]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memblock.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
c4c5ad6b 23#include <asm/sections.h>
26f09e9b
SS
24#include <linux/io.h>
25
26#include "internal.h"
79442ed1 27
fe091c20
TH
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32#endif
fe091c20
TH
33
34struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
70210ed9
PH
43#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47#endif
48
79442ed1 49 .bottom_up = false,
fe091c20
TH
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51};
95f72d1e 52
10d06439 53int memblock_debug __initdata_memblock;
55ac590c
TC
54#ifdef CONFIG_MOVABLE_NODE
55bool movable_node_enabled __initdata_memblock = false;
56#endif
a3f5bafc 57static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 58static int memblock_can_resize __initdata_memblock;
181eb394
GS
59static int memblock_memory_in_slab __initdata_memblock = 0;
60static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 61
a3f5bafc
TL
62ulong __init_memblock choose_memblock_flags(void)
63{
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65}
66
142b45a7 67/* inline so we don't get a warning when pr_debug is compiled out */
c2233116
RP
68static __init_memblock const char *
69memblock_type_name(struct memblock_type *type)
142b45a7
BH
70{
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77}
78
eb18f1b5
TH
79/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81{
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83}
84
6ed311b2
BH
85/*
86 * Address comparison utilities
87 */
10d06439 88static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 89 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
90{
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92}
93
95cf82ec 94bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 95 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
96{
97 unsigned long i;
98
f14516fb
AK
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
6ed311b2 102 break;
c5c5c9d1 103 return i < type->cnt;
6ed311b2
BH
104}
105
79442ed1
TC
106/*
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
b1154233 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 113 * @flags: pick from blocks based on memory attributes
79442ed1
TC
114 *
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116 *
117 * RETURNS:
118 * Found address on success, 0 on failure.
119 */
120static phys_addr_t __init_memblock
121__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
79442ed1
TC
124{
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
127
fc6daaf9 128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
131
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
135 }
136
137 return 0;
138}
139
7bd0b0f0 140/**
1402899e 141 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0
TH
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
b1154233 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 147 * @flags: pick from blocks based on memory attributes
7bd0b0f0 148 *
1402899e 149 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0
TH
150 *
151 * RETURNS:
79442ed1 152 * Found address on success, 0 on failure.
6ed311b2 153 */
1402899e
TC
154static phys_addr_t __init_memblock
155__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
f7210e6c
TC
158{
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
161
fc6daaf9
TL
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
f7210e6c
TC
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
166
167 if (this_end < size)
168 continue;
169
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
173 }
1402899e 174
f7210e6c
TC
175 return 0;
176}
6ed311b2 177
1402899e
TC
178/**
179 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
180 * @size: size of free area to find
181 * @align: alignment of free area to find
87029ee9
GS
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
b1154233 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 185 * @flags: pick from blocks based on memory attributes
1402899e
TC
186 *
187 * Find @size free area aligned to @align in the specified range and node.
188 *
79442ed1
TC
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
194 *
195 * If bottom-up allocation failed, will try to allocate memory top-down.
196 *
1402899e 197 * RETURNS:
79442ed1 198 * Found address on success, 0 on failure.
1402899e 199 */
87029ee9
GS
200phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
fc6daaf9 202 phys_addr_t end, int nid, ulong flags)
1402899e 203{
0cfb8f0c 204 phys_addr_t kernel_end, ret;
79442ed1 205
1402899e
TC
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
209
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
79442ed1
TC
213 kernel_end = __pa_symbol(_end);
214
215 /*
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
218 */
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
221
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
224
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 227 size, align, nid, flags);
79442ed1
TC
228 if (ret)
229 return ret;
230
231 /*
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
236 *
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
240 */
756a025f 241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
79442ed1 242 }
1402899e 243
fc6daaf9
TL
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
1402899e
TC
246}
247
7bd0b0f0
TH
248/**
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
254 *
255 * Find @size free area aligned to @align in the specified range.
256 *
257 * RETURNS:
79442ed1 258 * Found address on success, 0 on failure.
fc769a8e 259 */
7bd0b0f0
TH
260phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
6ed311b2 263{
a3f5bafc
TL
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
266
267again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
270
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
276 }
277
278 return ret;
6ed311b2
BH
279}
280
10d06439 281static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 282{
1440c4e2 283 type->total_size -= type->regions[r].size;
7c0caeb8
TH
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 286 type->cnt--;
95f72d1e 287
8f7a6605
BH
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
1440c4e2 290 WARN_ON(type->total_size != 0);
8f7a6605
BH
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
66a20757 294 type->regions[0].flags = 0;
7c0caeb8 295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 296 }
95f72d1e
YL
297}
298
354f17e1
PH
299#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300
29f67386
YL
301phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 phys_addr_t *addr)
303{
304 if (memblock.reserved.regions == memblock_reserved_init_regions)
305 return 0;
306
307 *addr = __pa(memblock.reserved.regions);
308
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
311}
312
5e270e25
PH
313phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 phys_addr_t *addr)
315{
316 if (memblock.memory.regions == memblock_memory_init_regions)
317 return 0;
318
319 *addr = __pa(memblock.memory.regions);
320
321 return PAGE_ALIGN(sizeof(struct memblock_region) *
322 memblock.memory.max);
323}
324
325#endif
326
48c3b583
GP
327/**
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
332 *
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
337 * not overlap.
338 *
339 * RETURNS:
340 * 0 on success, -1 on failure.
341 */
342static int __init_memblock memblock_double_array(struct memblock_type *type,
343 phys_addr_t new_area_start,
344 phys_addr_t new_area_size)
142b45a7
BH
345{
346 struct memblock_region *new_array, *old_array;
29f67386 347 phys_addr_t old_alloc_size, new_alloc_size;
142b45a7
BH
348 phys_addr_t old_size, new_size, addr;
349 int use_slab = slab_is_available();
181eb394 350 int *in_slab;
142b45a7
BH
351
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
354 */
355 if (!memblock_can_resize)
356 return -1;
357
142b45a7
BH
358 /* Calculate new doubled size */
359 old_size = type->max * sizeof(struct memblock_region);
360 new_size = old_size << 1;
29f67386
YL
361 /*
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
364 */
365 old_alloc_size = PAGE_ALIGN(old_size);
366 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 367
181eb394
GS
368 /* Retrieve the slab flag */
369 if (type == &memblock.memory)
370 in_slab = &memblock_memory_in_slab;
371 else
372 in_slab = &memblock_reserved_in_slab;
373
142b45a7
BH
374 /* Try to find some space for it.
375 *
376 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
380 *
381 * This should however not be an issue for now, as we currently only
fd07383b
AM
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
142b45a7
BH
384 */
385 if (use_slab) {
386 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 387 addr = new_array ? __pa(new_array) : 0;
4e2f0775 388 } else {
48c3b583
GP
389 /* only exclude range when trying to double reserved.regions */
390 if (type != &memblock.reserved)
391 new_area_start = new_area_size = 0;
392
393 addr = memblock_find_in_range(new_area_start + new_area_size,
394 memblock.current_limit,
29f67386 395 new_alloc_size, PAGE_SIZE);
48c3b583
GP
396 if (!addr && new_area_size)
397 addr = memblock_find_in_range(0,
fd07383b
AM
398 min(new_area_start, memblock.current_limit),
399 new_alloc_size, PAGE_SIZE);
48c3b583 400
15674868 401 new_array = addr ? __va(addr) : NULL;
4e2f0775 402 }
1f5026a7 403 if (!addr) {
142b45a7
BH
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type), type->max, type->max * 2);
406 return -1;
407 }
142b45a7 408
fd07383b
AM
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type), type->max * 2, (u64)addr,
411 (u64)addr + new_size - 1);
ea9e4376 412
fd07383b
AM
413 /*
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
416 * full.
142b45a7
BH
417 */
418 memcpy(new_array, type->regions, old_size);
419 memset(new_array + type->max, 0, old_size);
420 old_array = type->regions;
421 type->regions = new_array;
422 type->max <<= 1;
423
fd07383b 424 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
425 if (*in_slab)
426 kfree(old_array);
427 else if (old_array != memblock_memory_init_regions &&
428 old_array != memblock_reserved_init_regions)
29f67386 429 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 430
fd07383b
AM
431 /*
432 * Reserve the new array if that comes from the memblock. Otherwise, we
433 * needn't do it
181eb394
GS
434 */
435 if (!use_slab)
29f67386 436 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
437
438 /* Update slab flag */
439 *in_slab = use_slab;
440
142b45a7
BH
441 return 0;
442}
443
784656f9
TH
444/**
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
447 *
448 * Scan @type and merge neighboring compatible regions.
449 */
450static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 451{
784656f9 452 int i = 0;
95f72d1e 453
784656f9
TH
454 /* cnt never goes below 1 */
455 while (i < type->cnt - 1) {
456 struct memblock_region *this = &type->regions[i];
457 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 458
7c0caeb8
TH
459 if (this->base + this->size != next->base ||
460 memblock_get_region_node(this) !=
66a20757
TC
461 memblock_get_region_node(next) ||
462 this->flags != next->flags) {
784656f9
TH
463 BUG_ON(this->base + this->size > next->base);
464 i++;
465 continue;
8f7a6605
BH
466 }
467
784656f9 468 this->size += next->size;
c0232ae8
LF
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 471 type->cnt--;
95f72d1e 472 }
784656f9 473}
95f72d1e 474
784656f9
TH
475/**
476 * memblock_insert_region - insert new memblock region
209ff86d
TC
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
66a20757 482 * @flags: flags of the new region
784656f9
TH
483 *
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
412d0008 485 * @type must already have extra room to accommodate the new region.
784656f9
TH
486 */
487static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 int idx, phys_addr_t base,
66a20757
TC
489 phys_addr_t size,
490 int nid, unsigned long flags)
784656f9
TH
491{
492 struct memblock_region *rgn = &type->regions[idx];
493
494 BUG_ON(type->cnt >= type->max);
495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 rgn->base = base;
497 rgn->size = size;
66a20757 498 rgn->flags = flags;
7c0caeb8 499 memblock_set_region_node(rgn, nid);
784656f9 500 type->cnt++;
1440c4e2 501 type->total_size += size;
784656f9
TH
502}
503
504/**
f1af9d3a 505 * memblock_add_range - add new memblock region
784656f9
TH
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
7fb0bc3f 509 * @nid: nid of the new region
66a20757 510 * @flags: flags of the new region
784656f9
TH
511 *
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
516 *
517 * RETURNS:
518 * 0 on success, -errno on failure.
519 */
f1af9d3a 520int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757
TC
521 phys_addr_t base, phys_addr_t size,
522 int nid, unsigned long flags)
784656f9
TH
523{
524 bool insert = false;
eb18f1b5
TH
525 phys_addr_t obase = base;
526 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
527 int idx, nr_new;
528 struct memblock_region *rgn;
784656f9 529
b3dc627c
TH
530 if (!size)
531 return 0;
532
784656f9
TH
533 /* special case for empty array */
534 if (type->regions[0].size == 0) {
1440c4e2 535 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
536 type->regions[0].base = base;
537 type->regions[0].size = size;
66a20757 538 type->regions[0].flags = flags;
7fb0bc3f 539 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 540 type->total_size = size;
8f7a6605 541 return 0;
95f72d1e 542 }
784656f9
TH
543repeat:
544 /*
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
412d0008 547 * to accommodate the new area. The second actually inserts them.
142b45a7 548 */
784656f9
TH
549 base = obase;
550 nr_new = 0;
95f72d1e 551
8c9c1701 552 for_each_memblock_type(type, rgn) {
784656f9
TH
553 phys_addr_t rbase = rgn->base;
554 phys_addr_t rend = rbase + rgn->size;
555
556 if (rbase >= end)
95f72d1e 557 break;
784656f9
TH
558 if (rend <= base)
559 continue;
560 /*
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
563 */
564 if (rbase > base) {
c0a29498
WY
565#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid != memblock_get_region_node(rgn));
567#endif
4fcab5f4 568 WARN_ON(flags != rgn->flags);
784656f9
TH
569 nr_new++;
570 if (insert)
8c9c1701 571 memblock_insert_region(type, idx++, base,
66a20757
TC
572 rbase - base, nid,
573 flags);
95f72d1e 574 }
784656f9
TH
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
95f72d1e 577 }
784656f9
TH
578
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
8c9c1701 583 memblock_insert_region(type, idx, base, end - base,
66a20757 584 nid, flags);
95f72d1e 585 }
95f72d1e 586
ef3cc4db 587 if (!nr_new)
588 return 0;
589
784656f9
TH
590 /*
591 * If this was the first round, resize array and repeat for actual
592 * insertions; otherwise, merge and return.
142b45a7 593 */
784656f9
TH
594 if (!insert) {
595 while (type->cnt + nr_new > type->max)
48c3b583 596 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
597 return -ENOMEM;
598 insert = true;
599 goto repeat;
600 } else {
601 memblock_merge_regions(type);
602 return 0;
142b45a7 603 }
95f72d1e
YL
604}
605
7fb0bc3f
TH
606int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
607 int nid)
608{
f1af9d3a 609 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
610}
611
f705ac4b 612int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 613{
6a4055bc
AK
614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 (unsigned long long)base,
616 (unsigned long long)base + size - 1,
f705ac4b 617 0UL, (void *)_RET_IP_);
6a4055bc 618
f705ac4b 619 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
620}
621
6a9ceb31
TH
622/**
623 * memblock_isolate_range - isolate given range into disjoint memblocks
624 * @type: memblock type to isolate range for
625 * @base: base of range to isolate
626 * @size: size of range to isolate
627 * @start_rgn: out parameter for the start of isolated region
628 * @end_rgn: out parameter for the end of isolated region
629 *
630 * Walk @type and ensure that regions don't cross the boundaries defined by
631 * [@base,@base+@size). Crossing regions are split at the boundaries,
632 * which may create at most two more regions. The index of the first
633 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
634 *
635 * RETURNS:
636 * 0 on success, -errno on failure.
637 */
638static int __init_memblock memblock_isolate_range(struct memblock_type *type,
639 phys_addr_t base, phys_addr_t size,
640 int *start_rgn, int *end_rgn)
641{
eb18f1b5 642 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
643 int idx;
644 struct memblock_region *rgn;
6a9ceb31
TH
645
646 *start_rgn = *end_rgn = 0;
647
b3dc627c
TH
648 if (!size)
649 return 0;
650
6a9ceb31
TH
651 /* we'll create at most two more regions */
652 while (type->cnt + 2 > type->max)
48c3b583 653 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
654 return -ENOMEM;
655
8c9c1701 656 for_each_memblock_type(type, rgn) {
6a9ceb31
TH
657 phys_addr_t rbase = rgn->base;
658 phys_addr_t rend = rbase + rgn->size;
659
660 if (rbase >= end)
661 break;
662 if (rend <= base)
663 continue;
664
665 if (rbase < base) {
666 /*
667 * @rgn intersects from below. Split and continue
668 * to process the next region - the new top half.
669 */
670 rgn->base = base;
1440c4e2
TH
671 rgn->size -= base - rbase;
672 type->total_size -= base - rbase;
8c9c1701 673 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
674 memblock_get_region_node(rgn),
675 rgn->flags);
6a9ceb31
TH
676 } else if (rend > end) {
677 /*
678 * @rgn intersects from above. Split and redo the
679 * current region - the new bottom half.
680 */
681 rgn->base = end;
1440c4e2
TH
682 rgn->size -= end - rbase;
683 type->total_size -= end - rbase;
8c9c1701 684 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
685 memblock_get_region_node(rgn),
686 rgn->flags);
6a9ceb31
TH
687 } else {
688 /* @rgn is fully contained, record it */
689 if (!*end_rgn)
8c9c1701
AK
690 *start_rgn = idx;
691 *end_rgn = idx + 1;
6a9ceb31
TH
692 }
693 }
694
695 return 0;
696}
6a9ceb31 697
35bd16a2 698static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 699 phys_addr_t base, phys_addr_t size)
95f72d1e 700{
71936180
TH
701 int start_rgn, end_rgn;
702 int i, ret;
95f72d1e 703
71936180
TH
704 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
705 if (ret)
706 return ret;
95f72d1e 707
71936180
TH
708 for (i = end_rgn - 1; i >= start_rgn; i--)
709 memblock_remove_region(type, i);
8f7a6605 710 return 0;
95f72d1e
YL
711}
712
581adcbe 713int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 714{
f1af9d3a 715 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
716}
717
f1af9d3a 718
581adcbe 719int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 720{
24aa0788 721 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
a150439c 722 (unsigned long long)base,
931d13f5 723 (unsigned long long)base + size - 1,
a150439c 724 (void *)_RET_IP_);
24aa0788 725
9099daed 726 kmemleak_free_part_phys(base, size);
f1af9d3a 727 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
728}
729
f705ac4b 730int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 731{
66a20757 732 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
a150439c 733 (unsigned long long)base,
931d13f5 734 (unsigned long long)base + size - 1,
f705ac4b 735 0UL, (void *)_RET_IP_);
95f72d1e 736
f705ac4b 737 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
738}
739
66b16edf 740/**
66b16edf 741 *
4308ce17 742 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 743 *
c1153931 744 * Return 0 on success, -errno on failure.
66b16edf 745 */
4308ce17
TL
746static int __init_memblock memblock_setclr_flag(phys_addr_t base,
747 phys_addr_t size, int set, int flag)
66b16edf
TC
748{
749 struct memblock_type *type = &memblock.memory;
750 int i, ret, start_rgn, end_rgn;
751
752 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
753 if (ret)
754 return ret;
755
756 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
757 if (set)
758 memblock_set_region_flags(&type->regions[i], flag);
759 else
760 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
761
762 memblock_merge_regions(type);
763 return 0;
764}
765
766/**
4308ce17 767 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
768 * @base: the base phys addr of the region
769 * @size: the size of the region
770 *
c1153931 771 * Return 0 on success, -errno on failure.
4308ce17
TL
772 */
773int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
774{
775 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
776}
777
778/**
779 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
780 * @base: the base phys addr of the region
781 * @size: the size of the region
66b16edf 782 *
c1153931 783 * Return 0 on success, -errno on failure.
66b16edf
TC
784 */
785int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
786{
4308ce17 787 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
788}
789
a3f5bafc
TL
790/**
791 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
792 * @base: the base phys addr of the region
793 * @size: the size of the region
794 *
c1153931 795 * Return 0 on success, -errno on failure.
a3f5bafc
TL
796 */
797int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
798{
799 system_has_some_mirror = true;
800
801 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
802}
803
bf3d3cc5
AB
804/**
805 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
806 * @base: the base phys addr of the region
807 * @size: the size of the region
808 *
809 * Return 0 on success, -errno on failure.
810 */
811int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
812{
813 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
814}
a3f5bafc 815
bd478231
AT
816/**
817 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
818 * @base: the base phys addr of the region
819 * @size: the size of the region
820 *
821 * Return 0 on success, -errno on failure.
822 */
823int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
824{
825 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
826}
827
8e7a7f86
RH
828/**
829 * __next_reserved_mem_region - next function for for_each_reserved_region()
830 * @idx: pointer to u64 loop variable
831 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
832 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
833 *
834 * Iterate over all reserved memory regions.
835 */
836void __init_memblock __next_reserved_mem_region(u64 *idx,
837 phys_addr_t *out_start,
838 phys_addr_t *out_end)
839{
567d117b 840 struct memblock_type *type = &memblock.reserved;
8e7a7f86 841
cd33a76b 842 if (*idx < type->cnt) {
567d117b 843 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
844 phys_addr_t base = r->base;
845 phys_addr_t size = r->size;
846
847 if (out_start)
848 *out_start = base;
849 if (out_end)
850 *out_end = base + size - 1;
851
852 *idx += 1;
853 return;
854 }
855
856 /* signal end of iteration */
857 *idx = ULLONG_MAX;
858}
859
35fd0808 860/**
f1af9d3a 861 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 862 * @idx: pointer to u64 loop variable
b1154233 863 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 864 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
865 * @type_a: pointer to memblock_type from where the range is taken
866 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
867 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
868 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
869 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 870 *
f1af9d3a 871 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 872 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
873 * *@idx contains index into type_a and the upper 32bit indexes the
874 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
875 * look like the following,
876 *
877 * 0:[0-16), 1:[32-48), 2:[128-130)
878 *
879 * The upper 32bit indexes the following regions.
880 *
881 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
882 *
883 * As both region arrays are sorted, the function advances the two indices
884 * in lockstep and returns each intersection.
885 */
fc6daaf9 886void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
887 struct memblock_type *type_a,
888 struct memblock_type *type_b,
889 phys_addr_t *out_start,
890 phys_addr_t *out_end, int *out_nid)
35fd0808 891{
f1af9d3a
PH
892 int idx_a = *idx & 0xffffffff;
893 int idx_b = *idx >> 32;
b1154233 894
f1af9d3a
PH
895 if (WARN_ONCE(nid == MAX_NUMNODES,
896 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 897 nid = NUMA_NO_NODE;
35fd0808 898
f1af9d3a
PH
899 for (; idx_a < type_a->cnt; idx_a++) {
900 struct memblock_region *m = &type_a->regions[idx_a];
901
35fd0808
TH
902 phys_addr_t m_start = m->base;
903 phys_addr_t m_end = m->base + m->size;
f1af9d3a 904 int m_nid = memblock_get_region_node(m);
35fd0808
TH
905
906 /* only memory regions are associated with nodes, check it */
f1af9d3a 907 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
908 continue;
909
0a313a99
XQ
910 /* skip hotpluggable memory regions if needed */
911 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
912 continue;
913
a3f5bafc
TL
914 /* if we want mirror memory skip non-mirror memory regions */
915 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
916 continue;
917
bf3d3cc5
AB
918 /* skip nomap memory unless we were asked for it explicitly */
919 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
920 continue;
921
f1af9d3a
PH
922 if (!type_b) {
923 if (out_start)
924 *out_start = m_start;
925 if (out_end)
926 *out_end = m_end;
927 if (out_nid)
928 *out_nid = m_nid;
929 idx_a++;
930 *idx = (u32)idx_a | (u64)idx_b << 32;
931 return;
932 }
933
934 /* scan areas before each reservation */
935 for (; idx_b < type_b->cnt + 1; idx_b++) {
936 struct memblock_region *r;
937 phys_addr_t r_start;
938 phys_addr_t r_end;
939
940 r = &type_b->regions[idx_b];
941 r_start = idx_b ? r[-1].base + r[-1].size : 0;
942 r_end = idx_b < type_b->cnt ?
943 r->base : ULLONG_MAX;
35fd0808 944
f1af9d3a
PH
945 /*
946 * if idx_b advanced past idx_a,
947 * break out to advance idx_a
948 */
35fd0808
TH
949 if (r_start >= m_end)
950 break;
951 /* if the two regions intersect, we're done */
952 if (m_start < r_end) {
953 if (out_start)
f1af9d3a
PH
954 *out_start =
955 max(m_start, r_start);
35fd0808
TH
956 if (out_end)
957 *out_end = min(m_end, r_end);
958 if (out_nid)
f1af9d3a 959 *out_nid = m_nid;
35fd0808 960 /*
f1af9d3a
PH
961 * The region which ends first is
962 * advanced for the next iteration.
35fd0808
TH
963 */
964 if (m_end <= r_end)
f1af9d3a 965 idx_a++;
35fd0808 966 else
f1af9d3a
PH
967 idx_b++;
968 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
969 return;
970 }
971 }
972 }
973
974 /* signal end of iteration */
975 *idx = ULLONG_MAX;
976}
977
7bd0b0f0 978/**
f1af9d3a
PH
979 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
980 *
981 * Finds the next range from type_a which is not marked as unsuitable
982 * in type_b.
983 *
7bd0b0f0 984 * @idx: pointer to u64 loop variable
ad5ea8cd 985 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 986 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
987 * @type_a: pointer to memblock_type from where the range is taken
988 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
989 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
990 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
991 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 992 *
f1af9d3a 993 * Reverse of __next_mem_range().
7bd0b0f0 994 */
fc6daaf9 995void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
996 struct memblock_type *type_a,
997 struct memblock_type *type_b,
998 phys_addr_t *out_start,
999 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1000{
f1af9d3a
PH
1001 int idx_a = *idx & 0xffffffff;
1002 int idx_b = *idx >> 32;
b1154233 1003
560dca27
GS
1004 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1005 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1006
1007 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1008 idx_a = type_a->cnt - 1;
e47608ab 1009 if (type_b != NULL)
1010 idx_b = type_b->cnt;
1011 else
1012 idx_b = 0;
7bd0b0f0
TH
1013 }
1014
f1af9d3a
PH
1015 for (; idx_a >= 0; idx_a--) {
1016 struct memblock_region *m = &type_a->regions[idx_a];
1017
7bd0b0f0
TH
1018 phys_addr_t m_start = m->base;
1019 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1020 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1021
1022 /* only memory regions are associated with nodes, check it */
f1af9d3a 1023 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1024 continue;
1025
55ac590c
TC
1026 /* skip hotpluggable memory regions if needed */
1027 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1028 continue;
1029
a3f5bafc
TL
1030 /* if we want mirror memory skip non-mirror memory regions */
1031 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1032 continue;
1033
bf3d3cc5
AB
1034 /* skip nomap memory unless we were asked for it explicitly */
1035 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1036 continue;
1037
f1af9d3a
PH
1038 if (!type_b) {
1039 if (out_start)
1040 *out_start = m_start;
1041 if (out_end)
1042 *out_end = m_end;
1043 if (out_nid)
1044 *out_nid = m_nid;
fb399b48 1045 idx_a--;
f1af9d3a
PH
1046 *idx = (u32)idx_a | (u64)idx_b << 32;
1047 return;
1048 }
1049
1050 /* scan areas before each reservation */
1051 for (; idx_b >= 0; idx_b--) {
1052 struct memblock_region *r;
1053 phys_addr_t r_start;
1054 phys_addr_t r_end;
1055
1056 r = &type_b->regions[idx_b];
1057 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058 r_end = idx_b < type_b->cnt ?
1059 r->base : ULLONG_MAX;
1060 /*
1061 * if idx_b advanced past idx_a,
1062 * break out to advance idx_a
1063 */
7bd0b0f0 1064
7bd0b0f0
TH
1065 if (r_end <= m_start)
1066 break;
1067 /* if the two regions intersect, we're done */
1068 if (m_end > r_start) {
1069 if (out_start)
1070 *out_start = max(m_start, r_start);
1071 if (out_end)
1072 *out_end = min(m_end, r_end);
1073 if (out_nid)
f1af9d3a 1074 *out_nid = m_nid;
7bd0b0f0 1075 if (m_start >= r_start)
f1af9d3a 1076 idx_a--;
7bd0b0f0 1077 else
f1af9d3a
PH
1078 idx_b--;
1079 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1080 return;
1081 }
1082 }
1083 }
f1af9d3a 1084 /* signal end of iteration */
7bd0b0f0
TH
1085 *idx = ULLONG_MAX;
1086}
1087
7c0caeb8
TH
1088#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1089/*
1090 * Common iterator interface used to define for_each_mem_range().
1091 */
1092void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1093 unsigned long *out_start_pfn,
1094 unsigned long *out_end_pfn, int *out_nid)
1095{
1096 struct memblock_type *type = &memblock.memory;
1097 struct memblock_region *r;
1098
1099 while (++*idx < type->cnt) {
1100 r = &type->regions[*idx];
1101
1102 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1103 continue;
1104 if (nid == MAX_NUMNODES || nid == r->nid)
1105 break;
1106 }
1107 if (*idx >= type->cnt) {
1108 *idx = -1;
1109 return;
1110 }
1111
1112 if (out_start_pfn)
1113 *out_start_pfn = PFN_UP(r->base);
1114 if (out_end_pfn)
1115 *out_end_pfn = PFN_DOWN(r->base + r->size);
1116 if (out_nid)
1117 *out_nid = r->nid;
1118}
1119
1120/**
1121 * memblock_set_node - set node ID on memblock regions
1122 * @base: base of area to set node ID for
1123 * @size: size of area to set node ID for
e7e8de59 1124 * @type: memblock type to set node ID for
7c0caeb8
TH
1125 * @nid: node ID to set
1126 *
e7e8de59 1127 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
7c0caeb8
TH
1128 * Regions which cross the area boundaries are split as necessary.
1129 *
1130 * RETURNS:
1131 * 0 on success, -errno on failure.
1132 */
1133int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1134 struct memblock_type *type, int nid)
7c0caeb8 1135{
6a9ceb31
TH
1136 int start_rgn, end_rgn;
1137 int i, ret;
7c0caeb8 1138
6a9ceb31
TH
1139 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1140 if (ret)
1141 return ret;
7c0caeb8 1142
6a9ceb31 1143 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1144 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1145
1146 memblock_merge_regions(type);
1147 return 0;
1148}
1149#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1150
2bfc2862
AM
1151static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1152 phys_addr_t align, phys_addr_t start,
fc6daaf9 1153 phys_addr_t end, int nid, ulong flags)
95f72d1e 1154{
6ed311b2 1155 phys_addr_t found;
95f72d1e 1156
79f40fab
GS
1157 if (!align)
1158 align = SMP_CACHE_BYTES;
94f3d3af 1159
fc6daaf9
TL
1160 found = memblock_find_in_range_node(size, align, start, end, nid,
1161 flags);
aedf95ea
CM
1162 if (found && !memblock_reserve(found, size)) {
1163 /*
1164 * The min_count is set to 0 so that memblock allocations are
1165 * never reported as leaks.
1166 */
9099daed 1167 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1168 return found;
aedf95ea 1169 }
6ed311b2 1170 return 0;
95f72d1e
YL
1171}
1172
2bfc2862 1173phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9
TL
1174 phys_addr_t start, phys_addr_t end,
1175 ulong flags)
2bfc2862 1176{
fc6daaf9
TL
1177 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1178 flags);
2bfc2862
AM
1179}
1180
1181static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1182 phys_addr_t align, phys_addr_t max_addr,
fc6daaf9 1183 int nid, ulong flags)
2bfc2862 1184{
fc6daaf9 1185 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1186}
1187
7bd0b0f0
TH
1188phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1189{
a3f5bafc
TL
1190 ulong flags = choose_memblock_flags();
1191 phys_addr_t ret;
1192
1193again:
1194 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1195 nid, flags);
1196
1197 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1198 flags &= ~MEMBLOCK_MIRROR;
1199 goto again;
1200 }
1201 return ret;
7bd0b0f0
TH
1202}
1203
1204phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1205{
fc6daaf9
TL
1206 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1207 MEMBLOCK_NONE);
7bd0b0f0
TH
1208}
1209
6ed311b2 1210phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1211{
6ed311b2
BH
1212 phys_addr_t alloc;
1213
1214 alloc = __memblock_alloc_base(size, align, max_addr);
1215
1216 if (alloc == 0)
1217 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1218 (unsigned long long) size, (unsigned long long) max_addr);
1219
1220 return alloc;
95f72d1e
YL
1221}
1222
6ed311b2 1223phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1224{
6ed311b2
BH
1225 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1226}
95f72d1e 1227
9d1e2492
BH
1228phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1229{
1230 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1231
1232 if (res)
1233 return res;
15fb0972 1234 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1235}
1236
26f09e9b
SS
1237/**
1238 * memblock_virt_alloc_internal - allocate boot memory block
1239 * @size: size of memory block to be allocated in bytes
1240 * @align: alignment of the region and block's size
1241 * @min_addr: the lower bound of the memory region to allocate (phys address)
1242 * @max_addr: the upper bound of the memory region to allocate (phys address)
1243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1244 *
1245 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1246 * will fall back to memory below @min_addr. Also, allocation may fall back
1247 * to any node in the system if the specified node can not
1248 * hold the requested memory.
1249 *
1250 * The allocation is performed from memory region limited by
1251 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1252 *
1253 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1254 *
1255 * The phys address of allocated boot memory block is converted to virtual and
1256 * allocated memory is reset to 0.
1257 *
1258 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1259 * allocated boot memory block, so that it is never reported as leaks.
1260 *
1261 * RETURNS:
1262 * Virtual address of allocated memory block on success, NULL on failure.
1263 */
1264static void * __init memblock_virt_alloc_internal(
1265 phys_addr_t size, phys_addr_t align,
1266 phys_addr_t min_addr, phys_addr_t max_addr,
1267 int nid)
1268{
1269 phys_addr_t alloc;
1270 void *ptr;
a3f5bafc 1271 ulong flags = choose_memblock_flags();
26f09e9b 1272
560dca27
GS
1273 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1274 nid = NUMA_NO_NODE;
26f09e9b
SS
1275
1276 /*
1277 * Detect any accidental use of these APIs after slab is ready, as at
1278 * this moment memblock may be deinitialized already and its
1279 * internal data may be destroyed (after execution of free_all_bootmem)
1280 */
1281 if (WARN_ON_ONCE(slab_is_available()))
1282 return kzalloc_node(size, GFP_NOWAIT, nid);
1283
1284 if (!align)
1285 align = SMP_CACHE_BYTES;
1286
f544e14f
YL
1287 if (max_addr > memblock.current_limit)
1288 max_addr = memblock.current_limit;
1289
26f09e9b
SS
1290again:
1291 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1292 nid, flags);
26f09e9b
SS
1293 if (alloc)
1294 goto done;
1295
1296 if (nid != NUMA_NO_NODE) {
1297 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1298 max_addr, NUMA_NO_NODE,
a3f5bafc 1299 flags);
26f09e9b
SS
1300 if (alloc)
1301 goto done;
1302 }
1303
1304 if (min_addr) {
1305 min_addr = 0;
1306 goto again;
26f09e9b
SS
1307 }
1308
a3f5bafc
TL
1309 if (flags & MEMBLOCK_MIRROR) {
1310 flags &= ~MEMBLOCK_MIRROR;
1311 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1312 &size);
1313 goto again;
1314 }
1315
1316 return NULL;
26f09e9b
SS
1317done:
1318 memblock_reserve(alloc, size);
1319 ptr = phys_to_virt(alloc);
1320 memset(ptr, 0, size);
1321
1322 /*
1323 * The min_count is set to 0 so that bootmem allocated blocks
1324 * are never reported as leaks. This is because many of these blocks
1325 * are only referred via the physical address which is not
1326 * looked up by kmemleak.
1327 */
1328 kmemleak_alloc(ptr, size, 0, 0);
1329
1330 return ptr;
26f09e9b
SS
1331}
1332
1333/**
1334 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1335 * @size: size of memory block to be allocated in bytes
1336 * @align: alignment of the region and block's size
1337 * @min_addr: the lower bound of the memory region from where the allocation
1338 * is preferred (phys address)
1339 * @max_addr: the upper bound of the memory region from where the allocation
1340 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1341 * allocate only from memory limited by memblock.current_limit value
1342 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1343 *
1344 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1345 * additional debug information (including caller info), if enabled.
1346 *
1347 * RETURNS:
1348 * Virtual address of allocated memory block on success, NULL on failure.
1349 */
1350void * __init memblock_virt_alloc_try_nid_nopanic(
1351 phys_addr_t size, phys_addr_t align,
1352 phys_addr_t min_addr, phys_addr_t max_addr,
1353 int nid)
1354{
1355 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1356 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1357 (u64)max_addr, (void *)_RET_IP_);
1358 return memblock_virt_alloc_internal(size, align, min_addr,
1359 max_addr, nid);
1360}
1361
1362/**
1363 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1364 * @size: size of memory block to be allocated in bytes
1365 * @align: alignment of the region and block's size
1366 * @min_addr: the lower bound of the memory region from where the allocation
1367 * is preferred (phys address)
1368 * @max_addr: the upper bound of the memory region from where the allocation
1369 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1370 * allocate only from memory limited by memblock.current_limit value
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1372 *
1373 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1374 * which provides debug information (including caller info), if enabled,
1375 * and panics if the request can not be satisfied.
1376 *
1377 * RETURNS:
1378 * Virtual address of allocated memory block on success, NULL on failure.
1379 */
1380void * __init memblock_virt_alloc_try_nid(
1381 phys_addr_t size, phys_addr_t align,
1382 phys_addr_t min_addr, phys_addr_t max_addr,
1383 int nid)
1384{
1385 void *ptr;
1386
1387 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1388 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1389 (u64)max_addr, (void *)_RET_IP_);
1390 ptr = memblock_virt_alloc_internal(size, align,
1391 min_addr, max_addr, nid);
1392 if (ptr)
1393 return ptr;
1394
1395 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1396 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1397 (u64)max_addr);
1398 return NULL;
1399}
1400
1401/**
1402 * __memblock_free_early - free boot memory block
1403 * @base: phys starting address of the boot memory block
1404 * @size: size of the boot memory block in bytes
1405 *
1406 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1407 * The freeing memory will not be released to the buddy allocator.
1408 */
1409void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1410{
1411 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1412 __func__, (u64)base, (u64)base + size - 1,
1413 (void *)_RET_IP_);
9099daed 1414 kmemleak_free_part_phys(base, size);
f1af9d3a 1415 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1416}
1417
1418/*
1419 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1420 * @addr: phys starting address of the boot memory block
1421 * @size: size of the boot memory block in bytes
1422 *
1423 * This is only useful when the bootmem allocator has already been torn
1424 * down, but we are still initializing the system. Pages are released directly
1425 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1426 */
1427void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1428{
1429 u64 cursor, end;
1430
1431 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1432 __func__, (u64)base, (u64)base + size - 1,
1433 (void *)_RET_IP_);
9099daed 1434 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1435 cursor = PFN_UP(base);
1436 end = PFN_DOWN(base + size);
1437
1438 for (; cursor < end; cursor++) {
d70ddd7a 1439 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1440 totalram_pages++;
1441 }
1442}
9d1e2492
BH
1443
1444/*
1445 * Remaining API functions
1446 */
1447
1f1ffb8a 1448phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1449{
1440c4e2 1450 return memblock.memory.total_size;
95f72d1e
YL
1451}
1452
8907de5d
SD
1453phys_addr_t __init_memblock memblock_reserved_size(void)
1454{
1455 return memblock.reserved.total_size;
1456}
1457
595ad9af
YL
1458phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1459{
1460 unsigned long pages = 0;
1461 struct memblock_region *r;
1462 unsigned long start_pfn, end_pfn;
1463
1464 for_each_memblock(memory, r) {
1465 start_pfn = memblock_region_memory_base_pfn(r);
1466 end_pfn = memblock_region_memory_end_pfn(r);
1467 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1468 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1469 pages += end_pfn - start_pfn;
1470 }
1471
16763230 1472 return PFN_PHYS(pages);
595ad9af
YL
1473}
1474
0a93ebef
SR
1475/* lowest address */
1476phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1477{
1478 return memblock.memory.regions[0].base;
1479}
1480
10d06439 1481phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1482{
1483 int idx = memblock.memory.cnt - 1;
1484
e3239ff9 1485 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1486}
1487
a571d4eb 1488static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1489{
c0ce8fef 1490 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
136199f0 1491 struct memblock_region *r;
95f72d1e 1492
a571d4eb
DC
1493 /*
1494 * translate the memory @limit size into the max address within one of
1495 * the memory memblock regions, if the @limit exceeds the total size
1496 * of those regions, max_addr will keep original value ULLONG_MAX
1497 */
136199f0 1498 for_each_memblock(memory, r) {
c0ce8fef
TH
1499 if (limit <= r->size) {
1500 max_addr = r->base + limit;
1501 break;
95f72d1e 1502 }
c0ce8fef 1503 limit -= r->size;
95f72d1e 1504 }
c0ce8fef 1505
a571d4eb
DC
1506 return max_addr;
1507}
1508
1509void __init memblock_enforce_memory_limit(phys_addr_t limit)
1510{
1511 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1512
1513 if (!limit)
1514 return;
1515
1516 max_addr = __find_max_addr(limit);
1517
1518 /* @limit exceeds the total size of the memory, do nothing */
1519 if (max_addr == (phys_addr_t)ULLONG_MAX)
1520 return;
1521
c0ce8fef 1522 /* truncate both memory and reserved regions */
f1af9d3a
PH
1523 memblock_remove_range(&memblock.memory, max_addr,
1524 (phys_addr_t)ULLONG_MAX);
1525 memblock_remove_range(&memblock.reserved, max_addr,
1526 (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
1527}
1528
922415a4
AT
1529void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1530{
1531 int start_rgn, end_rgn;
1532 int i, ret;
1533
1534 if (!size)
1535 return;
1536
1537 ret = memblock_isolate_range(&memblock.memory, base, size,
1538 &start_rgn, &end_rgn);
1539 if (ret)
1540 return;
1541
1542 /* remove all the MAP regions */
1543 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1544 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1545 memblock_remove_region(&memblock.memory, i);
1546
1547 for (i = start_rgn - 1; i >= 0; i--)
1548 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1549 memblock_remove_region(&memblock.memory, i);
1550
1551 /* truncate the reserved regions */
1552 memblock_remove_range(&memblock.reserved, 0, base);
1553 memblock_remove_range(&memblock.reserved,
1554 base + size, (phys_addr_t)ULLONG_MAX);
1555}
1556
a571d4eb
DC
1557void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1558{
a571d4eb 1559 phys_addr_t max_addr;
a571d4eb
DC
1560
1561 if (!limit)
1562 return;
1563
1564 max_addr = __find_max_addr(limit);
1565
1566 /* @limit exceeds the total size of the memory, do nothing */
1567 if (max_addr == (phys_addr_t)ULLONG_MAX)
1568 return;
1569
922415a4 1570 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1571}
1572
cd79481d 1573static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1574{
1575 unsigned int left = 0, right = type->cnt;
1576
1577 do {
1578 unsigned int mid = (right + left) / 2;
1579
1580 if (addr < type->regions[mid].base)
1581 right = mid;
1582 else if (addr >= (type->regions[mid].base +
1583 type->regions[mid].size))
1584 left = mid + 1;
1585 else
1586 return mid;
1587 } while (left < right);
1588 return -1;
1589}
1590
b4ad0c7e 1591bool __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1592{
72d4b0b4
BH
1593 return memblock_search(&memblock.reserved, addr) != -1;
1594}
95f72d1e 1595
b4ad0c7e 1596bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1597{
1598 return memblock_search(&memblock.memory, addr) != -1;
1599}
1600
bf3d3cc5
AB
1601int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1602{
1603 int i = memblock_search(&memblock.memory, addr);
1604
1605 if (i == -1)
1606 return false;
1607 return !memblock_is_nomap(&memblock.memory.regions[i]);
1608}
1609
e76b63f8
YL
1610#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1611int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1612 unsigned long *start_pfn, unsigned long *end_pfn)
1613{
1614 struct memblock_type *type = &memblock.memory;
16763230 1615 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1616
1617 if (mid == -1)
1618 return -1;
1619
f7e2f7e8
FF
1620 *start_pfn = PFN_DOWN(type->regions[mid].base);
1621 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1622
1623 return type->regions[mid].nid;
1624}
1625#endif
1626
eab30949
SB
1627/**
1628 * memblock_is_region_memory - check if a region is a subset of memory
1629 * @base: base of region to check
1630 * @size: size of region to check
1631 *
1632 * Check if the region [@base, @base+@size) is a subset of a memory block.
1633 *
1634 * RETURNS:
1635 * 0 if false, non-zero if true
1636 */
3661ca66 1637int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1638{
abb65272 1639 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1640 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1641
1642 if (idx == -1)
1643 return 0;
abb65272
TV
1644 return memblock.memory.regions[idx].base <= base &&
1645 (memblock.memory.regions[idx].base +
eb18f1b5 1646 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1647}
1648
eab30949
SB
1649/**
1650 * memblock_is_region_reserved - check if a region intersects reserved memory
1651 * @base: base of region to check
1652 * @size: size of region to check
1653 *
1654 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1655 *
1656 * RETURNS:
c5c5c9d1 1657 * True if they intersect, false if not.
eab30949 1658 */
c5c5c9d1 1659bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1660{
eb18f1b5 1661 memblock_cap_size(base, &size);
c5c5c9d1 1662 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1663}
1664
6ede1fd3
YL
1665void __init_memblock memblock_trim_memory(phys_addr_t align)
1666{
6ede1fd3 1667 phys_addr_t start, end, orig_start, orig_end;
136199f0 1668 struct memblock_region *r;
6ede1fd3 1669
136199f0
EM
1670 for_each_memblock(memory, r) {
1671 orig_start = r->base;
1672 orig_end = r->base + r->size;
6ede1fd3
YL
1673 start = round_up(orig_start, align);
1674 end = round_down(orig_end, align);
1675
1676 if (start == orig_start && end == orig_end)
1677 continue;
1678
1679 if (start < end) {
136199f0
EM
1680 r->base = start;
1681 r->size = end - start;
6ede1fd3 1682 } else {
136199f0
EM
1683 memblock_remove_region(&memblock.memory,
1684 r - memblock.memory.regions);
1685 r--;
6ede1fd3
YL
1686 }
1687 }
1688}
e63075a3 1689
3661ca66 1690void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1691{
1692 memblock.current_limit = limit;
1693}
1694
fec51014
LA
1695phys_addr_t __init_memblock memblock_get_current_limit(void)
1696{
1697 return memblock.current_limit;
1698}
1699
7c0caeb8 1700static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
6ed311b2
BH
1701{
1702 unsigned long long base, size;
66a20757 1703 unsigned long flags;
8c9c1701
AK
1704 int idx;
1705 struct memblock_region *rgn;
6ed311b2 1706
7c0caeb8 1707 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
6ed311b2 1708
8c9c1701 1709 for_each_memblock_type(type, rgn) {
7c0caeb8
TH
1710 char nid_buf[32] = "";
1711
1712 base = rgn->base;
1713 size = rgn->size;
66a20757 1714 flags = rgn->flags;
7c0caeb8
TH
1715#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1716 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1717 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1718 memblock_get_region_node(rgn));
1719#endif
66a20757 1720 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
8c9c1701 1721 name, idx, base, base + size - 1, size, nid_buf, flags);
6ed311b2
BH
1722 }
1723}
1724
4ff7b82f 1725void __init_memblock __memblock_dump_all(void)
6ed311b2 1726{
6ed311b2 1727 pr_info("MEMBLOCK configuration:\n");
1440c4e2
TH
1728 pr_info(" memory size = %#llx reserved size = %#llx\n",
1729 (unsigned long long)memblock.memory.total_size,
1730 (unsigned long long)memblock.reserved.total_size);
6ed311b2
BH
1731
1732 memblock_dump(&memblock.memory, "memory");
1733 memblock_dump(&memblock.reserved, "reserved");
1734}
1735
1aadc056 1736void __init memblock_allow_resize(void)
6ed311b2 1737{
142b45a7 1738 memblock_can_resize = 1;
6ed311b2
BH
1739}
1740
6ed311b2
BH
1741static int __init early_memblock(char *p)
1742{
1743 if (p && strstr(p, "debug"))
1744 memblock_debug = 1;
1745 return 0;
1746}
1747early_param("memblock", early_memblock);
1748
c378ddd5 1749#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1750
1751static int memblock_debug_show(struct seq_file *m, void *private)
1752{
1753 struct memblock_type *type = m->private;
1754 struct memblock_region *reg;
1755 int i;
1756
1757 for (i = 0; i < type->cnt; i++) {
1758 reg = &type->regions[i];
1759 seq_printf(m, "%4d: ", i);
1760 if (sizeof(phys_addr_t) == 4)
1761 seq_printf(m, "0x%08lx..0x%08lx\n",
1762 (unsigned long)reg->base,
1763 (unsigned long)(reg->base + reg->size - 1));
1764 else
1765 seq_printf(m, "0x%016llx..0x%016llx\n",
1766 (unsigned long long)reg->base,
1767 (unsigned long long)(reg->base + reg->size - 1));
1768
1769 }
1770 return 0;
1771}
1772
1773static int memblock_debug_open(struct inode *inode, struct file *file)
1774{
1775 return single_open(file, memblock_debug_show, inode->i_private);
1776}
1777
1778static const struct file_operations memblock_debug_fops = {
1779 .open = memblock_debug_open,
1780 .read = seq_read,
1781 .llseek = seq_lseek,
1782 .release = single_release,
1783};
1784
1785static int __init memblock_init_debugfs(void)
1786{
1787 struct dentry *root = debugfs_create_dir("memblock", NULL);
1788 if (!root)
1789 return -ENXIO;
1790 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1791 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
70210ed9
PH
1792#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1793 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1794#endif
6d03b885
BH
1795
1796 return 0;
1797}
1798__initcall(memblock_init_debugfs);
1799
1800#endif /* CONFIG_DEBUG_FS */