]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/char/random.c
random: clamp credited irq bits to maximum mixed
[mirror_ubuntu-jammy-kernel.git] / drivers / char / random.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/genhd.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/siphash.h>
55 #include <linux/uio.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62
63 /*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
72
73 /*
74 * crng_init is protected by base_crng->lock, and only increases
75 * its value (from empty->early->ready).
76 */
77 static enum {
78 CRNG_EMPTY = 0, /* Little to no entropy collected */
79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 #define crng_ready() (likely(crng_init >= CRNG_READY))
83 /* Various types of waiters for crng_init->CRNG_READY transition. */
84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
85 static struct fasync_struct *fasync;
86 static DEFINE_SPINLOCK(random_ready_chain_lock);
87 static RAW_NOTIFIER_HEAD(random_ready_chain);
88
89 /* Control how we warn userspace. */
90 static struct ratelimit_state urandom_warning =
91 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
92 static int ratelimit_disable __read_mostly =
93 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
95 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
96
97 /*
98 * Returns whether or not the input pool has been seeded and thus guaranteed
99 * to supply cryptographically secure random numbers. This applies to: the
100 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
101 * ,u64,int,long} family of functions.
102 *
103 * Returns: true if the input pool has been seeded.
104 * false if the input pool has not been seeded.
105 */
106 bool rng_is_initialized(void)
107 {
108 return crng_ready();
109 }
110 EXPORT_SYMBOL(rng_is_initialized);
111
112 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
113 static void try_to_generate_entropy(void);
114
115 /*
116 * Wait for the input pool to be seeded and thus guaranteed to supply
117 * cryptographically secure random numbers. This applies to: the /dev/urandom
118 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
119 * family of functions. Using any of these functions without first calling
120 * this function forfeits the guarantee of security.
121 *
122 * Returns: 0 if the input pool has been seeded.
123 * -ERESTARTSYS if the function was interrupted by a signal.
124 */
125 int wait_for_random_bytes(void)
126 {
127 while (!crng_ready()) {
128 int ret;
129
130 try_to_generate_entropy();
131 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
132 if (ret)
133 return ret > 0 ? 0 : ret;
134 }
135 return 0;
136 }
137 EXPORT_SYMBOL(wait_for_random_bytes);
138
139 /*
140 * Add a callback function that will be invoked when the input
141 * pool is initialised.
142 *
143 * returns: 0 if callback is successfully added
144 * -EALREADY if pool is already initialised (callback not called)
145 */
146 int __cold register_random_ready_notifier(struct notifier_block *nb)
147 {
148 unsigned long flags;
149 int ret = -EALREADY;
150
151 if (crng_ready())
152 return ret;
153
154 spin_lock_irqsave(&random_ready_chain_lock, flags);
155 if (!crng_ready())
156 ret = raw_notifier_chain_register(&random_ready_chain, nb);
157 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
158 return ret;
159 }
160
161 /*
162 * Delete a previously registered readiness callback function.
163 */
164 int __cold unregister_random_ready_notifier(struct notifier_block *nb)
165 {
166 unsigned long flags;
167 int ret;
168
169 spin_lock_irqsave(&random_ready_chain_lock, flags);
170 ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
171 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
172 return ret;
173 }
174
175 static void __cold process_random_ready_list(void)
176 {
177 unsigned long flags;
178
179 spin_lock_irqsave(&random_ready_chain_lock, flags);
180 raw_notifier_call_chain(&random_ready_chain, 0, NULL);
181 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
182 }
183
184 #define warn_unseeded_randomness() \
185 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
186 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
187 __func__, (void *)_RET_IP_, crng_init)
188
189
190 /*********************************************************************
191 *
192 * Fast key erasure RNG, the "crng".
193 *
194 * These functions expand entropy from the entropy extractor into
195 * long streams for external consumption using the "fast key erasure"
196 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
197 *
198 * There are a few exported interfaces for use by other drivers:
199 *
200 * void get_random_bytes(void *buf, size_t len)
201 * u32 get_random_u32()
202 * u64 get_random_u64()
203 * unsigned int get_random_int()
204 * unsigned long get_random_long()
205 *
206 * These interfaces will return the requested number of random bytes
207 * into the given buffer or as a return value. This is equivalent to
208 * a read from /dev/urandom. The u32, u64, int, and long family of
209 * functions may be higher performance for one-off random integers,
210 * because they do a bit of buffering and do not invoke reseeding
211 * until the buffer is emptied.
212 *
213 *********************************************************************/
214
215 enum {
216 CRNG_RESEED_START_INTERVAL = HZ,
217 CRNG_RESEED_INTERVAL = 60 * HZ
218 };
219
220 static struct {
221 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
222 unsigned long birth;
223 unsigned long generation;
224 spinlock_t lock;
225 } base_crng = {
226 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
227 };
228
229 struct crng {
230 u8 key[CHACHA_KEY_SIZE];
231 unsigned long generation;
232 local_lock_t lock;
233 };
234
235 static DEFINE_PER_CPU(struct crng, crngs) = {
236 .generation = ULONG_MAX,
237 .lock = INIT_LOCAL_LOCK(crngs.lock),
238 };
239
240 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
241 static void extract_entropy(void *buf, size_t len);
242
243 /* This extracts a new crng key from the input pool. */
244 static void crng_reseed(void)
245 {
246 unsigned long flags;
247 unsigned long next_gen;
248 u8 key[CHACHA_KEY_SIZE];
249
250 extract_entropy(key, sizeof(key));
251
252 /*
253 * We copy the new key into the base_crng, overwriting the old one,
254 * and update the generation counter. We avoid hitting ULONG_MAX,
255 * because the per-cpu crngs are initialized to ULONG_MAX, so this
256 * forces new CPUs that come online to always initialize.
257 */
258 spin_lock_irqsave(&base_crng.lock, flags);
259 memcpy(base_crng.key, key, sizeof(base_crng.key));
260 next_gen = base_crng.generation + 1;
261 if (next_gen == ULONG_MAX)
262 ++next_gen;
263 WRITE_ONCE(base_crng.generation, next_gen);
264 WRITE_ONCE(base_crng.birth, jiffies);
265 if (!crng_ready())
266 crng_init = CRNG_READY;
267 spin_unlock_irqrestore(&base_crng.lock, flags);
268 memzero_explicit(key, sizeof(key));
269 }
270
271 /*
272 * This generates a ChaCha block using the provided key, and then
273 * immediately overwites that key with half the block. It returns
274 * the resultant ChaCha state to the user, along with the second
275 * half of the block containing 32 bytes of random data that may
276 * be used; random_data_len may not be greater than 32.
277 *
278 * The returned ChaCha state contains within it a copy of the old
279 * key value, at index 4, so the state should always be zeroed out
280 * immediately after using in order to maintain forward secrecy.
281 * If the state cannot be erased in a timely manner, then it is
282 * safer to set the random_data parameter to &chacha_state[4] so
283 * that this function overwrites it before returning.
284 */
285 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
286 u32 chacha_state[CHACHA_STATE_WORDS],
287 u8 *random_data, size_t random_data_len)
288 {
289 u8 first_block[CHACHA_BLOCK_SIZE];
290
291 BUG_ON(random_data_len > 32);
292
293 chacha_init_consts(chacha_state);
294 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
295 memset(&chacha_state[12], 0, sizeof(u32) * 4);
296 chacha20_block(chacha_state, first_block);
297
298 memcpy(key, first_block, CHACHA_KEY_SIZE);
299 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
300 memzero_explicit(first_block, sizeof(first_block));
301 }
302
303 /*
304 * Return whether the crng seed is considered to be sufficiently old
305 * that a reseeding is needed. This happens if the last reseeding
306 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
307 * proportional to the uptime.
308 */
309 static bool crng_has_old_seed(void)
310 {
311 static bool early_boot = true;
312 unsigned long interval = CRNG_RESEED_INTERVAL;
313
314 if (unlikely(READ_ONCE(early_boot))) {
315 time64_t uptime = ktime_get_seconds();
316 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
317 WRITE_ONCE(early_boot, false);
318 else
319 interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
320 (unsigned int)uptime / 2 * HZ);
321 }
322 return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
323 }
324
325 /*
326 * This function returns a ChaCha state that you may use for generating
327 * random data. It also returns up to 32 bytes on its own of random data
328 * that may be used; random_data_len may not be greater than 32.
329 */
330 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
331 u8 *random_data, size_t random_data_len)
332 {
333 unsigned long flags;
334 struct crng *crng;
335
336 BUG_ON(random_data_len > 32);
337
338 /*
339 * For the fast path, we check whether we're ready, unlocked first, and
340 * then re-check once locked later. In the case where we're really not
341 * ready, we do fast key erasure with the base_crng directly, extracting
342 * when crng_init is CRNG_EMPTY.
343 */
344 if (!crng_ready()) {
345 bool ready;
346
347 spin_lock_irqsave(&base_crng.lock, flags);
348 ready = crng_ready();
349 if (!ready) {
350 if (crng_init == CRNG_EMPTY)
351 extract_entropy(base_crng.key, sizeof(base_crng.key));
352 crng_fast_key_erasure(base_crng.key, chacha_state,
353 random_data, random_data_len);
354 }
355 spin_unlock_irqrestore(&base_crng.lock, flags);
356 if (!ready)
357 return;
358 }
359
360 /*
361 * If the base_crng is old enough, we reseed, which in turn bumps the
362 * generation counter that we check below.
363 */
364 if (unlikely(crng_has_old_seed()))
365 crng_reseed();
366
367 local_lock_irqsave(&crngs.lock, flags);
368 crng = raw_cpu_ptr(&crngs);
369
370 /*
371 * If our per-cpu crng is older than the base_crng, then it means
372 * somebody reseeded the base_crng. In that case, we do fast key
373 * erasure on the base_crng, and use its output as the new key
374 * for our per-cpu crng. This brings us up to date with base_crng.
375 */
376 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
377 spin_lock(&base_crng.lock);
378 crng_fast_key_erasure(base_crng.key, chacha_state,
379 crng->key, sizeof(crng->key));
380 crng->generation = base_crng.generation;
381 spin_unlock(&base_crng.lock);
382 }
383
384 /*
385 * Finally, when we've made it this far, our per-cpu crng has an up
386 * to date key, and we can do fast key erasure with it to produce
387 * some random data and a ChaCha state for the caller. All other
388 * branches of this function are "unlikely", so most of the time we
389 * should wind up here immediately.
390 */
391 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
392 local_unlock_irqrestore(&crngs.lock, flags);
393 }
394
395 static void _get_random_bytes(void *buf, size_t len)
396 {
397 u32 chacha_state[CHACHA_STATE_WORDS];
398 u8 tmp[CHACHA_BLOCK_SIZE];
399 size_t first_block_len;
400
401 if (!len)
402 return;
403
404 first_block_len = min_t(size_t, 32, len);
405 crng_make_state(chacha_state, buf, first_block_len);
406 len -= first_block_len;
407 buf += first_block_len;
408
409 while (len) {
410 if (len < CHACHA_BLOCK_SIZE) {
411 chacha20_block(chacha_state, tmp);
412 memcpy(buf, tmp, len);
413 memzero_explicit(tmp, sizeof(tmp));
414 break;
415 }
416
417 chacha20_block(chacha_state, buf);
418 if (unlikely(chacha_state[12] == 0))
419 ++chacha_state[13];
420 len -= CHACHA_BLOCK_SIZE;
421 buf += CHACHA_BLOCK_SIZE;
422 }
423
424 memzero_explicit(chacha_state, sizeof(chacha_state));
425 }
426
427 /*
428 * This function is the exported kernel interface. It returns some
429 * number of good random numbers, suitable for key generation, seeding
430 * TCP sequence numbers, etc. It does not rely on the hardware random
431 * number generator. For random bytes direct from the hardware RNG
432 * (when available), use get_random_bytes_arch(). In order to ensure
433 * that the randomness provided by this function is okay, the function
434 * wait_for_random_bytes() should be called and return 0 at least once
435 * at any point prior.
436 */
437 void get_random_bytes(void *buf, size_t len)
438 {
439 warn_unseeded_randomness();
440 _get_random_bytes(buf, len);
441 }
442 EXPORT_SYMBOL(get_random_bytes);
443
444 static ssize_t get_random_bytes_user(struct iov_iter *iter)
445 {
446 u32 chacha_state[CHACHA_STATE_WORDS];
447 u8 block[CHACHA_BLOCK_SIZE];
448 size_t ret = 0, copied;
449
450 if (unlikely(!iov_iter_count(iter)))
451 return 0;
452
453 /*
454 * Immediately overwrite the ChaCha key at index 4 with random
455 * bytes, in case userspace causes copy_to_iter() below to sleep
456 * forever, so that we still retain forward secrecy in that case.
457 */
458 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
459 /*
460 * However, if we're doing a read of len <= 32, we don't need to
461 * use chacha_state after, so we can simply return those bytes to
462 * the user directly.
463 */
464 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
465 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
466 goto out_zero_chacha;
467 }
468
469 for (;;) {
470 chacha20_block(chacha_state, block);
471 if (unlikely(chacha_state[12] == 0))
472 ++chacha_state[13];
473
474 copied = copy_to_iter(block, sizeof(block), iter);
475 ret += copied;
476 if (!iov_iter_count(iter) || copied != sizeof(block))
477 break;
478
479 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
480 if (ret % PAGE_SIZE == 0) {
481 if (signal_pending(current))
482 break;
483 cond_resched();
484 }
485 }
486
487 memzero_explicit(block, sizeof(block));
488 out_zero_chacha:
489 memzero_explicit(chacha_state, sizeof(chacha_state));
490 return ret ? ret : -EFAULT;
491 }
492
493 /*
494 * Batched entropy returns random integers. The quality of the random
495 * number is good as /dev/urandom. In order to ensure that the randomness
496 * provided by this function is okay, the function wait_for_random_bytes()
497 * should be called and return 0 at least once at any point prior.
498 */
499
500 #define DEFINE_BATCHED_ENTROPY(type) \
501 struct batch_ ##type { \
502 /* \
503 * We make this 1.5x a ChaCha block, so that we get the \
504 * remaining 32 bytes from fast key erasure, plus one full \
505 * block from the detached ChaCha state. We can increase \
506 * the size of this later if needed so long as we keep the \
507 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
508 */ \
509 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
510 local_lock_t lock; \
511 unsigned long generation; \
512 unsigned int position; \
513 }; \
514 \
515 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
516 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
517 .position = UINT_MAX \
518 }; \
519 \
520 type get_random_ ##type(void) \
521 { \
522 type ret; \
523 unsigned long flags; \
524 struct batch_ ##type *batch; \
525 unsigned long next_gen; \
526 \
527 warn_unseeded_randomness(); \
528 \
529 if (!crng_ready()) { \
530 _get_random_bytes(&ret, sizeof(ret)); \
531 return ret; \
532 } \
533 \
534 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
535 batch = raw_cpu_ptr(&batched_entropy_##type); \
536 \
537 next_gen = READ_ONCE(base_crng.generation); \
538 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
539 next_gen != batch->generation) { \
540 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
541 batch->position = 0; \
542 batch->generation = next_gen; \
543 } \
544 \
545 ret = batch->entropy[batch->position]; \
546 batch->entropy[batch->position] = 0; \
547 ++batch->position; \
548 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
549 return ret; \
550 } \
551 EXPORT_SYMBOL(get_random_ ##type);
552
553 DEFINE_BATCHED_ENTROPY(u64)
554 DEFINE_BATCHED_ENTROPY(u32)
555
556 #ifdef CONFIG_SMP
557 /*
558 * This function is called when the CPU is coming up, with entry
559 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
560 */
561 int __cold random_prepare_cpu(unsigned int cpu)
562 {
563 /*
564 * When the cpu comes back online, immediately invalidate both
565 * the per-cpu crng and all batches, so that we serve fresh
566 * randomness.
567 */
568 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
569 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
570 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
571 return 0;
572 }
573 #endif
574
575 /*
576 * This function will use the architecture-specific hardware random
577 * number generator if it is available. It is not recommended for
578 * use. Use get_random_bytes() instead. It returns the number of
579 * bytes filled in.
580 */
581 size_t __must_check get_random_bytes_arch(void *buf, size_t len)
582 {
583 size_t left = len;
584 u8 *p = buf;
585
586 while (left) {
587 unsigned long v;
588 size_t block_len = min_t(size_t, left, sizeof(unsigned long));
589
590 if (!arch_get_random_long(&v))
591 break;
592
593 memcpy(p, &v, block_len);
594 p += block_len;
595 left -= block_len;
596 }
597
598 return len - left;
599 }
600 EXPORT_SYMBOL(get_random_bytes_arch);
601
602
603 /**********************************************************************
604 *
605 * Entropy accumulation and extraction routines.
606 *
607 * Callers may add entropy via:
608 *
609 * static void mix_pool_bytes(const void *buf, size_t len)
610 *
611 * After which, if added entropy should be credited:
612 *
613 * static void credit_init_bits(size_t bits)
614 *
615 * Finally, extract entropy via:
616 *
617 * static void extract_entropy(void *buf, size_t len)
618 *
619 **********************************************************************/
620
621 enum {
622 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
623 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
624 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
625 };
626
627 static struct {
628 struct blake2s_state hash;
629 spinlock_t lock;
630 unsigned int init_bits;
631 } input_pool = {
632 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
633 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
634 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
635 .hash.outlen = BLAKE2S_HASH_SIZE,
636 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
637 };
638
639 static void _mix_pool_bytes(const void *buf, size_t len)
640 {
641 blake2s_update(&input_pool.hash, buf, len);
642 }
643
644 /*
645 * This function adds bytes into the input pool. It does not
646 * update the initialization bit counter; the caller should call
647 * credit_init_bits if this is appropriate.
648 */
649 static void mix_pool_bytes(const void *buf, size_t len)
650 {
651 unsigned long flags;
652
653 spin_lock_irqsave(&input_pool.lock, flags);
654 _mix_pool_bytes(buf, len);
655 spin_unlock_irqrestore(&input_pool.lock, flags);
656 }
657
658 /*
659 * This is an HKDF-like construction for using the hashed collected entropy
660 * as a PRF key, that's then expanded block-by-block.
661 */
662 static void extract_entropy(void *buf, size_t len)
663 {
664 unsigned long flags;
665 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
666 struct {
667 unsigned long rdseed[32 / sizeof(long)];
668 size_t counter;
669 } block;
670 size_t i;
671
672 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
673 if (!arch_get_random_seed_long(&block.rdseed[i]) &&
674 !arch_get_random_long(&block.rdseed[i]))
675 block.rdseed[i] = random_get_entropy();
676 }
677
678 spin_lock_irqsave(&input_pool.lock, flags);
679
680 /* seed = HASHPRF(last_key, entropy_input) */
681 blake2s_final(&input_pool.hash, seed);
682
683 /* next_key = HASHPRF(seed, RDSEED || 0) */
684 block.counter = 0;
685 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
686 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
687
688 spin_unlock_irqrestore(&input_pool.lock, flags);
689 memzero_explicit(next_key, sizeof(next_key));
690
691 while (len) {
692 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
693 /* output = HASHPRF(seed, RDSEED || ++counter) */
694 ++block.counter;
695 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
696 len -= i;
697 buf += i;
698 }
699
700 memzero_explicit(seed, sizeof(seed));
701 memzero_explicit(&block, sizeof(block));
702 }
703
704 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
705
706 static void __cold _credit_init_bits(size_t bits)
707 {
708 unsigned int new, orig, add;
709 unsigned long flags;
710
711 if (!bits)
712 return;
713
714 add = min_t(size_t, bits, POOL_BITS);
715
716 do {
717 orig = READ_ONCE(input_pool.init_bits);
718 new = min_t(unsigned int, POOL_BITS, orig + add);
719 } while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
720
721 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
722 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
723 process_random_ready_list();
724 wake_up_interruptible(&crng_init_wait);
725 kill_fasync(&fasync, SIGIO, POLL_IN);
726 pr_notice("crng init done\n");
727 if (urandom_warning.missed)
728 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
729 urandom_warning.missed);
730 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
731 spin_lock_irqsave(&base_crng.lock, flags);
732 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
733 if (crng_init == CRNG_EMPTY) {
734 extract_entropy(base_crng.key, sizeof(base_crng.key));
735 crng_init = CRNG_EARLY;
736 }
737 spin_unlock_irqrestore(&base_crng.lock, flags);
738 }
739 }
740
741
742 /**********************************************************************
743 *
744 * Entropy collection routines.
745 *
746 * The following exported functions are used for pushing entropy into
747 * the above entropy accumulation routines:
748 *
749 * void add_device_randomness(const void *buf, size_t len);
750 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
751 * void add_bootloader_randomness(const void *buf, size_t len);
752 * void add_interrupt_randomness(int irq);
753 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
754 * void add_disk_randomness(struct gendisk *disk);
755 *
756 * add_device_randomness() adds data to the input pool that
757 * is likely to differ between two devices (or possibly even per boot).
758 * This would be things like MAC addresses or serial numbers, or the
759 * read-out of the RTC. This does *not* credit any actual entropy to
760 * the pool, but it initializes the pool to different values for devices
761 * that might otherwise be identical and have very little entropy
762 * available to them (particularly common in the embedded world).
763 *
764 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
765 * entropy as specified by the caller. If the entropy pool is full it will
766 * block until more entropy is needed.
767 *
768 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
769 * and device tree, and credits its input depending on whether or not the
770 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
771 *
772 * add_interrupt_randomness() uses the interrupt timing as random
773 * inputs to the entropy pool. Using the cycle counters and the irq source
774 * as inputs, it feeds the input pool roughly once a second or after 64
775 * interrupts, crediting 1 bit of entropy for whichever comes first.
776 *
777 * add_input_randomness() uses the input layer interrupt timing, as well
778 * as the event type information from the hardware.
779 *
780 * add_disk_randomness() uses what amounts to the seek time of block
781 * layer request events, on a per-disk_devt basis, as input to the
782 * entropy pool. Note that high-speed solid state drives with very low
783 * seek times do not make for good sources of entropy, as their seek
784 * times are usually fairly consistent.
785 *
786 * The last two routines try to estimate how many bits of entropy
787 * to credit. They do this by keeping track of the first and second
788 * order deltas of the event timings.
789 *
790 **********************************************************************/
791
792 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
793 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
794 static int __init parse_trust_cpu(char *arg)
795 {
796 return kstrtobool(arg, &trust_cpu);
797 }
798 static int __init parse_trust_bootloader(char *arg)
799 {
800 return kstrtobool(arg, &trust_bootloader);
801 }
802 early_param("random.trust_cpu", parse_trust_cpu);
803 early_param("random.trust_bootloader", parse_trust_bootloader);
804
805 /*
806 * The first collection of entropy occurs at system boot while interrupts
807 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
808 * utsname(), and the command line. Depending on the above configuration knob,
809 * RDSEED may be considered sufficient for initialization. Note that much
810 * earlier setup may already have pushed entropy into the input pool by the
811 * time we get here.
812 */
813 int __init random_init(const char *command_line)
814 {
815 ktime_t now = ktime_get_real();
816 unsigned int i, arch_bits;
817 unsigned long entropy;
818
819 #if defined(LATENT_ENTROPY_PLUGIN)
820 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
821 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
822 #endif
823
824 for (i = 0, arch_bits = BLAKE2S_BLOCK_SIZE * 8;
825 i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
826 if (!arch_get_random_seed_long_early(&entropy) &&
827 !arch_get_random_long_early(&entropy)) {
828 entropy = random_get_entropy();
829 arch_bits -= sizeof(entropy) * 8;
830 }
831 _mix_pool_bytes(&entropy, sizeof(entropy));
832 }
833 _mix_pool_bytes(&now, sizeof(now));
834 _mix_pool_bytes(utsname(), sizeof(*(utsname())));
835 _mix_pool_bytes(command_line, strlen(command_line));
836 add_latent_entropy();
837
838 if (crng_ready())
839 crng_reseed();
840 else if (trust_cpu)
841 _credit_init_bits(arch_bits);
842
843 return 0;
844 }
845
846 /*
847 * Add device- or boot-specific data to the input pool to help
848 * initialize it.
849 *
850 * None of this adds any entropy; it is meant to avoid the problem of
851 * the entropy pool having similar initial state across largely
852 * identical devices.
853 */
854 void add_device_randomness(const void *buf, size_t len)
855 {
856 unsigned long entropy = random_get_entropy();
857 unsigned long flags;
858
859 spin_lock_irqsave(&input_pool.lock, flags);
860 _mix_pool_bytes(&entropy, sizeof(entropy));
861 _mix_pool_bytes(buf, len);
862 spin_unlock_irqrestore(&input_pool.lock, flags);
863 }
864 EXPORT_SYMBOL(add_device_randomness);
865
866 /*
867 * Interface for in-kernel drivers of true hardware RNGs.
868 * Those devices may produce endless random bits and will be throttled
869 * when our pool is full.
870 */
871 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
872 {
873 mix_pool_bytes(buf, len);
874 credit_init_bits(entropy);
875
876 /*
877 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
878 * we're not yet initialized.
879 */
880 if (!kthread_should_stop() && crng_ready())
881 schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
882 }
883 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
884
885 /*
886 * Handle random seed passed by bootloader, and credit it if
887 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
888 */
889 void __init add_bootloader_randomness(const void *buf, size_t len)
890 {
891 mix_pool_bytes(buf, len);
892 if (trust_bootloader)
893 credit_init_bits(len * 8);
894 }
895
896 struct fast_pool {
897 struct work_struct mix;
898 unsigned long pool[4];
899 unsigned long last;
900 unsigned int count;
901 };
902
903 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
904 #ifdef CONFIG_64BIT
905 #define FASTMIX_PERM SIPHASH_PERMUTATION
906 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
907 #else
908 #define FASTMIX_PERM HSIPHASH_PERMUTATION
909 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
910 #endif
911 };
912
913 /*
914 * This is [Half]SipHash-1-x, starting from an empty key. Because
915 * the key is fixed, it assumes that its inputs are non-malicious,
916 * and therefore this has no security on its own. s represents the
917 * four-word SipHash state, while v represents a two-word input.
918 */
919 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
920 {
921 s[3] ^= v1;
922 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
923 s[0] ^= v1;
924 s[3] ^= v2;
925 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
926 s[0] ^= v2;
927 }
928
929 #ifdef CONFIG_SMP
930 /*
931 * This function is called when the CPU has just come online, with
932 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
933 */
934 int __cold random_online_cpu(unsigned int cpu)
935 {
936 /*
937 * During CPU shutdown and before CPU onlining, add_interrupt_
938 * randomness() may schedule mix_interrupt_randomness(), and
939 * set the MIX_INFLIGHT flag. However, because the worker can
940 * be scheduled on a different CPU during this period, that
941 * flag will never be cleared. For that reason, we zero out
942 * the flag here, which runs just after workqueues are onlined
943 * for the CPU again. This also has the effect of setting the
944 * irq randomness count to zero so that new accumulated irqs
945 * are fresh.
946 */
947 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
948 return 0;
949 }
950 #endif
951
952 static void mix_interrupt_randomness(struct work_struct *work)
953 {
954 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
955 /*
956 * The size of the copied stack pool is explicitly 2 longs so that we
957 * only ever ingest half of the siphash output each time, retaining
958 * the other half as the next "key" that carries over. The entropy is
959 * supposed to be sufficiently dispersed between bits so on average
960 * we don't wind up "losing" some.
961 */
962 unsigned long pool[2];
963 unsigned int count;
964
965 /* Check to see if we're running on the wrong CPU due to hotplug. */
966 local_irq_disable();
967 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
968 local_irq_enable();
969 return;
970 }
971
972 /*
973 * Copy the pool to the stack so that the mixer always has a
974 * consistent view, before we reenable irqs again.
975 */
976 memcpy(pool, fast_pool->pool, sizeof(pool));
977 count = fast_pool->count;
978 fast_pool->count = 0;
979 fast_pool->last = jiffies;
980 local_irq_enable();
981
982 mix_pool_bytes(pool, sizeof(pool));
983 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
984
985 memzero_explicit(pool, sizeof(pool));
986 }
987
988 void add_interrupt_randomness(int irq)
989 {
990 enum { MIX_INFLIGHT = 1U << 31 };
991 unsigned long entropy = random_get_entropy();
992 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
993 struct pt_regs *regs = get_irq_regs();
994 unsigned int new_count;
995
996 fast_mix(fast_pool->pool, entropy,
997 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
998 new_count = ++fast_pool->count;
999
1000 if (new_count & MIX_INFLIGHT)
1001 return;
1002
1003 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1004 return;
1005
1006 if (unlikely(!fast_pool->mix.func))
1007 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1008 fast_pool->count |= MIX_INFLIGHT;
1009 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
1010 }
1011 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1012
1013 /* There is one of these per entropy source */
1014 struct timer_rand_state {
1015 unsigned long last_time;
1016 long last_delta, last_delta2;
1017 };
1018
1019 /*
1020 * This function adds entropy to the entropy "pool" by using timing
1021 * delays. It uses the timer_rand_state structure to make an estimate
1022 * of how many bits of entropy this call has added to the pool. The
1023 * value "num" is also added to the pool; it should somehow describe
1024 * the type of event that just happened.
1025 */
1026 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1027 {
1028 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1029 long delta, delta2, delta3;
1030 unsigned int bits;
1031
1032 /*
1033 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1034 * sometime after, so mix into the fast pool.
1035 */
1036 if (in_hardirq()) {
1037 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1038 } else {
1039 spin_lock_irqsave(&input_pool.lock, flags);
1040 _mix_pool_bytes(&entropy, sizeof(entropy));
1041 _mix_pool_bytes(&num, sizeof(num));
1042 spin_unlock_irqrestore(&input_pool.lock, flags);
1043 }
1044
1045 if (crng_ready())
1046 return;
1047
1048 /*
1049 * Calculate number of bits of randomness we probably added.
1050 * We take into account the first, second and third-order deltas
1051 * in order to make our estimate.
1052 */
1053 delta = now - READ_ONCE(state->last_time);
1054 WRITE_ONCE(state->last_time, now);
1055
1056 delta2 = delta - READ_ONCE(state->last_delta);
1057 WRITE_ONCE(state->last_delta, delta);
1058
1059 delta3 = delta2 - READ_ONCE(state->last_delta2);
1060 WRITE_ONCE(state->last_delta2, delta2);
1061
1062 if (delta < 0)
1063 delta = -delta;
1064 if (delta2 < 0)
1065 delta2 = -delta2;
1066 if (delta3 < 0)
1067 delta3 = -delta3;
1068 if (delta > delta2)
1069 delta = delta2;
1070 if (delta > delta3)
1071 delta = delta3;
1072
1073 /*
1074 * delta is now minimum absolute delta. Round down by 1 bit
1075 * on general principles, and limit entropy estimate to 11 bits.
1076 */
1077 bits = min(fls(delta >> 1), 11);
1078
1079 /*
1080 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1081 * will run after this, which uses a different crediting scheme of 1 bit
1082 * per every 64 interrupts. In order to let that function do accounting
1083 * close to the one in this function, we credit a full 64/64 bit per bit,
1084 * and then subtract one to account for the extra one added.
1085 */
1086 if (in_hardirq())
1087 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1088 else
1089 _credit_init_bits(bits);
1090 }
1091
1092 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1093 {
1094 static unsigned char last_value;
1095 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1096
1097 /* Ignore autorepeat and the like. */
1098 if (value == last_value)
1099 return;
1100
1101 last_value = value;
1102 add_timer_randomness(&input_timer_state,
1103 (type << 4) ^ code ^ (code >> 4) ^ value);
1104 }
1105 EXPORT_SYMBOL_GPL(add_input_randomness);
1106
1107 #ifdef CONFIG_BLOCK
1108 void add_disk_randomness(struct gendisk *disk)
1109 {
1110 if (!disk || !disk->random)
1111 return;
1112 /* First major is 1, so we get >= 0x200 here. */
1113 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1114 }
1115 EXPORT_SYMBOL_GPL(add_disk_randomness);
1116
1117 void __cold rand_initialize_disk(struct gendisk *disk)
1118 {
1119 struct timer_rand_state *state;
1120
1121 /*
1122 * If kzalloc returns null, we just won't use that entropy
1123 * source.
1124 */
1125 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1126 if (state) {
1127 state->last_time = INITIAL_JIFFIES;
1128 disk->random = state;
1129 }
1130 }
1131 #endif
1132
1133 /*
1134 * Each time the timer fires, we expect that we got an unpredictable
1135 * jump in the cycle counter. Even if the timer is running on another
1136 * CPU, the timer activity will be touching the stack of the CPU that is
1137 * generating entropy..
1138 *
1139 * Note that we don't re-arm the timer in the timer itself - we are
1140 * happy to be scheduled away, since that just makes the load more
1141 * complex, but we do not want the timer to keep ticking unless the
1142 * entropy loop is running.
1143 *
1144 * So the re-arming always happens in the entropy loop itself.
1145 */
1146 static void __cold entropy_timer(struct timer_list *t)
1147 {
1148 credit_init_bits(1);
1149 }
1150
1151 /*
1152 * If we have an actual cycle counter, see if we can
1153 * generate enough entropy with timing noise
1154 */
1155 static void __cold try_to_generate_entropy(void)
1156 {
1157 struct {
1158 unsigned long entropy;
1159 struct timer_list timer;
1160 } stack;
1161
1162 stack.entropy = random_get_entropy();
1163
1164 /* Slow counter - or none. Don't even bother */
1165 if (stack.entropy == random_get_entropy())
1166 return;
1167
1168 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1169 while (!crng_ready() && !signal_pending(current)) {
1170 if (!timer_pending(&stack.timer))
1171 mod_timer(&stack.timer, jiffies + 1);
1172 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1173 schedule();
1174 stack.entropy = random_get_entropy();
1175 }
1176
1177 del_timer_sync(&stack.timer);
1178 destroy_timer_on_stack(&stack.timer);
1179 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1180 }
1181
1182
1183 /**********************************************************************
1184 *
1185 * Userspace reader/writer interfaces.
1186 *
1187 * getrandom(2) is the primary modern interface into the RNG and should
1188 * be used in preference to anything else.
1189 *
1190 * Reading from /dev/random has the same functionality as calling
1191 * getrandom(2) with flags=0. In earlier versions, however, it had
1192 * vastly different semantics and should therefore be avoided, to
1193 * prevent backwards compatibility issues.
1194 *
1195 * Reading from /dev/urandom has the same functionality as calling
1196 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1197 * waiting for the RNG to be ready, it should not be used.
1198 *
1199 * Writing to either /dev/random or /dev/urandom adds entropy to
1200 * the input pool but does not credit it.
1201 *
1202 * Polling on /dev/random indicates when the RNG is initialized, on
1203 * the read side, and when it wants new entropy, on the write side.
1204 *
1205 * Both /dev/random and /dev/urandom have the same set of ioctls for
1206 * adding entropy, getting the entropy count, zeroing the count, and
1207 * reseeding the crng.
1208 *
1209 **********************************************************************/
1210
1211 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1212 {
1213 struct iov_iter iter;
1214 struct iovec iov;
1215 int ret;
1216
1217 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1218 return -EINVAL;
1219
1220 /*
1221 * Requesting insecure and blocking randomness at the same time makes
1222 * no sense.
1223 */
1224 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1225 return -EINVAL;
1226
1227 if (!crng_ready() && !(flags & GRND_INSECURE)) {
1228 if (flags & GRND_NONBLOCK)
1229 return -EAGAIN;
1230 ret = wait_for_random_bytes();
1231 if (unlikely(ret))
1232 return ret;
1233 }
1234
1235 ret = import_single_range(READ, ubuf, len, &iov, &iter);
1236 if (unlikely(ret))
1237 return ret;
1238 return get_random_bytes_user(&iter);
1239 }
1240
1241 static __poll_t random_poll(struct file *file, poll_table *wait)
1242 {
1243 poll_wait(file, &crng_init_wait, wait);
1244 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1245 }
1246
1247 static ssize_t write_pool_user(struct iov_iter *iter)
1248 {
1249 u8 block[BLAKE2S_BLOCK_SIZE];
1250 ssize_t ret = 0;
1251 size_t copied;
1252
1253 if (unlikely(!iov_iter_count(iter)))
1254 return 0;
1255
1256 for (;;) {
1257 copied = copy_from_iter(block, sizeof(block), iter);
1258 ret += copied;
1259 mix_pool_bytes(block, copied);
1260 if (!iov_iter_count(iter) || copied != sizeof(block))
1261 break;
1262
1263 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1264 if (ret % PAGE_SIZE == 0) {
1265 if (signal_pending(current))
1266 break;
1267 cond_resched();
1268 }
1269 }
1270
1271 memzero_explicit(block, sizeof(block));
1272 return ret ? ret : -EFAULT;
1273 }
1274
1275 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1276 {
1277 return write_pool_user(iter);
1278 }
1279
1280 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1281 {
1282 static int maxwarn = 10;
1283
1284 if (!crng_ready()) {
1285 if (!ratelimit_disable && maxwarn <= 0)
1286 ++urandom_warning.missed;
1287 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1288 --maxwarn;
1289 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1290 current->comm, iov_iter_count(iter));
1291 }
1292 }
1293
1294 return get_random_bytes_user(iter);
1295 }
1296
1297 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1298 {
1299 int ret;
1300
1301 if (!crng_ready() &&
1302 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1303 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1304 return -EAGAIN;
1305
1306 ret = wait_for_random_bytes();
1307 if (ret != 0)
1308 return ret;
1309 return get_random_bytes_user(iter);
1310 }
1311
1312 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1313 {
1314 int __user *p = (int __user *)arg;
1315 int ent_count;
1316
1317 switch (cmd) {
1318 case RNDGETENTCNT:
1319 /* Inherently racy, no point locking. */
1320 if (put_user(input_pool.init_bits, p))
1321 return -EFAULT;
1322 return 0;
1323 case RNDADDTOENTCNT:
1324 if (!capable(CAP_SYS_ADMIN))
1325 return -EPERM;
1326 if (get_user(ent_count, p))
1327 return -EFAULT;
1328 if (ent_count < 0)
1329 return -EINVAL;
1330 credit_init_bits(ent_count);
1331 return 0;
1332 case RNDADDENTROPY: {
1333 struct iov_iter iter;
1334 struct iovec iov;
1335 ssize_t ret;
1336 int len;
1337
1338 if (!capable(CAP_SYS_ADMIN))
1339 return -EPERM;
1340 if (get_user(ent_count, p++))
1341 return -EFAULT;
1342 if (ent_count < 0)
1343 return -EINVAL;
1344 if (get_user(len, p++))
1345 return -EFAULT;
1346 ret = import_single_range(WRITE, p, len, &iov, &iter);
1347 if (unlikely(ret))
1348 return ret;
1349 ret = write_pool_user(&iter);
1350 if (unlikely(ret < 0))
1351 return ret;
1352 /* Since we're crediting, enforce that it was all written into the pool. */
1353 if (unlikely(ret != len))
1354 return -EFAULT;
1355 credit_init_bits(ent_count);
1356 return 0;
1357 }
1358 case RNDZAPENTCNT:
1359 case RNDCLEARPOOL:
1360 /* No longer has any effect. */
1361 if (!capable(CAP_SYS_ADMIN))
1362 return -EPERM;
1363 return 0;
1364 case RNDRESEEDCRNG:
1365 if (!capable(CAP_SYS_ADMIN))
1366 return -EPERM;
1367 if (!crng_ready())
1368 return -ENODATA;
1369 crng_reseed();
1370 return 0;
1371 default:
1372 return -EINVAL;
1373 }
1374 }
1375
1376 static int random_fasync(int fd, struct file *filp, int on)
1377 {
1378 return fasync_helper(fd, filp, on, &fasync);
1379 }
1380
1381 const struct file_operations random_fops = {
1382 .read_iter = random_read_iter,
1383 .write_iter = random_write_iter,
1384 .poll = random_poll,
1385 .unlocked_ioctl = random_ioctl,
1386 .compat_ioctl = compat_ptr_ioctl,
1387 .fasync = random_fasync,
1388 .llseek = noop_llseek,
1389 .splice_read = generic_file_splice_read,
1390 .splice_write = iter_file_splice_write,
1391 };
1392
1393 const struct file_operations urandom_fops = {
1394 .read_iter = urandom_read_iter,
1395 .write_iter = random_write_iter,
1396 .unlocked_ioctl = random_ioctl,
1397 .compat_ioctl = compat_ptr_ioctl,
1398 .fasync = random_fasync,
1399 .llseek = noop_llseek,
1400 .splice_read = generic_file_splice_read,
1401 .splice_write = iter_file_splice_write,
1402 };
1403
1404
1405 /********************************************************************
1406 *
1407 * Sysctl interface.
1408 *
1409 * These are partly unused legacy knobs with dummy values to not break
1410 * userspace and partly still useful things. They are usually accessible
1411 * in /proc/sys/kernel/random/ and are as follows:
1412 *
1413 * - boot_id - a UUID representing the current boot.
1414 *
1415 * - uuid - a random UUID, different each time the file is read.
1416 *
1417 * - poolsize - the number of bits of entropy that the input pool can
1418 * hold, tied to the POOL_BITS constant.
1419 *
1420 * - entropy_avail - the number of bits of entropy currently in the
1421 * input pool. Always <= poolsize.
1422 *
1423 * - write_wakeup_threshold - the amount of entropy in the input pool
1424 * below which write polls to /dev/random will unblock, requesting
1425 * more entropy, tied to the POOL_READY_BITS constant. It is writable
1426 * to avoid breaking old userspaces, but writing to it does not
1427 * change any behavior of the RNG.
1428 *
1429 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1430 * It is writable to avoid breaking old userspaces, but writing
1431 * to it does not change any behavior of the RNG.
1432 *
1433 ********************************************************************/
1434
1435 #ifdef CONFIG_SYSCTL
1436
1437 #include <linux/sysctl.h>
1438
1439 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1440 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1441 static int sysctl_poolsize = POOL_BITS;
1442 static u8 sysctl_bootid[UUID_SIZE];
1443
1444 /*
1445 * This function is used to return both the bootid UUID, and random
1446 * UUID. The difference is in whether table->data is NULL; if it is,
1447 * then a new UUID is generated and returned to the user.
1448 */
1449 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1450 size_t *lenp, loff_t *ppos)
1451 {
1452 u8 tmp_uuid[UUID_SIZE], *uuid;
1453 char uuid_string[UUID_STRING_LEN + 1];
1454 struct ctl_table fake_table = {
1455 .data = uuid_string,
1456 .maxlen = UUID_STRING_LEN
1457 };
1458
1459 if (write)
1460 return -EPERM;
1461
1462 uuid = table->data;
1463 if (!uuid) {
1464 uuid = tmp_uuid;
1465 generate_random_uuid(uuid);
1466 } else {
1467 static DEFINE_SPINLOCK(bootid_spinlock);
1468
1469 spin_lock(&bootid_spinlock);
1470 if (!uuid[8])
1471 generate_random_uuid(uuid);
1472 spin_unlock(&bootid_spinlock);
1473 }
1474
1475 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1476 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1477 }
1478
1479 /* The same as proc_dointvec, but writes don't change anything. */
1480 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1481 size_t *lenp, loff_t *ppos)
1482 {
1483 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1484 }
1485
1486 extern struct ctl_table random_table[];
1487 struct ctl_table random_table[] = {
1488 {
1489 .procname = "poolsize",
1490 .data = &sysctl_poolsize,
1491 .maxlen = sizeof(int),
1492 .mode = 0444,
1493 .proc_handler = proc_dointvec,
1494 },
1495 {
1496 .procname = "entropy_avail",
1497 .data = &input_pool.init_bits,
1498 .maxlen = sizeof(int),
1499 .mode = 0444,
1500 .proc_handler = proc_dointvec,
1501 },
1502 {
1503 .procname = "write_wakeup_threshold",
1504 .data = &sysctl_random_write_wakeup_bits,
1505 .maxlen = sizeof(int),
1506 .mode = 0644,
1507 .proc_handler = proc_do_rointvec,
1508 },
1509 {
1510 .procname = "urandom_min_reseed_secs",
1511 .data = &sysctl_random_min_urandom_seed,
1512 .maxlen = sizeof(int),
1513 .mode = 0644,
1514 .proc_handler = proc_do_rointvec,
1515 },
1516 {
1517 .procname = "boot_id",
1518 .data = &sysctl_bootid,
1519 .mode = 0444,
1520 .proc_handler = proc_do_uuid,
1521 },
1522 {
1523 .procname = "uuid",
1524 .mode = 0444,
1525 .proc_handler = proc_do_uuid,
1526 },
1527 { }
1528 };
1529 #endif /* CONFIG_SYSCTL */