]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/bugs.c
x86/speculation/mmio: Print SMT warning
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36
37 #include "cpu.h"
38
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50
51 /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
52 u64 x86_spec_ctrl_base;
53 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
54 static DEFINE_MUTEX(spec_ctrl_mutex);
55
56 /*
57 * The vendor and possibly platform specific bits which can be modified in
58 * x86_spec_ctrl_base.
59 */
60 static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
61
62 /*
63 * AMD specific MSR info for Speculative Store Bypass control.
64 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
65 */
66 u64 __ro_after_init x86_amd_ls_cfg_base;
67 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
68
69 /* Control conditional STIBP in switch_to() */
70 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
71 /* Control conditional IBPB in switch_mm() */
72 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
73 /* Control unconditional IBPB in switch_mm() */
74 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
75
76 /* Control MDS CPU buffer clear before returning to user space */
77 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
78 EXPORT_SYMBOL_GPL(mds_user_clear);
79 /* Control MDS CPU buffer clear before idling (halt, mwait) */
80 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
81 EXPORT_SYMBOL_GPL(mds_idle_clear);
82
83 /*
84 * Controls whether l1d flush based mitigations are enabled,
85 * based on hw features and admin setting via boot parameter
86 * defaults to false
87 */
88 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
89
90 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
91 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
92 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
93
94 void __init check_bugs(void)
95 {
96 identify_boot_cpu();
97
98 /*
99 * identify_boot_cpu() initialized SMT support information, let the
100 * core code know.
101 */
102 cpu_smt_check_topology();
103
104 if (!IS_ENABLED(CONFIG_SMP)) {
105 pr_info("CPU: ");
106 print_cpu_info(&boot_cpu_data);
107 }
108
109 /*
110 * Read the SPEC_CTRL MSR to account for reserved bits which may
111 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
112 * init code as it is not enumerated and depends on the family.
113 */
114 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
115 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
116
117 /* Allow STIBP in MSR_SPEC_CTRL if supported */
118 if (boot_cpu_has(X86_FEATURE_STIBP))
119 x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
120
121 /* Select the proper CPU mitigations before patching alternatives: */
122 spectre_v1_select_mitigation();
123 spectre_v2_select_mitigation();
124 ssb_select_mitigation();
125 l1tf_select_mitigation();
126 md_clear_select_mitigation();
127 srbds_select_mitigation();
128 l1d_flush_select_mitigation();
129
130 arch_smt_update();
131
132 #ifdef CONFIG_X86_32
133 /*
134 * Check whether we are able to run this kernel safely on SMP.
135 *
136 * - i386 is no longer supported.
137 * - In order to run on anything without a TSC, we need to be
138 * compiled for a i486.
139 */
140 if (boot_cpu_data.x86 < 4)
141 panic("Kernel requires i486+ for 'invlpg' and other features");
142
143 init_utsname()->machine[1] =
144 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
145 alternative_instructions();
146
147 fpu__init_check_bugs();
148 #else /* CONFIG_X86_64 */
149 alternative_instructions();
150
151 /*
152 * Make sure the first 2MB area is not mapped by huge pages
153 * There are typically fixed size MTRRs in there and overlapping
154 * MTRRs into large pages causes slow downs.
155 *
156 * Right now we don't do that with gbpages because there seems
157 * very little benefit for that case.
158 */
159 if (!direct_gbpages)
160 set_memory_4k((unsigned long)__va(0), 1);
161 #endif
162 }
163
164 void
165 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
166 {
167 u64 msrval, guestval, hostval = x86_spec_ctrl_base;
168 struct thread_info *ti = current_thread_info();
169
170 /* Is MSR_SPEC_CTRL implemented ? */
171 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
172 /*
173 * Restrict guest_spec_ctrl to supported values. Clear the
174 * modifiable bits in the host base value and or the
175 * modifiable bits from the guest value.
176 */
177 guestval = hostval & ~x86_spec_ctrl_mask;
178 guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
179
180 /* SSBD controlled in MSR_SPEC_CTRL */
181 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
182 static_cpu_has(X86_FEATURE_AMD_SSBD))
183 hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
184
185 /* Conditional STIBP enabled? */
186 if (static_branch_unlikely(&switch_to_cond_stibp))
187 hostval |= stibp_tif_to_spec_ctrl(ti->flags);
188
189 if (hostval != guestval) {
190 msrval = setguest ? guestval : hostval;
191 wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
192 }
193 }
194
195 /*
196 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
197 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
198 */
199 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
200 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
201 return;
202
203 /*
204 * If the host has SSBD mitigation enabled, force it in the host's
205 * virtual MSR value. If its not permanently enabled, evaluate
206 * current's TIF_SSBD thread flag.
207 */
208 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
209 hostval = SPEC_CTRL_SSBD;
210 else
211 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
212
213 /* Sanitize the guest value */
214 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
215
216 if (hostval != guestval) {
217 unsigned long tif;
218
219 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
220 ssbd_spec_ctrl_to_tif(hostval);
221
222 speculation_ctrl_update(tif);
223 }
224 }
225 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
226
227 static void x86_amd_ssb_disable(void)
228 {
229 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
230
231 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
232 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
233 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
234 wrmsrl(MSR_AMD64_LS_CFG, msrval);
235 }
236
237 #undef pr_fmt
238 #define pr_fmt(fmt) "MDS: " fmt
239
240 /* Default mitigation for MDS-affected CPUs */
241 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
242 static bool mds_nosmt __ro_after_init = false;
243
244 static const char * const mds_strings[] = {
245 [MDS_MITIGATION_OFF] = "Vulnerable",
246 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
247 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249
250 static void __init mds_select_mitigation(void)
251 {
252 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
253 mds_mitigation = MDS_MITIGATION_OFF;
254 return;
255 }
256
257 if (mds_mitigation == MDS_MITIGATION_FULL) {
258 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
259 mds_mitigation = MDS_MITIGATION_VMWERV;
260
261 static_branch_enable(&mds_user_clear);
262
263 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
264 (mds_nosmt || cpu_mitigations_auto_nosmt()))
265 cpu_smt_disable(false);
266 }
267 }
268
269 static int __init mds_cmdline(char *str)
270 {
271 if (!boot_cpu_has_bug(X86_BUG_MDS))
272 return 0;
273
274 if (!str)
275 return -EINVAL;
276
277 if (!strcmp(str, "off"))
278 mds_mitigation = MDS_MITIGATION_OFF;
279 else if (!strcmp(str, "full"))
280 mds_mitigation = MDS_MITIGATION_FULL;
281 else if (!strcmp(str, "full,nosmt")) {
282 mds_mitigation = MDS_MITIGATION_FULL;
283 mds_nosmt = true;
284 }
285
286 return 0;
287 }
288 early_param("mds", mds_cmdline);
289
290 #undef pr_fmt
291 #define pr_fmt(fmt) "TAA: " fmt
292
293 enum taa_mitigations {
294 TAA_MITIGATION_OFF,
295 TAA_MITIGATION_UCODE_NEEDED,
296 TAA_MITIGATION_VERW,
297 TAA_MITIGATION_TSX_DISABLED,
298 };
299
300 /* Default mitigation for TAA-affected CPUs */
301 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
302 static bool taa_nosmt __ro_after_init;
303
304 static const char * const taa_strings[] = {
305 [TAA_MITIGATION_OFF] = "Vulnerable",
306 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
307 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
308 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
309 };
310
311 static void __init taa_select_mitigation(void)
312 {
313 u64 ia32_cap;
314
315 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
316 taa_mitigation = TAA_MITIGATION_OFF;
317 return;
318 }
319
320 /* TSX previously disabled by tsx=off */
321 if (!boot_cpu_has(X86_FEATURE_RTM)) {
322 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
323 return;
324 }
325
326 if (cpu_mitigations_off()) {
327 taa_mitigation = TAA_MITIGATION_OFF;
328 return;
329 }
330
331 /*
332 * TAA mitigation via VERW is turned off if both
333 * tsx_async_abort=off and mds=off are specified.
334 */
335 if (taa_mitigation == TAA_MITIGATION_OFF &&
336 mds_mitigation == MDS_MITIGATION_OFF)
337 return;
338
339 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
340 taa_mitigation = TAA_MITIGATION_VERW;
341 else
342 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
343
344 /*
345 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
346 * A microcode update fixes this behavior to clear CPU buffers. It also
347 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
348 * ARCH_CAP_TSX_CTRL_MSR bit.
349 *
350 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
351 * update is required.
352 */
353 ia32_cap = x86_read_arch_cap_msr();
354 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
355 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
356 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
357
358 /*
359 * TSX is enabled, select alternate mitigation for TAA which is
360 * the same as MDS. Enable MDS static branch to clear CPU buffers.
361 *
362 * For guests that can't determine whether the correct microcode is
363 * present on host, enable the mitigation for UCODE_NEEDED as well.
364 */
365 static_branch_enable(&mds_user_clear);
366
367 if (taa_nosmt || cpu_mitigations_auto_nosmt())
368 cpu_smt_disable(false);
369 }
370
371 static int __init tsx_async_abort_parse_cmdline(char *str)
372 {
373 if (!boot_cpu_has_bug(X86_BUG_TAA))
374 return 0;
375
376 if (!str)
377 return -EINVAL;
378
379 if (!strcmp(str, "off")) {
380 taa_mitigation = TAA_MITIGATION_OFF;
381 } else if (!strcmp(str, "full")) {
382 taa_mitigation = TAA_MITIGATION_VERW;
383 } else if (!strcmp(str, "full,nosmt")) {
384 taa_mitigation = TAA_MITIGATION_VERW;
385 taa_nosmt = true;
386 }
387
388 return 0;
389 }
390 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
391
392 #undef pr_fmt
393 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
394
395 enum mmio_mitigations {
396 MMIO_MITIGATION_OFF,
397 MMIO_MITIGATION_UCODE_NEEDED,
398 MMIO_MITIGATION_VERW,
399 };
400
401 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
402 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
403 static bool mmio_nosmt __ro_after_init = false;
404
405 static const char * const mmio_strings[] = {
406 [MMIO_MITIGATION_OFF] = "Vulnerable",
407 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
408 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
409 };
410
411 static void __init mmio_select_mitigation(void)
412 {
413 u64 ia32_cap;
414
415 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
416 cpu_mitigations_off()) {
417 mmio_mitigation = MMIO_MITIGATION_OFF;
418 return;
419 }
420
421 if (mmio_mitigation == MMIO_MITIGATION_OFF)
422 return;
423
424 ia32_cap = x86_read_arch_cap_msr();
425
426 /*
427 * Enable CPU buffer clear mitigation for host and VMM, if also affected
428 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
429 */
430 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
431 boot_cpu_has(X86_FEATURE_RTM)))
432 static_branch_enable(&mds_user_clear);
433 else
434 static_branch_enable(&mmio_stale_data_clear);
435
436 /*
437 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
438 * be propagated to uncore buffers, clearing the Fill buffers on idle
439 * is required irrespective of SMT state.
440 */
441 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
442 static_branch_enable(&mds_idle_clear);
443
444 /*
445 * Check if the system has the right microcode.
446 *
447 * CPU Fill buffer clear mitigation is enumerated by either an explicit
448 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
449 * affected systems.
450 */
451 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
452 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
453 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
454 !(ia32_cap & ARCH_CAP_MDS_NO)))
455 mmio_mitigation = MMIO_MITIGATION_VERW;
456 else
457 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
458
459 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
460 cpu_smt_disable(false);
461 }
462
463 static int __init mmio_stale_data_parse_cmdline(char *str)
464 {
465 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
466 return 0;
467
468 if (!str)
469 return -EINVAL;
470
471 if (!strcmp(str, "off")) {
472 mmio_mitigation = MMIO_MITIGATION_OFF;
473 } else if (!strcmp(str, "full")) {
474 mmio_mitigation = MMIO_MITIGATION_VERW;
475 } else if (!strcmp(str, "full,nosmt")) {
476 mmio_mitigation = MMIO_MITIGATION_VERW;
477 mmio_nosmt = true;
478 }
479
480 return 0;
481 }
482 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
483
484 #undef pr_fmt
485 #define pr_fmt(fmt) "" fmt
486
487 static void __init md_clear_update_mitigation(void)
488 {
489 if (cpu_mitigations_off())
490 return;
491
492 if (!static_key_enabled(&mds_user_clear))
493 goto out;
494
495 /*
496 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
497 * mitigation, if necessary.
498 */
499 if (mds_mitigation == MDS_MITIGATION_OFF &&
500 boot_cpu_has_bug(X86_BUG_MDS)) {
501 mds_mitigation = MDS_MITIGATION_FULL;
502 mds_select_mitigation();
503 }
504 if (taa_mitigation == TAA_MITIGATION_OFF &&
505 boot_cpu_has_bug(X86_BUG_TAA)) {
506 taa_mitigation = TAA_MITIGATION_VERW;
507 taa_select_mitigation();
508 }
509 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
510 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
511 mmio_mitigation = MMIO_MITIGATION_VERW;
512 mmio_select_mitigation();
513 }
514 out:
515 if (boot_cpu_has_bug(X86_BUG_MDS))
516 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
517 if (boot_cpu_has_bug(X86_BUG_TAA))
518 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
519 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
520 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
521 }
522
523 static void __init md_clear_select_mitigation(void)
524 {
525 mds_select_mitigation();
526 taa_select_mitigation();
527 mmio_select_mitigation();
528
529 /*
530 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
531 * and print their mitigation after MDS, TAA and MMIO Stale Data
532 * mitigation selection is done.
533 */
534 md_clear_update_mitigation();
535 }
536
537 #undef pr_fmt
538 #define pr_fmt(fmt) "SRBDS: " fmt
539
540 enum srbds_mitigations {
541 SRBDS_MITIGATION_OFF,
542 SRBDS_MITIGATION_UCODE_NEEDED,
543 SRBDS_MITIGATION_FULL,
544 SRBDS_MITIGATION_TSX_OFF,
545 SRBDS_MITIGATION_HYPERVISOR,
546 };
547
548 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
549
550 static const char * const srbds_strings[] = {
551 [SRBDS_MITIGATION_OFF] = "Vulnerable",
552 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
553 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
554 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
555 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
556 };
557
558 static bool srbds_off;
559
560 void update_srbds_msr(void)
561 {
562 u64 mcu_ctrl;
563
564 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
565 return;
566
567 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
568 return;
569
570 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
571 return;
572
573 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
574
575 switch (srbds_mitigation) {
576 case SRBDS_MITIGATION_OFF:
577 case SRBDS_MITIGATION_TSX_OFF:
578 mcu_ctrl |= RNGDS_MITG_DIS;
579 break;
580 case SRBDS_MITIGATION_FULL:
581 mcu_ctrl &= ~RNGDS_MITG_DIS;
582 break;
583 default:
584 break;
585 }
586
587 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
588 }
589
590 static void __init srbds_select_mitigation(void)
591 {
592 u64 ia32_cap;
593
594 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
595 return;
596
597 /*
598 * Check to see if this is one of the MDS_NO systems supporting TSX that
599 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
600 * by Processor MMIO Stale Data vulnerability.
601 */
602 ia32_cap = x86_read_arch_cap_msr();
603 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
604 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
605 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
606 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
607 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
608 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
609 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
610 else if (cpu_mitigations_off() || srbds_off)
611 srbds_mitigation = SRBDS_MITIGATION_OFF;
612
613 update_srbds_msr();
614 pr_info("%s\n", srbds_strings[srbds_mitigation]);
615 }
616
617 static int __init srbds_parse_cmdline(char *str)
618 {
619 if (!str)
620 return -EINVAL;
621
622 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
623 return 0;
624
625 srbds_off = !strcmp(str, "off");
626 return 0;
627 }
628 early_param("srbds", srbds_parse_cmdline);
629
630 #undef pr_fmt
631 #define pr_fmt(fmt) "L1D Flush : " fmt
632
633 enum l1d_flush_mitigations {
634 L1D_FLUSH_OFF = 0,
635 L1D_FLUSH_ON,
636 };
637
638 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
639
640 static void __init l1d_flush_select_mitigation(void)
641 {
642 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
643 return;
644
645 static_branch_enable(&switch_mm_cond_l1d_flush);
646 pr_info("Conditional flush on switch_mm() enabled\n");
647 }
648
649 static int __init l1d_flush_parse_cmdline(char *str)
650 {
651 if (!strcmp(str, "on"))
652 l1d_flush_mitigation = L1D_FLUSH_ON;
653
654 return 0;
655 }
656 early_param("l1d_flush", l1d_flush_parse_cmdline);
657
658 #undef pr_fmt
659 #define pr_fmt(fmt) "Spectre V1 : " fmt
660
661 enum spectre_v1_mitigation {
662 SPECTRE_V1_MITIGATION_NONE,
663 SPECTRE_V1_MITIGATION_AUTO,
664 };
665
666 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
667 SPECTRE_V1_MITIGATION_AUTO;
668
669 static const char * const spectre_v1_strings[] = {
670 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
671 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
672 };
673
674 /*
675 * Does SMAP provide full mitigation against speculative kernel access to
676 * userspace?
677 */
678 static bool smap_works_speculatively(void)
679 {
680 if (!boot_cpu_has(X86_FEATURE_SMAP))
681 return false;
682
683 /*
684 * On CPUs which are vulnerable to Meltdown, SMAP does not
685 * prevent speculative access to user data in the L1 cache.
686 * Consider SMAP to be non-functional as a mitigation on these
687 * CPUs.
688 */
689 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
690 return false;
691
692 return true;
693 }
694
695 static void __init spectre_v1_select_mitigation(void)
696 {
697 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
698 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
699 return;
700 }
701
702 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
703 /*
704 * With Spectre v1, a user can speculatively control either
705 * path of a conditional swapgs with a user-controlled GS
706 * value. The mitigation is to add lfences to both code paths.
707 *
708 * If FSGSBASE is enabled, the user can put a kernel address in
709 * GS, in which case SMAP provides no protection.
710 *
711 * If FSGSBASE is disabled, the user can only put a user space
712 * address in GS. That makes an attack harder, but still
713 * possible if there's no SMAP protection.
714 */
715 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
716 !smap_works_speculatively()) {
717 /*
718 * Mitigation can be provided from SWAPGS itself or
719 * PTI as the CR3 write in the Meltdown mitigation
720 * is serializing.
721 *
722 * If neither is there, mitigate with an LFENCE to
723 * stop speculation through swapgs.
724 */
725 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
726 !boot_cpu_has(X86_FEATURE_PTI))
727 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
728
729 /*
730 * Enable lfences in the kernel entry (non-swapgs)
731 * paths, to prevent user entry from speculatively
732 * skipping swapgs.
733 */
734 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
735 }
736 }
737
738 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
739 }
740
741 static int __init nospectre_v1_cmdline(char *str)
742 {
743 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
744 return 0;
745 }
746 early_param("nospectre_v1", nospectre_v1_cmdline);
747
748 #undef pr_fmt
749 #define pr_fmt(fmt) "Spectre V2 : " fmt
750
751 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
752 SPECTRE_V2_NONE;
753
754 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
755 SPECTRE_V2_USER_NONE;
756 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
757 SPECTRE_V2_USER_NONE;
758
759 #ifdef CONFIG_RETPOLINE
760 static bool spectre_v2_bad_module;
761
762 bool retpoline_module_ok(bool has_retpoline)
763 {
764 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
765 return true;
766
767 pr_err("System may be vulnerable to spectre v2\n");
768 spectre_v2_bad_module = true;
769 return false;
770 }
771
772 static inline const char *spectre_v2_module_string(void)
773 {
774 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
775 }
776 #else
777 static inline const char *spectre_v2_module_string(void) { return ""; }
778 #endif
779
780 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
781 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
782 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
783
784 #ifdef CONFIG_BPF_SYSCALL
785 void unpriv_ebpf_notify(int new_state)
786 {
787 if (new_state)
788 return;
789
790 /* Unprivileged eBPF is enabled */
791
792 switch (spectre_v2_enabled) {
793 case SPECTRE_V2_EIBRS:
794 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
795 break;
796 case SPECTRE_V2_EIBRS_LFENCE:
797 if (sched_smt_active())
798 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
799 break;
800 default:
801 break;
802 }
803 }
804 #endif
805
806 static inline bool match_option(const char *arg, int arglen, const char *opt)
807 {
808 int len = strlen(opt);
809
810 return len == arglen && !strncmp(arg, opt, len);
811 }
812
813 /* The kernel command line selection for spectre v2 */
814 enum spectre_v2_mitigation_cmd {
815 SPECTRE_V2_CMD_NONE,
816 SPECTRE_V2_CMD_AUTO,
817 SPECTRE_V2_CMD_FORCE,
818 SPECTRE_V2_CMD_RETPOLINE,
819 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
820 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
821 SPECTRE_V2_CMD_EIBRS,
822 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
823 SPECTRE_V2_CMD_EIBRS_LFENCE,
824 };
825
826 enum spectre_v2_user_cmd {
827 SPECTRE_V2_USER_CMD_NONE,
828 SPECTRE_V2_USER_CMD_AUTO,
829 SPECTRE_V2_USER_CMD_FORCE,
830 SPECTRE_V2_USER_CMD_PRCTL,
831 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
832 SPECTRE_V2_USER_CMD_SECCOMP,
833 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
834 };
835
836 static const char * const spectre_v2_user_strings[] = {
837 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
838 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
839 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
840 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
841 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
842 };
843
844 static const struct {
845 const char *option;
846 enum spectre_v2_user_cmd cmd;
847 bool secure;
848 } v2_user_options[] __initconst = {
849 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
850 { "off", SPECTRE_V2_USER_CMD_NONE, false },
851 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
852 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
853 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
854 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
855 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
856 };
857
858 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
859 {
860 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
861 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
862 }
863
864 static enum spectre_v2_user_cmd __init
865 spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
866 {
867 char arg[20];
868 int ret, i;
869
870 switch (v2_cmd) {
871 case SPECTRE_V2_CMD_NONE:
872 return SPECTRE_V2_USER_CMD_NONE;
873 case SPECTRE_V2_CMD_FORCE:
874 return SPECTRE_V2_USER_CMD_FORCE;
875 default:
876 break;
877 }
878
879 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
880 arg, sizeof(arg));
881 if (ret < 0)
882 return SPECTRE_V2_USER_CMD_AUTO;
883
884 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
885 if (match_option(arg, ret, v2_user_options[i].option)) {
886 spec_v2_user_print_cond(v2_user_options[i].option,
887 v2_user_options[i].secure);
888 return v2_user_options[i].cmd;
889 }
890 }
891
892 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
893 return SPECTRE_V2_USER_CMD_AUTO;
894 }
895
896 static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
897 {
898 return (mode == SPECTRE_V2_EIBRS ||
899 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
900 mode == SPECTRE_V2_EIBRS_LFENCE);
901 }
902
903 static void __init
904 spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
905 {
906 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
907 bool smt_possible = IS_ENABLED(CONFIG_SMP);
908 enum spectre_v2_user_cmd cmd;
909
910 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
911 return;
912
913 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
914 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
915 smt_possible = false;
916
917 cmd = spectre_v2_parse_user_cmdline(v2_cmd);
918 switch (cmd) {
919 case SPECTRE_V2_USER_CMD_NONE:
920 goto set_mode;
921 case SPECTRE_V2_USER_CMD_FORCE:
922 mode = SPECTRE_V2_USER_STRICT;
923 break;
924 case SPECTRE_V2_USER_CMD_PRCTL:
925 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
926 mode = SPECTRE_V2_USER_PRCTL;
927 break;
928 case SPECTRE_V2_USER_CMD_AUTO:
929 case SPECTRE_V2_USER_CMD_SECCOMP:
930 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
931 if (IS_ENABLED(CONFIG_SECCOMP))
932 mode = SPECTRE_V2_USER_SECCOMP;
933 else
934 mode = SPECTRE_V2_USER_PRCTL;
935 break;
936 }
937
938 /* Initialize Indirect Branch Prediction Barrier */
939 if (boot_cpu_has(X86_FEATURE_IBPB)) {
940 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
941
942 spectre_v2_user_ibpb = mode;
943 switch (cmd) {
944 case SPECTRE_V2_USER_CMD_FORCE:
945 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
946 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
947 static_branch_enable(&switch_mm_always_ibpb);
948 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
949 break;
950 case SPECTRE_V2_USER_CMD_PRCTL:
951 case SPECTRE_V2_USER_CMD_AUTO:
952 case SPECTRE_V2_USER_CMD_SECCOMP:
953 static_branch_enable(&switch_mm_cond_ibpb);
954 break;
955 default:
956 break;
957 }
958
959 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
960 static_key_enabled(&switch_mm_always_ibpb) ?
961 "always-on" : "conditional");
962 }
963
964 /*
965 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
966 * required.
967 */
968 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
969 !smt_possible ||
970 spectre_v2_in_eibrs_mode(spectre_v2_enabled))
971 return;
972
973 /*
974 * At this point, an STIBP mode other than "off" has been set.
975 * If STIBP support is not being forced, check if STIBP always-on
976 * is preferred.
977 */
978 if (mode != SPECTRE_V2_USER_STRICT &&
979 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
980 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
981
982 spectre_v2_user_stibp = mode;
983
984 set_mode:
985 pr_info("%s\n", spectre_v2_user_strings[mode]);
986 }
987
988 static const char * const spectre_v2_strings[] = {
989 [SPECTRE_V2_NONE] = "Vulnerable",
990 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
991 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
992 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced IBRS",
993 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced IBRS + LFENCE",
994 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced IBRS + Retpolines",
995 };
996
997 static const struct {
998 const char *option;
999 enum spectre_v2_mitigation_cmd cmd;
1000 bool secure;
1001 } mitigation_options[] __initconst = {
1002 { "off", SPECTRE_V2_CMD_NONE, false },
1003 { "on", SPECTRE_V2_CMD_FORCE, true },
1004 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1005 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1006 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1007 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1008 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1009 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1010 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1011 { "auto", SPECTRE_V2_CMD_AUTO, false },
1012 };
1013
1014 static void __init spec_v2_print_cond(const char *reason, bool secure)
1015 {
1016 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1017 pr_info("%s selected on command line.\n", reason);
1018 }
1019
1020 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1021 {
1022 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1023 char arg[20];
1024 int ret, i;
1025
1026 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1027 cpu_mitigations_off())
1028 return SPECTRE_V2_CMD_NONE;
1029
1030 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1031 if (ret < 0)
1032 return SPECTRE_V2_CMD_AUTO;
1033
1034 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1035 if (!match_option(arg, ret, mitigation_options[i].option))
1036 continue;
1037 cmd = mitigation_options[i].cmd;
1038 break;
1039 }
1040
1041 if (i >= ARRAY_SIZE(mitigation_options)) {
1042 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1043 return SPECTRE_V2_CMD_AUTO;
1044 }
1045
1046 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1047 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1048 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1049 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1050 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1051 !IS_ENABLED(CONFIG_RETPOLINE)) {
1052 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1053 mitigation_options[i].option);
1054 return SPECTRE_V2_CMD_AUTO;
1055 }
1056
1057 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1058 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1059 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1060 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1061 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1062 mitigation_options[i].option);
1063 return SPECTRE_V2_CMD_AUTO;
1064 }
1065
1066 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1067 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1068 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1069 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1070 mitigation_options[i].option);
1071 return SPECTRE_V2_CMD_AUTO;
1072 }
1073
1074 spec_v2_print_cond(mitigation_options[i].option,
1075 mitigation_options[i].secure);
1076 return cmd;
1077 }
1078
1079 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1080 {
1081 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1082 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1083 return SPECTRE_V2_NONE;
1084 }
1085
1086 return SPECTRE_V2_RETPOLINE;
1087 }
1088
1089 static void __init spectre_v2_select_mitigation(void)
1090 {
1091 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1092 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1093
1094 /*
1095 * If the CPU is not affected and the command line mode is NONE or AUTO
1096 * then nothing to do.
1097 */
1098 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1099 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1100 return;
1101
1102 switch (cmd) {
1103 case SPECTRE_V2_CMD_NONE:
1104 return;
1105
1106 case SPECTRE_V2_CMD_FORCE:
1107 case SPECTRE_V2_CMD_AUTO:
1108 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1109 mode = SPECTRE_V2_EIBRS;
1110 break;
1111 }
1112
1113 mode = spectre_v2_select_retpoline();
1114 break;
1115
1116 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1117 pr_err(SPECTRE_V2_LFENCE_MSG);
1118 mode = SPECTRE_V2_LFENCE;
1119 break;
1120
1121 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1122 mode = SPECTRE_V2_RETPOLINE;
1123 break;
1124
1125 case SPECTRE_V2_CMD_RETPOLINE:
1126 mode = spectre_v2_select_retpoline();
1127 break;
1128
1129 case SPECTRE_V2_CMD_EIBRS:
1130 mode = SPECTRE_V2_EIBRS;
1131 break;
1132
1133 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1134 mode = SPECTRE_V2_EIBRS_LFENCE;
1135 break;
1136
1137 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1138 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1139 break;
1140 }
1141
1142 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1143 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1144
1145 if (spectre_v2_in_eibrs_mode(mode)) {
1146 /* Force it so VMEXIT will restore correctly */
1147 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1148 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1149 }
1150
1151 switch (mode) {
1152 case SPECTRE_V2_NONE:
1153 case SPECTRE_V2_EIBRS:
1154 break;
1155
1156 case SPECTRE_V2_LFENCE:
1157 case SPECTRE_V2_EIBRS_LFENCE:
1158 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1159 fallthrough;
1160
1161 case SPECTRE_V2_RETPOLINE:
1162 case SPECTRE_V2_EIBRS_RETPOLINE:
1163 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1164 break;
1165 }
1166
1167 spectre_v2_enabled = mode;
1168 pr_info("%s\n", spectre_v2_strings[mode]);
1169
1170 /*
1171 * If spectre v2 protection has been enabled, unconditionally fill
1172 * RSB during a context switch; this protects against two independent
1173 * issues:
1174 *
1175 * - RSB underflow (and switch to BTB) on Skylake+
1176 * - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
1177 */
1178 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1179 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1180
1181 /*
1182 * Retpoline means the kernel is safe because it has no indirect
1183 * branches. Enhanced IBRS protects firmware too, so, enable restricted
1184 * speculation around firmware calls only when Enhanced IBRS isn't
1185 * supported.
1186 *
1187 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1188 * the user might select retpoline on the kernel command line and if
1189 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1190 * enable IBRS around firmware calls.
1191 */
1192 if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_eibrs_mode(mode)) {
1193 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1194 pr_info("Enabling Restricted Speculation for firmware calls\n");
1195 }
1196
1197 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1198 spectre_v2_user_select_mitigation(cmd);
1199 }
1200
1201 static void update_stibp_msr(void * __unused)
1202 {
1203 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1204 }
1205
1206 /* Update x86_spec_ctrl_base in case SMT state changed. */
1207 static void update_stibp_strict(void)
1208 {
1209 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1210
1211 if (sched_smt_active())
1212 mask |= SPEC_CTRL_STIBP;
1213
1214 if (mask == x86_spec_ctrl_base)
1215 return;
1216
1217 pr_info("Update user space SMT mitigation: STIBP %s\n",
1218 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1219 x86_spec_ctrl_base = mask;
1220 on_each_cpu(update_stibp_msr, NULL, 1);
1221 }
1222
1223 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1224 static void update_indir_branch_cond(void)
1225 {
1226 if (sched_smt_active())
1227 static_branch_enable(&switch_to_cond_stibp);
1228 else
1229 static_branch_disable(&switch_to_cond_stibp);
1230 }
1231
1232 #undef pr_fmt
1233 #define pr_fmt(fmt) fmt
1234
1235 /* Update the static key controlling the MDS CPU buffer clear in idle */
1236 static void update_mds_branch_idle(void)
1237 {
1238 u64 ia32_cap = x86_read_arch_cap_msr();
1239
1240 /*
1241 * Enable the idle clearing if SMT is active on CPUs which are
1242 * affected only by MSBDS and not any other MDS variant.
1243 *
1244 * The other variants cannot be mitigated when SMT is enabled, so
1245 * clearing the buffers on idle just to prevent the Store Buffer
1246 * repartitioning leak would be a window dressing exercise.
1247 */
1248 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1249 return;
1250
1251 if (sched_smt_active()) {
1252 static_branch_enable(&mds_idle_clear);
1253 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1254 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1255 static_branch_disable(&mds_idle_clear);
1256 }
1257 }
1258
1259 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1260 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1261 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1262
1263 void cpu_bugs_smt_update(void)
1264 {
1265 mutex_lock(&spec_ctrl_mutex);
1266
1267 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1268 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1269 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1270
1271 switch (spectre_v2_user_stibp) {
1272 case SPECTRE_V2_USER_NONE:
1273 break;
1274 case SPECTRE_V2_USER_STRICT:
1275 case SPECTRE_V2_USER_STRICT_PREFERRED:
1276 update_stibp_strict();
1277 break;
1278 case SPECTRE_V2_USER_PRCTL:
1279 case SPECTRE_V2_USER_SECCOMP:
1280 update_indir_branch_cond();
1281 break;
1282 }
1283
1284 switch (mds_mitigation) {
1285 case MDS_MITIGATION_FULL:
1286 case MDS_MITIGATION_VMWERV:
1287 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1288 pr_warn_once(MDS_MSG_SMT);
1289 update_mds_branch_idle();
1290 break;
1291 case MDS_MITIGATION_OFF:
1292 break;
1293 }
1294
1295 switch (taa_mitigation) {
1296 case TAA_MITIGATION_VERW:
1297 case TAA_MITIGATION_UCODE_NEEDED:
1298 if (sched_smt_active())
1299 pr_warn_once(TAA_MSG_SMT);
1300 break;
1301 case TAA_MITIGATION_TSX_DISABLED:
1302 case TAA_MITIGATION_OFF:
1303 break;
1304 }
1305
1306 switch (mmio_mitigation) {
1307 case MMIO_MITIGATION_VERW:
1308 case MMIO_MITIGATION_UCODE_NEEDED:
1309 if (sched_smt_active())
1310 pr_warn_once(MMIO_MSG_SMT);
1311 break;
1312 case MMIO_MITIGATION_OFF:
1313 break;
1314 }
1315
1316 mutex_unlock(&spec_ctrl_mutex);
1317 }
1318
1319 #undef pr_fmt
1320 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1321
1322 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1323
1324 /* The kernel command line selection */
1325 enum ssb_mitigation_cmd {
1326 SPEC_STORE_BYPASS_CMD_NONE,
1327 SPEC_STORE_BYPASS_CMD_AUTO,
1328 SPEC_STORE_BYPASS_CMD_ON,
1329 SPEC_STORE_BYPASS_CMD_PRCTL,
1330 SPEC_STORE_BYPASS_CMD_SECCOMP,
1331 };
1332
1333 static const char * const ssb_strings[] = {
1334 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1335 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1336 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1337 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1338 };
1339
1340 static const struct {
1341 const char *option;
1342 enum ssb_mitigation_cmd cmd;
1343 } ssb_mitigation_options[] __initconst = {
1344 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1345 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1346 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1347 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1348 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1349 };
1350
1351 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1352 {
1353 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1354 char arg[20];
1355 int ret, i;
1356
1357 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1358 cpu_mitigations_off()) {
1359 return SPEC_STORE_BYPASS_CMD_NONE;
1360 } else {
1361 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1362 arg, sizeof(arg));
1363 if (ret < 0)
1364 return SPEC_STORE_BYPASS_CMD_AUTO;
1365
1366 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1367 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1368 continue;
1369
1370 cmd = ssb_mitigation_options[i].cmd;
1371 break;
1372 }
1373
1374 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1375 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1376 return SPEC_STORE_BYPASS_CMD_AUTO;
1377 }
1378 }
1379
1380 return cmd;
1381 }
1382
1383 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1384 {
1385 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1386 enum ssb_mitigation_cmd cmd;
1387
1388 if (!boot_cpu_has(X86_FEATURE_SSBD))
1389 return mode;
1390
1391 cmd = ssb_parse_cmdline();
1392 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1393 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1394 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1395 return mode;
1396
1397 switch (cmd) {
1398 case SPEC_STORE_BYPASS_CMD_AUTO:
1399 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1400 /*
1401 * Choose prctl+seccomp as the default mode if seccomp is
1402 * enabled.
1403 */
1404 if (IS_ENABLED(CONFIG_SECCOMP))
1405 mode = SPEC_STORE_BYPASS_SECCOMP;
1406 else
1407 mode = SPEC_STORE_BYPASS_PRCTL;
1408 break;
1409 case SPEC_STORE_BYPASS_CMD_ON:
1410 mode = SPEC_STORE_BYPASS_DISABLE;
1411 break;
1412 case SPEC_STORE_BYPASS_CMD_PRCTL:
1413 mode = SPEC_STORE_BYPASS_PRCTL;
1414 break;
1415 case SPEC_STORE_BYPASS_CMD_NONE:
1416 break;
1417 }
1418
1419 /*
1420 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
1421 * bit in the mask to allow guests to use the mitigation even in the
1422 * case where the host does not enable it.
1423 */
1424 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
1425 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1426 x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
1427 }
1428
1429 /*
1430 * We have three CPU feature flags that are in play here:
1431 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1432 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1433 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1434 */
1435 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1436 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1437 /*
1438 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1439 * use a completely different MSR and bit dependent on family.
1440 */
1441 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1442 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1443 x86_amd_ssb_disable();
1444 } else {
1445 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1446 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1447 }
1448 }
1449
1450 return mode;
1451 }
1452
1453 static void ssb_select_mitigation(void)
1454 {
1455 ssb_mode = __ssb_select_mitigation();
1456
1457 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1458 pr_info("%s\n", ssb_strings[ssb_mode]);
1459 }
1460
1461 #undef pr_fmt
1462 #define pr_fmt(fmt) "Speculation prctl: " fmt
1463
1464 static void task_update_spec_tif(struct task_struct *tsk)
1465 {
1466 /* Force the update of the real TIF bits */
1467 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1468
1469 /*
1470 * Immediately update the speculation control MSRs for the current
1471 * task, but for a non-current task delay setting the CPU
1472 * mitigation until it is scheduled next.
1473 *
1474 * This can only happen for SECCOMP mitigation. For PRCTL it's
1475 * always the current task.
1476 */
1477 if (tsk == current)
1478 speculation_ctrl_update_current();
1479 }
1480
1481 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1482 {
1483
1484 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1485 return -EPERM;
1486
1487 switch (ctrl) {
1488 case PR_SPEC_ENABLE:
1489 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1490 return 0;
1491 case PR_SPEC_DISABLE:
1492 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1493 return 0;
1494 default:
1495 return -ERANGE;
1496 }
1497 }
1498
1499 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1500 {
1501 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1502 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1503 return -ENXIO;
1504
1505 switch (ctrl) {
1506 case PR_SPEC_ENABLE:
1507 /* If speculation is force disabled, enable is not allowed */
1508 if (task_spec_ssb_force_disable(task))
1509 return -EPERM;
1510 task_clear_spec_ssb_disable(task);
1511 task_clear_spec_ssb_noexec(task);
1512 task_update_spec_tif(task);
1513 break;
1514 case PR_SPEC_DISABLE:
1515 task_set_spec_ssb_disable(task);
1516 task_clear_spec_ssb_noexec(task);
1517 task_update_spec_tif(task);
1518 break;
1519 case PR_SPEC_FORCE_DISABLE:
1520 task_set_spec_ssb_disable(task);
1521 task_set_spec_ssb_force_disable(task);
1522 task_clear_spec_ssb_noexec(task);
1523 task_update_spec_tif(task);
1524 break;
1525 case PR_SPEC_DISABLE_NOEXEC:
1526 if (task_spec_ssb_force_disable(task))
1527 return -EPERM;
1528 task_set_spec_ssb_disable(task);
1529 task_set_spec_ssb_noexec(task);
1530 task_update_spec_tif(task);
1531 break;
1532 default:
1533 return -ERANGE;
1534 }
1535 return 0;
1536 }
1537
1538 static bool is_spec_ib_user_controlled(void)
1539 {
1540 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1541 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1542 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1543 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1544 }
1545
1546 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1547 {
1548 switch (ctrl) {
1549 case PR_SPEC_ENABLE:
1550 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1551 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1552 return 0;
1553
1554 /*
1555 * With strict mode for both IBPB and STIBP, the instruction
1556 * code paths avoid checking this task flag and instead,
1557 * unconditionally run the instruction. However, STIBP and IBPB
1558 * are independent and either can be set to conditionally
1559 * enabled regardless of the mode of the other.
1560 *
1561 * If either is set to conditional, allow the task flag to be
1562 * updated, unless it was force-disabled by a previous prctl
1563 * call. Currently, this is possible on an AMD CPU which has the
1564 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1565 * kernel is booted with 'spectre_v2_user=seccomp', then
1566 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1567 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1568 */
1569 if (!is_spec_ib_user_controlled() ||
1570 task_spec_ib_force_disable(task))
1571 return -EPERM;
1572
1573 task_clear_spec_ib_disable(task);
1574 task_update_spec_tif(task);
1575 break;
1576 case PR_SPEC_DISABLE:
1577 case PR_SPEC_FORCE_DISABLE:
1578 /*
1579 * Indirect branch speculation is always allowed when
1580 * mitigation is force disabled.
1581 */
1582 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1583 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1584 return -EPERM;
1585
1586 if (!is_spec_ib_user_controlled())
1587 return 0;
1588
1589 task_set_spec_ib_disable(task);
1590 if (ctrl == PR_SPEC_FORCE_DISABLE)
1591 task_set_spec_ib_force_disable(task);
1592 task_update_spec_tif(task);
1593 break;
1594 default:
1595 return -ERANGE;
1596 }
1597 return 0;
1598 }
1599
1600 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1601 unsigned long ctrl)
1602 {
1603 switch (which) {
1604 case PR_SPEC_STORE_BYPASS:
1605 return ssb_prctl_set(task, ctrl);
1606 case PR_SPEC_INDIRECT_BRANCH:
1607 return ib_prctl_set(task, ctrl);
1608 case PR_SPEC_L1D_FLUSH:
1609 return l1d_flush_prctl_set(task, ctrl);
1610 default:
1611 return -ENODEV;
1612 }
1613 }
1614
1615 #ifdef CONFIG_SECCOMP
1616 void arch_seccomp_spec_mitigate(struct task_struct *task)
1617 {
1618 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1619 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1620 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1621 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1622 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1623 }
1624 #endif
1625
1626 static int l1d_flush_prctl_get(struct task_struct *task)
1627 {
1628 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1629 return PR_SPEC_FORCE_DISABLE;
1630
1631 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
1632 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1633 else
1634 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1635 }
1636
1637 static int ssb_prctl_get(struct task_struct *task)
1638 {
1639 switch (ssb_mode) {
1640 case SPEC_STORE_BYPASS_DISABLE:
1641 return PR_SPEC_DISABLE;
1642 case SPEC_STORE_BYPASS_SECCOMP:
1643 case SPEC_STORE_BYPASS_PRCTL:
1644 if (task_spec_ssb_force_disable(task))
1645 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1646 if (task_spec_ssb_noexec(task))
1647 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1648 if (task_spec_ssb_disable(task))
1649 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1650 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1651 default:
1652 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 return PR_SPEC_ENABLE;
1654 return PR_SPEC_NOT_AFFECTED;
1655 }
1656 }
1657
1658 static int ib_prctl_get(struct task_struct *task)
1659 {
1660 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1661 return PR_SPEC_NOT_AFFECTED;
1662
1663 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1664 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1665 return PR_SPEC_ENABLE;
1666 else if (is_spec_ib_user_controlled()) {
1667 if (task_spec_ib_force_disable(task))
1668 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1669 if (task_spec_ib_disable(task))
1670 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1671 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1672 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1673 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1674 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1675 return PR_SPEC_DISABLE;
1676 else
1677 return PR_SPEC_NOT_AFFECTED;
1678 }
1679
1680 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1681 {
1682 switch (which) {
1683 case PR_SPEC_STORE_BYPASS:
1684 return ssb_prctl_get(task);
1685 case PR_SPEC_INDIRECT_BRANCH:
1686 return ib_prctl_get(task);
1687 case PR_SPEC_L1D_FLUSH:
1688 return l1d_flush_prctl_get(task);
1689 default:
1690 return -ENODEV;
1691 }
1692 }
1693
1694 void x86_spec_ctrl_setup_ap(void)
1695 {
1696 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1697 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1698
1699 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1700 x86_amd_ssb_disable();
1701 }
1702
1703 bool itlb_multihit_kvm_mitigation;
1704 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1705
1706 #undef pr_fmt
1707 #define pr_fmt(fmt) "L1TF: " fmt
1708
1709 /* Default mitigation for L1TF-affected CPUs */
1710 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1711 #if IS_ENABLED(CONFIG_KVM_INTEL)
1712 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1713 #endif
1714 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1715 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1716
1717 /*
1718 * These CPUs all support 44bits physical address space internally in the
1719 * cache but CPUID can report a smaller number of physical address bits.
1720 *
1721 * The L1TF mitigation uses the top most address bit for the inversion of
1722 * non present PTEs. When the installed memory reaches into the top most
1723 * address bit due to memory holes, which has been observed on machines
1724 * which report 36bits physical address bits and have 32G RAM installed,
1725 * then the mitigation range check in l1tf_select_mitigation() triggers.
1726 * This is a false positive because the mitigation is still possible due to
1727 * the fact that the cache uses 44bit internally. Use the cache bits
1728 * instead of the reported physical bits and adjust them on the affected
1729 * machines to 44bit if the reported bits are less than 44.
1730 */
1731 static void override_cache_bits(struct cpuinfo_x86 *c)
1732 {
1733 if (c->x86 != 6)
1734 return;
1735
1736 switch (c->x86_model) {
1737 case INTEL_FAM6_NEHALEM:
1738 case INTEL_FAM6_WESTMERE:
1739 case INTEL_FAM6_SANDYBRIDGE:
1740 case INTEL_FAM6_IVYBRIDGE:
1741 case INTEL_FAM6_HASWELL:
1742 case INTEL_FAM6_HASWELL_L:
1743 case INTEL_FAM6_HASWELL_G:
1744 case INTEL_FAM6_BROADWELL:
1745 case INTEL_FAM6_BROADWELL_G:
1746 case INTEL_FAM6_SKYLAKE_L:
1747 case INTEL_FAM6_SKYLAKE:
1748 case INTEL_FAM6_KABYLAKE_L:
1749 case INTEL_FAM6_KABYLAKE:
1750 if (c->x86_cache_bits < 44)
1751 c->x86_cache_bits = 44;
1752 break;
1753 }
1754 }
1755
1756 static void __init l1tf_select_mitigation(void)
1757 {
1758 u64 half_pa;
1759
1760 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1761 return;
1762
1763 if (cpu_mitigations_off())
1764 l1tf_mitigation = L1TF_MITIGATION_OFF;
1765 else if (cpu_mitigations_auto_nosmt())
1766 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1767
1768 override_cache_bits(&boot_cpu_data);
1769
1770 switch (l1tf_mitigation) {
1771 case L1TF_MITIGATION_OFF:
1772 case L1TF_MITIGATION_FLUSH_NOWARN:
1773 case L1TF_MITIGATION_FLUSH:
1774 break;
1775 case L1TF_MITIGATION_FLUSH_NOSMT:
1776 case L1TF_MITIGATION_FULL:
1777 cpu_smt_disable(false);
1778 break;
1779 case L1TF_MITIGATION_FULL_FORCE:
1780 cpu_smt_disable(true);
1781 break;
1782 }
1783
1784 #if CONFIG_PGTABLE_LEVELS == 2
1785 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
1786 return;
1787 #endif
1788
1789 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
1790 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
1791 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
1792 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
1793 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
1794 half_pa);
1795 pr_info("However, doing so will make a part of your RAM unusable.\n");
1796 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
1797 return;
1798 }
1799
1800 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
1801 }
1802
1803 static int __init l1tf_cmdline(char *str)
1804 {
1805 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1806 return 0;
1807
1808 if (!str)
1809 return -EINVAL;
1810
1811 if (!strcmp(str, "off"))
1812 l1tf_mitigation = L1TF_MITIGATION_OFF;
1813 else if (!strcmp(str, "flush,nowarn"))
1814 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
1815 else if (!strcmp(str, "flush"))
1816 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
1817 else if (!strcmp(str, "flush,nosmt"))
1818 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1819 else if (!strcmp(str, "full"))
1820 l1tf_mitigation = L1TF_MITIGATION_FULL;
1821 else if (!strcmp(str, "full,force"))
1822 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
1823
1824 return 0;
1825 }
1826 early_param("l1tf", l1tf_cmdline);
1827
1828 #undef pr_fmt
1829 #define pr_fmt(fmt) fmt
1830
1831 #ifdef CONFIG_SYSFS
1832
1833 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
1834
1835 #if IS_ENABLED(CONFIG_KVM_INTEL)
1836 static const char * const l1tf_vmx_states[] = {
1837 [VMENTER_L1D_FLUSH_AUTO] = "auto",
1838 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
1839 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
1840 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
1841 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
1842 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
1843 };
1844
1845 static ssize_t l1tf_show_state(char *buf)
1846 {
1847 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
1848 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1849
1850 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
1851 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
1852 sched_smt_active())) {
1853 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
1854 l1tf_vmx_states[l1tf_vmx_mitigation]);
1855 }
1856
1857 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
1858 l1tf_vmx_states[l1tf_vmx_mitigation],
1859 sched_smt_active() ? "vulnerable" : "disabled");
1860 }
1861
1862 static ssize_t itlb_multihit_show_state(char *buf)
1863 {
1864 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
1865 !boot_cpu_has(X86_FEATURE_VMX))
1866 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
1867 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
1868 return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
1869 else if (itlb_multihit_kvm_mitigation)
1870 return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
1871 else
1872 return sprintf(buf, "KVM: Vulnerable\n");
1873 }
1874 #else
1875 static ssize_t l1tf_show_state(char *buf)
1876 {
1877 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1878 }
1879
1880 static ssize_t itlb_multihit_show_state(char *buf)
1881 {
1882 return sprintf(buf, "Processor vulnerable\n");
1883 }
1884 #endif
1885
1886 static ssize_t mds_show_state(char *buf)
1887 {
1888 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1889 return sprintf(buf, "%s; SMT Host state unknown\n",
1890 mds_strings[mds_mitigation]);
1891 }
1892
1893 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
1894 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1895 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
1896 sched_smt_active() ? "mitigated" : "disabled"));
1897 }
1898
1899 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1900 sched_smt_active() ? "vulnerable" : "disabled");
1901 }
1902
1903 static ssize_t tsx_async_abort_show_state(char *buf)
1904 {
1905 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
1906 (taa_mitigation == TAA_MITIGATION_OFF))
1907 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
1908
1909 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1910 return sprintf(buf, "%s; SMT Host state unknown\n",
1911 taa_strings[taa_mitigation]);
1912 }
1913
1914 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
1915 sched_smt_active() ? "vulnerable" : "disabled");
1916 }
1917
1918 static ssize_t mmio_stale_data_show_state(char *buf)
1919 {
1920 if (mmio_mitigation == MMIO_MITIGATION_OFF)
1921 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
1922
1923 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1924 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
1925 mmio_strings[mmio_mitigation]);
1926 }
1927
1928 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
1929 sched_smt_active() ? "vulnerable" : "disabled");
1930 }
1931
1932 static char *stibp_state(void)
1933 {
1934 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1935 return "";
1936
1937 switch (spectre_v2_user_stibp) {
1938 case SPECTRE_V2_USER_NONE:
1939 return ", STIBP: disabled";
1940 case SPECTRE_V2_USER_STRICT:
1941 return ", STIBP: forced";
1942 case SPECTRE_V2_USER_STRICT_PREFERRED:
1943 return ", STIBP: always-on";
1944 case SPECTRE_V2_USER_PRCTL:
1945 case SPECTRE_V2_USER_SECCOMP:
1946 if (static_key_enabled(&switch_to_cond_stibp))
1947 return ", STIBP: conditional";
1948 }
1949 return "";
1950 }
1951
1952 static char *ibpb_state(void)
1953 {
1954 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1955 if (static_key_enabled(&switch_mm_always_ibpb))
1956 return ", IBPB: always-on";
1957 if (static_key_enabled(&switch_mm_cond_ibpb))
1958 return ", IBPB: conditional";
1959 return ", IBPB: disabled";
1960 }
1961 return "";
1962 }
1963
1964 static ssize_t spectre_v2_show_state(char *buf)
1965 {
1966 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
1967 return sprintf(buf, "Vulnerable: LFENCE\n");
1968
1969 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1970 return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
1971
1972 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1973 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1974 return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
1975
1976 return sprintf(buf, "%s%s%s%s%s%s\n",
1977 spectre_v2_strings[spectre_v2_enabled],
1978 ibpb_state(),
1979 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
1980 stibp_state(),
1981 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
1982 spectre_v2_module_string());
1983 }
1984
1985 static ssize_t srbds_show_state(char *buf)
1986 {
1987 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
1988 }
1989
1990 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
1991 char *buf, unsigned int bug)
1992 {
1993 if (!boot_cpu_has_bug(bug))
1994 return sprintf(buf, "Not affected\n");
1995
1996 switch (bug) {
1997 case X86_BUG_CPU_MELTDOWN:
1998 if (boot_cpu_has(X86_FEATURE_PTI))
1999 return sprintf(buf, "Mitigation: PTI\n");
2000
2001 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2002 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2003
2004 break;
2005
2006 case X86_BUG_SPECTRE_V1:
2007 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2008
2009 case X86_BUG_SPECTRE_V2:
2010 return spectre_v2_show_state(buf);
2011
2012 case X86_BUG_SPEC_STORE_BYPASS:
2013 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2014
2015 case X86_BUG_L1TF:
2016 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2017 return l1tf_show_state(buf);
2018 break;
2019
2020 case X86_BUG_MDS:
2021 return mds_show_state(buf);
2022
2023 case X86_BUG_TAA:
2024 return tsx_async_abort_show_state(buf);
2025
2026 case X86_BUG_ITLB_MULTIHIT:
2027 return itlb_multihit_show_state(buf);
2028
2029 case X86_BUG_SRBDS:
2030 return srbds_show_state(buf);
2031
2032 case X86_BUG_MMIO_STALE_DATA:
2033 return mmio_stale_data_show_state(buf);
2034
2035 default:
2036 break;
2037 }
2038
2039 return sprintf(buf, "Vulnerable\n");
2040 }
2041
2042 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2043 {
2044 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2045 }
2046
2047 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2048 {
2049 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2050 }
2051
2052 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2053 {
2054 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2055 }
2056
2057 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2058 {
2059 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2060 }
2061
2062 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2063 {
2064 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2065 }
2066
2067 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2068 {
2069 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2070 }
2071
2072 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2073 {
2074 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2075 }
2076
2077 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2078 {
2079 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2080 }
2081
2082 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2083 {
2084 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2085 }
2086
2087 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2088 {
2089 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2090 }
2091 #endif