]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
7c0f6ba6 71#include <linux/uaccess.h>
8697d331 72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
b4a66461
LD
465 if (!mctz)
466 return;
bb4cc1a8
AM
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 472 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 473 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
0a31bc97
JW
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
482 /* if on-tree, remove it */
483 if (mz->on_tree)
cf2c8127 484 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
cf2c8127 489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 490 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
ef8f2327
MG
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
bb4cc1a8 500
e231875b 501 for_each_node(nid) {
ef8f2327
MG
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
b4a66461
LD
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
506 }
507}
508
ef8f2327
MG
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
511{
512 struct rb_node *rightmost = NULL;
ef8f2327 513 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
514
515retry:
516 mz = NULL;
517 rightmost = rb_last(&mctz->rb_root);
518 if (!rightmost)
519 goto done; /* Nothing to reclaim from */
520
ef8f2327 521 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
522 /*
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
526 */
cf2c8127 527 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 528 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 529 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
530 goto retry;
531done:
532 return mz;
533}
534
ef8f2327
MG
535static struct mem_cgroup_per_node *
536mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 537{
ef8f2327 538 struct mem_cgroup_per_node *mz;
bb4cc1a8 539
0a31bc97 540 spin_lock_irq(&mctz->lock);
bb4cc1a8 541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 542 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
543 return mz;
544}
545
711d3d2c 546/*
484ebb3b
GT
547 * Return page count for single (non recursive) @memcg.
548 *
711d3d2c
KH
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 554 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 564 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
565 * implemented.
566 */
484ebb3b
GT
567static unsigned long
568mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 569{
7a159cc9 570 long val = 0;
c62b1a3b 571 int cpu;
c62b1a3b 572
484ebb3b 573 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 574 for_each_possible_cpu(cpu)
c0ff4b85 575 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
576 /*
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
579 */
580 if (val < 0)
581 val = 0;
c62b1a3b
KH
582 return val;
583}
584
c0ff4b85 585static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
586 enum mem_cgroup_events_index idx)
587{
588 unsigned long val = 0;
589 int cpu;
590
733a572e 591 for_each_possible_cpu(cpu)
c0ff4b85 592 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
593 return val;
594}
595
c0ff4b85 596static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 597 struct page *page,
f627c2f5 598 bool compound, int nr_pages)
d52aa412 599{
b2402857
KH
600 /*
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
603 */
0a31bc97 604 if (PageAnon(page))
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 606 nr_pages);
d52aa412 607 else
b2402857 608 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 609 nr_pages);
55e462b0 610
f627c2f5
KS
611 if (compound) {
612 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
614 nr_pages);
f627c2f5 615 }
b070e65c 616
e401f176
KH
617 /* pagein of a big page is an event. So, ignore page size */
618 if (nr_pages > 0)
c0ff4b85 619 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 620 else {
c0ff4b85 621 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
622 nr_pages = -nr_pages; /* for event */
623 }
e401f176 624
13114716 625 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
626}
627
0a6b76dd
VD
628unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
629 int nid, unsigned int lru_mask)
bb2a0de9 630{
b4536f0c 631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 632 unsigned long nr = 0;
ef8f2327 633 enum lru_list lru;
889976db 634
e231875b 635 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 636
ef8f2327
MG
637 for_each_lru(lru) {
638 if (!(BIT(lru) & lru_mask))
639 continue;
b4536f0c 640 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
641 }
642 return nr;
889976db 643}
bb2a0de9 644
c0ff4b85 645static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 646 unsigned int lru_mask)
6d12e2d8 647{
e231875b 648 unsigned long nr = 0;
889976db 649 int nid;
6d12e2d8 650
31aaea4a 651 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
652 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
653 return nr;
d52aa412
KH
654}
655
f53d7ce3
JW
656static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
657 enum mem_cgroup_events_target target)
7a159cc9
JW
658{
659 unsigned long val, next;
660
13114716 661 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 662 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 663 /* from time_after() in jiffies.h */
f53d7ce3
JW
664 if ((long)next - (long)val < 0) {
665 switch (target) {
666 case MEM_CGROUP_TARGET_THRESH:
667 next = val + THRESHOLDS_EVENTS_TARGET;
668 break;
bb4cc1a8
AM
669 case MEM_CGROUP_TARGET_SOFTLIMIT:
670 next = val + SOFTLIMIT_EVENTS_TARGET;
671 break;
f53d7ce3
JW
672 case MEM_CGROUP_TARGET_NUMAINFO:
673 next = val + NUMAINFO_EVENTS_TARGET;
674 break;
675 default:
676 break;
677 }
678 __this_cpu_write(memcg->stat->targets[target], next);
679 return true;
7a159cc9 680 }
f53d7ce3 681 return false;
d2265e6f
KH
682}
683
684/*
685 * Check events in order.
686 *
687 */
c0ff4b85 688static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
689{
690 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
691 if (unlikely(mem_cgroup_event_ratelimit(memcg,
692 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 693 bool do_softlimit;
82b3f2a7 694 bool do_numainfo __maybe_unused;
f53d7ce3 695
bb4cc1a8
AM
696 do_softlimit = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
698#if MAX_NUMNODES > 1
699 do_numainfo = mem_cgroup_event_ratelimit(memcg,
700 MEM_CGROUP_TARGET_NUMAINFO);
701#endif
c0ff4b85 702 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
703 if (unlikely(do_softlimit))
704 mem_cgroup_update_tree(memcg, page);
453a9bf3 705#if MAX_NUMNODES > 1
f53d7ce3 706 if (unlikely(do_numainfo))
c0ff4b85 707 atomic_inc(&memcg->numainfo_events);
453a9bf3 708#endif
0a31bc97 709 }
d2265e6f
KH
710}
711
cf475ad2 712struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 713{
31a78f23
BS
714 /*
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
718 */
719 if (unlikely(!p))
720 return NULL;
721
073219e9 722 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 723}
33398cf2 724EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 725
df381975 726static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 727{
c0ff4b85 728 struct mem_cgroup *memcg = NULL;
0b7f569e 729
54595fe2
KH
730 rcu_read_lock();
731 do {
6f6acb00
MH
732 /*
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
736 */
737 if (unlikely(!mm))
df381975 738 memcg = root_mem_cgroup;
6f6acb00
MH
739 else {
740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 if (unlikely(!memcg))
742 memcg = root_mem_cgroup;
743 }
ec903c0c 744 } while (!css_tryget_online(&memcg->css));
54595fe2 745 rcu_read_unlock();
c0ff4b85 746 return memcg;
54595fe2
KH
747}
748
5660048c
JW
749/**
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
754 *
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
757 *
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
761 *
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
765 */
694fbc0f 766struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 767 struct mem_cgroup *prev,
694fbc0f 768 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 769{
33398cf2 770 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 771 struct cgroup_subsys_state *css = NULL;
9f3a0d09 772 struct mem_cgroup *memcg = NULL;
5ac8fb31 773 struct mem_cgroup *pos = NULL;
711d3d2c 774
694fbc0f
AM
775 if (mem_cgroup_disabled())
776 return NULL;
5660048c 777
9f3a0d09
JW
778 if (!root)
779 root = root_mem_cgroup;
7d74b06f 780
9f3a0d09 781 if (prev && !reclaim)
5ac8fb31 782 pos = prev;
14067bb3 783
9f3a0d09
JW
784 if (!root->use_hierarchy && root != root_mem_cgroup) {
785 if (prev)
5ac8fb31 786 goto out;
694fbc0f 787 return root;
9f3a0d09 788 }
14067bb3 789
542f85f9 790 rcu_read_lock();
5f578161 791
5ac8fb31 792 if (reclaim) {
ef8f2327 793 struct mem_cgroup_per_node *mz;
5ac8fb31 794
ef8f2327 795 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
796 iter = &mz->iter[reclaim->priority];
797
798 if (prev && reclaim->generation != iter->generation)
799 goto out_unlock;
800
6df38689 801 while (1) {
4db0c3c2 802 pos = READ_ONCE(iter->position);
6df38689
VD
803 if (!pos || css_tryget(&pos->css))
804 break;
5ac8fb31 805 /*
6df38689
VD
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
811 * away.
5ac8fb31 812 */
6df38689
VD
813 (void)cmpxchg(&iter->position, pos, NULL);
814 }
5ac8fb31
JW
815 }
816
817 if (pos)
818 css = &pos->css;
819
820 for (;;) {
821 css = css_next_descendant_pre(css, &root->css);
822 if (!css) {
823 /*
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
828 */
829 if (!prev)
830 continue;
831 break;
527a5ec9 832 }
7d74b06f 833
5ac8fb31
JW
834 /*
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
838 */
839 memcg = mem_cgroup_from_css(css);
14067bb3 840
5ac8fb31
JW
841 if (css == &root->css)
842 break;
14067bb3 843
0b8f73e1
JW
844 if (css_tryget(css))
845 break;
9f3a0d09 846
5ac8fb31 847 memcg = NULL;
9f3a0d09 848 }
5ac8fb31
JW
849
850 if (reclaim) {
5ac8fb31 851 /*
6df38689
VD
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 855 */
6df38689
VD
856 (void)cmpxchg(&iter->position, pos, memcg);
857
5ac8fb31
JW
858 if (pos)
859 css_put(&pos->css);
860
861 if (!memcg)
862 iter->generation++;
863 else if (!prev)
864 reclaim->generation = iter->generation;
9f3a0d09 865 }
5ac8fb31 866
542f85f9
MH
867out_unlock:
868 rcu_read_unlock();
5ac8fb31 869out:
c40046f3
MH
870 if (prev && prev != root)
871 css_put(&prev->css);
872
9f3a0d09 873 return memcg;
14067bb3 874}
7d74b06f 875
5660048c
JW
876/**
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
880 */
881void mem_cgroup_iter_break(struct mem_cgroup *root,
882 struct mem_cgroup *prev)
9f3a0d09
JW
883{
884 if (!root)
885 root = root_mem_cgroup;
886 if (prev && prev != root)
887 css_put(&prev->css);
888}
7d74b06f 889
6df38689
VD
890static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
891{
892 struct mem_cgroup *memcg = dead_memcg;
893 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
894 struct mem_cgroup_per_node *mz;
895 int nid;
6df38689
VD
896 int i;
897
898 while ((memcg = parent_mem_cgroup(memcg))) {
899 for_each_node(nid) {
ef8f2327
MG
900 mz = mem_cgroup_nodeinfo(memcg, nid);
901 for (i = 0; i <= DEF_PRIORITY; i++) {
902 iter = &mz->iter[i];
903 cmpxchg(&iter->position,
904 dead_memcg, NULL);
6df38689
VD
905 }
906 }
907 }
908}
909
9f3a0d09
JW
910/*
911 * Iteration constructs for visiting all cgroups (under a tree). If
912 * loops are exited prematurely (break), mem_cgroup_iter_break() must
913 * be used for reference counting.
914 */
915#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 916 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 917 iter != NULL; \
527a5ec9 918 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 919
9f3a0d09 920#define for_each_mem_cgroup(iter) \
527a5ec9 921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 922 iter != NULL; \
527a5ec9 923 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 924
7c5f64f8
VD
925/**
926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927 * @memcg: hierarchy root
928 * @fn: function to call for each task
929 * @arg: argument passed to @fn
930 *
931 * This function iterates over tasks attached to @memcg or to any of its
932 * descendants and calls @fn for each task. If @fn returns a non-zero
933 * value, the function breaks the iteration loop and returns the value.
934 * Otherwise, it will iterate over all tasks and return 0.
935 *
936 * This function must not be called for the root memory cgroup.
937 */
938int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
939 int (*fn)(struct task_struct *, void *), void *arg)
940{
941 struct mem_cgroup *iter;
942 int ret = 0;
943
944 BUG_ON(memcg == root_mem_cgroup);
945
946 for_each_mem_cgroup_tree(iter, memcg) {
947 struct css_task_iter it;
948 struct task_struct *task;
949
950 css_task_iter_start(&iter->css, &it);
951 while (!ret && (task = css_task_iter_next(&it)))
952 ret = fn(task, arg);
953 css_task_iter_end(&it);
954 if (ret) {
955 mem_cgroup_iter_break(memcg, iter);
956 break;
957 }
958 }
959 return ret;
960}
961
925b7673 962/**
dfe0e773 963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 964 * @page: the page
fa9add64 965 * @zone: zone of the page
dfe0e773
JW
966 *
967 * This function is only safe when following the LRU page isolation
968 * and putback protocol: the LRU lock must be held, and the page must
969 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 970 */
599d0c95 971struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 972{
ef8f2327 973 struct mem_cgroup_per_node *mz;
925b7673 974 struct mem_cgroup *memcg;
bea8c150 975 struct lruvec *lruvec;
6d12e2d8 976
bea8c150 977 if (mem_cgroup_disabled()) {
599d0c95 978 lruvec = &pgdat->lruvec;
bea8c150
HD
979 goto out;
980 }
925b7673 981
1306a85a 982 memcg = page->mem_cgroup;
7512102c 983 /*
dfe0e773 984 * Swapcache readahead pages are added to the LRU - and
29833315 985 * possibly migrated - before they are charged.
7512102c 986 */
29833315
JW
987 if (!memcg)
988 memcg = root_mem_cgroup;
7512102c 989
ef8f2327 990 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
991 lruvec = &mz->lruvec;
992out:
993 /*
994 * Since a node can be onlined after the mem_cgroup was created,
995 * we have to be prepared to initialize lruvec->zone here;
996 * and if offlined then reonlined, we need to reinitialize it.
997 */
599d0c95
MG
998 if (unlikely(lruvec->pgdat != pgdat))
999 lruvec->pgdat = pgdat;
bea8c150 1000 return lruvec;
08e552c6 1001}
b69408e8 1002
925b7673 1003/**
fa9add64
HD
1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005 * @lruvec: mem_cgroup per zone lru vector
1006 * @lru: index of lru list the page is sitting on
b4536f0c 1007 * @zid: zone id of the accounted pages
fa9add64 1008 * @nr_pages: positive when adding or negative when removing
925b7673 1009 *
ca707239
HD
1010 * This function must be called under lru_lock, just before a page is added
1011 * to or just after a page is removed from an lru list (that ordering being
1012 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1013 */
fa9add64 1014void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1015 int zid, int nr_pages)
3f58a829 1016{
ef8f2327 1017 struct mem_cgroup_per_node *mz;
fa9add64 1018 unsigned long *lru_size;
ca707239 1019 long size;
3f58a829
MK
1020
1021 if (mem_cgroup_disabled())
1022 return;
1023
ef8f2327 1024 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1025 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1026
1027 if (nr_pages < 0)
1028 *lru_size += nr_pages;
1029
1030 size = *lru_size;
b4536f0c
MH
1031 if (WARN_ONCE(size < 0,
1032 "%s(%p, %d, %d): lru_size %ld\n",
1033 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1034 VM_BUG_ON(1);
1035 *lru_size = 0;
1036 }
1037
1038 if (nr_pages > 0)
1039 *lru_size += nr_pages;
08e552c6 1040}
544122e5 1041
2314b42d 1042bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1043{
2314b42d 1044 struct mem_cgroup *task_memcg;
158e0a2d 1045 struct task_struct *p;
ffbdccf5 1046 bool ret;
4c4a2214 1047
158e0a2d 1048 p = find_lock_task_mm(task);
de077d22 1049 if (p) {
2314b42d 1050 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1051 task_unlock(p);
1052 } else {
1053 /*
1054 * All threads may have already detached their mm's, but the oom
1055 * killer still needs to detect if they have already been oom
1056 * killed to prevent needlessly killing additional tasks.
1057 */
ffbdccf5 1058 rcu_read_lock();
2314b42d
JW
1059 task_memcg = mem_cgroup_from_task(task);
1060 css_get(&task_memcg->css);
ffbdccf5 1061 rcu_read_unlock();
de077d22 1062 }
2314b42d
JW
1063 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1064 css_put(&task_memcg->css);
4c4a2214
DR
1065 return ret;
1066}
1067
19942822 1068/**
9d11ea9f 1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1070 * @memcg: the memory cgroup
19942822 1071 *
9d11ea9f 1072 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1073 * pages.
19942822 1074 */
c0ff4b85 1075static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1076{
3e32cb2e
JW
1077 unsigned long margin = 0;
1078 unsigned long count;
1079 unsigned long limit;
9d11ea9f 1080
3e32cb2e 1081 count = page_counter_read(&memcg->memory);
4db0c3c2 1082 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1083 if (count < limit)
1084 margin = limit - count;
1085
7941d214 1086 if (do_memsw_account()) {
3e32cb2e 1087 count = page_counter_read(&memcg->memsw);
4db0c3c2 1088 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1089 if (count <= limit)
1090 margin = min(margin, limit - count);
cbedbac3
LR
1091 else
1092 margin = 0;
3e32cb2e
JW
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
58cf188e
SZ
1154 struct mem_cgroup *iter;
1155 unsigned int i;
e222432b 1156
e222432b
BS
1157 rcu_read_lock();
1158
2415b9f5
BV
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
e61734c5 1167 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1168 pr_cont("\n");
e222432b 1169
e222432b
BS
1170 rcu_read_unlock();
1171
3e32cb2e
JW
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1189 continue;
484ebb3b 1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
e222432b
BS
1200}
1201
81d39c20
KH
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
c0ff4b85 1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1207{
1208 int num = 0;
7d74b06f
KH
1209 struct mem_cgroup *iter;
1210
c0ff4b85 1211 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1212 num++;
81d39c20
KH
1213 return num;
1214}
1215
a63d83f4
DR
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
7c5f64f8 1219unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1220{
3e32cb2e 1221 unsigned long limit;
f3e8eb70 1222
3e32cb2e 1223 limit = memcg->memory.limit;
9a5a8f19 1224 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1225 unsigned long memsw_limit;
37e84351 1226 unsigned long swap_limit;
9a5a8f19 1227
3e32cb2e 1228 memsw_limit = memcg->memsw.limit;
37e84351
VD
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1232 }
9a5a8f19 1233 return limit;
a63d83f4
DR
1234}
1235
b6e6edcf 1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1237 int order)
9cbb78bb 1238{
6e0fc46d
DR
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
2a966b77 1242 .memcg = memcg,
6e0fc46d
DR
1243 .gfp_mask = gfp_mask,
1244 .order = order,
6e0fc46d 1245 };
7c5f64f8 1246 bool ret;
9cbb78bb 1247
dc56401f 1248 mutex_lock(&oom_lock);
7c5f64f8 1249 ret = out_of_memory(&oc);
dc56401f 1250 mutex_unlock(&oom_lock);
7c5f64f8 1251 return ret;
9cbb78bb
DR
1252}
1253
ae6e71d3
MC
1254#if MAX_NUMNODES > 1
1255
4d0c066d
KH
1256/**
1257 * test_mem_cgroup_node_reclaimable
dad7557e 1258 * @memcg: the target memcg
4d0c066d
KH
1259 * @nid: the node ID to be checked.
1260 * @noswap : specify true here if the user wants flle only information.
1261 *
1262 * This function returns whether the specified memcg contains any
1263 * reclaimable pages on a node. Returns true if there are any reclaimable
1264 * pages in the node.
1265 */
c0ff4b85 1266static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1267 int nid, bool noswap)
1268{
c0ff4b85 1269 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1270 return true;
1271 if (noswap || !total_swap_pages)
1272 return false;
c0ff4b85 1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1274 return true;
1275 return false;
1276
1277}
889976db
YH
1278
1279/*
1280 * Always updating the nodemask is not very good - even if we have an empty
1281 * list or the wrong list here, we can start from some node and traverse all
1282 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1283 *
1284 */
c0ff4b85 1285static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1286{
1287 int nid;
453a9bf3
KH
1288 /*
1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 * pagein/pageout changes since the last update.
1291 */
c0ff4b85 1292 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1293 return;
c0ff4b85 1294 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1295 return;
1296
889976db 1297 /* make a nodemask where this memcg uses memory from */
31aaea4a 1298 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1299
31aaea4a 1300 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1301
c0ff4b85
R
1302 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1303 node_clear(nid, memcg->scan_nodes);
889976db 1304 }
453a9bf3 1305
c0ff4b85
R
1306 atomic_set(&memcg->numainfo_events, 0);
1307 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1308}
1309
1310/*
1311 * Selecting a node where we start reclaim from. Because what we need is just
1312 * reducing usage counter, start from anywhere is O,K. Considering
1313 * memory reclaim from current node, there are pros. and cons.
1314 *
1315 * Freeing memory from current node means freeing memory from a node which
1316 * we'll use or we've used. So, it may make LRU bad. And if several threads
1317 * hit limits, it will see a contention on a node. But freeing from remote
1318 * node means more costs for memory reclaim because of memory latency.
1319 *
1320 * Now, we use round-robin. Better algorithm is welcomed.
1321 */
c0ff4b85 1322int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1323{
1324 int node;
1325
c0ff4b85
R
1326 mem_cgroup_may_update_nodemask(memcg);
1327 node = memcg->last_scanned_node;
889976db 1328
0edaf86c 1329 node = next_node_in(node, memcg->scan_nodes);
889976db 1330 /*
fda3d69b
MH
1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 * last time it really checked all the LRUs due to rate limiting.
1333 * Fallback to the current node in that case for simplicity.
889976db
YH
1334 */
1335 if (unlikely(node == MAX_NUMNODES))
1336 node = numa_node_id();
1337
c0ff4b85 1338 memcg->last_scanned_node = node;
889976db
YH
1339 return node;
1340}
889976db 1341#else
c0ff4b85 1342int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1343{
1344 return 0;
1345}
1346#endif
1347
0608f43d 1348static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1349 pg_data_t *pgdat,
0608f43d
AM
1350 gfp_t gfp_mask,
1351 unsigned long *total_scanned)
1352{
1353 struct mem_cgroup *victim = NULL;
1354 int total = 0;
1355 int loop = 0;
1356 unsigned long excess;
1357 unsigned long nr_scanned;
1358 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1359 .pgdat = pgdat,
0608f43d
AM
1360 .priority = 0,
1361 };
1362
3e32cb2e 1363 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1364
1365 while (1) {
1366 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1367 if (!victim) {
1368 loop++;
1369 if (loop >= 2) {
1370 /*
1371 * If we have not been able to reclaim
1372 * anything, it might because there are
1373 * no reclaimable pages under this hierarchy
1374 */
1375 if (!total)
1376 break;
1377 /*
1378 * We want to do more targeted reclaim.
1379 * excess >> 2 is not to excessive so as to
1380 * reclaim too much, nor too less that we keep
1381 * coming back to reclaim from this cgroup
1382 */
1383 if (total >= (excess >> 2) ||
1384 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1385 break;
1386 }
1387 continue;
1388 }
a9dd0a83 1389 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1390 pgdat, &nr_scanned);
0608f43d 1391 *total_scanned += nr_scanned;
3e32cb2e 1392 if (!soft_limit_excess(root_memcg))
0608f43d 1393 break;
6d61ef40 1394 }
0608f43d
AM
1395 mem_cgroup_iter_break(root_memcg, victim);
1396 return total;
6d61ef40
BS
1397}
1398
0056f4e6
JW
1399#ifdef CONFIG_LOCKDEP
1400static struct lockdep_map memcg_oom_lock_dep_map = {
1401 .name = "memcg_oom_lock",
1402};
1403#endif
1404
fb2a6fc5
JW
1405static DEFINE_SPINLOCK(memcg_oom_lock);
1406
867578cb
KH
1407/*
1408 * Check OOM-Killer is already running under our hierarchy.
1409 * If someone is running, return false.
1410 */
fb2a6fc5 1411static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1412{
79dfdacc 1413 struct mem_cgroup *iter, *failed = NULL;
a636b327 1414
fb2a6fc5
JW
1415 spin_lock(&memcg_oom_lock);
1416
9f3a0d09 1417 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1418 if (iter->oom_lock) {
79dfdacc
MH
1419 /*
1420 * this subtree of our hierarchy is already locked
1421 * so we cannot give a lock.
1422 */
79dfdacc 1423 failed = iter;
9f3a0d09
JW
1424 mem_cgroup_iter_break(memcg, iter);
1425 break;
23751be0
JW
1426 } else
1427 iter->oom_lock = true;
7d74b06f 1428 }
867578cb 1429
fb2a6fc5
JW
1430 if (failed) {
1431 /*
1432 * OK, we failed to lock the whole subtree so we have
1433 * to clean up what we set up to the failing subtree
1434 */
1435 for_each_mem_cgroup_tree(iter, memcg) {
1436 if (iter == failed) {
1437 mem_cgroup_iter_break(memcg, iter);
1438 break;
1439 }
1440 iter->oom_lock = false;
79dfdacc 1441 }
0056f4e6
JW
1442 } else
1443 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1444
1445 spin_unlock(&memcg_oom_lock);
1446
1447 return !failed;
a636b327 1448}
0b7f569e 1449
fb2a6fc5 1450static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1451{
7d74b06f
KH
1452 struct mem_cgroup *iter;
1453
fb2a6fc5 1454 spin_lock(&memcg_oom_lock);
0056f4e6 1455 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1456 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1457 iter->oom_lock = false;
fb2a6fc5 1458 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1459}
1460
c0ff4b85 1461static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1462{
1463 struct mem_cgroup *iter;
1464
c2b42d3c 1465 spin_lock(&memcg_oom_lock);
c0ff4b85 1466 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1467 iter->under_oom++;
1468 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1469}
1470
c0ff4b85 1471static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1472{
1473 struct mem_cgroup *iter;
1474
867578cb
KH
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1478 */
c2b42d3c 1479 spin_lock(&memcg_oom_lock);
c0ff4b85 1480 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1481 if (iter->under_oom > 0)
1482 iter->under_oom--;
1483 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1484}
1485
867578cb
KH
1486static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487
dc98df5a 1488struct oom_wait_info {
d79154bb 1489 struct mem_cgroup *memcg;
dc98df5a
KH
1490 wait_queue_t wait;
1491};
1492
1493static int memcg_oom_wake_function(wait_queue_t *wait,
1494 unsigned mode, int sync, void *arg)
1495{
d79154bb
HD
1496 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1497 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1501 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1502
2314b42d
JW
1503 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1504 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1505 return 0;
dc98df5a
KH
1506 return autoremove_wake_function(wait, mode, sync, arg);
1507}
1508
c0ff4b85 1509static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1510{
c2b42d3c
TH
1511 /*
1512 * For the following lockless ->under_oom test, the only required
1513 * guarantee is that it must see the state asserted by an OOM when
1514 * this function is called as a result of userland actions
1515 * triggered by the notification of the OOM. This is trivially
1516 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 * triggering notification.
1518 */
1519 if (memcg && memcg->under_oom)
f4b90b70 1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1521}
1522
3812c8c8 1523static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1524{
d0db7afa 1525 if (!current->memcg_may_oom)
3812c8c8 1526 return;
867578cb 1527 /*
49426420
JW
1528 * We are in the middle of the charge context here, so we
1529 * don't want to block when potentially sitting on a callstack
1530 * that holds all kinds of filesystem and mm locks.
1531 *
1532 * Also, the caller may handle a failed allocation gracefully
1533 * (like optional page cache readahead) and so an OOM killer
1534 * invocation might not even be necessary.
1535 *
1536 * That's why we don't do anything here except remember the
1537 * OOM context and then deal with it at the end of the page
1538 * fault when the stack is unwound, the locks are released,
1539 * and when we know whether the fault was overall successful.
867578cb 1540 */
49426420 1541 css_get(&memcg->css);
626ebc41
TH
1542 current->memcg_in_oom = memcg;
1543 current->memcg_oom_gfp_mask = mask;
1544 current->memcg_oom_order = order;
3812c8c8
JW
1545}
1546
1547/**
1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1549 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1550 *
49426420
JW
1551 * This has to be called at the end of a page fault if the memcg OOM
1552 * handler was enabled.
3812c8c8 1553 *
49426420 1554 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1555 * sleep on a waitqueue until the userspace task resolves the
1556 * situation. Sleeping directly in the charge context with all kinds
1557 * of locks held is not a good idea, instead we remember an OOM state
1558 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1559 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1560 *
1561 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1562 * completed, %false otherwise.
3812c8c8 1563 */
49426420 1564bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1565{
626ebc41 1566 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1567 struct oom_wait_info owait;
49426420 1568 bool locked;
3812c8c8
JW
1569
1570 /* OOM is global, do not handle */
3812c8c8 1571 if (!memcg)
49426420 1572 return false;
3812c8c8 1573
7c5f64f8 1574 if (!handle)
49426420 1575 goto cleanup;
3812c8c8
JW
1576
1577 owait.memcg = memcg;
1578 owait.wait.flags = 0;
1579 owait.wait.func = memcg_oom_wake_function;
1580 owait.wait.private = current;
1581 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1582
3812c8c8 1583 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1584 mem_cgroup_mark_under_oom(memcg);
1585
1586 locked = mem_cgroup_oom_trylock(memcg);
1587
1588 if (locked)
1589 mem_cgroup_oom_notify(memcg);
1590
1591 if (locked && !memcg->oom_kill_disable) {
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1594 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1595 current->memcg_oom_order);
49426420 1596 } else {
3812c8c8 1597 schedule();
49426420
JW
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
1600 }
1601
1602 if (locked) {
fb2a6fc5
JW
1603 mem_cgroup_oom_unlock(memcg);
1604 /*
1605 * There is no guarantee that an OOM-lock contender
1606 * sees the wakeups triggered by the OOM kill
1607 * uncharges. Wake any sleepers explicitely.
1608 */
1609 memcg_oom_recover(memcg);
1610 }
49426420 1611cleanup:
626ebc41 1612 current->memcg_in_oom = NULL;
3812c8c8 1613 css_put(&memcg->css);
867578cb 1614 return true;
0b7f569e
KH
1615}
1616
d7365e78 1617/**
81f8c3a4
JW
1618 * lock_page_memcg - lock a page->mem_cgroup binding
1619 * @page: the page
32047e2a 1620 *
81f8c3a4
JW
1621 * This function protects unlocked LRU pages from being moved to
1622 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1623 */
62cccb8c 1624void lock_page_memcg(struct page *page)
89c06bd5
KH
1625{
1626 struct mem_cgroup *memcg;
6de22619 1627 unsigned long flags;
89c06bd5 1628
6de22619
JW
1629 /*
1630 * The RCU lock is held throughout the transaction. The fast
1631 * path can get away without acquiring the memcg->move_lock
1632 * because page moving starts with an RCU grace period.
6de22619 1633 */
d7365e78
JW
1634 rcu_read_lock();
1635
1636 if (mem_cgroup_disabled())
62cccb8c 1637 return;
89c06bd5 1638again:
1306a85a 1639 memcg = page->mem_cgroup;
29833315 1640 if (unlikely(!memcg))
62cccb8c 1641 return;
d7365e78 1642
bdcbb659 1643 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1644 return;
89c06bd5 1645
6de22619 1646 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1647 if (memcg != page->mem_cgroup) {
6de22619 1648 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1649 goto again;
1650 }
6de22619
JW
1651
1652 /*
1653 * When charge migration first begins, we can have locked and
1654 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1655 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1656 */
1657 memcg->move_lock_task = current;
1658 memcg->move_lock_flags = flags;
d7365e78 1659
62cccb8c 1660 return;
89c06bd5 1661}
81f8c3a4 1662EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1663
d7365e78 1664/**
81f8c3a4 1665 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1666 * @page: the page
d7365e78 1667 */
62cccb8c 1668void unlock_page_memcg(struct page *page)
89c06bd5 1669{
62cccb8c
JW
1670 struct mem_cgroup *memcg = page->mem_cgroup;
1671
6de22619
JW
1672 if (memcg && memcg->move_lock_task == current) {
1673 unsigned long flags = memcg->move_lock_flags;
1674
1675 memcg->move_lock_task = NULL;
1676 memcg->move_lock_flags = 0;
1677
1678 spin_unlock_irqrestore(&memcg->move_lock, flags);
1679 }
89c06bd5 1680
d7365e78 1681 rcu_read_unlock();
89c06bd5 1682}
81f8c3a4 1683EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1684
cdec2e42
KH
1685/*
1686 * size of first charge trial. "32" comes from vmscan.c's magic value.
1687 * TODO: maybe necessary to use big numbers in big irons.
1688 */
7ec99d62 1689#define CHARGE_BATCH 32U
cdec2e42
KH
1690struct memcg_stock_pcp {
1691 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1692 unsigned int nr_pages;
cdec2e42 1693 struct work_struct work;
26fe6168 1694 unsigned long flags;
a0db00fc 1695#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1696};
1697static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1698static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1699
a0956d54
SS
1700/**
1701 * consume_stock: Try to consume stocked charge on this cpu.
1702 * @memcg: memcg to consume from.
1703 * @nr_pages: how many pages to charge.
1704 *
1705 * The charges will only happen if @memcg matches the current cpu's memcg
1706 * stock, and at least @nr_pages are available in that stock. Failure to
1707 * service an allocation will refill the stock.
1708 *
1709 * returns true if successful, false otherwise.
cdec2e42 1710 */
a0956d54 1711static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1712{
1713 struct memcg_stock_pcp *stock;
db2ba40c 1714 unsigned long flags;
3e32cb2e 1715 bool ret = false;
cdec2e42 1716
a0956d54 1717 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1718 return ret;
a0956d54 1719
db2ba40c
JW
1720 local_irq_save(flags);
1721
1722 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1723 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1724 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1725 ret = true;
1726 }
db2ba40c
JW
1727
1728 local_irq_restore(flags);
1729
cdec2e42
KH
1730 return ret;
1731}
1732
1733/*
3e32cb2e 1734 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1735 */
1736static void drain_stock(struct memcg_stock_pcp *stock)
1737{
1738 struct mem_cgroup *old = stock->cached;
1739
11c9ea4e 1740 if (stock->nr_pages) {
3e32cb2e 1741 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1742 if (do_memsw_account())
3e32cb2e 1743 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1744 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1745 stock->nr_pages = 0;
cdec2e42
KH
1746 }
1747 stock->cached = NULL;
cdec2e42
KH
1748}
1749
cdec2e42
KH
1750static void drain_local_stock(struct work_struct *dummy)
1751{
db2ba40c
JW
1752 struct memcg_stock_pcp *stock;
1753 unsigned long flags;
1754
1755 local_irq_save(flags);
1756
1757 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1758 drain_stock(stock);
26fe6168 1759 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1760
1761 local_irq_restore(flags);
cdec2e42
KH
1762}
1763
1764/*
3e32cb2e 1765 * Cache charges(val) to local per_cpu area.
320cc51d 1766 * This will be consumed by consume_stock() function, later.
cdec2e42 1767 */
c0ff4b85 1768static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1769{
db2ba40c
JW
1770 struct memcg_stock_pcp *stock;
1771 unsigned long flags;
1772
1773 local_irq_save(flags);
cdec2e42 1774
db2ba40c 1775 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1776 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1777 drain_stock(stock);
c0ff4b85 1778 stock->cached = memcg;
cdec2e42 1779 }
11c9ea4e 1780 stock->nr_pages += nr_pages;
db2ba40c
JW
1781
1782 local_irq_restore(flags);
cdec2e42
KH
1783}
1784
1785/*
c0ff4b85 1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1787 * of the hierarchy under it.
cdec2e42 1788 */
6d3d6aa2 1789static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1790{
26fe6168 1791 int cpu, curcpu;
d38144b7 1792
6d3d6aa2
JW
1793 /* If someone's already draining, avoid adding running more workers. */
1794 if (!mutex_trylock(&percpu_charge_mutex))
1795 return;
cdec2e42 1796 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1797 get_online_cpus();
5af12d0e 1798 curcpu = get_cpu();
cdec2e42
KH
1799 for_each_online_cpu(cpu) {
1800 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1801 struct mem_cgroup *memcg;
26fe6168 1802
c0ff4b85
R
1803 memcg = stock->cached;
1804 if (!memcg || !stock->nr_pages)
26fe6168 1805 continue;
2314b42d 1806 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1807 continue;
d1a05b69
MH
1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1809 if (cpu == curcpu)
1810 drain_local_stock(&stock->work);
1811 else
1812 schedule_work_on(cpu, &stock->work);
1813 }
cdec2e42 1814 }
5af12d0e 1815 put_cpu();
f894ffa8 1816 put_online_cpus();
9f50fad6 1817 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1818}
1819
308167fc 1820static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1821{
cdec2e42
KH
1822 struct memcg_stock_pcp *stock;
1823
cdec2e42
KH
1824 stock = &per_cpu(memcg_stock, cpu);
1825 drain_stock(stock);
308167fc 1826 return 0;
cdec2e42
KH
1827}
1828
f7e1cb6e
JW
1829static void reclaim_high(struct mem_cgroup *memcg,
1830 unsigned int nr_pages,
1831 gfp_t gfp_mask)
1832{
1833 do {
1834 if (page_counter_read(&memcg->memory) <= memcg->high)
1835 continue;
1836 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1837 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1838 } while ((memcg = parent_mem_cgroup(memcg)));
1839}
1840
1841static void high_work_func(struct work_struct *work)
1842{
1843 struct mem_cgroup *memcg;
1844
1845 memcg = container_of(work, struct mem_cgroup, high_work);
1846 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1847}
1848
b23afb93
TH
1849/*
1850 * Scheduled by try_charge() to be executed from the userland return path
1851 * and reclaims memory over the high limit.
1852 */
1853void mem_cgroup_handle_over_high(void)
1854{
1855 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1856 struct mem_cgroup *memcg;
b23afb93
TH
1857
1858 if (likely(!nr_pages))
1859 return;
1860
f7e1cb6e
JW
1861 memcg = get_mem_cgroup_from_mm(current->mm);
1862 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1863 css_put(&memcg->css);
1864 current->memcg_nr_pages_over_high = 0;
1865}
1866
00501b53
JW
1867static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1868 unsigned int nr_pages)
8a9f3ccd 1869{
7ec99d62 1870 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1872 struct mem_cgroup *mem_over_limit;
3e32cb2e 1873 struct page_counter *counter;
6539cc05 1874 unsigned long nr_reclaimed;
b70a2a21
JW
1875 bool may_swap = true;
1876 bool drained = false;
a636b327 1877
ce00a967 1878 if (mem_cgroup_is_root(memcg))
10d53c74 1879 return 0;
6539cc05 1880retry:
b6b6cc72 1881 if (consume_stock(memcg, nr_pages))
10d53c74 1882 return 0;
8a9f3ccd 1883
7941d214 1884 if (!do_memsw_account() ||
6071ca52
JW
1885 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1886 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1887 goto done_restock;
7941d214 1888 if (do_memsw_account())
3e32cb2e
JW
1889 page_counter_uncharge(&memcg->memsw, batch);
1890 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1891 } else {
3e32cb2e 1892 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1893 may_swap = false;
3fbe7244 1894 }
7a81b88c 1895
6539cc05
JW
1896 if (batch > nr_pages) {
1897 batch = nr_pages;
1898 goto retry;
1899 }
6d61ef40 1900
06b078fc
JW
1901 /*
1902 * Unlike in global OOM situations, memcg is not in a physical
1903 * memory shortage. Allow dying and OOM-killed tasks to
1904 * bypass the last charges so that they can exit quickly and
1905 * free their memory.
1906 */
1907 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1908 fatal_signal_pending(current) ||
1909 current->flags & PF_EXITING))
10d53c74 1910 goto force;
06b078fc 1911
89a28483
JW
1912 /*
1913 * Prevent unbounded recursion when reclaim operations need to
1914 * allocate memory. This might exceed the limits temporarily,
1915 * but we prefer facilitating memory reclaim and getting back
1916 * under the limit over triggering OOM kills in these cases.
1917 */
1918 if (unlikely(current->flags & PF_MEMALLOC))
1919 goto force;
1920
06b078fc
JW
1921 if (unlikely(task_in_memcg_oom(current)))
1922 goto nomem;
1923
d0164adc 1924 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1925 goto nomem;
4b534334 1926
241994ed
JW
1927 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1928
b70a2a21
JW
1929 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1930 gfp_mask, may_swap);
6539cc05 1931
61e02c74 1932 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1933 goto retry;
28c34c29 1934
b70a2a21 1935 if (!drained) {
6d3d6aa2 1936 drain_all_stock(mem_over_limit);
b70a2a21
JW
1937 drained = true;
1938 goto retry;
1939 }
1940
28c34c29
JW
1941 if (gfp_mask & __GFP_NORETRY)
1942 goto nomem;
6539cc05
JW
1943 /*
1944 * Even though the limit is exceeded at this point, reclaim
1945 * may have been able to free some pages. Retry the charge
1946 * before killing the task.
1947 *
1948 * Only for regular pages, though: huge pages are rather
1949 * unlikely to succeed so close to the limit, and we fall back
1950 * to regular pages anyway in case of failure.
1951 */
61e02c74 1952 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1953 goto retry;
1954 /*
1955 * At task move, charge accounts can be doubly counted. So, it's
1956 * better to wait until the end of task_move if something is going on.
1957 */
1958 if (mem_cgroup_wait_acct_move(mem_over_limit))
1959 goto retry;
1960
9b130619
JW
1961 if (nr_retries--)
1962 goto retry;
1963
06b078fc 1964 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1965 goto force;
06b078fc 1966
6539cc05 1967 if (fatal_signal_pending(current))
10d53c74 1968 goto force;
6539cc05 1969
241994ed
JW
1970 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1971
3608de07
JM
1972 mem_cgroup_oom(mem_over_limit, gfp_mask,
1973 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1974nomem:
6d1fdc48 1975 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1976 return -ENOMEM;
10d53c74
TH
1977force:
1978 /*
1979 * The allocation either can't fail or will lead to more memory
1980 * being freed very soon. Allow memory usage go over the limit
1981 * temporarily by force charging it.
1982 */
1983 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1984 if (do_memsw_account())
10d53c74
TH
1985 page_counter_charge(&memcg->memsw, nr_pages);
1986 css_get_many(&memcg->css, nr_pages);
1987
1988 return 0;
6539cc05
JW
1989
1990done_restock:
e8ea14cc 1991 css_get_many(&memcg->css, batch);
6539cc05
JW
1992 if (batch > nr_pages)
1993 refill_stock(memcg, batch - nr_pages);
b23afb93 1994
241994ed 1995 /*
b23afb93
TH
1996 * If the hierarchy is above the normal consumption range, schedule
1997 * reclaim on returning to userland. We can perform reclaim here
71baba4b 1998 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
1999 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2000 * not recorded as it most likely matches current's and won't
2001 * change in the meantime. As high limit is checked again before
2002 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2003 */
2004 do {
b23afb93 2005 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2006 /* Don't bother a random interrupted task */
2007 if (in_interrupt()) {
2008 schedule_work(&memcg->high_work);
2009 break;
2010 }
9516a18a 2011 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2012 set_notify_resume(current);
2013 break;
2014 }
241994ed 2015 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2016
2017 return 0;
7a81b88c 2018}
8a9f3ccd 2019
00501b53 2020static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2021{
ce00a967
JW
2022 if (mem_cgroup_is_root(memcg))
2023 return;
2024
3e32cb2e 2025 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2026 if (do_memsw_account())
3e32cb2e 2027 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2028
e8ea14cc 2029 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2030}
2031
0a31bc97
JW
2032static void lock_page_lru(struct page *page, int *isolated)
2033{
2034 struct zone *zone = page_zone(page);
2035
a52633d8 2036 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2037 if (PageLRU(page)) {
2038 struct lruvec *lruvec;
2039
599d0c95 2040 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2041 ClearPageLRU(page);
2042 del_page_from_lru_list(page, lruvec, page_lru(page));
2043 *isolated = 1;
2044 } else
2045 *isolated = 0;
2046}
2047
2048static void unlock_page_lru(struct page *page, int isolated)
2049{
2050 struct zone *zone = page_zone(page);
2051
2052 if (isolated) {
2053 struct lruvec *lruvec;
2054
599d0c95 2055 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2056 VM_BUG_ON_PAGE(PageLRU(page), page);
2057 SetPageLRU(page);
2058 add_page_to_lru_list(page, lruvec, page_lru(page));
2059 }
a52633d8 2060 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2061}
2062
00501b53 2063static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2064 bool lrucare)
7a81b88c 2065{
0a31bc97 2066 int isolated;
9ce70c02 2067
1306a85a 2068 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2069
2070 /*
2071 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2072 * may already be on some other mem_cgroup's LRU. Take care of it.
2073 */
0a31bc97
JW
2074 if (lrucare)
2075 lock_page_lru(page, &isolated);
9ce70c02 2076
0a31bc97
JW
2077 /*
2078 * Nobody should be changing or seriously looking at
1306a85a 2079 * page->mem_cgroup at this point:
0a31bc97
JW
2080 *
2081 * - the page is uncharged
2082 *
2083 * - the page is off-LRU
2084 *
2085 * - an anonymous fault has exclusive page access, except for
2086 * a locked page table
2087 *
2088 * - a page cache insertion, a swapin fault, or a migration
2089 * have the page locked
2090 */
1306a85a 2091 page->mem_cgroup = memcg;
9ce70c02 2092
0a31bc97
JW
2093 if (lrucare)
2094 unlock_page_lru(page, isolated);
7a81b88c 2095}
66e1707b 2096
127424c8 2097#ifndef CONFIG_SLOB
f3bb3043 2098static int memcg_alloc_cache_id(void)
55007d84 2099{
f3bb3043
VD
2100 int id, size;
2101 int err;
2102
dbcf73e2 2103 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2105 if (id < 0)
2106 return id;
55007d84 2107
dbcf73e2 2108 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2109 return id;
2110
2111 /*
2112 * There's no space for the new id in memcg_caches arrays,
2113 * so we have to grow them.
2114 */
05257a1a 2115 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2116
2117 size = 2 * (id + 1);
55007d84
GC
2118 if (size < MEMCG_CACHES_MIN_SIZE)
2119 size = MEMCG_CACHES_MIN_SIZE;
2120 else if (size > MEMCG_CACHES_MAX_SIZE)
2121 size = MEMCG_CACHES_MAX_SIZE;
2122
f3bb3043 2123 err = memcg_update_all_caches(size);
60d3fd32
VD
2124 if (!err)
2125 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2126 if (!err)
2127 memcg_nr_cache_ids = size;
2128
2129 up_write(&memcg_cache_ids_sem);
2130
f3bb3043 2131 if (err) {
dbcf73e2 2132 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2133 return err;
2134 }
2135 return id;
2136}
2137
2138static void memcg_free_cache_id(int id)
2139{
dbcf73e2 2140 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2141}
2142
d5b3cf71 2143struct memcg_kmem_cache_create_work {
5722d094
VD
2144 struct mem_cgroup *memcg;
2145 struct kmem_cache *cachep;
2146 struct work_struct work;
2147};
2148
13583c3d
VD
2149static struct workqueue_struct *memcg_kmem_cache_create_wq;
2150
d5b3cf71 2151static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2152{
d5b3cf71
VD
2153 struct memcg_kmem_cache_create_work *cw =
2154 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2155 struct mem_cgroup *memcg = cw->memcg;
2156 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2157
d5b3cf71 2158 memcg_create_kmem_cache(memcg, cachep);
bd673145 2159
5722d094 2160 css_put(&memcg->css);
d7f25f8a
GC
2161 kfree(cw);
2162}
2163
2164/*
2165 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2166 */
d5b3cf71
VD
2167static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2168 struct kmem_cache *cachep)
d7f25f8a 2169{
d5b3cf71 2170 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2171
776ed0f0 2172 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2173 if (!cw)
d7f25f8a 2174 return;
8135be5a
VD
2175
2176 css_get(&memcg->css);
d7f25f8a
GC
2177
2178 cw->memcg = memcg;
2179 cw->cachep = cachep;
d5b3cf71 2180 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2181
13583c3d 2182 queue_work(memcg_kmem_cache_create_wq, &cw->work);
d7f25f8a
GC
2183}
2184
d5b3cf71
VD
2185static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2186 struct kmem_cache *cachep)
0e9d92f2
GC
2187{
2188 /*
2189 * We need to stop accounting when we kmalloc, because if the
2190 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2191 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2192 *
2193 * However, it is better to enclose the whole function. Depending on
2194 * the debugging options enabled, INIT_WORK(), for instance, can
2195 * trigger an allocation. This too, will make us recurse. Because at
2196 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2197 * the safest choice is to do it like this, wrapping the whole function.
2198 */
6f185c29 2199 current->memcg_kmem_skip_account = 1;
d5b3cf71 2200 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2201 current->memcg_kmem_skip_account = 0;
0e9d92f2 2202}
c67a8a68 2203
45264778
VD
2204static inline bool memcg_kmem_bypass(void)
2205{
2206 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2207 return true;
2208 return false;
2209}
2210
2211/**
2212 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2213 * @cachep: the original global kmem cache
2214 *
d7f25f8a
GC
2215 * Return the kmem_cache we're supposed to use for a slab allocation.
2216 * We try to use the current memcg's version of the cache.
2217 *
45264778
VD
2218 * If the cache does not exist yet, if we are the first user of it, we
2219 * create it asynchronously in a workqueue and let the current allocation
2220 * go through with the original cache.
d7f25f8a 2221 *
45264778
VD
2222 * This function takes a reference to the cache it returns to assure it
2223 * won't get destroyed while we are working with it. Once the caller is
2224 * done with it, memcg_kmem_put_cache() must be called to release the
2225 * reference.
d7f25f8a 2226 */
45264778 2227struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2228{
2229 struct mem_cgroup *memcg;
959c8963 2230 struct kmem_cache *memcg_cachep;
2a4db7eb 2231 int kmemcg_id;
d7f25f8a 2232
f7ce3190 2233 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2234
45264778 2235 if (memcg_kmem_bypass())
230e9fc2
VD
2236 return cachep;
2237
9d100c5e 2238 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2239 return cachep;
2240
8135be5a 2241 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2242 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2243 if (kmemcg_id < 0)
ca0dde97 2244 goto out;
d7f25f8a 2245
2a4db7eb 2246 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2247 if (likely(memcg_cachep))
2248 return memcg_cachep;
ca0dde97
LZ
2249
2250 /*
2251 * If we are in a safe context (can wait, and not in interrupt
2252 * context), we could be be predictable and return right away.
2253 * This would guarantee that the allocation being performed
2254 * already belongs in the new cache.
2255 *
2256 * However, there are some clashes that can arrive from locking.
2257 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2258 * memcg_create_kmem_cache, this means no further allocation
2259 * could happen with the slab_mutex held. So it's better to
2260 * defer everything.
ca0dde97 2261 */
d5b3cf71 2262 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2263out:
8135be5a 2264 css_put(&memcg->css);
ca0dde97 2265 return cachep;
d7f25f8a 2266}
d7f25f8a 2267
45264778
VD
2268/**
2269 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2270 * @cachep: the cache returned by memcg_kmem_get_cache
2271 */
2272void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2273{
2274 if (!is_root_cache(cachep))
f7ce3190 2275 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2276}
2277
45264778
VD
2278/**
2279 * memcg_kmem_charge: charge a kmem page
2280 * @page: page to charge
2281 * @gfp: reclaim mode
2282 * @order: allocation order
2283 * @memcg: memory cgroup to charge
2284 *
2285 * Returns 0 on success, an error code on failure.
2286 */
2287int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2288 struct mem_cgroup *memcg)
7ae1e1d0 2289{
f3ccb2c4
VD
2290 unsigned int nr_pages = 1 << order;
2291 struct page_counter *counter;
7ae1e1d0
GC
2292 int ret;
2293
f3ccb2c4 2294 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2295 if (ret)
f3ccb2c4 2296 return ret;
52c29b04
JW
2297
2298 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2299 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2300 cancel_charge(memcg, nr_pages);
2301 return -ENOMEM;
7ae1e1d0
GC
2302 }
2303
f3ccb2c4 2304 page->mem_cgroup = memcg;
7ae1e1d0 2305
f3ccb2c4 2306 return 0;
7ae1e1d0
GC
2307}
2308
45264778
VD
2309/**
2310 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2311 * @page: page to charge
2312 * @gfp: reclaim mode
2313 * @order: allocation order
2314 *
2315 * Returns 0 on success, an error code on failure.
2316 */
2317int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2318{
f3ccb2c4 2319 struct mem_cgroup *memcg;
fcff7d7e 2320 int ret = 0;
7ae1e1d0 2321
45264778
VD
2322 if (memcg_kmem_bypass())
2323 return 0;
2324
f3ccb2c4 2325 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2326 if (!mem_cgroup_is_root(memcg)) {
45264778 2327 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2328 if (!ret)
2329 __SetPageKmemcg(page);
2330 }
7ae1e1d0 2331 css_put(&memcg->css);
d05e83a6 2332 return ret;
7ae1e1d0 2333}
45264778
VD
2334/**
2335 * memcg_kmem_uncharge: uncharge a kmem page
2336 * @page: page to uncharge
2337 * @order: allocation order
2338 */
2339void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2340{
1306a85a 2341 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2342 unsigned int nr_pages = 1 << order;
7ae1e1d0 2343
7ae1e1d0
GC
2344 if (!memcg)
2345 return;
2346
309381fe 2347 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2348
52c29b04
JW
2349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2350 page_counter_uncharge(&memcg->kmem, nr_pages);
2351
f3ccb2c4 2352 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2353 if (do_memsw_account())
f3ccb2c4 2354 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2355
1306a85a 2356 page->mem_cgroup = NULL;
c4159a75
VD
2357
2358 /* slab pages do not have PageKmemcg flag set */
2359 if (PageKmemcg(page))
2360 __ClearPageKmemcg(page);
2361
f3ccb2c4 2362 css_put_many(&memcg->css, nr_pages);
60d3fd32 2363}
127424c8 2364#endif /* !CONFIG_SLOB */
7ae1e1d0 2365
ca3e0214
KH
2366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2367
ca3e0214
KH
2368/*
2369 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2370 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2371 */
e94c8a9c 2372void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2373{
e94c8a9c 2374 int i;
ca3e0214 2375
3d37c4a9
KH
2376 if (mem_cgroup_disabled())
2377 return;
b070e65c 2378
29833315 2379 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2380 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2381
1306a85a 2382 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2383 HPAGE_PMD_NR);
ca3e0214 2384}
12d27107 2385#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2386
c255a458 2387#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2388static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2389 bool charge)
d13d1443 2390{
0a31bc97
JW
2391 int val = (charge) ? 1 : -1;
2392 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2393}
02491447
DN
2394
2395/**
2396 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2397 * @entry: swap entry to be moved
2398 * @from: mem_cgroup which the entry is moved from
2399 * @to: mem_cgroup which the entry is moved to
2400 *
2401 * It succeeds only when the swap_cgroup's record for this entry is the same
2402 * as the mem_cgroup's id of @from.
2403 *
2404 * Returns 0 on success, -EINVAL on failure.
2405 *
3e32cb2e 2406 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2407 * both res and memsw, and called css_get().
2408 */
2409static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2410 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2411{
2412 unsigned short old_id, new_id;
2413
34c00c31
LZ
2414 old_id = mem_cgroup_id(from);
2415 new_id = mem_cgroup_id(to);
02491447
DN
2416
2417 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2418 mem_cgroup_swap_statistics(from, false);
483c30b5 2419 mem_cgroup_swap_statistics(to, true);
02491447
DN
2420 return 0;
2421 }
2422 return -EINVAL;
2423}
2424#else
2425static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2426 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2427{
2428 return -EINVAL;
2429}
8c7c6e34 2430#endif
d13d1443 2431
3e32cb2e 2432static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2433
d38d2a75 2434static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2435 unsigned long limit)
628f4235 2436{
3e32cb2e
JW
2437 unsigned long curusage;
2438 unsigned long oldusage;
2439 bool enlarge = false;
81d39c20 2440 int retry_count;
3e32cb2e 2441 int ret;
81d39c20
KH
2442
2443 /*
2444 * For keeping hierarchical_reclaim simple, how long we should retry
2445 * is depends on callers. We set our retry-count to be function
2446 * of # of children which we should visit in this loop.
2447 */
3e32cb2e
JW
2448 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2449 mem_cgroup_count_children(memcg);
81d39c20 2450
3e32cb2e 2451 oldusage = page_counter_read(&memcg->memory);
628f4235 2452
3e32cb2e 2453 do {
628f4235
KH
2454 if (signal_pending(current)) {
2455 ret = -EINTR;
2456 break;
2457 }
3e32cb2e
JW
2458
2459 mutex_lock(&memcg_limit_mutex);
2460 if (limit > memcg->memsw.limit) {
2461 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2462 ret = -EINVAL;
628f4235
KH
2463 break;
2464 }
3e32cb2e
JW
2465 if (limit > memcg->memory.limit)
2466 enlarge = true;
2467 ret = page_counter_limit(&memcg->memory, limit);
2468 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2469
2470 if (!ret)
2471 break;
2472
b70a2a21
JW
2473 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2474
3e32cb2e 2475 curusage = page_counter_read(&memcg->memory);
81d39c20 2476 /* Usage is reduced ? */
f894ffa8 2477 if (curusage >= oldusage)
81d39c20
KH
2478 retry_count--;
2479 else
2480 oldusage = curusage;
3e32cb2e
JW
2481 } while (retry_count);
2482
3c11ecf4
KH
2483 if (!ret && enlarge)
2484 memcg_oom_recover(memcg);
14797e23 2485
8c7c6e34
KH
2486 return ret;
2487}
2488
338c8431 2489static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2490 unsigned long limit)
8c7c6e34 2491{
3e32cb2e
JW
2492 unsigned long curusage;
2493 unsigned long oldusage;
2494 bool enlarge = false;
81d39c20 2495 int retry_count;
3e32cb2e 2496 int ret;
8c7c6e34 2497
81d39c20 2498 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2499 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2500 mem_cgroup_count_children(memcg);
2501
2502 oldusage = page_counter_read(&memcg->memsw);
2503
2504 do {
8c7c6e34
KH
2505 if (signal_pending(current)) {
2506 ret = -EINTR;
2507 break;
2508 }
3e32cb2e
JW
2509
2510 mutex_lock(&memcg_limit_mutex);
2511 if (limit < memcg->memory.limit) {
2512 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2513 ret = -EINVAL;
8c7c6e34
KH
2514 break;
2515 }
3e32cb2e
JW
2516 if (limit > memcg->memsw.limit)
2517 enlarge = true;
2518 ret = page_counter_limit(&memcg->memsw, limit);
2519 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2520
2521 if (!ret)
2522 break;
2523
b70a2a21
JW
2524 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2525
3e32cb2e 2526 curusage = page_counter_read(&memcg->memsw);
81d39c20 2527 /* Usage is reduced ? */
8c7c6e34 2528 if (curusage >= oldusage)
628f4235 2529 retry_count--;
81d39c20
KH
2530 else
2531 oldusage = curusage;
3e32cb2e
JW
2532 } while (retry_count);
2533
3c11ecf4
KH
2534 if (!ret && enlarge)
2535 memcg_oom_recover(memcg);
3e32cb2e 2536
628f4235
KH
2537 return ret;
2538}
2539
ef8f2327 2540unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2541 gfp_t gfp_mask,
2542 unsigned long *total_scanned)
2543{
2544 unsigned long nr_reclaimed = 0;
ef8f2327 2545 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2546 unsigned long reclaimed;
2547 int loop = 0;
ef8f2327 2548 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2549 unsigned long excess;
0608f43d
AM
2550 unsigned long nr_scanned;
2551
2552 if (order > 0)
2553 return 0;
2554
ef8f2327 2555 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2556
2557 /*
2558 * Do not even bother to check the largest node if the root
2559 * is empty. Do it lockless to prevent lock bouncing. Races
2560 * are acceptable as soft limit is best effort anyway.
2561 */
b4a66461 2562 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2563 return 0;
2564
0608f43d
AM
2565 /*
2566 * This loop can run a while, specially if mem_cgroup's continuously
2567 * keep exceeding their soft limit and putting the system under
2568 * pressure
2569 */
2570 do {
2571 if (next_mz)
2572 mz = next_mz;
2573 else
2574 mz = mem_cgroup_largest_soft_limit_node(mctz);
2575 if (!mz)
2576 break;
2577
2578 nr_scanned = 0;
ef8f2327 2579 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2580 gfp_mask, &nr_scanned);
2581 nr_reclaimed += reclaimed;
2582 *total_scanned += nr_scanned;
0a31bc97 2583 spin_lock_irq(&mctz->lock);
bc2f2e7f 2584 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2585
2586 /*
2587 * If we failed to reclaim anything from this memory cgroup
2588 * it is time to move on to the next cgroup
2589 */
2590 next_mz = NULL;
bc2f2e7f
VD
2591 if (!reclaimed)
2592 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2593
3e32cb2e 2594 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2595 /*
2596 * One school of thought says that we should not add
2597 * back the node to the tree if reclaim returns 0.
2598 * But our reclaim could return 0, simply because due
2599 * to priority we are exposing a smaller subset of
2600 * memory to reclaim from. Consider this as a longer
2601 * term TODO.
2602 */
2603 /* If excess == 0, no tree ops */
cf2c8127 2604 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2605 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2606 css_put(&mz->memcg->css);
2607 loop++;
2608 /*
2609 * Could not reclaim anything and there are no more
2610 * mem cgroups to try or we seem to be looping without
2611 * reclaiming anything.
2612 */
2613 if (!nr_reclaimed &&
2614 (next_mz == NULL ||
2615 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2616 break;
2617 } while (!nr_reclaimed);
2618 if (next_mz)
2619 css_put(&next_mz->memcg->css);
2620 return nr_reclaimed;
2621}
2622
ea280e7b
TH
2623/*
2624 * Test whether @memcg has children, dead or alive. Note that this
2625 * function doesn't care whether @memcg has use_hierarchy enabled and
2626 * returns %true if there are child csses according to the cgroup
2627 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2628 */
b5f99b53
GC
2629static inline bool memcg_has_children(struct mem_cgroup *memcg)
2630{
ea280e7b
TH
2631 bool ret;
2632
ea280e7b
TH
2633 rcu_read_lock();
2634 ret = css_next_child(NULL, &memcg->css);
2635 rcu_read_unlock();
2636 return ret;
b5f99b53
GC
2637}
2638
c26251f9 2639/*
51038171 2640 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2647
c1e862c1
KH
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
f817ed48 2650 /* try to free all pages in this cgroup */
3e32cb2e 2651 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2652 int progress;
c1e862c1 2653
c26251f9
MH
2654 if (signal_pending(current))
2655 return -EINTR;
2656
b70a2a21
JW
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
c1e862c1 2659 if (!progress) {
f817ed48 2660 nr_retries--;
c1e862c1 2661 /* maybe some writeback is necessary */
8aa7e847 2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2663 }
f817ed48
KH
2664
2665 }
ab5196c2
MH
2666
2667 return 0;
cc847582
KH
2668}
2669
6770c64e
TH
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
c1e862c1 2673{
6770c64e 2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2675
d8423011
MH
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
6770c64e 2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2679}
2680
182446d0
TH
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
18f59ea7 2683{
182446d0 2684 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2685}
2686
182446d0
TH
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
18f59ea7
BS
2689{
2690 int retval = 0;
182446d0 2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2693
567fb435 2694 if (memcg->use_hierarchy == val)
0b8f73e1 2695 return 0;
567fb435 2696
18f59ea7 2697 /*
af901ca1 2698 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
c0ff4b85 2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2706 (val == 1 || val == 0)) {
ea280e7b 2707 if (!memcg_has_children(memcg))
c0ff4b85 2708 memcg->use_hierarchy = val;
18f59ea7
BS
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
567fb435 2713
18f59ea7
BS
2714 return retval;
2715}
2716
72b54e73 2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2718{
2719 struct mem_cgroup *iter;
72b54e73 2720 int i;
ce00a967 2721
72b54e73 2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2723
72b54e73
VD
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
ce00a967
JW
2728}
2729
72b54e73 2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2731{
2732 struct mem_cgroup *iter;
72b54e73 2733 int i;
587d9f72 2734
72b54e73 2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2736
72b54e73
VD
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
587d9f72
JW
2741}
2742
6f646156 2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2744{
72b54e73 2745 unsigned long val = 0;
ce00a967 2746
3e32cb2e 2747 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
3e32cb2e 2759 } else {
ce00a967 2760 if (!swap)
3e32cb2e 2761 val = page_counter_read(&memcg->memory);
ce00a967 2762 else
3e32cb2e 2763 val = page_counter_read(&memcg->memsw);
ce00a967 2764 }
c12176d3 2765 return val;
ce00a967
JW
2766}
2767
3e32cb2e
JW
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
ce00a967 2775
791badbd 2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2777 struct cftype *cft)
8cdea7c0 2778{
182446d0 2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2780 struct page_counter *counter;
af36f906 2781
3e32cb2e 2782 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2783 case _MEM:
3e32cb2e
JW
2784 counter = &memcg->memory;
2785 break;
8c7c6e34 2786 case _MEMSWAP:
3e32cb2e
JW
2787 counter = &memcg->memsw;
2788 break;
510fc4e1 2789 case _KMEM:
3e32cb2e 2790 counter = &memcg->kmem;
510fc4e1 2791 break;
d55f90bf 2792 case _TCP:
0db15298 2793 counter = &memcg->tcpmem;
d55f90bf 2794 break;
8c7c6e34
KH
2795 default:
2796 BUG();
8c7c6e34 2797 }
3e32cb2e
JW
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
c12176d3 2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2803 if (counter == &memcg->memsw)
c12176d3 2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
8cdea7c0 2817}
510fc4e1 2818
127424c8 2819#ifndef CONFIG_SLOB
567e9ab2 2820static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2821{
d6441637
VD
2822 int memcg_id;
2823
b313aeee
VD
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2a4db7eb 2827 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2828 BUG_ON(memcg->kmem_state);
d6441637 2829
f3bb3043 2830 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2831 if (memcg_id < 0)
2832 return memcg_id;
d6441637 2833
ef12947c 2834 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2835 /*
567e9ab2 2836 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2837 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
900a38f0 2841 memcg->kmemcg_id = memcg_id;
567e9ab2 2842 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2843
2844 return 0;
d6441637
VD
2845}
2846
8e0a8912
JW
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
3a06bb78 2880 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2881 css_for_each_descendant_pre(css, &memcg->css) {
2882 child = mem_cgroup_from_css(css);
2883 BUG_ON(child->kmemcg_id != kmemcg_id);
2884 child->kmemcg_id = parent->kmemcg_id;
2885 if (!memcg->use_hierarchy)
2886 break;
2887 }
3a06bb78
TH
2888 rcu_read_unlock();
2889
8e0a8912
JW
2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891
2892 memcg_free_cache_id(kmemcg_id);
2893}
2894
2895static void memcg_free_kmem(struct mem_cgroup *memcg)
2896{
0b8f73e1
JW
2897 /* css_alloc() failed, offlining didn't happen */
2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 memcg_offline_kmem(memcg);
2900
8e0a8912
JW
2901 if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 memcg_destroy_kmem_caches(memcg);
2903 static_branch_dec(&memcg_kmem_enabled_key);
2904 WARN_ON(page_counter_read(&memcg->kmem));
2905 }
8e0a8912 2906}
d6441637 2907#else
0b8f73e1 2908static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2909{
2910 return 0;
2911}
2912static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915static void memcg_free_kmem(struct mem_cgroup *memcg)
2916{
2917}
2918#endif /* !CONFIG_SLOB */
2919
d6441637 2920static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2921 unsigned long limit)
d6441637 2922{
b313aeee 2923 int ret;
127424c8
JW
2924
2925 mutex_lock(&memcg_limit_mutex);
127424c8 2926 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2927 mutex_unlock(&memcg_limit_mutex);
2928 return ret;
d6441637 2929}
510fc4e1 2930
d55f90bf
VD
2931static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932{
2933 int ret;
2934
2935 mutex_lock(&memcg_limit_mutex);
2936
0db15298 2937 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2938 if (ret)
2939 goto out;
2940
0db15298 2941 if (!memcg->tcpmem_active) {
d55f90bf
VD
2942 /*
2943 * The active flag needs to be written after the static_key
2944 * update. This is what guarantees that the socket activation
2d758073
JW
2945 * function is the last one to run. See mem_cgroup_sk_alloc()
2946 * for details, and note that we don't mark any socket as
2947 * belonging to this memcg until that flag is up.
d55f90bf
VD
2948 *
2949 * We need to do this, because static_keys will span multiple
2950 * sites, but we can't control their order. If we mark a socket
2951 * as accounted, but the accounting functions are not patched in
2952 * yet, we'll lose accounting.
2953 *
2d758073 2954 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2955 * because when this value change, the code to process it is not
2956 * patched in yet.
2957 */
2958 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2959 memcg->tcpmem_active = true;
d55f90bf
VD
2960 }
2961out:
2962 mutex_unlock(&memcg_limit_mutex);
2963 return ret;
2964}
d55f90bf 2965
628f4235
KH
2966/*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
451af504
TH
2970static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2972{
451af504 2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2974 unsigned long nr_pages;
628f4235
KH
2975 int ret;
2976
451af504 2977 buf = strstrip(buf);
650c5e56 2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2979 if (ret)
2980 return ret;
af36f906 2981
3e32cb2e 2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2983 case RES_LIMIT:
4b3bde4c
BS
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
3e32cb2e
JW
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2991 break;
3e32cb2e
JW
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2994 break;
3e32cb2e
JW
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
d55f90bf
VD
2998 case _TCP:
2999 ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 break;
3e32cb2e 3001 }
296c81d8 3002 break;
3e32cb2e
JW
3003 case RES_SOFT_LIMIT:
3004 memcg->soft_limit = nr_pages;
3005 ret = 0;
628f4235
KH
3006 break;
3007 }
451af504 3008 return ret ?: nbytes;
8cdea7c0
BS
3009}
3010
6770c64e
TH
3011static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 size_t nbytes, loff_t off)
c84872e1 3013{
6770c64e 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3015 struct page_counter *counter;
c84872e1 3016
3e32cb2e
JW
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 counter = &memcg->memory;
3020 break;
3021 case _MEMSWAP:
3022 counter = &memcg->memsw;
3023 break;
3024 case _KMEM:
3025 counter = &memcg->kmem;
3026 break;
d55f90bf 3027 case _TCP:
0db15298 3028 counter = &memcg->tcpmem;
d55f90bf 3029 break;
3e32cb2e
JW
3030 default:
3031 BUG();
3032 }
af36f906 3033
3e32cb2e 3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3035 case RES_MAX_USAGE:
3e32cb2e 3036 page_counter_reset_watermark(counter);
29f2a4da
PE
3037 break;
3038 case RES_FAILCNT:
3e32cb2e 3039 counter->failcnt = 0;
29f2a4da 3040 break;
3e32cb2e
JW
3041 default:
3042 BUG();
29f2a4da 3043 }
f64c3f54 3044
6770c64e 3045 return nbytes;
c84872e1
PE
3046}
3047
182446d0 3048static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3049 struct cftype *cft)
3050{
182446d0 3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3052}
3053
02491447 3054#ifdef CONFIG_MMU
182446d0 3055static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3056 struct cftype *cft, u64 val)
3057{
182446d0 3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3059
1dfab5ab 3060 if (val & ~MOVE_MASK)
7dc74be0 3061 return -EINVAL;
ee5e8472 3062
7dc74be0 3063 /*
ee5e8472
GC
3064 * No kind of locking is needed in here, because ->can_attach() will
3065 * check this value once in the beginning of the process, and then carry
3066 * on with stale data. This means that changes to this value will only
3067 * affect task migrations starting after the change.
7dc74be0 3068 */
c0ff4b85 3069 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3070 return 0;
3071}
02491447 3072#else
182446d0 3073static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3074 struct cftype *cft, u64 val)
3075{
3076 return -ENOSYS;
3077}
3078#endif
7dc74be0 3079
406eb0c9 3080#ifdef CONFIG_NUMA
2da8ca82 3081static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3082{
25485de6
GT
3083 struct numa_stat {
3084 const char *name;
3085 unsigned int lru_mask;
3086 };
3087
3088 static const struct numa_stat stats[] = {
3089 { "total", LRU_ALL },
3090 { "file", LRU_ALL_FILE },
3091 { "anon", LRU_ALL_ANON },
3092 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093 };
3094 const struct numa_stat *stat;
406eb0c9 3095 int nid;
25485de6 3096 unsigned long nr;
2da8ca82 3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3098
25485de6
GT
3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 seq_printf(m, "%s=%lu", stat->name, nr);
3102 for_each_node_state(nid, N_MEMORY) {
3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 stat->lru_mask);
3105 seq_printf(m, " N%d=%lu", nid, nr);
3106 }
3107 seq_putc(m, '\n');
406eb0c9 3108 }
406eb0c9 3109
071aee13
YH
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 struct mem_cgroup *iter;
3112
3113 nr = 0;
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = 0;
3119 for_each_mem_cgroup_tree(iter, memcg)
3120 nr += mem_cgroup_node_nr_lru_pages(
3121 iter, nid, stat->lru_mask);
3122 seq_printf(m, " N%d=%lu", nid, nr);
3123 }
3124 seq_putc(m, '\n');
406eb0c9 3125 }
406eb0c9 3126
406eb0c9
YH
3127 return 0;
3128}
3129#endif /* CONFIG_NUMA */
3130
2da8ca82 3131static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3132{
2da8ca82 3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3134 unsigned long memory, memsw;
af7c4b0e
JW
3135 struct mem_cgroup *mi;
3136 unsigned int i;
406eb0c9 3137
0ca44b14
GT
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 MEM_CGROUP_STAT_NSTATS);
3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
af7c4b0e 3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3146 continue;
484ebb3b 3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3149 }
7b854121 3150
af7c4b0e
JW
3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 mem_cgroup_read_events(memcg, i));
3154
3155 for (i = 0; i < NR_LRU_LISTS; i++)
3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
14067bb3 3159 /* Hierarchical information */
3e32cb2e
JW
3160 memory = memsw = PAGE_COUNTER_MAX;
3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 memory = min(memory, mi->memory.limit);
3163 memsw = min(memsw, mi->memsw.limit);
fee7b548 3164 }
3e32cb2e
JW
3165 seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 (u64)memory * PAGE_SIZE);
7941d214 3167 if (do_memsw_account())
3e32cb2e
JW
3168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 (u64)memsw * PAGE_SIZE);
7f016ee8 3170
af7c4b0e 3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3172 unsigned long long val = 0;
af7c4b0e 3173
7941d214 3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3175 continue;
af7c4b0e
JW
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3179 }
3180
3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 unsigned long long val = 0;
3183
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_events(mi, i);
3186 seq_printf(m, "total_%s %llu\n",
3187 mem_cgroup_events_names[i], val);
3188 }
3189
3190 for (i = 0; i < NR_LRU_LISTS; i++) {
3191 unsigned long long val = 0;
3192
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3196 }
14067bb3 3197
7f016ee8 3198#ifdef CONFIG_DEBUG_VM
7f016ee8 3199 {
ef8f2327
MG
3200 pg_data_t *pgdat;
3201 struct mem_cgroup_per_node *mz;
89abfab1 3202 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3203 unsigned long recent_rotated[2] = {0, 0};
3204 unsigned long recent_scanned[2] = {0, 0};
3205
ef8f2327
MG
3206 for_each_online_pgdat(pgdat) {
3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3209
ef8f2327
MG
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
3214 }
78ccf5b5
JW
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3219 }
3220#endif
3221
d2ceb9b7
KH
3222 return 0;
3223}
3224
182446d0
TH
3225static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
a7885eb8 3227{
182446d0 3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3229
1f4c025b 3230 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3231}
3232
182446d0
TH
3233static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
a7885eb8 3235{
182446d0 3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3237
3dae7fec 3238 if (val > 100)
a7885eb8
KM
3239 return -EINVAL;
3240
14208b0e 3241 if (css->parent)
3dae7fec
JW
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
068b38c1 3245
a7885eb8
KM
3246 return 0;
3247}
3248
2e72b634
KS
3249static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250{
3251 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3252 unsigned long usage;
2e72b634
KS
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
2c488db2 3257 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3258 else
2c488db2 3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3260
3261 if (!t)
3262 goto unlock;
3263
ce00a967 3264 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3265
3266 /*
748dad36 3267 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
5407a562 3271 i = t->current_threshold;
2e72b634
KS
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
5407a562 3295 t->current_threshold = i - 1;
2e72b634
KS
3296unlock:
3297 rcu_read_unlock();
3298}
3299
3300static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301{
ad4ca5f4
KS
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
7941d214 3304 if (do_memsw_account())
ad4ca5f4
KS
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
2e72b634
KS
3309}
3310
3311static int compare_thresholds(const void *a, const void *b)
3312{
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
2bff24a3
GT
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
2e72b634
KS
3323}
3324
c0ff4b85 3325static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3326{
3327 struct mem_cgroup_eventfd_list *ev;
3328
2bcf2e92
MH
3329 spin_lock(&memcg_oom_lock);
3330
c0ff4b85 3331 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3332 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3333
3334 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3335 return 0;
3336}
3337
c0ff4b85 3338static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3339{
7d74b06f
KH
3340 struct mem_cgroup *iter;
3341
c0ff4b85 3342 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3343 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3344}
3345
59b6f873 3346static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3348{
2c488db2
KS
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3351 unsigned long threshold;
3352 unsigned long usage;
2c488db2 3353 int i, size, ret;
2e72b634 3354
650c5e56 3355 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
2c488db2 3360
05b84301 3361 if (type == _MEM) {
2c488db2 3362 thresholds = &memcg->thresholds;
ce00a967 3363 usage = mem_cgroup_usage(memcg, false);
05b84301 3364 } else if (type == _MEMSWAP) {
2c488db2 3365 thresholds = &memcg->memsw_thresholds;
ce00a967 3366 usage = mem_cgroup_usage(memcg, true);
05b84301 3367 } else
2e72b634
KS
3368 BUG();
3369
2e72b634 3370 /* Check if a threshold crossed before adding a new one */
2c488db2 3371 if (thresholds->primary)
2e72b634
KS
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
2c488db2 3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3375
3376 /* Allocate memory for new array of thresholds */
2c488db2 3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3378 GFP_KERNEL);
2c488db2 3379 if (!new) {
2e72b634
KS
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
2c488db2 3383 new->size = size;
2e72b634
KS
3384
3385 /* Copy thresholds (if any) to new array */
2c488db2
KS
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3388 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3389 }
3390
2e72b634 3391 /* Add new threshold */
2c488db2
KS
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
2c488db2 3400 new->current_threshold = -1;
2e72b634 3401 for (i = 0; i < size; i++) {
748dad36 3402 if (new->entries[i].threshold <= usage) {
2e72b634 3403 /*
2c488db2
KS
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3406 * it here.
3407 */
2c488db2 3408 ++new->current_threshold;
748dad36
SZ
3409 } else
3410 break;
2e72b634
KS
3411 }
3412
2c488db2
KS
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3418
907860ed 3419 /* To be sure that nobody uses thresholds */
2e72b634
KS
3420 synchronize_rcu();
3421
2e72b634
KS
3422unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426}
3427
59b6f873 3428static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3429 struct eventfd_ctx *eventfd, const char *args)
3430{
59b6f873 3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3432}
3433
59b6f873 3434static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3435 struct eventfd_ctx *eventfd, const char *args)
3436{
59b6f873 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3438}
3439
59b6f873 3440static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3441 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3442{
2c488db2
KS
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3445 unsigned long usage;
2c488db2 3446 int i, j, size;
2e72b634
KS
3447
3448 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3449
3450 if (type == _MEM) {
2c488db2 3451 thresholds = &memcg->thresholds;
ce00a967 3452 usage = mem_cgroup_usage(memcg, false);
05b84301 3453 } else if (type == _MEMSWAP) {
2c488db2 3454 thresholds = &memcg->memsw_thresholds;
ce00a967 3455 usage = mem_cgroup_usage(memcg, true);
05b84301 3456 } else
2e72b634
KS
3457 BUG();
3458
371528ca
AV
3459 if (!thresholds->primary)
3460 goto unlock;
3461
2e72b634
KS
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
2c488db2
KS
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3469 size++;
3470 }
3471
2c488db2 3472 new = thresholds->spare;
907860ed 3473
2e72b634
KS
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
2c488db2
KS
3476 kfree(new);
3477 new = NULL;
907860ed 3478 goto swap_buffers;
2e72b634
KS
3479 }
3480
2c488db2 3481 new->size = size;
2e72b634
KS
3482
3483 /* Copy thresholds and find current threshold */
2c488db2
KS
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3487 continue;
3488
2c488db2 3489 new->entries[j] = thresholds->primary->entries[i];
748dad36 3490 if (new->entries[j].threshold <= usage) {
2e72b634 3491 /*
2c488db2 3492 * new->current_threshold will not be used
2e72b634
KS
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
2c488db2 3496 ++new->current_threshold;
2e72b634
KS
3497 }
3498 j++;
3499 }
3500
907860ed 3501swap_buffers:
2c488db2
KS
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
8c757763 3504
2c488db2 3505 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3506
907860ed 3507 /* To be sure that nobody uses thresholds */
2e72b634 3508 synchronize_rcu();
6611d8d7
MC
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
371528ca 3515unlock:
2e72b634 3516 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3517}
c1e862c1 3518
59b6f873 3519static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3520 struct eventfd_ctx *eventfd)
3521{
59b6f873 3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3523}
3524
59b6f873 3525static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3526 struct eventfd_ctx *eventfd)
3527{
59b6f873 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3529}
3530
59b6f873 3531static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3532 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3533{
9490ff27 3534 struct mem_cgroup_eventfd_list *event;
9490ff27 3535
9490ff27
KH
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
1af8efe9 3540 spin_lock(&memcg_oom_lock);
9490ff27
KH
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
c2b42d3c 3546 if (memcg->under_oom)
9490ff27 3547 eventfd_signal(eventfd, 1);
1af8efe9 3548 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3549
3550 return 0;
3551}
3552
59b6f873 3553static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3554 struct eventfd_ctx *eventfd)
9490ff27 3555{
9490ff27 3556 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3557
1af8efe9 3558 spin_lock(&memcg_oom_lock);
9490ff27 3559
c0ff4b85 3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
1af8efe9 3567 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3568}
3569
2da8ca82 3570static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3571{
2da8ca82 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3573
791badbd 3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3576 return 0;
3577}
3578
182446d0 3579static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3580 struct cftype *cft, u64 val)
3581{
182446d0 3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3583
3584 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3585 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3586 return -EINVAL;
3587
c0ff4b85 3588 memcg->oom_kill_disable = val;
4d845ebf 3589 if (!val)
c0ff4b85 3590 memcg_oom_recover(memcg);
3dae7fec 3591
3c11ecf4
KH
3592 return 0;
3593}
3594
52ebea74
TH
3595#ifdef CONFIG_CGROUP_WRITEBACK
3596
3597struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598{
3599 return &memcg->cgwb_list;
3600}
3601
841710aa
TH
3602static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603{
3604 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605}
3606
3607static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608{
3609 wb_domain_exit(&memcg->cgwb_domain);
3610}
3611
2529bb3a
TH
3612static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613{
3614 wb_domain_size_changed(&memcg->cgwb_domain);
3615}
3616
841710aa
TH
3617struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618{
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621 if (!memcg->css.parent)
3622 return NULL;
3623
3624 return &memcg->cgwb_domain;
3625}
3626
c2aa723a
TH
3627/**
3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629 * @wb: bdi_writeback in question
c5edf9cd
TH
3630 * @pfilepages: out parameter for number of file pages
3631 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3632 * @pdirty: out parameter for number of dirty pages
3633 * @pwriteback: out parameter for number of pages under writeback
3634 *
c5edf9cd
TH
3635 * Determine the numbers of file, headroom, dirty, and writeback pages in
3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3637 * is a bit more involved.
c2aa723a 3638 *
c5edf9cd
TH
3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3640 * headroom is calculated as the lowest headroom of itself and the
3641 * ancestors. Note that this doesn't consider the actual amount of
3642 * available memory in the system. The caller should further cap
3643 * *@pheadroom accordingly.
c2aa723a 3644 */
c5edf9cd
TH
3645void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 unsigned long *pheadroom, unsigned long *pdirty,
3647 unsigned long *pwriteback)
c2aa723a
TH
3648{
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 struct mem_cgroup *parent;
c2aa723a
TH
3651
3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654 /* this should eventually include NR_UNSTABLE_NFS */
3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 (1 << LRU_ACTIVE_FILE));
3658 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3659
c2aa723a
TH
3660 while ((parent = parent_mem_cgroup(memcg))) {
3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 unsigned long used = page_counter_read(&memcg->memory);
3663
c5edf9cd 3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3665 memcg = parent;
3666 }
c2aa723a
TH
3667}
3668
841710aa
TH
3669#else /* CONFIG_CGROUP_WRITEBACK */
3670
3671static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672{
3673 return 0;
3674}
3675
3676static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677{
3678}
3679
2529bb3a
TH
3680static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681{
3682}
3683
52ebea74
TH
3684#endif /* CONFIG_CGROUP_WRITEBACK */
3685
3bc942f3
TH
3686/*
3687 * DO NOT USE IN NEW FILES.
3688 *
3689 * "cgroup.event_control" implementation.
3690 *
3691 * This is way over-engineered. It tries to support fully configurable
3692 * events for each user. Such level of flexibility is completely
3693 * unnecessary especially in the light of the planned unified hierarchy.
3694 *
3695 * Please deprecate this and replace with something simpler if at all
3696 * possible.
3697 */
3698
79bd9814
TH
3699/*
3700 * Unregister event and free resources.
3701 *
3702 * Gets called from workqueue.
3703 */
3bc942f3 3704static void memcg_event_remove(struct work_struct *work)
79bd9814 3705{
3bc942f3
TH
3706 struct mem_cgroup_event *event =
3707 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3708 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3709
3710 remove_wait_queue(event->wqh, &event->wait);
3711
59b6f873 3712 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3713
3714 /* Notify userspace the event is going away. */
3715 eventfd_signal(event->eventfd, 1);
3716
3717 eventfd_ctx_put(event->eventfd);
3718 kfree(event);
59b6f873 3719 css_put(&memcg->css);
79bd9814
TH
3720}
3721
3722/*
3723 * Gets called on POLLHUP on eventfd when user closes it.
3724 *
3725 * Called with wqh->lock held and interrupts disabled.
3726 */
3bc942f3
TH
3727static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 int sync, void *key)
79bd9814 3729{
3bc942f3
TH
3730 struct mem_cgroup_event *event =
3731 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3732 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3733 unsigned long flags = (unsigned long)key;
3734
3735 if (flags & POLLHUP) {
3736 /*
3737 * If the event has been detached at cgroup removal, we
3738 * can simply return knowing the other side will cleanup
3739 * for us.
3740 *
3741 * We can't race against event freeing since the other
3742 * side will require wqh->lock via remove_wait_queue(),
3743 * which we hold.
3744 */
fba94807 3745 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3746 if (!list_empty(&event->list)) {
3747 list_del_init(&event->list);
3748 /*
3749 * We are in atomic context, but cgroup_event_remove()
3750 * may sleep, so we have to call it in workqueue.
3751 */
3752 schedule_work(&event->remove);
3753 }
fba94807 3754 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3755 }
3756
3757 return 0;
3758}
3759
3bc942f3 3760static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3761 wait_queue_head_t *wqh, poll_table *pt)
3762{
3bc942f3
TH
3763 struct mem_cgroup_event *event =
3764 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3765
3766 event->wqh = wqh;
3767 add_wait_queue(wqh, &event->wait);
3768}
3769
3770/*
3bc942f3
TH
3771 * DO NOT USE IN NEW FILES.
3772 *
79bd9814
TH
3773 * Parse input and register new cgroup event handler.
3774 *
3775 * Input must be in format '<event_fd> <control_fd> <args>'.
3776 * Interpretation of args is defined by control file implementation.
3777 */
451af504
TH
3778static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 char *buf, size_t nbytes, loff_t off)
79bd9814 3780{
451af504 3781 struct cgroup_subsys_state *css = of_css(of);
fba94807 3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3783 struct mem_cgroup_event *event;
79bd9814
TH
3784 struct cgroup_subsys_state *cfile_css;
3785 unsigned int efd, cfd;
3786 struct fd efile;
3787 struct fd cfile;
fba94807 3788 const char *name;
79bd9814
TH
3789 char *endp;
3790 int ret;
3791
451af504
TH
3792 buf = strstrip(buf);
3793
3794 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3795 if (*endp != ' ')
3796 return -EINVAL;
451af504 3797 buf = endp + 1;
79bd9814 3798
451af504 3799 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3800 if ((*endp != ' ') && (*endp != '\0'))
3801 return -EINVAL;
451af504 3802 buf = endp + 1;
79bd9814
TH
3803
3804 event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 if (!event)
3806 return -ENOMEM;
3807
59b6f873 3808 event->memcg = memcg;
79bd9814 3809 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3813
3814 efile = fdget(efd);
3815 if (!efile.file) {
3816 ret = -EBADF;
3817 goto out_kfree;
3818 }
3819
3820 event->eventfd = eventfd_ctx_fileget(efile.file);
3821 if (IS_ERR(event->eventfd)) {
3822 ret = PTR_ERR(event->eventfd);
3823 goto out_put_efile;
3824 }
3825
3826 cfile = fdget(cfd);
3827 if (!cfile.file) {
3828 ret = -EBADF;
3829 goto out_put_eventfd;
3830 }
3831
3832 /* the process need read permission on control file */
3833 /* AV: shouldn't we check that it's been opened for read instead? */
3834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 if (ret < 0)
3836 goto out_put_cfile;
3837
fba94807
TH
3838 /*
3839 * Determine the event callbacks and set them in @event. This used
3840 * to be done via struct cftype but cgroup core no longer knows
3841 * about these events. The following is crude but the whole thing
3842 * is for compatibility anyway.
3bc942f3
TH
3843 *
3844 * DO NOT ADD NEW FILES.
fba94807 3845 */
b583043e 3846 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3847
3848 if (!strcmp(name, "memory.usage_in_bytes")) {
3849 event->register_event = mem_cgroup_usage_register_event;
3850 event->unregister_event = mem_cgroup_usage_unregister_event;
3851 } else if (!strcmp(name, "memory.oom_control")) {
3852 event->register_event = mem_cgroup_oom_register_event;
3853 event->unregister_event = mem_cgroup_oom_unregister_event;
3854 } else if (!strcmp(name, "memory.pressure_level")) {
3855 event->register_event = vmpressure_register_event;
3856 event->unregister_event = vmpressure_unregister_event;
3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3858 event->register_event = memsw_cgroup_usage_register_event;
3859 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3860 } else {
3861 ret = -EINVAL;
3862 goto out_put_cfile;
3863 }
3864
79bd9814 3865 /*
b5557c4c
TH
3866 * Verify @cfile should belong to @css. Also, remaining events are
3867 * automatically removed on cgroup destruction but the removal is
3868 * asynchronous, so take an extra ref on @css.
79bd9814 3869 */
b583043e 3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3871 &memory_cgrp_subsys);
79bd9814 3872 ret = -EINVAL;
5a17f543 3873 if (IS_ERR(cfile_css))
79bd9814 3874 goto out_put_cfile;
5a17f543
TH
3875 if (cfile_css != css) {
3876 css_put(cfile_css);
79bd9814 3877 goto out_put_cfile;
5a17f543 3878 }
79bd9814 3879
451af504 3880 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3881 if (ret)
3882 goto out_put_css;
3883
3884 efile.file->f_op->poll(efile.file, &event->pt);
3885
fba94807
TH
3886 spin_lock(&memcg->event_list_lock);
3887 list_add(&event->list, &memcg->event_list);
3888 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3889
3890 fdput(cfile);
3891 fdput(efile);
3892
451af504 3893 return nbytes;
79bd9814
TH
3894
3895out_put_css:
b5557c4c 3896 css_put(css);
79bd9814
TH
3897out_put_cfile:
3898 fdput(cfile);
3899out_put_eventfd:
3900 eventfd_ctx_put(event->eventfd);
3901out_put_efile:
3902 fdput(efile);
3903out_kfree:
3904 kfree(event);
3905
3906 return ret;
3907}
3908
241994ed 3909static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3910 {
0eea1030 3911 .name = "usage_in_bytes",
8c7c6e34 3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3913 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3914 },
c84872e1
PE
3915 {
3916 .name = "max_usage_in_bytes",
8c7c6e34 3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3918 .write = mem_cgroup_reset,
791badbd 3919 .read_u64 = mem_cgroup_read_u64,
c84872e1 3920 },
8cdea7c0 3921 {
0eea1030 3922 .name = "limit_in_bytes",
8c7c6e34 3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3924 .write = mem_cgroup_write,
791badbd 3925 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3926 },
296c81d8
BS
3927 {
3928 .name = "soft_limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3930 .write = mem_cgroup_write,
791badbd 3931 .read_u64 = mem_cgroup_read_u64,
296c81d8 3932 },
8cdea7c0
BS
3933 {
3934 .name = "failcnt",
8c7c6e34 3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3936 .write = mem_cgroup_reset,
791badbd 3937 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3938 },
d2ceb9b7
KH
3939 {
3940 .name = "stat",
2da8ca82 3941 .seq_show = memcg_stat_show,
d2ceb9b7 3942 },
c1e862c1
KH
3943 {
3944 .name = "force_empty",
6770c64e 3945 .write = mem_cgroup_force_empty_write,
c1e862c1 3946 },
18f59ea7
BS
3947 {
3948 .name = "use_hierarchy",
3949 .write_u64 = mem_cgroup_hierarchy_write,
3950 .read_u64 = mem_cgroup_hierarchy_read,
3951 },
79bd9814 3952 {
3bc942f3 3953 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3954 .write = memcg_write_event_control,
7dbdb199 3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3956 },
a7885eb8
KM
3957 {
3958 .name = "swappiness",
3959 .read_u64 = mem_cgroup_swappiness_read,
3960 .write_u64 = mem_cgroup_swappiness_write,
3961 },
7dc74be0
DN
3962 {
3963 .name = "move_charge_at_immigrate",
3964 .read_u64 = mem_cgroup_move_charge_read,
3965 .write_u64 = mem_cgroup_move_charge_write,
3966 },
9490ff27
KH
3967 {
3968 .name = "oom_control",
2da8ca82 3969 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3970 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 },
70ddf637
AV
3973 {
3974 .name = "pressure_level",
70ddf637 3975 },
406eb0c9
YH
3976#ifdef CONFIG_NUMA
3977 {
3978 .name = "numa_stat",
2da8ca82 3979 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3980 },
3981#endif
510fc4e1
GC
3982 {
3983 .name = "kmem.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3985 .write = mem_cgroup_write,
791badbd 3986 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3987 },
3988 {
3989 .name = "kmem.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3991 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3992 },
3993 {
3994 .name = "kmem.failcnt",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3996 .write = mem_cgroup_reset,
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3998 },
3999 {
4000 .name = "kmem.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4002 .write = mem_cgroup_reset,
791badbd 4003 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4004 },
749c5415
GC
4005#ifdef CONFIG_SLABINFO
4006 {
4007 .name = "kmem.slabinfo",
b047501c
VD
4008 .seq_start = slab_start,
4009 .seq_next = slab_next,
4010 .seq_stop = slab_stop,
4011 .seq_show = memcg_slab_show,
749c5415
GC
4012 },
4013#endif
d55f90bf
VD
4014 {
4015 .name = "kmem.tcp.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.tcp.failcnt",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
6bc10349 4037 { }, /* terminate */
af36f906 4038};
8c7c6e34 4039
73f576c0
JW
4040/*
4041 * Private memory cgroup IDR
4042 *
4043 * Swap-out records and page cache shadow entries need to store memcg
4044 * references in constrained space, so we maintain an ID space that is
4045 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4046 * memory-controlled cgroups to 64k.
4047 *
4048 * However, there usually are many references to the oflline CSS after
4049 * the cgroup has been destroyed, such as page cache or reclaimable
4050 * slab objects, that don't need to hang on to the ID. We want to keep
4051 * those dead CSS from occupying IDs, or we might quickly exhaust the
4052 * relatively small ID space and prevent the creation of new cgroups
4053 * even when there are much fewer than 64k cgroups - possibly none.
4054 *
4055 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4056 * be freed and recycled when it's no longer needed, which is usually
4057 * when the CSS is offlined.
4058 *
4059 * The only exception to that are records of swapped out tmpfs/shmem
4060 * pages that need to be attributed to live ancestors on swapin. But
4061 * those references are manageable from userspace.
4062 */
4063
4064static DEFINE_IDR(mem_cgroup_idr);
4065
615d66c3 4066static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4067{
58fa2a55 4068 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4069 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4070}
4071
615d66c3 4072static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4073{
58fa2a55 4074 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4075 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4076 idr_remove(&mem_cgroup_idr, memcg->id.id);
4077 memcg->id.id = 0;
4078
4079 /* Memcg ID pins CSS */
4080 css_put(&memcg->css);
4081 }
4082}
4083
615d66c3
VD
4084static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4085{
4086 mem_cgroup_id_get_many(memcg, 1);
4087}
4088
4089static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4090{
4091 mem_cgroup_id_put_many(memcg, 1);
4092}
4093
73f576c0
JW
4094/**
4095 * mem_cgroup_from_id - look up a memcg from a memcg id
4096 * @id: the memcg id to look up
4097 *
4098 * Caller must hold rcu_read_lock().
4099 */
4100struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4101{
4102 WARN_ON_ONCE(!rcu_read_lock_held());
4103 return idr_find(&mem_cgroup_idr, id);
4104}
4105
ef8f2327 4106static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4107{
4108 struct mem_cgroup_per_node *pn;
ef8f2327 4109 int tmp = node;
1ecaab2b
KH
4110 /*
4111 * This routine is called against possible nodes.
4112 * But it's BUG to call kmalloc() against offline node.
4113 *
4114 * TODO: this routine can waste much memory for nodes which will
4115 * never be onlined. It's better to use memory hotplug callback
4116 * function.
4117 */
41e3355d
KH
4118 if (!node_state(node, N_NORMAL_MEMORY))
4119 tmp = -1;
17295c88 4120 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4121 if (!pn)
4122 return 1;
1ecaab2b 4123
ef8f2327
MG
4124 lruvec_init(&pn->lruvec);
4125 pn->usage_in_excess = 0;
4126 pn->on_tree = false;
4127 pn->memcg = memcg;
4128
54f72fe0 4129 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4130 return 0;
4131}
4132
ef8f2327 4133static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4134{
54f72fe0 4135 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4136}
4137
2ce8989a 4138static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4139{
c8b2a36f 4140 int node;
59927fb9 4141
c8b2a36f 4142 for_each_node(node)
ef8f2327 4143 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4144 free_percpu(memcg->stat);
8ff69e2c 4145 kfree(memcg);
59927fb9 4146}
3afe36b1 4147
2ce8989a
TE
4148static void mem_cgroup_free(struct mem_cgroup *memcg)
4149{
4150 memcg_wb_domain_exit(memcg);
4151 __mem_cgroup_free(memcg);
4152}
4153
0b8f73e1 4154static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4155{
d142e3e6 4156 struct mem_cgroup *memcg;
0b8f73e1 4157 size_t size;
6d12e2d8 4158 int node;
8cdea7c0 4159
0b8f73e1
JW
4160 size = sizeof(struct mem_cgroup);
4161 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4162
4163 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4164 if (!memcg)
0b8f73e1
JW
4165 return NULL;
4166
73f576c0
JW
4167 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4168 1, MEM_CGROUP_ID_MAX,
4169 GFP_KERNEL);
4170 if (memcg->id.id < 0)
4171 goto fail;
4172
0b8f73e1
JW
4173 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4174 if (!memcg->stat)
4175 goto fail;
78fb7466 4176
3ed28fa1 4177 for_each_node(node)
ef8f2327 4178 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4179 goto fail;
f64c3f54 4180
0b8f73e1
JW
4181 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4182 goto fail;
28dbc4b6 4183
f7e1cb6e 4184 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4185 memcg->last_scanned_node = MAX_NUMNODES;
4186 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4187 mutex_init(&memcg->thresholds_lock);
4188 spin_lock_init(&memcg->move_lock);
70ddf637 4189 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4190 INIT_LIST_HEAD(&memcg->event_list);
4191 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4192 memcg->socket_pressure = jiffies;
127424c8 4193#ifndef CONFIG_SLOB
900a38f0 4194 memcg->kmemcg_id = -1;
900a38f0 4195#endif
52ebea74
TH
4196#ifdef CONFIG_CGROUP_WRITEBACK
4197 INIT_LIST_HEAD(&memcg->cgwb_list);
4198#endif
73f576c0 4199 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4200 return memcg;
4201fail:
73f576c0
JW
4202 if (memcg->id.id > 0)
4203 idr_remove(&mem_cgroup_idr, memcg->id.id);
2ce8989a 4204 __mem_cgroup_free(memcg);
0b8f73e1 4205 return NULL;
d142e3e6
GC
4206}
4207
0b8f73e1
JW
4208static struct cgroup_subsys_state * __ref
4209mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4210{
0b8f73e1
JW
4211 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4212 struct mem_cgroup *memcg;
4213 long error = -ENOMEM;
d142e3e6 4214
0b8f73e1
JW
4215 memcg = mem_cgroup_alloc();
4216 if (!memcg)
4217 return ERR_PTR(error);
d142e3e6 4218
0b8f73e1
JW
4219 memcg->high = PAGE_COUNTER_MAX;
4220 memcg->soft_limit = PAGE_COUNTER_MAX;
4221 if (parent) {
4222 memcg->swappiness = mem_cgroup_swappiness(parent);
4223 memcg->oom_kill_disable = parent->oom_kill_disable;
4224 }
4225 if (parent && parent->use_hierarchy) {
4226 memcg->use_hierarchy = true;
3e32cb2e 4227 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4228 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4229 page_counter_init(&memcg->memsw, &parent->memsw);
4230 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4231 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4232 } else {
3e32cb2e 4233 page_counter_init(&memcg->memory, NULL);
37e84351 4234 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4235 page_counter_init(&memcg->memsw, NULL);
4236 page_counter_init(&memcg->kmem, NULL);
0db15298 4237 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4238 /*
4239 * Deeper hierachy with use_hierarchy == false doesn't make
4240 * much sense so let cgroup subsystem know about this
4241 * unfortunate state in our controller.
4242 */
d142e3e6 4243 if (parent != root_mem_cgroup)
073219e9 4244 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4245 }
d6441637 4246
0b8f73e1
JW
4247 /* The following stuff does not apply to the root */
4248 if (!parent) {
4249 root_mem_cgroup = memcg;
4250 return &memcg->css;
4251 }
4252
b313aeee 4253 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4254 if (error)
4255 goto fail;
127424c8 4256
f7e1cb6e 4257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4258 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4259
0b8f73e1
JW
4260 return &memcg->css;
4261fail:
4262 mem_cgroup_free(memcg);
ea3a9645 4263 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4264}
4265
73f576c0 4266static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4267{
58fa2a55
VD
4268 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4269
73f576c0 4270 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4271 atomic_set(&memcg->id.ref, 1);
73f576c0 4272 css_get(css);
2f7dd7a4 4273 return 0;
8cdea7c0
BS
4274}
4275
eb95419b 4276static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4277{
eb95419b 4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4279 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4280
4281 /*
4282 * Unregister events and notify userspace.
4283 * Notify userspace about cgroup removing only after rmdir of cgroup
4284 * directory to avoid race between userspace and kernelspace.
4285 */
fba94807
TH
4286 spin_lock(&memcg->event_list_lock);
4287 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4288 list_del_init(&event->list);
4289 schedule_work(&event->remove);
4290 }
fba94807 4291 spin_unlock(&memcg->event_list_lock);
ec64f515 4292
567e9ab2 4293 memcg_offline_kmem(memcg);
52ebea74 4294 wb_memcg_offline(memcg);
73f576c0
JW
4295
4296 mem_cgroup_id_put(memcg);
df878fb0
KH
4297}
4298
6df38689
VD
4299static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4300{
4301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4302
4303 invalidate_reclaim_iterators(memcg);
4304}
4305
eb95419b 4306static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4307{
eb95419b 4308 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4309
f7e1cb6e 4310 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4311 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4312
0db15298 4313 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4314 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4315
0b8f73e1
JW
4316 vmpressure_cleanup(&memcg->vmpressure);
4317 cancel_work_sync(&memcg->high_work);
4318 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4319 memcg_free_kmem(memcg);
0b8f73e1 4320 mem_cgroup_free(memcg);
8cdea7c0
BS
4321}
4322
1ced953b
TH
4323/**
4324 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4325 * @css: the target css
4326 *
4327 * Reset the states of the mem_cgroup associated with @css. This is
4328 * invoked when the userland requests disabling on the default hierarchy
4329 * but the memcg is pinned through dependency. The memcg should stop
4330 * applying policies and should revert to the vanilla state as it may be
4331 * made visible again.
4332 *
4333 * The current implementation only resets the essential configurations.
4334 * This needs to be expanded to cover all the visible parts.
4335 */
4336static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4337{
4338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4339
d334c9bc
VD
4340 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4341 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4343 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4344 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4345 memcg->low = 0;
4346 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4347 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4348 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4349}
4350
02491447 4351#ifdef CONFIG_MMU
7dc74be0 4352/* Handlers for move charge at task migration. */
854ffa8d 4353static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4354{
05b84301 4355 int ret;
9476db97 4356
d0164adc
MG
4357 /* Try a single bulk charge without reclaim first, kswapd may wake */
4358 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4359 if (!ret) {
854ffa8d 4360 mc.precharge += count;
854ffa8d
DN
4361 return ret;
4362 }
9476db97 4363
3674534b 4364 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4365 while (count--) {
3674534b 4366 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4367 if (ret)
38c5d72f 4368 return ret;
854ffa8d 4369 mc.precharge++;
9476db97 4370 cond_resched();
854ffa8d 4371 }
9476db97 4372 return 0;
4ffef5fe
DN
4373}
4374
4ffef5fe
DN
4375union mc_target {
4376 struct page *page;
02491447 4377 swp_entry_t ent;
4ffef5fe
DN
4378};
4379
4ffef5fe 4380enum mc_target_type {
8d32ff84 4381 MC_TARGET_NONE = 0,
4ffef5fe 4382 MC_TARGET_PAGE,
02491447 4383 MC_TARGET_SWAP,
4ffef5fe
DN
4384};
4385
90254a65
DN
4386static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4387 unsigned long addr, pte_t ptent)
4ffef5fe 4388{
90254a65 4389 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4390
90254a65
DN
4391 if (!page || !page_mapped(page))
4392 return NULL;
4393 if (PageAnon(page)) {
1dfab5ab 4394 if (!(mc.flags & MOVE_ANON))
90254a65 4395 return NULL;
1dfab5ab
JW
4396 } else {
4397 if (!(mc.flags & MOVE_FILE))
4398 return NULL;
4399 }
90254a65
DN
4400 if (!get_page_unless_zero(page))
4401 return NULL;
4402
4403 return page;
4404}
4405
4b91355e 4406#ifdef CONFIG_SWAP
90254a65 4407static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4408 pte_t ptent, swp_entry_t *entry)
90254a65 4409{
90254a65
DN
4410 struct page *page = NULL;
4411 swp_entry_t ent = pte_to_swp_entry(ptent);
4412
1dfab5ab 4413 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4414 return NULL;
4b91355e
KH
4415 /*
4416 * Because lookup_swap_cache() updates some statistics counter,
4417 * we call find_get_page() with swapper_space directly.
4418 */
f6ab1f7f 4419 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4420 if (do_memsw_account())
90254a65
DN
4421 entry->val = ent.val;
4422
4423 return page;
4424}
4b91355e
KH
4425#else
4426static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4427 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4428{
4429 return NULL;
4430}
4431#endif
90254a65 4432
87946a72
DN
4433static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435{
4436 struct page *page = NULL;
87946a72
DN
4437 struct address_space *mapping;
4438 pgoff_t pgoff;
4439
4440 if (!vma->vm_file) /* anonymous vma */
4441 return NULL;
1dfab5ab 4442 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4443 return NULL;
4444
87946a72 4445 mapping = vma->vm_file->f_mapping;
0661a336 4446 pgoff = linear_page_index(vma, addr);
87946a72
DN
4447
4448 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4449#ifdef CONFIG_SWAP
4450 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4451 if (shmem_mapping(mapping)) {
4452 page = find_get_entry(mapping, pgoff);
4453 if (radix_tree_exceptional_entry(page)) {
4454 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4455 if (do_memsw_account())
139b6a6f 4456 *entry = swp;
f6ab1f7f
HY
4457 page = find_get_page(swap_address_space(swp),
4458 swp_offset(swp));
139b6a6f
JW
4459 }
4460 } else
4461 page = find_get_page(mapping, pgoff);
4462#else
4463 page = find_get_page(mapping, pgoff);
aa3b1895 4464#endif
87946a72
DN
4465 return page;
4466}
4467
b1b0deab
CG
4468/**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
25843c2b 4471 * @compound: charge the page as compound or small page
b1b0deab
CG
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to: mem_cgroup which the page is moved to. @from != @to.
4474 *
3ac808fd 4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480static int mem_cgroup_move_account(struct page *page,
f627c2f5 4481 bool compound,
b1b0deab
CG
4482 struct mem_cgroup *from,
4483 struct mem_cgroup *to)
4484{
4485 unsigned long flags;
f627c2f5 4486 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4487 int ret;
c4843a75 4488 bool anon;
b1b0deab
CG
4489
4490 VM_BUG_ON(from == to);
4491 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4492 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4493
4494 /*
6a93ca8f 4495 * Prevent mem_cgroup_migrate() from looking at
45637bab 4496 * page->mem_cgroup of its source page while we change it.
b1b0deab 4497 */
f627c2f5 4498 ret = -EBUSY;
b1b0deab
CG
4499 if (!trylock_page(page))
4500 goto out;
4501
4502 ret = -EINVAL;
4503 if (page->mem_cgroup != from)
4504 goto out_unlock;
4505
c4843a75
GT
4506 anon = PageAnon(page);
4507
b1b0deab
CG
4508 spin_lock_irqsave(&from->move_lock, flags);
4509
c4843a75 4510 if (!anon && page_mapped(page)) {
b1b0deab
CG
4511 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 nr_pages);
4513 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4514 nr_pages);
4515 }
4516
c4843a75
GT
4517 /*
4518 * move_lock grabbed above and caller set from->moving_account, so
4519 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4520 * So mapping should be stable for dirty pages.
4521 */
4522 if (!anon && PageDirty(page)) {
4523 struct address_space *mapping = page_mapping(page);
4524
4525 if (mapping_cap_account_dirty(mapping)) {
4526 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 nr_pages);
4528 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4529 nr_pages);
4530 }
4531 }
4532
b1b0deab
CG
4533 if (PageWriteback(page)) {
4534 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 nr_pages);
4536 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4537 nr_pages);
4538 }
4539
4540 /*
4541 * It is safe to change page->mem_cgroup here because the page
4542 * is referenced, charged, and isolated - we can't race with
4543 * uncharging, charging, migration, or LRU putback.
4544 */
4545
4546 /* caller should have done css_get */
4547 page->mem_cgroup = to;
4548 spin_unlock_irqrestore(&from->move_lock, flags);
4549
4550 ret = 0;
4551
4552 local_irq_disable();
f627c2f5 4553 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4554 memcg_check_events(to, page);
f627c2f5 4555 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4556 memcg_check_events(from, page);
4557 local_irq_enable();
4558out_unlock:
4559 unlock_page(page);
4560out:
4561 return ret;
4562}
4563
7cf7806c
LR
4564/**
4565 * get_mctgt_type - get target type of moving charge
4566 * @vma: the vma the pte to be checked belongs
4567 * @addr: the address corresponding to the pte to be checked
4568 * @ptent: the pte to be checked
4569 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4570 *
4571 * Returns
4572 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4573 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4574 * move charge. if @target is not NULL, the page is stored in target->page
4575 * with extra refcnt got(Callers should handle it).
4576 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4577 * target for charge migration. if @target is not NULL, the entry is stored
4578 * in target->ent.
4579 *
4580 * Called with pte lock held.
4581 */
4582
8d32ff84 4583static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4584 unsigned long addr, pte_t ptent, union mc_target *target)
4585{
4586 struct page *page = NULL;
8d32ff84 4587 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4588 swp_entry_t ent = { .val = 0 };
4589
4590 if (pte_present(ptent))
4591 page = mc_handle_present_pte(vma, addr, ptent);
4592 else if (is_swap_pte(ptent))
48406ef8 4593 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4594 else if (pte_none(ptent))
87946a72 4595 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4596
4597 if (!page && !ent.val)
8d32ff84 4598 return ret;
02491447 4599 if (page) {
02491447 4600 /*
0a31bc97 4601 * Do only loose check w/o serialization.
1306a85a 4602 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4603 * not under LRU exclusion.
02491447 4604 */
1306a85a 4605 if (page->mem_cgroup == mc.from) {
02491447
DN
4606 ret = MC_TARGET_PAGE;
4607 if (target)
4608 target->page = page;
4609 }
4610 if (!ret || !target)
4611 put_page(page);
4612 }
90254a65
DN
4613 /* There is a swap entry and a page doesn't exist or isn't charged */
4614 if (ent.val && !ret &&
34c00c31 4615 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4616 ret = MC_TARGET_SWAP;
4617 if (target)
4618 target->ent = ent;
4ffef5fe 4619 }
4ffef5fe
DN
4620 return ret;
4621}
4622
12724850
NH
4623#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4624/*
4625 * We don't consider swapping or file mapped pages because THP does not
4626 * support them for now.
4627 * Caller should make sure that pmd_trans_huge(pmd) is true.
4628 */
4629static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4630 unsigned long addr, pmd_t pmd, union mc_target *target)
4631{
4632 struct page *page = NULL;
12724850
NH
4633 enum mc_target_type ret = MC_TARGET_NONE;
4634
4635 page = pmd_page(pmd);
309381fe 4636 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4637 if (!(mc.flags & MOVE_ANON))
12724850 4638 return ret;
1306a85a 4639 if (page->mem_cgroup == mc.from) {
12724850
NH
4640 ret = MC_TARGET_PAGE;
4641 if (target) {
4642 get_page(page);
4643 target->page = page;
4644 }
4645 }
4646 return ret;
4647}
4648#else
4649static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4650 unsigned long addr, pmd_t pmd, union mc_target *target)
4651{
4652 return MC_TARGET_NONE;
4653}
4654#endif
4655
4ffef5fe
DN
4656static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4657 unsigned long addr, unsigned long end,
4658 struct mm_walk *walk)
4659{
26bcd64a 4660 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4661 pte_t *pte;
4662 spinlock_t *ptl;
4663
b6ec57f4
KS
4664 ptl = pmd_trans_huge_lock(pmd, vma);
4665 if (ptl) {
12724850
NH
4666 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4667 mc.precharge += HPAGE_PMD_NR;
bf929152 4668 spin_unlock(ptl);
1a5a9906 4669 return 0;
12724850 4670 }
03319327 4671
45f83cef
AA
4672 if (pmd_trans_unstable(pmd))
4673 return 0;
4ffef5fe
DN
4674 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4675 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4676 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4677 mc.precharge++; /* increment precharge temporarily */
4678 pte_unmap_unlock(pte - 1, ptl);
4679 cond_resched();
4680
7dc74be0
DN
4681 return 0;
4682}
4683
4ffef5fe
DN
4684static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4685{
4686 unsigned long precharge;
4ffef5fe 4687
26bcd64a
NH
4688 struct mm_walk mem_cgroup_count_precharge_walk = {
4689 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4690 .mm = mm,
4691 };
dfe076b0 4692 down_read(&mm->mmap_sem);
0247f3f4
JM
4693 walk_page_range(0, mm->highest_vm_end,
4694 &mem_cgroup_count_precharge_walk);
dfe076b0 4695 up_read(&mm->mmap_sem);
4ffef5fe
DN
4696
4697 precharge = mc.precharge;
4698 mc.precharge = 0;
4699
4700 return precharge;
4701}
4702
4ffef5fe
DN
4703static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4704{
dfe076b0
DN
4705 unsigned long precharge = mem_cgroup_count_precharge(mm);
4706
4707 VM_BUG_ON(mc.moving_task);
4708 mc.moving_task = current;
4709 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4710}
4711
dfe076b0
DN
4712/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4713static void __mem_cgroup_clear_mc(void)
4ffef5fe 4714{
2bd9bb20
KH
4715 struct mem_cgroup *from = mc.from;
4716 struct mem_cgroup *to = mc.to;
4717
4ffef5fe 4718 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4719 if (mc.precharge) {
00501b53 4720 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4721 mc.precharge = 0;
4722 }
4723 /*
4724 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4725 * we must uncharge here.
4726 */
4727 if (mc.moved_charge) {
00501b53 4728 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4729 mc.moved_charge = 0;
4ffef5fe 4730 }
483c30b5
DN
4731 /* we must fixup refcnts and charges */
4732 if (mc.moved_swap) {
483c30b5 4733 /* uncharge swap account from the old cgroup */
ce00a967 4734 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4735 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4736
615d66c3
VD
4737 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4738
05b84301 4739 /*
3e32cb2e
JW
4740 * we charged both to->memory and to->memsw, so we
4741 * should uncharge to->memory.
05b84301 4742 */
ce00a967 4743 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4744 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4745
615d66c3
VD
4746 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4747 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4748
483c30b5
DN
4749 mc.moved_swap = 0;
4750 }
dfe076b0
DN
4751 memcg_oom_recover(from);
4752 memcg_oom_recover(to);
4753 wake_up_all(&mc.waitq);
4754}
4755
4756static void mem_cgroup_clear_mc(void)
4757{
264a0ae1
TH
4758 struct mm_struct *mm = mc.mm;
4759
dfe076b0
DN
4760 /*
4761 * we must clear moving_task before waking up waiters at the end of
4762 * task migration.
4763 */
4764 mc.moving_task = NULL;
4765 __mem_cgroup_clear_mc();
2bd9bb20 4766 spin_lock(&mc.lock);
4ffef5fe
DN
4767 mc.from = NULL;
4768 mc.to = NULL;
264a0ae1 4769 mc.mm = NULL;
2bd9bb20 4770 spin_unlock(&mc.lock);
264a0ae1
TH
4771
4772 mmput(mm);
4ffef5fe
DN
4773}
4774
1f7dd3e5 4775static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4776{
1f7dd3e5 4777 struct cgroup_subsys_state *css;
eed67d75 4778 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4779 struct mem_cgroup *from;
4530eddb 4780 struct task_struct *leader, *p;
9f2115f9 4781 struct mm_struct *mm;
1dfab5ab 4782 unsigned long move_flags;
9f2115f9 4783 int ret = 0;
7dc74be0 4784
1f7dd3e5
TH
4785 /* charge immigration isn't supported on the default hierarchy */
4786 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4787 return 0;
4788
4530eddb
TH
4789 /*
4790 * Multi-process migrations only happen on the default hierarchy
4791 * where charge immigration is not used. Perform charge
4792 * immigration if @tset contains a leader and whine if there are
4793 * multiple.
4794 */
4795 p = NULL;
1f7dd3e5 4796 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4797 WARN_ON_ONCE(p);
4798 p = leader;
1f7dd3e5 4799 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4800 }
4801 if (!p)
4802 return 0;
4803
1f7dd3e5
TH
4804 /*
4805 * We are now commited to this value whatever it is. Changes in this
4806 * tunable will only affect upcoming migrations, not the current one.
4807 * So we need to save it, and keep it going.
4808 */
4809 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4810 if (!move_flags)
4811 return 0;
4812
9f2115f9
TH
4813 from = mem_cgroup_from_task(p);
4814
4815 VM_BUG_ON(from == memcg);
4816
4817 mm = get_task_mm(p);
4818 if (!mm)
4819 return 0;
4820 /* We move charges only when we move a owner of the mm */
4821 if (mm->owner == p) {
4822 VM_BUG_ON(mc.from);
4823 VM_BUG_ON(mc.to);
4824 VM_BUG_ON(mc.precharge);
4825 VM_BUG_ON(mc.moved_charge);
4826 VM_BUG_ON(mc.moved_swap);
4827
4828 spin_lock(&mc.lock);
264a0ae1 4829 mc.mm = mm;
9f2115f9
TH
4830 mc.from = from;
4831 mc.to = memcg;
4832 mc.flags = move_flags;
4833 spin_unlock(&mc.lock);
4834 /* We set mc.moving_task later */
4835
4836 ret = mem_cgroup_precharge_mc(mm);
4837 if (ret)
4838 mem_cgroup_clear_mc();
264a0ae1
TH
4839 } else {
4840 mmput(mm);
7dc74be0
DN
4841 }
4842 return ret;
4843}
4844
1f7dd3e5 4845static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4846{
4e2f245d
JW
4847 if (mc.to)
4848 mem_cgroup_clear_mc();
7dc74be0
DN
4849}
4850
4ffef5fe
DN
4851static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4852 unsigned long addr, unsigned long end,
4853 struct mm_walk *walk)
7dc74be0 4854{
4ffef5fe 4855 int ret = 0;
26bcd64a 4856 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4857 pte_t *pte;
4858 spinlock_t *ptl;
12724850
NH
4859 enum mc_target_type target_type;
4860 union mc_target target;
4861 struct page *page;
4ffef5fe 4862
b6ec57f4
KS
4863 ptl = pmd_trans_huge_lock(pmd, vma);
4864 if (ptl) {
62ade86a 4865 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4866 spin_unlock(ptl);
12724850
NH
4867 return 0;
4868 }
4869 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4870 if (target_type == MC_TARGET_PAGE) {
4871 page = target.page;
4872 if (!isolate_lru_page(page)) {
f627c2f5 4873 if (!mem_cgroup_move_account(page, true,
1306a85a 4874 mc.from, mc.to)) {
12724850
NH
4875 mc.precharge -= HPAGE_PMD_NR;
4876 mc.moved_charge += HPAGE_PMD_NR;
4877 }
4878 putback_lru_page(page);
4879 }
4880 put_page(page);
4881 }
bf929152 4882 spin_unlock(ptl);
1a5a9906 4883 return 0;
12724850
NH
4884 }
4885
45f83cef
AA
4886 if (pmd_trans_unstable(pmd))
4887 return 0;
4ffef5fe
DN
4888retry:
4889 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4890 for (; addr != end; addr += PAGE_SIZE) {
4891 pte_t ptent = *(pte++);
02491447 4892 swp_entry_t ent;
4ffef5fe
DN
4893
4894 if (!mc.precharge)
4895 break;
4896
8d32ff84 4897 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4898 case MC_TARGET_PAGE:
4899 page = target.page;
53f9263b
KS
4900 /*
4901 * We can have a part of the split pmd here. Moving it
4902 * can be done but it would be too convoluted so simply
4903 * ignore such a partial THP and keep it in original
4904 * memcg. There should be somebody mapping the head.
4905 */
4906 if (PageTransCompound(page))
4907 goto put;
4ffef5fe
DN
4908 if (isolate_lru_page(page))
4909 goto put;
f627c2f5
KS
4910 if (!mem_cgroup_move_account(page, false,
4911 mc.from, mc.to)) {
4ffef5fe 4912 mc.precharge--;
854ffa8d
DN
4913 /* we uncharge from mc.from later. */
4914 mc.moved_charge++;
4ffef5fe
DN
4915 }
4916 putback_lru_page(page);
8d32ff84 4917put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4918 put_page(page);
4919 break;
02491447
DN
4920 case MC_TARGET_SWAP:
4921 ent = target.ent;
e91cbb42 4922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4923 mc.precharge--;
483c30b5
DN
4924 /* we fixup refcnts and charges later. */
4925 mc.moved_swap++;
4926 }
02491447 4927 break;
4ffef5fe
DN
4928 default:
4929 break;
4930 }
4931 }
4932 pte_unmap_unlock(pte - 1, ptl);
4933 cond_resched();
4934
4935 if (addr != end) {
4936 /*
4937 * We have consumed all precharges we got in can_attach().
4938 * We try charge one by one, but don't do any additional
4939 * charges to mc.to if we have failed in charge once in attach()
4940 * phase.
4941 */
854ffa8d 4942 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4943 if (!ret)
4944 goto retry;
4945 }
4946
4947 return ret;
4948}
4949
264a0ae1 4950static void mem_cgroup_move_charge(void)
4ffef5fe 4951{
26bcd64a
NH
4952 struct mm_walk mem_cgroup_move_charge_walk = {
4953 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4954 .mm = mc.mm,
26bcd64a 4955 };
4ffef5fe
DN
4956
4957 lru_add_drain_all();
312722cb 4958 /*
81f8c3a4
JW
4959 * Signal lock_page_memcg() to take the memcg's move_lock
4960 * while we're moving its pages to another memcg. Then wait
4961 * for already started RCU-only updates to finish.
312722cb
JW
4962 */
4963 atomic_inc(&mc.from->moving_account);
4964 synchronize_rcu();
dfe076b0 4965retry:
264a0ae1 4966 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4967 /*
4968 * Someone who are holding the mmap_sem might be waiting in
4969 * waitq. So we cancel all extra charges, wake up all waiters,
4970 * and retry. Because we cancel precharges, we might not be able
4971 * to move enough charges, but moving charge is a best-effort
4972 * feature anyway, so it wouldn't be a big problem.
4973 */
4974 __mem_cgroup_clear_mc();
4975 cond_resched();
4976 goto retry;
4977 }
26bcd64a
NH
4978 /*
4979 * When we have consumed all precharges and failed in doing
4980 * additional charge, the page walk just aborts.
4981 */
0247f3f4
JM
4982 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4983
264a0ae1 4984 up_read(&mc.mm->mmap_sem);
312722cb 4985 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4986}
4987
264a0ae1 4988static void mem_cgroup_move_task(void)
67e465a7 4989{
264a0ae1
TH
4990 if (mc.to) {
4991 mem_cgroup_move_charge();
a433658c 4992 mem_cgroup_clear_mc();
264a0ae1 4993 }
67e465a7 4994}
5cfb80a7 4995#else /* !CONFIG_MMU */
1f7dd3e5 4996static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4997{
4998 return 0;
4999}
1f7dd3e5 5000static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5001{
5002}
264a0ae1 5003static void mem_cgroup_move_task(void)
5cfb80a7
DN
5004{
5005}
5006#endif
67e465a7 5007
f00baae7
TH
5008/*
5009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5010 * to verify whether we're attached to the default hierarchy on each mount
5011 * attempt.
f00baae7 5012 */
eb95419b 5013static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5014{
5015 /*
aa6ec29b 5016 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5017 * guarantees that @root doesn't have any children, so turning it
5018 * on for the root memcg is enough.
5019 */
9e10a130 5020 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5021 root_mem_cgroup->use_hierarchy = true;
5022 else
5023 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5024}
5025
241994ed
JW
5026static u64 memory_current_read(struct cgroup_subsys_state *css,
5027 struct cftype *cft)
5028{
f5fc3c5d
JW
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5030
5031 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5032}
5033
5034static int memory_low_show(struct seq_file *m, void *v)
5035{
5036 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5037 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5038
5039 if (low == PAGE_COUNTER_MAX)
d2973697 5040 seq_puts(m, "max\n");
241994ed
JW
5041 else
5042 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5043
5044 return 0;
5045}
5046
5047static ssize_t memory_low_write(struct kernfs_open_file *of,
5048 char *buf, size_t nbytes, loff_t off)
5049{
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5051 unsigned long low;
5052 int err;
5053
5054 buf = strstrip(buf);
d2973697 5055 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5056 if (err)
5057 return err;
5058
5059 memcg->low = low;
5060
5061 return nbytes;
5062}
5063
5064static int memory_high_show(struct seq_file *m, void *v)
5065{
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5067 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5068
5069 if (high == PAGE_COUNTER_MAX)
d2973697 5070 seq_puts(m, "max\n");
241994ed
JW
5071 else
5072 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5073
5074 return 0;
5075}
5076
5077static ssize_t memory_high_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079{
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5081 unsigned long nr_pages;
241994ed
JW
5082 unsigned long high;
5083 int err;
5084
5085 buf = strstrip(buf);
d2973697 5086 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5087 if (err)
5088 return err;
5089
5090 memcg->high = high;
5091
588083bb
JW
5092 nr_pages = page_counter_read(&memcg->memory);
5093 if (nr_pages > high)
5094 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5095 GFP_KERNEL, true);
5096
2529bb3a 5097 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5098 return nbytes;
5099}
5100
5101static int memory_max_show(struct seq_file *m, void *v)
5102{
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5104 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5105
5106 if (max == PAGE_COUNTER_MAX)
d2973697 5107 seq_puts(m, "max\n");
241994ed
JW
5108 else
5109 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5110
5111 return 0;
5112}
5113
5114static ssize_t memory_max_write(struct kernfs_open_file *of,
5115 char *buf, size_t nbytes, loff_t off)
5116{
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5118 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5119 bool drained = false;
241994ed
JW
5120 unsigned long max;
5121 int err;
5122
5123 buf = strstrip(buf);
d2973697 5124 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5125 if (err)
5126 return err;
5127
b6e6edcf
JW
5128 xchg(&memcg->memory.limit, max);
5129
5130 for (;;) {
5131 unsigned long nr_pages = page_counter_read(&memcg->memory);
5132
5133 if (nr_pages <= max)
5134 break;
5135
5136 if (signal_pending(current)) {
5137 err = -EINTR;
5138 break;
5139 }
5140
5141 if (!drained) {
5142 drain_all_stock(memcg);
5143 drained = true;
5144 continue;
5145 }
5146
5147 if (nr_reclaims) {
5148 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5149 GFP_KERNEL, true))
5150 nr_reclaims--;
5151 continue;
5152 }
5153
5154 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5155 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5156 break;
5157 }
241994ed 5158
2529bb3a 5159 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5160 return nbytes;
5161}
5162
5163static int memory_events_show(struct seq_file *m, void *v)
5164{
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5166
5167 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5168 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5169 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5170 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5171
5172 return 0;
5173}
5174
587d9f72
JW
5175static int memory_stat_show(struct seq_file *m, void *v)
5176{
5177 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5178 unsigned long stat[MEMCG_NR_STAT];
5179 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5180 int i;
5181
5182 /*
5183 * Provide statistics on the state of the memory subsystem as
5184 * well as cumulative event counters that show past behavior.
5185 *
5186 * This list is ordered following a combination of these gradients:
5187 * 1) generic big picture -> specifics and details
5188 * 2) reflecting userspace activity -> reflecting kernel heuristics
5189 *
5190 * Current memory state:
5191 */
5192
72b54e73
VD
5193 tree_stat(memcg, stat);
5194 tree_events(memcg, events);
5195
587d9f72 5196 seq_printf(m, "anon %llu\n",
72b54e73 5197 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5198 seq_printf(m, "file %llu\n",
72b54e73 5199 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5200 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5201 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5202 seq_printf(m, "slab %llu\n",
5203 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5204 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5205 seq_printf(m, "sock %llu\n",
72b54e73 5206 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5207
5208 seq_printf(m, "file_mapped %llu\n",
72b54e73 5209 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5210 seq_printf(m, "file_dirty %llu\n",
72b54e73 5211 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5212 seq_printf(m, "file_writeback %llu\n",
72b54e73 5213 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5214
5215 for (i = 0; i < NR_LRU_LISTS; i++) {
5216 struct mem_cgroup *mi;
5217 unsigned long val = 0;
5218
5219 for_each_mem_cgroup_tree(mi, memcg)
5220 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5221 seq_printf(m, "%s %llu\n",
5222 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5223 }
5224
27ee57c9
VD
5225 seq_printf(m, "slab_reclaimable %llu\n",
5226 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5227 seq_printf(m, "slab_unreclaimable %llu\n",
5228 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5229
587d9f72
JW
5230 /* Accumulated memory events */
5231
5232 seq_printf(m, "pgfault %lu\n",
72b54e73 5233 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5234 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5235 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5236
5237 return 0;
5238}
5239
241994ed
JW
5240static struct cftype memory_files[] = {
5241 {
5242 .name = "current",
f5fc3c5d 5243 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5244 .read_u64 = memory_current_read,
5245 },
5246 {
5247 .name = "low",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_low_show,
5250 .write = memory_low_write,
5251 },
5252 {
5253 .name = "high",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_high_show,
5256 .write = memory_high_write,
5257 },
5258 {
5259 .name = "max",
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .seq_show = memory_max_show,
5262 .write = memory_max_write,
5263 },
5264 {
5265 .name = "events",
5266 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5267 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5268 .seq_show = memory_events_show,
5269 },
587d9f72
JW
5270 {
5271 .name = "stat",
5272 .flags = CFTYPE_NOT_ON_ROOT,
5273 .seq_show = memory_stat_show,
5274 },
241994ed
JW
5275 { } /* terminate */
5276};
5277
073219e9 5278struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5279 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5280 .css_online = mem_cgroup_css_online,
92fb9748 5281 .css_offline = mem_cgroup_css_offline,
6df38689 5282 .css_released = mem_cgroup_css_released,
92fb9748 5283 .css_free = mem_cgroup_css_free,
1ced953b 5284 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5285 .can_attach = mem_cgroup_can_attach,
5286 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5287 .post_attach = mem_cgroup_move_task,
f00baae7 5288 .bind = mem_cgroup_bind,
241994ed
JW
5289 .dfl_cftypes = memory_files,
5290 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5291 .early_init = 0,
8cdea7c0 5292};
c077719b 5293
241994ed
JW
5294/**
5295 * mem_cgroup_low - check if memory consumption is below the normal range
5296 * @root: the highest ancestor to consider
5297 * @memcg: the memory cgroup to check
5298 *
5299 * Returns %true if memory consumption of @memcg, and that of all
5300 * configurable ancestors up to @root, is below the normal range.
5301 */
5302bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5303{
5304 if (mem_cgroup_disabled())
5305 return false;
5306
5307 /*
5308 * The toplevel group doesn't have a configurable range, so
5309 * it's never low when looked at directly, and it is not
5310 * considered an ancestor when assessing the hierarchy.
5311 */
5312
5313 if (memcg == root_mem_cgroup)
5314 return false;
5315
4e54dede 5316 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5317 return false;
5318
5319 while (memcg != root) {
5320 memcg = parent_mem_cgroup(memcg);
5321
5322 if (memcg == root_mem_cgroup)
5323 break;
5324
4e54dede 5325 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5326 return false;
5327 }
5328 return true;
5329}
5330
00501b53
JW
5331/**
5332 * mem_cgroup_try_charge - try charging a page
5333 * @page: page to charge
5334 * @mm: mm context of the victim
5335 * @gfp_mask: reclaim mode
5336 * @memcgp: charged memcg return
25843c2b 5337 * @compound: charge the page as compound or small page
00501b53
JW
5338 *
5339 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5340 * pages according to @gfp_mask if necessary.
5341 *
5342 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5343 * Otherwise, an error code is returned.
5344 *
5345 * After page->mapping has been set up, the caller must finalize the
5346 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5347 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5348 */
5349int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5350 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5351 bool compound)
00501b53
JW
5352{
5353 struct mem_cgroup *memcg = NULL;
f627c2f5 5354 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5355 int ret = 0;
5356
5357 if (mem_cgroup_disabled())
5358 goto out;
5359
5360 if (PageSwapCache(page)) {
00501b53
JW
5361 /*
5362 * Every swap fault against a single page tries to charge the
5363 * page, bail as early as possible. shmem_unuse() encounters
5364 * already charged pages, too. The USED bit is protected by
5365 * the page lock, which serializes swap cache removal, which
5366 * in turn serializes uncharging.
5367 */
e993d905 5368 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5369 if (page->mem_cgroup)
00501b53 5370 goto out;
e993d905 5371
37e84351 5372 if (do_swap_account) {
e993d905
VD
5373 swp_entry_t ent = { .val = page_private(page), };
5374 unsigned short id = lookup_swap_cgroup_id(ent);
5375
5376 rcu_read_lock();
5377 memcg = mem_cgroup_from_id(id);
5378 if (memcg && !css_tryget_online(&memcg->css))
5379 memcg = NULL;
5380 rcu_read_unlock();
5381 }
00501b53
JW
5382 }
5383
00501b53
JW
5384 if (!memcg)
5385 memcg = get_mem_cgroup_from_mm(mm);
5386
5387 ret = try_charge(memcg, gfp_mask, nr_pages);
5388
5389 css_put(&memcg->css);
00501b53
JW
5390out:
5391 *memcgp = memcg;
5392 return ret;
5393}
5394
5395/**
5396 * mem_cgroup_commit_charge - commit a page charge
5397 * @page: page to charge
5398 * @memcg: memcg to charge the page to
5399 * @lrucare: page might be on LRU already
25843c2b 5400 * @compound: charge the page as compound or small page
00501b53
JW
5401 *
5402 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5403 * after page->mapping has been set up. This must happen atomically
5404 * as part of the page instantiation, i.e. under the page table lock
5405 * for anonymous pages, under the page lock for page and swap cache.
5406 *
5407 * In addition, the page must not be on the LRU during the commit, to
5408 * prevent racing with task migration. If it might be, use @lrucare.
5409 *
5410 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5411 */
5412void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5413 bool lrucare, bool compound)
00501b53 5414{
f627c2f5 5415 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5416
5417 VM_BUG_ON_PAGE(!page->mapping, page);
5418 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5419
5420 if (mem_cgroup_disabled())
5421 return;
5422 /*
5423 * Swap faults will attempt to charge the same page multiple
5424 * times. But reuse_swap_page() might have removed the page
5425 * from swapcache already, so we can't check PageSwapCache().
5426 */
5427 if (!memcg)
5428 return;
5429
6abb5a86
JW
5430 commit_charge(page, memcg, lrucare);
5431
6abb5a86 5432 local_irq_disable();
f627c2f5 5433 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5434 memcg_check_events(memcg, page);
5435 local_irq_enable();
00501b53 5436
7941d214 5437 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5438 swp_entry_t entry = { .val = page_private(page) };
5439 /*
5440 * The swap entry might not get freed for a long time,
5441 * let's not wait for it. The page already received a
5442 * memory+swap charge, drop the swap entry duplicate.
5443 */
5444 mem_cgroup_uncharge_swap(entry);
5445 }
5446}
5447
5448/**
5449 * mem_cgroup_cancel_charge - cancel a page charge
5450 * @page: page to charge
5451 * @memcg: memcg to charge the page to
25843c2b 5452 * @compound: charge the page as compound or small page
00501b53
JW
5453 *
5454 * Cancel a charge transaction started by mem_cgroup_try_charge().
5455 */
f627c2f5
KS
5456void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5457 bool compound)
00501b53 5458{
f627c2f5 5459 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5460
5461 if (mem_cgroup_disabled())
5462 return;
5463 /*
5464 * Swap faults will attempt to charge the same page multiple
5465 * times. But reuse_swap_page() might have removed the page
5466 * from swapcache already, so we can't check PageSwapCache().
5467 */
5468 if (!memcg)
5469 return;
5470
00501b53
JW
5471 cancel_charge(memcg, nr_pages);
5472}
5473
747db954 5474static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5475 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5476 unsigned long nr_huge, unsigned long nr_kmem,
5477 struct page *dummy_page)
747db954 5478{
5e8d35f8 5479 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5480 unsigned long flags;
5481
ce00a967 5482 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5483 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5484 if (do_memsw_account())
18eca2e6 5485 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5486 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5487 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5488 memcg_oom_recover(memcg);
5489 }
747db954
JW
5490
5491 local_irq_save(flags);
5492 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5493 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5494 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5495 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5496 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5497 memcg_check_events(memcg, dummy_page);
5498 local_irq_restore(flags);
e8ea14cc
JW
5499
5500 if (!mem_cgroup_is_root(memcg))
18eca2e6 5501 css_put_many(&memcg->css, nr_pages);
747db954
JW
5502}
5503
5504static void uncharge_list(struct list_head *page_list)
5505{
5506 struct mem_cgroup *memcg = NULL;
747db954
JW
5507 unsigned long nr_anon = 0;
5508 unsigned long nr_file = 0;
5509 unsigned long nr_huge = 0;
5e8d35f8 5510 unsigned long nr_kmem = 0;
747db954 5511 unsigned long pgpgout = 0;
747db954
JW
5512 struct list_head *next;
5513 struct page *page;
5514
8b592656
JW
5515 /*
5516 * Note that the list can be a single page->lru; hence the
5517 * do-while loop instead of a simple list_for_each_entry().
5518 */
747db954
JW
5519 next = page_list->next;
5520 do {
747db954
JW
5521 page = list_entry(next, struct page, lru);
5522 next = page->lru.next;
5523
5524 VM_BUG_ON_PAGE(PageLRU(page), page);
5525 VM_BUG_ON_PAGE(page_count(page), page);
5526
1306a85a 5527 if (!page->mem_cgroup)
747db954
JW
5528 continue;
5529
5530 /*
5531 * Nobody should be changing or seriously looking at
1306a85a 5532 * page->mem_cgroup at this point, we have fully
29833315 5533 * exclusive access to the page.
747db954
JW
5534 */
5535
1306a85a 5536 if (memcg != page->mem_cgroup) {
747db954 5537 if (memcg) {
18eca2e6 5538 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5539 nr_huge, nr_kmem, page);
5540 pgpgout = nr_anon = nr_file =
5541 nr_huge = nr_kmem = 0;
747db954 5542 }
1306a85a 5543 memcg = page->mem_cgroup;
747db954
JW
5544 }
5545
5e8d35f8
VD
5546 if (!PageKmemcg(page)) {
5547 unsigned int nr_pages = 1;
747db954 5548
5e8d35f8
VD
5549 if (PageTransHuge(page)) {
5550 nr_pages <<= compound_order(page);
5e8d35f8
VD
5551 nr_huge += nr_pages;
5552 }
5553 if (PageAnon(page))
5554 nr_anon += nr_pages;
5555 else
5556 nr_file += nr_pages;
5557 pgpgout++;
c4159a75 5558 } else {
5e8d35f8 5559 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5560 __ClearPageKmemcg(page);
5561 }
747db954 5562
1306a85a 5563 page->mem_cgroup = NULL;
747db954
JW
5564 } while (next != page_list);
5565
5566 if (memcg)
18eca2e6 5567 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5568 nr_huge, nr_kmem, page);
747db954
JW
5569}
5570
0a31bc97
JW
5571/**
5572 * mem_cgroup_uncharge - uncharge a page
5573 * @page: page to uncharge
5574 *
5575 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5576 * mem_cgroup_commit_charge().
5577 */
5578void mem_cgroup_uncharge(struct page *page)
5579{
0a31bc97
JW
5580 if (mem_cgroup_disabled())
5581 return;
5582
747db954 5583 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5584 if (!page->mem_cgroup)
0a31bc97
JW
5585 return;
5586
747db954
JW
5587 INIT_LIST_HEAD(&page->lru);
5588 uncharge_list(&page->lru);
5589}
0a31bc97 5590
747db954
JW
5591/**
5592 * mem_cgroup_uncharge_list - uncharge a list of page
5593 * @page_list: list of pages to uncharge
5594 *
5595 * Uncharge a list of pages previously charged with
5596 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5597 */
5598void mem_cgroup_uncharge_list(struct list_head *page_list)
5599{
5600 if (mem_cgroup_disabled())
5601 return;
0a31bc97 5602
747db954
JW
5603 if (!list_empty(page_list))
5604 uncharge_list(page_list);
0a31bc97
JW
5605}
5606
5607/**
6a93ca8f
JW
5608 * mem_cgroup_migrate - charge a page's replacement
5609 * @oldpage: currently circulating page
5610 * @newpage: replacement page
0a31bc97 5611 *
6a93ca8f
JW
5612 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5613 * be uncharged upon free.
0a31bc97
JW
5614 *
5615 * Both pages must be locked, @newpage->mapping must be set up.
5616 */
6a93ca8f 5617void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5618{
29833315 5619 struct mem_cgroup *memcg;
44b7a8d3
JW
5620 unsigned int nr_pages;
5621 bool compound;
d93c4130 5622 unsigned long flags;
0a31bc97
JW
5623
5624 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5625 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5626 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5627 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5628 newpage);
0a31bc97
JW
5629
5630 if (mem_cgroup_disabled())
5631 return;
5632
5633 /* Page cache replacement: new page already charged? */
1306a85a 5634 if (newpage->mem_cgroup)
0a31bc97
JW
5635 return;
5636
45637bab 5637 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5638 memcg = oldpage->mem_cgroup;
29833315 5639 if (!memcg)
0a31bc97
JW
5640 return;
5641
44b7a8d3
JW
5642 /* Force-charge the new page. The old one will be freed soon */
5643 compound = PageTransHuge(newpage);
5644 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5645
5646 page_counter_charge(&memcg->memory, nr_pages);
5647 if (do_memsw_account())
5648 page_counter_charge(&memcg->memsw, nr_pages);
5649 css_get_many(&memcg->css, nr_pages);
0a31bc97 5650
9cf7666a 5651 commit_charge(newpage, memcg, false);
44b7a8d3 5652
d93c4130 5653 local_irq_save(flags);
44b7a8d3
JW
5654 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5655 memcg_check_events(memcg, newpage);
d93c4130 5656 local_irq_restore(flags);
0a31bc97
JW
5657}
5658
ef12947c 5659DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5660EXPORT_SYMBOL(memcg_sockets_enabled_key);
5661
2d758073 5662void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5663{
5664 struct mem_cgroup *memcg;
5665
2d758073
JW
5666 if (!mem_cgroup_sockets_enabled)
5667 return;
5668
5669 /*
5670 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5671 * filled. It won't however, necessarily happen from
5672 * process context. So the test for root memcg given
5673 * the current task's memcg won't help us in this case.
5674 *
5675 * Respecting the original socket's memcg is a better
5676 * decision in this case.
5677 */
5678 if (sk->sk_memcg) {
5679 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5680 css_get(&sk->sk_memcg->css);
5681 return;
5682 }
5683
5684 rcu_read_lock();
5685 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5686 if (memcg == root_mem_cgroup)
5687 goto out;
0db15298 5688 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5689 goto out;
f7e1cb6e 5690 if (css_tryget_online(&memcg->css))
11092087 5691 sk->sk_memcg = memcg;
f7e1cb6e 5692out:
11092087
JW
5693 rcu_read_unlock();
5694}
11092087 5695
2d758073 5696void mem_cgroup_sk_free(struct sock *sk)
11092087 5697{
2d758073
JW
5698 if (sk->sk_memcg)
5699 css_put(&sk->sk_memcg->css);
11092087
JW
5700}
5701
5702/**
5703 * mem_cgroup_charge_skmem - charge socket memory
5704 * @memcg: memcg to charge
5705 * @nr_pages: number of pages to charge
5706 *
5707 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5708 * @memcg's configured limit, %false if the charge had to be forced.
5709 */
5710bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5711{
f7e1cb6e 5712 gfp_t gfp_mask = GFP_KERNEL;
11092087 5713
f7e1cb6e 5714 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5715 struct page_counter *fail;
f7e1cb6e 5716
0db15298
JW
5717 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5718 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5719 return true;
5720 }
0db15298
JW
5721 page_counter_charge(&memcg->tcpmem, nr_pages);
5722 memcg->tcpmem_pressure = 1;
f7e1cb6e 5723 return false;
11092087 5724 }
d886f4e4 5725
f7e1cb6e
JW
5726 /* Don't block in the packet receive path */
5727 if (in_softirq())
5728 gfp_mask = GFP_NOWAIT;
5729
b2807f07
JW
5730 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5731
f7e1cb6e
JW
5732 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5733 return true;
5734
5735 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5736 return false;
5737}
5738
5739/**
5740 * mem_cgroup_uncharge_skmem - uncharge socket memory
5741 * @memcg - memcg to uncharge
5742 * @nr_pages - number of pages to uncharge
5743 */
5744void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5745{
f7e1cb6e 5746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5747 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5748 return;
5749 }
d886f4e4 5750
b2807f07
JW
5751 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5752
f7e1cb6e
JW
5753 page_counter_uncharge(&memcg->memory, nr_pages);
5754 css_put_many(&memcg->css, nr_pages);
11092087
JW
5755}
5756
f7e1cb6e
JW
5757static int __init cgroup_memory(char *s)
5758{
5759 char *token;
5760
5761 while ((token = strsep(&s, ",")) != NULL) {
5762 if (!*token)
5763 continue;
5764 if (!strcmp(token, "nosocket"))
5765 cgroup_memory_nosocket = true;
04823c83
VD
5766 if (!strcmp(token, "nokmem"))
5767 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5768 }
5769 return 0;
5770}
5771__setup("cgroup.memory=", cgroup_memory);
11092087 5772
2d11085e 5773/*
1081312f
MH
5774 * subsys_initcall() for memory controller.
5775 *
308167fc
SAS
5776 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5777 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5778 * basically everything that doesn't depend on a specific mem_cgroup structure
5779 * should be initialized from here.
2d11085e
MH
5780 */
5781static int __init mem_cgroup_init(void)
5782{
95a045f6
JW
5783 int cpu, node;
5784
13583c3d
VD
5785#ifndef CONFIG_SLOB
5786 /*
5787 * Kmem cache creation is mostly done with the slab_mutex held,
5788 * so use a special workqueue to avoid stalling all worker
5789 * threads in case lots of cgroups are created simultaneously.
5790 */
5791 memcg_kmem_cache_create_wq =
5792 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5793 BUG_ON(!memcg_kmem_cache_create_wq);
5794#endif
5795
308167fc
SAS
5796 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5797 memcg_hotplug_cpu_dead);
95a045f6
JW
5798
5799 for_each_possible_cpu(cpu)
5800 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5801 drain_local_stock);
5802
5803 for_each_node(node) {
5804 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5805
5806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5807 node_online(node) ? node : NUMA_NO_NODE);
5808
ef8f2327
MG
5809 rtpn->rb_root = RB_ROOT;
5810 spin_lock_init(&rtpn->lock);
95a045f6
JW
5811 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5812 }
5813
2d11085e
MH
5814 return 0;
5815}
5816subsys_initcall(mem_cgroup_init);
21afa38e
JW
5817
5818#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5819static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5820{
5821 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5822 /*
5823 * The root cgroup cannot be destroyed, so it's refcount must
5824 * always be >= 1.
5825 */
5826 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5827 VM_BUG_ON(1);
5828 break;
5829 }
5830 memcg = parent_mem_cgroup(memcg);
5831 if (!memcg)
5832 memcg = root_mem_cgroup;
5833 }
5834 return memcg;
5835}
5836
21afa38e
JW
5837/**
5838 * mem_cgroup_swapout - transfer a memsw charge to swap
5839 * @page: page whose memsw charge to transfer
5840 * @entry: swap entry to move the charge to
5841 *
5842 * Transfer the memsw charge of @page to @entry.
5843 */
5844void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5845{
1f47b61f 5846 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5847 unsigned short oldid;
5848
5849 VM_BUG_ON_PAGE(PageLRU(page), page);
5850 VM_BUG_ON_PAGE(page_count(page), page);
5851
7941d214 5852 if (!do_memsw_account())
21afa38e
JW
5853 return;
5854
5855 memcg = page->mem_cgroup;
5856
5857 /* Readahead page, never charged */
5858 if (!memcg)
5859 return;
5860
1f47b61f
VD
5861 /*
5862 * In case the memcg owning these pages has been offlined and doesn't
5863 * have an ID allocated to it anymore, charge the closest online
5864 * ancestor for the swap instead and transfer the memory+swap charge.
5865 */
5866 swap_memcg = mem_cgroup_id_get_online(memcg);
5867 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5868 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5869 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5870
5871 page->mem_cgroup = NULL;
5872
5873 if (!mem_cgroup_is_root(memcg))
5874 page_counter_uncharge(&memcg->memory, 1);
5875
1f47b61f
VD
5876 if (memcg != swap_memcg) {
5877 if (!mem_cgroup_is_root(swap_memcg))
5878 page_counter_charge(&swap_memcg->memsw, 1);
5879 page_counter_uncharge(&memcg->memsw, 1);
5880 }
5881
ce9ce665
SAS
5882 /*
5883 * Interrupts should be disabled here because the caller holds the
5884 * mapping->tree_lock lock which is taken with interrupts-off. It is
5885 * important here to have the interrupts disabled because it is the
5886 * only synchronisation we have for udpating the per-CPU variables.
5887 */
5888 VM_BUG_ON(!irqs_disabled());
f627c2f5 5889 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5890 memcg_check_events(memcg, page);
73f576c0
JW
5891
5892 if (!mem_cgroup_is_root(memcg))
5893 css_put(&memcg->css);
21afa38e
JW
5894}
5895
37e84351
VD
5896/*
5897 * mem_cgroup_try_charge_swap - try charging a swap entry
5898 * @page: page being added to swap
5899 * @entry: swap entry to charge
5900 *
5901 * Try to charge @entry to the memcg that @page belongs to.
5902 *
5903 * Returns 0 on success, -ENOMEM on failure.
5904 */
5905int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5906{
5907 struct mem_cgroup *memcg;
5908 struct page_counter *counter;
5909 unsigned short oldid;
5910
5911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5912 return 0;
5913
5914 memcg = page->mem_cgroup;
5915
5916 /* Readahead page, never charged */
5917 if (!memcg)
5918 return 0;
5919
1f47b61f
VD
5920 memcg = mem_cgroup_id_get_online(memcg);
5921
37e84351 5922 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5923 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5924 mem_cgroup_id_put(memcg);
37e84351 5925 return -ENOMEM;
1f47b61f 5926 }
37e84351
VD
5927
5928 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5929 VM_BUG_ON_PAGE(oldid, page);
5930 mem_cgroup_swap_statistics(memcg, true);
5931
37e84351
VD
5932 return 0;
5933}
5934
21afa38e
JW
5935/**
5936 * mem_cgroup_uncharge_swap - uncharge a swap entry
5937 * @entry: swap entry to uncharge
5938 *
37e84351 5939 * Drop the swap charge associated with @entry.
21afa38e
JW
5940 */
5941void mem_cgroup_uncharge_swap(swp_entry_t entry)
5942{
5943 struct mem_cgroup *memcg;
5944 unsigned short id;
5945
37e84351 5946 if (!do_swap_account)
21afa38e
JW
5947 return;
5948
5949 id = swap_cgroup_record(entry, 0);
5950 rcu_read_lock();
adbe427b 5951 memcg = mem_cgroup_from_id(id);
21afa38e 5952 if (memcg) {
37e84351
VD
5953 if (!mem_cgroup_is_root(memcg)) {
5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 page_counter_uncharge(&memcg->swap, 1);
5956 else
5957 page_counter_uncharge(&memcg->memsw, 1);
5958 }
21afa38e 5959 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5960 mem_cgroup_id_put(memcg);
21afa38e
JW
5961 }
5962 rcu_read_unlock();
5963}
5964
d8b38438
VD
5965long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5966{
5967 long nr_swap_pages = get_nr_swap_pages();
5968
5969 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 return nr_swap_pages;
5971 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5972 nr_swap_pages = min_t(long, nr_swap_pages,
5973 READ_ONCE(memcg->swap.limit) -
5974 page_counter_read(&memcg->swap));
5975 return nr_swap_pages;
5976}
5977
5ccc5aba
VD
5978bool mem_cgroup_swap_full(struct page *page)
5979{
5980 struct mem_cgroup *memcg;
5981
5982 VM_BUG_ON_PAGE(!PageLocked(page), page);
5983
5984 if (vm_swap_full())
5985 return true;
5986 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5987 return false;
5988
5989 memcg = page->mem_cgroup;
5990 if (!memcg)
5991 return false;
5992
5993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5994 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5995 return true;
5996
5997 return false;
5998}
5999
21afa38e
JW
6000/* for remember boot option*/
6001#ifdef CONFIG_MEMCG_SWAP_ENABLED
6002static int really_do_swap_account __initdata = 1;
6003#else
6004static int really_do_swap_account __initdata;
6005#endif
6006
6007static int __init enable_swap_account(char *s)
6008{
6009 if (!strcmp(s, "1"))
6010 really_do_swap_account = 1;
6011 else if (!strcmp(s, "0"))
6012 really_do_swap_account = 0;
6013 return 1;
6014}
6015__setup("swapaccount=", enable_swap_account);
6016
37e84351
VD
6017static u64 swap_current_read(struct cgroup_subsys_state *css,
6018 struct cftype *cft)
6019{
6020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6021
6022 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6023}
6024
6025static int swap_max_show(struct seq_file *m, void *v)
6026{
6027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6028 unsigned long max = READ_ONCE(memcg->swap.limit);
6029
6030 if (max == PAGE_COUNTER_MAX)
6031 seq_puts(m, "max\n");
6032 else
6033 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6034
6035 return 0;
6036}
6037
6038static ssize_t swap_max_write(struct kernfs_open_file *of,
6039 char *buf, size_t nbytes, loff_t off)
6040{
6041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6042 unsigned long max;
6043 int err;
6044
6045 buf = strstrip(buf);
6046 err = page_counter_memparse(buf, "max", &max);
6047 if (err)
6048 return err;
6049
6050 mutex_lock(&memcg_limit_mutex);
6051 err = page_counter_limit(&memcg->swap, max);
6052 mutex_unlock(&memcg_limit_mutex);
6053 if (err)
6054 return err;
6055
6056 return nbytes;
6057}
6058
6059static struct cftype swap_files[] = {
6060 {
6061 .name = "swap.current",
6062 .flags = CFTYPE_NOT_ON_ROOT,
6063 .read_u64 = swap_current_read,
6064 },
6065 {
6066 .name = "swap.max",
6067 .flags = CFTYPE_NOT_ON_ROOT,
6068 .seq_show = swap_max_show,
6069 .write = swap_max_write,
6070 },
6071 { } /* terminate */
6072};
6073
21afa38e
JW
6074static struct cftype memsw_cgroup_files[] = {
6075 {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .write = mem_cgroup_reset,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write = mem_cgroup_write,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 {
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .write = mem_cgroup_reset,
6096 .read_u64 = mem_cgroup_read_u64,
6097 },
6098 { }, /* terminate */
6099};
6100
6101static int __init mem_cgroup_swap_init(void)
6102{
6103 if (!mem_cgroup_disabled() && really_do_swap_account) {
6104 do_swap_account = 1;
37e84351
VD
6105 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6106 swap_files));
21afa38e
JW
6107 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6108 memsw_cgroup_files));
6109 }
6110 return 0;
6111}
6112subsys_initcall(mem_cgroup_swap_init);
6113
6114#endif /* CONFIG_MEMCG_SWAP */