]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-mq.c
blk-mq: Remove unused variable
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
320ae51f
JA
35
36static DEFINE_MUTEX(all_q_mutex);
37static LIST_HEAD(all_q_list);
38
320ae51f
JA
39/*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43{
88459642 44 return sbitmap_any_bit_set(&hctx->ctx_map);
1429d7c9
JA
45}
46
320ae51f
JA
47/*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
88459642
OS
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
55}
56
57static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59{
88459642 60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
61}
62
b4c6a028 63void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 64{
4ecd4fef 65 int freeze_depth;
cddd5d17 66
4ecd4fef
CH
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
3ef28e83 69 percpu_ref_kill(&q->q_usage_counter);
b94ec296 70 blk_mq_run_hw_queues(q, false);
cddd5d17 71 }
f3af020b 72}
b4c6a028 73EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
74
75static void blk_mq_freeze_queue_wait(struct request_queue *q)
76{
3ef28e83 77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
78}
79
f3af020b
TH
80/*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
3ef28e83 84void blk_freeze_queue(struct request_queue *q)
f3af020b 85{
3ef28e83
DW
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
f3af020b
TH
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95}
3ef28e83
DW
96
97void blk_mq_freeze_queue(struct request_queue *q)
98{
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104}
c761d96b 105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 106
b4c6a028 107void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 108{
4ecd4fef 109 int freeze_depth;
320ae51f 110
4ecd4fef
CH
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
3ef28e83 114 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 115 wake_up_all(&q->mq_freeze_wq);
add703fd 116 }
320ae51f 117}
b4c6a028 118EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 119
6a83e74d
BVA
120/**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128void blk_mq_quiesce_queue(struct request_queue *q)
129{
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144}
145EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
aed3ea94
JA
147void blk_mq_wake_waiters(struct request_queue *q)
148{
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
162}
163
320ae51f
JA
164bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165{
166 return blk_mq_has_free_tags(hctx->tags);
167}
168EXPORT_SYMBOL(blk_mq_can_queue);
169
94eddfbe 170static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
ef295ecf 171 struct request *rq, unsigned int op)
320ae51f 172{
af76e555
CH
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
320ae51f 176 rq->mq_ctx = ctx;
ef295ecf 177 rq->cmd_flags = op;
e8064021
CH
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
af76e555
CH
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
184 rq->rq_disk = NULL;
185 rq->part = NULL;
3ee32372 186 rq->start_time = jiffies;
af76e555
CH
187#ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
0fec08b4 189 set_start_time_ns(rq);
af76e555
CH
190 rq->io_start_time_ns = 0;
191#endif
192 rq->nr_phys_segments = 0;
193#if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195#endif
af76e555
CH
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
af76e555 199
6f4a1626
TB
200 rq->cmd = rq->__cmd;
201
af76e555
CH
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
af76e555 207 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
208 rq->timeout = 0;
209
af76e555
CH
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
ef295ecf 214 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f
JA
215}
216
5dee8577 217static struct request *
ef295ecf 218__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
5dee8577
CH
219{
220 struct request *rq;
221 unsigned int tag;
222
cb96a42c 223 tag = blk_mq_get_tag(data);
5dee8577 224 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 225 rq = data->hctx->tags->rqs[tag];
5dee8577 226
cb96a42c 227 if (blk_mq_tag_busy(data->hctx)) {
e8064021 228 rq->rq_flags = RQF_MQ_INFLIGHT;
cb96a42c 229 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
230 }
231
232 rq->tag = tag;
ef295ecf 233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
234 return rq;
235 }
236
237 return NULL;
238}
239
6f3b0e8b
CH
240struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
320ae51f 242{
d852564f
CH
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
320ae51f 245 struct request *rq;
cb96a42c 246 struct blk_mq_alloc_data alloc_data;
a492f075 247 int ret;
320ae51f 248
6f3b0e8b 249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
250 if (ret)
251 return ERR_PTR(ret);
320ae51f 252
d852564f 253 ctx = blk_mq_get_ctx(q);
7d7e0f90 254 hctx = blk_mq_map_queue(q, ctx->cpu);
6f3b0e8b 255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 256 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f 257 blk_mq_put_ctx(ctx);
841bac2c 258
c76541a9 259 if (!rq) {
3ef28e83 260 blk_queue_exit(q);
a492f075 261 return ERR_PTR(-EWOULDBLOCK);
c76541a9 262 }
0c4de0f3
CH
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
320ae51f
JA
267 return rq;
268}
4bb659b1 269EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 270
1f5bd336
ML
271struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273{
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
c8712c6a
CH
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
1f5bd336 300 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
1f5bd336
ML
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 308 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 309 if (!rq) {
c8712c6a
CH
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
1f5bd336
ML
312 }
313
314 return rq;
c8712c6a
CH
315
316out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
1f5bd336
ML
319}
320EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
320ae51f
JA
322static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324{
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
e8064021 328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 329 atomic_dec(&hctx->nr_active);
87760e5e
JA
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 332 rq->rq_flags = 0;
0d2602ca 333
af76e555 334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
40aabb67 336 blk_mq_put_tag(hctx, ctx, tag);
3ef28e83 337 blk_queue_exit(q);
320ae51f
JA
338}
339
7c7f2f2b 340void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
341{
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
343
344 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 345 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
346
347}
348EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
349
350void blk_mq_free_request(struct request *rq)
351{
7d7e0f90 352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
320ae51f 353}
1a3b595a 354EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 355
c8a446ad 356inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 357{
0d11e6ac
ML
358 blk_account_io_done(rq);
359
91b63639 360 if (rq->end_io) {
87760e5e 361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 362 rq->end_io(rq, error);
91b63639
CH
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
320ae51f 366 blk_mq_free_request(rq);
91b63639 367 }
320ae51f 368}
c8a446ad 369EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 370
c8a446ad 371void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
372{
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
c8a446ad 375 __blk_mq_end_request(rq, error);
63151a44 376}
c8a446ad 377EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 378
30a91cb4 379static void __blk_mq_complete_request_remote(void *data)
320ae51f 380{
3d6efbf6 381 struct request *rq = data;
320ae51f 382
30a91cb4 383 rq->q->softirq_done_fn(rq);
320ae51f 384}
320ae51f 385
ed851860 386static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
387{
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 389 bool shared = false;
320ae51f
JA
390 int cpu;
391
38535201 392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
320ae51f
JA
396
397 cpu = get_cpu();
38535201
CH
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 402 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
c46fff2a 405 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 406 } else {
30a91cb4 407 rq->q->softirq_done_fn(rq);
3d6efbf6 408 }
320ae51f
JA
409 put_cpu();
410}
30a91cb4 411
cf43e6be
JA
412static void blk_mq_stat_add(struct request *rq)
413{
414 if (rq->rq_flags & RQF_STATS) {
415 /*
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
419 */
420 struct blk_mq_ctx *ctx;
421
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
424 }
425}
426
1fa8cc52 427static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
428{
429 struct request_queue *q = rq->q;
430
cf43e6be
JA
431 blk_mq_stat_add(rq);
432
ed851860 433 if (!q->softirq_done_fn)
c8a446ad 434 blk_mq_end_request(rq, rq->errors);
ed851860
JA
435 else
436 blk_mq_ipi_complete_request(rq);
437}
438
30a91cb4
CH
439/**
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
442 *
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
446 **/
f4829a9b 447void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 448{
95f09684
JA
449 struct request_queue *q = rq->q;
450
451 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 452 return;
f4829a9b
CH
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
ed851860 455 __blk_mq_complete_request(rq);
f4829a9b 456 }
30a91cb4
CH
457}
458EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 459
973c0191
KB
460int blk_mq_request_started(struct request *rq)
461{
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463}
464EXPORT_SYMBOL_GPL(blk_mq_request_started);
465
e2490073 466void blk_mq_start_request(struct request *rq)
320ae51f
JA
467{
468 struct request_queue *q = rq->q;
469
470 trace_block_rq_issue(q, rq);
471
742ee69b 472 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 475
cf43e6be
JA
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
87760e5e 479 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
480 }
481
2b8393b4 482 blk_add_timer(rq);
87ee7b11 483
538b7534
JA
484 /*
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
487 */
488 smp_mb__before_atomic();
489
87ee7b11
JA
490 /*
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
495 */
4b570521
JA
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
500
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
502 /*
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
506 */
507 rq->nr_phys_segments++;
508 }
320ae51f 509}
e2490073 510EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 511
ed0791b2 512static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
513{
514 struct request_queue *q = rq->q;
515
516 trace_block_rq_requeue(q, rq);
87760e5e 517 wbt_requeue(q->rq_wb, &rq->issue_stat);
49f5baa5 518
e2490073
CH
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
522 }
320ae51f
JA
523}
524
2b053aca 525void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 526{
ed0791b2 527 __blk_mq_requeue_request(rq);
ed0791b2 528
ed0791b2 529 BUG_ON(blk_queued_rq(rq));
2b053aca 530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
531}
532EXPORT_SYMBOL(blk_mq_requeue_request);
533
6fca6a61
CH
534static void blk_mq_requeue_work(struct work_struct *work)
535{
536 struct request_queue *q =
2849450a 537 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
541
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
545
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
548 continue;
549
e8064021 550 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61
CH
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
553 }
554
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
559 }
560
52d7f1b5 561 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
562}
563
2b053aca
BVA
564void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
6fca6a61
CH
566{
567 struct request_queue *q = rq->q;
568 unsigned long flags;
569
570 /*
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
573 */
e8064021 574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
575
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
e8064021 578 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
582 }
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
584
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
6fca6a61
CH
587}
588EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
589
590void blk_mq_kick_requeue_list(struct request_queue *q)
591{
2849450a 592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
593}
594EXPORT_SYMBOL(blk_mq_kick_requeue_list);
595
2849450a
MS
596void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
598{
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
601}
602EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
603
1885b24d
JA
604void blk_mq_abort_requeue_list(struct request_queue *q)
605{
606 unsigned long flags;
607 LIST_HEAD(rq_list);
608
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
615
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
620 }
621}
622EXPORT_SYMBOL(blk_mq_abort_requeue_list);
623
0e62f51f
JA
624struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
625{
88c7b2b7
JA
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
4ee86bab 628 return tags->rqs[tag];
88c7b2b7 629 }
4ee86bab
HR
630
631 return NULL;
24d2f903
CH
632}
633EXPORT_SYMBOL(blk_mq_tag_to_rq);
634
320ae51f 635struct blk_mq_timeout_data {
46f92d42
CH
636 unsigned long next;
637 unsigned int next_set;
320ae51f
JA
638};
639
90415837 640void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 641{
46f92d42
CH
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
644
645 /*
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
653 */
46f92d42
CH
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
87ee7b11 656
46f92d42 657 if (ops->timeout)
0152fb6b 658 ret = ops->timeout(req, reserved);
46f92d42
CH
659
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
673 }
87ee7b11 674}
5b3f25fc 675
81481eb4
CH
676static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
678{
679 struct blk_mq_timeout_data *data = priv;
87ee7b11 680
eb130dbf
KB
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
682 /*
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
685 */
a59e0f57
KB
686 if (unlikely(blk_queue_dying(rq->q))) {
687 rq->errors = -EIO;
688 blk_mq_end_request(rq, rq->errors);
689 }
46f92d42 690 return;
eb130dbf 691 }
87ee7b11 692
46f92d42
CH
693 if (time_after_eq(jiffies, rq->deadline)) {
694 if (!blk_mark_rq_complete(rq))
0152fb6b 695 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
696 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697 data->next = rq->deadline;
698 data->next_set = 1;
699 }
87ee7b11
JA
700}
701
287922eb 702static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 703{
287922eb
CH
704 struct request_queue *q =
705 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
706 struct blk_mq_timeout_data data = {
707 .next = 0,
708 .next_set = 0,
709 };
81481eb4 710 int i;
320ae51f 711
71f79fb3
GKB
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
716 *
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
723 * zero.
724 */
725 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
726 return;
727
0bf6cd5b 728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 729
81481eb4
CH
730 if (data.next_set) {
731 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732 mod_timer(&q->timeout, data.next);
0d2602ca 733 } else {
0bf6cd5b
CH
734 struct blk_mq_hw_ctx *hctx;
735
f054b56c
ML
736 queue_for_each_hw_ctx(q, hctx, i) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx))
739 blk_mq_tag_idle(hctx);
740 }
0d2602ca 741 }
287922eb 742 blk_queue_exit(q);
320ae51f
JA
743}
744
745/*
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
749 */
750static bool blk_mq_attempt_merge(struct request_queue *q,
751 struct blk_mq_ctx *ctx, struct bio *bio)
752{
753 struct request *rq;
754 int checked = 8;
755
756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757 int el_ret;
758
759 if (!checked--)
760 break;
761
762 if (!blk_rq_merge_ok(rq, bio))
763 continue;
764
765 el_ret = blk_try_merge(rq, bio);
766 if (el_ret == ELEVATOR_BACK_MERGE) {
767 if (bio_attempt_back_merge(q, rq, bio)) {
768 ctx->rq_merged++;
769 return true;
770 }
771 break;
772 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773 if (bio_attempt_front_merge(q, rq, bio)) {
774 ctx->rq_merged++;
775 return true;
776 }
777 break;
778 }
779 }
780
781 return false;
782}
783
88459642
OS
784struct flush_busy_ctx_data {
785 struct blk_mq_hw_ctx *hctx;
786 struct list_head *list;
787};
788
789static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
790{
791 struct flush_busy_ctx_data *flush_data = data;
792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
794
795 sbitmap_clear_bit(sb, bitnr);
796 spin_lock(&ctx->lock);
797 list_splice_tail_init(&ctx->rq_list, flush_data->list);
798 spin_unlock(&ctx->lock);
799 return true;
800}
801
1429d7c9
JA
802/*
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
805 */
806static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
807{
88459642
OS
808 struct flush_busy_ctx_data data = {
809 .hctx = hctx,
810 .list = list,
811 };
1429d7c9 812
88459642 813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 814}
1429d7c9 815
703fd1c0
JA
816static inline unsigned int queued_to_index(unsigned int queued)
817{
818 if (!queued)
819 return 0;
1429d7c9 820
703fd1c0 821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
822}
823
f04c3df3 824bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
825{
826 struct request_queue *q = hctx->queue;
320ae51f 827 struct request *rq;
74c45052
JA
828 LIST_HEAD(driver_list);
829 struct list_head *dptr;
f04c3df3 830 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 831
74c45052
JA
832 /*
833 * Start off with dptr being NULL, so we start the first request
834 * immediately, even if we have more pending.
835 */
836 dptr = NULL;
837
320ae51f
JA
838 /*
839 * Now process all the entries, sending them to the driver.
840 */
1429d7c9 841 queued = 0;
f04c3df3 842 while (!list_empty(list)) {
74c45052 843 struct blk_mq_queue_data bd;
320ae51f 844
f04c3df3 845 rq = list_first_entry(list, struct request, queuelist);
320ae51f 846 list_del_init(&rq->queuelist);
320ae51f 847
74c45052
JA
848 bd.rq = rq;
849 bd.list = dptr;
f04c3df3 850 bd.last = list_empty(list);
74c45052
JA
851
852 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
853 switch (ret) {
854 case BLK_MQ_RQ_QUEUE_OK:
855 queued++;
52b9c330 856 break;
320ae51f 857 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 858 list_add(&rq->queuelist, list);
ed0791b2 859 __blk_mq_requeue_request(rq);
320ae51f
JA
860 break;
861 default:
862 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 863 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 864 rq->errors = -EIO;
c8a446ad 865 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
866 break;
867 }
868
869 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
870 break;
74c45052
JA
871
872 /*
873 * We've done the first request. If we have more than 1
874 * left in the list, set dptr to defer issue.
875 */
f04c3df3 876 if (!dptr && list->next != list->prev)
74c45052 877 dptr = &driver_list;
320ae51f
JA
878 }
879
703fd1c0 880 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
881
882 /*
883 * Any items that need requeuing? Stuff them into hctx->dispatch,
884 * that is where we will continue on next queue run.
885 */
f04c3df3 886 if (!list_empty(list)) {
320ae51f 887 spin_lock(&hctx->lock);
f04c3df3 888 list_splice(list, &hctx->dispatch);
320ae51f 889 spin_unlock(&hctx->lock);
f04c3df3 890
9ba52e58
SL
891 /*
892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
893 * it's possible the queue is stopped and restarted again
894 * before this. Queue restart will dispatch requests. And since
895 * requests in rq_list aren't added into hctx->dispatch yet,
896 * the requests in rq_list might get lost.
897 *
898 * blk_mq_run_hw_queue() already checks the STOPPED bit
899 **/
900 blk_mq_run_hw_queue(hctx, true);
320ae51f 901 }
f04c3df3
JA
902
903 return ret != BLK_MQ_RQ_QUEUE_BUSY;
904}
905
906/*
907 * Run this hardware queue, pulling any software queues mapped to it in.
908 * Note that this function currently has various problems around ordering
909 * of IO. In particular, we'd like FIFO behaviour on handling existing
910 * items on the hctx->dispatch list. Ignore that for now.
911 */
912static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
913{
914 LIST_HEAD(rq_list);
f04c3df3
JA
915
916 if (unlikely(blk_mq_hctx_stopped(hctx)))
917 return;
918
919 hctx->run++;
920
921 /*
922 * Touch any software queue that has pending entries.
923 */
924 flush_busy_ctxs(hctx, &rq_list);
925
926 /*
927 * If we have previous entries on our dispatch list, grab them
928 * and stuff them at the front for more fair dispatch.
929 */
930 if (!list_empty_careful(&hctx->dispatch)) {
931 spin_lock(&hctx->lock);
932 if (!list_empty(&hctx->dispatch))
933 list_splice_init(&hctx->dispatch, &rq_list);
934 spin_unlock(&hctx->lock);
935 }
936
937 blk_mq_dispatch_rq_list(hctx, &rq_list);
320ae51f
JA
938}
939
6a83e74d
BVA
940static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
941{
942 int srcu_idx;
943
944 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
945 cpu_online(hctx->next_cpu));
946
947 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
948 rcu_read_lock();
949 blk_mq_process_rq_list(hctx);
950 rcu_read_unlock();
951 } else {
952 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
953 blk_mq_process_rq_list(hctx);
954 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
955 }
956}
957
506e931f
JA
958/*
959 * It'd be great if the workqueue API had a way to pass
960 * in a mask and had some smarts for more clever placement.
961 * For now we just round-robin here, switching for every
962 * BLK_MQ_CPU_WORK_BATCH queued items.
963 */
964static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
965{
b657d7e6
CH
966 if (hctx->queue->nr_hw_queues == 1)
967 return WORK_CPU_UNBOUND;
506e931f
JA
968
969 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 970 int next_cpu;
506e931f
JA
971
972 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
973 if (next_cpu >= nr_cpu_ids)
974 next_cpu = cpumask_first(hctx->cpumask);
975
976 hctx->next_cpu = next_cpu;
977 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
978 }
979
b657d7e6 980 return hctx->next_cpu;
506e931f
JA
981}
982
320ae51f
JA
983void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
984{
5d1b25c1
BVA
985 if (unlikely(blk_mq_hctx_stopped(hctx) ||
986 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
987 return;
988
1b792f2f 989 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
990 int cpu = get_cpu();
991 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 992 __blk_mq_run_hw_queue(hctx);
2a90d4aa 993 put_cpu();
398205b8
PB
994 return;
995 }
e4043dcf 996
2a90d4aa 997 put_cpu();
e4043dcf 998 }
398205b8 999
27489a3c 1000 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1001}
1002
b94ec296 1003void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1004{
1005 struct blk_mq_hw_ctx *hctx;
1006 int i;
1007
1008 queue_for_each_hw_ctx(q, hctx, i) {
1009 if ((!blk_mq_hctx_has_pending(hctx) &&
1010 list_empty_careful(&hctx->dispatch)) ||
5d1b25c1 1011 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1012 continue;
1013
b94ec296 1014 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1015 }
1016}
b94ec296 1017EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1018
fd001443
BVA
1019/**
1020 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1021 * @q: request queue.
1022 *
1023 * The caller is responsible for serializing this function against
1024 * blk_mq_{start,stop}_hw_queue().
1025 */
1026bool blk_mq_queue_stopped(struct request_queue *q)
1027{
1028 struct blk_mq_hw_ctx *hctx;
1029 int i;
1030
1031 queue_for_each_hw_ctx(q, hctx, i)
1032 if (blk_mq_hctx_stopped(hctx))
1033 return true;
1034
1035 return false;
1036}
1037EXPORT_SYMBOL(blk_mq_queue_stopped);
1038
320ae51f
JA
1039void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1040{
27489a3c 1041 cancel_work(&hctx->run_work);
70f4db63 1042 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1043 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1044}
1045EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1046
280d45f6
CH
1047void blk_mq_stop_hw_queues(struct request_queue *q)
1048{
1049 struct blk_mq_hw_ctx *hctx;
1050 int i;
1051
1052 queue_for_each_hw_ctx(q, hctx, i)
1053 blk_mq_stop_hw_queue(hctx);
1054}
1055EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1056
320ae51f
JA
1057void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1058{
1059 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1060
0ffbce80 1061 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1062}
1063EXPORT_SYMBOL(blk_mq_start_hw_queue);
1064
2f268556
CH
1065void blk_mq_start_hw_queues(struct request_queue *q)
1066{
1067 struct blk_mq_hw_ctx *hctx;
1068 int i;
1069
1070 queue_for_each_hw_ctx(q, hctx, i)
1071 blk_mq_start_hw_queue(hctx);
1072}
1073EXPORT_SYMBOL(blk_mq_start_hw_queues);
1074
ae911c5e
JA
1075void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1076{
1077 if (!blk_mq_hctx_stopped(hctx))
1078 return;
1079
1080 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1081 blk_mq_run_hw_queue(hctx, async);
1082}
1083EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1084
1b4a3258 1085void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1086{
1087 struct blk_mq_hw_ctx *hctx;
1088 int i;
1089
ae911c5e
JA
1090 queue_for_each_hw_ctx(q, hctx, i)
1091 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1092}
1093EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1094
70f4db63 1095static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1096{
1097 struct blk_mq_hw_ctx *hctx;
1098
27489a3c 1099 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1100
320ae51f
JA
1101 __blk_mq_run_hw_queue(hctx);
1102}
1103
70f4db63
CH
1104static void blk_mq_delay_work_fn(struct work_struct *work)
1105{
1106 struct blk_mq_hw_ctx *hctx;
1107
1108 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1109
1110 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1111 __blk_mq_run_hw_queue(hctx);
1112}
1113
1114void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1115{
19c66e59
ML
1116 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1117 return;
70f4db63 1118
b657d7e6
CH
1119 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1120 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1121}
1122EXPORT_SYMBOL(blk_mq_delay_queue);
1123
cfd0c552 1124static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1125 struct request *rq,
1126 bool at_head)
320ae51f 1127{
e57690fe
JA
1128 struct blk_mq_ctx *ctx = rq->mq_ctx;
1129
01b983c9
JA
1130 trace_block_rq_insert(hctx->queue, rq);
1131
72a0a36e
CH
1132 if (at_head)
1133 list_add(&rq->queuelist, &ctx->rq_list);
1134 else
1135 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1136}
4bb659b1 1137
cfd0c552
ML
1138static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1139 struct request *rq, bool at_head)
1140{
1141 struct blk_mq_ctx *ctx = rq->mq_ctx;
1142
e57690fe 1143 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1144 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1145}
1146
eeabc850 1147void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
e57690fe 1148 bool async)
320ae51f 1149{
e57690fe 1150 struct blk_mq_ctx *ctx = rq->mq_ctx;
eeabc850 1151 struct request_queue *q = rq->q;
7d7e0f90 1152 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f 1153
a57a178a
CH
1154 spin_lock(&ctx->lock);
1155 __blk_mq_insert_request(hctx, rq, at_head);
1156 spin_unlock(&ctx->lock);
320ae51f 1157
320ae51f
JA
1158 if (run_queue)
1159 blk_mq_run_hw_queue(hctx, async);
1160}
1161
1162static void blk_mq_insert_requests(struct request_queue *q,
1163 struct blk_mq_ctx *ctx,
1164 struct list_head *list,
1165 int depth,
1166 bool from_schedule)
1167
1168{
7d7e0f90 1169 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f
JA
1170
1171 trace_block_unplug(q, depth, !from_schedule);
1172
320ae51f
JA
1173 /*
1174 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1175 * offline now
1176 */
1177 spin_lock(&ctx->lock);
1178 while (!list_empty(list)) {
1179 struct request *rq;
1180
1181 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1182 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1183 list_del_init(&rq->queuelist);
e57690fe 1184 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1185 }
cfd0c552 1186 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1187 spin_unlock(&ctx->lock);
1188
320ae51f
JA
1189 blk_mq_run_hw_queue(hctx, from_schedule);
1190}
1191
1192static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1193{
1194 struct request *rqa = container_of(a, struct request, queuelist);
1195 struct request *rqb = container_of(b, struct request, queuelist);
1196
1197 return !(rqa->mq_ctx < rqb->mq_ctx ||
1198 (rqa->mq_ctx == rqb->mq_ctx &&
1199 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1200}
1201
1202void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1203{
1204 struct blk_mq_ctx *this_ctx;
1205 struct request_queue *this_q;
1206 struct request *rq;
1207 LIST_HEAD(list);
1208 LIST_HEAD(ctx_list);
1209 unsigned int depth;
1210
1211 list_splice_init(&plug->mq_list, &list);
1212
1213 list_sort(NULL, &list, plug_ctx_cmp);
1214
1215 this_q = NULL;
1216 this_ctx = NULL;
1217 depth = 0;
1218
1219 while (!list_empty(&list)) {
1220 rq = list_entry_rq(list.next);
1221 list_del_init(&rq->queuelist);
1222 BUG_ON(!rq->q);
1223 if (rq->mq_ctx != this_ctx) {
1224 if (this_ctx) {
1225 blk_mq_insert_requests(this_q, this_ctx,
1226 &ctx_list, depth,
1227 from_schedule);
1228 }
1229
1230 this_ctx = rq->mq_ctx;
1231 this_q = rq->q;
1232 depth = 0;
1233 }
1234
1235 depth++;
1236 list_add_tail(&rq->queuelist, &ctx_list);
1237 }
1238
1239 /*
1240 * If 'this_ctx' is set, we know we have entries to complete
1241 * on 'ctx_list'. Do those.
1242 */
1243 if (this_ctx) {
1244 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1245 from_schedule);
1246 }
1247}
1248
1249static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1250{
1251 init_request_from_bio(rq, bio);
4b570521 1252
6e85eaf3 1253 blk_account_io_start(rq, true);
320ae51f
JA
1254}
1255
274a5843
JA
1256static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1257{
1258 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1259 !blk_queue_nomerges(hctx->queue);
1260}
1261
07068d5b
JA
1262static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1263 struct blk_mq_ctx *ctx,
1264 struct request *rq, struct bio *bio)
320ae51f 1265{
e18378a6 1266 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1267 blk_mq_bio_to_request(rq, bio);
1268 spin_lock(&ctx->lock);
1269insert_rq:
1270 __blk_mq_insert_request(hctx, rq, false);
1271 spin_unlock(&ctx->lock);
1272 return false;
1273 } else {
274a5843
JA
1274 struct request_queue *q = hctx->queue;
1275
07068d5b
JA
1276 spin_lock(&ctx->lock);
1277 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1278 blk_mq_bio_to_request(rq, bio);
1279 goto insert_rq;
1280 }
320ae51f 1281
07068d5b
JA
1282 spin_unlock(&ctx->lock);
1283 __blk_mq_free_request(hctx, ctx, rq);
1284 return true;
14ec77f3 1285 }
07068d5b 1286}
14ec77f3 1287
07068d5b
JA
1288static struct request *blk_mq_map_request(struct request_queue *q,
1289 struct bio *bio,
2552e3f8 1290 struct blk_mq_alloc_data *data)
07068d5b
JA
1291{
1292 struct blk_mq_hw_ctx *hctx;
1293 struct blk_mq_ctx *ctx;
1294 struct request *rq;
320ae51f 1295
3ef28e83 1296 blk_queue_enter_live(q);
320ae51f 1297 ctx = blk_mq_get_ctx(q);
7d7e0f90 1298 hctx = blk_mq_map_queue(q, ctx->cpu);
320ae51f 1299
ef295ecf 1300 trace_block_getrq(q, bio, bio->bi_opf);
2552e3f8 1301 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
ef295ecf 1302 rq = __blk_mq_alloc_request(data, bio->bi_opf);
320ae51f 1303
7dd2fb68 1304 data->hctx->queued++;
07068d5b
JA
1305 return rq;
1306}
1307
066a4a73 1308static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1309{
1310 int ret;
1311 struct request_queue *q = rq->q;
066a4a73 1312 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
f984df1f
SL
1313 struct blk_mq_queue_data bd = {
1314 .rq = rq,
1315 .list = NULL,
1316 .last = 1
1317 };
7b371636 1318 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
f984df1f 1319
2253efc8
BVA
1320 if (blk_mq_hctx_stopped(hctx))
1321 goto insert;
1322
f984df1f
SL
1323 /*
1324 * For OK queue, we are done. For error, kill it. Any other
1325 * error (busy), just add it to our list as we previously
1326 * would have done
1327 */
1328 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1329 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1330 *cookie = new_cookie;
2253efc8 1331 return;
7b371636 1332 }
f984df1f 1333
7b371636
JA
1334 __blk_mq_requeue_request(rq);
1335
1336 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1337 *cookie = BLK_QC_T_NONE;
1338 rq->errors = -EIO;
1339 blk_mq_end_request(rq, rq->errors);
2253efc8 1340 return;
f984df1f 1341 }
7b371636 1342
2253efc8
BVA
1343insert:
1344 blk_mq_insert_request(rq, false, true, true);
f984df1f
SL
1345}
1346
07068d5b
JA
1347/*
1348 * Multiple hardware queue variant. This will not use per-process plugs,
1349 * but will attempt to bypass the hctx queueing if we can go straight to
1350 * hardware for SYNC IO.
1351 */
dece1635 1352static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1353{
ef295ecf 1354 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1355 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
2552e3f8 1356 struct blk_mq_alloc_data data;
07068d5b 1357 struct request *rq;
6a83e74d 1358 unsigned int request_count = 0, srcu_idx;
f984df1f 1359 struct blk_plug *plug;
5b3f341f 1360 struct request *same_queue_rq = NULL;
7b371636 1361 blk_qc_t cookie;
87760e5e 1362 unsigned int wb_acct;
07068d5b
JA
1363
1364 blk_queue_bounce(q, &bio);
1365
1366 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1367 bio_io_error(bio);
dece1635 1368 return BLK_QC_T_NONE;
07068d5b
JA
1369 }
1370
54efd50b
KO
1371 blk_queue_split(q, &bio, q->bio_split);
1372
87c279e6
OS
1373 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1374 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1375 return BLK_QC_T_NONE;
f984df1f 1376
87760e5e
JA
1377 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1378
07068d5b 1379 rq = blk_mq_map_request(q, bio, &data);
87760e5e
JA
1380 if (unlikely(!rq)) {
1381 __wbt_done(q->rq_wb, wb_acct);
dece1635 1382 return BLK_QC_T_NONE;
87760e5e
JA
1383 }
1384
1385 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1386
7b371636 1387 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
07068d5b
JA
1388
1389 if (unlikely(is_flush_fua)) {
1390 blk_mq_bio_to_request(rq, bio);
1391 blk_insert_flush(rq);
1392 goto run_queue;
1393 }
1394
f984df1f 1395 plug = current->plug;
e167dfb5
JA
1396 /*
1397 * If the driver supports defer issued based on 'last', then
1398 * queue it up like normal since we can potentially save some
1399 * CPU this way.
1400 */
f984df1f
SL
1401 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1402 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1403 struct request *old_rq = NULL;
07068d5b
JA
1404
1405 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1406
1407 /*
6a83e74d 1408 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1409 * Otherwise the existing request in the plug list will be
1410 * issued. So the plug list will have one request at most
07068d5b 1411 */
f984df1f 1412 if (plug) {
5b3f341f
SL
1413 /*
1414 * The plug list might get flushed before this. If that
b094f89c
JA
1415 * happens, same_queue_rq is invalid and plug list is
1416 * empty
1417 */
5b3f341f
SL
1418 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1419 old_rq = same_queue_rq;
f984df1f 1420 list_del_init(&old_rq->queuelist);
07068d5b 1421 }
f984df1f
SL
1422 list_add_tail(&rq->queuelist, &plug->mq_list);
1423 } else /* is_sync */
1424 old_rq = rq;
1425 blk_mq_put_ctx(data.ctx);
1426 if (!old_rq)
7b371636 1427 goto done;
6a83e74d
BVA
1428
1429 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1430 rcu_read_lock();
066a4a73 1431 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1432 rcu_read_unlock();
1433 } else {
1434 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1435 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1436 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1437 }
7b371636 1438 goto done;
07068d5b
JA
1439 }
1440
1441 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1442 /*
1443 * For a SYNC request, send it to the hardware immediately. For
1444 * an ASYNC request, just ensure that we run it later on. The
1445 * latter allows for merging opportunities and more efficient
1446 * dispatching.
1447 */
1448run_queue:
1449 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1450 }
07068d5b 1451 blk_mq_put_ctx(data.ctx);
7b371636
JA
1452done:
1453 return cookie;
07068d5b
JA
1454}
1455
1456/*
1457 * Single hardware queue variant. This will attempt to use any per-process
1458 * plug for merging and IO deferral.
1459 */
dece1635 1460static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1461{
ef295ecf 1462 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1463 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1464 struct blk_plug *plug;
1465 unsigned int request_count = 0;
2552e3f8 1466 struct blk_mq_alloc_data data;
07068d5b 1467 struct request *rq;
7b371636 1468 blk_qc_t cookie;
87760e5e 1469 unsigned int wb_acct;
07068d5b 1470
07068d5b
JA
1471 blk_queue_bounce(q, &bio);
1472
1473 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1474 bio_io_error(bio);
dece1635 1475 return BLK_QC_T_NONE;
07068d5b
JA
1476 }
1477
54efd50b
KO
1478 blk_queue_split(q, &bio, q->bio_split);
1479
87c279e6
OS
1480 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1481 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1482 return BLK_QC_T_NONE;
1483 } else
1484 request_count = blk_plug_queued_count(q);
07068d5b 1485
87760e5e
JA
1486 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1487
07068d5b 1488 rq = blk_mq_map_request(q, bio, &data);
87760e5e
JA
1489 if (unlikely(!rq)) {
1490 __wbt_done(q->rq_wb, wb_acct);
dece1635 1491 return BLK_QC_T_NONE;
87760e5e
JA
1492 }
1493
1494 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1495
7b371636 1496 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
320ae51f
JA
1497
1498 if (unlikely(is_flush_fua)) {
1499 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1500 blk_insert_flush(rq);
1501 goto run_queue;
1502 }
1503
1504 /*
1505 * A task plug currently exists. Since this is completely lockless,
1506 * utilize that to temporarily store requests until the task is
1507 * either done or scheduled away.
1508 */
e6c4438b
JM
1509 plug = current->plug;
1510 if (plug) {
600271d9
SL
1511 struct request *last = NULL;
1512
e6c4438b 1513 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1514
1515 /*
1516 * @request_count may become stale because of schedule
1517 * out, so check the list again.
1518 */
1519 if (list_empty(&plug->mq_list))
1520 request_count = 0;
676d0607 1521 if (!request_count)
e6c4438b 1522 trace_block_plug(q);
600271d9
SL
1523 else
1524 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1525
1526 blk_mq_put_ctx(data.ctx);
1527
600271d9
SL
1528 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1529 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1530 blk_flush_plug_list(plug, false);
1531 trace_block_plug(q);
320ae51f 1532 }
b094f89c 1533
e6c4438b 1534 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1535 return cookie;
320ae51f
JA
1536 }
1537
07068d5b
JA
1538 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1539 /*
1540 * For a SYNC request, send it to the hardware immediately. For
1541 * an ASYNC request, just ensure that we run it later on. The
1542 * latter allows for merging opportunities and more efficient
1543 * dispatching.
1544 */
1545run_queue:
1546 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1547 }
1548
07068d5b 1549 blk_mq_put_ctx(data.ctx);
7b371636 1550 return cookie;
320ae51f
JA
1551}
1552
24d2f903
CH
1553static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1554 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1555{
e9b267d9 1556 struct page *page;
320ae51f 1557
24d2f903 1558 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1559 int i;
320ae51f 1560
24d2f903
CH
1561 for (i = 0; i < tags->nr_tags; i++) {
1562 if (!tags->rqs[i])
e9b267d9 1563 continue;
24d2f903
CH
1564 set->ops->exit_request(set->driver_data, tags->rqs[i],
1565 hctx_idx, i);
a5164405 1566 tags->rqs[i] = NULL;
e9b267d9 1567 }
320ae51f 1568 }
320ae51f 1569
24d2f903
CH
1570 while (!list_empty(&tags->page_list)) {
1571 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1572 list_del_init(&page->lru);
f75782e4
CM
1573 /*
1574 * Remove kmemleak object previously allocated in
1575 * blk_mq_init_rq_map().
1576 */
1577 kmemleak_free(page_address(page));
320ae51f
JA
1578 __free_pages(page, page->private);
1579 }
1580
24d2f903 1581 kfree(tags->rqs);
320ae51f 1582
24d2f903 1583 blk_mq_free_tags(tags);
320ae51f
JA
1584}
1585
1586static size_t order_to_size(unsigned int order)
1587{
4ca08500 1588 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1589}
1590
24d2f903
CH
1591static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1592 unsigned int hctx_idx)
320ae51f 1593{
24d2f903 1594 struct blk_mq_tags *tags;
320ae51f
JA
1595 unsigned int i, j, entries_per_page, max_order = 4;
1596 size_t rq_size, left;
1597
24d2f903 1598 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1599 set->numa_node,
1600 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1601 if (!tags)
1602 return NULL;
320ae51f 1603
24d2f903
CH
1604 INIT_LIST_HEAD(&tags->page_list);
1605
a5164405 1606 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
36e1f3d1 1607 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1608 set->numa_node);
24d2f903
CH
1609 if (!tags->rqs) {
1610 blk_mq_free_tags(tags);
1611 return NULL;
1612 }
320ae51f
JA
1613
1614 /*
1615 * rq_size is the size of the request plus driver payload, rounded
1616 * to the cacheline size
1617 */
24d2f903 1618 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1619 cache_line_size());
24d2f903 1620 left = rq_size * set->queue_depth;
320ae51f 1621
24d2f903 1622 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1623 int this_order = max_order;
1624 struct page *page;
1625 int to_do;
1626 void *p;
1627
b3a834b1 1628 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1629 this_order--;
1630
1631 do {
a5164405 1632 page = alloc_pages_node(set->numa_node,
36e1f3d1 1633 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1634 this_order);
320ae51f
JA
1635 if (page)
1636 break;
1637 if (!this_order--)
1638 break;
1639 if (order_to_size(this_order) < rq_size)
1640 break;
1641 } while (1);
1642
1643 if (!page)
24d2f903 1644 goto fail;
320ae51f
JA
1645
1646 page->private = this_order;
24d2f903 1647 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1648
1649 p = page_address(page);
f75782e4
CM
1650 /*
1651 * Allow kmemleak to scan these pages as they contain pointers
1652 * to additional allocations like via ops->init_request().
1653 */
36e1f3d1 1654 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1655 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1656 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1657 left -= to_do * rq_size;
1658 for (j = 0; j < to_do; j++) {
24d2f903
CH
1659 tags->rqs[i] = p;
1660 if (set->ops->init_request) {
1661 if (set->ops->init_request(set->driver_data,
1662 tags->rqs[i], hctx_idx, i,
a5164405
JA
1663 set->numa_node)) {
1664 tags->rqs[i] = NULL;
24d2f903 1665 goto fail;
a5164405 1666 }
e9b267d9
CH
1667 }
1668
320ae51f
JA
1669 p += rq_size;
1670 i++;
1671 }
1672 }
24d2f903 1673 return tags;
320ae51f 1674
24d2f903 1675fail:
24d2f903
CH
1676 blk_mq_free_rq_map(set, tags, hctx_idx);
1677 return NULL;
320ae51f
JA
1678}
1679
e57690fe
JA
1680/*
1681 * 'cpu' is going away. splice any existing rq_list entries from this
1682 * software queue to the hw queue dispatch list, and ensure that it
1683 * gets run.
1684 */
9467f859 1685static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1686{
9467f859 1687 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1688 struct blk_mq_ctx *ctx;
1689 LIST_HEAD(tmp);
1690
9467f859 1691 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1692 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1693
1694 spin_lock(&ctx->lock);
1695 if (!list_empty(&ctx->rq_list)) {
1696 list_splice_init(&ctx->rq_list, &tmp);
1697 blk_mq_hctx_clear_pending(hctx, ctx);
1698 }
1699 spin_unlock(&ctx->lock);
1700
1701 if (list_empty(&tmp))
9467f859 1702 return 0;
484b4061 1703
e57690fe
JA
1704 spin_lock(&hctx->lock);
1705 list_splice_tail_init(&tmp, &hctx->dispatch);
1706 spin_unlock(&hctx->lock);
484b4061
JA
1707
1708 blk_mq_run_hw_queue(hctx, true);
9467f859 1709 return 0;
484b4061
JA
1710}
1711
9467f859 1712static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1713{
9467f859
TG
1714 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1715 &hctx->cpuhp_dead);
484b4061
JA
1716}
1717
c3b4afca 1718/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1719static void blk_mq_exit_hctx(struct request_queue *q,
1720 struct blk_mq_tag_set *set,
1721 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1722{
f70ced09
ML
1723 unsigned flush_start_tag = set->queue_depth;
1724
08e98fc6
ML
1725 blk_mq_tag_idle(hctx);
1726
f70ced09
ML
1727 if (set->ops->exit_request)
1728 set->ops->exit_request(set->driver_data,
1729 hctx->fq->flush_rq, hctx_idx,
1730 flush_start_tag + hctx_idx);
1731
08e98fc6
ML
1732 if (set->ops->exit_hctx)
1733 set->ops->exit_hctx(hctx, hctx_idx);
1734
6a83e74d
BVA
1735 if (hctx->flags & BLK_MQ_F_BLOCKING)
1736 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1737
9467f859 1738 blk_mq_remove_cpuhp(hctx);
f70ced09 1739 blk_free_flush_queue(hctx->fq);
88459642 1740 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1741}
1742
624dbe47
ML
1743static void blk_mq_exit_hw_queues(struct request_queue *q,
1744 struct blk_mq_tag_set *set, int nr_queue)
1745{
1746 struct blk_mq_hw_ctx *hctx;
1747 unsigned int i;
1748
1749 queue_for_each_hw_ctx(q, hctx, i) {
1750 if (i == nr_queue)
1751 break;
08e98fc6 1752 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1753 }
624dbe47
ML
1754}
1755
1756static void blk_mq_free_hw_queues(struct request_queue *q,
1757 struct blk_mq_tag_set *set)
1758{
1759 struct blk_mq_hw_ctx *hctx;
1760 unsigned int i;
1761
e09aae7e 1762 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1763 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1764}
1765
08e98fc6
ML
1766static int blk_mq_init_hctx(struct request_queue *q,
1767 struct blk_mq_tag_set *set,
1768 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1769{
08e98fc6 1770 int node;
f70ced09 1771 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1772
1773 node = hctx->numa_node;
1774 if (node == NUMA_NO_NODE)
1775 node = hctx->numa_node = set->numa_node;
1776
27489a3c 1777 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1778 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1779 spin_lock_init(&hctx->lock);
1780 INIT_LIST_HEAD(&hctx->dispatch);
1781 hctx->queue = q;
1782 hctx->queue_num = hctx_idx;
2404e607 1783 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1784
9467f859 1785 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1786
1787 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1788
1789 /*
08e98fc6
ML
1790 * Allocate space for all possible cpus to avoid allocation at
1791 * runtime
320ae51f 1792 */
08e98fc6
ML
1793 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1794 GFP_KERNEL, node);
1795 if (!hctx->ctxs)
1796 goto unregister_cpu_notifier;
320ae51f 1797
88459642
OS
1798 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1799 node))
08e98fc6 1800 goto free_ctxs;
320ae51f 1801
08e98fc6 1802 hctx->nr_ctx = 0;
320ae51f 1803
08e98fc6
ML
1804 if (set->ops->init_hctx &&
1805 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1806 goto free_bitmap;
320ae51f 1807
f70ced09
ML
1808 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1809 if (!hctx->fq)
1810 goto exit_hctx;
320ae51f 1811
f70ced09
ML
1812 if (set->ops->init_request &&
1813 set->ops->init_request(set->driver_data,
1814 hctx->fq->flush_rq, hctx_idx,
1815 flush_start_tag + hctx_idx, node))
1816 goto free_fq;
320ae51f 1817
6a83e74d
BVA
1818 if (hctx->flags & BLK_MQ_F_BLOCKING)
1819 init_srcu_struct(&hctx->queue_rq_srcu);
1820
08e98fc6 1821 return 0;
320ae51f 1822
f70ced09
ML
1823 free_fq:
1824 kfree(hctx->fq);
1825 exit_hctx:
1826 if (set->ops->exit_hctx)
1827 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1828 free_bitmap:
88459642 1829 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1830 free_ctxs:
1831 kfree(hctx->ctxs);
1832 unregister_cpu_notifier:
9467f859 1833 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1834 return -1;
1835}
320ae51f 1836
320ae51f
JA
1837static void blk_mq_init_cpu_queues(struct request_queue *q,
1838 unsigned int nr_hw_queues)
1839{
1840 unsigned int i;
1841
1842 for_each_possible_cpu(i) {
1843 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1844 struct blk_mq_hw_ctx *hctx;
1845
1846 memset(__ctx, 0, sizeof(*__ctx));
1847 __ctx->cpu = i;
1848 spin_lock_init(&__ctx->lock);
1849 INIT_LIST_HEAD(&__ctx->rq_list);
1850 __ctx->queue = q;
cf43e6be
JA
1851 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1852 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1853
1854 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1855 if (!cpu_online(i))
1856 continue;
1857
7d7e0f90 1858 hctx = blk_mq_map_queue(q, i);
e4043dcf 1859
320ae51f
JA
1860 /*
1861 * Set local node, IFF we have more than one hw queue. If
1862 * not, we remain on the home node of the device
1863 */
1864 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1865 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1866 }
1867}
1868
5778322e
AM
1869static void blk_mq_map_swqueue(struct request_queue *q,
1870 const struct cpumask *online_mask)
320ae51f 1871{
d1b1cea1 1872 unsigned int i, hctx_idx;
320ae51f
JA
1873 struct blk_mq_hw_ctx *hctx;
1874 struct blk_mq_ctx *ctx;
2a34c087 1875 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1876
60de074b
AM
1877 /*
1878 * Avoid others reading imcomplete hctx->cpumask through sysfs
1879 */
1880 mutex_lock(&q->sysfs_lock);
1881
320ae51f 1882 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1883 cpumask_clear(hctx->cpumask);
320ae51f
JA
1884 hctx->nr_ctx = 0;
1885 }
1886
1887 /*
1888 * Map software to hardware queues
1889 */
897bb0c7 1890 for_each_possible_cpu(i) {
320ae51f 1891 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1892 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1893 continue;
1894
d1b1cea1
GKB
1895 hctx_idx = q->mq_map[i];
1896 /* unmapped hw queue can be remapped after CPU topo changed */
1897 if (!set->tags[hctx_idx]) {
1898 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1899
1900 /*
1901 * If tags initialization fail for some hctx,
1902 * that hctx won't be brought online. In this
1903 * case, remap the current ctx to hctx[0] which
1904 * is guaranteed to always have tags allocated
1905 */
1906 if (!set->tags[hctx_idx])
1907 q->mq_map[i] = 0;
1908 }
1909
897bb0c7 1910 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 1911 hctx = blk_mq_map_queue(q, i);
868f2f0b 1912
e4043dcf 1913 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1914 ctx->index_hw = hctx->nr_ctx;
1915 hctx->ctxs[hctx->nr_ctx++] = ctx;
1916 }
506e931f 1917
60de074b
AM
1918 mutex_unlock(&q->sysfs_lock);
1919
506e931f 1920 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1921 /*
a68aafa5
JA
1922 * If no software queues are mapped to this hardware queue,
1923 * disable it and free the request entries.
484b4061
JA
1924 */
1925 if (!hctx->nr_ctx) {
d1b1cea1
GKB
1926 /* Never unmap queue 0. We need it as a
1927 * fallback in case of a new remap fails
1928 * allocation
1929 */
1930 if (i && set->tags[i]) {
484b4061
JA
1931 blk_mq_free_rq_map(set, set->tags[i], i);
1932 set->tags[i] = NULL;
484b4061 1933 }
2a34c087 1934 hctx->tags = NULL;
484b4061
JA
1935 continue;
1936 }
1937
2a34c087
ML
1938 hctx->tags = set->tags[i];
1939 WARN_ON(!hctx->tags);
1940
889fa31f
CY
1941 /*
1942 * Set the map size to the number of mapped software queues.
1943 * This is more accurate and more efficient than looping
1944 * over all possibly mapped software queues.
1945 */
88459642 1946 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 1947
484b4061
JA
1948 /*
1949 * Initialize batch roundrobin counts
1950 */
506e931f
JA
1951 hctx->next_cpu = cpumask_first(hctx->cpumask);
1952 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1953 }
320ae51f
JA
1954}
1955
2404e607 1956static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
1957{
1958 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
1959 int i;
1960
2404e607
JM
1961 queue_for_each_hw_ctx(q, hctx, i) {
1962 if (shared)
1963 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1964 else
1965 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1966 }
1967}
1968
1969static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1970{
1971 struct request_queue *q;
0d2602ca
JA
1972
1973 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1974 blk_mq_freeze_queue(q);
2404e607 1975 queue_set_hctx_shared(q, shared);
0d2602ca
JA
1976 blk_mq_unfreeze_queue(q);
1977 }
1978}
1979
1980static void blk_mq_del_queue_tag_set(struct request_queue *q)
1981{
1982 struct blk_mq_tag_set *set = q->tag_set;
1983
0d2602ca
JA
1984 mutex_lock(&set->tag_list_lock);
1985 list_del_init(&q->tag_set_list);
2404e607
JM
1986 if (list_is_singular(&set->tag_list)) {
1987 /* just transitioned to unshared */
1988 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1989 /* update existing queue */
1990 blk_mq_update_tag_set_depth(set, false);
1991 }
0d2602ca 1992 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1993}
1994
1995static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1996 struct request_queue *q)
1997{
1998 q->tag_set = set;
1999
2000 mutex_lock(&set->tag_list_lock);
2404e607
JM
2001
2002 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2003 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2004 set->flags |= BLK_MQ_F_TAG_SHARED;
2005 /* update existing queue */
2006 blk_mq_update_tag_set_depth(set, true);
2007 }
2008 if (set->flags & BLK_MQ_F_TAG_SHARED)
2009 queue_set_hctx_shared(q, true);
0d2602ca 2010 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2011
0d2602ca
JA
2012 mutex_unlock(&set->tag_list_lock);
2013}
2014
e09aae7e
ML
2015/*
2016 * It is the actual release handler for mq, but we do it from
2017 * request queue's release handler for avoiding use-after-free
2018 * and headache because q->mq_kobj shouldn't have been introduced,
2019 * but we can't group ctx/kctx kobj without it.
2020 */
2021void blk_mq_release(struct request_queue *q)
2022{
2023 struct blk_mq_hw_ctx *hctx;
2024 unsigned int i;
2025
2026 /* hctx kobj stays in hctx */
c3b4afca
ML
2027 queue_for_each_hw_ctx(q, hctx, i) {
2028 if (!hctx)
2029 continue;
2030 kfree(hctx->ctxs);
e09aae7e 2031 kfree(hctx);
c3b4afca 2032 }
e09aae7e 2033
a723bab3
AM
2034 q->mq_map = NULL;
2035
e09aae7e
ML
2036 kfree(q->queue_hw_ctx);
2037
2038 /* ctx kobj stays in queue_ctx */
2039 free_percpu(q->queue_ctx);
2040}
2041
24d2f903 2042struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2043{
2044 struct request_queue *uninit_q, *q;
2045
2046 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2047 if (!uninit_q)
2048 return ERR_PTR(-ENOMEM);
2049
2050 q = blk_mq_init_allocated_queue(set, uninit_q);
2051 if (IS_ERR(q))
2052 blk_cleanup_queue(uninit_q);
2053
2054 return q;
2055}
2056EXPORT_SYMBOL(blk_mq_init_queue);
2057
868f2f0b
KB
2058static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2059 struct request_queue *q)
320ae51f 2060{
868f2f0b
KB
2061 int i, j;
2062 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2063
868f2f0b 2064 blk_mq_sysfs_unregister(q);
24d2f903 2065 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2066 int node;
f14bbe77 2067
868f2f0b
KB
2068 if (hctxs[i])
2069 continue;
2070
2071 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2072 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2073 GFP_KERNEL, node);
320ae51f 2074 if (!hctxs[i])
868f2f0b 2075 break;
320ae51f 2076
a86073e4 2077 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2078 node)) {
2079 kfree(hctxs[i]);
2080 hctxs[i] = NULL;
2081 break;
2082 }
e4043dcf 2083
0d2602ca 2084 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2085 hctxs[i]->numa_node = node;
320ae51f 2086 hctxs[i]->queue_num = i;
868f2f0b
KB
2087
2088 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2089 free_cpumask_var(hctxs[i]->cpumask);
2090 kfree(hctxs[i]);
2091 hctxs[i] = NULL;
2092 break;
2093 }
2094 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2095 }
868f2f0b
KB
2096 for (j = i; j < q->nr_hw_queues; j++) {
2097 struct blk_mq_hw_ctx *hctx = hctxs[j];
2098
2099 if (hctx) {
2100 if (hctx->tags) {
2101 blk_mq_free_rq_map(set, hctx->tags, j);
2102 set->tags[j] = NULL;
2103 }
2104 blk_mq_exit_hctx(q, set, hctx, j);
2105 free_cpumask_var(hctx->cpumask);
2106 kobject_put(&hctx->kobj);
2107 kfree(hctx->ctxs);
2108 kfree(hctx);
2109 hctxs[j] = NULL;
2110
2111 }
2112 }
2113 q->nr_hw_queues = i;
2114 blk_mq_sysfs_register(q);
2115}
2116
2117struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2118 struct request_queue *q)
2119{
66841672
ML
2120 /* mark the queue as mq asap */
2121 q->mq_ops = set->ops;
2122
868f2f0b
KB
2123 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2124 if (!q->queue_ctx)
c7de5726 2125 goto err_exit;
868f2f0b
KB
2126
2127 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2128 GFP_KERNEL, set->numa_node);
2129 if (!q->queue_hw_ctx)
2130 goto err_percpu;
2131
bdd17e75 2132 q->mq_map = set->mq_map;
868f2f0b
KB
2133
2134 blk_mq_realloc_hw_ctxs(set, q);
2135 if (!q->nr_hw_queues)
2136 goto err_hctxs;
320ae51f 2137
287922eb 2138 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2139 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2140
2141 q->nr_queues = nr_cpu_ids;
320ae51f 2142
94eddfbe 2143 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2144
05f1dd53
JA
2145 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2146 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2147
1be036e9
CH
2148 q->sg_reserved_size = INT_MAX;
2149
2849450a 2150 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2151 INIT_LIST_HEAD(&q->requeue_list);
2152 spin_lock_init(&q->requeue_lock);
2153
07068d5b
JA
2154 if (q->nr_hw_queues > 1)
2155 blk_queue_make_request(q, blk_mq_make_request);
2156 else
2157 blk_queue_make_request(q, blk_sq_make_request);
2158
eba71768
JA
2159 /*
2160 * Do this after blk_queue_make_request() overrides it...
2161 */
2162 q->nr_requests = set->queue_depth;
2163
64f1c21e
JA
2164 /*
2165 * Default to classic polling
2166 */
2167 q->poll_nsec = -1;
2168
24d2f903
CH
2169 if (set->ops->complete)
2170 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2171
24d2f903 2172 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2173
5778322e 2174 get_online_cpus();
320ae51f 2175 mutex_lock(&all_q_mutex);
320ae51f 2176
4593fdbe 2177 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2178 blk_mq_add_queue_tag_set(set, q);
5778322e 2179 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2180
4593fdbe 2181 mutex_unlock(&all_q_mutex);
5778322e 2182 put_online_cpus();
4593fdbe 2183
320ae51f 2184 return q;
18741986 2185
320ae51f 2186err_hctxs:
868f2f0b 2187 kfree(q->queue_hw_ctx);
320ae51f 2188err_percpu:
868f2f0b 2189 free_percpu(q->queue_ctx);
c7de5726
ML
2190err_exit:
2191 q->mq_ops = NULL;
320ae51f
JA
2192 return ERR_PTR(-ENOMEM);
2193}
b62c21b7 2194EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2195
2196void blk_mq_free_queue(struct request_queue *q)
2197{
624dbe47 2198 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2199
0e626368
AM
2200 mutex_lock(&all_q_mutex);
2201 list_del_init(&q->all_q_node);
2202 mutex_unlock(&all_q_mutex);
2203
87760e5e
JA
2204 wbt_exit(q);
2205
0d2602ca
JA
2206 blk_mq_del_queue_tag_set(q);
2207
624dbe47
ML
2208 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2209 blk_mq_free_hw_queues(q, set);
320ae51f 2210}
320ae51f
JA
2211
2212/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2213static void blk_mq_queue_reinit(struct request_queue *q,
2214 const struct cpumask *online_mask)
320ae51f 2215{
4ecd4fef 2216 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2217
67aec14c
JA
2218 blk_mq_sysfs_unregister(q);
2219
320ae51f
JA
2220 /*
2221 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2222 * we should change hctx numa_node according to new topology (this
2223 * involves free and re-allocate memory, worthy doing?)
2224 */
2225
5778322e 2226 blk_mq_map_swqueue(q, online_mask);
320ae51f 2227
67aec14c 2228 blk_mq_sysfs_register(q);
320ae51f
JA
2229}
2230
65d5291e
SAS
2231/*
2232 * New online cpumask which is going to be set in this hotplug event.
2233 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2234 * one-by-one and dynamically allocating this could result in a failure.
2235 */
2236static struct cpumask cpuhp_online_new;
2237
2238static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2239{
2240 struct request_queue *q;
320ae51f
JA
2241
2242 mutex_lock(&all_q_mutex);
f3af020b
TH
2243 /*
2244 * We need to freeze and reinit all existing queues. Freezing
2245 * involves synchronous wait for an RCU grace period and doing it
2246 * one by one may take a long time. Start freezing all queues in
2247 * one swoop and then wait for the completions so that freezing can
2248 * take place in parallel.
2249 */
2250 list_for_each_entry(q, &all_q_list, all_q_node)
2251 blk_mq_freeze_queue_start(q);
415d3dab 2252 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2253 blk_mq_freeze_queue_wait(q);
2254
320ae51f 2255 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2256 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2257
2258 list_for_each_entry(q, &all_q_list, all_q_node)
2259 blk_mq_unfreeze_queue(q);
2260
320ae51f 2261 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2262}
2263
2264static int blk_mq_queue_reinit_dead(unsigned int cpu)
2265{
97a32864 2266 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2267 blk_mq_queue_reinit_work();
2268 return 0;
2269}
2270
2271/*
2272 * Before hotadded cpu starts handling requests, new mappings must be
2273 * established. Otherwise, these requests in hw queue might never be
2274 * dispatched.
2275 *
2276 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2277 * for CPU0, and ctx1 for CPU1).
2278 *
2279 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2280 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2281 *
2282 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2283 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2284 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2285 * is ignored.
2286 */
2287static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2288{
2289 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2290 cpumask_set_cpu(cpu, &cpuhp_online_new);
2291 blk_mq_queue_reinit_work();
2292 return 0;
320ae51f
JA
2293}
2294
a5164405
JA
2295static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2296{
2297 int i;
2298
2299 for (i = 0; i < set->nr_hw_queues; i++) {
2300 set->tags[i] = blk_mq_init_rq_map(set, i);
2301 if (!set->tags[i])
2302 goto out_unwind;
2303 }
2304
2305 return 0;
2306
2307out_unwind:
2308 while (--i >= 0)
2309 blk_mq_free_rq_map(set, set->tags[i], i);
2310
a5164405
JA
2311 return -ENOMEM;
2312}
2313
2314/*
2315 * Allocate the request maps associated with this tag_set. Note that this
2316 * may reduce the depth asked for, if memory is tight. set->queue_depth
2317 * will be updated to reflect the allocated depth.
2318 */
2319static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2320{
2321 unsigned int depth;
2322 int err;
2323
2324 depth = set->queue_depth;
2325 do {
2326 err = __blk_mq_alloc_rq_maps(set);
2327 if (!err)
2328 break;
2329
2330 set->queue_depth >>= 1;
2331 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2332 err = -ENOMEM;
2333 break;
2334 }
2335 } while (set->queue_depth);
2336
2337 if (!set->queue_depth || err) {
2338 pr_err("blk-mq: failed to allocate request map\n");
2339 return -ENOMEM;
2340 }
2341
2342 if (depth != set->queue_depth)
2343 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2344 depth, set->queue_depth);
2345
2346 return 0;
2347}
2348
a4391c64
JA
2349/*
2350 * Alloc a tag set to be associated with one or more request queues.
2351 * May fail with EINVAL for various error conditions. May adjust the
2352 * requested depth down, if if it too large. In that case, the set
2353 * value will be stored in set->queue_depth.
2354 */
24d2f903
CH
2355int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2356{
da695ba2
CH
2357 int ret;
2358
205fb5f5
BVA
2359 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2360
24d2f903
CH
2361 if (!set->nr_hw_queues)
2362 return -EINVAL;
a4391c64 2363 if (!set->queue_depth)
24d2f903
CH
2364 return -EINVAL;
2365 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2366 return -EINVAL;
2367
7d7e0f90 2368 if (!set->ops->queue_rq)
24d2f903
CH
2369 return -EINVAL;
2370
a4391c64
JA
2371 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2372 pr_info("blk-mq: reduced tag depth to %u\n",
2373 BLK_MQ_MAX_DEPTH);
2374 set->queue_depth = BLK_MQ_MAX_DEPTH;
2375 }
24d2f903 2376
6637fadf
SL
2377 /*
2378 * If a crashdump is active, then we are potentially in a very
2379 * memory constrained environment. Limit us to 1 queue and
2380 * 64 tags to prevent using too much memory.
2381 */
2382 if (is_kdump_kernel()) {
2383 set->nr_hw_queues = 1;
2384 set->queue_depth = min(64U, set->queue_depth);
2385 }
868f2f0b
KB
2386 /*
2387 * There is no use for more h/w queues than cpus.
2388 */
2389 if (set->nr_hw_queues > nr_cpu_ids)
2390 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2391
868f2f0b 2392 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2393 GFP_KERNEL, set->numa_node);
2394 if (!set->tags)
a5164405 2395 return -ENOMEM;
24d2f903 2396
da695ba2
CH
2397 ret = -ENOMEM;
2398 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2399 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2400 if (!set->mq_map)
2401 goto out_free_tags;
2402
da695ba2
CH
2403 if (set->ops->map_queues)
2404 ret = set->ops->map_queues(set);
2405 else
2406 ret = blk_mq_map_queues(set);
2407 if (ret)
2408 goto out_free_mq_map;
2409
2410 ret = blk_mq_alloc_rq_maps(set);
2411 if (ret)
bdd17e75 2412 goto out_free_mq_map;
24d2f903 2413
0d2602ca
JA
2414 mutex_init(&set->tag_list_lock);
2415 INIT_LIST_HEAD(&set->tag_list);
2416
24d2f903 2417 return 0;
bdd17e75
CH
2418
2419out_free_mq_map:
2420 kfree(set->mq_map);
2421 set->mq_map = NULL;
2422out_free_tags:
5676e7b6
RE
2423 kfree(set->tags);
2424 set->tags = NULL;
da695ba2 2425 return ret;
24d2f903
CH
2426}
2427EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2428
2429void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2430{
2431 int i;
2432
868f2f0b 2433 for (i = 0; i < nr_cpu_ids; i++) {
f42d79ab 2434 if (set->tags[i])
484b4061
JA
2435 blk_mq_free_rq_map(set, set->tags[i], i);
2436 }
2437
bdd17e75
CH
2438 kfree(set->mq_map);
2439 set->mq_map = NULL;
2440
981bd189 2441 kfree(set->tags);
5676e7b6 2442 set->tags = NULL;
24d2f903
CH
2443}
2444EXPORT_SYMBOL(blk_mq_free_tag_set);
2445
e3a2b3f9
JA
2446int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2447{
2448 struct blk_mq_tag_set *set = q->tag_set;
2449 struct blk_mq_hw_ctx *hctx;
2450 int i, ret;
2451
2452 if (!set || nr > set->queue_depth)
2453 return -EINVAL;
2454
2455 ret = 0;
2456 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2457 if (!hctx->tags)
2458 continue;
e3a2b3f9
JA
2459 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2460 if (ret)
2461 break;
2462 }
2463
2464 if (!ret)
2465 q->nr_requests = nr;
2466
2467 return ret;
2468}
2469
868f2f0b
KB
2470void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2471{
2472 struct request_queue *q;
2473
2474 if (nr_hw_queues > nr_cpu_ids)
2475 nr_hw_queues = nr_cpu_ids;
2476 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2477 return;
2478
2479 list_for_each_entry(q, &set->tag_list, tag_set_list)
2480 blk_mq_freeze_queue(q);
2481
2482 set->nr_hw_queues = nr_hw_queues;
2483 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2484 blk_mq_realloc_hw_ctxs(set, q);
2485
2486 if (q->nr_hw_queues > 1)
2487 blk_queue_make_request(q, blk_mq_make_request);
2488 else
2489 blk_queue_make_request(q, blk_sq_make_request);
2490
2491 blk_mq_queue_reinit(q, cpu_online_mask);
2492 }
2493
2494 list_for_each_entry(q, &set->tag_list, tag_set_list)
2495 blk_mq_unfreeze_queue(q);
2496}
2497EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2498
64f1c21e
JA
2499static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2500 struct blk_mq_hw_ctx *hctx,
2501 struct request *rq)
2502{
2503 struct blk_rq_stat stat[2];
2504 unsigned long ret = 0;
2505
2506 /*
2507 * If stats collection isn't on, don't sleep but turn it on for
2508 * future users
2509 */
2510 if (!blk_stat_enable(q))
2511 return 0;
2512
2513 /*
2514 * We don't have to do this once per IO, should optimize this
2515 * to just use the current window of stats until it changes
2516 */
2517 memset(&stat, 0, sizeof(stat));
2518 blk_hctx_stat_get(hctx, stat);
2519
2520 /*
2521 * As an optimistic guess, use half of the mean service time
2522 * for this type of request. We can (and should) make this smarter.
2523 * For instance, if the completion latencies are tight, we can
2524 * get closer than just half the mean. This is especially
2525 * important on devices where the completion latencies are longer
2526 * than ~10 usec.
2527 */
2528 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2529 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2530 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2531 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2532
2533 return ret;
2534}
2535
06426adf 2536static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2537 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2538 struct request *rq)
2539{
2540 struct hrtimer_sleeper hs;
2541 enum hrtimer_mode mode;
64f1c21e 2542 unsigned int nsecs;
06426adf
JA
2543 ktime_t kt;
2544
64f1c21e
JA
2545 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2546 return false;
2547
2548 /*
2549 * poll_nsec can be:
2550 *
2551 * -1: don't ever hybrid sleep
2552 * 0: use half of prev avg
2553 * >0: use this specific value
2554 */
2555 if (q->poll_nsec == -1)
2556 return false;
2557 else if (q->poll_nsec > 0)
2558 nsecs = q->poll_nsec;
2559 else
2560 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2561
2562 if (!nsecs)
06426adf
JA
2563 return false;
2564
2565 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2566
2567 /*
2568 * This will be replaced with the stats tracking code, using
2569 * 'avg_completion_time / 2' as the pre-sleep target.
2570 */
8b0e1953 2571 kt = nsecs;
06426adf
JA
2572
2573 mode = HRTIMER_MODE_REL;
2574 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2575 hrtimer_set_expires(&hs.timer, kt);
2576
2577 hrtimer_init_sleeper(&hs, current);
2578 do {
2579 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2580 break;
2581 set_current_state(TASK_UNINTERRUPTIBLE);
2582 hrtimer_start_expires(&hs.timer, mode);
2583 if (hs.task)
2584 io_schedule();
2585 hrtimer_cancel(&hs.timer);
2586 mode = HRTIMER_MODE_ABS;
2587 } while (hs.task && !signal_pending(current));
2588
2589 __set_current_state(TASK_RUNNING);
2590 destroy_hrtimer_on_stack(&hs.timer);
2591 return true;
2592}
2593
bbd7bb70
JA
2594static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2595{
2596 struct request_queue *q = hctx->queue;
2597 long state;
2598
06426adf
JA
2599 /*
2600 * If we sleep, have the caller restart the poll loop to reset
2601 * the state. Like for the other success return cases, the
2602 * caller is responsible for checking if the IO completed. If
2603 * the IO isn't complete, we'll get called again and will go
2604 * straight to the busy poll loop.
2605 */
64f1c21e 2606 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2607 return true;
2608
bbd7bb70
JA
2609 hctx->poll_considered++;
2610
2611 state = current->state;
2612 while (!need_resched()) {
2613 int ret;
2614
2615 hctx->poll_invoked++;
2616
2617 ret = q->mq_ops->poll(hctx, rq->tag);
2618 if (ret > 0) {
2619 hctx->poll_success++;
2620 set_current_state(TASK_RUNNING);
2621 return true;
2622 }
2623
2624 if (signal_pending_state(state, current))
2625 set_current_state(TASK_RUNNING);
2626
2627 if (current->state == TASK_RUNNING)
2628 return true;
2629 if (ret < 0)
2630 break;
2631 cpu_relax();
2632 }
2633
2634 return false;
2635}
2636
2637bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2638{
2639 struct blk_mq_hw_ctx *hctx;
2640 struct blk_plug *plug;
2641 struct request *rq;
2642
2643 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2644 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2645 return false;
2646
2647 plug = current->plug;
2648 if (plug)
2649 blk_flush_plug_list(plug, false);
2650
2651 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2652 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2653
2654 return __blk_mq_poll(hctx, rq);
2655}
2656EXPORT_SYMBOL_GPL(blk_mq_poll);
2657
676141e4
JA
2658void blk_mq_disable_hotplug(void)
2659{
2660 mutex_lock(&all_q_mutex);
2661}
2662
2663void blk_mq_enable_hotplug(void)
2664{
2665 mutex_unlock(&all_q_mutex);
2666}
2667
320ae51f
JA
2668static int __init blk_mq_init(void)
2669{
9467f859
TG
2670 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2671 blk_mq_hctx_notify_dead);
320ae51f 2672
65d5291e
SAS
2673 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2674 blk_mq_queue_reinit_prepare,
2675 blk_mq_queue_reinit_dead);
320ae51f
JA
2676 return 0;
2677}
2678subsys_initcall(blk_mq_init);