]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/x86/kernel/cpu/common.c
fdae041dccbff97e78566fda442b82b1f2633443
[mirror_ubuntu-jammy-kernel.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62
63 #include "cpu.h"
64
65 u32 elf_hwcap2 __read_mostly;
66
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82 u16 get_llc_id(unsigned int cpu)
83 {
84 return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87
88 /* correctly size the local cpu masks */
89 void __init setup_cpu_local_masks(void)
90 {
91 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
92 alloc_bootmem_cpumask_var(&cpu_callin_mask);
93 alloc_bootmem_cpumask_var(&cpu_callout_mask);
94 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
95 }
96
97 static void default_init(struct cpuinfo_x86 *c)
98 {
99 #ifdef CONFIG_X86_64
100 cpu_detect_cache_sizes(c);
101 #else
102 /* Not much we can do here... */
103 /* Check if at least it has cpuid */
104 if (c->cpuid_level == -1) {
105 /* No cpuid. It must be an ancient CPU */
106 if (c->x86 == 4)
107 strcpy(c->x86_model_id, "486");
108 else if (c->x86 == 3)
109 strcpy(c->x86_model_id, "386");
110 }
111 #endif
112 }
113
114 static const struct cpu_dev default_cpu = {
115 .c_init = default_init,
116 .c_vendor = "Unknown",
117 .c_x86_vendor = X86_VENDOR_UNKNOWN,
118 };
119
120 static const struct cpu_dev *this_cpu = &default_cpu;
121
122 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
123 #ifdef CONFIG_X86_64
124 /*
125 * We need valid kernel segments for data and code in long mode too
126 * IRET will check the segment types kkeil 2000/10/28
127 * Also sysret mandates a special GDT layout
128 *
129 * TLS descriptors are currently at a different place compared to i386.
130 * Hopefully nobody expects them at a fixed place (Wine?)
131 */
132 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
133 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
134 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
135 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
136 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
137 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
138 #else
139 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
140 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
142 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
143 /*
144 * Segments used for calling PnP BIOS have byte granularity.
145 * They code segments and data segments have fixed 64k limits,
146 * the transfer segment sizes are set at run time.
147 */
148 /* 32-bit code */
149 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
150 /* 16-bit code */
151 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
152 /* 16-bit data */
153 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
154 /* 16-bit data */
155 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
156 /* 16-bit data */
157 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
158 /*
159 * The APM segments have byte granularity and their bases
160 * are set at run time. All have 64k limits.
161 */
162 /* 32-bit code */
163 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
164 /* 16-bit code */
165 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
166 /* data */
167 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
168
169 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
170 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
171 #endif
172 } };
173 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
174
175 #ifdef CONFIG_X86_64
176 static int __init x86_nopcid_setup(char *s)
177 {
178 /* nopcid doesn't accept parameters */
179 if (s)
180 return -EINVAL;
181
182 /* do not emit a message if the feature is not present */
183 if (!boot_cpu_has(X86_FEATURE_PCID))
184 return 0;
185
186 setup_clear_cpu_cap(X86_FEATURE_PCID);
187 pr_info("nopcid: PCID feature disabled\n");
188 return 0;
189 }
190 early_param("nopcid", x86_nopcid_setup);
191 #endif
192
193 static int __init x86_noinvpcid_setup(char *s)
194 {
195 /* noinvpcid doesn't accept parameters */
196 if (s)
197 return -EINVAL;
198
199 /* do not emit a message if the feature is not present */
200 if (!boot_cpu_has(X86_FEATURE_INVPCID))
201 return 0;
202
203 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
204 pr_info("noinvpcid: INVPCID feature disabled\n");
205 return 0;
206 }
207 early_param("noinvpcid", x86_noinvpcid_setup);
208
209 #ifdef CONFIG_X86_32
210 static int cachesize_override = -1;
211 static int disable_x86_serial_nr = 1;
212
213 static int __init cachesize_setup(char *str)
214 {
215 get_option(&str, &cachesize_override);
216 return 1;
217 }
218 __setup("cachesize=", cachesize_setup);
219
220 static int __init x86_sep_setup(char *s)
221 {
222 setup_clear_cpu_cap(X86_FEATURE_SEP);
223 return 1;
224 }
225 __setup("nosep", x86_sep_setup);
226
227 /* Standard macro to see if a specific flag is changeable */
228 static inline int flag_is_changeable_p(u32 flag)
229 {
230 u32 f1, f2;
231
232 /*
233 * Cyrix and IDT cpus allow disabling of CPUID
234 * so the code below may return different results
235 * when it is executed before and after enabling
236 * the CPUID. Add "volatile" to not allow gcc to
237 * optimize the subsequent calls to this function.
238 */
239 asm volatile ("pushfl \n\t"
240 "pushfl \n\t"
241 "popl %0 \n\t"
242 "movl %0, %1 \n\t"
243 "xorl %2, %0 \n\t"
244 "pushl %0 \n\t"
245 "popfl \n\t"
246 "pushfl \n\t"
247 "popl %0 \n\t"
248 "popfl \n\t"
249
250 : "=&r" (f1), "=&r" (f2)
251 : "ir" (flag));
252
253 return ((f1^f2) & flag) != 0;
254 }
255
256 /* Probe for the CPUID instruction */
257 int have_cpuid_p(void)
258 {
259 return flag_is_changeable_p(X86_EFLAGS_ID);
260 }
261
262 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
263 {
264 unsigned long lo, hi;
265
266 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
267 return;
268
269 /* Disable processor serial number: */
270
271 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
272 lo |= 0x200000;
273 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
274
275 pr_notice("CPU serial number disabled.\n");
276 clear_cpu_cap(c, X86_FEATURE_PN);
277
278 /* Disabling the serial number may affect the cpuid level */
279 c->cpuid_level = cpuid_eax(0);
280 }
281
282 static int __init x86_serial_nr_setup(char *s)
283 {
284 disable_x86_serial_nr = 0;
285 return 1;
286 }
287 __setup("serialnumber", x86_serial_nr_setup);
288 #else
289 static inline int flag_is_changeable_p(u32 flag)
290 {
291 return 1;
292 }
293 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
294 {
295 }
296 #endif
297
298 static __init int setup_disable_smep(char *arg)
299 {
300 setup_clear_cpu_cap(X86_FEATURE_SMEP);
301 return 1;
302 }
303 __setup("nosmep", setup_disable_smep);
304
305 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
306 {
307 if (cpu_has(c, X86_FEATURE_SMEP))
308 cr4_set_bits(X86_CR4_SMEP);
309 }
310
311 static __init int setup_disable_smap(char *arg)
312 {
313 setup_clear_cpu_cap(X86_FEATURE_SMAP);
314 return 1;
315 }
316 __setup("nosmap", setup_disable_smap);
317
318 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
319 {
320 unsigned long eflags = native_save_fl();
321
322 /* This should have been cleared long ago */
323 BUG_ON(eflags & X86_EFLAGS_AC);
324
325 if (cpu_has(c, X86_FEATURE_SMAP)) {
326 #ifdef CONFIG_X86_SMAP
327 cr4_set_bits(X86_CR4_SMAP);
328 #else
329 clear_cpu_cap(c, X86_FEATURE_SMAP);
330 cr4_clear_bits(X86_CR4_SMAP);
331 #endif
332 }
333 }
334
335 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
336 {
337 /* Check the boot processor, plus build option for UMIP. */
338 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
339 goto out;
340
341 /* Check the current processor's cpuid bits. */
342 if (!cpu_has(c, X86_FEATURE_UMIP))
343 goto out;
344
345 cr4_set_bits(X86_CR4_UMIP);
346
347 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
348
349 return;
350
351 out:
352 /*
353 * Make sure UMIP is disabled in case it was enabled in a
354 * previous boot (e.g., via kexec).
355 */
356 cr4_clear_bits(X86_CR4_UMIP);
357 }
358
359 /* These bits should not change their value after CPU init is finished. */
360 static const unsigned long cr4_pinned_mask =
361 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
362 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
363 static unsigned long cr4_pinned_bits __ro_after_init;
364
365 void native_write_cr0(unsigned long val)
366 {
367 unsigned long bits_missing = 0;
368
369 set_register:
370 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
371
372 if (static_branch_likely(&cr_pinning)) {
373 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
374 bits_missing = X86_CR0_WP;
375 val |= bits_missing;
376 goto set_register;
377 }
378 /* Warn after we've set the missing bits. */
379 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
380 }
381 }
382 EXPORT_SYMBOL(native_write_cr0);
383
384 void native_write_cr4(unsigned long val)
385 {
386 unsigned long bits_changed = 0;
387
388 set_register:
389 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
390
391 if (static_branch_likely(&cr_pinning)) {
392 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
393 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
394 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
395 goto set_register;
396 }
397 /* Warn after we've corrected the changed bits. */
398 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
399 bits_changed);
400 }
401 }
402 #if IS_MODULE(CONFIG_LKDTM)
403 EXPORT_SYMBOL_GPL(native_write_cr4);
404 #endif
405
406 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
407 {
408 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
409
410 lockdep_assert_irqs_disabled();
411
412 newval = (cr4 & ~clear) | set;
413 if (newval != cr4) {
414 this_cpu_write(cpu_tlbstate.cr4, newval);
415 __write_cr4(newval);
416 }
417 }
418 EXPORT_SYMBOL(cr4_update_irqsoff);
419
420 /* Read the CR4 shadow. */
421 unsigned long cr4_read_shadow(void)
422 {
423 return this_cpu_read(cpu_tlbstate.cr4);
424 }
425 EXPORT_SYMBOL_GPL(cr4_read_shadow);
426
427 void cr4_init(void)
428 {
429 unsigned long cr4 = __read_cr4();
430
431 if (boot_cpu_has(X86_FEATURE_PCID))
432 cr4 |= X86_CR4_PCIDE;
433 if (static_branch_likely(&cr_pinning))
434 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
435
436 __write_cr4(cr4);
437
438 /* Initialize cr4 shadow for this CPU. */
439 this_cpu_write(cpu_tlbstate.cr4, cr4);
440 }
441
442 /*
443 * Once CPU feature detection is finished (and boot params have been
444 * parsed), record any of the sensitive CR bits that are set, and
445 * enable CR pinning.
446 */
447 static void __init setup_cr_pinning(void)
448 {
449 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
450 static_key_enable(&cr_pinning.key);
451 }
452
453 static __init int x86_nofsgsbase_setup(char *arg)
454 {
455 /* Require an exact match without trailing characters. */
456 if (strlen(arg))
457 return 0;
458
459 /* Do not emit a message if the feature is not present. */
460 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
461 return 1;
462
463 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
464 pr_info("FSGSBASE disabled via kernel command line\n");
465 return 1;
466 }
467 __setup("nofsgsbase", x86_nofsgsbase_setup);
468
469 /*
470 * Protection Keys are not available in 32-bit mode.
471 */
472 static bool pku_disabled;
473
474 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
475 {
476 if (c == &boot_cpu_data) {
477 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
478 return;
479 /*
480 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
481 * bit to be set. Enforce it.
482 */
483 setup_force_cpu_cap(X86_FEATURE_OSPKE);
484
485 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
486 return;
487 }
488
489 cr4_set_bits(X86_CR4_PKE);
490 /* Load the default PKRU value */
491 pkru_write_default();
492 }
493
494 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
495 static __init int setup_disable_pku(char *arg)
496 {
497 /*
498 * Do not clear the X86_FEATURE_PKU bit. All of the
499 * runtime checks are against OSPKE so clearing the
500 * bit does nothing.
501 *
502 * This way, we will see "pku" in cpuinfo, but not
503 * "ospke", which is exactly what we want. It shows
504 * that the CPU has PKU, but the OS has not enabled it.
505 * This happens to be exactly how a system would look
506 * if we disabled the config option.
507 */
508 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
509 pku_disabled = true;
510 return 1;
511 }
512 __setup("nopku", setup_disable_pku);
513 #endif /* CONFIG_X86_64 */
514
515 /*
516 * Some CPU features depend on higher CPUID levels, which may not always
517 * be available due to CPUID level capping or broken virtualization
518 * software. Add those features to this table to auto-disable them.
519 */
520 struct cpuid_dependent_feature {
521 u32 feature;
522 u32 level;
523 };
524
525 static const struct cpuid_dependent_feature
526 cpuid_dependent_features[] = {
527 { X86_FEATURE_MWAIT, 0x00000005 },
528 { X86_FEATURE_DCA, 0x00000009 },
529 { X86_FEATURE_XSAVE, 0x0000000d },
530 { 0, 0 }
531 };
532
533 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
534 {
535 const struct cpuid_dependent_feature *df;
536
537 for (df = cpuid_dependent_features; df->feature; df++) {
538
539 if (!cpu_has(c, df->feature))
540 continue;
541 /*
542 * Note: cpuid_level is set to -1 if unavailable, but
543 * extended_extended_level is set to 0 if unavailable
544 * and the legitimate extended levels are all negative
545 * when signed; hence the weird messing around with
546 * signs here...
547 */
548 if (!((s32)df->level < 0 ?
549 (u32)df->level > (u32)c->extended_cpuid_level :
550 (s32)df->level > (s32)c->cpuid_level))
551 continue;
552
553 clear_cpu_cap(c, df->feature);
554 if (!warn)
555 continue;
556
557 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
558 x86_cap_flag(df->feature), df->level);
559 }
560 }
561
562 /*
563 * Naming convention should be: <Name> [(<Codename>)]
564 * This table only is used unless init_<vendor>() below doesn't set it;
565 * in particular, if CPUID levels 0x80000002..4 are supported, this
566 * isn't used
567 */
568
569 /* Look up CPU names by table lookup. */
570 static const char *table_lookup_model(struct cpuinfo_x86 *c)
571 {
572 #ifdef CONFIG_X86_32
573 const struct legacy_cpu_model_info *info;
574
575 if (c->x86_model >= 16)
576 return NULL; /* Range check */
577
578 if (!this_cpu)
579 return NULL;
580
581 info = this_cpu->legacy_models;
582
583 while (info->family) {
584 if (info->family == c->x86)
585 return info->model_names[c->x86_model];
586 info++;
587 }
588 #endif
589 return NULL; /* Not found */
590 }
591
592 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
593 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
594 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
595
596 void load_percpu_segment(int cpu)
597 {
598 #ifdef CONFIG_X86_32
599 loadsegment(fs, __KERNEL_PERCPU);
600 #else
601 __loadsegment_simple(gs, 0);
602 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
603 #endif
604 }
605
606 #ifdef CONFIG_X86_32
607 /* The 32-bit entry code needs to find cpu_entry_area. */
608 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
609 #endif
610
611 /* Load the original GDT from the per-cpu structure */
612 void load_direct_gdt(int cpu)
613 {
614 struct desc_ptr gdt_descr;
615
616 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
617 gdt_descr.size = GDT_SIZE - 1;
618 load_gdt(&gdt_descr);
619 }
620 EXPORT_SYMBOL_GPL(load_direct_gdt);
621
622 /* Load a fixmap remapping of the per-cpu GDT */
623 void load_fixmap_gdt(int cpu)
624 {
625 struct desc_ptr gdt_descr;
626
627 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
628 gdt_descr.size = GDT_SIZE - 1;
629 load_gdt(&gdt_descr);
630 }
631 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
632
633 /*
634 * Current gdt points %fs at the "master" per-cpu area: after this,
635 * it's on the real one.
636 */
637 void switch_to_new_gdt(int cpu)
638 {
639 /* Load the original GDT */
640 load_direct_gdt(cpu);
641 /* Reload the per-cpu base */
642 load_percpu_segment(cpu);
643 }
644
645 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
646
647 static void get_model_name(struct cpuinfo_x86 *c)
648 {
649 unsigned int *v;
650 char *p, *q, *s;
651
652 if (c->extended_cpuid_level < 0x80000004)
653 return;
654
655 v = (unsigned int *)c->x86_model_id;
656 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
657 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
658 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
659 c->x86_model_id[48] = 0;
660
661 /* Trim whitespace */
662 p = q = s = &c->x86_model_id[0];
663
664 while (*p == ' ')
665 p++;
666
667 while (*p) {
668 /* Note the last non-whitespace index */
669 if (!isspace(*p))
670 s = q;
671
672 *q++ = *p++;
673 }
674
675 *(s + 1) = '\0';
676 }
677
678 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
679 {
680 unsigned int eax, ebx, ecx, edx;
681
682 c->x86_max_cores = 1;
683 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
684 return;
685
686 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
687 if (eax & 0x1f)
688 c->x86_max_cores = (eax >> 26) + 1;
689 }
690
691 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
692 {
693 unsigned int n, dummy, ebx, ecx, edx, l2size;
694
695 n = c->extended_cpuid_level;
696
697 if (n >= 0x80000005) {
698 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
699 c->x86_cache_size = (ecx>>24) + (edx>>24);
700 #ifdef CONFIG_X86_64
701 /* On K8 L1 TLB is inclusive, so don't count it */
702 c->x86_tlbsize = 0;
703 #endif
704 }
705
706 if (n < 0x80000006) /* Some chips just has a large L1. */
707 return;
708
709 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
710 l2size = ecx >> 16;
711
712 #ifdef CONFIG_X86_64
713 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
714 #else
715 /* do processor-specific cache resizing */
716 if (this_cpu->legacy_cache_size)
717 l2size = this_cpu->legacy_cache_size(c, l2size);
718
719 /* Allow user to override all this if necessary. */
720 if (cachesize_override != -1)
721 l2size = cachesize_override;
722
723 if (l2size == 0)
724 return; /* Again, no L2 cache is possible */
725 #endif
726
727 c->x86_cache_size = l2size;
728 }
729
730 u16 __read_mostly tlb_lli_4k[NR_INFO];
731 u16 __read_mostly tlb_lli_2m[NR_INFO];
732 u16 __read_mostly tlb_lli_4m[NR_INFO];
733 u16 __read_mostly tlb_lld_4k[NR_INFO];
734 u16 __read_mostly tlb_lld_2m[NR_INFO];
735 u16 __read_mostly tlb_lld_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_1g[NR_INFO];
737
738 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
739 {
740 if (this_cpu->c_detect_tlb)
741 this_cpu->c_detect_tlb(c);
742
743 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
744 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
745 tlb_lli_4m[ENTRIES]);
746
747 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
748 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
749 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
750 }
751
752 int detect_ht_early(struct cpuinfo_x86 *c)
753 {
754 #ifdef CONFIG_SMP
755 u32 eax, ebx, ecx, edx;
756
757 if (!cpu_has(c, X86_FEATURE_HT))
758 return -1;
759
760 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
761 return -1;
762
763 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
764 return -1;
765
766 cpuid(1, &eax, &ebx, &ecx, &edx);
767
768 smp_num_siblings = (ebx & 0xff0000) >> 16;
769 if (smp_num_siblings == 1)
770 pr_info_once("CPU0: Hyper-Threading is disabled\n");
771 #endif
772 return 0;
773 }
774
775 void detect_ht(struct cpuinfo_x86 *c)
776 {
777 #ifdef CONFIG_SMP
778 int index_msb, core_bits;
779
780 if (detect_ht_early(c) < 0)
781 return;
782
783 index_msb = get_count_order(smp_num_siblings);
784 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
785
786 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
787
788 index_msb = get_count_order(smp_num_siblings);
789
790 core_bits = get_count_order(c->x86_max_cores);
791
792 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
793 ((1 << core_bits) - 1);
794 #endif
795 }
796
797 static void get_cpu_vendor(struct cpuinfo_x86 *c)
798 {
799 char *v = c->x86_vendor_id;
800 int i;
801
802 for (i = 0; i < X86_VENDOR_NUM; i++) {
803 if (!cpu_devs[i])
804 break;
805
806 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
807 (cpu_devs[i]->c_ident[1] &&
808 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
809
810 this_cpu = cpu_devs[i];
811 c->x86_vendor = this_cpu->c_x86_vendor;
812 return;
813 }
814 }
815
816 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
817 "CPU: Your system may be unstable.\n", v);
818
819 c->x86_vendor = X86_VENDOR_UNKNOWN;
820 this_cpu = &default_cpu;
821 }
822
823 void cpu_detect(struct cpuinfo_x86 *c)
824 {
825 /* Get vendor name */
826 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
827 (unsigned int *)&c->x86_vendor_id[0],
828 (unsigned int *)&c->x86_vendor_id[8],
829 (unsigned int *)&c->x86_vendor_id[4]);
830
831 c->x86 = 4;
832 /* Intel-defined flags: level 0x00000001 */
833 if (c->cpuid_level >= 0x00000001) {
834 u32 junk, tfms, cap0, misc;
835
836 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
837 c->x86 = x86_family(tfms);
838 c->x86_model = x86_model(tfms);
839 c->x86_stepping = x86_stepping(tfms);
840
841 if (cap0 & (1<<19)) {
842 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
843 c->x86_cache_alignment = c->x86_clflush_size;
844 }
845 }
846 }
847
848 static void apply_forced_caps(struct cpuinfo_x86 *c)
849 {
850 int i;
851
852 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
853 c->x86_capability[i] &= ~cpu_caps_cleared[i];
854 c->x86_capability[i] |= cpu_caps_set[i];
855 }
856 }
857
858 static void init_speculation_control(struct cpuinfo_x86 *c)
859 {
860 /*
861 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
862 * and they also have a different bit for STIBP support. Also,
863 * a hypervisor might have set the individual AMD bits even on
864 * Intel CPUs, for finer-grained selection of what's available.
865 */
866 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
867 set_cpu_cap(c, X86_FEATURE_IBRS);
868 set_cpu_cap(c, X86_FEATURE_IBPB);
869 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
870 }
871
872 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
873 set_cpu_cap(c, X86_FEATURE_STIBP);
874
875 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
876 cpu_has(c, X86_FEATURE_VIRT_SSBD))
877 set_cpu_cap(c, X86_FEATURE_SSBD);
878
879 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
880 set_cpu_cap(c, X86_FEATURE_IBRS);
881 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
882 }
883
884 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
885 set_cpu_cap(c, X86_FEATURE_IBPB);
886
887 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
888 set_cpu_cap(c, X86_FEATURE_STIBP);
889 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
890 }
891
892 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
893 set_cpu_cap(c, X86_FEATURE_SSBD);
894 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
895 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
896 }
897 }
898
899 void get_cpu_cap(struct cpuinfo_x86 *c)
900 {
901 u32 eax, ebx, ecx, edx;
902
903 /* Intel-defined flags: level 0x00000001 */
904 if (c->cpuid_level >= 0x00000001) {
905 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906
907 c->x86_capability[CPUID_1_ECX] = ecx;
908 c->x86_capability[CPUID_1_EDX] = edx;
909 }
910
911 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912 if (c->cpuid_level >= 0x00000006)
913 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914
915 /* Additional Intel-defined flags: level 0x00000007 */
916 if (c->cpuid_level >= 0x00000007) {
917 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918 c->x86_capability[CPUID_7_0_EBX] = ebx;
919 c->x86_capability[CPUID_7_ECX] = ecx;
920 c->x86_capability[CPUID_7_EDX] = edx;
921
922 /* Check valid sub-leaf index before accessing it */
923 if (eax >= 1) {
924 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925 c->x86_capability[CPUID_7_1_EAX] = eax;
926 }
927 }
928
929 /* Extended state features: level 0x0000000d */
930 if (c->cpuid_level >= 0x0000000d) {
931 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932
933 c->x86_capability[CPUID_D_1_EAX] = eax;
934 }
935
936 /* AMD-defined flags: level 0x80000001 */
937 eax = cpuid_eax(0x80000000);
938 c->extended_cpuid_level = eax;
939
940 if ((eax & 0xffff0000) == 0x80000000) {
941 if (eax >= 0x80000001) {
942 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943
944 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945 c->x86_capability[CPUID_8000_0001_EDX] = edx;
946 }
947 }
948
949 if (c->extended_cpuid_level >= 0x80000007) {
950 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951
952 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953 c->x86_power = edx;
954 }
955
956 if (c->extended_cpuid_level >= 0x80000008) {
957 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959 }
960
961 if (c->extended_cpuid_level >= 0x8000000a)
962 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963
964 if (c->extended_cpuid_level >= 0x8000001f)
965 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
966
967 init_scattered_cpuid_features(c);
968 init_speculation_control(c);
969
970 /*
971 * Clear/Set all flags overridden by options, after probe.
972 * This needs to happen each time we re-probe, which may happen
973 * several times during CPU initialization.
974 */
975 apply_forced_caps(c);
976 }
977
978 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
979 {
980 u32 eax, ebx, ecx, edx;
981
982 if (c->extended_cpuid_level >= 0x80000008) {
983 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
984
985 c->x86_virt_bits = (eax >> 8) & 0xff;
986 c->x86_phys_bits = eax & 0xff;
987 }
988 #ifdef CONFIG_X86_32
989 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
990 c->x86_phys_bits = 36;
991 #endif
992 c->x86_cache_bits = c->x86_phys_bits;
993 }
994
995 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
996 {
997 #ifdef CONFIG_X86_32
998 int i;
999
1000 /*
1001 * First of all, decide if this is a 486 or higher
1002 * It's a 486 if we can modify the AC flag
1003 */
1004 if (flag_is_changeable_p(X86_EFLAGS_AC))
1005 c->x86 = 4;
1006 else
1007 c->x86 = 3;
1008
1009 for (i = 0; i < X86_VENDOR_NUM; i++)
1010 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1011 c->x86_vendor_id[0] = 0;
1012 cpu_devs[i]->c_identify(c);
1013 if (c->x86_vendor_id[0]) {
1014 get_cpu_vendor(c);
1015 break;
1016 }
1017 }
1018 #endif
1019 }
1020
1021 #define NO_SPECULATION BIT(0)
1022 #define NO_MELTDOWN BIT(1)
1023 #define NO_SSB BIT(2)
1024 #define NO_L1TF BIT(3)
1025 #define NO_MDS BIT(4)
1026 #define MSBDS_ONLY BIT(5)
1027 #define NO_SWAPGS BIT(6)
1028 #define NO_ITLB_MULTIHIT BIT(7)
1029 #define NO_SPECTRE_V2 BIT(8)
1030
1031 #define VULNWL(vendor, family, model, whitelist) \
1032 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1033
1034 #define VULNWL_INTEL(model, whitelist) \
1035 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1036
1037 #define VULNWL_AMD(family, whitelist) \
1038 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1039
1040 #define VULNWL_HYGON(family, whitelist) \
1041 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1042
1043 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1044 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1045 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1046 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1047 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1048
1049 /* Intel Family 6 */
1050 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1055
1056 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062
1063 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1064
1065 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071
1072 /*
1073 * Technically, swapgs isn't serializing on AMD (despite it previously
1074 * being documented as such in the APM). But according to AMD, %gs is
1075 * updated non-speculatively, and the issuing of %gs-relative memory
1076 * operands will be blocked until the %gs update completes, which is
1077 * good enough for our purposes.
1078 */
1079
1080 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1081
1082 /* AMD Family 0xf - 0x12 */
1083 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087
1088 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1089 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091
1092 /* Zhaoxin Family 7 */
1093 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1094 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1095 {}
1096 };
1097
1098 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1099 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1100 INTEL_FAM6_##model, steppings, \
1101 X86_FEATURE_ANY, issues)
1102
1103 #define SRBDS BIT(0)
1104
1105 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1106 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1109 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1110 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1111 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1112 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1113 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1114 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1115 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1116 {}
1117 };
1118
1119 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1120 {
1121 const struct x86_cpu_id *m = x86_match_cpu(table);
1122
1123 return m && !!(m->driver_data & which);
1124 }
1125
1126 u64 x86_read_arch_cap_msr(void)
1127 {
1128 u64 ia32_cap = 0;
1129
1130 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1131 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1132
1133 return ia32_cap;
1134 }
1135
1136 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1137 {
1138 u64 ia32_cap = x86_read_arch_cap_msr();
1139
1140 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1141 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1142 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1143 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1144
1145 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1146 return;
1147
1148 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1149
1150 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1151 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1152
1153 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1154 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1155 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1156 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1157
1158 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1159 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1160
1161 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1162 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1163 setup_force_cpu_bug(X86_BUG_MDS);
1164 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1165 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1166 }
1167
1168 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1169 setup_force_cpu_bug(X86_BUG_SWAPGS);
1170
1171 /*
1172 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1173 * - TSX is supported or
1174 * - TSX_CTRL is present
1175 *
1176 * TSX_CTRL check is needed for cases when TSX could be disabled before
1177 * the kernel boot e.g. kexec.
1178 * TSX_CTRL check alone is not sufficient for cases when the microcode
1179 * update is not present or running as guest that don't get TSX_CTRL.
1180 */
1181 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1182 (cpu_has(c, X86_FEATURE_RTM) ||
1183 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1184 setup_force_cpu_bug(X86_BUG_TAA);
1185
1186 /*
1187 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1188 * in the vulnerability blacklist.
1189 */
1190 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1191 cpu_has(c, X86_FEATURE_RDSEED)) &&
1192 cpu_matches(cpu_vuln_blacklist, SRBDS))
1193 setup_force_cpu_bug(X86_BUG_SRBDS);
1194
1195 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1196 return;
1197
1198 /* Rogue Data Cache Load? No! */
1199 if (ia32_cap & ARCH_CAP_RDCL_NO)
1200 return;
1201
1202 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1203
1204 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1205 return;
1206
1207 setup_force_cpu_bug(X86_BUG_L1TF);
1208 }
1209
1210 /*
1211 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1212 * unfortunately, that's not true in practice because of early VIA
1213 * chips and (more importantly) broken virtualizers that are not easy
1214 * to detect. In the latter case it doesn't even *fail* reliably, so
1215 * probing for it doesn't even work. Disable it completely on 32-bit
1216 * unless we can find a reliable way to detect all the broken cases.
1217 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1218 */
1219 static void detect_nopl(void)
1220 {
1221 #ifdef CONFIG_X86_32
1222 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1223 #else
1224 setup_force_cpu_cap(X86_FEATURE_NOPL);
1225 #endif
1226 }
1227
1228 /*
1229 * We parse cpu parameters early because fpu__init_system() is executed
1230 * before parse_early_param().
1231 */
1232 static void __init cpu_parse_early_param(void)
1233 {
1234 char arg[128];
1235 char *argptr = arg;
1236 int arglen, res, bit;
1237
1238 #ifdef CONFIG_X86_32
1239 if (cmdline_find_option_bool(boot_command_line, "no387"))
1240 #ifdef CONFIG_MATH_EMULATION
1241 setup_clear_cpu_cap(X86_FEATURE_FPU);
1242 #else
1243 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1244 #endif
1245
1246 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1247 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1248 #endif
1249
1250 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1251 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1252
1253 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1254 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1255
1256 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1257 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1258
1259 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1260 if (arglen <= 0)
1261 return;
1262
1263 pr_info("Clearing CPUID bits:");
1264 do {
1265 res = get_option(&argptr, &bit);
1266 if (res == 0 || res == 3)
1267 break;
1268
1269 /* If the argument was too long, the last bit may be cut off */
1270 if (res == 1 && arglen >= sizeof(arg))
1271 break;
1272
1273 if (bit >= 0 && bit < NCAPINTS * 32) {
1274 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1275 setup_clear_cpu_cap(bit);
1276 }
1277 } while (res == 2);
1278 pr_cont("\n");
1279 }
1280
1281 /*
1282 * Do minimum CPU detection early.
1283 * Fields really needed: vendor, cpuid_level, family, model, mask,
1284 * cache alignment.
1285 * The others are not touched to avoid unwanted side effects.
1286 *
1287 * WARNING: this function is only called on the boot CPU. Don't add code
1288 * here that is supposed to run on all CPUs.
1289 */
1290 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1291 {
1292 #ifdef CONFIG_X86_64
1293 c->x86_clflush_size = 64;
1294 c->x86_phys_bits = 36;
1295 c->x86_virt_bits = 48;
1296 #else
1297 c->x86_clflush_size = 32;
1298 c->x86_phys_bits = 32;
1299 c->x86_virt_bits = 32;
1300 #endif
1301 c->x86_cache_alignment = c->x86_clflush_size;
1302
1303 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1304 c->extended_cpuid_level = 0;
1305
1306 if (!have_cpuid_p())
1307 identify_cpu_without_cpuid(c);
1308
1309 /* cyrix could have cpuid enabled via c_identify()*/
1310 if (have_cpuid_p()) {
1311 cpu_detect(c);
1312 get_cpu_vendor(c);
1313 get_cpu_cap(c);
1314 get_cpu_address_sizes(c);
1315 setup_force_cpu_cap(X86_FEATURE_CPUID);
1316 cpu_parse_early_param();
1317
1318 if (this_cpu->c_early_init)
1319 this_cpu->c_early_init(c);
1320
1321 c->cpu_index = 0;
1322 filter_cpuid_features(c, false);
1323
1324 if (this_cpu->c_bsp_init)
1325 this_cpu->c_bsp_init(c);
1326 } else {
1327 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1328 }
1329
1330 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1331
1332 cpu_set_bug_bits(c);
1333
1334 sld_setup(c);
1335
1336 fpu__init_system(c);
1337
1338 init_sigframe_size();
1339
1340 #ifdef CONFIG_X86_32
1341 /*
1342 * Regardless of whether PCID is enumerated, the SDM says
1343 * that it can't be enabled in 32-bit mode.
1344 */
1345 setup_clear_cpu_cap(X86_FEATURE_PCID);
1346 #endif
1347
1348 /*
1349 * Later in the boot process pgtable_l5_enabled() relies on
1350 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1351 * enabled by this point we need to clear the feature bit to avoid
1352 * false-positives at the later stage.
1353 *
1354 * pgtable_l5_enabled() can be false here for several reasons:
1355 * - 5-level paging is disabled compile-time;
1356 * - it's 32-bit kernel;
1357 * - machine doesn't support 5-level paging;
1358 * - user specified 'no5lvl' in kernel command line.
1359 */
1360 if (!pgtable_l5_enabled())
1361 setup_clear_cpu_cap(X86_FEATURE_LA57);
1362
1363 detect_nopl();
1364 }
1365
1366 void __init early_cpu_init(void)
1367 {
1368 const struct cpu_dev *const *cdev;
1369 int count = 0;
1370
1371 #ifdef CONFIG_PROCESSOR_SELECT
1372 pr_info("KERNEL supported cpus:\n");
1373 #endif
1374
1375 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1376 const struct cpu_dev *cpudev = *cdev;
1377
1378 if (count >= X86_VENDOR_NUM)
1379 break;
1380 cpu_devs[count] = cpudev;
1381 count++;
1382
1383 #ifdef CONFIG_PROCESSOR_SELECT
1384 {
1385 unsigned int j;
1386
1387 for (j = 0; j < 2; j++) {
1388 if (!cpudev->c_ident[j])
1389 continue;
1390 pr_info(" %s %s\n", cpudev->c_vendor,
1391 cpudev->c_ident[j]);
1392 }
1393 }
1394 #endif
1395 }
1396 early_identify_cpu(&boot_cpu_data);
1397 }
1398
1399 static bool detect_null_seg_behavior(void)
1400 {
1401 /*
1402 * Empirically, writing zero to a segment selector on AMD does
1403 * not clear the base, whereas writing zero to a segment
1404 * selector on Intel does clear the base. Intel's behavior
1405 * allows slightly faster context switches in the common case
1406 * where GS is unused by the prev and next threads.
1407 *
1408 * Since neither vendor documents this anywhere that I can see,
1409 * detect it directly instead of hard-coding the choice by
1410 * vendor.
1411 *
1412 * I've designated AMD's behavior as the "bug" because it's
1413 * counterintuitive and less friendly.
1414 */
1415
1416 unsigned long old_base, tmp;
1417 rdmsrl(MSR_FS_BASE, old_base);
1418 wrmsrl(MSR_FS_BASE, 1);
1419 loadsegment(fs, 0);
1420 rdmsrl(MSR_FS_BASE, tmp);
1421 wrmsrl(MSR_FS_BASE, old_base);
1422 return tmp == 0;
1423 }
1424
1425 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1426 {
1427 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1428 if (!IS_ENABLED(CONFIG_X86_64))
1429 return;
1430
1431 /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1432 if (c->extended_cpuid_level >= 0x80000021 &&
1433 cpuid_eax(0x80000021) & BIT(6))
1434 return;
1435
1436 /*
1437 * CPUID bit above wasn't set. If this kernel is still running
1438 * as a HV guest, then the HV has decided not to advertize
1439 * that CPUID bit for whatever reason. For example, one
1440 * member of the migration pool might be vulnerable. Which
1441 * means, the bug is present: set the BUG flag and return.
1442 */
1443 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1444 set_cpu_bug(c, X86_BUG_NULL_SEG);
1445 return;
1446 }
1447
1448 /*
1449 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1450 * 0x18 is the respective family for Hygon.
1451 */
1452 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1453 detect_null_seg_behavior())
1454 return;
1455
1456 /* All the remaining ones are affected */
1457 set_cpu_bug(c, X86_BUG_NULL_SEG);
1458 }
1459
1460 static void generic_identify(struct cpuinfo_x86 *c)
1461 {
1462 c->extended_cpuid_level = 0;
1463
1464 if (!have_cpuid_p())
1465 identify_cpu_without_cpuid(c);
1466
1467 /* cyrix could have cpuid enabled via c_identify()*/
1468 if (!have_cpuid_p())
1469 return;
1470
1471 cpu_detect(c);
1472
1473 get_cpu_vendor(c);
1474
1475 get_cpu_cap(c);
1476
1477 get_cpu_address_sizes(c);
1478
1479 if (c->cpuid_level >= 0x00000001) {
1480 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1481 #ifdef CONFIG_X86_32
1482 # ifdef CONFIG_SMP
1483 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1484 # else
1485 c->apicid = c->initial_apicid;
1486 # endif
1487 #endif
1488 c->phys_proc_id = c->initial_apicid;
1489 }
1490
1491 get_model_name(c); /* Default name */
1492
1493 /*
1494 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1495 * systems that run Linux at CPL > 0 may or may not have the
1496 * issue, but, even if they have the issue, there's absolutely
1497 * nothing we can do about it because we can't use the real IRET
1498 * instruction.
1499 *
1500 * NB: For the time being, only 32-bit kernels support
1501 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1502 * whether to apply espfix using paravirt hooks. If any
1503 * non-paravirt system ever shows up that does *not* have the
1504 * ESPFIX issue, we can change this.
1505 */
1506 #ifdef CONFIG_X86_32
1507 set_cpu_bug(c, X86_BUG_ESPFIX);
1508 #endif
1509 }
1510
1511 /*
1512 * Validate that ACPI/mptables have the same information about the
1513 * effective APIC id and update the package map.
1514 */
1515 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1516 {
1517 #ifdef CONFIG_SMP
1518 unsigned int apicid, cpu = smp_processor_id();
1519
1520 apicid = apic->cpu_present_to_apicid(cpu);
1521
1522 if (apicid != c->apicid) {
1523 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1524 cpu, apicid, c->initial_apicid);
1525 }
1526 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1527 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1528 #else
1529 c->logical_proc_id = 0;
1530 #endif
1531 }
1532
1533 /*
1534 * This does the hard work of actually picking apart the CPU stuff...
1535 */
1536 static void identify_cpu(struct cpuinfo_x86 *c)
1537 {
1538 int i;
1539
1540 c->loops_per_jiffy = loops_per_jiffy;
1541 c->x86_cache_size = 0;
1542 c->x86_vendor = X86_VENDOR_UNKNOWN;
1543 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1544 c->x86_vendor_id[0] = '\0'; /* Unset */
1545 c->x86_model_id[0] = '\0'; /* Unset */
1546 c->x86_max_cores = 1;
1547 c->x86_coreid_bits = 0;
1548 c->cu_id = 0xff;
1549 #ifdef CONFIG_X86_64
1550 c->x86_clflush_size = 64;
1551 c->x86_phys_bits = 36;
1552 c->x86_virt_bits = 48;
1553 #else
1554 c->cpuid_level = -1; /* CPUID not detected */
1555 c->x86_clflush_size = 32;
1556 c->x86_phys_bits = 32;
1557 c->x86_virt_bits = 32;
1558 #endif
1559 c->x86_cache_alignment = c->x86_clflush_size;
1560 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1561 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1562 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1563 #endif
1564
1565 generic_identify(c);
1566
1567 if (this_cpu->c_identify)
1568 this_cpu->c_identify(c);
1569
1570 /* Clear/Set all flags overridden by options, after probe */
1571 apply_forced_caps(c);
1572
1573 #ifdef CONFIG_X86_64
1574 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1575 #endif
1576
1577 /*
1578 * Vendor-specific initialization. In this section we
1579 * canonicalize the feature flags, meaning if there are
1580 * features a certain CPU supports which CPUID doesn't
1581 * tell us, CPUID claiming incorrect flags, or other bugs,
1582 * we handle them here.
1583 *
1584 * At the end of this section, c->x86_capability better
1585 * indicate the features this CPU genuinely supports!
1586 */
1587 if (this_cpu->c_init)
1588 this_cpu->c_init(c);
1589
1590 /* Disable the PN if appropriate */
1591 squash_the_stupid_serial_number(c);
1592
1593 /* Set up SMEP/SMAP/UMIP */
1594 setup_smep(c);
1595 setup_smap(c);
1596 setup_umip(c);
1597
1598 /* Enable FSGSBASE instructions if available. */
1599 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1600 cr4_set_bits(X86_CR4_FSGSBASE);
1601 elf_hwcap2 |= HWCAP2_FSGSBASE;
1602 }
1603
1604 /*
1605 * The vendor-specific functions might have changed features.
1606 * Now we do "generic changes."
1607 */
1608
1609 /* Filter out anything that depends on CPUID levels we don't have */
1610 filter_cpuid_features(c, true);
1611
1612 /* If the model name is still unset, do table lookup. */
1613 if (!c->x86_model_id[0]) {
1614 const char *p;
1615 p = table_lookup_model(c);
1616 if (p)
1617 strcpy(c->x86_model_id, p);
1618 else
1619 /* Last resort... */
1620 sprintf(c->x86_model_id, "%02x/%02x",
1621 c->x86, c->x86_model);
1622 }
1623
1624 #ifdef CONFIG_X86_64
1625 detect_ht(c);
1626 #endif
1627
1628 x86_init_rdrand(c);
1629 setup_pku(c);
1630
1631 /*
1632 * Clear/Set all flags overridden by options, need do it
1633 * before following smp all cpus cap AND.
1634 */
1635 apply_forced_caps(c);
1636
1637 /*
1638 * On SMP, boot_cpu_data holds the common feature set between
1639 * all CPUs; so make sure that we indicate which features are
1640 * common between the CPUs. The first time this routine gets
1641 * executed, c == &boot_cpu_data.
1642 */
1643 if (c != &boot_cpu_data) {
1644 /* AND the already accumulated flags with these */
1645 for (i = 0; i < NCAPINTS; i++)
1646 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1647
1648 /* OR, i.e. replicate the bug flags */
1649 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1650 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1651 }
1652
1653 /* Init Machine Check Exception if available. */
1654 mcheck_cpu_init(c);
1655
1656 select_idle_routine(c);
1657
1658 #ifdef CONFIG_NUMA
1659 numa_add_cpu(smp_processor_id());
1660 #endif
1661 }
1662
1663 /*
1664 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1665 * on 32-bit kernels:
1666 */
1667 #ifdef CONFIG_X86_32
1668 void enable_sep_cpu(void)
1669 {
1670 struct tss_struct *tss;
1671 int cpu;
1672
1673 if (!boot_cpu_has(X86_FEATURE_SEP))
1674 return;
1675
1676 cpu = get_cpu();
1677 tss = &per_cpu(cpu_tss_rw, cpu);
1678
1679 /*
1680 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1681 * see the big comment in struct x86_hw_tss's definition.
1682 */
1683
1684 tss->x86_tss.ss1 = __KERNEL_CS;
1685 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1686 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1687 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1688
1689 put_cpu();
1690 }
1691 #endif
1692
1693 void __init identify_boot_cpu(void)
1694 {
1695 identify_cpu(&boot_cpu_data);
1696 #ifdef CONFIG_X86_32
1697 sysenter_setup();
1698 enable_sep_cpu();
1699 #endif
1700 cpu_detect_tlb(&boot_cpu_data);
1701 setup_cr_pinning();
1702
1703 tsx_init();
1704 }
1705
1706 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1707 {
1708 BUG_ON(c == &boot_cpu_data);
1709 identify_cpu(c);
1710 #ifdef CONFIG_X86_32
1711 enable_sep_cpu();
1712 #endif
1713 mtrr_ap_init();
1714 validate_apic_and_package_id(c);
1715 x86_spec_ctrl_setup_ap();
1716 update_srbds_msr();
1717
1718 tsx_ap_init();
1719 }
1720
1721 static __init int setup_noclflush(char *arg)
1722 {
1723 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1724 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1725 return 1;
1726 }
1727 __setup("noclflush", setup_noclflush);
1728
1729 void print_cpu_info(struct cpuinfo_x86 *c)
1730 {
1731 const char *vendor = NULL;
1732
1733 if (c->x86_vendor < X86_VENDOR_NUM) {
1734 vendor = this_cpu->c_vendor;
1735 } else {
1736 if (c->cpuid_level >= 0)
1737 vendor = c->x86_vendor_id;
1738 }
1739
1740 if (vendor && !strstr(c->x86_model_id, vendor))
1741 pr_cont("%s ", vendor);
1742
1743 if (c->x86_model_id[0])
1744 pr_cont("%s", c->x86_model_id);
1745 else
1746 pr_cont("%d86", c->x86);
1747
1748 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1749
1750 if (c->x86_stepping || c->cpuid_level >= 0)
1751 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1752 else
1753 pr_cont(")\n");
1754 }
1755
1756 /*
1757 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1758 * function prevents it from becoming an environment variable for init.
1759 */
1760 static __init int setup_clearcpuid(char *arg)
1761 {
1762 return 1;
1763 }
1764 __setup("clearcpuid=", setup_clearcpuid);
1765
1766 #ifdef CONFIG_X86_64
1767 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1768 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1769 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1770
1771 /*
1772 * The following percpu variables are hot. Align current_task to
1773 * cacheline size such that they fall in the same cacheline.
1774 */
1775 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1776 &init_task;
1777 EXPORT_PER_CPU_SYMBOL(current_task);
1778
1779 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1780 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1781
1782 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1783 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1784
1785 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1786
1787 /* May not be marked __init: used by software suspend */
1788 void syscall_init(void)
1789 {
1790 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1791 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1792
1793 #ifdef CONFIG_IA32_EMULATION
1794 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1795 /*
1796 * This only works on Intel CPUs.
1797 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1798 * This does not cause SYSENTER to jump to the wrong location, because
1799 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1800 */
1801 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1802 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1803 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1804 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1805 #else
1806 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1807 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1808 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1809 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1810 #endif
1811
1812 /*
1813 * Flags to clear on syscall; clear as much as possible
1814 * to minimize user space-kernel interference.
1815 */
1816 wrmsrl(MSR_SYSCALL_MASK,
1817 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1818 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1819 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1820 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1821 X86_EFLAGS_AC|X86_EFLAGS_ID);
1822 }
1823
1824 #else /* CONFIG_X86_64 */
1825
1826 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1827 EXPORT_PER_CPU_SYMBOL(current_task);
1828 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1829 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1830
1831 /*
1832 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1833 * the top of the kernel stack. Use an extra percpu variable to track the
1834 * top of the kernel stack directly.
1835 */
1836 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1837 (unsigned long)&init_thread_union + THREAD_SIZE;
1838 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1839
1840 #ifdef CONFIG_STACKPROTECTOR
1841 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1842 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1843 #endif
1844
1845 #endif /* CONFIG_X86_64 */
1846
1847 /*
1848 * Clear all 6 debug registers:
1849 */
1850 static void clear_all_debug_regs(void)
1851 {
1852 int i;
1853
1854 for (i = 0; i < 8; i++) {
1855 /* Ignore db4, db5 */
1856 if ((i == 4) || (i == 5))
1857 continue;
1858
1859 set_debugreg(0, i);
1860 }
1861 }
1862
1863 #ifdef CONFIG_KGDB
1864 /*
1865 * Restore debug regs if using kgdbwait and you have a kernel debugger
1866 * connection established.
1867 */
1868 static void dbg_restore_debug_regs(void)
1869 {
1870 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1871 arch_kgdb_ops.correct_hw_break();
1872 }
1873 #else /* ! CONFIG_KGDB */
1874 #define dbg_restore_debug_regs()
1875 #endif /* ! CONFIG_KGDB */
1876
1877 static void wait_for_master_cpu(int cpu)
1878 {
1879 #ifdef CONFIG_SMP
1880 /*
1881 * wait for ACK from master CPU before continuing
1882 * with AP initialization
1883 */
1884 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1885 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1886 cpu_relax();
1887 #endif
1888 }
1889
1890 #ifdef CONFIG_X86_64
1891 static inline void setup_getcpu(int cpu)
1892 {
1893 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1894 struct desc_struct d = { };
1895
1896 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1897 wrmsr(MSR_TSC_AUX, cpudata, 0);
1898
1899 /* Store CPU and node number in limit. */
1900 d.limit0 = cpudata;
1901 d.limit1 = cpudata >> 16;
1902
1903 d.type = 5; /* RO data, expand down, accessed */
1904 d.dpl = 3; /* Visible to user code */
1905 d.s = 1; /* Not a system segment */
1906 d.p = 1; /* Present */
1907 d.d = 1; /* 32-bit */
1908
1909 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1910 }
1911
1912 static inline void ucode_cpu_init(int cpu)
1913 {
1914 if (cpu)
1915 load_ucode_ap();
1916 }
1917
1918 static inline void tss_setup_ist(struct tss_struct *tss)
1919 {
1920 /* Set up the per-CPU TSS IST stacks */
1921 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1922 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1923 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1924 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1925 /* Only mapped when SEV-ES is active */
1926 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1927 }
1928
1929 #else /* CONFIG_X86_64 */
1930
1931 static inline void setup_getcpu(int cpu) { }
1932
1933 static inline void ucode_cpu_init(int cpu)
1934 {
1935 show_ucode_info_early();
1936 }
1937
1938 static inline void tss_setup_ist(struct tss_struct *tss) { }
1939
1940 #endif /* !CONFIG_X86_64 */
1941
1942 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1943 {
1944 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1945
1946 #ifdef CONFIG_X86_IOPL_IOPERM
1947 tss->io_bitmap.prev_max = 0;
1948 tss->io_bitmap.prev_sequence = 0;
1949 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1950 /*
1951 * Invalidate the extra array entry past the end of the all
1952 * permission bitmap as required by the hardware.
1953 */
1954 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1955 #endif
1956 }
1957
1958 /*
1959 * Setup everything needed to handle exceptions from the IDT, including the IST
1960 * exceptions which use paranoid_entry().
1961 */
1962 void cpu_init_exception_handling(void)
1963 {
1964 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1965 int cpu = raw_smp_processor_id();
1966
1967 /* paranoid_entry() gets the CPU number from the GDT */
1968 setup_getcpu(cpu);
1969
1970 /* IST vectors need TSS to be set up. */
1971 tss_setup_ist(tss);
1972 tss_setup_io_bitmap(tss);
1973 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1974
1975 load_TR_desc();
1976
1977 /* Finally load the IDT */
1978 load_current_idt();
1979 }
1980
1981 /*
1982 * cpu_init() initializes state that is per-CPU. Some data is already
1983 * initialized (naturally) in the bootstrap process, such as the GDT. We
1984 * reload it nevertheless, this function acts as a 'CPU state barrier',
1985 * nothing should get across.
1986 */
1987 void cpu_init(void)
1988 {
1989 struct task_struct *cur = current;
1990 int cpu = raw_smp_processor_id();
1991
1992 wait_for_master_cpu(cpu);
1993
1994 ucode_cpu_init(cpu);
1995
1996 #ifdef CONFIG_NUMA
1997 if (this_cpu_read(numa_node) == 0 &&
1998 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1999 set_numa_node(early_cpu_to_node(cpu));
2000 #endif
2001 pr_debug("Initializing CPU#%d\n", cpu);
2002
2003 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2004 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2005 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2006
2007 /*
2008 * Initialize the per-CPU GDT with the boot GDT,
2009 * and set up the GDT descriptor:
2010 */
2011 switch_to_new_gdt(cpu);
2012
2013 if (IS_ENABLED(CONFIG_X86_64)) {
2014 loadsegment(fs, 0);
2015 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2016 syscall_init();
2017
2018 wrmsrl(MSR_FS_BASE, 0);
2019 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2020 barrier();
2021
2022 x2apic_setup();
2023 }
2024
2025 mmgrab(&init_mm);
2026 cur->active_mm = &init_mm;
2027 BUG_ON(cur->mm);
2028 initialize_tlbstate_and_flush();
2029 enter_lazy_tlb(&init_mm, cur);
2030
2031 /*
2032 * sp0 points to the entry trampoline stack regardless of what task
2033 * is running.
2034 */
2035 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2036
2037 load_mm_ldt(&init_mm);
2038
2039 clear_all_debug_regs();
2040 dbg_restore_debug_regs();
2041
2042 doublefault_init_cpu_tss();
2043
2044 fpu__init_cpu();
2045
2046 if (is_uv_system())
2047 uv_cpu_init();
2048
2049 load_fixmap_gdt(cpu);
2050 }
2051
2052 #ifdef CONFIG_SMP
2053 void cpu_init_secondary(void)
2054 {
2055 /*
2056 * Relies on the BP having set-up the IDT tables, which are loaded
2057 * on this CPU in cpu_init_exception_handling().
2058 */
2059 cpu_init_exception_handling();
2060 cpu_init();
2061 }
2062 #endif
2063
2064 /*
2065 * The microcode loader calls this upon late microcode load to recheck features,
2066 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2067 * hotplug lock.
2068 */
2069 void microcode_check(void)
2070 {
2071 struct cpuinfo_x86 info;
2072
2073 perf_check_microcode();
2074
2075 /* Reload CPUID max function as it might've changed. */
2076 info.cpuid_level = cpuid_eax(0);
2077
2078 /*
2079 * Copy all capability leafs to pick up the synthetic ones so that
2080 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2081 * get overwritten in get_cpu_cap().
2082 */
2083 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2084
2085 get_cpu_cap(&info);
2086
2087 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2088 return;
2089
2090 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2091 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2092 }
2093
2094 /*
2095 * Invoked from core CPU hotplug code after hotplug operations
2096 */
2097 void arch_smt_update(void)
2098 {
2099 /* Handle the speculative execution misfeatures */
2100 cpu_bugs_smt_update();
2101 /* Check whether IPI broadcasting can be enabled */
2102 apic_smt_update();
2103 }