unlock(&kvm->lock);
5822 break;
5823 case KVM_GET_IRQCHIP: {
5824 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5825 struct kvm_irqchip *chip;
5826
5827 chip = memdup_user(argp, sizeof(*chip));
5828 if (IS_ERR(chip)) {
5829 r = PTR_ERR(chip);
5830 goto out;
5831 }
5832
5833 r = -ENXIO;
5834 if (!irqchip_kernel(kvm))
5835 goto get_irqchip_out;
5836 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5837 if (r)
5838 goto get_irqchip_out;
5839 r = -EFAULT;
5840 if (copy_to_user(argp, chip, sizeof(*chip)))
5841 goto get_irqchip_out;
5842 r = 0;
5843 get_irqchip_out:
5844 kfree(chip);
5845 break;
5846 }
5847 case KVM_SET_IRQCHIP: {
5848 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5849 struct kvm_irqchip *chip;
5850
5851 chip = memdup_user(argp, sizeof(*chip));
5852 if (IS_ERR(chip)) {
5853 r = PTR_ERR(chip);
5854 goto out;
5855 }
5856
5857 r = -ENXIO;
5858 if (!irqchip_kernel(kvm))
5859 goto set_irqchip_out;
5860 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5861 set_irqchip_out:
5862 kfree(chip);
5863 break;
5864 }
5865 case KVM_GET_PIT: {
5866 r = -EFAULT;
5867 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5868 goto out;
5869 r = -ENXIO;
5870 if (!kvm->arch.vpit)
5871 goto out;
5872 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5873 if (r)
5874 goto out;
5875 r = -EFAULT;
5876 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5877 goto out;
5878 r = 0;
5879 break;
5880 }
5881 case KVM_SET_PIT: {
5882 r = -EFAULT;
5883 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5884 goto out;
5885 mutex_lock(&kvm->lock);
5886 r = -ENXIO;
5887 if (!kvm->arch.vpit)
5888 goto set_pit_out;
5889 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5890 set_pit_out:
5891 mutex_unlock(&kvm->lock);
5892 break;
5893 }
5894 case KVM_GET_PIT2: {
5895 r = -ENXIO;
5896 if (!kvm->arch.vpit)
5897 goto out;
5898 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5899 if (r)
5900 goto out;
5901 r = -EFAULT;
5902 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5903 goto out;
5904 r = 0;
5905 break;
5906 }
5907 case KVM_SET_PIT2: {
5908 r = -EFAULT;
5909 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5910 goto out;
5911 mutex_lock(&kvm->lock);
5912 r = -ENXIO;
5913 if (!kvm->arch.vpit)
5914 goto set_pit2_out;
5915 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5916 set_pit2_out:
5917 mutex_unlock(&kvm->lock);
5918 break;
5919 }
5920 case KVM_REINJECT_CONTROL: {
5921 struct kvm_reinject_control control;
5922 r = -EFAULT;
5923 if (copy_from_user(&control, argp, sizeof(control)))
5924 goto out;
5925 r = -ENXIO;
5926 if (!kvm->arch.vpit)
5927 goto out;
5928 r = kvm_vm_ioctl_reinject(kvm, &control);
5929 break;
5930 }
5931 case KVM_SET_BOOT_CPU_ID:
5932 r = 0;
5933 mutex_lock(&kvm->lock);
5934 if (kvm->created_vcpus)
5935 r = -EBUSY;
5936 else
5937 kvm->arch.bsp_vcpu_id = arg;
5938 mutex_unlock(&kvm->lock);
5939 break;
5940 #ifdef CONFIG_KVM_XEN
5941 case KVM_XEN_HVM_CONFIG: {
5942 struct kvm_xen_hvm_config xhc;
5943 r = -EFAULT;
5944 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5945 goto out;
5946 r = kvm_xen_hvm_config(kvm, &xhc);
5947 break;
5948 }
5949 case KVM_XEN_HVM_GET_ATTR: {
5950 struct kvm_xen_hvm_attr xha;
5951
5952 r = -EFAULT;
5953 if (copy_from_user(&xha, argp, sizeof(xha)))
5954 goto out;
5955 r = kvm_xen_hvm_get_attr(kvm, &xha);
5956 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
5957 r = -EFAULT;
5958 break;
5959 }
5960 case KVM_XEN_HVM_SET_ATTR: {
5961 struct kvm_xen_hvm_attr xha;
5962
5963 r = -EFAULT;
5964 if (copy_from_user(&xha, argp, sizeof(xha)))
5965 goto out;
5966 r = kvm_xen_hvm_set_attr(kvm, &xha);
5967 break;
5968 }
5969 #endif
5970 case KVM_SET_CLOCK: {
5971 struct kvm_arch *ka = &kvm->arch;
5972 struct kvm_clock_data user_ns;
5973 u64 now_ns;
5974
5975 r = -EFAULT;
5976 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5977 goto out;
5978
5979 r = -EINVAL;
5980 if (user_ns.flags)
5981 goto out;
5982
5983 r = 0;
5984 /*
5985 * TODO: userspace has to take care of races with VCPU_RUN, so
5986 * kvm_gen_update_masterclock() can be cut down to locked
5987 * pvclock_update_vm_gtod_copy().
5988 */
5989 kvm_gen_update_masterclock(kvm);
5990
5991 /*
5992 * This pairs with kvm_guest_time_update(): when masterclock is
5993 * in use, we use master_kernel_ns + kvmclock_offset to set
5994 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5995 * is slightly ahead) here we risk going negative on unsigned
5996 * 'system_time' when 'user_ns.clock' is very small.
5997 */
5998 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
5999 if (kvm->arch.use_master_clock)
6000 now_ns = ka->master_kernel_ns;
6001 else
6002 now_ns = get_kvmclock_base_ns();
6003 ka->kvmclock_offset = user_ns.clock - now_ns;
6004 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6005
6006 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6007 break;
6008 }
6009 case KVM_GET_CLOCK: {
6010 struct kvm_clock_data user_ns;
6011 u64 now_ns;
6012
6013 now_ns = get_kvmclock_ns(kvm);
6014 user_ns.clock = now_ns;
6015 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6016 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6017
6018 r = -EFAULT;
6019 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6020 goto out;
6021 r = 0;
6022 break;
6023 }
6024 case KVM_MEMORY_ENCRYPT_OP: {
6025 r = -ENOTTY;
6026 if (kvm_x86_ops.mem_enc_op)
6027 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6028 break;
6029 }
6030 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6031 struct kvm_enc_region region;
6032
6033 r = -EFAULT;
6034 if (copy_from_user(&region, argp, sizeof(region)))
6035 goto out;
6036
6037 r = -ENOTTY;
6038 if (kvm_x86_ops.mem_enc_reg_region)
6039 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6040 break;
6041 }
6042 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6043 struct kvm_enc_region region;
6044
6045 r = -EFAULT;
6046 if (copy_from_user(&region, argp, sizeof(region)))
6047 goto out;
6048
6049 r = -ENOTTY;
6050 if (kvm_x86_ops.mem_enc_unreg_region)
6051 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6052 break;
6053 }
6054 case KVM_HYPERV_EVENTFD: {
6055 struct kvm_hyperv_eventfd hvevfd;
6056
6057 r = -EFAULT;
6058 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6059 goto out;
6060 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6061 break;
6062 }
6063 case KVM_SET_PMU_EVENT_FILTER:
6064 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6065 break;
6066 case KVM_X86_SET_MSR_FILTER:
6067 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6068 break;
6069 default:
6070 r = -ENOTTY;
6071 }
6072 out:
6073 return r;
6074 }
6075
6076 static void kvm_init_msr_list(void)
6077 {
6078 struct x86_pmu_capability x86_pmu;
6079 u32 dummy[2];
6080 unsigned i;
6081
6082 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6083 "Please update the fixed PMCs in msrs_to_saved_all[]");
6084
6085 perf_get_x86_pmu_capability(&x86_pmu);
6086
6087 num_msrs_to_save = 0;
6088 num_emulated_msrs = 0;
6089 num_msr_based_features = 0;
6090
6091 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6092 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6093 continue;
6094
6095 /*
6096 * Even MSRs that are valid in the host may not be exposed
6097 * to the guests in some cases.
6098 */
6099 switch (msrs_to_save_all[i]) {
6100 case MSR_IA32_BNDCFGS:
6101 if (!kvm_mpx_supported())
6102 continue;
6103 break;
6104 case MSR_TSC_AUX:
6105 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6106 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6107 continue;
6108 break;
6109 case MSR_IA32_UMWAIT_CONTROL:
6110 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6111 continue;
6112 break;
6113 case MSR_IA32_RTIT_CTL:
6114 case MSR_IA32_RTIT_STATUS:
6115 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6116 continue;
6117 break;
6118 case MSR_IA32_RTIT_CR3_MATCH:
6119 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6120 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6121 continue;
6122 break;
6123 case MSR_IA32_RTIT_OUTPUT_BASE:
6124 case MSR_IA32_RTIT_OUTPUT_MASK:
6125 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6126 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6127 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6128 continue;
6129 break;
6130 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6131 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6132 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6133 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6134 continue;
6135 break;
6136 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6137 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6138 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6139 continue;
6140 break;
6141 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6142 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6143 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6144 continue;
6145 break;
6146 default:
6147 break;
6148 }
6149
6150 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6151 }
6152
6153 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6154 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6155 continue;
6156
6157 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6158 }
6159
6160 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6161 struct kvm_msr_entry msr;
6162
6163 msr.index = msr_based_features_all[i];
6164 if (kvm_get_msr_feature(&msr))
6165 continue;
6166
6167 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6168 }
6169 }
6170
6171 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6172 const void *v)
6173 {
6174 int handled = 0;
6175 int n;
6176
6177 do {
6178 n = min(len, 8);
6179 if (!(lapic_in_kernel(vcpu) &&
6180 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6181 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6182 break;
6183 handled += n;
6184 addr += n;
6185 len -= n;
6186 v += n;
6187 } while (len);
6188
6189 return handled;
6190 }
6191
6192 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6193 {
6194 int handled = 0;
6195 int n;
6196
6197 do {
6198 n = min(len, 8);
6199 if (!(lapic_in_kernel(vcpu) &&
6200 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6201 addr, n, v))
6202 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6203 break;
6204 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6205 handled += n;
6206 addr += n;
6207 len -= n;
6208 v += n;
6209 } while (len);
6210
6211 return handled;
6212 }
6213
6214 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6215 struct kvm_segment *var, int seg)
6216 {
6217 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6218 }
6219
6220 void kvm_get_segment(struct kvm_vcpu *vcpu,
6221 struct kvm_segment *var, int seg)
6222 {
6223 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6224 }
6225
6226 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6227 struct x86_exception *exception)
6228 {
6229 gpa_t t_gpa;
6230
6231 BUG_ON(!mmu_is_nested(vcpu));
6232
6233 /* NPT walks are always user-walks */
6234 access |= PFERR_USER_MASK;
6235 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6236
6237 return t_gpa;
6238 }
6239
6240 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6241 struct x86_exception *exception)
6242 {
6243 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6244 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6245 }
6246 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6247
6248 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6249 struct x86_exception *exception)
6250 {
6251 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6252 access |= PFERR_FETCH_MASK;
6253 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6254 }
6255
6256 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6257 struct x86_exception *exception)
6258 {
6259 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6260 access |= PFERR_WRITE_MASK;
6261 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6262 }
6263 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6264
6265 /* uses this to access any guest's mapped memory without checking CPL */
6266 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6267 struct x86_exception *exception)
6268 {
6269 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6270 }
6271
6272 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6273 struct kvm_vcpu *vcpu, u32 access,
6274 struct x86_exception *exception)
6275 {
6276 void *data = val;
6277 int r = X86EMUL_CONTINUE;
6278
6279 while (bytes) {
6280 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6281 exception);
6282 unsigned offset = addr & (PAGE_SIZE-1);
6283 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6284 int ret;
6285
6286 if (gpa == UNMAPPED_GVA)
6287 return X86EMUL_PROPAGATE_FAULT;
6288 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6289 offset, toread);
6290 if (ret < 0) {
6291 r = X86EMUL_IO_NEEDED;
6292 goto out;
6293 }
6294
6295 bytes -= toread;
6296 data += toread;
6297 addr += toread;
6298 }
6299 out:
6300 return r;
6301 }
6302
6303 /* used for instruction fetching */
6304 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6305 gva_t addr, void *val, unsigned int bytes,
6306 struct x86_exception *exception)
6307 {
6308 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6309 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6310 unsigned offset;
6311 int ret;
6312
6313 /* Inline kvm_read_guest_virt_helper for speed. */
6314 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6315 exception);
6316 if (unlikely(gpa == UNMAPPED_GVA))
6317 return X86EMUL_PROPAGATE_FAULT;
6318
6319 offset = addr & (PAGE_SIZE-1);
6320 if (WARN_ON(offset + bytes > PAGE_SIZE))
6321 bytes = (unsigned)PAGE_SIZE - offset;
6322 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6323 offset, bytes);
6324 if (unlikely(ret < 0))
6325 return X86EMUL_IO_NEEDED;
6326
6327 return X86EMUL_CONTINUE;
6328 }
6329
6330 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6331 gva_t addr, void *val, unsigned int bytes,
6332 struct x86_exception *exception)
6333 {
6334 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6335
6336 /*
6337 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6338 * is returned, but our callers are not ready for that and they blindly
6339 * call kvm_inject_page_fault. Ensure that they at least do not leak
6340 * uninitialized kernel stack memory into cr2 and error code.
6341 */
6342 memset(exception, 0, sizeof(*exception));
6343 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6344 exception);
6345 }
6346 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6347
6348 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6349 gva_t addr, void *val, unsigned int bytes,
6350 struct x86_exception *exception, bool system)
6351 {
6352 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6353 u32 access = 0;
6354
6355 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6356 access |= PFERR_USER_MASK;
6357
6358 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6359 }
6360
6361 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6362 unsigned long addr, void *val, unsigned int bytes)
6363 {
6364 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6365 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6366
6367 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6368 }
6369
6370 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6371 struct kvm_vcpu *vcpu, u32 access,
6372 struct x86_exception *exception)
6373 {
6374 void *data = val;
6375 int r = X86EMUL_CONTINUE;
6376
6377 while (bytes) {
6378 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6379 access,
6380 exception);
6381 unsigned offset = addr & (PAGE_SIZE-1);
6382 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6383 int ret;
6384
6385 if (gpa == UNMAPPED_GVA)
6386 return X86EMUL_PROPAGATE_FAULT;
6387 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6388 if (ret < 0) {
6389 r = X86EMUL_IO_NEEDED;
6390 goto out;
6391 }
6392
6393 bytes -= towrite;
6394 data += towrite;
6395 addr += towrite;
6396 }
6397 out:
6398 return r;
6399 }
6400
6401 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6402 unsigned int bytes, struct x86_exception *exception,
6403 bool system)
6404 {
6405 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6406 u32 access = PFERR_WRITE_MASK;
6407
6408 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6409 access |= PFERR_USER_MASK;
6410
6411 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6412 access, exception);
6413 }
6414
6415 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6416 unsigned int bytes, struct x86_exception *exception)
6417 {
6418 /* kvm_write_guest_virt_system can pull in tons of pages. */
6419 vcpu->arch.l1tf_flush_l1d = true;
6420
6421 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6422 PFERR_WRITE_MASK, exception);
6423 }
6424 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6425
6426 int handle_ud(struct kvm_vcpu *vcpu)
6427 {
6428 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6429 int emul_type = EMULTYPE_TRAP_UD;
6430 char sig[5]; /* ud2; .ascii "kvm" */
6431 struct x86_exception e;
6432
6433 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6434 return 1;
6435
6436 if (force_emulation_prefix &&
6437 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6438 sig, sizeof(sig), &e) == 0 &&
6439 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6440 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6441 emul_type = EMULTYPE_TRAP_UD_FORCED;
6442 }
6443
6444 return kvm_emulate_instruction(vcpu, emul_type);
6445 }
6446 EXPORT_SYMBOL_GPL(handle_ud);
6447
6448 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6449 gpa_t gpa, bool write)
6450 {
6451 /* For APIC access vmexit */
6452 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6453 return 1;
6454
6455 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6456 trace_vcpu_match_mmio(gva, gpa, write, true);
6457 return 1;
6458 }
6459
6460 return 0;
6461 }
6462
6463 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6464 gpa_t *gpa, struct x86_exception *exception,
6465 bool write)
6466 {
6467 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6468 | (write ? PFERR_WRITE_MASK : 0);
6469
6470 /*
6471 * currently PKRU is only applied to ept enabled guest so
6472 * there is no pkey in EPT page table for L1 guest or EPT
6473 * shadow page table for L2 guest.
6474 */
6475 if (vcpu_match_mmio_gva(vcpu, gva)
6476 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
6477 vcpu->arch.mmio_access, 0, access)) {
6478 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6479 (gva & (PAGE_SIZE - 1));
6480 trace_vcpu_match_mmio(gva, *gpa, write, false);
6481 return 1;
6482 }
6483
6484 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6485
6486 if (*gpa == UNMAPPED_GVA)
6487 return -1;
6488
6489 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6490 }
6491
6492 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6493 const void *val, int bytes)
6494 {
6495 int ret;
6496
6497 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6498 if (ret < 0)
6499 return 0;
6500 kvm_page_track_write(vcpu, gpa, val, bytes);
6501 return 1;
6502 }
6503
6504 struct read_write_emulator_ops {
6505 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6506 int bytes);
6507 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6508 void *val, int bytes);
6509 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6510 int bytes, void *val);
6511 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6512 void *val, int bytes);
6513 bool write;
6514 };
6515
6516 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6517 {
6518 if (vcpu->mmio_read_completed) {
6519 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6520 vcpu->mmio_fragments[0].gpa, val);
6521 vcpu->mmio_read_completed = 0;
6522 return 1;
6523 }
6524
6525 return 0;
6526 }
6527
6528 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6529 void *val, int bytes)
6530 {
6531 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6532 }
6533
6534 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6535 void *val, int bytes)
6536 {
6537 return emulator_write_phys(vcpu, gpa, val, bytes);
6538 }
6539
6540 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6541 {
6542 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6543 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6544 }
6545
6546 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6547 void *val, int bytes)
6548 {
6549 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6550 return X86EMUL_IO_NEEDED;
6551 }
6552
6553 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6554 void *val, int bytes)
6555 {
6556 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6557
6558 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6559 return X86EMUL_CONTINUE;
6560 }
6561
6562 static const struct read_write_emulator_ops read_emultor = {
6563 .read_write_prepare = read_prepare,
6564 .read_write_emulate = read_emulate,
6565 .read_write_mmio = vcpu_mmio_read,
6566 .read_write_exit_mmio = read_exit_mmio,
6567 };
6568
6569 static const struct read_write_emulator_ops write_emultor = {
6570 .read_write_emulate = write_emulate,
6571 .read_write_mmio = write_mmio,
6572 .read_write_exit_mmio = write_exit_mmio,
6573 .write = true,
6574 };
6575
6576 static int emulator_read_write_onepage(unsigned long addr, void *val,
6577 unsigned int bytes,
6578 struct x86_exception *exception,
6579 struct kvm_vcpu *vcpu,
6580 const struct read_write_emulator_ops *ops)
6581 {
6582 gpa_t gpa;
6583 int handled, ret;
6584 bool write = ops->write;
6585 struct kvm_mmio_fragment *frag;
6586 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6587
6588 /*
6589 * If the exit was due to a NPF we may already have a GPA.
6590 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6591 * Note, this cannot be used on string operations since string
6592 * operation using rep will only have the initial GPA from the NPF
6593 * occurred.
6594 */
6595 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6596 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6597 gpa = ctxt->gpa_val;
6598 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6599 } else {
6600 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6601 if (ret < 0)
6602 return X86EMUL_PROPAGATE_FAULT;
6603 }
6604
6605 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6606 return X86EMUL_CONTINUE;
6607
6608 /*
6609 * Is this MMIO handled locally?
6610 */
6611 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6612 if (handled == bytes)
6613 return X86EMUL_CONTINUE;
6614
6615 gpa += handled;
6616 bytes -= handled;
6617 val += handled;
6618
6619 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6620 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6621 frag->gpa = gpa;
6622 frag->data = val;
6623 frag->len = bytes;
6624 return X86EMUL_CONTINUE;
6625 }
6626
6627 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6628 unsigned long addr,
6629 void *val, unsigned int bytes,
6630 struct x86_exception *exception,
6631 const struct read_write_emulator_ops *ops)
6632 {
6633 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6634 gpa_t gpa;
6635 int rc;
6636
6637 if (ops->read_write_prepare &&
6638 ops->read_write_prepare(vcpu, val, bytes))
6639 return X86EMUL_CONTINUE;
6640
6641 vcpu->mmio_nr_fragments = 0;
6642
6643 /* Crossing a page boundary? */
6644 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6645 int now;
6646
6647 now = -addr & ~PAGE_MASK;
6648 rc = emulator_read_write_onepage(addr, val, now, exception,
6649 vcpu, ops);
6650
6651 if (rc != X86EMUL_CONTINUE)
6652 return rc;
6653 addr += now;
6654 if (ctxt->mode != X86EMUL_MODE_PROT64)
6655 addr = (u32)addr;
6656 val += now;
6657 bytes -= now;
6658 }
6659
6660 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6661 vcpu, ops);
6662 if (rc != X86EMUL_CONTINUE)
6663 return rc;
6664
6665 if (!vcpu->mmio_nr_fragments)
6666 return rc;
6667
6668 gpa = vcpu->mmio_fragments[0].gpa;
6669
6670 vcpu->mmio_needed = 1;
6671 vcpu->mmio_cur_fragment = 0;
6672
6673 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6674 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6675 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6676 vcpu->run->mmio.phys_addr = gpa;
6677
6678 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6679 }
6680
6681 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6682 unsigned long addr,
6683 void *val,
6684 unsigned int bytes,
6685 struct x86_exception *exception)
6686 {
6687 return emulator_read_write(ctxt, addr, val, bytes,
6688 exception, &read_emultor);
6689 }
6690
6691 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6692 unsigned long addr,
6693 const void *val,
6694 unsigned int bytes,
6695 struct x86_exception *exception)
6696 {
6697 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6698 exception, &write_emultor);
6699 }
6700
6701 #define CMPXCHG_TYPE(t, ptr, old, new) \
6702 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6703
6704 #ifdef CONFIG_X86_64
6705 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6706 #else
6707 # define CMPXCHG64(ptr, old, new) \
6708 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6709 #endif
6710
6711 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6712 unsigned long addr,
6713 const void *old,
6714 const void *new,
6715 unsigned int bytes,
6716 struct x86_exception *exception)
6717 {
6718 struct kvm_host_map map;
6719 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6720 u64 page_line_mask;
6721 gpa_t gpa;
6722 char *kaddr;
6723 bool exchanged;
6724
6725 /* guests cmpxchg8b have to be emulated atomically */
6726 if (bytes > 8 || (bytes & (bytes - 1)))
6727 goto emul_write;
6728
6729 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6730
6731 if (gpa == UNMAPPED_GVA ||
6732 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6733 goto emul_write;
6734
6735 /*
6736 * Emulate the atomic as a straight write to avoid #AC if SLD is
6737 * enabled in the host and the access splits a cache line.
6738 */
6739 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6740 page_line_mask = ~(cache_line_size() - 1);
6741 else
6742 page_line_mask = PAGE_MASK;
6743
6744 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6745 goto emul_write;
6746
6747 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6748 goto emul_write;
6749
6750 kaddr = map.hva + offset_in_page(gpa);
6751
6752 switch (bytes) {
6753 case 1:
6754 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6755 break;
6756 case 2:
6757 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6758 break;
6759 case 4:
6760 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6761 break;
6762 case 8:
6763 exchanged = CMPXCHG64(kaddr, old, new);
6764 break;
6765 default:
6766 BUG();
6767 }
6768
6769 kvm_vcpu_unmap(vcpu, &map, true);
6770
6771 if (!exchanged)
6772 return X86EMUL_CMPXCHG_FAILED;
6773
6774 kvm_page_track_write(vcpu, gpa, new, bytes);
6775
6776 return X86EMUL_CONTINUE;
6777
6778 emul_write:
6779 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6780
6781 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6782 }
6783
6784 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6785 {
6786 int r = 0, i;
6787
6788 for (i = 0; i < vcpu->arch.pio.count; i++) {
6789 if (vcpu->arch.pio.in)
6790 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6791 vcpu->arch.pio.size, pd);
6792 else
6793 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6794 vcpu->arch.pio.port, vcpu->arch.pio.size,
6795 pd);
6796 if (r)
6797 break;
6798 pd += vcpu->arch.pio.size;
6799 }
6800 return r;
6801 }
6802
6803 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6804 unsigned short port,
6805 unsigned int count, bool in)
6806 {
6807 vcpu->arch.pio.port = port;
6808 vcpu->arch.pio.in = in;
6809 vcpu->arch.pio.count = count;
6810 vcpu->arch.pio.size = size;
6811
6812 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6813 return 1;
6814
6815 vcpu->run->exit_reason = KVM_EXIT_IO;
6816 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6817 vcpu->run->io.size = size;
6818 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6819 vcpu->run->io.count = count;
6820 vcpu->run->io.port = port;
6821
6822 return 0;
6823 }
6824
6825 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6826 unsigned short port, unsigned int count)
6827 {
6828 WARN_ON(vcpu->arch.pio.count);
6829 memset(vcpu->arch.pio_data, 0, size * count);
6830 return emulator_pio_in_out(vcpu, size, port, count, true);
6831 }
6832
6833 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
6834 {
6835 int size = vcpu->arch.pio.size;
6836 unsigned count = vcpu->arch.pio.count;
6837 memcpy(val, vcpu->arch.pio_data, size * count);
6838 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
6839 vcpu->arch.pio.count = 0;
6840 }
6841
6842 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6843 unsigned short port, void *val, unsigned int count)
6844 {
6845 if (vcpu->arch.pio.count) {
6846 /* Complete previous iteration. */
6847 } else {
6848 int r = __emulator_pio_in(vcpu, size, port, count);
6849 if (!r)
6850 return r;
6851
6852 /* Results already available, fall through. */
6853 }
6854
6855 WARN_ON(count != vcpu->arch.pio.count);
6856 complete_emulator_pio_in(vcpu, val);
6857 return 1;
6858 }
6859
6860 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6861 int size, unsigned short port, void *val,
6862 unsigned int count)
6863 {
6864 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6865
6866 }
6867
6868 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6869 unsigned short port, const void *val,
6870 unsigned int count)
6871 {
6872 int ret;
6873
6874 memcpy(vcpu->arch.pio_data, val, size * count);
6875 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6876 ret = emulator_pio_in_out(vcpu, size, port, count, false);
6877 if (ret)
6878 vcpu->arch.pio.count = 0;
6879
6880 return ret;
6881 }
6882
6883 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6884 int size, unsigned short port,
6885 const void *val, unsigned int count)
6886 {
6887 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6888 }
6889
6890 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6891 {
6892 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6893 }
6894
6895 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6896 {
6897 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6898 }
6899
6900 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6901 {
6902 if (!need_emulate_wbinvd(vcpu))
6903 return X86EMUL_CONTINUE;
6904
6905 if (static_call(kvm_x86_has_wbinvd_exit)()) {
6906 int cpu = get_cpu();
6907
6908 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6909 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
6910 wbinvd_ipi, NULL, 1);
6911 put_cpu();
6912 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6913 } else
6914 wbinvd();
6915 return X86EMUL_CONTINUE;
6916 }
6917
6918 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6919 {
6920 kvm_emulate_wbinvd_noskip(vcpu);
6921 return kvm_skip_emulated_instruction(vcpu);
6922 }
6923 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6924
6925
6926
6927 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6928 {
6929 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6930 }
6931
6932 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6933 unsigned long *dest)
6934 {
6935 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6936 }
6937
6938 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6939 unsigned long value)
6940 {
6941
6942 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6943 }
6944
6945 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6946 {
6947 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6948 }
6949
6950 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6951 {
6952 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6953 unsigned long value;
6954
6955 switch (cr) {
6956 case 0:
6957 value = kvm_read_cr0(vcpu);
6958 break;
6959 case 2:
6960 value = vcpu->arch.cr2;
6961 break;
6962 case 3:
6963 value = kvm_read_cr3(vcpu);
6964 break;
6965 case 4:
6966 value = kvm_read_cr4(vcpu);
6967 break;
6968 case 8:
6969 value = kvm_get_cr8(vcpu);
6970 break;
6971 default:
6972 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6973 return 0;
6974 }
6975
6976 return value;
6977 }
6978
6979 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6980 {
6981 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6982 int res = 0;
6983
6984 switch (cr) {
6985 case 0:
6986 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6987 break;
6988 case 2:
6989 vcpu->arch.cr2 = val;
6990 break;
6991 case 3:
6992 res = kvm_set_cr3(vcpu, val);
6993 break;
6994 case 4:
6995 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6996 break;
6997 case 8:
6998 res = kvm_set_cr8(vcpu, val);
6999 break;
7000 default:
7001 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7002 res = -1;
7003 }
7004
7005 return res;
7006 }
7007
7008 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7009 {
7010 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7011 }
7012
7013 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7014 {
7015 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7016 }
7017
7018 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7019 {
7020 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7021 }
7022
7023 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7024 {
7025 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7026 }
7027
7028 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7029 {
7030 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7031 }
7032
7033 static unsigned long emulator_get_cached_segment_base(
7034 struct x86_emulate_ctxt *ctxt, int seg)
7035 {
7036 return get_segment_base(emul_to_vcpu(ctxt), seg);
7037 }
7038
7039 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7040 struct desc_struct *desc, u32 *base3,
7041 int seg)
7042 {
7043 struct kvm_segment var;
7044
7045 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7046 *selector = var.selector;
7047
7048 if (var.unusable) {
7049 memset(desc, 0, sizeof(*desc));
7050 if (base3)
7051 *base3 = 0;
7052 return false;
7053 }
7054
7055 if (var.g)
7056 var.limit >>= 12;
7057 set_desc_limit(desc, var.limit);
7058 set_desc_base(desc, (unsigned long)var.base);
7059 #ifdef CONFIG_X86_64
7060 if (base3)
7061 *base3 = var.base >> 32;
7062 #endif
7063 desc->type = var.type;
7064 desc->s = var.s;
7065 desc->dpl = var.dpl;
7066 desc->p = var.present;
7067 desc->avl = var.avl;
7068 desc->l = var.l;
7069 desc->d = var.db;
7070 desc->g = var.g;
7071
7072 return true;
7073 }
7074
7075 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7076 struct desc_struct *desc, u32 base3,
7077 int seg)
7078 {
7079 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7080 struct kvm_segment var;
7081
7082 var.selector = selector;
7083 var.base = get_desc_base(desc);
7084 #ifdef CONFIG_X86_64
7085 var.base |= ((u64)base3) << 32;
7086 #endif
7087 var.limit = get_desc_limit(desc);
7088 if (desc->g)
7089 var.limit = (var.limit << 12) | 0xfff;
7090 var.type = desc->type;
7091 var.dpl = desc->dpl;
7092 var.db = desc->d;
7093 var.s = desc->s;
7094 var.l = desc->l;
7095 var.g = desc->g;
7096 var.avl = desc->avl;
7097 var.present = desc->p;
7098 var.unusable = !var.present;
7099 var.padding = 0;
7100
7101 kvm_set_segment(vcpu, &var, seg);
7102 return;
7103 }
7104
7105 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7106 u32 msr_index, u64 *pdata)
7107 {
7108 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7109 int r;
7110
7111 r = kvm_get_msr(vcpu, msr_index, pdata);
7112
7113 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7114 /* Bounce to user space */
7115 return X86EMUL_IO_NEEDED;
7116 }
7117
7118 return r;
7119 }
7120
7121 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7122 u32 msr_index, u64 data)
7123 {
7124 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7125 int r;
7126
7127 r = kvm_set_msr(vcpu, msr_index, data);
7128
7129 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7130 /* Bounce to user space */
7131 return X86EMUL_IO_NEEDED;
7132 }
7133
7134 return r;
7135 }
7136
7137 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7138 {
7139 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7140
7141 return vcpu->arch.smbase;
7142 }
7143
7144 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7145 {
7146 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7147
7148 vcpu->arch.smbase = smbase;
7149 }
7150
7151 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7152 u32 pmc)
7153 {
7154 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7155 }
7156
7157 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7158 u32 pmc, u64 *pdata)
7159 {
7160 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7161 }
7162
7163 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7164 {
7165 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7166 }
7167
7168 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7169 struct x86_instruction_info *info,
7170 enum x86_intercept_stage stage)
7171 {
7172 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7173 &ctxt->exception);
7174 }
7175
7176 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7177 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7178 bool exact_only)
7179 {
7180 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7181 }
7182
7183 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7184 {
7185 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7186 }
7187
7188 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7189 {
7190 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7191 }
7192
7193 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7194 {
7195 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7196 }
7197
7198 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7199 {
7200 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7201 }
7202
7203 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7204 {
7205 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7206 }
7207
7208 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7209 {
7210 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7211 }
7212
7213 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7214 {
7215 return emul_to_vcpu(ctxt)->arch.hflags;
7216 }
7217
7218 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
7219 {
7220 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7221
7222 vcpu->arch.hflags = emul_flags;
7223 kvm_mmu_reset_context(vcpu);
7224 }
7225
7226 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
7227 const char *smstate)
7228 {
7229 return static_call(kvm_x86_pre_leave_smm)(emul_to_vcpu(ctxt), smstate);
7230 }
7231
7232 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
7233 {
7234 kvm_smm_changed(emul_to_vcpu(ctxt));
7235 }
7236
7237 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7238 {
7239 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7240 }
7241
7242 static const struct x86_emulate_ops emulate_ops = {
7243 .read_gpr = emulator_read_gpr,
7244 .write_gpr = emulator_write_gpr,
7245 .read_std = emulator_read_std,
7246 .write_std = emulator_write_std,
7247 .read_phys = kvm_read_guest_phys_system,
7248 .fetch = kvm_fetch_guest_virt,
7249 .read_emulated = emulator_read_emulated,
7250 .write_emulated = emulator_write_emulated,
7251 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7252 .invlpg = emulator_invlpg,
7253 .pio_in_emulated = emulator_pio_in_emulated,
7254 .pio_out_emulated = emulator_pio_out_emulated,
7255 .get_segment = emulator_get_segment,
7256 .set_segment = emulator_set_segment,
7257 .get_cached_segment_base = emulator_get_cached_segment_base,
7258 .get_gdt = emulator_get_gdt,
7259 .get_idt = emulator_get_idt,
7260 .set_gdt = emulator_set_gdt,
7261 .set_idt = emulator_set_idt,
7262 .get_cr = emulator_get_cr,
7263 .set_cr = emulator_set_cr,
7264 .cpl = emulator_get_cpl,
7265 .get_dr = emulator_get_dr,
7266 .set_dr = emulator_set_dr,
7267 .get_smbase = emulator_get_smbase,
7268 .set_smbase = emulator_set_smbase,
7269 .set_msr = emulator_set_msr,
7270 .get_msr = emulator_get_msr,
7271 .check_pmc = emulator_check_pmc,
7272 .read_pmc = emulator_read_pmc,
7273 .halt = emulator_halt,
7274 .wbinvd = emulator_wbinvd,
7275 .fix_hypercall = emulator_fix_hypercall,
7276 .intercept = emulator_intercept,
7277 .get_cpuid = emulator_get_cpuid,
7278 .guest_has_long_mode = emulator_guest_has_long_mode,
7279 .guest_has_movbe = emulator_guest_has_movbe,
7280 .guest_has_fxsr = emulator_guest_has_fxsr,
7281 .set_nmi_mask = emulator_set_nmi_mask,
7282 .get_hflags = emulator_get_hflags,
7283 .set_hflags = emulator_set_hflags,
7284 .pre_leave_smm = emulator_pre_leave_smm,
7285 .post_leave_smm = emulator_post_leave_smm,
7286 .set_xcr = emulator_set_xcr,
7287 };
7288
7289 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7290 {
7291 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7292 /*
7293 * an sti; sti; sequence only disable interrupts for the first
7294 * instruction. So, if the last instruction, be it emulated or
7295 * not, left the system with the INT_STI flag enabled, it
7296 * means that the last instruction is an sti. We should not
7297 * leave the flag on in this case. The same goes for mov ss
7298 */
7299 if (int_shadow & mask)
7300 mask = 0;
7301 if (unlikely(int_shadow || mask)) {
7302 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7303 if (!mask)
7304 kvm_make_request(KVM_REQ_EVENT, vcpu);
7305 }
7306 }
7307
7308 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7309 {
7310 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7311 if (ctxt->exception.vector == PF_VECTOR)
7312 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7313
7314 if (ctxt->exception.error_code_valid)
7315 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7316 ctxt->exception.error_code);
7317 else
7318 kvm_queue_exception(vcpu, ctxt->exception.vector);
7319 return false;
7320 }
7321
7322 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7323 {
7324 struct x86_emulate_ctxt *ctxt;
7325
7326 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7327 if (!ctxt) {
7328 pr_err("kvm: failed to allocate vcpu's emulator\n");
7329 return NULL;
7330 }
7331
7332 ctxt->vcpu = vcpu;
7333 ctxt->ops = &emulate_ops;
7334 vcpu->arch.emulate_ctxt = ctxt;
7335
7336 return ctxt;
7337 }
7338
7339 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7340 {
7341 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7342 int cs_db, cs_l;
7343
7344 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7345
7346 ctxt->gpa_available = false;
7347 ctxt->eflags = kvm_get_rflags(vcpu);
7348 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7349
7350 ctxt->eip = kvm_rip_read(vcpu);
7351 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7352 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7353 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7354 cs_db ? X86EMUL_MODE_PROT32 :
7355 X86EMUL_MODE_PROT16;
7356 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7357 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7358 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7359
7360 ctxt->interruptibility = 0;
7361 ctxt->have_exception = false;
7362 ctxt->exception.vector = -1;
7363 ctxt->perm_ok = false;
7364
7365 init_decode_cache(ctxt);
7366 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7367 }
7368
7369 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7370 {
7371 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7372 int ret;
7373
7374 init_emulate_ctxt(vcpu);
7375
7376 ctxt->op_bytes = 2;
7377 ctxt->ad_bytes = 2;
7378 ctxt->_eip = ctxt->eip + inc_eip;
7379 ret = emulate_int_real(ctxt, irq);
7380
7381 if (ret != X86EMUL_CONTINUE) {
7382 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7383 } else {
7384 ctxt->eip = ctxt->_eip;
7385 kvm_rip_write(vcpu, ctxt->eip);
7386 kvm_set_rflags(vcpu, ctxt->eflags);
7387 }
7388 }
7389 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7390
7391 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7392 {
7393 ++vcpu->stat.insn_emulation_fail;
7394 trace_kvm_emulate_insn_failed(vcpu);
7395
7396 if (emulation_type & EMULTYPE_VMWARE_GP) {
7397 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7398 return 1;
7399 }
7400
7401 if (emulation_type & EMULTYPE_SKIP) {
7402 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7403 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7404 vcpu->run->internal.ndata = 0;
7405 return 0;
7406 }
7407
7408 kvm_queue_exception(vcpu, UD_VECTOR);
7409
7410 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7411 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7412 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7413 vcpu->run->internal.ndata = 0;
7414 return 0;
7415 }
7416
7417 return 1;
7418 }
7419
7420 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7421 bool write_fault_to_shadow_pgtable,
7422 int emulation_type)
7423 {
7424 gpa_t gpa = cr2_or_gpa;
7425 kvm_pfn_t pfn;
7426
7427 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7428 return false;
7429
7430 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7431 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7432 return false;
7433
7434 if (!vcpu->arch.mmu->direct_map) {
7435 /*
7436 * Write permission should be allowed since only
7437 * write access need to be emulated.
7438 */
7439 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7440
7441 /*
7442 * If the mapping is invalid in guest, let cpu retry
7443 * it to generate fault.
7444 */
7445 if (gpa == UNMAPPED_GVA)
7446 return true;
7447 }
7448
7449 /*
7450 * Do not retry the unhandleable instruction if it faults on the
7451 * readonly host memory, otherwise it will goto a infinite loop:
7452 * retry instruction -> write #PF -> emulation fail -> retry
7453 * instruction -> ...
7454 */
7455 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7456
7457 /*
7458 * If the instruction failed on the error pfn, it can not be fixed,
7459 * report the error to userspace.
7460 */
7461 if (is_error_noslot_pfn(pfn))
7462 return false;
7463
7464 kvm_release_pfn_clean(pfn);
7465
7466 /* The instructions are well-emulated on direct mmu. */
7467 if (vcpu->arch.mmu->direct_map) {
7468 unsigned int indirect_shadow_pages;
7469
7470 write_lock(&vcpu->kvm->mmu_lock);
7471 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7472 write_unlock(&vcpu->kvm->mmu_lock);
7473
7474 if (indirect_shadow_pages)
7475 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7476
7477 return true;
7478 }
7479
7480 /*
7481 * if emulation was due to access to shadowed page table
7482 * and it failed try to unshadow page and re-enter the
7483 * guest to let CPU execute the instruction.
7484 */
7485 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7486
7487 /*
7488 * If the access faults on its page table, it can not
7489 * be fixed by unprotecting shadow page and it should
7490 * be reported to userspace.
7491 */
7492 return !write_fault_to_shadow_pgtable;
7493 }
7494
7495 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7496 gpa_t cr2_or_gpa, int emulation_type)
7497 {
7498 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7499 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7500
7501 last_retry_eip = vcpu->arch.last_retry_eip;
7502 last_retry_addr = vcpu->arch.last_retry_addr;
7503
7504 /*
7505 * If the emulation is caused by #PF and it is non-page_table
7506 * writing instruction, it means the VM-EXIT is caused by shadow
7507 * page protected, we can zap the shadow page and retry this
7508 * instruction directly.
7509 *
7510 * Note: if the guest uses a non-page-table modifying instruction
7511 * on the PDE that points to the instruction, then we will unmap
7512 * the instruction and go to an infinite loop. So, we cache the
7513 * last retried eip and the last fault address, if we meet the eip
7514 * and the address again, we can break out of the potential infinite
7515 * loop.
7516 */
7517 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7518
7519 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7520 return false;
7521
7522 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7523 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7524 return false;
7525
7526 if (x86_page_table_writing_insn(ctxt))
7527 return false;
7528
7529 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7530 return false;
7531
7532 vcpu->arch.last_retry_eip = ctxt->eip;
7533 vcpu->arch.last_retry_addr = cr2_or_gpa;
7534
7535 if (!vcpu->arch.mmu->direct_map)
7536 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7537
7538 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7539
7540 return true;
7541 }
7542
7543 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7544 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7545
7546 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
7547 {
7548 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
7549 /* This is a good place to trace that we are exiting SMM. */
7550 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7551
7552 /* Process a latched INIT or SMI, if any. */
7553 kvm_make_request(KVM_REQ_EVENT, vcpu);
7554 }
7555
7556 kvm_mmu_reset_context(vcpu);
7557 }
7558
7559 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7560 unsigned long *db)
7561 {
7562 u32 dr6 = 0;
7563 int i;
7564 u32 enable, rwlen;
7565
7566 enable = dr7;
7567 rwlen = dr7 >> 16;
7568 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7569 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7570 dr6 |= (1 << i);
7571 return dr6;
7572 }
7573
7574 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7575 {
7576 struct kvm_run *kvm_run = vcpu->run;
7577
7578 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7579 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7580 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7581 kvm_run->debug.arch.exception = DB_VECTOR;
7582 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7583 return 0;
7584 }
7585 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7586 return 1;
7587 }
7588
7589 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7590 {
7591 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7592 int r;
7593
7594 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7595 if (unlikely(!r))
7596 return 0;
7597
7598 /*
7599 * rflags is the old, "raw" value of the flags. The new value has
7600 * not been saved yet.
7601 *
7602 * This is correct even for TF set by the guest, because "the
7603 * processor will not generate this exception after the instruction
7604 * that sets the TF flag".
7605 */
7606 if (unlikely(rflags & X86_EFLAGS_TF))
7607 r = kvm_vcpu_do_singlestep(vcpu);
7608 return r;
7609 }
7610 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7611
7612 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7613 {
7614 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7615 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7616 struct kvm_run *kvm_run = vcpu->run;
7617 unsigned long eip = kvm_get_linear_rip(vcpu);
7618 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7619 vcpu->arch.guest_debug_dr7,
7620 vcpu->arch.eff_db);
7621
7622 if (dr6 != 0) {
7623 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7624 kvm_run->debug.arch.pc = eip;
7625 kvm_run->debug.arch.exception = DB_VECTOR;
7626 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7627 *r = 0;
7628 return true;
7629 }
7630 }
7631
7632 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7633 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7634 unsigned long eip = kvm_get_linear_rip(vcpu);
7635 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7636 vcpu->arch.dr7,
7637 vcpu->arch.db);
7638
7639 if (dr6 != 0) {
7640 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7641 *r = 1;
7642 return true;
7643 }
7644 }
7645
7646 return false;
7647 }
7648
7649 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7650 {
7651 switch (ctxt->opcode_len) {
7652 case 1:
7653 switch (ctxt->b) {
7654 case 0xe4: /* IN */
7655 case 0xe5:
7656 case 0xec:
7657 case 0xed:
7658 case 0xe6: /* OUT */
7659 case 0xe7:
7660 case 0xee:
7661 case 0xef:
7662 case 0x6c: /* INS */
7663 case 0x6d:
7664 case 0x6e: /* OUTS */
7665 case 0x6f:
7666 return true;
7667 }
7668 break;
7669 case 2:
7670 switch (ctxt->b) {
7671 case 0x33: /* RDPMC */
7672 return true;
7673 }
7674 break;
7675 }
7676
7677 return false;
7678 }
7679
7680 /*
7681 * Decode to be emulated instruction. Return EMULATION_OK if success.
7682 */
7683 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7684 void *insn, int insn_len)
7685 {
7686 int r = EMULATION_OK;
7687 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7688
7689 init_emulate_ctxt(vcpu);
7690
7691 /*
7692 * We will reenter on the same instruction since we do not set
7693 * complete_userspace_io. This does not handle watchpoints yet,
7694 * those would be handled in the emulate_ops.
7695 */
7696 if (!(emulation_type & EMULTYPE_SKIP) &&
7697 kvm_vcpu_check_breakpoint(vcpu, &r))
7698 return r;
7699
7700 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7701
7702 trace_kvm_emulate_insn_start(vcpu);
7703 ++vcpu->stat.insn_emulation;
7704
7705 return r;
7706 }
7707 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7708
7709 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7710 int emulation_type, void *insn, int insn_len)
7711 {
7712 int r;
7713 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7714 bool writeback = true;
7715 bool write_fault_to_spt;
7716
7717 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7718 return 1;
7719
7720 vcpu->arch.l1tf_flush_l1d = true;
7721
7722 /*
7723 * Clear write_fault_to_shadow_pgtable here to ensure it is
7724 * never reused.
7725 */
7726 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7727 vcpu->arch.write_fault_to_shadow_pgtable = false;
7728
7729 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7730 kvm_clear_exception_queue(vcpu);
7731
7732 r = x86_decode_emulated_instruction(vcpu, emulation_type,
7733 insn, insn_len);
7734 if (r != EMULATION_OK) {
7735 if ((emulation_type & EMULTYPE_TRAP_UD) ||
7736 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7737 kvm_queue_exception(vcpu, UD_VECTOR);
7738 return 1;
7739 }
7740 if (reexecute_instruction(vcpu, cr2_or_gpa,
7741 write_fault_to_spt,
7742 emulation_type))
7743 return 1;
7744 if (ctxt->have_exception) {
7745 /*
7746 * #UD should result in just EMULATION_FAILED, and trap-like
7747 * exception should not be encountered during decode.
7748 */
7749 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7750 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7751 inject_emulated_exception(vcpu);
7752 return 1;
7753 }
7754 return handle_emulation_failure(vcpu, emulation_type);
7755 }
7756 }
7757
7758 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7759 !is_vmware_backdoor_opcode(ctxt)) {
7760 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7761 return 1;
7762 }
7763
7764 /*
7765 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7766 * for kvm_skip_emulated_instruction(). The caller is responsible for
7767 * updating interruptibility state and injecting single-step #DBs.
7768 */
7769 if (emulation_type & EMULTYPE_SKIP) {
7770 kvm_rip_write(vcpu, ctxt->_eip);
7771 if (ctxt->eflags & X86_EFLAGS_RF)
7772 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7773 return 1;
7774 }
7775
7776 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7777 return 1;
7778
7779 /* this is needed for vmware backdoor interface to work since it
7780 changes registers values during IO operation */
7781 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7782 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7783 emulator_invalidate_register_cache(ctxt);
7784 }
7785
7786 restart:
7787 if (emulation_type & EMULTYPE_PF) {
7788 /* Save the faulting GPA (cr2) in the address field */
7789 ctxt->exception.address = cr2_or_gpa;
7790
7791 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7792 if (vcpu->arch.mmu->direct_map) {
7793 ctxt->gpa_available = true;
7794 ctxt->gpa_val = cr2_or_gpa;
7795 }
7796 } else {
7797 /* Sanitize the address out of an abundance of paranoia. */
7798 ctxt->exception.address = 0;
7799 }
7800
7801 r = x86_emulate_insn(ctxt);
7802
7803 if (r == EMULATION_INTERCEPTED)
7804 return 1;
7805
7806 if (r == EMULATION_FAILED) {
7807 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7808 emulation_type))
7809 return 1;
7810
7811 return handle_emulation_failure(vcpu, emulation_type);
7812 }
7813
7814 if (ctxt->have_exception) {
7815 r = 1;
7816 if (inject_emulated_exception(vcpu))
7817 return r;
7818 } else if (vcpu->arch.pio.count) {
7819 if (!vcpu->arch.pio.in) {
7820 /* FIXME: return into emulator if single-stepping. */
7821 vcpu->arch.pio.count = 0;
7822 } else {
7823 writeback = false;
7824 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7825 }
7826 r = 0;
7827 } else if (vcpu->mmio_needed) {
7828 ++vcpu->stat.mmio_exits;
7829
7830 if (!vcpu->mmio_is_write)
7831 writeback = false;
7832 r = 0;
7833 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7834 } else if (r == EMULATION_RESTART)
7835 goto restart;
7836 else
7837 r = 1;
7838
7839 if (writeback) {
7840 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7841 toggle_interruptibility(vcpu, ctxt->interruptibility);
7842 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7843 if (!ctxt->have_exception ||
7844 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7845 kvm_rip_write(vcpu, ctxt->eip);
7846 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7847 r = kvm_vcpu_do_singlestep(vcpu);
7848 if (kvm_x86_ops.update_emulated_instruction)
7849 static_call(kvm_x86_update_emulated_instruction)(vcpu);
7850 __kvm_set_rflags(vcpu, ctxt->eflags);
7851 }
7852
7853 /*
7854 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7855 * do nothing, and it will be requested again as soon as
7856 * the shadow expires. But we still need to check here,
7857 * because POPF has no interrupt shadow.
7858 */
7859 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7860 kvm_make_request(KVM_REQ_EVENT, vcpu);
7861 } else
7862 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
7863
7864 return r;
7865 }
7866
7867 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7868 {
7869 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7870 }
7871 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7872
7873 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7874 void *insn, int insn_len)
7875 {
7876 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7877 }
7878 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
7879
7880 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7881 {
7882 vcpu->arch.pio.count = 0;
7883 return 1;
7884 }
7885
7886 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7887 {
7888 vcpu->arch.pio.count = 0;
7889
7890 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7891 return 1;
7892
7893 return kvm_skip_emulated_instruction(vcpu);
7894 }
7895
7896 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7897 unsigned short port)
7898 {
7899 unsigned long val = kvm_rax_read(vcpu);
7900 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7901
7902 if (ret)
7903 return ret;
7904
7905 /*
7906 * Workaround userspace that relies on old KVM behavior of %rip being
7907 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7908 */
7909 if (port == 0x7e &&
7910 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7911 vcpu->arch.complete_userspace_io =
7912 complete_fast_pio_out_port_0x7e;
7913 kvm_skip_emulated_instruction(vcpu);
7914 } else {
7915 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7916 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7917 }
7918 return 0;
7919 }
7920
7921 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7922 {
7923 unsigned long val;
7924
7925 /* We should only ever be called with arch.pio.count equal to 1 */
7926 BUG_ON(vcpu->arch.pio.count != 1);
7927
7928 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7929 vcpu->arch.pio.count = 0;
7930 return 1;
7931 }
7932
7933 /* For size less than 4 we merge, else we zero extend */
7934 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
7935
7936 /*
7937 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
7938 * the copy and tracing
7939 */
7940 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
7941 kvm_rax_write(vcpu, val);
7942
7943 return kvm_skip_emulated_instruction(vcpu);
7944 }
7945
7946 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7947 unsigned short port)
7948 {
7949 unsigned long val;
7950 int ret;
7951
7952 /* For size less than 4 we merge, else we zero extend */
7953 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7954
7955 ret = emulator_pio_in(vcpu, size, port, &val, 1);
7956 if (ret) {
7957 kvm_rax_write(vcpu, val);
7958 return ret;
7959 }
7960
7961 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7962 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7963
7964 return 0;
7965 }
7966
7967 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7968 {
7969 int ret;
7970
7971 if (in)
7972 ret = kvm_fast_pio_in(vcpu, size, port);
7973 else
7974 ret = kvm_fast_pio_out(vcpu, size, port);
7975 return ret && kvm_skip_emulated_instruction(vcpu);
7976 }
7977 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7978
7979 static int kvmclock_cpu_down_prep(unsigned int cpu)
7980 {
7981 __this_cpu_write(cpu_tsc_khz, 0);
7982 return 0;
7983 }
7984
7985 static void tsc_khz_changed(void *data)
7986 {
7987 struct cpufreq_freqs *freq = data;
7988 unsigned long khz = 0;
7989
7990 if (data)
7991 khz = freq->new;
7992 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7993 khz = cpufreq_quick_get(raw_smp_processor_id());
7994 if (!khz)
7995 khz = tsc_khz;
7996 __this_cpu_write(cpu_tsc_khz, khz);
7997 }
7998
7999 #ifdef CONFIG_X86_64
8000 static void kvm_hyperv_tsc_notifier(void)
8001 {
8002 struct kvm *kvm;
8003 struct kvm_vcpu *vcpu;
8004 int cpu;
8005 unsigned long flags;
8006
8007 mutex_lock(&kvm_lock);
8008 list_for_each_entry(kvm, &vm_list, vm_list)
8009 kvm_make_mclock_inprogress_request(kvm);
8010
8011 hyperv_stop_tsc_emulation();
8012
8013 /* TSC frequency always matches when on Hyper-V */
8014 for_each_present_cpu(cpu)
8015 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8016 kvm_max_guest_tsc_khz = tsc_khz;
8017
8018 list_for_each_entry(kvm, &vm_list, vm_list) {
8019 struct kvm_arch *ka = &kvm->arch;
8020
8021 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8022 pvclock_update_vm_gtod_copy(kvm);
8023 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8024
8025 kvm_for_each_vcpu(cpu, vcpu, kvm)
8026 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8027
8028 kvm_for_each_vcpu(cpu, vcpu, kvm)
8029 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8030 }
8031 mutex_unlock(&kvm_lock);
8032 }
8033 #endif
8034
8035 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8036 {
8037 struct kvm *kvm;
8038 struct kvm_vcpu *vcpu;
8039 int i, send_ipi = 0;
8040
8041 /*
8042 * We allow guests to temporarily run on slowing clocks,
8043 * provided we notify them after, or to run on accelerating
8044 * clocks, provided we notify them before. Thus time never
8045 * goes backwards.
8046 *
8047 * However, we have a problem. We can't atomically update
8048 * the frequency of a given CPU from this function; it is
8049 * merely a notifier, which can be called from any CPU.
8050 * Changing the TSC frequency at arbitrary points in time
8051 * requires a recomputation of local variables related to
8052 * the TSC for each VCPU. We must flag these local variables
8053 * to be updated and be sure the update takes place with the
8054 * new frequency before any guests proceed.
8055 *
8056 * Unfortunately, the combination of hotplug CPU and frequency
8057 * change creates an intractable locking scenario; the order
8058 * of when these callouts happen is undefined with respect to
8059 * CPU hotplug, and they can race with each other. As such,
8060 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8061 * undefined; you can actually have a CPU frequency change take
8062 * place in between the computation of X and the setting of the
8063 * variable. To protect against this problem, all updates of
8064 * the per_cpu tsc_khz variable are done in an interrupt
8065 * protected IPI, and all callers wishing to update the value
8066 * must wait for a synchronous IPI to complete (which is trivial
8067 * if the caller is on the CPU already). This establishes the
8068 * necessary total order on variable updates.
8069 *
8070 * Note that because a guest time update may take place
8071 * anytime after the setting of the VCPU's request bit, the
8072 * correct TSC value must be set before the request. However,
8073 * to ensure the update actually makes it to any guest which
8074 * starts running in hardware virtualization between the set
8075 * and the acquisition of the spinlock, we must also ping the
8076 * CPU after setting the request bit.
8077 *
8078 */
8079
8080 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8081
8082 mutex_lock(&kvm_lock);
8083 list_for_each_entry(kvm, &vm_list, vm_list) {
8084 kvm_for_each_vcpu(i, vcpu, kvm) {
8085 if (vcpu->cpu != cpu)
8086 continue;
8087 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8088 if (vcpu->cpu != raw_smp_processor_id())
8089 send_ipi = 1;
8090 }
8091 }
8092 mutex_unlock(&kvm_lock);
8093
8094 if (freq->old < freq->new && send_ipi) {
8095 /*
8096 * We upscale the frequency. Must make the guest
8097 * doesn't see old kvmclock values while running with
8098 * the new frequency, otherwise we risk the guest sees
8099 * time go backwards.
8100 *
8101 * In case we update the frequency for another cpu
8102 * (which might be in guest context) send an interrupt
8103 * to kick the cpu out of guest context. Next time
8104 * guest context is entered kvmclock will be updated,
8105 * so the guest will not see stale values.
8106 */
8107 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8108 }
8109 }
8110
8111 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8112 void *data)
8113 {
8114 struct cpufreq_freqs *freq = data;
8115 int cpu;
8116
8117 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8118 return 0;
8119 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8120 return 0;
8121
8122 for_each_cpu(cpu, freq->policy->cpus)
8123 __kvmclock_cpufreq_notifier(freq, cpu);
8124
8125 return 0;
8126 }
8127
8128 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8129 .notifier_call = kvmclock_cpufreq_notifier
8130 };
8131
8132 static int kvmclock_cpu_online(unsigned int cpu)
8133 {
8134 tsc_khz_changed(NULL);
8135 return 0;
8136 }
8137
8138 static void kvm_timer_init(void)
8139 {
8140 max_tsc_khz = tsc_khz;
8141
8142 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8143 #ifdef CONFIG_CPU_FREQ
8144 struct cpufreq_policy *policy;
8145 int cpu;
8146
8147 cpu = get_cpu();
8148 policy = cpufreq_cpu_get(cpu);
8149 if (policy) {
8150 if (policy->cpuinfo.max_freq)
8151 max_tsc_khz = policy->cpuinfo.max_freq;
8152 cpufreq_cpu_put(policy);
8153 }
8154 put_cpu();
8155 #endif
8156 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8157 CPUFREQ_TRANSITION_NOTIFIER);
8158 }
8159
8160 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8161 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8162 }
8163
8164 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8165 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8166
8167 int kvm_is_in_guest(void)
8168 {
8169 return __this_cpu_read(current_vcpu) != NULL;
8170 }
8171
8172 static int kvm_is_user_mode(void)
8173 {
8174 int user_mode = 3;
8175
8176 if (__this_cpu_read(current_vcpu))
8177 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8178
8179 return user_mode != 0;
8180 }
8181
8182 static unsigned long kvm_get_guest_ip(void)
8183 {
8184 unsigned long ip = 0;
8185
8186 if (__this_cpu_read(current_vcpu))
8187 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8188
8189 return ip;
8190 }
8191
8192 static void kvm_handle_intel_pt_intr(void)
8193 {
8194 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8195
8196 kvm_make_request(KVM_REQ_PMI, vcpu);
8197 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8198 (unsigned long *)&vcpu->arch.pmu.global_status);
8199 }
8200
8201 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8202 .is_in_guest = kvm_is_in_guest,
8203 .is_user_mode = kvm_is_user_mode,
8204 .get_guest_ip = kvm_get_guest_ip,
8205 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
8206 };
8207
8208 #ifdef CONFIG_X86_64
8209 static void pvclock_gtod_update_fn(struct work_struct *work)
8210 {
8211 struct kvm *kvm;
8212
8213 struct kvm_vcpu *vcpu;
8214 int i;
8215
8216 mutex_lock(&kvm_lock);
8217 list_for_each_entry(kvm, &vm_list, vm_list)
8218 kvm_for_each_vcpu(i, vcpu, kvm)
8219 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8220 atomic_set(&kvm_guest_has_master_clock, 0);
8221 mutex_unlock(&kvm_lock);
8222 }
8223
8224 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8225
8226 /*
8227 * Indirection to move queue_work() out of the tk_core.seq write held
8228 * region to prevent possible deadlocks against time accessors which
8229 * are invoked with work related locks held.
8230 */
8231 static void pvclock_irq_work_fn(struct irq_work *w)
8232 {
8233 queue_work(system_long_wq, &pvclock_gtod_work);
8234 }
8235
8236 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8237
8238 /*
8239 * Notification about pvclock gtod data update.
8240 */
8241 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8242 void *priv)
8243 {
8244 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8245 struct timekeeper *tk = priv;
8246
8247 update_pvclock_gtod(tk);
8248
8249 /*
8250 * Disable master clock if host does not trust, or does not use,
8251 * TSC based clocksource. Delegate queue_work() to irq_work as
8252 * this is invoked with tk_core.seq write held.
8253 */
8254 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8255 atomic_read(&kvm_guest_has_master_clock) != 0)
8256 irq_work_queue(&pvclock_irq_work);
8257 return 0;
8258 }
8259
8260 static struct notifier_block pvclock_gtod_notifier = {
8261 .notifier_call = pvclock_gtod_notify,
8262 };
8263 #endif
8264
8265 int kvm_arch_init(void *opaque)
8266 {
8267 struct kvm_x86_init_ops *ops = opaque;
8268 int r;
8269
8270 if (kvm_x86_ops.hardware_enable) {
8271 printk(KERN_ERR "kvm: already loaded the other module\n");
8272 r = -EEXIST;
8273 goto out;
8274 }
8275
8276 if (!ops->cpu_has_kvm_support()) {
8277 pr_err_ratelimited("kvm: no hardware support\n");
8278 r = -EOPNOTSUPP;
8279 goto out;
8280 }
8281 if (ops->disabled_by_bios()) {
8282 pr_warn_ratelimited("kvm: disabled by bios\n");
8283 r = -EOPNOTSUPP;
8284 goto out;
8285 }
8286
8287 /*
8288 * KVM explicitly assumes that the guest has an FPU and
8289 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8290 * vCPU's FPU state as a fxregs_state struct.
8291 */
8292 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8293 printk(KERN_ERR "kvm: inadequate fpu\n");
8294 r = -EOPNOTSUPP;
8295 goto out;
8296 }
8297
8298 r = -ENOMEM;
8299 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8300 __alignof__(struct fpu), SLAB_ACCOUNT,
8301 NULL);
8302 if (!x86_fpu_cache) {
8303 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8304 goto out;
8305 }
8306
8307 x86_emulator_cache = kvm_alloc_emulator_cache();
8308 if (!x86_emulator_cache) {
8309 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8310 goto out_free_x86_fpu_cache;
8311 }
8312
8313 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8314 if (!user_return_msrs) {
8315 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8316 goto out_free_x86_emulator_cache;
8317 }
8318 kvm_nr_uret_msrs = 0;
8319
8320 r = kvm_mmu_module_init();
8321 if (r)
8322 goto out_free_percpu;
8323
8324 kvm_timer_init();
8325
8326 perf_register_guest_info_callbacks(&kvm_guest_cbs);
8327
8328 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8329 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8330 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8331 }
8332
8333 if (pi_inject_timer == -1)
8334 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8335 #ifdef CONFIG_X86_64
8336 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8337
8338 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8339 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8340 #endif
8341
8342 return 0;
8343
8344 out_free_percpu:
8345 free_percpu(user_return_msrs);
8346 out_free_x86_emulator_cache:
8347 kmem_cache_destroy(x86_emulator_cache);
8348 out_free_x86_fpu_cache:
8349 kmem_cache_destroy(x86_fpu_cache);
8350 out:
8351 return r;
8352 }
8353
8354 void kvm_arch_exit(void)
8355 {
8356 #ifdef CONFIG_X86_64
8357 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8358 clear_hv_tscchange_cb();
8359 #endif
8360 kvm_lapic_exit();
8361 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8362
8363 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8364 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8365 CPUFREQ_TRANSITION_NOTIFIER);
8366 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8367 #ifdef CONFIG_X86_64
8368 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8369 irq_work_sync(&pvclock_irq_work);
8370 cancel_work_sync(&pvclock_gtod_work);
8371 #endif
8372 kvm_x86_ops.hardware_enable = NULL;
8373 kvm_mmu_module_exit();
8374 free_percpu(user_return_msrs);
8375 kmem_cache_destroy(x86_emulator_cache);
8376 kmem_cache_destroy(x86_fpu_cache);
8377 #ifdef CONFIG_KVM_XEN
8378 static_key_deferred_flush(&kvm_xen_enabled);
8379 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8380 #endif
8381 }
8382
8383 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8384 {
8385 ++vcpu->stat.halt_exits;
8386 if (lapic_in_kernel(vcpu)) {
8387 vcpu->arch.mp_state = state;
8388 return 1;
8389 } else {
8390 vcpu->run->exit_reason = reason;
8391 return 0;
8392 }
8393 }
8394
8395 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8396 {
8397 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8398 }
8399 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8400
8401 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8402 {
8403 int ret = kvm_skip_emulated_instruction(vcpu);
8404 /*
8405 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8406 * KVM_EXIT_DEBUG here.
8407 */
8408 return kvm_vcpu_halt(vcpu) && ret;
8409 }
8410 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8411
8412 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8413 {
8414 int ret = kvm_skip_emulated_instruction(vcpu);
8415
8416 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8417 }
8418 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8419
8420 #ifdef CONFIG_X86_64
8421 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8422 unsigned long clock_type)
8423 {
8424 struct kvm_clock_pairing clock_pairing;
8425 struct timespec64 ts;
8426 u64 cycle;
8427 int ret;
8428
8429 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8430 return -KVM_EOPNOTSUPP;
8431
8432 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8433 return -KVM_EOPNOTSUPP;
8434
8435 clock_pairing.sec = ts.tv_sec;
8436 clock_pairing.nsec = ts.tv_nsec;
8437 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8438 clock_pairing.flags = 0;
8439 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8440
8441 ret = 0;
8442 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8443 sizeof(struct kvm_clock_pairing)))
8444 ret = -KVM_EFAULT;
8445
8446 return ret;
8447 }
8448 #endif
8449
8450 /*
8451 * kvm_pv_kick_cpu_op: Kick a vcpu.
8452 *
8453 * @apicid - apicid of vcpu to be kicked.
8454 */
8455 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8456 {
8457 struct kvm_lapic_irq lapic_irq;
8458
8459 lapic_irq.shorthand = APIC_DEST_NOSHORT;
8460 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8461 lapic_irq.level = 0;
8462 lapic_irq.dest_id = apicid;
8463 lapic_irq.msi_redir_hint = false;
8464
8465 lapic_irq.delivery_mode = APIC_DM_REMRD;
8466 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8467 }
8468
8469 bool kvm_apicv_activated(struct kvm *kvm)
8470 {
8471 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8472 }
8473 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8474
8475 void kvm_apicv_init(struct kvm *kvm, bool enable)
8476 {
8477 if (enable)
8478 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8479 &kvm->arch.apicv_inhibit_reasons);
8480 else
8481 set_bit(APICV_INHIBIT_REASON_DISABLE,
8482 &kvm->arch.apicv_inhibit_reasons);
8483 }
8484 EXPORT_SYMBOL_GPL(kvm_apicv_init);
8485
8486 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8487 {
8488 struct kvm_vcpu *target = NULL;
8489 struct kvm_apic_map *map;
8490
8491 vcpu->stat.directed_yield_attempted++;
8492
8493 if (single_task_running())
8494 goto no_yield;
8495
8496 rcu_read_lock();
8497 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8498
8499 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8500 target = map->phys_map[dest_id]->vcpu;
8501
8502 rcu_read_unlock();
8503
8504 if (!target || !READ_ONCE(target->ready))
8505 goto no_yield;
8506
8507 /* Ignore requests to yield to self */
8508 if (vcpu == target)
8509 goto no_yield;
8510
8511 if (kvm_vcpu_yield_to(target) <= 0)
8512 goto no_yield;
8513
8514 vcpu->stat.directed_yield_successful++;
8515
8516 no_yield:
8517 return;
8518 }
8519
8520 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8521 {
8522 unsigned long nr, a0, a1, a2, a3, ret;
8523 int op_64_bit;
8524
8525 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8526 return kvm_xen_hypercall(vcpu);
8527
8528 if (kvm_hv_hypercall_enabled(vcpu))
8529 return kvm_hv_hypercall(vcpu);
8530
8531 nr = kvm_rax_read(vcpu);
8532 a0 = kvm_rbx_read(vcpu);
8533 a1 = kvm_rcx_read(vcpu);
8534 a2 = kvm_rdx_read(vcpu);
8535 a3 = kvm_rsi_read(vcpu);
8536
8537 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8538
8539 op_64_bit = is_64_bit_hypercall(vcpu);
8540 if (!op_64_bit) {
8541 nr &= 0xFFFFFFFF;
8542 a0 &= 0xFFFFFFFF;
8543 a1 &= 0xFFFFFFFF;
8544 a2 &= 0xFFFFFFFF;
8545 a3 &= 0xFFFFFFFF;
8546 }
8547
8548 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8549 ret = -KVM_EPERM;
8550 goto out;
8551 }
8552
8553 ret = -KVM_ENOSYS;
8554
8555 switch (nr) {
8556 case KVM_HC_VAPIC_POLL_IRQ:
8557 ret = 0;
8558 break;
8559 case KVM_HC_KICK_CPU:
8560 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8561 break;
8562
8563 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8564 kvm_sched_yield(vcpu, a1);
8565 ret = 0;
8566 break;
8567 #ifdef CONFIG_X86_64
8568 case KVM_HC_CLOCK_PAIRING:
8569 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8570 break;
8571 #endif
8572 case KVM_HC_SEND_IPI:
8573 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8574 break;
8575
8576 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8577 break;
8578 case KVM_HC_SCHED_YIELD:
8579 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8580 break;
8581
8582 kvm_sched_yield(vcpu, a0);
8583 ret = 0;
8584 break;
8585 default:
8586 ret = -KVM_ENOSYS;
8587 break;
8588 }
8589 out:
8590 if (!op_64_bit)
8591 ret = (u32)ret;
8592 kvm_rax_write(vcpu, ret);
8593
8594 ++vcpu->stat.hypercalls;
8595 return kvm_skip_emulated_instruction(vcpu);
8596 }
8597 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8598
8599 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8600 {
8601 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8602 char instruction[3];
8603 unsigned long rip = kvm_rip_read(vcpu);
8604
8605 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8606
8607 return emulator_write_emulated(ctxt, rip, instruction, 3,
8608 &ctxt->exception);
8609 }
8610
8611 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8612 {
8613 return vcpu->run->request_interrupt_window &&
8614 likely(!pic_in_kernel(vcpu->kvm));
8615 }
8616
8617 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8618 {
8619 struct kvm_run *kvm_run = vcpu->run;
8620
8621 /*
8622 * if_flag is obsolete and useless, so do not bother
8623 * setting it for SEV-ES guests. Userspace can just
8624 * use kvm_run->ready_for_interrupt_injection.
8625 */
8626 kvm_run->if_flag = !vcpu->arch.guest_state_protected
8627 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8628
8629 kvm_run->cr8 = kvm_get_cr8(vcpu);
8630 kvm_run->apic_base = kvm_get_apic_base(vcpu);
8631
8632 /*
8633 * The call to kvm_ready_for_interrupt_injection() may end up in
8634 * kvm_xen_has_interrupt() which may require the srcu lock to be
8635 * held, to protect against changes in the vcpu_info address.
8636 */
8637 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8638 kvm_run->ready_for_interrupt_injection =
8639 pic_in_kernel(vcpu->kvm) ||
8640 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8641 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8642
8643 if (is_smm(vcpu))
8644 kvm_run->flags |= KVM_RUN_X86_SMM;
8645 }
8646
8647 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8648 {
8649 int max_irr, tpr;
8650
8651 if (!kvm_x86_ops.update_cr8_intercept)
8652 return;
8653
8654 if (!lapic_in_kernel(vcpu))
8655 return;
8656
8657 if (vcpu->arch.apicv_active)
8658 return;
8659
8660 if (!vcpu->arch.apic->vapic_addr)
8661 max_irr = kvm_lapic_find_highest_irr(vcpu);
8662 else
8663 max_irr = -1;
8664
8665 if (max_irr != -1)
8666 max_irr >>= 4;
8667
8668 tpr = kvm_lapic_get_cr8(vcpu);
8669
8670 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8671 }
8672
8673
8674 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8675 {
8676 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
8677 return -EIO;
8678
8679 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8680 kvm_x86_ops.nested_ops->triple_fault(vcpu);
8681 return 1;
8682 }
8683
8684 return kvm_x86_ops.nested_ops->check_events(vcpu);
8685 }
8686
8687 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8688 {
8689 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8690 vcpu->arch.exception.error_code = false;
8691 static_call(kvm_x86_queue_exception)(vcpu);
8692 }
8693
8694 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8695 {
8696 int r;
8697 bool can_inject = true;
8698
8699 /* try to reinject previous events if any */
8700
8701 if (vcpu->arch.exception.injected) {
8702 kvm_inject_exception(vcpu);
8703 can_inject = false;
8704 }
8705 /*
8706 * Do not inject an NMI or interrupt if there is a pending
8707 * exception. Exceptions and interrupts are recognized at
8708 * instruction boundaries, i.e. the start of an instruction.
8709 * Trap-like exceptions, e.g. #DB, have higher priority than
8710 * NMIs and interrupts, i.e. traps are recognized before an
8711 * NMI/interrupt that's pending on the same instruction.
8712 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8713 * priority, but are only generated (pended) during instruction
8714 * execution, i.e. a pending fault-like exception means the
8715 * fault occurred on the *previous* instruction and must be
8716 * serviced prior to recognizing any new events in order to
8717 * fully complete the previous instruction.
8718 */
8719 else if (!vcpu->arch.exception.pending) {
8720 if (vcpu->arch.nmi_injected) {
8721 static_call(kvm_x86_set_nmi)(vcpu);
8722 can_inject = false;
8723 } else if (vcpu->arch.interrupt.injected) {
8724 static_call(kvm_x86_set_irq)(vcpu);
8725 can_inject = false;
8726 }
8727 }
8728
8729 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8730 vcpu->arch.exception.pending);
8731
8732 /*
8733 * Call check_nested_events() even if we reinjected a previous event
8734 * in order for caller to determine if it should require immediate-exit
8735 * from L2 to L1 due to pending L1 events which require exit
8736 * from L2 to L1.
8737 */
8738 if (is_guest_mode(vcpu)) {
8739 r = kvm_check_nested_events(vcpu);
8740 if (r < 0)
8741 goto busy;
8742 }
8743
8744 /* try to inject new event if pending */
8745 if (vcpu->arch.exception.pending) {
8746 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8747 vcpu->arch.exception.has_error_code,
8748 vcpu->arch.exception.error_code);
8749
8750 vcpu->arch.exception.pending = false;
8751 vcpu->arch.exception.injected = true;
8752
8753 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8754 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8755 X86_EFLAGS_RF);
8756
8757 if (vcpu->arch.exception.nr == DB_VECTOR) {
8758 kvm_deliver_exception_payload(vcpu);
8759 if (vcpu->arch.dr7 & DR7_GD) {
8760 vcpu->arch.dr7 &= ~DR7_GD;
8761 kvm_update_dr7(vcpu);
8762 }
8763 }
8764
8765 kvm_inject_exception(vcpu);
8766 can_inject = false;
8767 }
8768
8769 /*
8770 * Finally, inject interrupt events. If an event cannot be injected
8771 * due to architectural conditions (e.g. IF=0) a window-open exit
8772 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8773 * and can architecturally be injected, but we cannot do it right now:
8774 * an interrupt could have arrived just now and we have to inject it
8775 * as a vmexit, or there could already an event in the queue, which is
8776 * indicated by can_inject. In that case we request an immediate exit
8777 * in order to make progress and get back here for another iteration.
8778 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8779 */
8780 if (vcpu->arch.smi_pending) {
8781 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8782 if (r < 0)
8783 goto busy;
8784 if (r) {
8785 vcpu->arch.smi_pending = false;
8786 ++vcpu->arch.smi_count;
8787 enter_smm(vcpu);
8788 can_inject = false;
8789 } else
8790 static_call(kvm_x86_enable_smi_window)(vcpu);
8791 }
8792
8793 if (vcpu->arch.nmi_pending) {
8794 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8795 if (r < 0)
8796 goto busy;
8797 if (r) {
8798 --vcpu->arch.nmi_pending;
8799 vcpu->arch.nmi_injected = true;
8800 static_call(kvm_x86_set_nmi)(vcpu);
8801 can_inject = false;
8802 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8803 }
8804 if (vcpu->arch.nmi_pending)
8805 static_call(kvm_x86_enable_nmi_window)(vcpu);
8806 }
8807
8808 if (kvm_cpu_has_injectable_intr(vcpu)) {
8809 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8810 if (r < 0)
8811 goto busy;
8812 if (r) {
8813 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8814 static_call(kvm_x86_set_irq)(vcpu);
8815 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8816 }
8817 if (kvm_cpu_has_injectable_intr(vcpu))
8818 static_call(kvm_x86_enable_irq_window)(vcpu);
8819 }
8820
8821 if (is_guest_mode(vcpu) &&
8822 kvm_x86_ops.nested_ops->hv_timer_pending &&
8823 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8824 *req_immediate_exit = true;
8825
8826 WARN_ON(vcpu->arch.exception.pending);
8827 return;
8828
8829 busy:
8830 *req_immediate_exit = true;
8831 return;
8832 }
8833
8834 static void process_nmi(struct kvm_vcpu *vcpu)
8835 {
8836 unsigned limit = 2;
8837
8838 /*
8839 * x86 is limited to one NMI running, and one NMI pending after it.
8840 * If an NMI is already in progress, limit further NMIs to just one.
8841 * Otherwise, allow two (and we'll inject the first one immediately).
8842 */
8843 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
8844 limit = 1;
8845
8846 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8847 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8848 kvm_make_request(KVM_REQ_EVENT, vcpu);
8849 }
8850
8851 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
8852 {
8853 u32 flags = 0;
8854 flags |= seg->g << 23;
8855 flags |= seg->db << 22;
8856 flags |= seg->l << 21;
8857 flags |= seg->avl << 20;
8858 flags |= seg->present << 15;
8859 flags |= seg->dpl << 13;
8860 flags |= seg->s << 12;
8861 flags |= seg->type << 8;
8862 return flags;
8863 }
8864
8865 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
8866 {
8867 struct kvm_segment seg;
8868 int offset;
8869
8870 kvm_get_segment(vcpu, &seg, n);
8871 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8872
8873 if (n < 3)
8874 offset = 0x7f84 + n * 12;
8875 else
8876 offset = 0x7f2c + (n - 3) * 12;
8877
8878 put_smstate(u32, buf, offset + 8, seg.base);
8879 put_smstate(u32, buf, offset + 4, seg.limit);
8880 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
8881 }
8882
8883 #ifdef CONFIG_X86_64
8884 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
8885 {
8886 struct kvm_segment seg;
8887 int offset;
8888 u16 flags;
8889
8890 kvm_get_segment(vcpu, &seg, n);
8891 offset = 0x7e00 + n * 16;
8892
8893 flags = enter_smm_get_segment_flags(&seg) >> 8;
8894 put_smstate(u16, buf, offset, seg.selector);
8895 put_smstate(u16, buf, offset + 2, flags);
8896 put_smstate(u32, buf, offset + 4, seg.limit);
8897 put_smstate(u64, buf, offset + 8, seg.base);
8898 }
8899 #endif
8900
8901 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
8902 {
8903 struct desc_ptr dt;
8904 struct kvm_segment seg;
8905 unsigned long val;
8906 int i;
8907
8908 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8909 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8910 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8911 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8912
8913 for (i = 0; i < 8; i++)
8914 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
8915
8916 kvm_get_dr(vcpu, 6, &val);
8917 put_smstate(u32, buf, 0x7fcc, (u32)val);
8918 kvm_get_dr(vcpu, 7, &val);
8919 put_smstate(u32, buf, 0x7fc8, (u32)val);
8920
8921 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8922 put_smstate(u32, buf, 0x7fc4, seg.selector);
8923 put_smstate(u32, buf, 0x7f64, seg.base);
8924 put_smstate(u32, buf, 0x7f60, seg.limit);
8925 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
8926
8927 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8928 put_smstate(u32, buf, 0x7fc0, seg.selector);
8929 put_smstate(u32, buf, 0x7f80, seg.base);
8930 put_smstate(u32, buf, 0x7f7c, seg.limit);
8931 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
8932
8933 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8934 put_smstate(u32, buf, 0x7f74, dt.address);
8935 put_smstate(u32, buf, 0x7f70, dt.size);
8936
8937 static_call(kvm_x86_get_idt)(vcpu, &dt);
8938 put_smstate(u32, buf, 0x7f58, dt.address);
8939 put_smstate(u32, buf, 0x7f54, dt.size);
8940
8941 for (i = 0; i < 6; i++)
8942 enter_smm_save_seg_32(vcpu, buf, i);
8943
8944 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8945
8946 /* revision id */
8947 put_smstate(u32, buf, 0x7efc, 0x00020000);
8948 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8949 }
8950
8951 #ifdef CONFIG_X86_64
8952 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
8953 {
8954 struct desc_ptr dt;
8955 struct kvm_segment seg;
8956 unsigned long val;
8957 int i;
8958
8959 for (i = 0; i < 16; i++)
8960 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
8961
8962 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8963 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8964
8965 kvm_get_dr(vcpu, 6, &val);
8966 put_smstate(u64, buf, 0x7f68, val);
8967 kvm_get_dr(vcpu, 7, &val);
8968 put_smstate(u64, buf, 0x7f60, val);
8969
8970 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8971 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8972 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8973
8974 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8975
8976 /* revision id */
8977 put_smstate(u32, buf, 0x7efc, 0x00020064);
8978
8979 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8980
8981 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8982 put_smstate(u16, buf, 0x7e90, seg.selector);
8983 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
8984 put_smstate(u32, buf, 0x7e94, seg.limit);
8985 put_smstate(u64, buf, 0x7e98, seg.base);
8986
8987 static_call(kvm_x86_get_idt)(vcpu, &dt);
8988 put_smstate(u32, buf, 0x7e84, dt.size);
8989 put_smstate(u64, buf, 0x7e88, dt.address);
8990
8991 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8992 put_smstate(u16, buf, 0x7e70, seg.selector);
8993 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
8994 put_smstate(u32, buf, 0x7e74, seg.limit);
8995 put_smstate(u64, buf, 0x7e78, seg.base);
8996
8997 static_call(kvm_x86_get_gdt)(vcpu, &dt);
8998 put_smstate(u32, buf, 0x7e64, dt.size);
8999 put_smstate(u64, buf, 0x7e68, dt.address);
9000
9001 for (i = 0; i < 6; i++)
9002 enter_smm_save_seg_64(vcpu, buf, i);
9003 }
9004 #endif
9005
9006 static void enter_smm(struct kvm_vcpu *vcpu)
9007 {
9008 struct kvm_segment cs, ds;
9009 struct desc_ptr dt;
9010 char buf[512];
9011 u32 cr0;
9012
9013 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
9014 memset(buf, 0, 512);
9015 #ifdef CONFIG_X86_64
9016 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9017 enter_smm_save_state_64(vcpu, buf);
9018 else
9019 #endif
9020 enter_smm_save_state_32(vcpu, buf);
9021
9022 /*
9023 * Give pre_enter_smm() a chance to make ISA-specific changes to the
9024 * vCPU state (e.g. leave guest mode) after we've saved the state into
9025 * the SMM state-save area.
9026 */
9027 static_call(kvm_x86_pre_enter_smm)(vcpu, buf);
9028
9029 vcpu->arch.hflags |= HF_SMM_MASK;
9030 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9031
9032 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9033 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9034 else
9035 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9036
9037 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9038 kvm_rip_write(vcpu, 0x8000);
9039
9040 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9041 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9042 vcpu->arch.cr0 = cr0;
9043
9044 static_call(kvm_x86_set_cr4)(vcpu, 0);
9045
9046 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9047 dt.address = dt.size = 0;
9048 static_call(kvm_x86_set_idt)(vcpu, &dt);
9049
9050 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9051
9052 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9053 cs.base = vcpu->arch.smbase;
9054
9055 ds.selector = 0;
9056 ds.base = 0;
9057
9058 cs.limit = ds.limit = 0xffffffff;
9059 cs.type = ds.type = 0x3;
9060 cs.dpl = ds.dpl = 0;
9061 cs.db = ds.db = 0;
9062 cs.s = ds.s = 1;
9063 cs.l = ds.l = 0;
9064 cs.g = ds.g = 1;
9065 cs.avl = ds.avl = 0;
9066 cs.present = ds.present = 1;
9067 cs.unusable = ds.unusable = 0;
9068 cs.padding = ds.padding = 0;
9069
9070 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9071 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9072 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9073 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9074 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9075 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9076
9077 #ifdef CONFIG_X86_64
9078 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9079 static_call(kvm_x86_set_efer)(vcpu, 0);
9080 #endif
9081
9082 kvm_update_cpuid_runtime(vcpu);
9083 kvm_mmu_reset_context(vcpu);
9084 }
9085
9086 static void process_smi(struct kvm_vcpu *vcpu)
9087 {
9088 vcpu->arch.smi_pending = true;
9089 kvm_make_request(KVM_REQ_EVENT, vcpu);
9090 }
9091
9092 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9093 unsigned long *vcpu_bitmap)
9094 {
9095 cpumask_var_t cpus;
9096
9097 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9098
9099 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9100 NULL, vcpu_bitmap, cpus);
9101
9102 free_cpumask_var(cpus);
9103 }
9104
9105 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9106 {
9107 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9108 }
9109
9110 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9111 {
9112 if (!lapic_in_kernel(vcpu))
9113 return;
9114
9115 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
9116 kvm_apic_update_apicv(vcpu);
9117 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9118 }
9119 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9120
9121 /*
9122 * NOTE: Do not hold any lock prior to calling this.
9123 *
9124 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
9125 * locked, because it calls __x86_set_memory_region() which does
9126 * synchronize_srcu(&kvm->srcu).
9127 */
9128 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9129 {
9130 struct kvm_vcpu *except;
9131 unsigned long old, new, expected;
9132
9133 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9134 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9135 return;
9136
9137 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
9138 do {
9139 expected = new = old;
9140 if (activate)
9141 __clear_bit(bit, &new);
9142 else
9143 __set_bit(bit, &new);
9144 if (new == old)
9145 break;
9146 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
9147 } while (old != expected);
9148
9149 if (!!old == !!new)
9150 return;
9151
9152 trace_kvm_apicv_update_request(activate, bit);
9153 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
9154 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate);
9155
9156 /*
9157 * Sending request to update APICV for all other vcpus,
9158 * while update the calling vcpu immediately instead of
9159 * waiting for another #VMEXIT to handle the request.
9160 */
9161 except = kvm_get_running_vcpu();
9162 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
9163 except);
9164 if (except)
9165 kvm_vcpu_update_apicv(except);
9166 }
9167 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9168
9169 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9170 {
9171 if (!kvm_apic_present(vcpu))
9172 return;
9173
9174 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9175
9176 if (irqchip_split(vcpu->kvm))
9177 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9178 else {
9179 if (vcpu->arch.apicv_active)
9180 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9181 if (ioapic_in_kernel(vcpu->kvm))
9182 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9183 }
9184
9185 if (is_guest_mode(vcpu))
9186 vcpu->arch.load_eoi_exitmap_pending = true;
9187 else
9188 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9189 }
9190
9191 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9192 {
9193 u64 eoi_exit_bitmap[4];
9194
9195 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9196 return;
9197
9198 if (to_hv_vcpu(vcpu)) {
9199 bitmap_or((ulong *)eoi_exit_bitmap,
9200 vcpu->arch.ioapic_handled_vectors,
9201 to_hv_synic(vcpu)->vec_bitmap, 256);
9202 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9203 return;
9204 }
9205
9206 static_call(kvm_x86_load_eoi_exitmap)(
9207 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9208 }
9209
9210 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9211 unsigned long start, unsigned long end)
9212 {
9213 unsigned long apic_address;
9214
9215 /*
9216 * The physical address of apic access page is stored in the VMCS.
9217 * Update it when it becomes invalid.
9218 */
9219 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9220 if (start <= apic_address && apic_address < end)
9221 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9222 }
9223
9224 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9225 {
9226 if (!lapic_in_kernel(vcpu))
9227 return;
9228
9229 if (!kvm_x86_ops.set_apic_access_page_addr)
9230 return;
9231
9232 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9233 }
9234
9235 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9236 {
9237 smp_send_reschedule(vcpu->cpu);
9238 }
9239 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9240
9241 /*
9242 * Returns 1 to let vcpu_run() continue the guest execution loop without
9243 * exiting to the userspace. Otherwise, the value will be returned to the
9244 * userspace.
9245 */
9246 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9247 {
9248 int r;
9249 bool req_int_win =
9250 dm_request_for_irq_injection(vcpu) &&
9251 kvm_cpu_accept_dm_intr(vcpu);
9252 fastpath_t exit_fastpath;
9253
9254 bool req_immediate_exit = false;
9255
9256 /* Forbid vmenter if vcpu dirty ring is soft-full */
9257 if (unlikely(vcpu->kvm->dirty_ring_size &&
9258 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9259 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9260 trace_kvm_dirty_ring_exit(vcpu);
9261 r = 0;
9262 goto out;
9263 }
9264
9265 if (kvm_request_pending(vcpu)) {
9266 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9267 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9268 r = 0;
9269 goto out;
9270 }
9271 }
9272 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9273 kvm_mmu_unload(vcpu);
9274 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9275 __kvm_migrate_timers(vcpu);
9276 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9277 kvm_gen_update_masterclock(vcpu->kvm);
9278 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9279 kvm_gen_kvmclock_update(vcpu);
9280 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9281 r = kvm_guest_time_update(vcpu);
9282 if (unlikely(r))
9283 goto out;
9284 }
9285 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9286 kvm_mmu_sync_roots(vcpu);
9287 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9288 kvm_mmu_load_pgd(vcpu);
9289 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9290 kvm_vcpu_flush_tlb_all(vcpu);
9291
9292 /* Flushing all ASIDs flushes the current ASID... */
9293 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9294 }
9295 kvm_service_local_tlb_flush_requests(vcpu);
9296
9297 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9298 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9299 r = 0;
9300 goto out;
9301 }
9302 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9303 if (is_guest_mode(vcpu)) {
9304 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9305 } else {
9306 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9307 vcpu->mmio_needed = 0;
9308 r = 0;
9309 goto out;
9310 }
9311 }
9312 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9313 /* Page is swapped out. Do synthetic halt */
9314 vcpu->arch.apf.halted = true;
9315 r = 1;
9316 goto out;
9317 }
9318 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9319 record_steal_time(vcpu);
9320 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9321 process_smi(vcpu);
9322 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9323 process_nmi(vcpu);
9324 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9325 kvm_pmu_handle_event(vcpu);
9326 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9327 kvm_pmu_deliver_pmi(vcpu);
9328 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9329 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9330 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9331 vcpu->arch.ioapic_handled_vectors)) {
9332 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9333 vcpu->run->eoi.vector =
9334 vcpu->arch.pending_ioapic_eoi;
9335 r = 0;
9336 goto out;
9337 }
9338 }
9339 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9340 vcpu_scan_ioapic(vcpu);
9341 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9342 vcpu_load_eoi_exitmap(vcpu);
9343 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9344 kvm_vcpu_reload_apic_access_page(vcpu);
9345 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9346 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9347 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9348 r = 0;
9349 goto out;
9350 }
9351 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9352 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9353 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9354 r = 0;
9355 goto out;
9356 }
9357 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9358 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9359
9360 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9361 vcpu->run->hyperv = hv_vcpu->exit;
9362 r = 0;
9363 goto out;
9364 }
9365
9366 /*
9367 * KVM_REQ_HV_STIMER has to be processed after
9368 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9369 * depend on the guest clock being up-to-date
9370 */
9371 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9372 kvm_hv_process_stimers(vcpu);
9373 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9374 kvm_vcpu_update_apicv(vcpu);
9375 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9376 kvm_check_async_pf_completion(vcpu);
9377 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9378 static_call(kvm_x86_msr_filter_changed)(vcpu);
9379
9380 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9381 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9382 }
9383
9384 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9385 kvm_xen_has_interrupt(vcpu)) {
9386 ++vcpu->stat.req_event;
9387 kvm_apic_accept_events(vcpu);
9388 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9389 r = 1;
9390 goto out;
9391 }
9392
9393 inject_pending_event(vcpu, &req_immediate_exit);
9394 if (req_int_win)
9395 static_call(kvm_x86_enable_irq_window)(vcpu);
9396
9397 if (kvm_lapic_enabled(vcpu)) {
9398 update_cr8_intercept(vcpu);
9399 kvm_lapic_sync_to_vapic(vcpu);
9400 }
9401 }
9402
9403 r = kvm_mmu_reload(vcpu);
9404 if (unlikely(r)) {
9405 goto cancel_injection;
9406 }
9407
9408 preempt_disable();
9409
9410 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9411
9412 /*
9413 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9414 * IPI are then delayed after guest entry, which ensures that they
9415 * result in virtual interrupt delivery.
9416 */
9417 local_irq_disable();
9418 vcpu->mode = IN_GUEST_MODE;
9419
9420 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9421
9422 /*
9423 * 1) We should set ->mode before checking ->requests. Please see
9424 * the comment in kvm_vcpu_exiting_guest_mode().
9425 *
9426 * 2) For APICv, we should set ->mode before checking PID.ON. This
9427 * pairs with the memory barrier implicit in pi_test_and_set_on
9428 * (see vmx_deliver_posted_interrupt).
9429 *
9430 * 3) This also orders the write to mode from any reads to the page
9431 * tables done while the VCPU is running. Please see the comment
9432 * in kvm_flush_remote_tlbs.
9433 */
9434 smp_mb__after_srcu_read_unlock();
9435
9436 /*
9437 * This handles the case where a posted interrupt was
9438 * notified with kvm_vcpu_kick.
9439 */
9440 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9441 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9442
9443 if (kvm_vcpu_exit_request(vcpu)) {
9444 vcpu->mode = OUTSIDE_GUEST_MODE;
9445 smp_wmb();
9446 local_irq_enable();
9447 preempt_enable();
9448 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9449 r = 1;
9450 goto cancel_injection;
9451 }
9452
9453 if (req_immediate_exit) {
9454 kvm_make_request(KVM_REQ_EVENT, vcpu);
9455 static_call(kvm_x86_request_immediate_exit)(vcpu);
9456 }
9457
9458 fpregs_assert_state_consistent();
9459 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9460 switch_fpu_return();
9461
9462 if (unlikely(vcpu->arch.switch_db_regs)) {
9463 set_debugreg(0, 7);
9464 set_debugreg(vcpu->arch.eff_db[0], 0);
9465 set_debugreg(vcpu->arch.eff_db[1], 1);
9466 set_debugreg(vcpu->arch.eff_db[2], 2);
9467 set_debugreg(vcpu->arch.eff_db[3], 3);
9468 set_debugreg(vcpu->arch.dr6, 6);
9469 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9470 } else if (unlikely(hw_breakpoint_active())) {
9471 set_debugreg(0, 7);
9472 }
9473
9474 for (;;) {
9475 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9476 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9477 break;
9478
9479 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9480 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9481
9482 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9483 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9484 break;
9485 }
9486 }
9487
9488 /*
9489 * Do this here before restoring debug registers on the host. And
9490 * since we do this before handling the vmexit, a DR access vmexit
9491 * can (a) read the correct value of the debug registers, (b) set
9492 * KVM_DEBUGREG_WONT_EXIT again.
9493 */
9494 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9495 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9496 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9497 kvm_update_dr0123(vcpu);
9498 kvm_update_dr7(vcpu);
9499 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
9500 }
9501
9502 /*
9503 * If the guest has used debug registers, at least dr7
9504 * will be disabled while returning to the host.
9505 * If we don't have active breakpoints in the host, we don't
9506 * care about the messed up debug address registers. But if
9507 * we have some of them active, restore the old state.
9508 */
9509 if (hw_breakpoint_active())
9510 hw_breakpoint_restore();
9511
9512 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9513 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9514
9515 vcpu->mode = OUTSIDE_GUEST_MODE;
9516 smp_wmb();
9517
9518 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9519
9520 /*
9521 * Consume any pending interrupts, including the possible source of
9522 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9523 * An instruction is required after local_irq_enable() to fully unblock
9524 * interrupts on processors that implement an interrupt shadow, the
9525 * stat.exits increment will do nicely.
9526 */
9527 kvm_before_interrupt(vcpu);
9528 local_irq_enable();
9529 ++vcpu->stat.exits;
9530 local_irq_disable();
9531 kvm_after_interrupt(vcpu);
9532
9533 /*
9534 * Wait until after servicing IRQs to account guest time so that any
9535 * ticks that occurred while running the guest are properly accounted
9536 * to the guest. Waiting until IRQs are enabled degrades the accuracy
9537 * of accounting via context tracking, but the loss of accuracy is
9538 * acceptable for all known use cases.
9539 */
9540 vtime_account_guest_exit();
9541
9542 if (lapic_in_kernel(vcpu)) {
9543 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9544 if (delta != S64_MIN) {
9545 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9546 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9547 }
9548 }
9549
9550 local_irq_enable();
9551 preempt_enable();
9552
9553 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9554
9555 /*
9556 * Profile KVM exit RIPs:
9557 */
9558 if (unlikely(prof_on == KVM_PROFILING)) {
9559 unsigned long rip = kvm_rip_read(vcpu);
9560 profile_hit(KVM_PROFILING, (void *)rip);
9561 }
9562
9563 if (unlikely(vcpu->arch.tsc_always_catchup))
9564 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9565
9566 if (vcpu->arch.apic_attention)
9567 kvm_lapic_sync_from_vapic(vcpu);
9568
9569 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9570 return r;
9571
9572 cancel_injection:
9573 if (req_immediate_exit)
9574 kvm_make_request(KVM_REQ_EVENT, vcpu);
9575 static_call(kvm_x86_cancel_injection)(vcpu);
9576 if (unlikely(vcpu->arch.apic_attention))
9577 kvm_lapic_sync_from_vapic(vcpu);
9578 out:
9579 return r;
9580 }
9581
9582 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9583 {
9584 if (!kvm_arch_vcpu_runnable(vcpu) &&
9585 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9586 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9587 kvm_vcpu_block(vcpu);
9588 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9589
9590 if (kvm_x86_ops.post_block)
9591 static_call(kvm_x86_post_block)(vcpu);
9592
9593 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9594 return 1;
9595 }
9596
9597 kvm_apic_accept_events(vcpu);
9598 switch(vcpu->arch.mp_state) {
9599 case KVM_MP_STATE_HALTED:
9600 case KVM_MP_STATE_AP_RESET_HOLD:
9601 vcpu->arch.pv.pv_unhalted = false;
9602 vcpu->arch.mp_state =
9603 KVM_MP_STATE_RUNNABLE;
9604 fallthrough;
9605 case KVM_MP_STATE_RUNNABLE:
9606 vcpu->arch.apf.halted = false;
9607 break;
9608 case KVM_MP_STATE_INIT_RECEIVED:
9609 break;
9610 default:
9611 return -EINTR;
9612 }
9613 return 1;
9614 }
9615
9616 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9617 {
9618 if (is_guest_mode(vcpu))
9619 kvm_check_nested_events(vcpu);
9620
9621 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9622 !vcpu->arch.apf.halted);
9623 }
9624
9625 static int vcpu_run(struct kvm_vcpu *vcpu)
9626 {
9627 int r;
9628 struct kvm *kvm = vcpu->kvm;
9629
9630 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9631 vcpu->arch.l1tf_flush_l1d = true;
9632
9633 for (;;) {
9634 if (kvm_vcpu_running(vcpu)) {
9635 r = vcpu_enter_guest(vcpu);
9636 } else {
9637 r = vcpu_block(kvm, vcpu);
9638 }
9639
9640 if (r <= 0)
9641 break;
9642
9643 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9644 if (kvm_cpu_has_pending_timer(vcpu))
9645 kvm_inject_pending_timer_irqs(vcpu);
9646
9647 if (dm_request_for_irq_injection(vcpu) &&
9648 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9649 r = 0;
9650 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9651 ++vcpu->stat.request_irq_exits;
9652 break;
9653 }
9654
9655 if (__xfer_to_guest_mode_work_pending()) {
9656 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9657 r = xfer_to_guest_mode_handle_work(vcpu);
9658 if (r)
9659 return r;
9660 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9661 }
9662 }
9663
9664 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9665
9666 return r;
9667 }
9668
9669 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9670 {
9671 int r;
9672
9673 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9674 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9675 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9676 return r;
9677 }
9678
9679 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9680 {
9681 BUG_ON(!vcpu->arch.pio.count);
9682
9683 return complete_emulated_io(vcpu);
9684 }
9685
9686 /*
9687 * Implements the following, as a state machine:
9688 *
9689 * read:
9690 * for each fragment
9691 * for each mmio piece in the fragment
9692 * write gpa, len
9693 * exit
9694 * copy data
9695 * execute insn
9696 *
9697 * write:
9698 * for each fragment
9699 * for each mmio piece in the fragment
9700 * write gpa, len
9701 * copy data
9702 * exit
9703 */
9704 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9705 {
9706 struct kvm_run *run = vcpu->run;
9707 struct kvm_mmio_fragment *frag;
9708 unsigned len;
9709
9710 BUG_ON(!vcpu->mmio_needed);
9711
9712 /* Complete previous fragment */
9713 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9714 len = min(8u, frag->len);
9715 if (!vcpu->mmio_is_write)
9716 memcpy(frag->data, run->mmio.data, len);
9717
9718 if (frag->len <= 8) {
9719 /* Switch to the next fragment. */
9720 frag++;
9721 vcpu->mmio_cur_fragment++;
9722 } else {
9723 /* Go forward to the next mmio piece. */
9724 frag->data += len;
9725 frag->gpa += len;
9726 frag->len -= len;
9727 }
9728
9729 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9730 vcpu->mmio_needed = 0;
9731
9732 /* FIXME: return into emulator if single-stepping. */
9733 if (vcpu->mmio_is_write)
9734 return 1;
9735 vcpu->mmio_read_completed = 1;
9736 return complete_emulated_io(vcpu);
9737 }
9738
9739 run->exit_reason = KVM_EXIT_MMIO;
9740 run->mmio.phys_addr = frag->gpa;
9741 if (vcpu->mmio_is_write)
9742 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9743 run->mmio.len = min(8u, frag->len);
9744 run->mmio.is_write = vcpu->mmio_is_write;
9745 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9746 return 0;
9747 }
9748
9749 static void kvm_save_current_fpu(struct fpu *fpu)
9750 {
9751 /*
9752 * If the target FPU state is not resident in the CPU registers, just
9753 * memcpy() from current, else save CPU state directly to the target.
9754 */
9755 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9756 memcpy(&fpu->state, &current->thread.fpu.state,
9757 fpu_kernel_xstate_size);
9758 else
9759 copy_fpregs_to_fpstate(fpu);
9760 }
9761
9762 /* Swap (qemu) user FPU context for the guest FPU context. */
9763 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9764 {
9765 fpregs_lock();
9766
9767 kvm_save_current_fpu(vcpu->arch.user_fpu);
9768
9769 /*
9770 * Guests with protected state can't have it set by the hypervisor,
9771 * so skip trying to set it.
9772 */
9773 if (vcpu->arch.guest_fpu)
9774 /* PKRU is separately restored in kvm_x86_ops.run. */
9775 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
9776 ~XFEATURE_MASK_PKRU);
9777
9778 fpregs_mark_activate();
9779 fpregs_unlock();
9780
9781 trace_kvm_fpu(1);
9782 }
9783
9784 /* When vcpu_run ends, restore user space FPU context. */
9785 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9786 {
9787 fpregs_lock();
9788
9789 /*
9790 * Guests with protected state can't have it read by the hypervisor,
9791 * so skip trying to save it.
9792 */
9793 if (vcpu->arch.guest_fpu)
9794 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9795
9796 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
9797
9798 fpregs_mark_activate();
9799 fpregs_unlock();
9800
9801 ++vcpu->stat.fpu_reload;
9802 trace_kvm_fpu(0);
9803 }
9804
9805 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9806 {
9807 struct kvm_run *kvm_run = vcpu->run;
9808 int r;
9809
9810 vcpu_load(vcpu);
9811 kvm_sigset_activate(vcpu);
9812 kvm_run->flags = 0;
9813 kvm_load_guest_fpu(vcpu);
9814
9815 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
9816 if (kvm_run->immediate_exit) {
9817 r = -EINTR;
9818 goto out;
9819 }
9820 kvm_vcpu_block(vcpu);
9821 kvm_apic_accept_events(vcpu);
9822 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
9823 r = -EAGAIN;
9824 if (signal_pending(current)) {
9825 r = -EINTR;
9826 kvm_run->exit_reason = KVM_EXIT_INTR;
9827 ++vcpu->stat.signal_exits;
9828 }
9829 goto out;
9830 }
9831
9832 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
9833 r = -EINVAL;
9834 goto out;
9835 }
9836
9837 if (kvm_run->kvm_dirty_regs) {
9838 r = sync_regs(vcpu);
9839 if (r != 0)
9840 goto out;
9841 }
9842
9843 /* re-sync apic's tpr */
9844 if (!lapic_in_kernel(vcpu)) {
9845 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9846 r = -EINVAL;
9847 goto out;
9848 }
9849 }
9850
9851 if (unlikely(vcpu->arch.complete_userspace_io)) {
9852 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9853 vcpu->arch.complete_userspace_io = NULL;
9854 r = cui(vcpu);
9855 if (r <= 0)
9856 goto out;
9857 } else
9858 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
9859
9860 if (kvm_run->immediate_exit)
9861 r = -EINTR;
9862 else
9863 r = vcpu_run(vcpu);
9864
9865 out:
9866 kvm_put_guest_fpu(vcpu);
9867 if (kvm_run->kvm_valid_regs)
9868 store_regs(vcpu);
9869 post_kvm_run_save(vcpu);
9870 kvm_sigset_deactivate(vcpu);
9871
9872 vcpu_put(vcpu);
9873 return r;
9874 }
9875
9876 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9877 {
9878 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9879 /*
9880 * We are here if userspace calls get_regs() in the middle of
9881 * instruction emulation. Registers state needs to be copied
9882 * back from emulation context to vcpu. Userspace shouldn't do
9883 * that usually, but some bad designed PV devices (vmware
9884 * backdoor interface) need this to work
9885 */
9886 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
9887 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9888 }
9889 regs->rax = kvm_rax_read(vcpu);
9890 regs->rbx = kvm_rbx_read(vcpu);
9891 regs->rcx = kvm_rcx_read(vcpu);
9892 regs->rdx = kvm_rdx_read(vcpu);
9893 regs->rsi = kvm_rsi_read(vcpu);
9894 regs->rdi = kvm_rdi_read(vcpu);
9895 regs->rsp = kvm_rsp_read(vcpu);
9896 regs->rbp = kvm_rbp_read(vcpu);
9897 #ifdef CONFIG_X86_64
9898 regs->r8 = kvm_r8_read(vcpu);
9899 regs->r9 = kvm_r9_read(vcpu);
9900 regs->r10 = kvm_r10_read(vcpu);
9901 regs->r11 = kvm_r11_read(vcpu);
9902 regs->r12 = kvm_r12_read(vcpu);
9903 regs->r13 = kvm_r13_read(vcpu);
9904 regs->r14 = kvm_r14_read(vcpu);
9905 regs->r15 = kvm_r15_read(vcpu);
9906 #endif
9907
9908 regs->rip = kvm_rip_read(vcpu);
9909 regs->rflags = kvm_get_rflags(vcpu);
9910 }
9911
9912 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9913 {
9914 vcpu_load(vcpu);
9915 __get_regs(vcpu, regs);
9916 vcpu_put(vcpu);
9917 return 0;
9918 }
9919
9920 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9921 {
9922 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9923 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9924
9925 kvm_rax_write(vcpu, regs->rax);
9926 kvm_rbx_write(vcpu, regs->rbx);
9927 kvm_rcx_write(vcpu, regs->rcx);
9928 kvm_rdx_write(vcpu, regs->rdx);
9929 kvm_rsi_write(vcpu, regs->rsi);
9930 kvm_rdi_write(vcpu, regs->rdi);
9931 kvm_rsp_write(vcpu, regs->rsp);
9932 kvm_rbp_write(vcpu, regs->rbp);
9933 #ifdef CONFIG_X86_64
9934 kvm_r8_write(vcpu, regs->r8);
9935 kvm_r9_write(vcpu, regs->r9);
9936 kvm_r10_write(vcpu, regs->r10);
9937 kvm_r11_write(vcpu, regs->r11);
9938 kvm_r12_write(vcpu, regs->r12);
9939 kvm_r13_write(vcpu, regs->r13);
9940 kvm_r14_write(vcpu, regs->r14);
9941 kvm_r15_write(vcpu, regs->r15);
9942 #endif
9943
9944 kvm_rip_write(vcpu, regs->rip);
9945 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
9946
9947 vcpu->arch.exception.pending = false;
9948
9949 kvm_make_request(KVM_REQ_EVENT, vcpu);
9950 }
9951
9952 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9953 {
9954 vcpu_load(vcpu);
9955 __set_regs(vcpu, regs);
9956 vcpu_put(vcpu);
9957 return 0;
9958 }
9959
9960 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9961 {
9962 struct kvm_segment cs;
9963
9964 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9965 *db = cs.db;
9966 *l = cs.l;
9967 }
9968 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9969
9970 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
9971 {
9972 struct desc_ptr dt;
9973
9974 if (vcpu->arch.guest_state_protected)
9975 goto skip_protected_regs;
9976
9977 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9978 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9979 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9980 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9981 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9982 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9983
9984 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9985 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9986
9987 static_call(kvm_x86_get_idt)(vcpu, &dt);
9988 sregs->idt.limit = dt.size;
9989 sregs->idt.base = dt.address;
9990 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9991 sregs->gdt.limit = dt.size;
9992 sregs->gdt.base = dt.address;
9993
9994 sregs->cr2 = vcpu->arch.cr2;
9995 sregs->cr3 = kvm_read_cr3(vcpu);
9996
9997 skip_protected_regs:
9998 sregs->cr0 = kvm_read_cr0(vcpu);
9999 sregs->cr4 = kvm_read_cr4(vcpu);
10000 sregs->cr8 = kvm_get_cr8(vcpu);
10001 sregs->efer = vcpu->arch.efer;
10002 sregs->apic_base = kvm_get_apic_base(vcpu);
10003
10004 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
10005
10006 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10007 set_bit(vcpu->arch.interrupt.nr,
10008 (unsigned long *)sregs->interrupt_bitmap);
10009 }
10010
10011 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10012 struct kvm_sregs *sregs)
10013 {
10014 vcpu_load(vcpu);
10015 __get_sregs(vcpu, sregs);
10016 vcpu_put(vcpu);
10017 return 0;
10018 }
10019
10020 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10021 struct kvm_mp_state *mp_state)
10022 {
10023 vcpu_load(vcpu);
10024 if (kvm_mpx_supported())
10025 kvm_load_guest_fpu(vcpu);
10026
10027 kvm_apic_accept_events(vcpu);
10028 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10029 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10030 vcpu->arch.pv.pv_unhalted)
10031 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10032 else
10033 mp_state->mp_state = vcpu->arch.mp_state;
10034
10035 if (kvm_mpx_supported())
10036 kvm_put_guest_fpu(vcpu);
10037 vcpu_put(vcpu);
10038 return 0;
10039 }
10040
10041 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10042 struct kvm_mp_state *mp_state)
10043 {
10044 int ret = -EINVAL;
10045
10046 vcpu_load(vcpu);
10047
10048 if (!lapic_in_kernel(vcpu) &&
10049 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10050 goto out;
10051
10052 /*
10053 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10054 * INIT state; latched init should be reported using
10055 * KVM_SET_VCPU_EVENTS, so reject it here.
10056 */
10057 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10058 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10059 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10060 goto out;
10061
10062 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10063 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10064 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10065 } else
10066 vcpu->arch.mp_state = mp_state->mp_state;
10067 kvm_make_request(KVM_REQ_EVENT, vcpu);
10068
10069 ret = 0;
10070 out:
10071 vcpu_put(vcpu);
10072 return ret;
10073 }
10074
10075 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10076 int reason, bool has_error_code, u32 error_code)
10077 {
10078 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10079 int ret;
10080
10081 init_emulate_ctxt(vcpu);
10082
10083 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10084 has_error_code, error_code);
10085 if (ret) {
10086 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10087 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10088 vcpu->run->internal.ndata = 0;
10089 return 0;
10090 }
10091
10092 kvm_rip_write(vcpu, ctxt->eip);
10093 kvm_set_rflags(vcpu, ctxt->eflags);
10094 return 1;
10095 }
10096 EXPORT_SYMBOL_GPL(kvm_task_switch);
10097
10098 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10099 {
10100 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10101 /*
10102 * When EFER.LME and CR0.PG are set, the processor is in
10103 * 64-bit mode (though maybe in a 32-bit code segment).
10104 * CR4.PAE and EFER.LMA must be set.
10105 */
10106 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10107 return false;
10108 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10109 return false;
10110 } else {
10111 /*
10112 * Not in 64-bit mode: EFER.LMA is clear and the code
10113 * segment cannot be 64-bit.
10114 */
10115 if (sregs->efer & EFER_LMA || sregs->cs.l)
10116 return false;
10117 }
10118
10119 return kvm_is_valid_cr4(vcpu, sregs->cr4);
10120 }
10121
10122 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10123 {
10124 struct msr_data apic_base_msr;
10125 int mmu_reset_needed = 0;
10126 int pending_vec, max_bits, idx;
10127 struct desc_ptr dt;
10128 int ret = -EINVAL;
10129
10130 if (!kvm_is_valid_sregs(vcpu, sregs))
10131 goto out;
10132
10133 apic_base_msr.data = sregs->apic_base;
10134 apic_base_msr.host_initiated = true;
10135 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10136 goto out;
10137
10138 if (vcpu->arch.guest_state_protected)
10139 goto skip_protected_regs;
10140
10141 dt.size = sregs->idt.limit;
10142 dt.address = sregs->idt.base;
10143 static_call(kvm_x86_set_idt)(vcpu, &dt);
10144 dt.size = sregs->gdt.limit;
10145 dt.address = sregs->gdt.base;
10146 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10147
10148 vcpu->arch.cr2 = sregs->cr2;
10149 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10150 vcpu->arch.cr3 = sregs->cr3;
10151 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10152
10153 kvm_set_cr8(vcpu, sregs->cr8);
10154
10155 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10156 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10157
10158 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10159 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10160 vcpu->arch.cr0 = sregs->cr0;
10161
10162 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10163 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10164
10165 idx = srcu_read_lock(&vcpu->kvm->srcu);
10166 if (is_pae_paging(vcpu)) {
10167 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10168 mmu_reset_needed = 1;
10169 }
10170 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10171
10172 if (mmu_reset_needed)
10173 kvm_mmu_reset_context(vcpu);
10174
10175 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10176 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10177 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10178 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10179 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10180 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10181
10182 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10183 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10184
10185 update_cr8_intercept(vcpu);
10186
10187 /* Older userspace won't unhalt the vcpu on reset. */
10188 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10189 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10190 !is_protmode(vcpu))
10191 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10192
10193 skip_protected_regs:
10194 max_bits = KVM_NR_INTERRUPTS;
10195 pending_vec = find_first_bit(
10196 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10197 if (pending_vec < max_bits) {
10198 kvm_queue_interrupt(vcpu, pending_vec, false);
10199 pr_debug("Set back pending irq %d\n", pending_vec);
10200 }
10201
10202 kvm_make_request(KVM_REQ_EVENT, vcpu);
10203
10204 ret = 0;
10205 out:
10206 return ret;
10207 }
10208
10209 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10210 struct kvm_sregs *sregs)
10211 {
10212 int ret;
10213
10214 vcpu_load(vcpu);
10215 ret = __set_sregs(vcpu, sregs);
10216 vcpu_put(vcpu);
10217 return ret;
10218 }
10219
10220 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10221 struct kvm_guest_debug *dbg)
10222 {
10223 unsigned long rflags;
10224 int i, r;
10225
10226 if (vcpu->arch.guest_state_protected)
10227 return -EINVAL;
10228
10229 vcpu_load(vcpu);
10230
10231 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10232 r = -EBUSY;
10233 if (vcpu->arch.exception.pending)
10234 goto out;
10235 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10236 kvm_queue_exception(vcpu, DB_VECTOR);
10237 else
10238 kvm_queue_exception(vcpu, BP_VECTOR);
10239 }
10240
10241 /*
10242 * Read rflags as long as potentially injected trace flags are still
10243 * filtered out.
10244 */
10245 rflags = kvm_get_rflags(vcpu);
10246
10247 vcpu->guest_debug = dbg->control;
10248 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10249 vcpu->guest_debug = 0;
10250
10251 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10252 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10253 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10254 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10255 } else {
10256 for (i = 0; i < KVM_NR_DB_REGS; i++)
10257 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10258 }
10259 kvm_update_dr7(vcpu);
10260
10261 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10262 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10263
10264 /*
10265 * Trigger an rflags update that will inject or remove the trace
10266 * flags.
10267 */
10268 kvm_set_rflags(vcpu, rflags);
10269
10270 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10271
10272 r = 0;
10273
10274 out:
10275 vcpu_put(vcpu);
10276 return r;
10277 }
10278
10279 /*
10280 * Translate a guest virtual address to a guest physical address.
10281 */
10282 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10283 struct kvm_translation *tr)
10284 {
10285 unsigned long vaddr = tr->linear_address;
10286 gpa_t gpa;
10287 int idx;
10288
10289 vcpu_load(vcpu);
10290
10291 idx = srcu_read_lock(&vcpu->kvm->srcu);
10292 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10293 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10294 tr->physical_address = gpa;
10295 tr->valid = gpa != UNMAPPED_GVA;
10296 tr->writeable = 1;
10297 tr->usermode = 0;
10298
10299 vcpu_put(vcpu);
10300 return 0;
10301 }
10302
10303 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10304 {
10305 struct fxregs_state *fxsave;
10306
10307 if (!vcpu->arch.guest_fpu)
10308 return 0;
10309
10310 vcpu_load(vcpu);
10311
10312 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10313 memcpy(fpu->fpr, fxsave->st_space, 128);
10314 fpu->fcw = fxsave->cwd;
10315 fpu->fsw = fxsave->swd;
10316 fpu->ftwx = fxsave->twd;
10317 fpu->last_opcode = fxsave->fop;
10318 fpu->last_ip = fxsave->rip;
10319 fpu->last_dp = fxsave->rdp;
10320 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10321
10322 vcpu_put(vcpu);
10323 return 0;
10324 }
10325
10326 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10327 {
10328 struct fxregs_state *fxsave;
10329
10330 if (!vcpu->arch.guest_fpu)
10331 return 0;
10332
10333 vcpu_load(vcpu);
10334
10335 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10336
10337 memcpy(fxsave->st_space, fpu->fpr, 128);
10338 fxsave->cwd = fpu->fcw;
10339 fxsave->swd = fpu->fsw;
10340 fxsave->twd = fpu->ftwx;
10341 fxsave->fop = fpu->last_opcode;
10342 fxsave->rip = fpu->last_ip;
10343 fxsave->rdp = fpu->last_dp;
10344 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10345
10346 vcpu_put(vcpu);
10347 return 0;
10348 }
10349
10350 static void store_regs(struct kvm_vcpu *vcpu)
10351 {
10352 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10353
10354 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10355 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10356
10357 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10358 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10359
10360 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10361 kvm_vcpu_ioctl_x86_get_vcpu_events(
10362 vcpu, &vcpu->run->s.regs.events);
10363 }
10364
10365 static int sync_regs(struct kvm_vcpu *vcpu)
10366 {
10367 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
10368 return -EINVAL;
10369
10370 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10371 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10372 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10373 }
10374 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10375 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10376 return -EINVAL;
10377 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10378 }
10379 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10380 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10381 vcpu, &vcpu->run->s.regs.events))
10382 return -EINVAL;
10383 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10384 }
10385
10386 return 0;
10387 }
10388
10389 static void fx_init(struct kvm_vcpu *vcpu)
10390 {
10391 if (!vcpu->arch.guest_fpu)
10392 return;
10393
10394 fpstate_init(&vcpu->arch.guest_fpu->state);
10395 if (boot_cpu_has(X86_FEATURE_XSAVES))
10396 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10397 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10398
10399 /*
10400 * Ensure guest xcr0 is valid for loading
10401 */
10402 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10403
10404 vcpu->arch.cr0 |= X86_CR0_ET;
10405 }
10406
10407 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10408 {
10409 if (vcpu->arch.guest_fpu) {
10410 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10411 vcpu->arch.guest_fpu = NULL;
10412 }
10413 }
10414 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10415
10416 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10417 {
10418 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10419 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10420 "guest TSC will not be reliable\n");
10421
10422 return 0;
10423 }
10424
10425 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10426 {
10427 struct page *page;
10428 int r;
10429
10430 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10431 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10432 else
10433 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10434
10435 kvm_set_tsc_khz(vcpu, max_tsc_khz);
10436
10437 r = kvm_mmu_create(vcpu);
10438 if (r < 0)
10439 return r;
10440
10441 if (irqchip_in_kernel(vcpu->kvm)) {
10442 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10443 if (r < 0)
10444 goto fail_mmu_destroy;
10445 if (kvm_apicv_activated(vcpu->kvm))
10446 vcpu->arch.apicv_active = true;
10447 } else
10448 static_branch_inc(&kvm_has_noapic_vcpu);
10449
10450 r = -ENOMEM;
10451
10452 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10453 if (!page)
10454 goto fail_free_lapic;
10455 vcpu->arch.pio_data = page_address(page);
10456
10457 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10458 GFP_KERNEL_ACCOUNT);
10459 if (!vcpu->arch.mce_banks)
10460 goto fail_free_pio_data;
10461 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10462
10463 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10464 GFP_KERNEL_ACCOUNT))
10465 goto fail_free_mce_banks;
10466
10467 if (!alloc_emulate_ctxt(vcpu))
10468 goto free_wbinvd_dirty_mask;
10469
10470 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10471 GFP_KERNEL_ACCOUNT);
10472 if (!vcpu->arch.user_fpu) {
10473 pr_err("kvm: failed to allocate userspace's fpu\n");
10474 goto free_emulate_ctxt;
10475 }
10476
10477 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10478 GFP_KERNEL_ACCOUNT);
10479 if (!vcpu->arch.guest_fpu) {
10480 pr_err("kvm: failed to allocate vcpu's fpu\n");
10481 goto free_user_fpu;
10482 }
10483 fx_init(vcpu);
10484
10485 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10486 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10487
10488 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10489
10490 kvm_async_pf_hash_reset(vcpu);
10491 kvm_pmu_init(vcpu);
10492
10493 vcpu->arch.pending_external_vector = -1;
10494 vcpu->arch.preempted_in_kernel = false;
10495
10496 r = static_call(kvm_x86_vcpu_create)(vcpu);
10497 if (r)
10498 goto free_guest_fpu;
10499
10500 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10501 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10502 kvm_vcpu_mtrr_init(vcpu);
10503 vcpu_load(vcpu);
10504 kvm_vcpu_reset(vcpu, false);
10505 kvm_init_mmu(vcpu, false);
10506 vcpu_put(vcpu);
10507 return 0;
10508
10509 free_guest_fpu:
10510 kvm_free_guest_fpu(vcpu);
10511 free_user_fpu:
10512 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10513 free_emulate_ctxt:
10514 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10515 free_wbinvd_dirty_mask:
10516 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10517 fail_free_mce_banks:
10518 kfree(vcpu->arch.mce_banks);
10519 fail_free_pio_data:
10520 free_page((unsigned long)vcpu->arch.pio_data);
10521 fail_free_lapic:
10522 kvm_free_lapic(vcpu);
10523 fail_mmu_destroy:
10524 kvm_mmu_destroy(vcpu);
10525 return r;
10526 }
10527
10528 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10529 {
10530 struct kvm *kvm = vcpu->kvm;
10531
10532 if (mutex_lock_killable(&vcpu->mutex))
10533 return;
10534 vcpu_load(vcpu);
10535 kvm_synchronize_tsc(vcpu, 0);
10536 vcpu_put(vcpu);
10537
10538 /* poll control enabled by default */
10539 vcpu->arch.msr_kvm_poll_control = 1;
10540
10541 mutex_unlock(&vcpu->mutex);
10542
10543 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10544 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10545 KVMCLOCK_SYNC_PERIOD);
10546 }
10547
10548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10549 {
10550 int idx;
10551
10552 kvmclock_reset(vcpu);
10553
10554 static_call(kvm_x86_vcpu_free)(vcpu);
10555
10556 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10557 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10558 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10559 kvm_free_guest_fpu(vcpu);
10560
10561 kvm_hv_vcpu_uninit(vcpu);
10562 kvm_pmu_destroy(vcpu);
10563 kfree(vcpu->arch.mce_banks);
10564 kvm_free_lapic(vcpu);
10565 idx = srcu_read_lock(&vcpu->kvm->srcu);
10566 kvm_mmu_destroy(vcpu);
10567 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10568 free_page((unsigned long)vcpu->arch.pio_data);
10569 kvfree(vcpu->arch.cpuid_entries);
10570 if (!lapic_in_kernel(vcpu))
10571 static_branch_dec(&kvm_has_noapic_vcpu);
10572 }
10573
10574 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10575 {
10576 unsigned long old_cr0 = kvm_read_cr0(vcpu);
10577
10578 kvm_lapic_reset(vcpu, init_event);
10579
10580 vcpu->arch.hflags = 0;
10581
10582 vcpu->arch.smi_pending = 0;
10583 vcpu->arch.smi_count = 0;
10584 atomic_set(&vcpu->arch.nmi_queued, 0);
10585 vcpu->arch.nmi_pending = 0;
10586 vcpu->arch.nmi_injected = false;
10587 kvm_clear_interrupt_queue(vcpu);
10588 kvm_clear_exception_queue(vcpu);
10589
10590 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10591 kvm_update_dr0123(vcpu);
10592 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10593 vcpu->arch.dr7 = DR7_FIXED_1;
10594 kvm_update_dr7(vcpu);
10595
10596 vcpu->arch.cr2 = 0;
10597
10598 kvm_make_request(KVM_REQ_EVENT, vcpu);
10599 vcpu->arch.apf.msr_en_val = 0;
10600 vcpu->arch.apf.msr_int_val = 0;
10601 vcpu->arch.st.msr_val = 0;
10602
10603 kvmclock_reset(vcpu);
10604
10605 kvm_clear_async_pf_completion_queue(vcpu);
10606 kvm_async_pf_hash_reset(vcpu);
10607 vcpu->arch.apf.halted = false;
10608
10609 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10610 void *mpx_state_buffer;
10611
10612 /*
10613 * To avoid have the INIT path from kvm_apic_has_events() that be
10614 * called with loaded FPU and does not let userspace fix the state.
10615 */
10616 if (init_event)
10617 kvm_put_guest_fpu(vcpu);
10618 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10619 XFEATURE_BNDREGS);
10620 if (mpx_state_buffer)
10621 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10622 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10623 XFEATURE_BNDCSR);
10624 if (mpx_state_buffer)
10625 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10626 if (init_event)
10627 kvm_load_guest_fpu(vcpu);
10628 }
10629
10630 if (!init_event) {
10631 kvm_pmu_reset(vcpu);
10632 vcpu->arch.smbase = 0x30000;
10633
10634 vcpu->arch.msr_misc_features_enables = 0;
10635
10636 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10637 }
10638
10639 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10640 vcpu->arch.regs_avail = ~0;
10641 vcpu->arch.regs_dirty = ~0;
10642
10643 vcpu->arch.ia32_xss = 0;
10644
10645 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10646
10647 vcpu->arch.cr3 = 0;
10648 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10649
10650 /*
10651 * Reset the MMU context if paging was enabled prior to INIT (which is
10652 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
10653 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10654 * checked because it is unconditionally cleared on INIT and all other
10655 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10656 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10657 */
10658 if (old_cr0 & X86_CR0_PG)
10659 kvm_mmu_reset_context(vcpu);
10660 }
10661
10662 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10663 {
10664 struct kvm_segment cs;
10665
10666 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10667 cs.selector = vector << 8;
10668 cs.base = vector << 12;
10669 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10670 kvm_rip_write(vcpu, 0);
10671 }
10672 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10673
10674 int kvm_arch_hardware_enable(void)
10675 {
10676 struct kvm *kvm;
10677 struct kvm_vcpu *vcpu;
10678 int i;
10679 int ret;
10680 u64 local_tsc;
10681 u64 max_tsc = 0;
10682 bool stable, backwards_tsc = false;
10683
10684 kvm_user_return_msr_cpu_online();
10685 ret = static_call(kvm_x86_hardware_enable)();
10686 if (ret != 0)
10687 return ret;
10688
10689 local_tsc = rdtsc();
10690 stable = !kvm_check_tsc_unstable();
10691 list_for_each_entry(kvm, &vm_list, vm_list) {
10692 kvm_for_each_vcpu(i, vcpu, kvm) {
10693 if (!stable && vcpu->cpu == smp_processor_id())
10694 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10695 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10696 backwards_tsc = true;
10697 if (vcpu->arch.last_host_tsc > max_tsc)
10698 max_tsc = vcpu->arch.last_host_tsc;
10699 }
10700 }
10701 }
10702
10703 /*
10704 * Sometimes, even reliable TSCs go backwards. This happens on
10705 * platforms that reset TSC during suspend or hibernate actions, but
10706 * maintain synchronization. We must compensate. Fortunately, we can
10707 * detect that condition here, which happens early in CPU bringup,
10708 * before any KVM threads can be running. Unfortunately, we can't
10709 * bring the TSCs fully up to date with real time, as we aren't yet far
10710 * enough into CPU bringup that we know how much real time has actually
10711 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
10712 * variables that haven't been updated yet.
10713 *
10714 * So we simply find the maximum observed TSC above, then record the
10715 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10716 * the adjustment will be applied. Note that we accumulate
10717 * adjustments, in case multiple suspend cycles happen before some VCPU
10718 * gets a chance to run again. In the event that no KVM threads get a
10719 * chance to run, we will miss the entire elapsed period, as we'll have
10720 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10721 * loose cycle time. This isn't too big a deal, since the loss will be
10722 * uniform across all VCPUs (not to mention the scenario is extremely
10723 * unlikely). It is possible that a second hibernate recovery happens
10724 * much faster than a first, causing the observed TSC here to be
10725 * smaller; this would require additional padding adjustment, which is
10726 * why we set last_host_tsc to the local tsc observed here.
10727 *
10728 * N.B. - this code below runs only on platforms with reliable TSC,
10729 * as that is the only way backwards_tsc is set above. Also note
10730 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10731 * have the same delta_cyc adjustment applied if backwards_tsc
10732 * is detected. Note further, this adjustment is only done once,
10733 * as we reset last_host_tsc on all VCPUs to stop this from being
10734 * called multiple times (one for each physical CPU bringup).
10735 *
10736 * Platforms with unreliable TSCs don't have to deal with this, they
10737 * will be compensated by the logic in vcpu_load, which sets the TSC to
10738 * catchup mode. This will catchup all VCPUs to real time, but cannot
10739 * guarantee that they stay in perfect synchronization.
10740 */
10741 if (backwards_tsc) {
10742 u64 delta_cyc = max_tsc - local_tsc;
10743 list_for_each_entry(kvm, &vm_list, vm_list) {
10744 kvm->arch.backwards_tsc_observed = true;
10745 kvm_for_each_vcpu(i, vcpu, kvm) {
10746 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10747 vcpu->arch.last_host_tsc = local_tsc;
10748 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
10749 }
10750
10751 /*
10752 * We have to disable TSC offset matching.. if you were
10753 * booting a VM while issuing an S4 host suspend....
10754 * you may have some problem. Solving this issue is
10755 * left as an exercise to the reader.
10756 */
10757 kvm->arch.last_tsc_nsec = 0;
10758 kvm->arch.last_tsc_write = 0;
10759 }
10760
10761 }
10762 return 0;
10763 }
10764
10765 void kvm_arch_hardware_disable(void)
10766 {
10767 static_call(kvm_x86_hardware_disable)();
10768 drop_user_return_notifiers();
10769 }
10770
10771 int kvm_arch_hardware_setup(void *opaque)
10772 {
10773 struct kvm_x86_init_ops *ops = opaque;
10774 int r;
10775
10776 rdmsrl_safe(MSR_EFER, &host_efer);
10777
10778 if (boot_cpu_has(X86_FEATURE_XSAVES))
10779 rdmsrl(MSR_IA32_XSS, host_xss);
10780
10781 r = ops->hardware_setup();
10782 if (r != 0)
10783 return r;
10784
10785 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
10786 kvm_ops_static_call_update();
10787
10788 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10789 supported_xss = 0;
10790
10791 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10792 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10793 #undef __kvm_cpu_cap_has
10794
10795 if (kvm_has_tsc_control) {
10796 /*
10797 * Make sure the user can only configure tsc_khz values that
10798 * fit into a signed integer.
10799 * A min value is not calculated because it will always
10800 * be 1 on all machines.
10801 */
10802 u64 max = min(0x7fffffffULL,
10803 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10804 kvm_max_guest_tsc_khz = max;
10805
10806 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
10807 }
10808
10809 kvm_init_msr_list();
10810 return 0;
10811 }
10812
10813 void kvm_arch_hardware_unsetup(void)
10814 {
10815 static_call(kvm_x86_hardware_unsetup)();
10816 }
10817
10818 int kvm_arch_check_processor_compat(void *opaque)
10819 {
10820 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
10821 struct kvm_x86_init_ops *ops = opaque;
10822
10823 WARN_ON(!irqs_disabled());
10824
10825 if (__cr4_reserved_bits(cpu_has, c) !=
10826 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
10827 return -EIO;
10828
10829 return ops->check_processor_compatibility();
10830 }
10831
10832 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10833 {
10834 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10835 }
10836 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10837
10838 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10839 {
10840 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
10841 }
10842
10843 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
10844 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
10845
10846 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10847 {
10848 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10849
10850 vcpu->arch.l1tf_flush_l1d = true;
10851 if (pmu->version && unlikely(pmu->event_count)) {
10852 pmu->need_cleanup = true;
10853 kvm_make_request(KVM_REQ_PMU, vcpu);
10854 }
10855 static_call(kvm_x86_sched_in)(vcpu, cpu);
10856 }
10857
10858 void kvm_arch_free_vm(struct kvm *kvm)
10859 {
10860 kfree(to_kvm_hv(kvm)->hv_pa_pg);
10861 vfree(kvm);
10862 }
10863
10864
10865 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
10866 {
10867 int ret;
10868
10869 if (type)
10870 return -EINVAL;
10871
10872 ret = kvm_page_track_init(kvm);
10873 if (ret)
10874 return ret;
10875
10876 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
10877 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10878 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
10879 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
10880 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
10881 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
10882
10883 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10884 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
10885 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10886 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10887 &kvm->arch.irq_sources_bitmap);
10888
10889 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
10890 mutex_init(&kvm->arch.apic_map_lock);
10891 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10892
10893 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
10894 pvclock_update_vm_gtod_copy(kvm);
10895
10896 kvm->arch.guest_can_read_msr_platform_info = true;
10897
10898 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
10899 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
10900
10901 kvm_hv_init_vm(kvm);
10902 kvm_mmu_init_vm(kvm);
10903
10904 return static_call(kvm_x86_vm_init)(kvm);
10905 }
10906
10907 int kvm_arch_post_init_vm(struct kvm *kvm)
10908 {
10909 return kvm_mmu_post_init_vm(kvm);
10910 }
10911
10912 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10913 {
10914 vcpu_load(vcpu);
10915 kvm_mmu_unload(vcpu);
10916 vcpu_put(vcpu);
10917 }
10918
10919 static void kvm_free_vcpus(struct kvm *kvm)
10920 {
10921 unsigned int i;
10922 struct kvm_vcpu *vcpu;
10923
10924 /*
10925 * Unpin any mmu pages first.
10926 */
10927 kvm_for_each_vcpu(i, vcpu, kvm) {
10928 kvm_clear_async_pf_completion_queue(vcpu);
10929 kvm_unload_vcpu_mmu(vcpu);
10930 }
10931 kvm_for_each_vcpu(i, vcpu, kvm)
10932 kvm_vcpu_destroy(vcpu);
10933
10934 mutex_lock(&kvm->lock);
10935 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10936 kvm->vcpus[i] = NULL;
10937
10938 atomic_set(&kvm->online_vcpus, 0);
10939 mutex_unlock(&kvm->lock);
10940 }
10941
10942 void kvm_arch_sync_events(struct kvm *kvm)
10943 {
10944 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
10945 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
10946 kvm_free_pit(kvm);
10947 }
10948
10949 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10950
10951 /**
10952 * __x86_set_memory_region: Setup KVM internal memory slot
10953 *
10954 * @kvm: the kvm pointer to the VM.
10955 * @id: the slot ID to setup.
10956 * @gpa: the GPA to install the slot (unused when @size == 0).
10957 * @size: the size of the slot. Set to zero to uninstall a slot.
10958 *
10959 * This function helps to setup a KVM internal memory slot. Specify
10960 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10961 * slot. The return code can be one of the following:
10962 *
10963 * HVA: on success (uninstall will return a bogus HVA)
10964 * -errno: on error
10965 *
10966 * The caller should always use IS_ERR() to check the return value
10967 * before use. Note, the KVM internal memory slots are guaranteed to
10968 * remain valid and unchanged until the VM is destroyed, i.e., the
10969 * GPA->HVA translation will not change. However, the HVA is a user
10970 * address, i.e. its accessibility is not guaranteed, and must be
10971 * accessed via __copy_{to,from}_user().
10972 */
10973 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10974 u32 size)
10975 {
10976 int i, r;
10977 unsigned long hva, old_npages;
10978 struct kvm_memslots *slots = kvm_memslots(kvm);
10979 struct kvm_memory_slot *slot;
10980
10981 /* Called with kvm->slots_lock held. */
10982 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
10983 return ERR_PTR_USR(-EINVAL);
10984
10985 slot = id_to_memslot(slots, id);
10986 if (size) {
10987 if (slot && slot->npages)
10988 return ERR_PTR_USR(-EEXIST);
10989
10990 /*
10991 * MAP_SHARED to prevent internal slot pages from being moved
10992 * by fork()/COW.
10993 */
10994 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10995 MAP_SHARED | MAP_ANONYMOUS, 0);
10996 if (IS_ERR((void *)hva))
10997 return (void __user *)hva;
10998 } else {
10999 if (!slot || !slot->npages)
11000 return NULL;
11001
11002 old_npages = slot->npages;
11003 hva = slot->userspace_addr;
11004 }
11005
11006 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11007 struct kvm_userspace_memory_region m;
11008
11009 m.slot = id | (i << 16);
11010 m.flags = 0;
11011 m.guest_phys_addr = gpa;
11012 m.userspace_addr = hva;
11013 m.memory_size = size;
11014 r = __kvm_set_memory_region(kvm, &m);
11015 if (r < 0)
11016 return ERR_PTR_USR(r);
11017 }
11018
11019 if (!size)
11020 vm_munmap(hva, old_npages * PAGE_SIZE);
11021
11022 return (void __user *)hva;
11023 }
11024 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11025
11026 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11027 {
11028 kvm_mmu_pre_destroy_vm(kvm);
11029 }
11030
11031 void kvm_arch_destroy_vm(struct kvm *kvm)
11032 {
11033 if (current->mm == kvm->mm) {
11034 /*
11035 * Free memory regions allocated on behalf of userspace,
11036 * unless the the memory map has changed due to process exit
11037 * or fd copying.
11038 */
11039 mutex_lock(&kvm->slots_lock);
11040 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11041 0, 0);
11042 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11043 0, 0);
11044 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11045 mutex_unlock(&kvm->slots_lock);
11046 }
11047 static_call_cond(kvm_x86_vm_destroy)(kvm);
11048 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11049 kvm_pic_destroy(kvm);
11050 kvm_ioapic_destroy(kvm);
11051 kvm_free_vcpus(kvm);
11052 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11053 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11054 kvm_mmu_uninit_vm(kvm);
11055 kvm_page_track_cleanup(kvm);
11056 kvm_xen_destroy_vm(kvm);
11057 kvm_hv_destroy_vm(kvm);
11058 }
11059
11060 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11061 {
11062 int i;
11063
11064 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11065 kvfree(slot->arch.rmap[i]);
11066 slot->arch.rmap[i] = NULL;
11067
11068 if (i == 0)
11069 continue;
11070
11071 kvfree(slot->arch.lpage_info[i - 1]);
11072 slot->arch.lpage_info[i - 1] = NULL;
11073 }
11074
11075 kvm_page_track_free_memslot(slot);
11076 }
11077
11078 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
11079 unsigned long npages)
11080 {
11081 int i;
11082
11083 /*
11084 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11085 * old arrays will be freed by __kvm_set_memory_region() if installing
11086 * the new memslot is successful.
11087 */
11088 memset(&slot->arch, 0, sizeof(slot->arch));
11089
11090 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11091 struct kvm_lpage_info *linfo;
11092 unsigned long ugfn;
11093 int lpages;
11094 int level = i + 1;
11095
11096 lpages = gfn_to_index(slot->base_gfn + npages - 1,
11097 slot->base_gfn, level) + 1;
11098
11099 slot->arch.rmap[i] =
11100 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
11101 GFP_KERNEL_ACCOUNT);
11102 if (!slot->arch.rmap[i])
11103 goto out_free;
11104 if (i == 0)
11105 continue;
11106
11107 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11108 if (!linfo)
11109 goto out_free;
11110
11111 slot->arch.lpage_info[i - 1] = linfo;
11112
11113 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11114 linfo[0].disallow_lpage = 1;
11115 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11116 linfo[lpages - 1].disallow_lpage = 1;
11117 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11118 /*
11119 * If the gfn and userspace address are not aligned wrt each
11120 * other, disable large page support for this slot.
11121 */
11122 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11123 unsigned long j;
11124
11125 for (j = 0; j < lpages; ++j)
11126 linfo[j].disallow_lpage = 1;
11127 }
11128 }
11129
11130 if (kvm_page_track_create_memslot(slot, npages))
11131 goto out_free;
11132
11133 return 0;
11134
11135 out_free:
11136 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11137 kvfree(slot->arch.rmap[i]);
11138 slot->arch.rmap[i] = NULL;
11139 if (i == 0)
11140 continue;
11141
11142 kvfree(slot->arch.lpage_info[i - 1]);
11143 slot->arch.lpage_info[i - 1] = NULL;
11144 }
11145 return -ENOMEM;
11146 }
11147
11148 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11149 {
11150 struct kvm_vcpu *vcpu;
11151 int i;
11152
11153 /*
11154 * memslots->generation has been incremented.
11155 * mmio generation may have reached its maximum value.
11156 */
11157 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11158
11159 /* Force re-initialization of steal_time cache */
11160 kvm_for_each_vcpu(i, vcpu, kvm)
11161 kvm_vcpu_kick(vcpu);
11162 }
11163
11164 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11165 struct kvm_memory_slot *memslot,
11166 const struct kvm_userspace_memory_region *mem,
11167 enum kvm_mr_change change)
11168 {
11169 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11170 return kvm_alloc_memslot_metadata(memslot,
11171 mem->memory_size >> PAGE_SHIFT);
11172 return 0;
11173 }
11174
11175
11176 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11177 {
11178 struct kvm_arch *ka = &kvm->arch;
11179
11180 if (!kvm_x86_ops.cpu_dirty_log_size)
11181 return;
11182
11183 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11184 (!enable && --ka->cpu_dirty_logging_count == 0))
11185 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11186
11187 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11188 }
11189
11190 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11191 struct kvm_memory_slot *old,
11192 struct kvm_memory_slot *new,
11193 enum kvm_mr_change change)
11194 {
11195 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11196
11197 /*
11198 * Update CPU dirty logging if dirty logging is being toggled. This
11199 * applies to all operations.
11200 */
11201 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11202 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11203
11204 /*
11205 * Nothing more to do for RO slots (which can't be dirtied and can't be
11206 * made writable) or CREATE/MOVE/DELETE of a slot.
11207 *
11208 * For a memslot with dirty logging disabled:
11209 * CREATE: No dirty mappings will already exist.
11210 * MOVE/DELETE: The old mappings will already have been cleaned up by
11211 * kvm_arch_flush_shadow_memslot()
11212 *
11213 * For a memslot with dirty logging enabled:
11214 * CREATE: No shadow pages exist, thus nothing to write-protect
11215 * and no dirty bits to clear.
11216 * MOVE/DELETE: The old mappings will already have been cleaned up by
11217 * kvm_arch_flush_shadow_memslot().
11218 */
11219 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11220 return;
11221
11222 /*
11223 * READONLY and non-flags changes were filtered out above, and the only
11224 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11225 * logging isn't being toggled on or off.
11226 */
11227 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11228 return;
11229
11230 if (!log_dirty_pages) {
11231 /*
11232 * Dirty logging tracks sptes in 4k granularity, meaning that
11233 * large sptes have to be split. If live migration succeeds,
11234 * the guest in the source machine will be destroyed and large
11235 * sptes will be created in the destination. However, if the
11236 * guest continues to run in the source machine (for example if
11237 * live migration fails), small sptes will remain around and
11238 * cause bad performance.
11239 *
11240 * Scan sptes if dirty logging has been stopped, dropping those
11241 * which can be collapsed into a single large-page spte. Later
11242 * page faults will create the large-page sptes.
11243 */
11244 kvm_mmu_zap_collapsible_sptes(kvm, new);
11245 } else {
11246 /* By default, write-protect everything to log writes. */
11247 int level = PG_LEVEL_4K;
11248
11249 if (kvm_x86_ops.cpu_dirty_log_size) {
11250 /*
11251 * Clear all dirty bits, unless pages are treated as
11252 * dirty from the get-go.
11253 */
11254 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
11255 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11256
11257 /*
11258 * Write-protect large pages on write so that dirty
11259 * logging happens at 4k granularity. No need to
11260 * write-protect small SPTEs since write accesses are
11261 * logged by the CPU via dirty bits.
11262 */
11263 level = PG_LEVEL_2M;
11264 } else if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
11265 /*
11266 * If we're with initial-all-set, we don't need
11267 * to write protect any small page because
11268 * they're reported as dirty already. However
11269 * we still need to write-protect huge pages
11270 * so that the page split can happen lazily on
11271 * the first write to the huge page.
11272 */
11273 level = PG_LEVEL_2M;
11274 }
11275 kvm_mmu_slot_remove_write_access(kvm, new, level);
11276 }
11277 }
11278
11279 void kvm_arch_commit_memory_region(struct kvm *kvm,
11280 const struct kvm_userspace_memory_region *mem,
11281 struct kvm_memory_slot *old,
11282 const struct kvm_memory_slot *new,
11283 enum kvm_mr_change change)
11284 {
11285 if (!kvm->arch.n_requested_mmu_pages)
11286 kvm_mmu_change_mmu_pages(kvm,
11287 kvm_mmu_calculate_default_mmu_pages(kvm));
11288
11289 /*
11290 * FIXME: const-ify all uses of struct kvm_memory_slot.
11291 */
11292 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
11293
11294 /* Free the arrays associated with the old memslot. */
11295 if (change == KVM_MR_MOVE)
11296 kvm_arch_free_memslot(kvm, old);
11297 }
11298
11299 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11300 {
11301 kvm_mmu_zap_all(kvm);
11302 }
11303
11304 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11305 struct kvm_memory_slot *slot)
11306 {
11307 kvm_page_track_flush_slot(kvm, slot);
11308 }
11309
11310 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11311 {
11312 return (is_guest_mode(vcpu) &&
11313 kvm_x86_ops.guest_apic_has_interrupt &&
11314 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11315 }
11316
11317 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11318 {
11319 if (!list_empty_careful(&vcpu->async_pf.done))
11320 return true;
11321
11322 if (kvm_apic_has_events(vcpu))
11323 return true;
11324
11325 if (vcpu->arch.pv.pv_unhalted)
11326 return true;
11327
11328 if (vcpu->arch.exception.pending)
11329 return true;
11330
11331 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11332 (vcpu->arch.nmi_pending &&
11333 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11334 return true;
11335
11336 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11337 (vcpu->arch.smi_pending &&
11338 static_call(kvm_x86_smi_allowed)(vcpu, false)))
11339 return true;
11340
11341 if (kvm_arch_interrupt_allowed(vcpu) &&
11342 (kvm_cpu_has_interrupt(vcpu) ||
11343 kvm_guest_apic_has_interrupt(vcpu)))
11344 return true;
11345
11346 if (kvm_hv_has_stimer_pending(vcpu))
11347 return true;
11348
11349 if (is_guest_mode(vcpu) &&
11350 kvm_x86_ops.nested_ops->hv_timer_pending &&
11351 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11352 return true;
11353
11354 return false;
11355 }
11356
11357 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11358 {
11359 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11360 }
11361
11362 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11363 {
11364 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11365 return true;
11366
11367 return false;
11368 }
11369
11370 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11371 {
11372 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11373 return true;
11374
11375 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11376 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11377 kvm_test_request(KVM_REQ_EVENT, vcpu))
11378 return true;
11379
11380 return kvm_arch_dy_has_pending_interrupt(vcpu);
11381 }
11382
11383 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11384 {
11385 if (vcpu->arch.guest_state_protected)
11386 return true;
11387
11388 return vcpu->arch.preempted_in_kernel;
11389 }
11390
11391 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11392 {
11393 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11394 }
11395
11396 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11397 {
11398 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11399 }
11400
11401 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11402 {
11403 /* Can't read the RIP when guest state is protected, just return 0 */
11404 if (vcpu->arch.guest_state_protected)
11405 return 0;
11406
11407 if (is_64_bit_mode(vcpu))
11408 return kvm_rip_read(vcpu);
11409 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11410 kvm_rip_read(vcpu));
11411 }
11412 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11413
11414 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11415 {
11416 return kvm_get_linear_rip(vcpu) == linear_rip;
11417 }
11418 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11419
11420 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11421 {
11422 unsigned long rflags;
11423
11424 rflags = static_call(kvm_x86_get_rflags)(vcpu);
11425 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11426 rflags &= ~X86_EFLAGS_TF;
11427 return rflags;
11428 }
11429 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11430
11431 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11432 {
11433 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11434 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11435 rflags |= X86_EFLAGS_TF;
11436 static_call(kvm_x86_set_rflags)(vcpu, rflags);
11437 }
11438
11439 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11440 {
11441 __kvm_set_rflags(vcpu, rflags);
11442 kvm_make_request(KVM_REQ_EVENT, vcpu);
11443 }
11444 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11445
11446 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11447 {
11448 int r;
11449
11450 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11451 work->wakeup_all)
11452 return;
11453
11454 r = kvm_mmu_reload(vcpu);
11455 if (unlikely(r))
11456 return;
11457
11458 if (!vcpu->arch.mmu->direct_map &&
11459 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11460 return;
11461
11462 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11463 }
11464
11465 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11466 {
11467 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11468
11469 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11470 }
11471
11472 static inline u32 kvm_async_pf_next_probe(u32 key)
11473 {
11474 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11475 }
11476
11477 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11478 {
11479 u32 key = kvm_async_pf_hash_fn(gfn);
11480
11481 while (vcpu->arch.apf.gfns[key] != ~0)
11482 key = kvm_async_pf_next_probe(key);
11483
11484 vcpu->arch.apf.gfns[key] = gfn;
11485 }
11486
11487 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11488 {
11489 int i;
11490 u32 key = kvm_async_pf_hash_fn(gfn);
11491
11492 for (i = 0; i < ASYNC_PF_PER_VCPU &&
11493 (vcpu->arch.apf.gfns[key] != gfn &&
11494 vcpu->arch.apf.gfns[key] != ~0); i++)
11495 key = kvm_async_pf_next_probe(key);
11496
11497 return key;
11498 }
11499
11500 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11501 {
11502 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11503 }
11504
11505 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11506 {
11507 u32 i, j, k;
11508
11509 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11510
11511 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11512 return;
11513
11514 while (true) {
11515 vcpu->arch.apf.gfns[i] = ~0;
11516 do {
11517 j = kvm_async_pf_next_probe(j);
11518 if (vcpu->arch.apf.gfns[j] == ~0)
11519 return;
11520 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11521 /*
11522 * k lies cyclically in ]i,j]
11523 * | i.k.j |
11524 * |....j i.k.| or |.k..j i...|
11525 */
11526 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11527 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11528 i = j;
11529 }
11530 }
11531
11532 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11533 {
11534 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11535
11536 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11537 sizeof(reason));
11538 }
11539
11540 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11541 {
11542 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11543
11544 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11545 &token, offset, sizeof(token));
11546 }
11547
11548 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11549 {
11550 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11551 u32 val;
11552
11553 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11554 &val, offset, sizeof(val)))
11555 return false;
11556
11557 return !val;
11558 }
11559
11560 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11561 {
11562 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11563 return false;
11564
11565 if (!kvm_pv_async_pf_enabled(vcpu) ||
11566 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11567 return false;
11568
11569 return true;
11570 }
11571
11572 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11573 {
11574 if (unlikely(!lapic_in_kernel(vcpu) ||
11575 kvm_event_needs_reinjection(vcpu) ||
11576 vcpu->arch.exception.pending))
11577 return false;
11578
11579 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11580 return false;
11581
11582 /*
11583 * If interrupts are off we cannot even use an artificial
11584 * halt state.
11585 */
11586 return kvm_arch_interrupt_allowed(vcpu);
11587 }
11588
11589 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11590 struct kvm_async_pf *work)
11591 {
11592 struct x86_exception fault;
11593
11594 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11595 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11596
11597 if (kvm_can_deliver_async_pf(vcpu) &&
11598 !apf_put_user_notpresent(vcpu)) {
11599 fault.vector = PF_VECTOR;
11600 fault.error_code_valid = true;
11601 fault.error_code = 0;
11602 fault.nested_page_fault = false;
11603 fault.address = work->arch.token;
11604 fault.async_page_fault = true;
11605 kvm_inject_page_fault(vcpu, &fault);
11606 return true;
11607 } else {
11608 /*
11609 * It is not possible to deliver a paravirtualized asynchronous
11610 * page fault, but putting the guest in an artificial halt state
11611 * can be beneficial nevertheless: if an interrupt arrives, we
11612 * can deliver it timely and perhaps the guest will schedule
11613 * another process. When the instruction that triggered a page
11614 * fault is retried, hopefully the page will be ready in the host.
11615 */
11616 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11617 return false;
11618 }
11619 }
11620
11621 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11622 struct kvm_async_pf *work)
11623 {
11624 struct kvm_lapic_irq irq = {
11625 .delivery_mode = APIC_DM_FIXED,
11626 .vector = vcpu->arch.apf.vec
11627 };
11628
11629 if (work->wakeup_all)
11630 work->arch.token = ~0; /* broadcast wakeup */
11631 else
11632 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
11633 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
11634
11635 if ((work->wakeup_all || work->notpresent_injected) &&
11636 kvm_pv_async_pf_enabled(vcpu) &&
11637 !apf_put_user_ready(vcpu, work->arch.token)) {
11638 vcpu->arch.apf.pageready_pending = true;
11639 kvm_apic_set_irq(vcpu, &irq, NULL);
11640 }
11641
11642 vcpu->arch.apf.halted = false;
11643 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11644 }
11645
11646 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11647 {
11648 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11649 if (!vcpu->arch.apf.pageready_pending)
11650 kvm_vcpu_kick(vcpu);
11651 }
11652
11653 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
11654 {
11655 if (!kvm_pv_async_pf_enabled(vcpu))
11656 return true;
11657 else
11658 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
11659 }
11660
11661 void kvm_arch_start_assignment(struct kvm *kvm)
11662 {
11663 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
11664 static_call_cond(kvm_x86_start_assignment)(kvm);
11665 }
11666 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11667
11668 void kvm_arch_end_assignment(struct kvm *kvm)
11669 {
11670 atomic_dec(&kvm->arch.assigned_device_count);
11671 }
11672 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11673
11674 bool kvm_arch_has_assigned_device(struct kvm *kvm)
11675 {
11676 return atomic_read(&kvm->arch.assigned_device_count);
11677 }
11678 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11679
11680 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11681 {
11682 atomic_inc(&kvm->arch.noncoherent_dma_count);
11683 }
11684 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11685
11686 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11687 {
11688 atomic_dec(&kvm->arch.noncoherent_dma_count);
11689 }
11690 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11691
11692 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11693 {
11694 return atomic_read(&kvm->arch.noncoherent_dma_count);
11695 }
11696 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11697
11698 bool kvm_arch_has_irq_bypass(void)
11699 {
11700 return true;
11701 }
11702
11703 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11704 struct irq_bypass_producer *prod)
11705 {
11706 struct kvm_kernel_irqfd *irqfd =
11707 container_of(cons, struct kvm_kernel_irqfd, consumer);
11708 int ret;
11709
11710 irqfd->producer = prod;
11711 kvm_arch_start_assignment(irqfd->kvm);
11712 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
11713 prod->irq, irqfd->gsi, 1);
11714
11715 if (ret)
11716 kvm_arch_end_assignment(irqfd->kvm);
11717
11718 return ret;
11719 }
11720
11721 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11722 struct irq_bypass_producer *prod)
11723 {
11724 int ret;
11725 struct kvm_kernel_irqfd *irqfd =
11726 container_of(cons, struct kvm_kernel_irqfd, consumer);
11727
11728 WARN_ON(irqfd->producer != prod);
11729 irqfd->producer = NULL;
11730
11731 /*
11732 * When producer of consumer is unregistered, we change back to
11733 * remapped mode, so we can re-use the current implementation
11734 * when the irq is masked/disabled or the consumer side (KVM
11735 * int this case doesn't want to receive the interrupts.
11736 */
11737 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
11738 if (ret)
11739 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11740 " fails: %d\n", irqfd->consumer.token, ret);
11741
11742 kvm_arch_end_assignment(irqfd->kvm);
11743 }
11744
11745 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11746 uint32_t guest_irq, bool set)
11747 {
11748 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
11749 }
11750
11751 bool kvm_vector_hashing_enabled(void)
11752 {
11753 return vector_hashing;
11754 }
11755
11756 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11757 {
11758 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11759 }
11760 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11761
11762
11763 int kvm_spec_ctrl_test_value(u64 value)
11764 {
11765 /*
11766 * test that setting IA32_SPEC_CTRL to given value
11767 * is allowed by the host processor
11768 */
11769
11770 u64 saved_value;
11771 unsigned long flags;
11772 int ret = 0;
11773
11774 local_irq_save(flags);
11775
11776 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11777 ret = 1;
11778 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11779 ret = 1;
11780 else
11781 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
11782
11783 local_irq_restore(flags);
11784
11785 return ret;
11786 }
11787 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
11788
11789 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11790 {
11791 struct x86_exception fault;
11792 u32 access = error_code &
11793 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
11794
11795 if (!(error_code & PFERR_PRESENT_MASK) ||
11796 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
11797 /*
11798 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11799 * tables probably do not match the TLB. Just proceed
11800 * with the error code that the processor gave.
11801 */
11802 fault.vector = PF_VECTOR;
11803 fault.error_code_valid = true;
11804 fault.error_code = error_code;
11805 fault.nested_page_fault = false;
11806 fault.address = gva;
11807 }
11808 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
11809 }
11810 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
11811
11812 /*
11813 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11814 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11815 * indicates whether exit to userspace is needed.
11816 */
11817 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11818 struct x86_exception *e)
11819 {
11820 if (r == X86EMUL_PROPAGATE_FAULT) {
11821 kvm_inject_emulated_page_fault(vcpu, e);
11822 return 1;
11823 }
11824
11825 /*
11826 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11827 * while handling a VMX instruction KVM could've handled the request
11828 * correctly by exiting to userspace and performing I/O but there
11829 * doesn't seem to be a real use-case behind such requests, just return
11830 * KVM_EXIT_INTERNAL_ERROR for now.
11831 */
11832 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11833 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11834 vcpu->run->internal.ndata = 0;
11835
11836 return 0;
11837 }
11838 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11839
11840 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11841 {
11842 bool pcid_enabled;
11843 struct x86_exception e;
11844 unsigned i;
11845 unsigned long roots_to_free = 0;
11846 struct {
11847 u64 pcid;
11848 u64 gla;
11849 } operand;
11850 int r;
11851
11852 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11853 if (r != X86EMUL_CONTINUE)
11854 return kvm_handle_memory_failure(vcpu, r, &e);
11855
11856 if (operand.pcid >> 12 != 0) {
11857 kvm_inject_gp(vcpu, 0);
11858 return 1;
11859 }
11860
11861 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11862
11863 switch (type) {
11864 case INVPCID_TYPE_INDIV_ADDR:
11865 if ((!pcid_enabled && (operand.pcid != 0)) ||
11866 is_noncanonical_address(operand.gla, vcpu)) {
11867 kvm_inject_gp(vcpu, 0);
11868 return 1;
11869 }
11870 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11871 return kvm_skip_emulated_instruction(vcpu);
11872
11873 case INVPCID_TYPE_SINGLE_CTXT:
11874 if (!pcid_enabled && (operand.pcid != 0)) {
11875 kvm_inject_gp(vcpu, 0);
11876 return 1;
11877 }
11878
11879 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11880 kvm_mmu_sync_roots(vcpu);
11881 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11882 }
11883
11884 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11885 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11886 == operand.pcid)
11887 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11888
11889 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11890 /*
11891 * If neither the current cr3 nor any of the prev_roots use the
11892 * given PCID, then nothing needs to be done here because a
11893 * resync will happen anyway before switching to any other CR3.
11894 */
11895
11896 return kvm_skip_emulated_instruction(vcpu);
11897
11898 case INVPCID_TYPE_ALL_NON_GLOBAL:
11899 /*
11900 * Currently, KVM doesn't mark global entries in the shadow
11901 * page tables, so a non-global flush just degenerates to a
11902 * global flush. If needed, we could optimize this later by
11903 * keeping track of global entries in shadow page tables.
11904 */
11905
11906 fallthrough;
11907 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11908 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
11909 return kvm_skip_emulated_instruction(vcpu);
11910
11911 default:
11912 BUG(); /* We have already checked above that type <= 3 */
11913 }
11914 }
11915 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11916
11917 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
11918 {
11919 struct kvm_run *run = vcpu->run;
11920 struct kvm_mmio_fragment *frag;
11921 unsigned int len;
11922
11923 BUG_ON(!vcpu->mmio_needed);
11924
11925 /* Complete previous fragment */
11926 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11927 len = min(8u, frag->len);
11928 if (!vcpu->mmio_is_write)
11929 memcpy(frag->data, run->mmio.data, len);
11930
11931 if (frag->len <= 8) {
11932 /* Switch to the next fragment. */
11933 frag++;
11934 vcpu->mmio_cur_fragment++;
11935 } else {
11936 /* Go forward to the next mmio piece. */
11937 frag->data += len;
11938 frag->gpa += len;
11939 frag->len -= len;
11940 }
11941
11942 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11943 vcpu->mmio_needed = 0;
11944
11945 // VMG change, at this point, we're always done
11946 // RIP has already been advanced
11947 return 1;
11948 }
11949
11950 // More MMIO is needed
11951 run->mmio.phys_addr = frag->gpa;
11952 run->mmio.len = min(8u, frag->len);
11953 run->mmio.is_write = vcpu->mmio_is_write;
11954 if (run->mmio.is_write)
11955 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11956 run->exit_reason = KVM_EXIT_MMIO;
11957
11958 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11959
11960 return 0;
11961 }
11962
11963 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
11964 void *data)
11965 {
11966 int handled;
11967 struct kvm_mmio_fragment *frag;
11968
11969 if (!data)
11970 return -EINVAL;
11971
11972 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
11973 if (handled == bytes)
11974 return 1;
11975
11976 bytes -= handled;
11977 gpa += handled;
11978 data += handled;
11979
11980 /*TODO: Check if need to increment number of frags */
11981 frag = vcpu->mmio_fragments;
11982 vcpu->mmio_nr_fragments = 1;
11983 frag->len = bytes;
11984 frag->gpa = gpa;
11985 frag->data = data;
11986
11987 vcpu->mmio_needed = 1;
11988 vcpu->mmio_cur_fragment = 0;
11989
11990 vcpu->run->mmio.phys_addr = gpa;
11991 vcpu->run->mmio.len = min(8u, frag->len);
11992 vcpu->run->mmio.is_write = 1;
11993 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
11994 vcpu->run->exit_reason = KVM_EXIT_MMIO;
11995
11996 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
11997
11998 return 0;
11999 }
12000 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12001
12002 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12003 void *data)
12004 {
12005 int handled;
12006 struct kvm_mmio_fragment *frag;
12007
12008 if (!data)
12009 return -EINVAL;
12010
12011 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12012 if (handled == bytes)
12013 return 1;
12014
12015 bytes -= handled;
12016 gpa += handled;
12017 data += handled;
12018
12019 /*TODO: Check if need to increment number of frags */
12020 frag = vcpu->mmio_fragments;
12021 vcpu->mmio_nr_fragments = 1;
12022 frag->len = bytes;
12023 frag->gpa = gpa;
12024 frag->data = data;
12025
12026 vcpu->mmio_needed = 1;
12027 vcpu->mmio_cur_fragment = 0;
12028
12029 vcpu->run->mmio.phys_addr = gpa;
12030 vcpu->run->mmio.len = min(8u, frag->len);
12031 vcpu->run->mmio.is_write = 0;
12032 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12033
12034 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12035
12036 return 0;
12037 }
12038 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12039
12040 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12041 unsigned int port);
12042
12043 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12044 {
12045 int size = vcpu->arch.pio.size;
12046 int port = vcpu->arch.pio.port;
12047
12048 vcpu->arch.pio.count = 0;
12049 if (vcpu->arch.sev_pio_count)
12050 return kvm_sev_es_outs(vcpu, size, port);
12051 return 1;
12052 }
12053
12054 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12055 unsigned int port)
12056 {
12057 for (;;) {
12058 unsigned int count =
12059 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12060 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12061
12062 /* memcpy done already by emulator_pio_out. */
12063 vcpu->arch.sev_pio_count -= count;
12064 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12065 if (!ret)
12066 break;
12067
12068 /* Emulation done by the kernel. */
12069 if (!vcpu->arch.sev_pio_count)
12070 return 1;
12071 }
12072
12073 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12074 return 0;
12075 }
12076
12077 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12078 unsigned int port);
12079
12080 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12081 {
12082 unsigned count = vcpu->arch.pio.count;
12083 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12084 vcpu->arch.sev_pio_count -= count;
12085 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12086 }
12087
12088 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12089 {
12090 int size = vcpu->arch.pio.size;
12091 int port = vcpu->arch.pio.port;
12092
12093 advance_sev_es_emulated_ins(vcpu);
12094 if (vcpu->arch.sev_pio_count)
12095 return kvm_sev_es_ins(vcpu, size, port);
12096 return 1;
12097 }
12098
12099 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12100 unsigned int port)
12101 {
12102 for (;;) {
12103 unsigned int count =
12104 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12105 if (!__emulator_pio_in(vcpu, size, port, count))
12106 break;
12107
12108 /* Emulation done by the kernel. */
12109 advance_sev_es_emulated_ins(vcpu);
12110 if (!vcpu->arch.sev_pio_count)
12111 return 1;
12112 }
12113
12114 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12115 return 0;
12116 }
12117
12118 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12119 unsigned int port, void *data, unsigned int count,
12120 int in)
12121 {
12122 vcpu->arch.sev_pio_data = data;
12123 vcpu->arch.sev_pio_count = count;
12124 return in ? kvm_sev_es_ins(vcpu, size, port)
12125 : kvm_sev_es_outs(vcpu, size, port);
12126 }
12127 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12128
12129 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12130 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12141 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12143 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12144 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12145 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12146 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12150 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12151 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12152 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12153 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12154 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12155 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);