]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
block: only call ->request_fn when the queue is not stopped
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
1da177e4 31
8324aa91
JA
32#include "blk.h"
33
165125e1 34static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
35
36/*
37 * For the allocated request tables
38 */
5ece6c52 39static struct kmem_cache *request_cachep;
1da177e4
LT
40
41/*
42 * For queue allocation
43 */
6728cb0e 44struct kmem_cache *blk_requestq_cachep;
1da177e4 45
1da177e4
LT
46/*
47 * Controlling structure to kblockd
48 */
ff856bad 49static struct workqueue_struct *kblockd_workqueue;
1da177e4 50
26b8256e
JA
51static void drive_stat_acct(struct request *rq, int new_io)
52{
28f13702 53 struct hd_struct *part;
26b8256e 54 int rw = rq_data_dir(rq);
c9959059 55 int cpu;
26b8256e
JA
56
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
59
074a7aca 60 cpu = part_stat_lock();
e71bf0d0 61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 62
28f13702 63 if (!new_io)
074a7aca 64 part_stat_inc(cpu, part, merges[rw]);
28f13702 65 else {
074a7aca
TH
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
26b8256e 68 }
e71bf0d0 69
074a7aca 70 part_stat_unlock();
26b8256e
JA
71}
72
8324aa91 73void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
74{
75 int nr;
76
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
86}
87
1da177e4
LT
88/**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
91 *
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
94 *
95 * Will return NULL if the request queue cannot be located.
96 */
97struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98{
99 struct backing_dev_info *ret = NULL;
165125e1 100 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
101
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
105}
1da177e4
LT
106EXPORT_SYMBOL(blk_get_backing_dev_info);
107
2a4aa30c 108void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 109{
1afb20f3
FT
110 memset(rq, 0, sizeof(*rq));
111
1da177e4 112 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 113 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 114 rq->cpu = -1;
63a71386
JA
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 119 rq->cmd = rq->__cmd;
63a71386 120 rq->tag = -1;
1da177e4 121 rq->ref_count = 1;
1da177e4 122}
2a4aa30c 123EXPORT_SYMBOL(blk_rq_init);
1da177e4 124
5bb23a68
N
125static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
1da177e4 127{
165125e1 128 struct request_queue *q = rq->q;
797e7dbb 129
5bb23a68
N
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
797e7dbb 135
5bb23a68 136 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 138 __func__, nbytes, bio->bi_size);
5bb23a68
N
139 nbytes = bio->bi_size;
140 }
797e7dbb 141
5bb23a68
N
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
144
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
147
5bb23a68 148 if (bio->bi_size == 0)
6712ecf8 149 bio_endio(bio, error);
5bb23a68
N
150 } else {
151
152 /*
153 * Okay, this is the barrier request in progress, just
154 * record the error;
155 */
156 if (error && !q->orderr)
157 q->orderr = error;
158 }
1da177e4 159}
1da177e4 160
1da177e4
LT
161void blk_dump_rq_flags(struct request *rq, char *msg)
162{
163 int bit;
164
6728cb0e 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
1da177e4 168
6728cb0e
JA
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
1da177e4 177
4aff5e23 178 if (blk_pc_request(rq)) {
6728cb0e 179 printk(KERN_INFO " cdb: ");
d34c87e4 180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
183 }
184}
1da177e4
LT
185EXPORT_SYMBOL(blk_dump_rq_flags);
186
1da177e4
LT
187/*
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
191 *
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
194 */
165125e1 195void blk_plug_device(struct request_queue *q)
1da177e4
LT
196{
197 WARN_ON(!irqs_disabled());
198
199 /*
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
202 */
7daac490 203 if (blk_queue_stopped(q))
1da177e4
LT
204 return;
205
e48ec690 206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 }
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_plug_device);
212
6c5e0c4d
JA
213/**
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
216 *
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
220 **/
221void blk_plug_device_unlocked(struct request_queue *q)
222{
223 unsigned long flags;
224
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
228}
229EXPORT_SYMBOL(blk_plug_device_unlocked);
230
1da177e4
LT
231/*
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
234 */
165125e1 235int blk_remove_plug(struct request_queue *q)
1da177e4
LT
236{
237 WARN_ON(!irqs_disabled());
238
e48ec690 239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
240 return 0;
241
242 del_timer(&q->unplug_timer);
243 return 1;
244}
1da177e4
LT
245EXPORT_SYMBOL(blk_remove_plug);
246
247/*
248 * remove the plug and let it rip..
249 */
165125e1 250void __generic_unplug_device(struct request_queue *q)
1da177e4 251{
7daac490 252 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
253 return;
254
255 if (!blk_remove_plug(q))
256 return;
257
22e2c507 258 q->request_fn(q);
1da177e4
LT
259}
260EXPORT_SYMBOL(__generic_unplug_device);
261
262/**
263 * generic_unplug_device - fire a request queue
165125e1 264 * @q: The &struct request_queue in question
1da177e4
LT
265 *
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
272 **/
165125e1 273void generic_unplug_device(struct request_queue *q)
1da177e4 274{
dbaf2c00
JA
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
279 }
1da177e4
LT
280}
281EXPORT_SYMBOL(generic_unplug_device);
282
283static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
285{
165125e1 286 struct request_queue *q = bdi->unplug_io_data;
1da177e4 287
2ad8b1ef 288 blk_unplug(q);
1da177e4
LT
289}
290
86db1e29 291void blk_unplug_work(struct work_struct *work)
1da177e4 292{
165125e1
JA
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
1da177e4 295
2056a782
JA
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
298
1da177e4
LT
299 q->unplug_fn(q);
300}
301
86db1e29 302void blk_unplug_timeout(unsigned long data)
1da177e4 303{
165125e1 304 struct request_queue *q = (struct request_queue *)data;
1da177e4 305
2056a782
JA
306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 q->rq.count[READ] + q->rq.count[WRITE]);
308
18887ad9 309 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
310}
311
2ad8b1ef
AB
312void blk_unplug(struct request_queue *q)
313{
314 /*
315 * devices don't necessarily have an ->unplug_fn defined
316 */
317 if (q->unplug_fn) {
318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 q->rq.count[READ] + q->rq.count[WRITE]);
320
321 q->unplug_fn(q);
322 }
323}
324EXPORT_SYMBOL(blk_unplug);
325
c7c22e4d
JA
326static void blk_invoke_request_fn(struct request_queue *q)
327{
80a4b58e
JA
328 if (unlikely(blk_queue_stopped(q)))
329 return;
330
c7c22e4d
JA
331 /*
332 * one level of recursion is ok and is much faster than kicking
333 * the unplug handling
334 */
335 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
336 q->request_fn(q);
337 queue_flag_clear(QUEUE_FLAG_REENTER, q);
338 } else {
339 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
340 kblockd_schedule_work(q, &q->unplug_work);
341 }
342}
343
1da177e4
LT
344/**
345 * blk_start_queue - restart a previously stopped queue
165125e1 346 * @q: The &struct request_queue in question
1da177e4
LT
347 *
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue(). Queue lock must be held.
352 **/
165125e1 353void blk_start_queue(struct request_queue *q)
1da177e4 354{
a038e253
PBG
355 WARN_ON(!irqs_disabled());
356
75ad23bc 357 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 358 blk_invoke_request_fn(q);
1da177e4 359}
1da177e4
LT
360EXPORT_SYMBOL(blk_start_queue);
361
362/**
363 * blk_stop_queue - stop a queue
165125e1 364 * @q: The &struct request_queue in question
1da177e4
LT
365 *
366 * Description:
367 * The Linux block layer assumes that a block driver will consume all
368 * entries on the request queue when the request_fn strategy is called.
369 * Often this will not happen, because of hardware limitations (queue
370 * depth settings). If a device driver gets a 'queue full' response,
371 * or if it simply chooses not to queue more I/O at one point, it can
372 * call this function to prevent the request_fn from being called until
373 * the driver has signalled it's ready to go again. This happens by calling
374 * blk_start_queue() to restart queue operations. Queue lock must be held.
375 **/
165125e1 376void blk_stop_queue(struct request_queue *q)
1da177e4
LT
377{
378 blk_remove_plug(q);
75ad23bc 379 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
380}
381EXPORT_SYMBOL(blk_stop_queue);
382
383/**
384 * blk_sync_queue - cancel any pending callbacks on a queue
385 * @q: the queue
386 *
387 * Description:
388 * The block layer may perform asynchronous callback activity
389 * on a queue, such as calling the unplug function after a timeout.
390 * A block device may call blk_sync_queue to ensure that any
391 * such activity is cancelled, thus allowing it to release resources
59c51591 392 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
393 * that its ->make_request_fn will not re-add plugging prior to calling
394 * this function.
395 *
396 */
397void blk_sync_queue(struct request_queue *q)
398{
399 del_timer_sync(&q->unplug_timer);
abbeb88d 400 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
401}
402EXPORT_SYMBOL(blk_sync_queue);
403
404/**
80a4b58e 405 * __blk_run_queue - run a single device queue
1da177e4 406 * @q: The queue to run
80a4b58e
JA
407 *
408 * Description:
409 * See @blk_run_queue. This variant must be called with the queue lock
410 * held and interrupts disabled.
411 *
1da177e4 412 */
75ad23bc 413void __blk_run_queue(struct request_queue *q)
1da177e4 414{
1da177e4 415 blk_remove_plug(q);
dac07ec1
JA
416
417 /*
418 * Only recurse once to avoid overrunning the stack, let the unplug
419 * handling reinvoke the handler shortly if we already got there.
420 */
c7c22e4d
JA
421 if (!elv_queue_empty(q))
422 blk_invoke_request_fn(q);
75ad23bc
NP
423}
424EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 425
75ad23bc
NP
426/**
427 * blk_run_queue - run a single device queue
428 * @q: The queue to run
80a4b58e
JA
429 *
430 * Description:
431 * Invoke request handling on this queue, if it has pending work to do.
432 * May be used to restart queueing when a request has completed. Also
433 * See @blk_start_queueing.
434 *
75ad23bc
NP
435 */
436void blk_run_queue(struct request_queue *q)
437{
438 unsigned long flags;
439
440 spin_lock_irqsave(q->queue_lock, flags);
441 __blk_run_queue(q);
1da177e4
LT
442 spin_unlock_irqrestore(q->queue_lock, flags);
443}
444EXPORT_SYMBOL(blk_run_queue);
445
165125e1 446void blk_put_queue(struct request_queue *q)
483f4afc
AV
447{
448 kobject_put(&q->kobj);
449}
483f4afc 450
6728cb0e 451void blk_cleanup_queue(struct request_queue *q)
483f4afc 452{
e3335de9
JA
453 /*
454 * We know we have process context here, so we can be a little
455 * cautious and ensure that pending block actions on this device
456 * are done before moving on. Going into this function, we should
457 * not have processes doing IO to this device.
458 */
459 blk_sync_queue(q);
460
483f4afc 461 mutex_lock(&q->sysfs_lock);
75ad23bc 462 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
463 mutex_unlock(&q->sysfs_lock);
464
465 if (q->elevator)
466 elevator_exit(q->elevator);
467
468 blk_put_queue(q);
469}
1da177e4
LT
470EXPORT_SYMBOL(blk_cleanup_queue);
471
165125e1 472static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
473{
474 struct request_list *rl = &q->rq;
475
476 rl->count[READ] = rl->count[WRITE] = 0;
477 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 478 rl->elvpriv = 0;
1da177e4
LT
479 init_waitqueue_head(&rl->wait[READ]);
480 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 481
1946089a
CL
482 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
483 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
484
485 if (!rl->rq_pool)
486 return -ENOMEM;
487
488 return 0;
489}
490
165125e1 491struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 492{
1946089a
CL
493 return blk_alloc_queue_node(gfp_mask, -1);
494}
495EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 496
165125e1 497struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 498{
165125e1 499 struct request_queue *q;
e0bf68dd 500 int err;
1946089a 501
8324aa91 502 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 503 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
504 if (!q)
505 return NULL;
506
e0bf68dd
PZ
507 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
508 q->backing_dev_info.unplug_io_data = q;
509 err = bdi_init(&q->backing_dev_info);
510 if (err) {
8324aa91 511 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
512 return NULL;
513 }
514
1da177e4 515 init_timer(&q->unplug_timer);
242f9dcb
JA
516 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
517 INIT_LIST_HEAD(&q->timeout_list);
483f4afc 518
8324aa91 519 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 520
483f4afc 521 mutex_init(&q->sysfs_lock);
e7e72bf6 522 spin_lock_init(&q->__queue_lock);
483f4afc 523
1da177e4
LT
524 return q;
525}
1946089a 526EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
527
528/**
529 * blk_init_queue - prepare a request queue for use with a block device
530 * @rfn: The function to be called to process requests that have been
531 * placed on the queue.
532 * @lock: Request queue spin lock
533 *
534 * Description:
535 * If a block device wishes to use the standard request handling procedures,
536 * which sorts requests and coalesces adjacent requests, then it must
537 * call blk_init_queue(). The function @rfn will be called when there
538 * are requests on the queue that need to be processed. If the device
539 * supports plugging, then @rfn may not be called immediately when requests
540 * are available on the queue, but may be called at some time later instead.
541 * Plugged queues are generally unplugged when a buffer belonging to one
542 * of the requests on the queue is needed, or due to memory pressure.
543 *
544 * @rfn is not required, or even expected, to remove all requests off the
545 * queue, but only as many as it can handle at a time. If it does leave
546 * requests on the queue, it is responsible for arranging that the requests
547 * get dealt with eventually.
548 *
549 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
550 * request queue; this lock will be taken also from interrupt context, so irq
551 * disabling is needed for it.
1da177e4 552 *
710027a4 553 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
554 * it didn't succeed.
555 *
556 * Note:
557 * blk_init_queue() must be paired with a blk_cleanup_queue() call
558 * when the block device is deactivated (such as at module unload).
559 **/
1946089a 560
165125e1 561struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 562{
1946089a
CL
563 return blk_init_queue_node(rfn, lock, -1);
564}
565EXPORT_SYMBOL(blk_init_queue);
566
165125e1 567struct request_queue *
1946089a
CL
568blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
569{
165125e1 570 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
571
572 if (!q)
573 return NULL;
574
1946089a 575 q->node = node_id;
8669aafd 576 if (blk_init_free_list(q)) {
8324aa91 577 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
578 return NULL;
579 }
1da177e4 580
152587de
JA
581 /*
582 * if caller didn't supply a lock, they get per-queue locking with
583 * our embedded lock
584 */
e7e72bf6 585 if (!lock)
152587de 586 lock = &q->__queue_lock;
152587de 587
1da177e4 588 q->request_fn = rfn;
1da177e4
LT
589 q->prep_rq_fn = NULL;
590 q->unplug_fn = generic_unplug_device;
4ee5eaf4
KU
591 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
592 1 << QUEUE_FLAG_STACKABLE);
1da177e4
LT
593 q->queue_lock = lock;
594
595 blk_queue_segment_boundary(q, 0xffffffff);
596
597 blk_queue_make_request(q, __make_request);
598 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
599
600 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
601 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
602
44ec9542
AS
603 q->sg_reserved_size = INT_MAX;
604
abf54393
FT
605 blk_set_cmd_filter_defaults(&q->cmd_filter);
606
1da177e4
LT
607 /*
608 * all done
609 */
610 if (!elevator_init(q, NULL)) {
611 blk_queue_congestion_threshold(q);
612 return q;
613 }
614
8669aafd 615 blk_put_queue(q);
1da177e4
LT
616 return NULL;
617}
1946089a 618EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 619
165125e1 620int blk_get_queue(struct request_queue *q)
1da177e4 621{
fde6ad22 622 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 623 kobject_get(&q->kobj);
1da177e4
LT
624 return 0;
625 }
626
627 return 1;
628}
1da177e4 629
165125e1 630static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 631{
4aff5e23 632 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 633 elv_put_request(q, rq);
1da177e4
LT
634 mempool_free(rq, q->rq.rq_pool);
635}
636
1ea25ecb 637static struct request *
165125e1 638blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
639{
640 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
641
642 if (!rq)
643 return NULL;
644
2a4aa30c 645 blk_rq_init(q, rq);
1afb20f3 646
49171e5c 647 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 648
cb98fc8b 649 if (priv) {
cb78b285 650 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
651 mempool_free(rq, q->rq.rq_pool);
652 return NULL;
653 }
4aff5e23 654 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 655 }
1da177e4 656
cb98fc8b 657 return rq;
1da177e4
LT
658}
659
660/*
661 * ioc_batching returns true if the ioc is a valid batching request and
662 * should be given priority access to a request.
663 */
165125e1 664static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
665{
666 if (!ioc)
667 return 0;
668
669 /*
670 * Make sure the process is able to allocate at least 1 request
671 * even if the batch times out, otherwise we could theoretically
672 * lose wakeups.
673 */
674 return ioc->nr_batch_requests == q->nr_batching ||
675 (ioc->nr_batch_requests > 0
676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
677}
678
679/*
680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681 * will cause the process to be a "batcher" on all queues in the system. This
682 * is the behaviour we want though - once it gets a wakeup it should be given
683 * a nice run.
684 */
165125e1 685static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
686{
687 if (!ioc || ioc_batching(q, ioc))
688 return;
689
690 ioc->nr_batch_requests = q->nr_batching;
691 ioc->last_waited = jiffies;
692}
693
165125e1 694static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
695{
696 struct request_list *rl = &q->rq;
697
698 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 699 blk_clear_queue_congested(q, rw);
1da177e4
LT
700
701 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
702 if (waitqueue_active(&rl->wait[rw]))
703 wake_up(&rl->wait[rw]);
704
705 blk_clear_queue_full(q, rw);
706 }
707}
708
709/*
710 * A request has just been released. Account for it, update the full and
711 * congestion status, wake up any waiters. Called under q->queue_lock.
712 */
165125e1 713static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
714{
715 struct request_list *rl = &q->rq;
716
717 rl->count[rw]--;
cb98fc8b
TH
718 if (priv)
719 rl->elvpriv--;
1da177e4
LT
720
721 __freed_request(q, rw);
722
723 if (unlikely(rl->starved[rw ^ 1]))
724 __freed_request(q, rw ^ 1);
1da177e4
LT
725}
726
727#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
728/*
d6344532
NP
729 * Get a free request, queue_lock must be held.
730 * Returns NULL on failure, with queue_lock held.
731 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 732 */
165125e1 733static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 734 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
735{
736 struct request *rq = NULL;
737 struct request_list *rl = &q->rq;
88ee5ef1 738 struct io_context *ioc = NULL;
7749a8d4 739 const int rw = rw_flags & 0x01;
88ee5ef1
JA
740 int may_queue, priv;
741
7749a8d4 742 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
743 if (may_queue == ELV_MQUEUE_NO)
744 goto rq_starved;
745
746 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
747 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 748 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
749 /*
750 * The queue will fill after this allocation, so set
751 * it as full, and mark this process as "batching".
752 * This process will be allowed to complete a batch of
753 * requests, others will be blocked.
754 */
755 if (!blk_queue_full(q, rw)) {
756 ioc_set_batching(q, ioc);
757 blk_set_queue_full(q, rw);
758 } else {
759 if (may_queue != ELV_MQUEUE_MUST
760 && !ioc_batching(q, ioc)) {
761 /*
762 * The queue is full and the allocating
763 * process is not a "batcher", and not
764 * exempted by the IO scheduler
765 */
766 goto out;
767 }
768 }
1da177e4 769 }
79e2de4b 770 blk_set_queue_congested(q, rw);
1da177e4
LT
771 }
772
082cf69e
JA
773 /*
774 * Only allow batching queuers to allocate up to 50% over the defined
775 * limit of requests, otherwise we could have thousands of requests
776 * allocated with any setting of ->nr_requests
777 */
fd782a4a 778 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 779 goto out;
fd782a4a 780
1da177e4
LT
781 rl->count[rw]++;
782 rl->starved[rw] = 0;
cb98fc8b 783
64521d1a 784 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
785 if (priv)
786 rl->elvpriv++;
787
1da177e4
LT
788 spin_unlock_irq(q->queue_lock);
789
7749a8d4 790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 791 if (unlikely(!rq)) {
1da177e4
LT
792 /*
793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up.
795 *
796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare.
798 */
799 spin_lock_irq(q->queue_lock);
cb98fc8b 800 freed_request(q, rw, priv);
1da177e4
LT
801
802 /*
803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE
808 */
809rq_starved:
810 if (unlikely(rl->count[rw] == 0))
811 rl->starved[rw] = 1;
812
1da177e4
LT
813 goto out;
814 }
815
88ee5ef1
JA
816 /*
817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME.
821 */
1da177e4
LT
822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--;
6728cb0e 824
2056a782 825 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 826out:
1da177e4
LT
827 return rq;
828}
829
830/*
831 * No available requests for this queue, unplug the device and wait for some
832 * requests to become available.
d6344532
NP
833 *
834 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 835 */
165125e1 836static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 837 struct bio *bio)
1da177e4 838{
7749a8d4 839 const int rw = rw_flags & 0x01;
1da177e4
LT
840 struct request *rq;
841
7749a8d4 842 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
843 while (!rq) {
844 DEFINE_WAIT(wait);
05caf8db 845 struct io_context *ioc;
1da177e4
LT
846 struct request_list *rl = &q->rq;
847
848 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
849 TASK_UNINTERRUPTIBLE);
850
05caf8db 851 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 852
05caf8db
ZY
853 __generic_unplug_device(q);
854 spin_unlock_irq(q->queue_lock);
855 io_schedule();
1da177e4 856
05caf8db
ZY
857 /*
858 * After sleeping, we become a "batching" process and
859 * will be able to allocate at least one request, and
860 * up to a big batch of them for a small period time.
861 * See ioc_batching, ioc_set_batching
862 */
863 ioc = current_io_context(GFP_NOIO, q->node);
864 ioc_set_batching(q, ioc);
d6344532 865
05caf8db 866 spin_lock_irq(q->queue_lock);
1da177e4 867 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
868
869 rq = get_request(q, rw_flags, bio, GFP_NOIO);
870 };
1da177e4
LT
871
872 return rq;
873}
874
165125e1 875struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
876{
877 struct request *rq;
878
879 BUG_ON(rw != READ && rw != WRITE);
880
d6344532
NP
881 spin_lock_irq(q->queue_lock);
882 if (gfp_mask & __GFP_WAIT) {
22e2c507 883 rq = get_request_wait(q, rw, NULL);
d6344532 884 } else {
22e2c507 885 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
886 if (!rq)
887 spin_unlock_irq(q->queue_lock);
888 }
889 /* q->queue_lock is unlocked at this point */
1da177e4
LT
890
891 return rq;
892}
1da177e4
LT
893EXPORT_SYMBOL(blk_get_request);
894
dc72ef4a
JA
895/**
896 * blk_start_queueing - initiate dispatch of requests to device
897 * @q: request queue to kick into gear
898 *
899 * This is basically a helper to remove the need to know whether a queue
900 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
901 * for this queue. Should be used to start queueing on a device outside
902 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
903 *
904 * The queue lock must be held with interrupts disabled.
905 */
165125e1 906void blk_start_queueing(struct request_queue *q)
dc72ef4a 907{
336c3d8c
EO
908 if (!blk_queue_plugged(q)) {
909 if (unlikely(blk_queue_stopped(q)))
910 return;
dc72ef4a 911 q->request_fn(q);
336c3d8c 912 } else
dc72ef4a
JA
913 __generic_unplug_device(q);
914}
915EXPORT_SYMBOL(blk_start_queueing);
916
1da177e4
LT
917/**
918 * blk_requeue_request - put a request back on queue
919 * @q: request queue where request should be inserted
920 * @rq: request to be inserted
921 *
922 * Description:
923 * Drivers often keep queueing requests until the hardware cannot accept
924 * more, when that condition happens we need to put the request back
925 * on the queue. Must be called with queue lock held.
926 */
165125e1 927void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 928{
242f9dcb
JA
929 blk_delete_timer(rq);
930 blk_clear_rq_complete(rq);
2056a782
JA
931 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
932
1da177e4
LT
933 if (blk_rq_tagged(rq))
934 blk_queue_end_tag(q, rq);
935
936 elv_requeue_request(q, rq);
937}
1da177e4
LT
938EXPORT_SYMBOL(blk_requeue_request);
939
940/**
710027a4 941 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
942 * @q: request queue where request should be inserted
943 * @rq: request to be inserted
944 * @at_head: insert request at head or tail of queue
945 * @data: private data
1da177e4
LT
946 *
947 * Description:
948 * Many block devices need to execute commands asynchronously, so they don't
949 * block the whole kernel from preemption during request execution. This is
950 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
951 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
952 * be scheduled for actual execution by the request queue.
1da177e4
LT
953 *
954 * We have the option of inserting the head or the tail of the queue.
955 * Typically we use the tail for new ioctls and so forth. We use the head
956 * of the queue for things like a QUEUE_FULL message from a device, or a
957 * host that is unable to accept a particular command.
958 */
165125e1 959void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 960 int at_head, void *data)
1da177e4 961{
867d1191 962 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
963 unsigned long flags;
964
965 /*
966 * tell I/O scheduler that this isn't a regular read/write (ie it
967 * must not attempt merges on this) and that it acts as a soft
968 * barrier
969 */
4aff5e23
JA
970 rq->cmd_type = REQ_TYPE_SPECIAL;
971 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
972
973 rq->special = data;
974
975 spin_lock_irqsave(q->queue_lock, flags);
976
977 /*
978 * If command is tagged, release the tag
979 */
867d1191
TH
980 if (blk_rq_tagged(rq))
981 blk_queue_end_tag(q, rq);
1da177e4 982
b238b3d4 983 drive_stat_acct(rq, 1);
867d1191 984 __elv_add_request(q, rq, where, 0);
dc72ef4a 985 blk_start_queueing(q);
1da177e4
LT
986 spin_unlock_irqrestore(q->queue_lock, flags);
987}
1da177e4
LT
988EXPORT_SYMBOL(blk_insert_request);
989
1da177e4
LT
990/*
991 * add-request adds a request to the linked list.
992 * queue lock is held and interrupts disabled, as we muck with the
993 * request queue list.
994 */
6728cb0e 995static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 996{
b238b3d4 997 drive_stat_acct(req, 1);
1da177e4 998
1da177e4
LT
999 /*
1000 * elevator indicated where it wants this request to be
1001 * inserted at elevator_merge time
1002 */
1003 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1004}
6728cb0e 1005
074a7aca
TH
1006static void part_round_stats_single(int cpu, struct hd_struct *part,
1007 unsigned long now)
1008{
1009 if (now == part->stamp)
1010 return;
1011
1012 if (part->in_flight) {
1013 __part_stat_add(cpu, part, time_in_queue,
1014 part->in_flight * (now - part->stamp));
1015 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1016 }
1017 part->stamp = now;
1018}
1019
1020/**
1021 * part_round_stats() - Round off the performance stats on a struct
1da177e4
LT
1022 * disk_stats.
1023 *
1024 * The average IO queue length and utilisation statistics are maintained
1025 * by observing the current state of the queue length and the amount of
1026 * time it has been in this state for.
1027 *
1028 * Normally, that accounting is done on IO completion, but that can result
1029 * in more than a second's worth of IO being accounted for within any one
1030 * second, leading to >100% utilisation. To deal with that, we call this
1031 * function to do a round-off before returning the results when reading
1032 * /proc/diskstats. This accounts immediately for all queue usage up to
1033 * the current jiffies and restarts the counters again.
1034 */
c9959059 1035void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1036{
1037 unsigned long now = jiffies;
1038
074a7aca
TH
1039 if (part->partno)
1040 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1041 part_round_stats_single(cpu, part, now);
6f2576af 1042}
074a7aca 1043EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1044
1da177e4
LT
1045/*
1046 * queue lock must be held
1047 */
165125e1 1048void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1049{
1da177e4
LT
1050 if (unlikely(!q))
1051 return;
1052 if (unlikely(--req->ref_count))
1053 return;
1054
8922e16c
TH
1055 elv_completed_request(q, req);
1056
1da177e4
LT
1057 /*
1058 * Request may not have originated from ll_rw_blk. if not,
1059 * it didn't come out of our reserved rq pools
1060 */
49171e5c 1061 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1062 int rw = rq_data_dir(req);
4aff5e23 1063 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1064
1da177e4 1065 BUG_ON(!list_empty(&req->queuelist));
9817064b 1066 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1067
1068 blk_free_request(q, req);
cb98fc8b 1069 freed_request(q, rw, priv);
1da177e4
LT
1070 }
1071}
6e39b69e
MC
1072EXPORT_SYMBOL_GPL(__blk_put_request);
1073
1da177e4
LT
1074void blk_put_request(struct request *req)
1075{
8922e16c 1076 unsigned long flags;
165125e1 1077 struct request_queue *q = req->q;
8922e16c 1078
52a93ba8
FT
1079 spin_lock_irqsave(q->queue_lock, flags);
1080 __blk_put_request(q, req);
1081 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1082}
1da177e4
LT
1083EXPORT_SYMBOL(blk_put_request);
1084
86db1e29 1085void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1086{
c7c22e4d 1087 req->cpu = bio->bi_comp_cpu;
4aff5e23 1088 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1089
1090 /*
1091 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1092 */
1093 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1094 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1095
1096 /*
1097 * REQ_BARRIER implies no merging, but lets make it explicit
1098 */
fb2dce86 1099 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1100 req->cmd_flags |= REQ_DISCARD;
1101 if (bio_barrier(bio))
1102 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1103 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1104 } else if (unlikely(bio_barrier(bio)))
1105 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1106
b31dc66a 1107 if (bio_sync(bio))
4aff5e23 1108 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1109 if (bio_rw_meta(bio))
1110 req->cmd_flags |= REQ_RW_META;
b31dc66a 1111
52d9e675
TH
1112 req->errors = 0;
1113 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1114 req->ioprio = bio_prio(bio);
52d9e675 1115 req->start_time = jiffies;
bc1c56fd 1116 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1117}
1118
165125e1 1119static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1120{
450991bc 1121 struct request *req;
fb2dce86 1122 int el_ret, nr_sectors, barrier, discard, err;
51da90fc
JA
1123 const unsigned short prio = bio_prio(bio);
1124 const int sync = bio_sync(bio);
7749a8d4 1125 int rw_flags;
1da177e4 1126
1da177e4 1127 nr_sectors = bio_sectors(bio);
1da177e4
LT
1128
1129 /*
1130 * low level driver can indicate that it wants pages above a
1131 * certain limit bounced to low memory (ie for highmem, or even
1132 * ISA dma in theory)
1133 */
1134 blk_queue_bounce(q, &bio);
1135
1da177e4 1136 barrier = bio_barrier(bio);
e17fc0a1
DW
1137 if (unlikely(barrier) && bio_has_data(bio) &&
1138 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1139 err = -EOPNOTSUPP;
1140 goto end_io;
1141 }
1142
fb2dce86
DW
1143 discard = bio_discard(bio);
1144 if (unlikely(discard) && !q->prepare_discard_fn) {
1145 err = -EOPNOTSUPP;
1146 goto end_io;
1147 }
1148
1da177e4
LT
1149 spin_lock_irq(q->queue_lock);
1150
450991bc 1151 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1152 goto get_rq;
1153
1154 el_ret = elv_merge(q, &req, bio);
1155 switch (el_ret) {
6728cb0e
JA
1156 case ELEVATOR_BACK_MERGE:
1157 BUG_ON(!rq_mergeable(req));
1da177e4 1158
6728cb0e
JA
1159 if (!ll_back_merge_fn(q, req, bio))
1160 break;
1da177e4 1161
6728cb0e 1162 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1163
6728cb0e
JA
1164 req->biotail->bi_next = bio;
1165 req->biotail = bio;
1166 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1167 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1168 if (!blk_rq_cpu_valid(req))
1169 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1170 drive_stat_acct(req, 0);
1171 if (!attempt_back_merge(q, req))
1172 elv_merged_request(q, req, el_ret);
1173 goto out;
1da177e4 1174
6728cb0e
JA
1175 case ELEVATOR_FRONT_MERGE:
1176 BUG_ON(!rq_mergeable(req));
1da177e4 1177
6728cb0e
JA
1178 if (!ll_front_merge_fn(q, req, bio))
1179 break;
1da177e4 1180
6728cb0e 1181 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1182
6728cb0e
JA
1183 bio->bi_next = req->bio;
1184 req->bio = bio;
1da177e4 1185
6728cb0e
JA
1186 /*
1187 * may not be valid. if the low level driver said
1188 * it didn't need a bounce buffer then it better
1189 * not touch req->buffer either...
1190 */
1191 req->buffer = bio_data(bio);
1192 req->current_nr_sectors = bio_cur_sectors(bio);
1193 req->hard_cur_sectors = req->current_nr_sectors;
1194 req->sector = req->hard_sector = bio->bi_sector;
1195 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1196 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1197 if (!blk_rq_cpu_valid(req))
1198 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1199 drive_stat_acct(req, 0);
1200 if (!attempt_front_merge(q, req))
1201 elv_merged_request(q, req, el_ret);
1202 goto out;
1203
1204 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1205 default:
1206 ;
1da177e4
LT
1207 }
1208
450991bc 1209get_rq:
7749a8d4
JA
1210 /*
1211 * This sync check and mask will be re-done in init_request_from_bio(),
1212 * but we need to set it earlier to expose the sync flag to the
1213 * rq allocator and io schedulers.
1214 */
1215 rw_flags = bio_data_dir(bio);
1216 if (sync)
1217 rw_flags |= REQ_RW_SYNC;
1218
1da177e4 1219 /*
450991bc 1220 * Grab a free request. This is might sleep but can not fail.
d6344532 1221 * Returns with the queue unlocked.
450991bc 1222 */
7749a8d4 1223 req = get_request_wait(q, rw_flags, bio);
d6344532 1224
450991bc
NP
1225 /*
1226 * After dropping the lock and possibly sleeping here, our request
1227 * may now be mergeable after it had proven unmergeable (above).
1228 * We don't worry about that case for efficiency. It won't happen
1229 * often, and the elevators are able to handle it.
1da177e4 1230 */
52d9e675 1231 init_request_from_bio(req, bio);
1da177e4 1232
450991bc 1233 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1234 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1235 bio_flagged(bio, BIO_CPU_AFFINE))
1236 req->cpu = blk_cpu_to_group(smp_processor_id());
450991bc
NP
1237 if (elv_queue_empty(q))
1238 blk_plug_device(q);
1da177e4
LT
1239 add_request(q, req);
1240out:
4a534f93 1241 if (sync)
1da177e4 1242 __generic_unplug_device(q);
1da177e4
LT
1243 spin_unlock_irq(q->queue_lock);
1244 return 0;
1245
1246end_io:
6712ecf8 1247 bio_endio(bio, err);
1da177e4
LT
1248 return 0;
1249}
1250
1251/*
1252 * If bio->bi_dev is a partition, remap the location
1253 */
1254static inline void blk_partition_remap(struct bio *bio)
1255{
1256 struct block_device *bdev = bio->bi_bdev;
1257
bf2de6f5 1258 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1259 struct hd_struct *p = bdev->bd_part;
1260
1da177e4
LT
1261 bio->bi_sector += p->start_sect;
1262 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1263
1264 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1265 bdev->bd_dev, bio->bi_sector,
1266 bio->bi_sector - p->start_sect);
1da177e4
LT
1267 }
1268}
1269
1da177e4
LT
1270static void handle_bad_sector(struct bio *bio)
1271{
1272 char b[BDEVNAME_SIZE];
1273
1274 printk(KERN_INFO "attempt to access beyond end of device\n");
1275 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1276 bdevname(bio->bi_bdev, b),
1277 bio->bi_rw,
1278 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1279 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1280
1281 set_bit(BIO_EOF, &bio->bi_flags);
1282}
1283
c17bb495
AM
1284#ifdef CONFIG_FAIL_MAKE_REQUEST
1285
1286static DECLARE_FAULT_ATTR(fail_make_request);
1287
1288static int __init setup_fail_make_request(char *str)
1289{
1290 return setup_fault_attr(&fail_make_request, str);
1291}
1292__setup("fail_make_request=", setup_fail_make_request);
1293
1294static int should_fail_request(struct bio *bio)
1295{
eddb2e26
TH
1296 struct hd_struct *part = bio->bi_bdev->bd_part;
1297
1298 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1299 return should_fail(&fail_make_request, bio->bi_size);
1300
1301 return 0;
1302}
1303
1304static int __init fail_make_request_debugfs(void)
1305{
1306 return init_fault_attr_dentries(&fail_make_request,
1307 "fail_make_request");
1308}
1309
1310late_initcall(fail_make_request_debugfs);
1311
1312#else /* CONFIG_FAIL_MAKE_REQUEST */
1313
1314static inline int should_fail_request(struct bio *bio)
1315{
1316 return 0;
1317}
1318
1319#endif /* CONFIG_FAIL_MAKE_REQUEST */
1320
c07e2b41
JA
1321/*
1322 * Check whether this bio extends beyond the end of the device.
1323 */
1324static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1325{
1326 sector_t maxsector;
1327
1328 if (!nr_sectors)
1329 return 0;
1330
1331 /* Test device or partition size, when known. */
1332 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1333 if (maxsector) {
1334 sector_t sector = bio->bi_sector;
1335
1336 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1337 /*
1338 * This may well happen - the kernel calls bread()
1339 * without checking the size of the device, e.g., when
1340 * mounting a device.
1341 */
1342 handle_bad_sector(bio);
1343 return 1;
1344 }
1345 }
1346
1347 return 0;
1348}
1349
1da177e4 1350/**
710027a4 1351 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1352 * @bio: The bio describing the location in memory and on the device.
1353 *
1354 * generic_make_request() is used to make I/O requests of block
1355 * devices. It is passed a &struct bio, which describes the I/O that needs
1356 * to be done.
1357 *
1358 * generic_make_request() does not return any status. The
1359 * success/failure status of the request, along with notification of
1360 * completion, is delivered asynchronously through the bio->bi_end_io
1361 * function described (one day) else where.
1362 *
1363 * The caller of generic_make_request must make sure that bi_io_vec
1364 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1365 * set to describe the device address, and the
1366 * bi_end_io and optionally bi_private are set to describe how
1367 * completion notification should be signaled.
1368 *
1369 * generic_make_request and the drivers it calls may use bi_next if this
1370 * bio happens to be merged with someone else, and may change bi_dev and
1371 * bi_sector for remaps as it sees fit. So the values of these fields
1372 * should NOT be depended on after the call to generic_make_request.
1373 */
d89d8796 1374static inline void __generic_make_request(struct bio *bio)
1da177e4 1375{
165125e1 1376 struct request_queue *q;
5ddfe969 1377 sector_t old_sector;
1da177e4 1378 int ret, nr_sectors = bio_sectors(bio);
2056a782 1379 dev_t old_dev;
51fd77bd 1380 int err = -EIO;
1da177e4
LT
1381
1382 might_sleep();
1da177e4 1383
c07e2b41
JA
1384 if (bio_check_eod(bio, nr_sectors))
1385 goto end_io;
1da177e4
LT
1386
1387 /*
1388 * Resolve the mapping until finished. (drivers are
1389 * still free to implement/resolve their own stacking
1390 * by explicitly returning 0)
1391 *
1392 * NOTE: we don't repeat the blk_size check for each new device.
1393 * Stacking drivers are expected to know what they are doing.
1394 */
5ddfe969 1395 old_sector = -1;
2056a782 1396 old_dev = 0;
1da177e4
LT
1397 do {
1398 char b[BDEVNAME_SIZE];
1399
1400 q = bdev_get_queue(bio->bi_bdev);
1401 if (!q) {
1402 printk(KERN_ERR
1403 "generic_make_request: Trying to access "
1404 "nonexistent block-device %s (%Lu)\n",
1405 bdevname(bio->bi_bdev, b),
1406 (long long) bio->bi_sector);
1407end_io:
51fd77bd 1408 bio_endio(bio, err);
1da177e4
LT
1409 break;
1410 }
1411
4fa253f3 1412 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1413 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1414 bdevname(bio->bi_bdev, b),
1415 bio_sectors(bio),
1416 q->max_hw_sectors);
1417 goto end_io;
1418 }
1419
fde6ad22 1420 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1421 goto end_io;
1422
c17bb495
AM
1423 if (should_fail_request(bio))
1424 goto end_io;
1425
1da177e4
LT
1426 /*
1427 * If this device has partitions, remap block n
1428 * of partition p to block n+start(p) of the disk.
1429 */
1430 blk_partition_remap(bio);
1431
7ba1ba12
MP
1432 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1433 goto end_io;
1434
5ddfe969 1435 if (old_sector != -1)
4fa253f3 1436 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1437 old_sector);
2056a782
JA
1438
1439 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1440
5ddfe969 1441 old_sector = bio->bi_sector;
2056a782
JA
1442 old_dev = bio->bi_bdev->bd_dev;
1443
c07e2b41
JA
1444 if (bio_check_eod(bio, nr_sectors))
1445 goto end_io;
fb2dce86
DW
1446 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1447 (bio_discard(bio) && !q->prepare_discard_fn)) {
51fd77bd
JA
1448 err = -EOPNOTSUPP;
1449 goto end_io;
1450 }
5ddfe969 1451
1da177e4
LT
1452 ret = q->make_request_fn(q, bio);
1453 } while (ret);
1454}
1455
d89d8796
NB
1456/*
1457 * We only want one ->make_request_fn to be active at a time,
1458 * else stack usage with stacked devices could be a problem.
1459 * So use current->bio_{list,tail} to keep a list of requests
1460 * submited by a make_request_fn function.
1461 * current->bio_tail is also used as a flag to say if
1462 * generic_make_request is currently active in this task or not.
1463 * If it is NULL, then no make_request is active. If it is non-NULL,
1464 * then a make_request is active, and new requests should be added
1465 * at the tail
1466 */
1467void generic_make_request(struct bio *bio)
1468{
1469 if (current->bio_tail) {
1470 /* make_request is active */
1471 *(current->bio_tail) = bio;
1472 bio->bi_next = NULL;
1473 current->bio_tail = &bio->bi_next;
1474 return;
1475 }
1476 /* following loop may be a bit non-obvious, and so deserves some
1477 * explanation.
1478 * Before entering the loop, bio->bi_next is NULL (as all callers
1479 * ensure that) so we have a list with a single bio.
1480 * We pretend that we have just taken it off a longer list, so
1481 * we assign bio_list to the next (which is NULL) and bio_tail
1482 * to &bio_list, thus initialising the bio_list of new bios to be
1483 * added. __generic_make_request may indeed add some more bios
1484 * through a recursive call to generic_make_request. If it
1485 * did, we find a non-NULL value in bio_list and re-enter the loop
1486 * from the top. In this case we really did just take the bio
1487 * of the top of the list (no pretending) and so fixup bio_list and
1488 * bio_tail or bi_next, and call into __generic_make_request again.
1489 *
1490 * The loop was structured like this to make only one call to
1491 * __generic_make_request (which is important as it is large and
1492 * inlined) and to keep the structure simple.
1493 */
1494 BUG_ON(bio->bi_next);
1495 do {
1496 current->bio_list = bio->bi_next;
1497 if (bio->bi_next == NULL)
1498 current->bio_tail = &current->bio_list;
1499 else
1500 bio->bi_next = NULL;
1501 __generic_make_request(bio);
1502 bio = current->bio_list;
1503 } while (bio);
1504 current->bio_tail = NULL; /* deactivate */
1505}
1da177e4
LT
1506EXPORT_SYMBOL(generic_make_request);
1507
1508/**
710027a4 1509 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1510 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1511 * @bio: The &struct bio which describes the I/O
1512 *
1513 * submit_bio() is very similar in purpose to generic_make_request(), and
1514 * uses that function to do most of the work. Both are fairly rough
710027a4 1515 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1516 *
1517 */
1518void submit_bio(int rw, struct bio *bio)
1519{
1520 int count = bio_sectors(bio);
1521
22e2c507 1522 bio->bi_rw |= rw;
1da177e4 1523
bf2de6f5
JA
1524 /*
1525 * If it's a regular read/write or a barrier with data attached,
1526 * go through the normal accounting stuff before submission.
1527 */
a9c701e5 1528 if (bio_has_data(bio)) {
bf2de6f5
JA
1529 if (rw & WRITE) {
1530 count_vm_events(PGPGOUT, count);
1531 } else {
1532 task_io_account_read(bio->bi_size);
1533 count_vm_events(PGPGIN, count);
1534 }
1535
1536 if (unlikely(block_dump)) {
1537 char b[BDEVNAME_SIZE];
1538 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1539 current->comm, task_pid_nr(current),
bf2de6f5
JA
1540 (rw & WRITE) ? "WRITE" : "READ",
1541 (unsigned long long)bio->bi_sector,
6728cb0e 1542 bdevname(bio->bi_bdev, b));
bf2de6f5 1543 }
1da177e4
LT
1544 }
1545
1546 generic_make_request(bio);
1547}
1da177e4
LT
1548EXPORT_SYMBOL(submit_bio);
1549
82124d60
KU
1550/**
1551 * blk_rq_check_limits - Helper function to check a request for the queue limit
1552 * @q: the queue
1553 * @rq: the request being checked
1554 *
1555 * Description:
1556 * @rq may have been made based on weaker limitations of upper-level queues
1557 * in request stacking drivers, and it may violate the limitation of @q.
1558 * Since the block layer and the underlying device driver trust @rq
1559 * after it is inserted to @q, it should be checked against @q before
1560 * the insertion using this generic function.
1561 *
1562 * This function should also be useful for request stacking drivers
1563 * in some cases below, so export this fuction.
1564 * Request stacking drivers like request-based dm may change the queue
1565 * limits while requests are in the queue (e.g. dm's table swapping).
1566 * Such request stacking drivers should check those requests agaist
1567 * the new queue limits again when they dispatch those requests,
1568 * although such checkings are also done against the old queue limits
1569 * when submitting requests.
1570 */
1571int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1572{
1573 if (rq->nr_sectors > q->max_sectors ||
1574 rq->data_len > q->max_hw_sectors << 9) {
1575 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1576 return -EIO;
1577 }
1578
1579 /*
1580 * queue's settings related to segment counting like q->bounce_pfn
1581 * may differ from that of other stacking queues.
1582 * Recalculate it to check the request correctly on this queue's
1583 * limitation.
1584 */
1585 blk_recalc_rq_segments(rq);
1586 if (rq->nr_phys_segments > q->max_phys_segments ||
1587 rq->nr_phys_segments > q->max_hw_segments) {
1588 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1589 return -EIO;
1590 }
1591
1592 return 0;
1593}
1594EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1595
1596/**
1597 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1598 * @q: the queue to submit the request
1599 * @rq: the request being queued
1600 */
1601int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1602{
1603 unsigned long flags;
1604
1605 if (blk_rq_check_limits(q, rq))
1606 return -EIO;
1607
1608#ifdef CONFIG_FAIL_MAKE_REQUEST
1609 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1610 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1611 return -EIO;
1612#endif
1613
1614 spin_lock_irqsave(q->queue_lock, flags);
1615
1616 /*
1617 * Submitting request must be dequeued before calling this function
1618 * because it will be linked to another request_queue
1619 */
1620 BUG_ON(blk_queued_rq(rq));
1621
1622 drive_stat_acct(rq, 1);
1623 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1624
1625 spin_unlock_irqrestore(q->queue_lock, flags);
1626
1627 return 0;
1628}
1629EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1630
3bcddeac
KU
1631/**
1632 * __end_that_request_first - end I/O on a request
1633 * @req: the request being processed
710027a4 1634 * @error: %0 for success, < %0 for error
3bcddeac
KU
1635 * @nr_bytes: number of bytes to complete
1636 *
1637 * Description:
1638 * Ends I/O on a number of bytes attached to @req, and sets it up
1639 * for the next range of segments (if any) in the cluster.
1640 *
1641 * Return:
710027a4
RD
1642 * %0 - we are done with this request, call end_that_request_last()
1643 * %1 - still buffers pending for this request
3bcddeac 1644 **/
5450d3e1 1645static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1646 int nr_bytes)
1647{
5450d3e1 1648 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1649 struct bio *bio;
1650
2056a782
JA
1651 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1652
1da177e4 1653 /*
710027a4 1654 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1655 * sense key with us all the way through
1656 */
1657 if (!blk_pc_request(req))
1658 req->errors = 0;
1659
6728cb0e
JA
1660 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1661 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1662 req->rq_disk ? req->rq_disk->disk_name : "?",
1663 (unsigned long long)req->sector);
1664 }
1665
d72d904a 1666 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1667 const int rw = rq_data_dir(req);
e71bf0d0 1668 struct hd_struct *part;
c9959059 1669 int cpu;
a362357b 1670
074a7aca 1671 cpu = part_stat_lock();
e71bf0d0 1672 part = disk_map_sector_rcu(req->rq_disk, req->sector);
074a7aca
TH
1673 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1674 part_stat_unlock();
d72d904a
JA
1675 }
1676
1da177e4
LT
1677 total_bytes = bio_nbytes = 0;
1678 while ((bio = req->bio) != NULL) {
1679 int nbytes;
1680
bf2de6f5
JA
1681 /*
1682 * For an empty barrier request, the low level driver must
1683 * store a potential error location in ->sector. We pass
1684 * that back up in ->bi_sector.
1685 */
1686 if (blk_empty_barrier(req))
1687 bio->bi_sector = req->sector;
1688
1da177e4
LT
1689 if (nr_bytes >= bio->bi_size) {
1690 req->bio = bio->bi_next;
1691 nbytes = bio->bi_size;
5bb23a68 1692 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1693 next_idx = 0;
1694 bio_nbytes = 0;
1695 } else {
1696 int idx = bio->bi_idx + next_idx;
1697
1698 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1699 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1700 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1701 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1702 break;
1703 }
1704
1705 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1706 BIO_BUG_ON(nbytes > bio->bi_size);
1707
1708 /*
1709 * not a complete bvec done
1710 */
1711 if (unlikely(nbytes > nr_bytes)) {
1712 bio_nbytes += nr_bytes;
1713 total_bytes += nr_bytes;
1714 break;
1715 }
1716
1717 /*
1718 * advance to the next vector
1719 */
1720 next_idx++;
1721 bio_nbytes += nbytes;
1722 }
1723
1724 total_bytes += nbytes;
1725 nr_bytes -= nbytes;
1726
6728cb0e
JA
1727 bio = req->bio;
1728 if (bio) {
1da177e4
LT
1729 /*
1730 * end more in this run, or just return 'not-done'
1731 */
1732 if (unlikely(nr_bytes <= 0))
1733 break;
1734 }
1735 }
1736
1737 /*
1738 * completely done
1739 */
1740 if (!req->bio)
1741 return 0;
1742
1743 /*
1744 * if the request wasn't completed, update state
1745 */
1746 if (bio_nbytes) {
5bb23a68 1747 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1748 bio->bi_idx += next_idx;
1749 bio_iovec(bio)->bv_offset += nr_bytes;
1750 bio_iovec(bio)->bv_len -= nr_bytes;
1751 }
1752
1753 blk_recalc_rq_sectors(req, total_bytes >> 9);
1754 blk_recalc_rq_segments(req);
1755 return 1;
1756}
1757
1da177e4
LT
1758/*
1759 * queue lock must be held
1760 */
5450d3e1 1761static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1762{
1763 struct gendisk *disk = req->rq_disk;
8ffdc655 1764
242f9dcb
JA
1765 blk_delete_timer(req);
1766
b8286239
KU
1767 if (blk_rq_tagged(req))
1768 blk_queue_end_tag(req->q, req);
1769
1770 if (blk_queued_rq(req))
1771 blkdev_dequeue_request(req);
1da177e4
LT
1772
1773 if (unlikely(laptop_mode) && blk_fs_request(req))
1774 laptop_io_completion();
1775
fd0ff8aa
JA
1776 /*
1777 * Account IO completion. bar_rq isn't accounted as a normal
1778 * IO on queueing nor completion. Accounting the containing
1779 * request is enough.
1780 */
1781 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1782 unsigned long duration = jiffies - req->start_time;
a362357b 1783 const int rw = rq_data_dir(req);
e71bf0d0 1784 struct hd_struct *part;
c9959059 1785 int cpu;
e71bf0d0 1786
074a7aca 1787 cpu = part_stat_lock();
e71bf0d0 1788 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1789
074a7aca
TH
1790 part_stat_inc(cpu, part, ios[rw]);
1791 part_stat_add(cpu, part, ticks[rw], duration);
1792 part_round_stats(cpu, part);
1793 part_dec_in_flight(part);
e71bf0d0 1794
074a7aca 1795 part_stat_unlock();
1da177e4 1796 }
b8286239 1797
1da177e4 1798 if (req->end_io)
8ffdc655 1799 req->end_io(req, error);
b8286239
KU
1800 else {
1801 if (blk_bidi_rq(req))
1802 __blk_put_request(req->next_rq->q, req->next_rq);
1803
1da177e4 1804 __blk_put_request(req->q, req);
b8286239 1805 }
1da177e4
LT
1806}
1807
3b11313a
KU
1808/**
1809 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1810 * @rq: the request being processed
3b11313a
KU
1811 **/
1812unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1813{
1814 if (blk_fs_request(rq))
1815 return rq->hard_nr_sectors << 9;
1816
1817 return rq->data_len;
1818}
3b11313a
KU
1819EXPORT_SYMBOL_GPL(blk_rq_bytes);
1820
1821/**
1822 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1823 * @rq: the request being processed
3b11313a
KU
1824 **/
1825unsigned int blk_rq_cur_bytes(struct request *rq)
1826{
1827 if (blk_fs_request(rq))
1828 return rq->current_nr_sectors << 9;
1829
1830 if (rq->bio)
1831 return rq->bio->bi_size;
1832
1833 return rq->data_len;
1834}
1835EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1836
a0cd1285
JA
1837/**
1838 * end_request - end I/O on the current segment of the request
8f731f7d 1839 * @req: the request being processed
710027a4 1840 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1841 *
1842 * Description:
1843 * Ends I/O on the current segment of a request. If that is the only
1844 * remaining segment, the request is also completed and freed.
1845 *
710027a4
RD
1846 * This is a remnant of how older block drivers handled I/O completions.
1847 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1848 * they have a residual value to account for. For that case this function
1849 * isn't really useful, unless the residual just happens to be the
1850 * full current segment. In other words, don't use this function in new
d00e29fd 1851 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1852 **/
1853void end_request(struct request *req, int uptodate)
1854{
d00e29fd
KU
1855 int error = 0;
1856
1857 if (uptodate <= 0)
1858 error = uptodate ? uptodate : -EIO;
1859
1860 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1861}
1da177e4
LT
1862EXPORT_SYMBOL(end_request);
1863
32fab448
KU
1864static int end_that_request_data(struct request *rq, int error,
1865 unsigned int nr_bytes, unsigned int bidi_bytes)
1866{
1867 if (rq->bio) {
1868 if (__end_that_request_first(rq, error, nr_bytes))
1869 return 1;
1870
1871 /* Bidi request must be completed as a whole */
1872 if (blk_bidi_rq(rq) &&
1873 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1874 return 1;
1875 }
1876
1877 return 0;
1878}
1879
336cdb40 1880/**
e19a3ab0
KU
1881 * blk_end_io - Generic end_io function to complete a request.
1882 * @rq: the request being processed
710027a4 1883 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1884 * @nr_bytes: number of bytes to complete @rq
1885 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1886 * @drv_callback: function called between completion of bios in the request
1887 * and completion of the request.
710027a4 1888 * If the callback returns non %0, this helper returns without
e19a3ab0 1889 * completion of the request.
336cdb40
KU
1890 *
1891 * Description:
e3a04fe3 1892 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1893 * If @rq has leftover, sets it up for the next range of segments.
1894 *
1895 * Return:
710027a4
RD
1896 * %0 - we are done with this request
1897 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1898 **/
22b13210
JA
1899static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1900 unsigned int bidi_bytes,
1901 int (drv_callback)(struct request *))
336cdb40
KU
1902{
1903 struct request_queue *q = rq->q;
1904 unsigned long flags = 0UL;
336cdb40 1905
32fab448
KU
1906 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1907 return 1;
336cdb40 1908
e19a3ab0
KU
1909 /* Special feature for tricky drivers */
1910 if (drv_callback && drv_callback(rq))
1911 return 1;
1912
336cdb40
KU
1913 add_disk_randomness(rq->rq_disk);
1914
1915 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1916 end_that_request_last(rq, error);
336cdb40
KU
1917 spin_unlock_irqrestore(q->queue_lock, flags);
1918
1919 return 0;
1920}
e19a3ab0
KU
1921
1922/**
1923 * blk_end_request - Helper function for drivers to complete the request.
1924 * @rq: the request being processed
710027a4 1925 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1926 * @nr_bytes: number of bytes to complete
1927 *
1928 * Description:
1929 * Ends I/O on a number of bytes attached to @rq.
1930 * If @rq has leftover, sets it up for the next range of segments.
1931 *
1932 * Return:
710027a4
RD
1933 * %0 - we are done with this request
1934 * %1 - still buffers pending for this request
e19a3ab0 1935 **/
22b13210 1936int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1937{
e3a04fe3 1938 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1939}
336cdb40
KU
1940EXPORT_SYMBOL_GPL(blk_end_request);
1941
1942/**
1943 * __blk_end_request - Helper function for drivers to complete the request.
1944 * @rq: the request being processed
710027a4 1945 * @error: %0 for success, < %0 for error
336cdb40
KU
1946 * @nr_bytes: number of bytes to complete
1947 *
1948 * Description:
1949 * Must be called with queue lock held unlike blk_end_request().
1950 *
1951 * Return:
710027a4
RD
1952 * %0 - we are done with this request
1953 * %1 - still buffers pending for this request
336cdb40 1954 **/
22b13210 1955int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1956{
60540161 1957 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1958 return 1;
336cdb40
KU
1959
1960 add_disk_randomness(rq->rq_disk);
1961
b8286239 1962 end_that_request_last(rq, error);
336cdb40
KU
1963
1964 return 0;
1965}
1966EXPORT_SYMBOL_GPL(__blk_end_request);
1967
e3a04fe3
KU
1968/**
1969 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1970 * @rq: the bidi request being processed
710027a4 1971 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1972 * @nr_bytes: number of bytes to complete @rq
1973 * @bidi_bytes: number of bytes to complete @rq->next_rq
1974 *
1975 * Description:
1976 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1977 *
1978 * Return:
710027a4
RD
1979 * %0 - we are done with this request
1980 * %1 - still buffers pending for this request
e3a04fe3 1981 **/
22b13210
JA
1982int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1983 unsigned int bidi_bytes)
e3a04fe3
KU
1984{
1985 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1986}
1987EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1988
32fab448
KU
1989/**
1990 * blk_update_request - Special helper function for request stacking drivers
1991 * @rq: the request being processed
1992 * @error: %0 for success, < %0 for error
1993 * @nr_bytes: number of bytes to complete @rq
1994 *
1995 * Description:
1996 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1997 * the request structure even if @rq doesn't have leftover.
1998 * If @rq has leftover, sets it up for the next range of segments.
1999 *
2000 * This special helper function is only for request stacking drivers
2001 * (e.g. request-based dm) so that they can handle partial completion.
2002 * Actual device drivers should use blk_end_request instead.
2003 */
2004void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2005{
2006 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2007 /*
2008 * These members are not updated in end_that_request_data()
2009 * when all bios are completed.
2010 * Update them so that the request stacking driver can find
2011 * how many bytes remain in the request later.
2012 */
2013 rq->nr_sectors = rq->hard_nr_sectors = 0;
2014 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2015 }
2016}
2017EXPORT_SYMBOL_GPL(blk_update_request);
2018
e19a3ab0
KU
2019/**
2020 * blk_end_request_callback - Special helper function for tricky drivers
2021 * @rq: the request being processed
710027a4 2022 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2023 * @nr_bytes: number of bytes to complete
2024 * @drv_callback: function called between completion of bios in the request
2025 * and completion of the request.
710027a4 2026 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2027 * completion of the request.
2028 *
2029 * Description:
2030 * Ends I/O on a number of bytes attached to @rq.
2031 * If @rq has leftover, sets it up for the next range of segments.
2032 *
2033 * This special helper function is used only for existing tricky drivers.
2034 * (e.g. cdrom_newpc_intr() of ide-cd)
2035 * This interface will be removed when such drivers are rewritten.
2036 * Don't use this interface in other places anymore.
2037 *
2038 * Return:
710027a4
RD
2039 * %0 - we are done with this request
2040 * %1 - this request is not freed yet.
2041 * this request still has pending buffers or
2042 * the driver doesn't want to finish this request yet.
e19a3ab0 2043 **/
22b13210
JA
2044int blk_end_request_callback(struct request *rq, int error,
2045 unsigned int nr_bytes,
e19a3ab0
KU
2046 int (drv_callback)(struct request *))
2047{
e3a04fe3 2048 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2049}
2050EXPORT_SYMBOL_GPL(blk_end_request_callback);
2051
86db1e29
JA
2052void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2053 struct bio *bio)
1da177e4 2054{
d628eaef
DW
2055 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2056 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2057 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2058
fb2dce86
DW
2059 if (bio_has_data(bio)) {
2060 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2061 rq->buffer = bio_data(bio);
2062 }
1da177e4
LT
2063 rq->current_nr_sectors = bio_cur_sectors(bio);
2064 rq->hard_cur_sectors = rq->current_nr_sectors;
2065 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2066 rq->data_len = bio->bi_size;
1da177e4
LT
2067
2068 rq->bio = rq->biotail = bio;
1da177e4 2069
66846572
N
2070 if (bio->bi_bdev)
2071 rq->rq_disk = bio->bi_bdev->bd_disk;
2072}
1da177e4 2073
ef9e3fac
KU
2074/**
2075 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2076 * @q : the queue of the device being checked
2077 *
2078 * Description:
2079 * Check if underlying low-level drivers of a device are busy.
2080 * If the drivers want to export their busy state, they must set own
2081 * exporting function using blk_queue_lld_busy() first.
2082 *
2083 * Basically, this function is used only by request stacking drivers
2084 * to stop dispatching requests to underlying devices when underlying
2085 * devices are busy. This behavior helps more I/O merging on the queue
2086 * of the request stacking driver and prevents I/O throughput regression
2087 * on burst I/O load.
2088 *
2089 * Return:
2090 * 0 - Not busy (The request stacking driver should dispatch request)
2091 * 1 - Busy (The request stacking driver should stop dispatching request)
2092 */
2093int blk_lld_busy(struct request_queue *q)
2094{
2095 if (q->lld_busy_fn)
2096 return q->lld_busy_fn(q);
2097
2098 return 0;
2099}
2100EXPORT_SYMBOL_GPL(blk_lld_busy);
2101
18887ad9 2102int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2103{
2104 return queue_work(kblockd_workqueue, work);
2105}
1da177e4
LT
2106EXPORT_SYMBOL(kblockd_schedule_work);
2107
19a75d83 2108void kblockd_flush_work(struct work_struct *work)
1da177e4 2109{
28e53bdd 2110 cancel_work_sync(work);
1da177e4 2111}
19a75d83 2112EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2113
2114int __init blk_dev_init(void)
2115{
2116 kblockd_workqueue = create_workqueue("kblockd");
2117 if (!kblockd_workqueue)
2118 panic("Failed to create kblockd\n");
2119
2120 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2121 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2122
8324aa91 2123 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2124 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2125
d38ecf93 2126 return 0;
1da177e4 2127}
1da177e4 2128