]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memblock.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86 * Address comparison utilities
87 */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
90 {
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
94 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
96 {
97 unsigned long i;
98
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
102 break;
103 return i < type->cnt;
104 }
105
106 /*
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
114 *
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116 *
117 * RETURNS:
118 * Found address on success, 0 on failure.
119 */
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
124 {
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
127
128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
131
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
135 }
136
137 return 0;
138 }
139
140 /**
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
148 *
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
150 *
151 * RETURNS:
152 * Found address on success, 0 on failure.
153 */
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
158 {
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
161
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
166
167 if (this_end < size)
168 continue;
169
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
173 }
174
175 return 0;
176 }
177
178 /**
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
186 *
187 * Find @size free area aligned to @align in the specified range and node.
188 *
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
194 *
195 * If bottom-up allocation failed, will try to allocate memory top-down.
196 *
197 * RETURNS:
198 * Found address on success, 0 on failure.
199 */
200 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
202 phys_addr_t end, int nid, ulong flags)
203 {
204 phys_addr_t kernel_end, ret;
205
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
209
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
213 kernel_end = __pa_symbol(_end);
214
215 /*
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
218 */
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
221
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
224
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
227 size, align, nid, flags);
228 if (ret)
229 return ret;
230
231 /*
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
236 *
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
240 */
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
242 }
243
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
246 }
247
248 /**
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
254 *
255 * Find @size free area aligned to @align in the specified range.
256 *
257 * RETURNS:
258 * Found address on success, 0 on failure.
259 */
260 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
263 {
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
266
267 again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
270
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
276 }
277
278 return ret;
279 }
280
281 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
282 {
283 type->total_size -= type->regions[r].size;
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
286 type->cnt--;
287
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
290 WARN_ON(type->total_size != 0);
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
294 type->regions[0].flags = 0;
295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
296 }
297 }
298
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300
301 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 phys_addr_t *addr)
303 {
304 if (memblock.reserved.regions == memblock_reserved_init_regions)
305 return 0;
306
307 *addr = __pa(memblock.reserved.regions);
308
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
311 }
312
313 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 phys_addr_t *addr)
315 {
316 if (memblock.memory.regions == memblock_memory_init_regions)
317 return 0;
318
319 *addr = __pa(memblock.memory.regions);
320
321 return PAGE_ALIGN(sizeof(struct memblock_region) *
322 memblock.memory.max);
323 }
324
325 #endif
326
327 /**
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
332 *
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
337 * not overlap.
338 *
339 * RETURNS:
340 * 0 on success, -1 on failure.
341 */
342 static int __init_memblock memblock_double_array(struct memblock_type *type,
343 phys_addr_t new_area_start,
344 phys_addr_t new_area_size)
345 {
346 struct memblock_region *new_array, *old_array;
347 phys_addr_t old_alloc_size, new_alloc_size;
348 phys_addr_t old_size, new_size, addr;
349 int use_slab = slab_is_available();
350 int *in_slab;
351
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
354 */
355 if (!memblock_can_resize)
356 return -1;
357
358 /* Calculate new doubled size */
359 old_size = type->max * sizeof(struct memblock_region);
360 new_size = old_size << 1;
361 /*
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
364 */
365 old_alloc_size = PAGE_ALIGN(old_size);
366 new_alloc_size = PAGE_ALIGN(new_size);
367
368 /* Retrieve the slab flag */
369 if (type == &memblock.memory)
370 in_slab = &memblock_memory_in_slab;
371 else
372 in_slab = &memblock_reserved_in_slab;
373
374 /* Try to find some space for it.
375 *
376 * WARNING: We assume that either slab_is_available() and we use it or
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
380 *
381 * This should however not be an issue for now, as we currently only
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
384 */
385 if (use_slab) {
386 new_array = kmalloc(new_size, GFP_KERNEL);
387 addr = new_array ? __pa(new_array) : 0;
388 } else {
389 /* only exclude range when trying to double reserved.regions */
390 if (type != &memblock.reserved)
391 new_area_start = new_area_size = 0;
392
393 addr = memblock_find_in_range(new_area_start + new_area_size,
394 memblock.current_limit,
395 new_alloc_size, PAGE_SIZE);
396 if (!addr && new_area_size)
397 addr = memblock_find_in_range(0,
398 min(new_area_start, memblock.current_limit),
399 new_alloc_size, PAGE_SIZE);
400
401 new_array = addr ? __va(addr) : NULL;
402 }
403 if (!addr) {
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type), type->max, type->max * 2);
406 return -1;
407 }
408
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type), type->max * 2, (u64)addr,
411 (u64)addr + new_size - 1);
412
413 /*
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
416 * full.
417 */
418 memcpy(new_array, type->regions, old_size);
419 memset(new_array + type->max, 0, old_size);
420 old_array = type->regions;
421 type->regions = new_array;
422 type->max <<= 1;
423
424 /* Free old array. We needn't free it if the array is the static one */
425 if (*in_slab)
426 kfree(old_array);
427 else if (old_array != memblock_memory_init_regions &&
428 old_array != memblock_reserved_init_regions)
429 memblock_free(__pa(old_array), old_alloc_size);
430
431 /*
432 * Reserve the new array if that comes from the memblock. Otherwise, we
433 * needn't do it
434 */
435 if (!use_slab)
436 BUG_ON(memblock_reserve(addr, new_alloc_size));
437
438 /* Update slab flag */
439 *in_slab = use_slab;
440
441 return 0;
442 }
443
444 /**
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
447 *
448 * Scan @type and merge neighboring compatible regions.
449 */
450 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
451 {
452 int i = 0;
453
454 /* cnt never goes below 1 */
455 while (i < type->cnt - 1) {
456 struct memblock_region *this = &type->regions[i];
457 struct memblock_region *next = &type->regions[i + 1];
458
459 if (this->base + this->size != next->base ||
460 memblock_get_region_node(this) !=
461 memblock_get_region_node(next) ||
462 this->flags != next->flags) {
463 BUG_ON(this->base + this->size > next->base);
464 i++;
465 continue;
466 }
467
468 this->size += next->size;
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
471 type->cnt--;
472 }
473 }
474
475 /**
476 * memblock_insert_region - insert new memblock region
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
482 * @flags: flags of the new region
483 *
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accommodate the new region.
486 */
487 static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 int idx, phys_addr_t base,
489 phys_addr_t size,
490 int nid, unsigned long flags)
491 {
492 struct memblock_region *rgn = &type->regions[idx];
493
494 BUG_ON(type->cnt >= type->max);
495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 rgn->base = base;
497 rgn->size = size;
498 rgn->flags = flags;
499 memblock_set_region_node(rgn, nid);
500 type->cnt++;
501 type->total_size += size;
502 }
503
504 /**
505 * memblock_add_range - add new memblock region
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
509 * @nid: nid of the new region
510 * @flags: flags of the new region
511 *
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
516 *
517 * RETURNS:
518 * 0 on success, -errno on failure.
519 */
520 int __init_memblock memblock_add_range(struct memblock_type *type,
521 phys_addr_t base, phys_addr_t size,
522 int nid, unsigned long flags)
523 {
524 bool insert = false;
525 phys_addr_t obase = base;
526 phys_addr_t end = base + memblock_cap_size(base, &size);
527 int idx, nr_new;
528 struct memblock_region *rgn;
529
530 if (!size)
531 return 0;
532
533 /* special case for empty array */
534 if (type->regions[0].size == 0) {
535 WARN_ON(type->cnt != 1 || type->total_size);
536 type->regions[0].base = base;
537 type->regions[0].size = size;
538 type->regions[0].flags = flags;
539 memblock_set_region_node(&type->regions[0], nid);
540 type->total_size = size;
541 return 0;
542 }
543 repeat:
544 /*
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accommodate the new area. The second actually inserts them.
548 */
549 base = obase;
550 nr_new = 0;
551
552 for_each_memblock_type(type, rgn) {
553 phys_addr_t rbase = rgn->base;
554 phys_addr_t rend = rbase + rgn->size;
555
556 if (rbase >= end)
557 break;
558 if (rend <= base)
559 continue;
560 /*
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
563 */
564 if (rbase > base) {
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid != memblock_get_region_node(rgn));
567 #endif
568 WARN_ON(flags != rgn->flags);
569 nr_new++;
570 if (insert)
571 memblock_insert_region(type, idx++, base,
572 rbase - base, nid,
573 flags);
574 }
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
577 }
578
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
583 memblock_insert_region(type, idx, base, end - base,
584 nid, flags);
585 }
586
587 if (!nr_new)
588 return 0;
589
590 /*
591 * If this was the first round, resize array and repeat for actual
592 * insertions; otherwise, merge and return.
593 */
594 if (!insert) {
595 while (type->cnt + nr_new > type->max)
596 if (memblock_double_array(type, obase, size) < 0)
597 return -ENOMEM;
598 insert = true;
599 goto repeat;
600 } else {
601 memblock_merge_regions(type);
602 return 0;
603 }
604 }
605
606 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
607 int nid)
608 {
609 return memblock_add_range(&memblock.memory, base, size, nid, 0);
610 }
611
612 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
613 {
614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 (unsigned long long)base,
616 (unsigned long long)base + size - 1,
617 0UL, (void *)_RET_IP_);
618
619 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
620 }
621
622 /**
623 * memblock_isolate_range - isolate given range into disjoint memblocks
624 * @type: memblock type to isolate range for
625 * @base: base of range to isolate
626 * @size: size of range to isolate
627 * @start_rgn: out parameter for the start of isolated region
628 * @end_rgn: out parameter for the end of isolated region
629 *
630 * Walk @type and ensure that regions don't cross the boundaries defined by
631 * [@base,@base+@size). Crossing regions are split at the boundaries,
632 * which may create at most two more regions. The index of the first
633 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
634 *
635 * RETURNS:
636 * 0 on success, -errno on failure.
637 */
638 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
639 phys_addr_t base, phys_addr_t size,
640 int *start_rgn, int *end_rgn)
641 {
642 phys_addr_t end = base + memblock_cap_size(base, &size);
643 int idx;
644 struct memblock_region *rgn;
645
646 *start_rgn = *end_rgn = 0;
647
648 if (!size)
649 return 0;
650
651 /* we'll create at most two more regions */
652 while (type->cnt + 2 > type->max)
653 if (memblock_double_array(type, base, size) < 0)
654 return -ENOMEM;
655
656 for_each_memblock_type(type, rgn) {
657 phys_addr_t rbase = rgn->base;
658 phys_addr_t rend = rbase + rgn->size;
659
660 if (rbase >= end)
661 break;
662 if (rend <= base)
663 continue;
664
665 if (rbase < base) {
666 /*
667 * @rgn intersects from below. Split and continue
668 * to process the next region - the new top half.
669 */
670 rgn->base = base;
671 rgn->size -= base - rbase;
672 type->total_size -= base - rbase;
673 memblock_insert_region(type, idx, rbase, base - rbase,
674 memblock_get_region_node(rgn),
675 rgn->flags);
676 } else if (rend > end) {
677 /*
678 * @rgn intersects from above. Split and redo the
679 * current region - the new bottom half.
680 */
681 rgn->base = end;
682 rgn->size -= end - rbase;
683 type->total_size -= end - rbase;
684 memblock_insert_region(type, idx--, rbase, end - rbase,
685 memblock_get_region_node(rgn),
686 rgn->flags);
687 } else {
688 /* @rgn is fully contained, record it */
689 if (!*end_rgn)
690 *start_rgn = idx;
691 *end_rgn = idx + 1;
692 }
693 }
694
695 return 0;
696 }
697
698 static int __init_memblock memblock_remove_range(struct memblock_type *type,
699 phys_addr_t base, phys_addr_t size)
700 {
701 int start_rgn, end_rgn;
702 int i, ret;
703
704 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
705 if (ret)
706 return ret;
707
708 for (i = end_rgn - 1; i >= start_rgn; i--)
709 memblock_remove_region(type, i);
710 return 0;
711 }
712
713 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
714 {
715 return memblock_remove_range(&memblock.memory, base, size);
716 }
717
718
719 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
720 {
721 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
722 (unsigned long long)base,
723 (unsigned long long)base + size - 1,
724 (void *)_RET_IP_);
725
726 kmemleak_free_part_phys(base, size);
727 return memblock_remove_range(&memblock.reserved, base, size);
728 }
729
730 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
731 {
732 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
733 (unsigned long long)base,
734 (unsigned long long)base + size - 1,
735 0UL, (void *)_RET_IP_);
736
737 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
738 }
739
740 /**
741 *
742 * This function isolates region [@base, @base + @size), and sets/clears flag
743 *
744 * Return 0 on success, -errno on failure.
745 */
746 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
747 phys_addr_t size, int set, int flag)
748 {
749 struct memblock_type *type = &memblock.memory;
750 int i, ret, start_rgn, end_rgn;
751
752 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
753 if (ret)
754 return ret;
755
756 for (i = start_rgn; i < end_rgn; i++)
757 if (set)
758 memblock_set_region_flags(&type->regions[i], flag);
759 else
760 memblock_clear_region_flags(&type->regions[i], flag);
761
762 memblock_merge_regions(type);
763 return 0;
764 }
765
766 /**
767 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
768 * @base: the base phys addr of the region
769 * @size: the size of the region
770 *
771 * Return 0 on success, -errno on failure.
772 */
773 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
774 {
775 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
776 }
777
778 /**
779 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
780 * @base: the base phys addr of the region
781 * @size: the size of the region
782 *
783 * Return 0 on success, -errno on failure.
784 */
785 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
786 {
787 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
788 }
789
790 /**
791 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
792 * @base: the base phys addr of the region
793 * @size: the size of the region
794 *
795 * Return 0 on success, -errno on failure.
796 */
797 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
798 {
799 system_has_some_mirror = true;
800
801 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
802 }
803
804 /**
805 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
806 * @base: the base phys addr of the region
807 * @size: the size of the region
808 *
809 * Return 0 on success, -errno on failure.
810 */
811 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
812 {
813 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
814 }
815
816 /**
817 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
818 * @base: the base phys addr of the region
819 * @size: the size of the region
820 *
821 * Return 0 on success, -errno on failure.
822 */
823 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
824 {
825 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
826 }
827
828 /**
829 * __next_reserved_mem_region - next function for for_each_reserved_region()
830 * @idx: pointer to u64 loop variable
831 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
832 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
833 *
834 * Iterate over all reserved memory regions.
835 */
836 void __init_memblock __next_reserved_mem_region(u64 *idx,
837 phys_addr_t *out_start,
838 phys_addr_t *out_end)
839 {
840 struct memblock_type *type = &memblock.reserved;
841
842 if (*idx < type->cnt) {
843 struct memblock_region *r = &type->regions[*idx];
844 phys_addr_t base = r->base;
845 phys_addr_t size = r->size;
846
847 if (out_start)
848 *out_start = base;
849 if (out_end)
850 *out_end = base + size - 1;
851
852 *idx += 1;
853 return;
854 }
855
856 /* signal end of iteration */
857 *idx = ULLONG_MAX;
858 }
859
860 /**
861 * __next__mem_range - next function for for_each_free_mem_range() etc.
862 * @idx: pointer to u64 loop variable
863 * @nid: node selector, %NUMA_NO_NODE for all nodes
864 * @flags: pick from blocks based on memory attributes
865 * @type_a: pointer to memblock_type from where the range is taken
866 * @type_b: pointer to memblock_type which excludes memory from being taken
867 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
868 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
869 * @out_nid: ptr to int for nid of the range, can be %NULL
870 *
871 * Find the first area from *@idx which matches @nid, fill the out
872 * parameters, and update *@idx for the next iteration. The lower 32bit of
873 * *@idx contains index into type_a and the upper 32bit indexes the
874 * areas before each region in type_b. For example, if type_b regions
875 * look like the following,
876 *
877 * 0:[0-16), 1:[32-48), 2:[128-130)
878 *
879 * The upper 32bit indexes the following regions.
880 *
881 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
882 *
883 * As both region arrays are sorted, the function advances the two indices
884 * in lockstep and returns each intersection.
885 */
886 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
887 struct memblock_type *type_a,
888 struct memblock_type *type_b,
889 phys_addr_t *out_start,
890 phys_addr_t *out_end, int *out_nid)
891 {
892 int idx_a = *idx & 0xffffffff;
893 int idx_b = *idx >> 32;
894
895 if (WARN_ONCE(nid == MAX_NUMNODES,
896 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
897 nid = NUMA_NO_NODE;
898
899 for (; idx_a < type_a->cnt; idx_a++) {
900 struct memblock_region *m = &type_a->regions[idx_a];
901
902 phys_addr_t m_start = m->base;
903 phys_addr_t m_end = m->base + m->size;
904 int m_nid = memblock_get_region_node(m);
905
906 /* only memory regions are associated with nodes, check it */
907 if (nid != NUMA_NO_NODE && nid != m_nid)
908 continue;
909
910 /* skip hotpluggable memory regions if needed */
911 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
912 continue;
913
914 /* if we want mirror memory skip non-mirror memory regions */
915 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
916 continue;
917
918 /* skip nomap memory unless we were asked for it explicitly */
919 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
920 continue;
921
922 if (!type_b) {
923 if (out_start)
924 *out_start = m_start;
925 if (out_end)
926 *out_end = m_end;
927 if (out_nid)
928 *out_nid = m_nid;
929 idx_a++;
930 *idx = (u32)idx_a | (u64)idx_b << 32;
931 return;
932 }
933
934 /* scan areas before each reservation */
935 for (; idx_b < type_b->cnt + 1; idx_b++) {
936 struct memblock_region *r;
937 phys_addr_t r_start;
938 phys_addr_t r_end;
939
940 r = &type_b->regions[idx_b];
941 r_start = idx_b ? r[-1].base + r[-1].size : 0;
942 r_end = idx_b < type_b->cnt ?
943 r->base : ULLONG_MAX;
944
945 /*
946 * if idx_b advanced past idx_a,
947 * break out to advance idx_a
948 */
949 if (r_start >= m_end)
950 break;
951 /* if the two regions intersect, we're done */
952 if (m_start < r_end) {
953 if (out_start)
954 *out_start =
955 max(m_start, r_start);
956 if (out_end)
957 *out_end = min(m_end, r_end);
958 if (out_nid)
959 *out_nid = m_nid;
960 /*
961 * The region which ends first is
962 * advanced for the next iteration.
963 */
964 if (m_end <= r_end)
965 idx_a++;
966 else
967 idx_b++;
968 *idx = (u32)idx_a | (u64)idx_b << 32;
969 return;
970 }
971 }
972 }
973
974 /* signal end of iteration */
975 *idx = ULLONG_MAX;
976 }
977
978 /**
979 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
980 *
981 * Finds the next range from type_a which is not marked as unsuitable
982 * in type_b.
983 *
984 * @idx: pointer to u64 loop variable
985 * @nid: node selector, %NUMA_NO_NODE for all nodes
986 * @flags: pick from blocks based on memory attributes
987 * @type_a: pointer to memblock_type from where the range is taken
988 * @type_b: pointer to memblock_type which excludes memory from being taken
989 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
990 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
991 * @out_nid: ptr to int for nid of the range, can be %NULL
992 *
993 * Reverse of __next_mem_range().
994 */
995 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
996 struct memblock_type *type_a,
997 struct memblock_type *type_b,
998 phys_addr_t *out_start,
999 phys_addr_t *out_end, int *out_nid)
1000 {
1001 int idx_a = *idx & 0xffffffff;
1002 int idx_b = *idx >> 32;
1003
1004 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1005 nid = NUMA_NO_NODE;
1006
1007 if (*idx == (u64)ULLONG_MAX) {
1008 idx_a = type_a->cnt - 1;
1009 if (type_b != NULL)
1010 idx_b = type_b->cnt;
1011 else
1012 idx_b = 0;
1013 }
1014
1015 for (; idx_a >= 0; idx_a--) {
1016 struct memblock_region *m = &type_a->regions[idx_a];
1017
1018 phys_addr_t m_start = m->base;
1019 phys_addr_t m_end = m->base + m->size;
1020 int m_nid = memblock_get_region_node(m);
1021
1022 /* only memory regions are associated with nodes, check it */
1023 if (nid != NUMA_NO_NODE && nid != m_nid)
1024 continue;
1025
1026 /* skip hotpluggable memory regions if needed */
1027 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1028 continue;
1029
1030 /* if we want mirror memory skip non-mirror memory regions */
1031 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1032 continue;
1033
1034 /* skip nomap memory unless we were asked for it explicitly */
1035 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1036 continue;
1037
1038 if (!type_b) {
1039 if (out_start)
1040 *out_start = m_start;
1041 if (out_end)
1042 *out_end = m_end;
1043 if (out_nid)
1044 *out_nid = m_nid;
1045 idx_a--;
1046 *idx = (u32)idx_a | (u64)idx_b << 32;
1047 return;
1048 }
1049
1050 /* scan areas before each reservation */
1051 for (; idx_b >= 0; idx_b--) {
1052 struct memblock_region *r;
1053 phys_addr_t r_start;
1054 phys_addr_t r_end;
1055
1056 r = &type_b->regions[idx_b];
1057 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058 r_end = idx_b < type_b->cnt ?
1059 r->base : ULLONG_MAX;
1060 /*
1061 * if idx_b advanced past idx_a,
1062 * break out to advance idx_a
1063 */
1064
1065 if (r_end <= m_start)
1066 break;
1067 /* if the two regions intersect, we're done */
1068 if (m_end > r_start) {
1069 if (out_start)
1070 *out_start = max(m_start, r_start);
1071 if (out_end)
1072 *out_end = min(m_end, r_end);
1073 if (out_nid)
1074 *out_nid = m_nid;
1075 if (m_start >= r_start)
1076 idx_a--;
1077 else
1078 idx_b--;
1079 *idx = (u32)idx_a | (u64)idx_b << 32;
1080 return;
1081 }
1082 }
1083 }
1084 /* signal end of iteration */
1085 *idx = ULLONG_MAX;
1086 }
1087
1088 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1089 /*
1090 * Common iterator interface used to define for_each_mem_range().
1091 */
1092 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1093 unsigned long *out_start_pfn,
1094 unsigned long *out_end_pfn, int *out_nid)
1095 {
1096 struct memblock_type *type = &memblock.memory;
1097 struct memblock_region *r;
1098
1099 while (++*idx < type->cnt) {
1100 r = &type->regions[*idx];
1101
1102 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1103 continue;
1104 if (nid == MAX_NUMNODES || nid == r->nid)
1105 break;
1106 }
1107 if (*idx >= type->cnt) {
1108 *idx = -1;
1109 return;
1110 }
1111
1112 if (out_start_pfn)
1113 *out_start_pfn = PFN_UP(r->base);
1114 if (out_end_pfn)
1115 *out_end_pfn = PFN_DOWN(r->base + r->size);
1116 if (out_nid)
1117 *out_nid = r->nid;
1118 }
1119
1120 /**
1121 * memblock_set_node - set node ID on memblock regions
1122 * @base: base of area to set node ID for
1123 * @size: size of area to set node ID for
1124 * @type: memblock type to set node ID for
1125 * @nid: node ID to set
1126 *
1127 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1128 * Regions which cross the area boundaries are split as necessary.
1129 *
1130 * RETURNS:
1131 * 0 on success, -errno on failure.
1132 */
1133 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1134 struct memblock_type *type, int nid)
1135 {
1136 int start_rgn, end_rgn;
1137 int i, ret;
1138
1139 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1140 if (ret)
1141 return ret;
1142
1143 for (i = start_rgn; i < end_rgn; i++)
1144 memblock_set_region_node(&type->regions[i], nid);
1145
1146 memblock_merge_regions(type);
1147 return 0;
1148 }
1149 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1150
1151 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1152 phys_addr_t align, phys_addr_t start,
1153 phys_addr_t end, int nid, ulong flags)
1154 {
1155 phys_addr_t found;
1156
1157 if (!align)
1158 align = SMP_CACHE_BYTES;
1159
1160 found = memblock_find_in_range_node(size, align, start, end, nid,
1161 flags);
1162 if (found && !memblock_reserve(found, size)) {
1163 /*
1164 * The min_count is set to 0 so that memblock allocations are
1165 * never reported as leaks.
1166 */
1167 kmemleak_alloc_phys(found, size, 0, 0);
1168 return found;
1169 }
1170 return 0;
1171 }
1172
1173 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1174 phys_addr_t start, phys_addr_t end,
1175 ulong flags)
1176 {
1177 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1178 flags);
1179 }
1180
1181 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1182 phys_addr_t align, phys_addr_t max_addr,
1183 int nid, ulong flags)
1184 {
1185 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1186 }
1187
1188 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1189 {
1190 ulong flags = choose_memblock_flags();
1191 phys_addr_t ret;
1192
1193 again:
1194 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1195 nid, flags);
1196
1197 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1198 flags &= ~MEMBLOCK_MIRROR;
1199 goto again;
1200 }
1201 return ret;
1202 }
1203
1204 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1205 {
1206 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1207 MEMBLOCK_NONE);
1208 }
1209
1210 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1211 {
1212 phys_addr_t alloc;
1213
1214 alloc = __memblock_alloc_base(size, align, max_addr);
1215
1216 if (alloc == 0)
1217 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1218 (unsigned long long) size, (unsigned long long) max_addr);
1219
1220 return alloc;
1221 }
1222
1223 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1224 {
1225 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1226 }
1227
1228 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1229 {
1230 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1231
1232 if (res)
1233 return res;
1234 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1235 }
1236
1237 /**
1238 * memblock_virt_alloc_internal - allocate boot memory block
1239 * @size: size of memory block to be allocated in bytes
1240 * @align: alignment of the region and block's size
1241 * @min_addr: the lower bound of the memory region to allocate (phys address)
1242 * @max_addr: the upper bound of the memory region to allocate (phys address)
1243 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1244 *
1245 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1246 * will fall back to memory below @min_addr. Also, allocation may fall back
1247 * to any node in the system if the specified node can not
1248 * hold the requested memory.
1249 *
1250 * The allocation is performed from memory region limited by
1251 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1252 *
1253 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1254 *
1255 * The phys address of allocated boot memory block is converted to virtual and
1256 * allocated memory is reset to 0.
1257 *
1258 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1259 * allocated boot memory block, so that it is never reported as leaks.
1260 *
1261 * RETURNS:
1262 * Virtual address of allocated memory block on success, NULL on failure.
1263 */
1264 static void * __init memblock_virt_alloc_internal(
1265 phys_addr_t size, phys_addr_t align,
1266 phys_addr_t min_addr, phys_addr_t max_addr,
1267 int nid)
1268 {
1269 phys_addr_t alloc;
1270 void *ptr;
1271 ulong flags = choose_memblock_flags();
1272
1273 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1274 nid = NUMA_NO_NODE;
1275
1276 /*
1277 * Detect any accidental use of these APIs after slab is ready, as at
1278 * this moment memblock may be deinitialized already and its
1279 * internal data may be destroyed (after execution of free_all_bootmem)
1280 */
1281 if (WARN_ON_ONCE(slab_is_available()))
1282 return kzalloc_node(size, GFP_NOWAIT, nid);
1283
1284 if (!align)
1285 align = SMP_CACHE_BYTES;
1286
1287 if (max_addr > memblock.current_limit)
1288 max_addr = memblock.current_limit;
1289
1290 again:
1291 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1292 nid, flags);
1293 if (alloc)
1294 goto done;
1295
1296 if (nid != NUMA_NO_NODE) {
1297 alloc = memblock_find_in_range_node(size, align, min_addr,
1298 max_addr, NUMA_NO_NODE,
1299 flags);
1300 if (alloc)
1301 goto done;
1302 }
1303
1304 if (min_addr) {
1305 min_addr = 0;
1306 goto again;
1307 }
1308
1309 if (flags & MEMBLOCK_MIRROR) {
1310 flags &= ~MEMBLOCK_MIRROR;
1311 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1312 &size);
1313 goto again;
1314 }
1315
1316 return NULL;
1317 done:
1318 memblock_reserve(alloc, size);
1319 ptr = phys_to_virt(alloc);
1320 memset(ptr, 0, size);
1321
1322 /*
1323 * The min_count is set to 0 so that bootmem allocated blocks
1324 * are never reported as leaks. This is because many of these blocks
1325 * are only referred via the physical address which is not
1326 * looked up by kmemleak.
1327 */
1328 kmemleak_alloc(ptr, size, 0, 0);
1329
1330 return ptr;
1331 }
1332
1333 /**
1334 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1335 * @size: size of memory block to be allocated in bytes
1336 * @align: alignment of the region and block's size
1337 * @min_addr: the lower bound of the memory region from where the allocation
1338 * is preferred (phys address)
1339 * @max_addr: the upper bound of the memory region from where the allocation
1340 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1341 * allocate only from memory limited by memblock.current_limit value
1342 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1343 *
1344 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1345 * additional debug information (including caller info), if enabled.
1346 *
1347 * RETURNS:
1348 * Virtual address of allocated memory block on success, NULL on failure.
1349 */
1350 void * __init memblock_virt_alloc_try_nid_nopanic(
1351 phys_addr_t size, phys_addr_t align,
1352 phys_addr_t min_addr, phys_addr_t max_addr,
1353 int nid)
1354 {
1355 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1356 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1357 (u64)max_addr, (void *)_RET_IP_);
1358 return memblock_virt_alloc_internal(size, align, min_addr,
1359 max_addr, nid);
1360 }
1361
1362 /**
1363 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1364 * @size: size of memory block to be allocated in bytes
1365 * @align: alignment of the region and block's size
1366 * @min_addr: the lower bound of the memory region from where the allocation
1367 * is preferred (phys address)
1368 * @max_addr: the upper bound of the memory region from where the allocation
1369 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1370 * allocate only from memory limited by memblock.current_limit value
1371 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1372 *
1373 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1374 * which provides debug information (including caller info), if enabled,
1375 * and panics if the request can not be satisfied.
1376 *
1377 * RETURNS:
1378 * Virtual address of allocated memory block on success, NULL on failure.
1379 */
1380 void * __init memblock_virt_alloc_try_nid(
1381 phys_addr_t size, phys_addr_t align,
1382 phys_addr_t min_addr, phys_addr_t max_addr,
1383 int nid)
1384 {
1385 void *ptr;
1386
1387 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1388 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1389 (u64)max_addr, (void *)_RET_IP_);
1390 ptr = memblock_virt_alloc_internal(size, align,
1391 min_addr, max_addr, nid);
1392 if (ptr)
1393 return ptr;
1394
1395 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1396 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1397 (u64)max_addr);
1398 return NULL;
1399 }
1400
1401 /**
1402 * __memblock_free_early - free boot memory block
1403 * @base: phys starting address of the boot memory block
1404 * @size: size of the boot memory block in bytes
1405 *
1406 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1407 * The freeing memory will not be released to the buddy allocator.
1408 */
1409 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1410 {
1411 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1412 __func__, (u64)base, (u64)base + size - 1,
1413 (void *)_RET_IP_);
1414 kmemleak_free_part_phys(base, size);
1415 memblock_remove_range(&memblock.reserved, base, size);
1416 }
1417
1418 /*
1419 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1420 * @addr: phys starting address of the boot memory block
1421 * @size: size of the boot memory block in bytes
1422 *
1423 * This is only useful when the bootmem allocator has already been torn
1424 * down, but we are still initializing the system. Pages are released directly
1425 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1426 */
1427 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1428 {
1429 u64 cursor, end;
1430
1431 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1432 __func__, (u64)base, (u64)base + size - 1,
1433 (void *)_RET_IP_);
1434 kmemleak_free_part_phys(base, size);
1435 cursor = PFN_UP(base);
1436 end = PFN_DOWN(base + size);
1437
1438 for (; cursor < end; cursor++) {
1439 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1440 totalram_pages++;
1441 }
1442 }
1443
1444 /*
1445 * Remaining API functions
1446 */
1447
1448 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1449 {
1450 return memblock.memory.total_size;
1451 }
1452
1453 phys_addr_t __init_memblock memblock_reserved_size(void)
1454 {
1455 return memblock.reserved.total_size;
1456 }
1457
1458 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1459 {
1460 unsigned long pages = 0;
1461 struct memblock_region *r;
1462 unsigned long start_pfn, end_pfn;
1463
1464 for_each_memblock(memory, r) {
1465 start_pfn = memblock_region_memory_base_pfn(r);
1466 end_pfn = memblock_region_memory_end_pfn(r);
1467 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1468 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1469 pages += end_pfn - start_pfn;
1470 }
1471
1472 return PFN_PHYS(pages);
1473 }
1474
1475 /* lowest address */
1476 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1477 {
1478 return memblock.memory.regions[0].base;
1479 }
1480
1481 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1482 {
1483 int idx = memblock.memory.cnt - 1;
1484
1485 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1486 }
1487
1488 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1489 {
1490 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1491 struct memblock_region *r;
1492
1493 /*
1494 * translate the memory @limit size into the max address within one of
1495 * the memory memblock regions, if the @limit exceeds the total size
1496 * of those regions, max_addr will keep original value ULLONG_MAX
1497 */
1498 for_each_memblock(memory, r) {
1499 if (limit <= r->size) {
1500 max_addr = r->base + limit;
1501 break;
1502 }
1503 limit -= r->size;
1504 }
1505
1506 return max_addr;
1507 }
1508
1509 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1510 {
1511 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1512
1513 if (!limit)
1514 return;
1515
1516 max_addr = __find_max_addr(limit);
1517
1518 /* @limit exceeds the total size of the memory, do nothing */
1519 if (max_addr == (phys_addr_t)ULLONG_MAX)
1520 return;
1521
1522 /* truncate both memory and reserved regions */
1523 memblock_remove_range(&memblock.memory, max_addr,
1524 (phys_addr_t)ULLONG_MAX);
1525 memblock_remove_range(&memblock.reserved, max_addr,
1526 (phys_addr_t)ULLONG_MAX);
1527 }
1528
1529 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1530 {
1531 int start_rgn, end_rgn;
1532 int i, ret;
1533
1534 if (!size)
1535 return;
1536
1537 ret = memblock_isolate_range(&memblock.memory, base, size,
1538 &start_rgn, &end_rgn);
1539 if (ret)
1540 return;
1541
1542 /* remove all the MAP regions */
1543 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1544 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1545 memblock_remove_region(&memblock.memory, i);
1546
1547 for (i = start_rgn - 1; i >= 0; i--)
1548 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1549 memblock_remove_region(&memblock.memory, i);
1550
1551 /* truncate the reserved regions */
1552 memblock_remove_range(&memblock.reserved, 0, base);
1553 memblock_remove_range(&memblock.reserved,
1554 base + size, (phys_addr_t)ULLONG_MAX);
1555 }
1556
1557 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1558 {
1559 phys_addr_t max_addr;
1560
1561 if (!limit)
1562 return;
1563
1564 max_addr = __find_max_addr(limit);
1565
1566 /* @limit exceeds the total size of the memory, do nothing */
1567 if (max_addr == (phys_addr_t)ULLONG_MAX)
1568 return;
1569
1570 memblock_cap_memory_range(0, max_addr);
1571 }
1572
1573 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1574 {
1575 unsigned int left = 0, right = type->cnt;
1576
1577 do {
1578 unsigned int mid = (right + left) / 2;
1579
1580 if (addr < type->regions[mid].base)
1581 right = mid;
1582 else if (addr >= (type->regions[mid].base +
1583 type->regions[mid].size))
1584 left = mid + 1;
1585 else
1586 return mid;
1587 } while (left < right);
1588 return -1;
1589 }
1590
1591 bool __init memblock_is_reserved(phys_addr_t addr)
1592 {
1593 return memblock_search(&memblock.reserved, addr) != -1;
1594 }
1595
1596 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1597 {
1598 return memblock_search(&memblock.memory, addr) != -1;
1599 }
1600
1601 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1602 {
1603 int i = memblock_search(&memblock.memory, addr);
1604
1605 if (i == -1)
1606 return false;
1607 return !memblock_is_nomap(&memblock.memory.regions[i]);
1608 }
1609
1610 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1611 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1612 unsigned long *start_pfn, unsigned long *end_pfn)
1613 {
1614 struct memblock_type *type = &memblock.memory;
1615 int mid = memblock_search(type, PFN_PHYS(pfn));
1616
1617 if (mid == -1)
1618 return -1;
1619
1620 *start_pfn = PFN_DOWN(type->regions[mid].base);
1621 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1622
1623 return type->regions[mid].nid;
1624 }
1625 #endif
1626
1627 /**
1628 * memblock_is_region_memory - check if a region is a subset of memory
1629 * @base: base of region to check
1630 * @size: size of region to check
1631 *
1632 * Check if the region [@base, @base+@size) is a subset of a memory block.
1633 *
1634 * RETURNS:
1635 * 0 if false, non-zero if true
1636 */
1637 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1638 {
1639 int idx = memblock_search(&memblock.memory, base);
1640 phys_addr_t end = base + memblock_cap_size(base, &size);
1641
1642 if (idx == -1)
1643 return 0;
1644 return memblock.memory.regions[idx].base <= base &&
1645 (memblock.memory.regions[idx].base +
1646 memblock.memory.regions[idx].size) >= end;
1647 }
1648
1649 /**
1650 * memblock_is_region_reserved - check if a region intersects reserved memory
1651 * @base: base of region to check
1652 * @size: size of region to check
1653 *
1654 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1655 *
1656 * RETURNS:
1657 * True if they intersect, false if not.
1658 */
1659 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1660 {
1661 memblock_cap_size(base, &size);
1662 return memblock_overlaps_region(&memblock.reserved, base, size);
1663 }
1664
1665 void __init_memblock memblock_trim_memory(phys_addr_t align)
1666 {
1667 phys_addr_t start, end, orig_start, orig_end;
1668 struct memblock_region *r;
1669
1670 for_each_memblock(memory, r) {
1671 orig_start = r->base;
1672 orig_end = r->base + r->size;
1673 start = round_up(orig_start, align);
1674 end = round_down(orig_end, align);
1675
1676 if (start == orig_start && end == orig_end)
1677 continue;
1678
1679 if (start < end) {
1680 r->base = start;
1681 r->size = end - start;
1682 } else {
1683 memblock_remove_region(&memblock.memory,
1684 r - memblock.memory.regions);
1685 r--;
1686 }
1687 }
1688 }
1689
1690 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1691 {
1692 memblock.current_limit = limit;
1693 }
1694
1695 phys_addr_t __init_memblock memblock_get_current_limit(void)
1696 {
1697 return memblock.current_limit;
1698 }
1699
1700 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1701 {
1702 unsigned long long base, size;
1703 unsigned long flags;
1704 int idx;
1705 struct memblock_region *rgn;
1706
1707 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1708
1709 for_each_memblock_type(type, rgn) {
1710 char nid_buf[32] = "";
1711
1712 base = rgn->base;
1713 size = rgn->size;
1714 flags = rgn->flags;
1715 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1716 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1717 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1718 memblock_get_region_node(rgn));
1719 #endif
1720 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1721 name, idx, base, base + size - 1, size, nid_buf, flags);
1722 }
1723 }
1724
1725 void __init_memblock __memblock_dump_all(void)
1726 {
1727 pr_info("MEMBLOCK configuration:\n");
1728 pr_info(" memory size = %#llx reserved size = %#llx\n",
1729 (unsigned long long)memblock.memory.total_size,
1730 (unsigned long long)memblock.reserved.total_size);
1731
1732 memblock_dump(&memblock.memory, "memory");
1733 memblock_dump(&memblock.reserved, "reserved");
1734 }
1735
1736 void __init memblock_allow_resize(void)
1737 {
1738 memblock_can_resize = 1;
1739 }
1740
1741 static int __init early_memblock(char *p)
1742 {
1743 if (p && strstr(p, "debug"))
1744 memblock_debug = 1;
1745 return 0;
1746 }
1747 early_param("memblock", early_memblock);
1748
1749 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1750
1751 static int memblock_debug_show(struct seq_file *m, void *private)
1752 {
1753 struct memblock_type *type = m->private;
1754 struct memblock_region *reg;
1755 int i;
1756
1757 for (i = 0; i < type->cnt; i++) {
1758 reg = &type->regions[i];
1759 seq_printf(m, "%4d: ", i);
1760 if (sizeof(phys_addr_t) == 4)
1761 seq_printf(m, "0x%08lx..0x%08lx\n",
1762 (unsigned long)reg->base,
1763 (unsigned long)(reg->base + reg->size - 1));
1764 else
1765 seq_printf(m, "0x%016llx..0x%016llx\n",
1766 (unsigned long long)reg->base,
1767 (unsigned long long)(reg->base + reg->size - 1));
1768
1769 }
1770 return 0;
1771 }
1772
1773 static int memblock_debug_open(struct inode *inode, struct file *file)
1774 {
1775 return single_open(file, memblock_debug_show, inode->i_private);
1776 }
1777
1778 static const struct file_operations memblock_debug_fops = {
1779 .open = memblock_debug_open,
1780 .read = seq_read,
1781 .llseek = seq_lseek,
1782 .release = single_release,
1783 };
1784
1785 static int __init memblock_init_debugfs(void)
1786 {
1787 struct dentry *root = debugfs_create_dir("memblock", NULL);
1788 if (!root)
1789 return -ENXIO;
1790 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1791 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1792 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1793 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1794 #endif
1795
1796 return 0;
1797 }
1798 __initcall(memblock_init_debugfs);
1799
1800 #endif /* CONFIG_DEBUG_FS */