]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <linux/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_node {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150 };
151
152 /*
153 * cgroup_event represents events which userspace want to receive.
154 */
155 struct mem_cgroup_event {
156 /*
157 * memcg which the event belongs to.
158 */
159 struct mem_cgroup *memcg;
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
173 int (*register_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd, const char *args);
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
180 void (*unregister_event)(struct mem_cgroup *memcg,
181 struct eventfd_ctx *eventfd);
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194
195 /* Stuffs for move charges at task migration. */
196 /*
197 * Types of charges to be moved.
198 */
199 #define MOVE_ANON 0x1U
200 #define MOVE_FILE 0x2U
201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
202
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 spinlock_t lock; /* for from, to */
206 struct mm_struct *mm;
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
209 unsigned long flags;
210 unsigned long precharge;
211 unsigned long moved_charge;
212 unsigned long moved_swap;
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215 } mc = {
216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219
220 /*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
226
227 enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 MEM_CGROUP_CHARGE_TYPE_ANON,
230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
232 NR_CHARGE_TYPE,
233 };
234
235 /* for encoding cft->private value on file */
236 enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
240 _KMEM,
241 _TCP,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 return (memcg == root_mem_cgroup);
266 }
267
268 #ifndef CONFIG_SLOB
269 /*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286 void memcg_get_cache_ids(void)
287 {
288 down_read(&memcg_cache_ids_sem);
289 }
290
291 void memcg_put_cache_ids(void)
292 {
293 up_read(&memcg_cache_ids_sem);
294 }
295
296 /*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311 /*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320 #endif /* !CONFIG_SLOB */
321
322 /**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
332 */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 struct mem_cgroup *memcg;
336
337 memcg = page->mem_cgroup;
338
339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 memcg = root_mem_cgroup;
341
342 return &memcg->css;
343 }
344
345 /**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371 }
372
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 int nid = page_to_nid(page);
377
378 return memcg->nodeinfo[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 return soft_limit_tree.rb_tree_per_node[nid];
385 }
386
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 int nid = page_to_nid(page);
391
392 return soft_limit_tree.rb_tree_per_node[nid];
393 }
394
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
397 unsigned long new_usage_in_excess)
398 {
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
401 struct mem_cgroup_per_node *mz_node;
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425 }
426
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
429 {
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493 }
494
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507 }
508
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 struct rb_node *rightmost = NULL;
513 struct mem_cgroup_per_node *mz;
514
515 retry:
516 mz = NULL;
517 rightmost = rb_last(&mctz->rb_root);
518 if (!rightmost)
519 goto done; /* Nothing to reclaim from */
520
521 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
522 /*
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
526 */
527 __mem_cgroup_remove_exceeded(mz, mctz);
528 if (!soft_limit_excess(mz->memcg) ||
529 !css_tryget_online(&mz->memcg->css))
530 goto retry;
531 done:
532 return mz;
533 }
534
535 static struct mem_cgroup_per_node *
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 {
538 struct mem_cgroup_per_node *mz;
539
540 spin_lock_irq(&mctz->lock);
541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 spin_unlock_irq(&mctz->lock);
543 return mz;
544 }
545
546 /*
547 * Return page count for single (non recursive) @memcg.
548 *
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronization of counter in memcg's counter.
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threshold and synchronization as vmstat[] should be
565 * implemented.
566 */
567 static unsigned long
568 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
569 {
570 long val = 0;
571 int cpu;
572
573 /* Per-cpu values can be negative, use a signed accumulator */
574 for_each_possible_cpu(cpu)
575 val += per_cpu(memcg->stat->count[idx], cpu);
576 /*
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
579 */
580 if (val < 0)
581 val = 0;
582 return val;
583 }
584
585 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
586 enum mem_cgroup_events_index idx)
587 {
588 unsigned long val = 0;
589 int cpu;
590
591 for_each_possible_cpu(cpu)
592 val += per_cpu(memcg->stat->events[idx], cpu);
593 return val;
594 }
595
596 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
597 struct page *page,
598 bool compound, int nr_pages)
599 {
600 /*
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
603 */
604 if (PageAnon(page))
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
606 nr_pages);
607 else
608 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
609 nr_pages);
610
611 if (compound) {
612 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
614 nr_pages);
615 }
616
617 /* pagein of a big page is an event. So, ignore page size */
618 if (nr_pages > 0)
619 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
620 else {
621 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
622 nr_pages = -nr_pages; /* for event */
623 }
624
625 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
626 }
627
628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
629 int nid, unsigned int lru_mask)
630 {
631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
632 unsigned long nr = 0;
633 enum lru_list lru;
634
635 VM_BUG_ON((unsigned)nid >= nr_node_ids);
636
637 for_each_lru(lru) {
638 if (!(BIT(lru) & lru_mask))
639 continue;
640 nr += mem_cgroup_get_lru_size(lruvec, lru);
641 }
642 return nr;
643 }
644
645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
646 unsigned int lru_mask)
647 {
648 unsigned long nr = 0;
649 int nid;
650
651 for_each_node_state(nid, N_MEMORY)
652 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
653 return nr;
654 }
655
656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
657 enum mem_cgroup_events_target target)
658 {
659 unsigned long val, next;
660
661 val = __this_cpu_read(memcg->stat->nr_page_events);
662 next = __this_cpu_read(memcg->stat->targets[target]);
663 /* from time_after() in jiffies.h */
664 if ((long)next - (long)val < 0) {
665 switch (target) {
666 case MEM_CGROUP_TARGET_THRESH:
667 next = val + THRESHOLDS_EVENTS_TARGET;
668 break;
669 case MEM_CGROUP_TARGET_SOFTLIMIT:
670 next = val + SOFTLIMIT_EVENTS_TARGET;
671 break;
672 case MEM_CGROUP_TARGET_NUMAINFO:
673 next = val + NUMAINFO_EVENTS_TARGET;
674 break;
675 default:
676 break;
677 }
678 __this_cpu_write(memcg->stat->targets[target], next);
679 return true;
680 }
681 return false;
682 }
683
684 /*
685 * Check events in order.
686 *
687 */
688 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
689 {
690 /* threshold event is triggered in finer grain than soft limit */
691 if (unlikely(mem_cgroup_event_ratelimit(memcg,
692 MEM_CGROUP_TARGET_THRESH))) {
693 bool do_softlimit;
694 bool do_numainfo __maybe_unused;
695
696 do_softlimit = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_SOFTLIMIT);
698 #if MAX_NUMNODES > 1
699 do_numainfo = mem_cgroup_event_ratelimit(memcg,
700 MEM_CGROUP_TARGET_NUMAINFO);
701 #endif
702 mem_cgroup_threshold(memcg);
703 if (unlikely(do_softlimit))
704 mem_cgroup_update_tree(memcg, page);
705 #if MAX_NUMNODES > 1
706 if (unlikely(do_numainfo))
707 atomic_inc(&memcg->numainfo_events);
708 #endif
709 }
710 }
711
712 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713 {
714 /*
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
718 */
719 if (unlikely(!p))
720 return NULL;
721
722 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
723 }
724 EXPORT_SYMBOL(mem_cgroup_from_task);
725
726 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
727 {
728 struct mem_cgroup *memcg = NULL;
729
730 rcu_read_lock();
731 do {
732 /*
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
736 */
737 if (unlikely(!mm))
738 memcg = root_mem_cgroup;
739 else {
740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 if (unlikely(!memcg))
742 memcg = root_mem_cgroup;
743 }
744 } while (!css_tryget_online(&memcg->css));
745 rcu_read_unlock();
746 return memcg;
747 }
748
749 /**
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
754 *
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
757 *
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
761 *
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
765 */
766 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
767 struct mem_cgroup *prev,
768 struct mem_cgroup_reclaim_cookie *reclaim)
769 {
770 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
771 struct cgroup_subsys_state *css = NULL;
772 struct mem_cgroup *memcg = NULL;
773 struct mem_cgroup *pos = NULL;
774
775 if (mem_cgroup_disabled())
776 return NULL;
777
778 if (!root)
779 root = root_mem_cgroup;
780
781 if (prev && !reclaim)
782 pos = prev;
783
784 if (!root->use_hierarchy && root != root_mem_cgroup) {
785 if (prev)
786 goto out;
787 return root;
788 }
789
790 rcu_read_lock();
791
792 if (reclaim) {
793 struct mem_cgroup_per_node *mz;
794
795 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
796 iter = &mz->iter[reclaim->priority];
797
798 if (prev && reclaim->generation != iter->generation)
799 goto out_unlock;
800
801 while (1) {
802 pos = READ_ONCE(iter->position);
803 if (!pos || css_tryget(&pos->css))
804 break;
805 /*
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
811 * away.
812 */
813 (void)cmpxchg(&iter->position, pos, NULL);
814 }
815 }
816
817 if (pos)
818 css = &pos->css;
819
820 for (;;) {
821 css = css_next_descendant_pre(css, &root->css);
822 if (!css) {
823 /*
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
828 */
829 if (!prev)
830 continue;
831 break;
832 }
833
834 /*
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
838 */
839 memcg = mem_cgroup_from_css(css);
840
841 if (css == &root->css)
842 break;
843
844 if (css_tryget(css))
845 break;
846
847 memcg = NULL;
848 }
849
850 if (reclaim) {
851 /*
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
855 */
856 (void)cmpxchg(&iter->position, pos, memcg);
857
858 if (pos)
859 css_put(&pos->css);
860
861 if (!memcg)
862 iter->generation++;
863 else if (!prev)
864 reclaim->generation = iter->generation;
865 }
866
867 out_unlock:
868 rcu_read_unlock();
869 out:
870 if (prev && prev != root)
871 css_put(&prev->css);
872
873 return memcg;
874 }
875
876 /**
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
880 */
881 void mem_cgroup_iter_break(struct mem_cgroup *root,
882 struct mem_cgroup *prev)
883 {
884 if (!root)
885 root = root_mem_cgroup;
886 if (prev && prev != root)
887 css_put(&prev->css);
888 }
889
890 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
891 {
892 struct mem_cgroup *memcg = dead_memcg;
893 struct mem_cgroup_reclaim_iter *iter;
894 struct mem_cgroup_per_node *mz;
895 int nid;
896 int i;
897
898 while ((memcg = parent_mem_cgroup(memcg))) {
899 for_each_node(nid) {
900 mz = mem_cgroup_nodeinfo(memcg, nid);
901 for (i = 0; i <= DEF_PRIORITY; i++) {
902 iter = &mz->iter[i];
903 cmpxchg(&iter->position,
904 dead_memcg, NULL);
905 }
906 }
907 }
908 }
909
910 /*
911 * Iteration constructs for visiting all cgroups (under a tree). If
912 * loops are exited prematurely (break), mem_cgroup_iter_break() must
913 * be used for reference counting.
914 */
915 #define for_each_mem_cgroup_tree(iter, root) \
916 for (iter = mem_cgroup_iter(root, NULL, NULL); \
917 iter != NULL; \
918 iter = mem_cgroup_iter(root, iter, NULL))
919
920 #define for_each_mem_cgroup(iter) \
921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
922 iter != NULL; \
923 iter = mem_cgroup_iter(NULL, iter, NULL))
924
925 /**
926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927 * @memcg: hierarchy root
928 * @fn: function to call for each task
929 * @arg: argument passed to @fn
930 *
931 * This function iterates over tasks attached to @memcg or to any of its
932 * descendants and calls @fn for each task. If @fn returns a non-zero
933 * value, the function breaks the iteration loop and returns the value.
934 * Otherwise, it will iterate over all tasks and return 0.
935 *
936 * This function must not be called for the root memory cgroup.
937 */
938 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
939 int (*fn)(struct task_struct *, void *), void *arg)
940 {
941 struct mem_cgroup *iter;
942 int ret = 0;
943
944 BUG_ON(memcg == root_mem_cgroup);
945
946 for_each_mem_cgroup_tree(iter, memcg) {
947 struct css_task_iter it;
948 struct task_struct *task;
949
950 css_task_iter_start(&iter->css, &it);
951 while (!ret && (task = css_task_iter_next(&it)))
952 ret = fn(task, arg);
953 css_task_iter_end(&it);
954 if (ret) {
955 mem_cgroup_iter_break(memcg, iter);
956 break;
957 }
958 }
959 return ret;
960 }
961
962 /**
963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
964 * @page: the page
965 * @zone: zone of the page
966 *
967 * This function is only safe when following the LRU page isolation
968 * and putback protocol: the LRU lock must be held, and the page must
969 * either be PageLRU() or the caller must have isolated/allocated it.
970 */
971 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
972 {
973 struct mem_cgroup_per_node *mz;
974 struct mem_cgroup *memcg;
975 struct lruvec *lruvec;
976
977 if (mem_cgroup_disabled()) {
978 lruvec = &pgdat->lruvec;
979 goto out;
980 }
981
982 memcg = page->mem_cgroup;
983 /*
984 * Swapcache readahead pages are added to the LRU - and
985 * possibly migrated - before they are charged.
986 */
987 if (!memcg)
988 memcg = root_mem_cgroup;
989
990 mz = mem_cgroup_page_nodeinfo(memcg, page);
991 lruvec = &mz->lruvec;
992 out:
993 /*
994 * Since a node can be onlined after the mem_cgroup was created,
995 * we have to be prepared to initialize lruvec->zone here;
996 * and if offlined then reonlined, we need to reinitialize it.
997 */
998 if (unlikely(lruvec->pgdat != pgdat))
999 lruvec->pgdat = pgdat;
1000 return lruvec;
1001 }
1002
1003 /**
1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005 * @lruvec: mem_cgroup per zone lru vector
1006 * @lru: index of lru list the page is sitting on
1007 * @zid: zone id of the accounted pages
1008 * @nr_pages: positive when adding or negative when removing
1009 *
1010 * This function must be called under lru_lock, just before a page is added
1011 * to or just after a page is removed from an lru list (that ordering being
1012 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1013 */
1014 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1015 int zid, int nr_pages)
1016 {
1017 struct mem_cgroup_per_node *mz;
1018 unsigned long *lru_size;
1019 long size;
1020
1021 if (mem_cgroup_disabled())
1022 return;
1023
1024 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1025 lru_size = &mz->lru_zone_size[zid][lru];
1026
1027 if (nr_pages < 0)
1028 *lru_size += nr_pages;
1029
1030 size = *lru_size;
1031 if (WARN_ONCE(size < 0,
1032 "%s(%p, %d, %d): lru_size %ld\n",
1033 __func__, lruvec, lru, nr_pages, size)) {
1034 VM_BUG_ON(1);
1035 *lru_size = 0;
1036 }
1037
1038 if (nr_pages > 0)
1039 *lru_size += nr_pages;
1040 }
1041
1042 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1043 {
1044 struct mem_cgroup *task_memcg;
1045 struct task_struct *p;
1046 bool ret;
1047
1048 p = find_lock_task_mm(task);
1049 if (p) {
1050 task_memcg = get_mem_cgroup_from_mm(p->mm);
1051 task_unlock(p);
1052 } else {
1053 /*
1054 * All threads may have already detached their mm's, but the oom
1055 * killer still needs to detect if they have already been oom
1056 * killed to prevent needlessly killing additional tasks.
1057 */
1058 rcu_read_lock();
1059 task_memcg = mem_cgroup_from_task(task);
1060 css_get(&task_memcg->css);
1061 rcu_read_unlock();
1062 }
1063 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1064 css_put(&task_memcg->css);
1065 return ret;
1066 }
1067
1068 /**
1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1070 * @memcg: the memory cgroup
1071 *
1072 * Returns the maximum amount of memory @mem can be charged with, in
1073 * pages.
1074 */
1075 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1076 {
1077 unsigned long margin = 0;
1078 unsigned long count;
1079 unsigned long limit;
1080
1081 count = page_counter_read(&memcg->memory);
1082 limit = READ_ONCE(memcg->memory.limit);
1083 if (count < limit)
1084 margin = limit - count;
1085
1086 if (do_memsw_account()) {
1087 count = page_counter_read(&memcg->memsw);
1088 limit = READ_ONCE(memcg->memsw.limit);
1089 if (count <= limit)
1090 margin = min(margin, limit - count);
1091 else
1092 margin = 0;
1093 }
1094
1095 return margin;
1096 }
1097
1098 /*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200 }
1201
1202 /*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 {
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214 }
1215
1216 /*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220 {
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234 }
1235
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238 {
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .memcg = memcg,
1243 .gfp_mask = gfp_mask,
1244 .order = order,
1245 };
1246 bool ret;
1247
1248 mutex_lock(&oom_lock);
1249 ret = out_of_memory(&oc);
1250 mutex_unlock(&oom_lock);
1251 return ret;
1252 }
1253
1254 #if MAX_NUMNODES > 1
1255
1256 /**
1257 * test_mem_cgroup_node_reclaimable
1258 * @memcg: the target memcg
1259 * @nid: the node ID to be checked.
1260 * @noswap : specify true here if the user wants flle only information.
1261 *
1262 * This function returns whether the specified memcg contains any
1263 * reclaimable pages on a node. Returns true if there are any reclaimable
1264 * pages in the node.
1265 */
1266 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1267 int nid, bool noswap)
1268 {
1269 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1270 return true;
1271 if (noswap || !total_swap_pages)
1272 return false;
1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1274 return true;
1275 return false;
1276
1277 }
1278
1279 /*
1280 * Always updating the nodemask is not very good - even if we have an empty
1281 * list or the wrong list here, we can start from some node and traverse all
1282 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1283 *
1284 */
1285 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1286 {
1287 int nid;
1288 /*
1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 * pagein/pageout changes since the last update.
1291 */
1292 if (!atomic_read(&memcg->numainfo_events))
1293 return;
1294 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1295 return;
1296
1297 /* make a nodemask where this memcg uses memory from */
1298 memcg->scan_nodes = node_states[N_MEMORY];
1299
1300 for_each_node_mask(nid, node_states[N_MEMORY]) {
1301
1302 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1303 node_clear(nid, memcg->scan_nodes);
1304 }
1305
1306 atomic_set(&memcg->numainfo_events, 0);
1307 atomic_set(&memcg->numainfo_updating, 0);
1308 }
1309
1310 /*
1311 * Selecting a node where we start reclaim from. Because what we need is just
1312 * reducing usage counter, start from anywhere is O,K. Considering
1313 * memory reclaim from current node, there are pros. and cons.
1314 *
1315 * Freeing memory from current node means freeing memory from a node which
1316 * we'll use or we've used. So, it may make LRU bad. And if several threads
1317 * hit limits, it will see a contention on a node. But freeing from remote
1318 * node means more costs for memory reclaim because of memory latency.
1319 *
1320 * Now, we use round-robin. Better algorithm is welcomed.
1321 */
1322 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1323 {
1324 int node;
1325
1326 mem_cgroup_may_update_nodemask(memcg);
1327 node = memcg->last_scanned_node;
1328
1329 node = next_node_in(node, memcg->scan_nodes);
1330 /*
1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 * last time it really checked all the LRUs due to rate limiting.
1333 * Fallback to the current node in that case for simplicity.
1334 */
1335 if (unlikely(node == MAX_NUMNODES))
1336 node = numa_node_id();
1337
1338 memcg->last_scanned_node = node;
1339 return node;
1340 }
1341 #else
1342 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1343 {
1344 return 0;
1345 }
1346 #endif
1347
1348 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1349 pg_data_t *pgdat,
1350 gfp_t gfp_mask,
1351 unsigned long *total_scanned)
1352 {
1353 struct mem_cgroup *victim = NULL;
1354 int total = 0;
1355 int loop = 0;
1356 unsigned long excess;
1357 unsigned long nr_scanned;
1358 struct mem_cgroup_reclaim_cookie reclaim = {
1359 .pgdat = pgdat,
1360 .priority = 0,
1361 };
1362
1363 excess = soft_limit_excess(root_memcg);
1364
1365 while (1) {
1366 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1367 if (!victim) {
1368 loop++;
1369 if (loop >= 2) {
1370 /*
1371 * If we have not been able to reclaim
1372 * anything, it might because there are
1373 * no reclaimable pages under this hierarchy
1374 */
1375 if (!total)
1376 break;
1377 /*
1378 * We want to do more targeted reclaim.
1379 * excess >> 2 is not to excessive so as to
1380 * reclaim too much, nor too less that we keep
1381 * coming back to reclaim from this cgroup
1382 */
1383 if (total >= (excess >> 2) ||
1384 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1385 break;
1386 }
1387 continue;
1388 }
1389 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1390 pgdat, &nr_scanned);
1391 *total_scanned += nr_scanned;
1392 if (!soft_limit_excess(root_memcg))
1393 break;
1394 }
1395 mem_cgroup_iter_break(root_memcg, victim);
1396 return total;
1397 }
1398
1399 #ifdef CONFIG_LOCKDEP
1400 static struct lockdep_map memcg_oom_lock_dep_map = {
1401 .name = "memcg_oom_lock",
1402 };
1403 #endif
1404
1405 static DEFINE_SPINLOCK(memcg_oom_lock);
1406
1407 /*
1408 * Check OOM-Killer is already running under our hierarchy.
1409 * If someone is running, return false.
1410 */
1411 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1412 {
1413 struct mem_cgroup *iter, *failed = NULL;
1414
1415 spin_lock(&memcg_oom_lock);
1416
1417 for_each_mem_cgroup_tree(iter, memcg) {
1418 if (iter->oom_lock) {
1419 /*
1420 * this subtree of our hierarchy is already locked
1421 * so we cannot give a lock.
1422 */
1423 failed = iter;
1424 mem_cgroup_iter_break(memcg, iter);
1425 break;
1426 } else
1427 iter->oom_lock = true;
1428 }
1429
1430 if (failed) {
1431 /*
1432 * OK, we failed to lock the whole subtree so we have
1433 * to clean up what we set up to the failing subtree
1434 */
1435 for_each_mem_cgroup_tree(iter, memcg) {
1436 if (iter == failed) {
1437 mem_cgroup_iter_break(memcg, iter);
1438 break;
1439 }
1440 iter->oom_lock = false;
1441 }
1442 } else
1443 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1444
1445 spin_unlock(&memcg_oom_lock);
1446
1447 return !failed;
1448 }
1449
1450 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1451 {
1452 struct mem_cgroup *iter;
1453
1454 spin_lock(&memcg_oom_lock);
1455 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1456 for_each_mem_cgroup_tree(iter, memcg)
1457 iter->oom_lock = false;
1458 spin_unlock(&memcg_oom_lock);
1459 }
1460
1461 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1462 {
1463 struct mem_cgroup *iter;
1464
1465 spin_lock(&memcg_oom_lock);
1466 for_each_mem_cgroup_tree(iter, memcg)
1467 iter->under_oom++;
1468 spin_unlock(&memcg_oom_lock);
1469 }
1470
1471 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1472 {
1473 struct mem_cgroup *iter;
1474
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1478 */
1479 spin_lock(&memcg_oom_lock);
1480 for_each_mem_cgroup_tree(iter, memcg)
1481 if (iter->under_oom > 0)
1482 iter->under_oom--;
1483 spin_unlock(&memcg_oom_lock);
1484 }
1485
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487
1488 struct oom_wait_info {
1489 struct mem_cgroup *memcg;
1490 wait_queue_t wait;
1491 };
1492
1493 static int memcg_oom_wake_function(wait_queue_t *wait,
1494 unsigned mode, int sync, void *arg)
1495 {
1496 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1497 struct mem_cgroup *oom_wait_memcg;
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501 oom_wait_memcg = oom_wait_info->memcg;
1502
1503 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1504 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1505 return 0;
1506 return autoremove_wake_function(wait, mode, sync, arg);
1507 }
1508
1509 static void memcg_oom_recover(struct mem_cgroup *memcg)
1510 {
1511 /*
1512 * For the following lockless ->under_oom test, the only required
1513 * guarantee is that it must see the state asserted by an OOM when
1514 * this function is called as a result of userland actions
1515 * triggered by the notification of the OOM. This is trivially
1516 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 * triggering notification.
1518 */
1519 if (memcg && memcg->under_oom)
1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1521 }
1522
1523 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1524 {
1525 if (!current->memcg_may_oom)
1526 return;
1527 /*
1528 * We are in the middle of the charge context here, so we
1529 * don't want to block when potentially sitting on a callstack
1530 * that holds all kinds of filesystem and mm locks.
1531 *
1532 * Also, the caller may handle a failed allocation gracefully
1533 * (like optional page cache readahead) and so an OOM killer
1534 * invocation might not even be necessary.
1535 *
1536 * That's why we don't do anything here except remember the
1537 * OOM context and then deal with it at the end of the page
1538 * fault when the stack is unwound, the locks are released,
1539 * and when we know whether the fault was overall successful.
1540 */
1541 css_get(&memcg->css);
1542 current->memcg_in_oom = memcg;
1543 current->memcg_oom_gfp_mask = mask;
1544 current->memcg_oom_order = order;
1545 }
1546
1547 /**
1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1549 * @handle: actually kill/wait or just clean up the OOM state
1550 *
1551 * This has to be called at the end of a page fault if the memcg OOM
1552 * handler was enabled.
1553 *
1554 * Memcg supports userspace OOM handling where failed allocations must
1555 * sleep on a waitqueue until the userspace task resolves the
1556 * situation. Sleeping directly in the charge context with all kinds
1557 * of locks held is not a good idea, instead we remember an OOM state
1558 * in the task and mem_cgroup_oom_synchronize() has to be called at
1559 * the end of the page fault to complete the OOM handling.
1560 *
1561 * Returns %true if an ongoing memcg OOM situation was detected and
1562 * completed, %false otherwise.
1563 */
1564 bool mem_cgroup_oom_synchronize(bool handle)
1565 {
1566 struct mem_cgroup *memcg = current->memcg_in_oom;
1567 struct oom_wait_info owait;
1568 bool locked;
1569
1570 /* OOM is global, do not handle */
1571 if (!memcg)
1572 return false;
1573
1574 if (!handle)
1575 goto cleanup;
1576
1577 owait.memcg = memcg;
1578 owait.wait.flags = 0;
1579 owait.wait.func = memcg_oom_wake_function;
1580 owait.wait.private = current;
1581 INIT_LIST_HEAD(&owait.wait.task_list);
1582
1583 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1584 mem_cgroup_mark_under_oom(memcg);
1585
1586 locked = mem_cgroup_oom_trylock(memcg);
1587
1588 if (locked)
1589 mem_cgroup_oom_notify(memcg);
1590
1591 if (locked && !memcg->oom_kill_disable) {
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
1594 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1595 current->memcg_oom_order);
1596 } else {
1597 schedule();
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
1600 }
1601
1602 if (locked) {
1603 mem_cgroup_oom_unlock(memcg);
1604 /*
1605 * There is no guarantee that an OOM-lock contender
1606 * sees the wakeups triggered by the OOM kill
1607 * uncharges. Wake any sleepers explicitely.
1608 */
1609 memcg_oom_recover(memcg);
1610 }
1611 cleanup:
1612 current->memcg_in_oom = NULL;
1613 css_put(&memcg->css);
1614 return true;
1615 }
1616
1617 /**
1618 * lock_page_memcg - lock a page->mem_cgroup binding
1619 * @page: the page
1620 *
1621 * This function protects unlocked LRU pages from being moved to
1622 * another cgroup and stabilizes their page->mem_cgroup binding.
1623 */
1624 void lock_page_memcg(struct page *page)
1625 {
1626 struct mem_cgroup *memcg;
1627 unsigned long flags;
1628
1629 /*
1630 * The RCU lock is held throughout the transaction. The fast
1631 * path can get away without acquiring the memcg->move_lock
1632 * because page moving starts with an RCU grace period.
1633 */
1634 rcu_read_lock();
1635
1636 if (mem_cgroup_disabled())
1637 return;
1638 again:
1639 memcg = page->mem_cgroup;
1640 if (unlikely(!memcg))
1641 return;
1642
1643 if (atomic_read(&memcg->moving_account) <= 0)
1644 return;
1645
1646 spin_lock_irqsave(&memcg->move_lock, flags);
1647 if (memcg != page->mem_cgroup) {
1648 spin_unlock_irqrestore(&memcg->move_lock, flags);
1649 goto again;
1650 }
1651
1652 /*
1653 * When charge migration first begins, we can have locked and
1654 * unlocked page stat updates happening concurrently. Track
1655 * the task who has the lock for unlock_page_memcg().
1656 */
1657 memcg->move_lock_task = current;
1658 memcg->move_lock_flags = flags;
1659
1660 return;
1661 }
1662 EXPORT_SYMBOL(lock_page_memcg);
1663
1664 /**
1665 * unlock_page_memcg - unlock a page->mem_cgroup binding
1666 * @page: the page
1667 */
1668 void unlock_page_memcg(struct page *page)
1669 {
1670 struct mem_cgroup *memcg = page->mem_cgroup;
1671
1672 if (memcg && memcg->move_lock_task == current) {
1673 unsigned long flags = memcg->move_lock_flags;
1674
1675 memcg->move_lock_task = NULL;
1676 memcg->move_lock_flags = 0;
1677
1678 spin_unlock_irqrestore(&memcg->move_lock, flags);
1679 }
1680
1681 rcu_read_unlock();
1682 }
1683 EXPORT_SYMBOL(unlock_page_memcg);
1684
1685 /*
1686 * size of first charge trial. "32" comes from vmscan.c's magic value.
1687 * TODO: maybe necessary to use big numbers in big irons.
1688 */
1689 #define CHARGE_BATCH 32U
1690 struct memcg_stock_pcp {
1691 struct mem_cgroup *cached; /* this never be root cgroup */
1692 unsigned int nr_pages;
1693 struct work_struct work;
1694 unsigned long flags;
1695 #define FLUSHING_CACHED_CHARGE 0
1696 };
1697 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1698 static DEFINE_MUTEX(percpu_charge_mutex);
1699
1700 /**
1701 * consume_stock: Try to consume stocked charge on this cpu.
1702 * @memcg: memcg to consume from.
1703 * @nr_pages: how many pages to charge.
1704 *
1705 * The charges will only happen if @memcg matches the current cpu's memcg
1706 * stock, and at least @nr_pages are available in that stock. Failure to
1707 * service an allocation will refill the stock.
1708 *
1709 * returns true if successful, false otherwise.
1710 */
1711 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1712 {
1713 struct memcg_stock_pcp *stock;
1714 unsigned long flags;
1715 bool ret = false;
1716
1717 if (nr_pages > CHARGE_BATCH)
1718 return ret;
1719
1720 local_irq_save(flags);
1721
1722 stock = this_cpu_ptr(&memcg_stock);
1723 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1724 stock->nr_pages -= nr_pages;
1725 ret = true;
1726 }
1727
1728 local_irq_restore(flags);
1729
1730 return ret;
1731 }
1732
1733 /*
1734 * Returns stocks cached in percpu and reset cached information.
1735 */
1736 static void drain_stock(struct memcg_stock_pcp *stock)
1737 {
1738 struct mem_cgroup *old = stock->cached;
1739
1740 if (stock->nr_pages) {
1741 page_counter_uncharge(&old->memory, stock->nr_pages);
1742 if (do_memsw_account())
1743 page_counter_uncharge(&old->memsw, stock->nr_pages);
1744 css_put_many(&old->css, stock->nr_pages);
1745 stock->nr_pages = 0;
1746 }
1747 stock->cached = NULL;
1748 }
1749
1750 static void drain_local_stock(struct work_struct *dummy)
1751 {
1752 struct memcg_stock_pcp *stock;
1753 unsigned long flags;
1754
1755 local_irq_save(flags);
1756
1757 stock = this_cpu_ptr(&memcg_stock);
1758 drain_stock(stock);
1759 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1760
1761 local_irq_restore(flags);
1762 }
1763
1764 /*
1765 * Cache charges(val) to local per_cpu area.
1766 * This will be consumed by consume_stock() function, later.
1767 */
1768 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1769 {
1770 struct memcg_stock_pcp *stock;
1771 unsigned long flags;
1772
1773 local_irq_save(flags);
1774
1775 stock = this_cpu_ptr(&memcg_stock);
1776 if (stock->cached != memcg) { /* reset if necessary */
1777 drain_stock(stock);
1778 stock->cached = memcg;
1779 }
1780 stock->nr_pages += nr_pages;
1781
1782 local_irq_restore(flags);
1783 }
1784
1785 /*
1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1787 * of the hierarchy under it.
1788 */
1789 static void drain_all_stock(struct mem_cgroup *root_memcg)
1790 {
1791 int cpu, curcpu;
1792
1793 /* If someone's already draining, avoid adding running more workers. */
1794 if (!mutex_trylock(&percpu_charge_mutex))
1795 return;
1796 /* Notify other cpus that system-wide "drain" is running */
1797 get_online_cpus();
1798 curcpu = get_cpu();
1799 for_each_online_cpu(cpu) {
1800 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1801 struct mem_cgroup *memcg;
1802
1803 memcg = stock->cached;
1804 if (!memcg || !stock->nr_pages)
1805 continue;
1806 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1807 continue;
1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1809 if (cpu == curcpu)
1810 drain_local_stock(&stock->work);
1811 else
1812 schedule_work_on(cpu, &stock->work);
1813 }
1814 }
1815 put_cpu();
1816 put_online_cpus();
1817 mutex_unlock(&percpu_charge_mutex);
1818 }
1819
1820 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1821 {
1822 struct memcg_stock_pcp *stock;
1823
1824 stock = &per_cpu(memcg_stock, cpu);
1825 drain_stock(stock);
1826 return 0;
1827 }
1828
1829 static void reclaim_high(struct mem_cgroup *memcg,
1830 unsigned int nr_pages,
1831 gfp_t gfp_mask)
1832 {
1833 do {
1834 if (page_counter_read(&memcg->memory) <= memcg->high)
1835 continue;
1836 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1837 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1838 } while ((memcg = parent_mem_cgroup(memcg)));
1839 }
1840
1841 static void high_work_func(struct work_struct *work)
1842 {
1843 struct mem_cgroup *memcg;
1844
1845 memcg = container_of(work, struct mem_cgroup, high_work);
1846 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1847 }
1848
1849 /*
1850 * Scheduled by try_charge() to be executed from the userland return path
1851 * and reclaims memory over the high limit.
1852 */
1853 void mem_cgroup_handle_over_high(void)
1854 {
1855 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1856 struct mem_cgroup *memcg;
1857
1858 if (likely(!nr_pages))
1859 return;
1860
1861 memcg = get_mem_cgroup_from_mm(current->mm);
1862 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1863 css_put(&memcg->css);
1864 current->memcg_nr_pages_over_high = 0;
1865 }
1866
1867 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1868 unsigned int nr_pages)
1869 {
1870 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1872 struct mem_cgroup *mem_over_limit;
1873 struct page_counter *counter;
1874 unsigned long nr_reclaimed;
1875 bool may_swap = true;
1876 bool drained = false;
1877
1878 if (mem_cgroup_is_root(memcg))
1879 return 0;
1880 retry:
1881 if (consume_stock(memcg, nr_pages))
1882 return 0;
1883
1884 if (!do_memsw_account() ||
1885 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1886 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1887 goto done_restock;
1888 if (do_memsw_account())
1889 page_counter_uncharge(&memcg->memsw, batch);
1890 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1891 } else {
1892 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1893 may_swap = false;
1894 }
1895
1896 if (batch > nr_pages) {
1897 batch = nr_pages;
1898 goto retry;
1899 }
1900
1901 /*
1902 * Unlike in global OOM situations, memcg is not in a physical
1903 * memory shortage. Allow dying and OOM-killed tasks to
1904 * bypass the last charges so that they can exit quickly and
1905 * free their memory.
1906 */
1907 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1908 fatal_signal_pending(current) ||
1909 current->flags & PF_EXITING))
1910 goto force;
1911
1912 /*
1913 * Prevent unbounded recursion when reclaim operations need to
1914 * allocate memory. This might exceed the limits temporarily,
1915 * but we prefer facilitating memory reclaim and getting back
1916 * under the limit over triggering OOM kills in these cases.
1917 */
1918 if (unlikely(current->flags & PF_MEMALLOC))
1919 goto force;
1920
1921 if (unlikely(task_in_memcg_oom(current)))
1922 goto nomem;
1923
1924 if (!gfpflags_allow_blocking(gfp_mask))
1925 goto nomem;
1926
1927 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1928
1929 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1930 gfp_mask, may_swap);
1931
1932 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1933 goto retry;
1934
1935 if (!drained) {
1936 drain_all_stock(mem_over_limit);
1937 drained = true;
1938 goto retry;
1939 }
1940
1941 if (gfp_mask & __GFP_NORETRY)
1942 goto nomem;
1943 /*
1944 * Even though the limit is exceeded at this point, reclaim
1945 * may have been able to free some pages. Retry the charge
1946 * before killing the task.
1947 *
1948 * Only for regular pages, though: huge pages are rather
1949 * unlikely to succeed so close to the limit, and we fall back
1950 * to regular pages anyway in case of failure.
1951 */
1952 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1953 goto retry;
1954 /*
1955 * At task move, charge accounts can be doubly counted. So, it's
1956 * better to wait until the end of task_move if something is going on.
1957 */
1958 if (mem_cgroup_wait_acct_move(mem_over_limit))
1959 goto retry;
1960
1961 if (nr_retries--)
1962 goto retry;
1963
1964 if (gfp_mask & __GFP_NOFAIL)
1965 goto force;
1966
1967 if (fatal_signal_pending(current))
1968 goto force;
1969
1970 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1971
1972 mem_cgroup_oom(mem_over_limit, gfp_mask,
1973 get_order(nr_pages * PAGE_SIZE));
1974 nomem:
1975 if (!(gfp_mask & __GFP_NOFAIL))
1976 return -ENOMEM;
1977 force:
1978 /*
1979 * The allocation either can't fail or will lead to more memory
1980 * being freed very soon. Allow memory usage go over the limit
1981 * temporarily by force charging it.
1982 */
1983 page_counter_charge(&memcg->memory, nr_pages);
1984 if (do_memsw_account())
1985 page_counter_charge(&memcg->memsw, nr_pages);
1986 css_get_many(&memcg->css, nr_pages);
1987
1988 return 0;
1989
1990 done_restock:
1991 css_get_many(&memcg->css, batch);
1992 if (batch > nr_pages)
1993 refill_stock(memcg, batch - nr_pages);
1994
1995 /*
1996 * If the hierarchy is above the normal consumption range, schedule
1997 * reclaim on returning to userland. We can perform reclaim here
1998 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1999 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2000 * not recorded as it most likely matches current's and won't
2001 * change in the meantime. As high limit is checked again before
2002 * reclaim, the cost of mismatch is negligible.
2003 */
2004 do {
2005 if (page_counter_read(&memcg->memory) > memcg->high) {
2006 /* Don't bother a random interrupted task */
2007 if (in_interrupt()) {
2008 schedule_work(&memcg->high_work);
2009 break;
2010 }
2011 current->memcg_nr_pages_over_high += batch;
2012 set_notify_resume(current);
2013 break;
2014 }
2015 } while ((memcg = parent_mem_cgroup(memcg)));
2016
2017 return 0;
2018 }
2019
2020 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2021 {
2022 if (mem_cgroup_is_root(memcg))
2023 return;
2024
2025 page_counter_uncharge(&memcg->memory, nr_pages);
2026 if (do_memsw_account())
2027 page_counter_uncharge(&memcg->memsw, nr_pages);
2028
2029 css_put_many(&memcg->css, nr_pages);
2030 }
2031
2032 static void lock_page_lru(struct page *page, int *isolated)
2033 {
2034 struct zone *zone = page_zone(page);
2035
2036 spin_lock_irq(zone_lru_lock(zone));
2037 if (PageLRU(page)) {
2038 struct lruvec *lruvec;
2039
2040 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2041 ClearPageLRU(page);
2042 del_page_from_lru_list(page, lruvec, page_lru(page));
2043 *isolated = 1;
2044 } else
2045 *isolated = 0;
2046 }
2047
2048 static void unlock_page_lru(struct page *page, int isolated)
2049 {
2050 struct zone *zone = page_zone(page);
2051
2052 if (isolated) {
2053 struct lruvec *lruvec;
2054
2055 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2056 VM_BUG_ON_PAGE(PageLRU(page), page);
2057 SetPageLRU(page);
2058 add_page_to_lru_list(page, lruvec, page_lru(page));
2059 }
2060 spin_unlock_irq(zone_lru_lock(zone));
2061 }
2062
2063 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2064 bool lrucare)
2065 {
2066 int isolated;
2067
2068 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2069
2070 /*
2071 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2072 * may already be on some other mem_cgroup's LRU. Take care of it.
2073 */
2074 if (lrucare)
2075 lock_page_lru(page, &isolated);
2076
2077 /*
2078 * Nobody should be changing or seriously looking at
2079 * page->mem_cgroup at this point:
2080 *
2081 * - the page is uncharged
2082 *
2083 * - the page is off-LRU
2084 *
2085 * - an anonymous fault has exclusive page access, except for
2086 * a locked page table
2087 *
2088 * - a page cache insertion, a swapin fault, or a migration
2089 * have the page locked
2090 */
2091 page->mem_cgroup = memcg;
2092
2093 if (lrucare)
2094 unlock_page_lru(page, isolated);
2095 }
2096
2097 #ifndef CONFIG_SLOB
2098 static int memcg_alloc_cache_id(void)
2099 {
2100 int id, size;
2101 int err;
2102
2103 id = ida_simple_get(&memcg_cache_ida,
2104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2105 if (id < 0)
2106 return id;
2107
2108 if (id < memcg_nr_cache_ids)
2109 return id;
2110
2111 /*
2112 * There's no space for the new id in memcg_caches arrays,
2113 * so we have to grow them.
2114 */
2115 down_write(&memcg_cache_ids_sem);
2116
2117 size = 2 * (id + 1);
2118 if (size < MEMCG_CACHES_MIN_SIZE)
2119 size = MEMCG_CACHES_MIN_SIZE;
2120 else if (size > MEMCG_CACHES_MAX_SIZE)
2121 size = MEMCG_CACHES_MAX_SIZE;
2122
2123 err = memcg_update_all_caches(size);
2124 if (!err)
2125 err = memcg_update_all_list_lrus(size);
2126 if (!err)
2127 memcg_nr_cache_ids = size;
2128
2129 up_write(&memcg_cache_ids_sem);
2130
2131 if (err) {
2132 ida_simple_remove(&memcg_cache_ida, id);
2133 return err;
2134 }
2135 return id;
2136 }
2137
2138 static void memcg_free_cache_id(int id)
2139 {
2140 ida_simple_remove(&memcg_cache_ida, id);
2141 }
2142
2143 struct memcg_kmem_cache_create_work {
2144 struct mem_cgroup *memcg;
2145 struct kmem_cache *cachep;
2146 struct work_struct work;
2147 };
2148
2149 static struct workqueue_struct *memcg_kmem_cache_create_wq;
2150
2151 static void memcg_kmem_cache_create_func(struct work_struct *w)
2152 {
2153 struct memcg_kmem_cache_create_work *cw =
2154 container_of(w, struct memcg_kmem_cache_create_work, work);
2155 struct mem_cgroup *memcg = cw->memcg;
2156 struct kmem_cache *cachep = cw->cachep;
2157
2158 memcg_create_kmem_cache(memcg, cachep);
2159
2160 css_put(&memcg->css);
2161 kfree(cw);
2162 }
2163
2164 /*
2165 * Enqueue the creation of a per-memcg kmem_cache.
2166 */
2167 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2168 struct kmem_cache *cachep)
2169 {
2170 struct memcg_kmem_cache_create_work *cw;
2171
2172 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2173 if (!cw)
2174 return;
2175
2176 css_get(&memcg->css);
2177
2178 cw->memcg = memcg;
2179 cw->cachep = cachep;
2180 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2181
2182 queue_work(memcg_kmem_cache_create_wq, &cw->work);
2183 }
2184
2185 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2186 struct kmem_cache *cachep)
2187 {
2188 /*
2189 * We need to stop accounting when we kmalloc, because if the
2190 * corresponding kmalloc cache is not yet created, the first allocation
2191 * in __memcg_schedule_kmem_cache_create will recurse.
2192 *
2193 * However, it is better to enclose the whole function. Depending on
2194 * the debugging options enabled, INIT_WORK(), for instance, can
2195 * trigger an allocation. This too, will make us recurse. Because at
2196 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2197 * the safest choice is to do it like this, wrapping the whole function.
2198 */
2199 current->memcg_kmem_skip_account = 1;
2200 __memcg_schedule_kmem_cache_create(memcg, cachep);
2201 current->memcg_kmem_skip_account = 0;
2202 }
2203
2204 static inline bool memcg_kmem_bypass(void)
2205 {
2206 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2207 return true;
2208 return false;
2209 }
2210
2211 /**
2212 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2213 * @cachep: the original global kmem cache
2214 *
2215 * Return the kmem_cache we're supposed to use for a slab allocation.
2216 * We try to use the current memcg's version of the cache.
2217 *
2218 * If the cache does not exist yet, if we are the first user of it, we
2219 * create it asynchronously in a workqueue and let the current allocation
2220 * go through with the original cache.
2221 *
2222 * This function takes a reference to the cache it returns to assure it
2223 * won't get destroyed while we are working with it. Once the caller is
2224 * done with it, memcg_kmem_put_cache() must be called to release the
2225 * reference.
2226 */
2227 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2228 {
2229 struct mem_cgroup *memcg;
2230 struct kmem_cache *memcg_cachep;
2231 int kmemcg_id;
2232
2233 VM_BUG_ON(!is_root_cache(cachep));
2234
2235 if (memcg_kmem_bypass())
2236 return cachep;
2237
2238 if (current->memcg_kmem_skip_account)
2239 return cachep;
2240
2241 memcg = get_mem_cgroup_from_mm(current->mm);
2242 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2243 if (kmemcg_id < 0)
2244 goto out;
2245
2246 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2247 if (likely(memcg_cachep))
2248 return memcg_cachep;
2249
2250 /*
2251 * If we are in a safe context (can wait, and not in interrupt
2252 * context), we could be be predictable and return right away.
2253 * This would guarantee that the allocation being performed
2254 * already belongs in the new cache.
2255 *
2256 * However, there are some clashes that can arrive from locking.
2257 * For instance, because we acquire the slab_mutex while doing
2258 * memcg_create_kmem_cache, this means no further allocation
2259 * could happen with the slab_mutex held. So it's better to
2260 * defer everything.
2261 */
2262 memcg_schedule_kmem_cache_create(memcg, cachep);
2263 out:
2264 css_put(&memcg->css);
2265 return cachep;
2266 }
2267
2268 /**
2269 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2270 * @cachep: the cache returned by memcg_kmem_get_cache
2271 */
2272 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2273 {
2274 if (!is_root_cache(cachep))
2275 css_put(&cachep->memcg_params.memcg->css);
2276 }
2277
2278 /**
2279 * memcg_kmem_charge: charge a kmem page
2280 * @page: page to charge
2281 * @gfp: reclaim mode
2282 * @order: allocation order
2283 * @memcg: memory cgroup to charge
2284 *
2285 * Returns 0 on success, an error code on failure.
2286 */
2287 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2288 struct mem_cgroup *memcg)
2289 {
2290 unsigned int nr_pages = 1 << order;
2291 struct page_counter *counter;
2292 int ret;
2293
2294 ret = try_charge(memcg, gfp, nr_pages);
2295 if (ret)
2296 return ret;
2297
2298 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2299 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2300 cancel_charge(memcg, nr_pages);
2301 return -ENOMEM;
2302 }
2303
2304 page->mem_cgroup = memcg;
2305
2306 return 0;
2307 }
2308
2309 /**
2310 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2311 * @page: page to charge
2312 * @gfp: reclaim mode
2313 * @order: allocation order
2314 *
2315 * Returns 0 on success, an error code on failure.
2316 */
2317 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2318 {
2319 struct mem_cgroup *memcg;
2320 int ret = 0;
2321
2322 if (memcg_kmem_bypass())
2323 return 0;
2324
2325 memcg = get_mem_cgroup_from_mm(current->mm);
2326 if (!mem_cgroup_is_root(memcg)) {
2327 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2328 if (!ret)
2329 __SetPageKmemcg(page);
2330 }
2331 css_put(&memcg->css);
2332 return ret;
2333 }
2334 /**
2335 * memcg_kmem_uncharge: uncharge a kmem page
2336 * @page: page to uncharge
2337 * @order: allocation order
2338 */
2339 void memcg_kmem_uncharge(struct page *page, int order)
2340 {
2341 struct mem_cgroup *memcg = page->mem_cgroup;
2342 unsigned int nr_pages = 1 << order;
2343
2344 if (!memcg)
2345 return;
2346
2347 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2348
2349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2350 page_counter_uncharge(&memcg->kmem, nr_pages);
2351
2352 page_counter_uncharge(&memcg->memory, nr_pages);
2353 if (do_memsw_account())
2354 page_counter_uncharge(&memcg->memsw, nr_pages);
2355
2356 page->mem_cgroup = NULL;
2357
2358 /* slab pages do not have PageKmemcg flag set */
2359 if (PageKmemcg(page))
2360 __ClearPageKmemcg(page);
2361
2362 css_put_many(&memcg->css, nr_pages);
2363 }
2364 #endif /* !CONFIG_SLOB */
2365
2366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2367
2368 /*
2369 * Because tail pages are not marked as "used", set it. We're under
2370 * zone_lru_lock and migration entries setup in all page mappings.
2371 */
2372 void mem_cgroup_split_huge_fixup(struct page *head)
2373 {
2374 int i;
2375
2376 if (mem_cgroup_disabled())
2377 return;
2378
2379 for (i = 1; i < HPAGE_PMD_NR; i++)
2380 head[i].mem_cgroup = head->mem_cgroup;
2381
2382 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2383 HPAGE_PMD_NR);
2384 }
2385 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2386
2387 #ifdef CONFIG_MEMCG_SWAP
2388 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2389 bool charge)
2390 {
2391 int val = (charge) ? 1 : -1;
2392 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2393 }
2394
2395 /**
2396 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2397 * @entry: swap entry to be moved
2398 * @from: mem_cgroup which the entry is moved from
2399 * @to: mem_cgroup which the entry is moved to
2400 *
2401 * It succeeds only when the swap_cgroup's record for this entry is the same
2402 * as the mem_cgroup's id of @from.
2403 *
2404 * Returns 0 on success, -EINVAL on failure.
2405 *
2406 * The caller must have charged to @to, IOW, called page_counter_charge() about
2407 * both res and memsw, and called css_get().
2408 */
2409 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2410 struct mem_cgroup *from, struct mem_cgroup *to)
2411 {
2412 unsigned short old_id, new_id;
2413
2414 old_id = mem_cgroup_id(from);
2415 new_id = mem_cgroup_id(to);
2416
2417 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2418 mem_cgroup_swap_statistics(from, false);
2419 mem_cgroup_swap_statistics(to, true);
2420 return 0;
2421 }
2422 return -EINVAL;
2423 }
2424 #else
2425 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2426 struct mem_cgroup *from, struct mem_cgroup *to)
2427 {
2428 return -EINVAL;
2429 }
2430 #endif
2431
2432 static DEFINE_MUTEX(memcg_limit_mutex);
2433
2434 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2435 unsigned long limit)
2436 {
2437 unsigned long curusage;
2438 unsigned long oldusage;
2439 bool enlarge = false;
2440 int retry_count;
2441 int ret;
2442
2443 /*
2444 * For keeping hierarchical_reclaim simple, how long we should retry
2445 * is depends on callers. We set our retry-count to be function
2446 * of # of children which we should visit in this loop.
2447 */
2448 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2449 mem_cgroup_count_children(memcg);
2450
2451 oldusage = page_counter_read(&memcg->memory);
2452
2453 do {
2454 if (signal_pending(current)) {
2455 ret = -EINTR;
2456 break;
2457 }
2458
2459 mutex_lock(&memcg_limit_mutex);
2460 if (limit > memcg->memsw.limit) {
2461 mutex_unlock(&memcg_limit_mutex);
2462 ret = -EINVAL;
2463 break;
2464 }
2465 if (limit > memcg->memory.limit)
2466 enlarge = true;
2467 ret = page_counter_limit(&memcg->memory, limit);
2468 mutex_unlock(&memcg_limit_mutex);
2469
2470 if (!ret)
2471 break;
2472
2473 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2474
2475 curusage = page_counter_read(&memcg->memory);
2476 /* Usage is reduced ? */
2477 if (curusage >= oldusage)
2478 retry_count--;
2479 else
2480 oldusage = curusage;
2481 } while (retry_count);
2482
2483 if (!ret && enlarge)
2484 memcg_oom_recover(memcg);
2485
2486 return ret;
2487 }
2488
2489 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2490 unsigned long limit)
2491 {
2492 unsigned long curusage;
2493 unsigned long oldusage;
2494 bool enlarge = false;
2495 int retry_count;
2496 int ret;
2497
2498 /* see mem_cgroup_resize_res_limit */
2499 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2500 mem_cgroup_count_children(memcg);
2501
2502 oldusage = page_counter_read(&memcg->memsw);
2503
2504 do {
2505 if (signal_pending(current)) {
2506 ret = -EINTR;
2507 break;
2508 }
2509
2510 mutex_lock(&memcg_limit_mutex);
2511 if (limit < memcg->memory.limit) {
2512 mutex_unlock(&memcg_limit_mutex);
2513 ret = -EINVAL;
2514 break;
2515 }
2516 if (limit > memcg->memsw.limit)
2517 enlarge = true;
2518 ret = page_counter_limit(&memcg->memsw, limit);
2519 mutex_unlock(&memcg_limit_mutex);
2520
2521 if (!ret)
2522 break;
2523
2524 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2525
2526 curusage = page_counter_read(&memcg->memsw);
2527 /* Usage is reduced ? */
2528 if (curusage >= oldusage)
2529 retry_count--;
2530 else
2531 oldusage = curusage;
2532 } while (retry_count);
2533
2534 if (!ret && enlarge)
2535 memcg_oom_recover(memcg);
2536
2537 return ret;
2538 }
2539
2540 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2541 gfp_t gfp_mask,
2542 unsigned long *total_scanned)
2543 {
2544 unsigned long nr_reclaimed = 0;
2545 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2546 unsigned long reclaimed;
2547 int loop = 0;
2548 struct mem_cgroup_tree_per_node *mctz;
2549 unsigned long excess;
2550 unsigned long nr_scanned;
2551
2552 if (order > 0)
2553 return 0;
2554
2555 mctz = soft_limit_tree_node(pgdat->node_id);
2556
2557 /*
2558 * Do not even bother to check the largest node if the root
2559 * is empty. Do it lockless to prevent lock bouncing. Races
2560 * are acceptable as soft limit is best effort anyway.
2561 */
2562 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2563 return 0;
2564
2565 /*
2566 * This loop can run a while, specially if mem_cgroup's continuously
2567 * keep exceeding their soft limit and putting the system under
2568 * pressure
2569 */
2570 do {
2571 if (next_mz)
2572 mz = next_mz;
2573 else
2574 mz = mem_cgroup_largest_soft_limit_node(mctz);
2575 if (!mz)
2576 break;
2577
2578 nr_scanned = 0;
2579 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2580 gfp_mask, &nr_scanned);
2581 nr_reclaimed += reclaimed;
2582 *total_scanned += nr_scanned;
2583 spin_lock_irq(&mctz->lock);
2584 __mem_cgroup_remove_exceeded(mz, mctz);
2585
2586 /*
2587 * If we failed to reclaim anything from this memory cgroup
2588 * it is time to move on to the next cgroup
2589 */
2590 next_mz = NULL;
2591 if (!reclaimed)
2592 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2593
2594 excess = soft_limit_excess(mz->memcg);
2595 /*
2596 * One school of thought says that we should not add
2597 * back the node to the tree if reclaim returns 0.
2598 * But our reclaim could return 0, simply because due
2599 * to priority we are exposing a smaller subset of
2600 * memory to reclaim from. Consider this as a longer
2601 * term TODO.
2602 */
2603 /* If excess == 0, no tree ops */
2604 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2605 spin_unlock_irq(&mctz->lock);
2606 css_put(&mz->memcg->css);
2607 loop++;
2608 /*
2609 * Could not reclaim anything and there are no more
2610 * mem cgroups to try or we seem to be looping without
2611 * reclaiming anything.
2612 */
2613 if (!nr_reclaimed &&
2614 (next_mz == NULL ||
2615 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2616 break;
2617 } while (!nr_reclaimed);
2618 if (next_mz)
2619 css_put(&next_mz->memcg->css);
2620 return nr_reclaimed;
2621 }
2622
2623 /*
2624 * Test whether @memcg has children, dead or alive. Note that this
2625 * function doesn't care whether @memcg has use_hierarchy enabled and
2626 * returns %true if there are child csses according to the cgroup
2627 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2628 */
2629 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2630 {
2631 bool ret;
2632
2633 rcu_read_lock();
2634 ret = css_next_child(NULL, &memcg->css);
2635 rcu_read_unlock();
2636 return ret;
2637 }
2638
2639 /*
2640 * Reclaims as many pages from the given memcg as possible.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645 {
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668 }
2669
2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673 {
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 }
2680
2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683 {
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685 }
2686
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689 {
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715 }
2716
2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718 {
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728 }
2729
2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731 {
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741 }
2742
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744 {
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766 }
2767
2768 enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774 };
2775
2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778 {
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817 }
2818
2819 #ifndef CONFIG_SLOB
2820 static int memcg_online_kmem(struct mem_cgroup *memcg)
2821 {
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845 }
2846
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 {
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2881 css_for_each_descendant_pre(css, &memcg->css) {
2882 child = mem_cgroup_from_css(css);
2883 BUG_ON(child->kmemcg_id != kmemcg_id);
2884 child->kmemcg_id = parent->kmemcg_id;
2885 if (!memcg->use_hierarchy)
2886 break;
2887 }
2888 rcu_read_unlock();
2889
2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891
2892 memcg_free_cache_id(kmemcg_id);
2893 }
2894
2895 static void memcg_free_kmem(struct mem_cgroup *memcg)
2896 {
2897 /* css_alloc() failed, offlining didn't happen */
2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 memcg_offline_kmem(memcg);
2900
2901 if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 memcg_destroy_kmem_caches(memcg);
2903 static_branch_dec(&memcg_kmem_enabled_key);
2904 WARN_ON(page_counter_read(&memcg->kmem));
2905 }
2906 }
2907 #else
2908 static int memcg_online_kmem(struct mem_cgroup *memcg)
2909 {
2910 return 0;
2911 }
2912 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 static void memcg_free_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 #endif /* !CONFIG_SLOB */
2919
2920 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921 unsigned long limit)
2922 {
2923 int ret;
2924
2925 mutex_lock(&memcg_limit_mutex);
2926 ret = page_counter_limit(&memcg->kmem, limit);
2927 mutex_unlock(&memcg_limit_mutex);
2928 return ret;
2929 }
2930
2931 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932 {
2933 int ret;
2934
2935 mutex_lock(&memcg_limit_mutex);
2936
2937 ret = page_counter_limit(&memcg->tcpmem, limit);
2938 if (ret)
2939 goto out;
2940
2941 if (!memcg->tcpmem_active) {
2942 /*
2943 * The active flag needs to be written after the static_key
2944 * update. This is what guarantees that the socket activation
2945 * function is the last one to run. See mem_cgroup_sk_alloc()
2946 * for details, and note that we don't mark any socket as
2947 * belonging to this memcg until that flag is up.
2948 *
2949 * We need to do this, because static_keys will span multiple
2950 * sites, but we can't control their order. If we mark a socket
2951 * as accounted, but the accounting functions are not patched in
2952 * yet, we'll lose accounting.
2953 *
2954 * We never race with the readers in mem_cgroup_sk_alloc(),
2955 * because when this value change, the code to process it is not
2956 * patched in yet.
2957 */
2958 static_branch_inc(&memcg_sockets_enabled_key);
2959 memcg->tcpmem_active = true;
2960 }
2961 out:
2962 mutex_unlock(&memcg_limit_mutex);
2963 return ret;
2964 }
2965
2966 /*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
2972 {
2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974 unsigned long nr_pages;
2975 int ret;
2976
2977 buf = strstrip(buf);
2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 if (ret)
2980 return ret;
2981
2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 case RES_LIMIT:
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991 break;
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994 break;
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
2998 case _TCP:
2999 ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 break;
3001 }
3002 break;
3003 case RES_SOFT_LIMIT:
3004 memcg->soft_limit = nr_pages;
3005 ret = 0;
3006 break;
3007 }
3008 return ret ?: nbytes;
3009 }
3010
3011 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 size_t nbytes, loff_t off)
3013 {
3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015 struct page_counter *counter;
3016
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 counter = &memcg->memory;
3020 break;
3021 case _MEMSWAP:
3022 counter = &memcg->memsw;
3023 break;
3024 case _KMEM:
3025 counter = &memcg->kmem;
3026 break;
3027 case _TCP:
3028 counter = &memcg->tcpmem;
3029 break;
3030 default:
3031 BUG();
3032 }
3033
3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 case RES_MAX_USAGE:
3036 page_counter_reset_watermark(counter);
3037 break;
3038 case RES_FAILCNT:
3039 counter->failcnt = 0;
3040 break;
3041 default:
3042 BUG();
3043 }
3044
3045 return nbytes;
3046 }
3047
3048 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049 struct cftype *cft)
3050 {
3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052 }
3053
3054 #ifdef CONFIG_MMU
3055 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056 struct cftype *cft, u64 val)
3057 {
3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059
3060 if (val & ~MOVE_MASK)
3061 return -EINVAL;
3062
3063 /*
3064 * No kind of locking is needed in here, because ->can_attach() will
3065 * check this value once in the beginning of the process, and then carry
3066 * on with stale data. This means that changes to this value will only
3067 * affect task migrations starting after the change.
3068 */
3069 memcg->move_charge_at_immigrate = val;
3070 return 0;
3071 }
3072 #else
3073 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074 struct cftype *cft, u64 val)
3075 {
3076 return -ENOSYS;
3077 }
3078 #endif
3079
3080 #ifdef CONFIG_NUMA
3081 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082 {
3083 struct numa_stat {
3084 const char *name;
3085 unsigned int lru_mask;
3086 };
3087
3088 static const struct numa_stat stats[] = {
3089 { "total", LRU_ALL },
3090 { "file", LRU_ALL_FILE },
3091 { "anon", LRU_ALL_ANON },
3092 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093 };
3094 const struct numa_stat *stat;
3095 int nid;
3096 unsigned long nr;
3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098
3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 seq_printf(m, "%s=%lu", stat->name, nr);
3102 for_each_node_state(nid, N_MEMORY) {
3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 stat->lru_mask);
3105 seq_printf(m, " N%d=%lu", nid, nr);
3106 }
3107 seq_putc(m, '\n');
3108 }
3109
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 struct mem_cgroup *iter;
3112
3113 nr = 0;
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = 0;
3119 for_each_mem_cgroup_tree(iter, memcg)
3120 nr += mem_cgroup_node_nr_lru_pages(
3121 iter, nid, stat->lru_mask);
3122 seq_printf(m, " N%d=%lu", nid, nr);
3123 }
3124 seq_putc(m, '\n');
3125 }
3126
3127 return 0;
3128 }
3129 #endif /* CONFIG_NUMA */
3130
3131 static int memcg_stat_show(struct seq_file *m, void *v)
3132 {
3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134 unsigned long memory, memsw;
3135 struct mem_cgroup *mi;
3136 unsigned int i;
3137
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 MEM_CGROUP_STAT_NSTATS);
3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 MEM_CGROUP_EVENTS_NSTATS);
3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146 continue;
3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149 }
3150
3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 mem_cgroup_read_events(memcg, i));
3154
3155 for (i = 0; i < NR_LRU_LISTS; i++)
3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
3159 /* Hierarchical information */
3160 memory = memsw = PAGE_COUNTER_MAX;
3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 memory = min(memory, mi->memory.limit);
3163 memsw = min(memsw, mi->memsw.limit);
3164 }
3165 seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 (u64)memory * PAGE_SIZE);
3167 if (do_memsw_account())
3168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 (u64)memsw * PAGE_SIZE);
3170
3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172 unsigned long long val = 0;
3173
3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175 continue;
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179 }
3180
3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 unsigned long long val = 0;
3183
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_events(mi, i);
3186 seq_printf(m, "total_%s %llu\n",
3187 mem_cgroup_events_names[i], val);
3188 }
3189
3190 for (i = 0; i < NR_LRU_LISTS; i++) {
3191 unsigned long long val = 0;
3192
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 }
3197
3198 #ifdef CONFIG_DEBUG_VM
3199 {
3200 pg_data_t *pgdat;
3201 struct mem_cgroup_per_node *mz;
3202 struct zone_reclaim_stat *rstat;
3203 unsigned long recent_rotated[2] = {0, 0};
3204 unsigned long recent_scanned[2] = {0, 0};
3205
3206 for_each_online_pgdat(pgdat) {
3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 rstat = &mz->lruvec.reclaim_stat;
3209
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
3214 }
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 }
3220 #endif
3221
3222 return 0;
3223 }
3224
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
3227 {
3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229
3230 return mem_cgroup_swappiness(memcg);
3231 }
3232
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
3235 {
3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237
3238 if (val > 100)
3239 return -EINVAL;
3240
3241 if (css->parent)
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
3245
3246 return 0;
3247 }
3248
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 struct mem_cgroup_threshold_ary *t;
3252 unsigned long usage;
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
3257 t = rcu_dereference(memcg->thresholds.primary);
3258 else
3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
3260
3261 if (!t)
3262 goto unlock;
3263
3264 usage = mem_cgroup_usage(memcg, swap);
3265
3266 /*
3267 * current_threshold points to threshold just below or equal to usage.
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
3271 i = t->current_threshold;
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
3295 t->current_threshold = i - 1;
3296 unlock:
3297 rcu_read_unlock();
3298 }
3299
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
3304 if (do_memsw_account())
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
3309 }
3310
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
3323 }
3324
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 struct mem_cgroup_eventfd_list *ev;
3328
3329 spin_lock(&memcg_oom_lock);
3330
3331 list_for_each_entry(ev, &memcg->oom_notify, list)
3332 eventfd_signal(ev->eventfd, 1);
3333
3334 spin_unlock(&memcg_oom_lock);
3335 return 0;
3336 }
3337
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 struct mem_cgroup *iter;
3341
3342 for_each_mem_cgroup_tree(iter, memcg)
3343 mem_cgroup_oom_notify_cb(iter);
3344 }
3345
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3351 unsigned long threshold;
3352 unsigned long usage;
3353 int i, size, ret;
3354
3355 ret = page_counter_memparse(args, "-1", &threshold);
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
3360
3361 if (type == _MEM) {
3362 thresholds = &memcg->thresholds;
3363 usage = mem_cgroup_usage(memcg, false);
3364 } else if (type == _MEMSWAP) {
3365 thresholds = &memcg->memsw_thresholds;
3366 usage = mem_cgroup_usage(memcg, true);
3367 } else
3368 BUG();
3369
3370 /* Check if a threshold crossed before adding a new one */
3371 if (thresholds->primary)
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375
3376 /* Allocate memory for new array of thresholds */
3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 GFP_KERNEL);
3379 if (!new) {
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
3383 new->size = size;
3384
3385 /* Copy thresholds (if any) to new array */
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 sizeof(struct mem_cgroup_threshold));
3389 }
3390
3391 /* Add new threshold */
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
3400 new->current_threshold = -1;
3401 for (i = 0; i < size; i++) {
3402 if (new->entries[i].threshold <= usage) {
3403 /*
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
3406 * it here.
3407 */
3408 ++new->current_threshold;
3409 } else
3410 break;
3411 }
3412
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
3418
3419 /* To be sure that nobody uses thresholds */
3420 synchronize_rcu();
3421
3422 unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426 }
3427
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3445 unsigned long usage;
3446 int i, j, size;
3447
3448 mutex_lock(&memcg->thresholds_lock);
3449
3450 if (type == _MEM) {
3451 thresholds = &memcg->thresholds;
3452 usage = mem_cgroup_usage(memcg, false);
3453 } else if (type == _MEMSWAP) {
3454 thresholds = &memcg->memsw_thresholds;
3455 usage = mem_cgroup_usage(memcg, true);
3456 } else
3457 BUG();
3458
3459 if (!thresholds->primary)
3460 goto unlock;
3461
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
3469 size++;
3470 }
3471
3472 new = thresholds->spare;
3473
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
3476 kfree(new);
3477 new = NULL;
3478 goto swap_buffers;
3479 }
3480
3481 new->size = size;
3482
3483 /* Copy thresholds and find current threshold */
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
3487 continue;
3488
3489 new->entries[j] = thresholds->primary->entries[i];
3490 if (new->entries[j].threshold <= usage) {
3491 /*
3492 * new->current_threshold will not be used
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
3496 ++new->current_threshold;
3497 }
3498 j++;
3499 }
3500
3501 swap_buffers:
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
3504
3505 rcu_assign_pointer(thresholds->primary, new);
3506
3507 /* To be sure that nobody uses thresholds */
3508 synchronize_rcu();
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
3515 unlock:
3516 mutex_unlock(&memcg->thresholds_lock);
3517 }
3518
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 struct eventfd_ctx *eventfd)
3521 {
3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 struct eventfd_ctx *eventfd)
3527 {
3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 struct mem_cgroup_eventfd_list *event;
3535
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
3540 spin_lock(&memcg_oom_lock);
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
3546 if (memcg->under_oom)
3547 eventfd_signal(eventfd, 1);
3548 spin_unlock(&memcg_oom_lock);
3549
3550 return 0;
3551 }
3552
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 struct eventfd_ctx *eventfd)
3555 {
3556 struct mem_cgroup_eventfd_list *ev, *tmp;
3557
3558 spin_lock(&memcg_oom_lock);
3559
3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
3567 spin_unlock(&memcg_oom_lock);
3568 }
3569
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573
3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 return 0;
3577 }
3578
3579 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580 struct cftype *cft, u64 val)
3581 {
3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583
3584 /* cannot set to root cgroup and only 0 and 1 are allowed */
3585 if (!css->parent || !((val == 0) || (val == 1)))
3586 return -EINVAL;
3587
3588 memcg->oom_kill_disable = val;
3589 if (!val)
3590 memcg_oom_recover(memcg);
3591
3592 return 0;
3593 }
3594
3595 #ifdef CONFIG_CGROUP_WRITEBACK
3596
3597 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598 {
3599 return &memcg->cgwb_list;
3600 }
3601
3602 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603 {
3604 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 }
3606
3607 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608 {
3609 wb_domain_exit(&memcg->cgwb_domain);
3610 }
3611
3612 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613 {
3614 wb_domain_size_changed(&memcg->cgwb_domain);
3615 }
3616
3617 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618 {
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621 if (!memcg->css.parent)
3622 return NULL;
3623
3624 return &memcg->cgwb_domain;
3625 }
3626
3627 /**
3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629 * @wb: bdi_writeback in question
3630 * @pfilepages: out parameter for number of file pages
3631 * @pheadroom: out parameter for number of allocatable pages according to memcg
3632 * @pdirty: out parameter for number of dirty pages
3633 * @pwriteback: out parameter for number of pages under writeback
3634 *
3635 * Determine the numbers of file, headroom, dirty, and writeback pages in
3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3637 * is a bit more involved.
3638 *
3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3640 * headroom is calculated as the lowest headroom of itself and the
3641 * ancestors. Note that this doesn't consider the actual amount of
3642 * available memory in the system. The caller should further cap
3643 * *@pheadroom accordingly.
3644 */
3645 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 unsigned long *pheadroom, unsigned long *pdirty,
3647 unsigned long *pwriteback)
3648 {
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 struct mem_cgroup *parent;
3651
3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654 /* this should eventually include NR_UNSTABLE_NFS */
3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 (1 << LRU_ACTIVE_FILE));
3658 *pheadroom = PAGE_COUNTER_MAX;
3659
3660 while ((parent = parent_mem_cgroup(memcg))) {
3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 unsigned long used = page_counter_read(&memcg->memory);
3663
3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665 memcg = parent;
3666 }
3667 }
3668
3669 #else /* CONFIG_CGROUP_WRITEBACK */
3670
3671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672 {
3673 return 0;
3674 }
3675
3676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677 {
3678 }
3679
3680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681 {
3682 }
3683
3684 #endif /* CONFIG_CGROUP_WRITEBACK */
3685
3686 /*
3687 * DO NOT USE IN NEW FILES.
3688 *
3689 * "cgroup.event_control" implementation.
3690 *
3691 * This is way over-engineered. It tries to support fully configurable
3692 * events for each user. Such level of flexibility is completely
3693 * unnecessary especially in the light of the planned unified hierarchy.
3694 *
3695 * Please deprecate this and replace with something simpler if at all
3696 * possible.
3697 */
3698
3699 /*
3700 * Unregister event and free resources.
3701 *
3702 * Gets called from workqueue.
3703 */
3704 static void memcg_event_remove(struct work_struct *work)
3705 {
3706 struct mem_cgroup_event *event =
3707 container_of(work, struct mem_cgroup_event, remove);
3708 struct mem_cgroup *memcg = event->memcg;
3709
3710 remove_wait_queue(event->wqh, &event->wait);
3711
3712 event->unregister_event(memcg, event->eventfd);
3713
3714 /* Notify userspace the event is going away. */
3715 eventfd_signal(event->eventfd, 1);
3716
3717 eventfd_ctx_put(event->eventfd);
3718 kfree(event);
3719 css_put(&memcg->css);
3720 }
3721
3722 /*
3723 * Gets called on POLLHUP on eventfd when user closes it.
3724 *
3725 * Called with wqh->lock held and interrupts disabled.
3726 */
3727 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 int sync, void *key)
3729 {
3730 struct mem_cgroup_event *event =
3731 container_of(wait, struct mem_cgroup_event, wait);
3732 struct mem_cgroup *memcg = event->memcg;
3733 unsigned long flags = (unsigned long)key;
3734
3735 if (flags & POLLHUP) {
3736 /*
3737 * If the event has been detached at cgroup removal, we
3738 * can simply return knowing the other side will cleanup
3739 * for us.
3740 *
3741 * We can't race against event freeing since the other
3742 * side will require wqh->lock via remove_wait_queue(),
3743 * which we hold.
3744 */
3745 spin_lock(&memcg->event_list_lock);
3746 if (!list_empty(&event->list)) {
3747 list_del_init(&event->list);
3748 /*
3749 * We are in atomic context, but cgroup_event_remove()
3750 * may sleep, so we have to call it in workqueue.
3751 */
3752 schedule_work(&event->remove);
3753 }
3754 spin_unlock(&memcg->event_list_lock);
3755 }
3756
3757 return 0;
3758 }
3759
3760 static void memcg_event_ptable_queue_proc(struct file *file,
3761 wait_queue_head_t *wqh, poll_table *pt)
3762 {
3763 struct mem_cgroup_event *event =
3764 container_of(pt, struct mem_cgroup_event, pt);
3765
3766 event->wqh = wqh;
3767 add_wait_queue(wqh, &event->wait);
3768 }
3769
3770 /*
3771 * DO NOT USE IN NEW FILES.
3772 *
3773 * Parse input and register new cgroup event handler.
3774 *
3775 * Input must be in format '<event_fd> <control_fd> <args>'.
3776 * Interpretation of args is defined by control file implementation.
3777 */
3778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 char *buf, size_t nbytes, loff_t off)
3780 {
3781 struct cgroup_subsys_state *css = of_css(of);
3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783 struct mem_cgroup_event *event;
3784 struct cgroup_subsys_state *cfile_css;
3785 unsigned int efd, cfd;
3786 struct fd efile;
3787 struct fd cfile;
3788 const char *name;
3789 char *endp;
3790 int ret;
3791
3792 buf = strstrip(buf);
3793
3794 efd = simple_strtoul(buf, &endp, 10);
3795 if (*endp != ' ')
3796 return -EINVAL;
3797 buf = endp + 1;
3798
3799 cfd = simple_strtoul(buf, &endp, 10);
3800 if ((*endp != ' ') && (*endp != '\0'))
3801 return -EINVAL;
3802 buf = endp + 1;
3803
3804 event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 if (!event)
3806 return -ENOMEM;
3807
3808 event->memcg = memcg;
3809 INIT_LIST_HEAD(&event->list);
3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 INIT_WORK(&event->remove, memcg_event_remove);
3813
3814 efile = fdget(efd);
3815 if (!efile.file) {
3816 ret = -EBADF;
3817 goto out_kfree;
3818 }
3819
3820 event->eventfd = eventfd_ctx_fileget(efile.file);
3821 if (IS_ERR(event->eventfd)) {
3822 ret = PTR_ERR(event->eventfd);
3823 goto out_put_efile;
3824 }
3825
3826 cfile = fdget(cfd);
3827 if (!cfile.file) {
3828 ret = -EBADF;
3829 goto out_put_eventfd;
3830 }
3831
3832 /* the process need read permission on control file */
3833 /* AV: shouldn't we check that it's been opened for read instead? */
3834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 if (ret < 0)
3836 goto out_put_cfile;
3837
3838 /*
3839 * Determine the event callbacks and set them in @event. This used
3840 * to be done via struct cftype but cgroup core no longer knows
3841 * about these events. The following is crude but the whole thing
3842 * is for compatibility anyway.
3843 *
3844 * DO NOT ADD NEW FILES.
3845 */
3846 name = cfile.file->f_path.dentry->d_name.name;
3847
3848 if (!strcmp(name, "memory.usage_in_bytes")) {
3849 event->register_event = mem_cgroup_usage_register_event;
3850 event->unregister_event = mem_cgroup_usage_unregister_event;
3851 } else if (!strcmp(name, "memory.oom_control")) {
3852 event->register_event = mem_cgroup_oom_register_event;
3853 event->unregister_event = mem_cgroup_oom_unregister_event;
3854 } else if (!strcmp(name, "memory.pressure_level")) {
3855 event->register_event = vmpressure_register_event;
3856 event->unregister_event = vmpressure_unregister_event;
3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3858 event->register_event = memsw_cgroup_usage_register_event;
3859 event->unregister_event = memsw_cgroup_usage_unregister_event;
3860 } else {
3861 ret = -EINVAL;
3862 goto out_put_cfile;
3863 }
3864
3865 /*
3866 * Verify @cfile should belong to @css. Also, remaining events are
3867 * automatically removed on cgroup destruction but the removal is
3868 * asynchronous, so take an extra ref on @css.
3869 */
3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871 &memory_cgrp_subsys);
3872 ret = -EINVAL;
3873 if (IS_ERR(cfile_css))
3874 goto out_put_cfile;
3875 if (cfile_css != css) {
3876 css_put(cfile_css);
3877 goto out_put_cfile;
3878 }
3879
3880 ret = event->register_event(memcg, event->eventfd, buf);
3881 if (ret)
3882 goto out_put_css;
3883
3884 efile.file->f_op->poll(efile.file, &event->pt);
3885
3886 spin_lock(&memcg->event_list_lock);
3887 list_add(&event->list, &memcg->event_list);
3888 spin_unlock(&memcg->event_list_lock);
3889
3890 fdput(cfile);
3891 fdput(efile);
3892
3893 return nbytes;
3894
3895 out_put_css:
3896 css_put(css);
3897 out_put_cfile:
3898 fdput(cfile);
3899 out_put_eventfd:
3900 eventfd_ctx_put(event->eventfd);
3901 out_put_efile:
3902 fdput(efile);
3903 out_kfree:
3904 kfree(event);
3905
3906 return ret;
3907 }
3908
3909 static struct cftype mem_cgroup_legacy_files[] = {
3910 {
3911 .name = "usage_in_bytes",
3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913 .read_u64 = mem_cgroup_read_u64,
3914 },
3915 {
3916 .name = "max_usage_in_bytes",
3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918 .write = mem_cgroup_reset,
3919 .read_u64 = mem_cgroup_read_u64,
3920 },
3921 {
3922 .name = "limit_in_bytes",
3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924 .write = mem_cgroup_write,
3925 .read_u64 = mem_cgroup_read_u64,
3926 },
3927 {
3928 .name = "soft_limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930 .write = mem_cgroup_write,
3931 .read_u64 = mem_cgroup_read_u64,
3932 },
3933 {
3934 .name = "failcnt",
3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936 .write = mem_cgroup_reset,
3937 .read_u64 = mem_cgroup_read_u64,
3938 },
3939 {
3940 .name = "stat",
3941 .seq_show = memcg_stat_show,
3942 },
3943 {
3944 .name = "force_empty",
3945 .write = mem_cgroup_force_empty_write,
3946 },
3947 {
3948 .name = "use_hierarchy",
3949 .write_u64 = mem_cgroup_hierarchy_write,
3950 .read_u64 = mem_cgroup_hierarchy_read,
3951 },
3952 {
3953 .name = "cgroup.event_control", /* XXX: for compat */
3954 .write = memcg_write_event_control,
3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956 },
3957 {
3958 .name = "swappiness",
3959 .read_u64 = mem_cgroup_swappiness_read,
3960 .write_u64 = mem_cgroup_swappiness_write,
3961 },
3962 {
3963 .name = "move_charge_at_immigrate",
3964 .read_u64 = mem_cgroup_move_charge_read,
3965 .write_u64 = mem_cgroup_move_charge_write,
3966 },
3967 {
3968 .name = "oom_control",
3969 .seq_show = mem_cgroup_oom_control_read,
3970 .write_u64 = mem_cgroup_oom_control_write,
3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 },
3973 {
3974 .name = "pressure_level",
3975 },
3976 #ifdef CONFIG_NUMA
3977 {
3978 .name = "numa_stat",
3979 .seq_show = memcg_numa_stat_show,
3980 },
3981 #endif
3982 {
3983 .name = "kmem.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985 .write = mem_cgroup_write,
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "kmem.failcnt",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "kmem.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002 .write = mem_cgroup_reset,
4003 .read_u64 = mem_cgroup_read_u64,
4004 },
4005 #ifdef CONFIG_SLABINFO
4006 {
4007 .name = "kmem.slabinfo",
4008 .seq_start = slab_start,
4009 .seq_next = slab_next,
4010 .seq_stop = slab_stop,
4011 .seq_show = memcg_slab_show,
4012 },
4013 #endif
4014 {
4015 .name = "kmem.tcp.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.tcp.failcnt",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 { }, /* terminate */
4038 };
4039
4040 /*
4041 * Private memory cgroup IDR
4042 *
4043 * Swap-out records and page cache shadow entries need to store memcg
4044 * references in constrained space, so we maintain an ID space that is
4045 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4046 * memory-controlled cgroups to 64k.
4047 *
4048 * However, there usually are many references to the oflline CSS after
4049 * the cgroup has been destroyed, such as page cache or reclaimable
4050 * slab objects, that don't need to hang on to the ID. We want to keep
4051 * those dead CSS from occupying IDs, or we might quickly exhaust the
4052 * relatively small ID space and prevent the creation of new cgroups
4053 * even when there are much fewer than 64k cgroups - possibly none.
4054 *
4055 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4056 * be freed and recycled when it's no longer needed, which is usually
4057 * when the CSS is offlined.
4058 *
4059 * The only exception to that are records of swapped out tmpfs/shmem
4060 * pages that need to be attributed to live ancestors on swapin. But
4061 * those references are manageable from userspace.
4062 */
4063
4064 static DEFINE_IDR(mem_cgroup_idr);
4065
4066 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4067 {
4068 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4069 atomic_add(n, &memcg->id.ref);
4070 }
4071
4072 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4073 {
4074 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4075 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4076 idr_remove(&mem_cgroup_idr, memcg->id.id);
4077 memcg->id.id = 0;
4078
4079 /* Memcg ID pins CSS */
4080 css_put(&memcg->css);
4081 }
4082 }
4083
4084 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4085 {
4086 mem_cgroup_id_get_many(memcg, 1);
4087 }
4088
4089 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4090 {
4091 mem_cgroup_id_put_many(memcg, 1);
4092 }
4093
4094 /**
4095 * mem_cgroup_from_id - look up a memcg from a memcg id
4096 * @id: the memcg id to look up
4097 *
4098 * Caller must hold rcu_read_lock().
4099 */
4100 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4101 {
4102 WARN_ON_ONCE(!rcu_read_lock_held());
4103 return idr_find(&mem_cgroup_idr, id);
4104 }
4105
4106 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4107 {
4108 struct mem_cgroup_per_node *pn;
4109 int tmp = node;
4110 /*
4111 * This routine is called against possible nodes.
4112 * But it's BUG to call kmalloc() against offline node.
4113 *
4114 * TODO: this routine can waste much memory for nodes which will
4115 * never be onlined. It's better to use memory hotplug callback
4116 * function.
4117 */
4118 if (!node_state(node, N_NORMAL_MEMORY))
4119 tmp = -1;
4120 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4121 if (!pn)
4122 return 1;
4123
4124 lruvec_init(&pn->lruvec);
4125 pn->usage_in_excess = 0;
4126 pn->on_tree = false;
4127 pn->memcg = memcg;
4128
4129 memcg->nodeinfo[node] = pn;
4130 return 0;
4131 }
4132
4133 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4134 {
4135 kfree(memcg->nodeinfo[node]);
4136 }
4137
4138 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4139 {
4140 int node;
4141
4142 for_each_node(node)
4143 free_mem_cgroup_per_node_info(memcg, node);
4144 free_percpu(memcg->stat);
4145 kfree(memcg);
4146 }
4147
4148 static void mem_cgroup_free(struct mem_cgroup *memcg)
4149 {
4150 memcg_wb_domain_exit(memcg);
4151 __mem_cgroup_free(memcg);
4152 }
4153
4154 static struct mem_cgroup *mem_cgroup_alloc(void)
4155 {
4156 struct mem_cgroup *memcg;
4157 size_t size;
4158 int node;
4159
4160 size = sizeof(struct mem_cgroup);
4161 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4162
4163 memcg = kzalloc(size, GFP_KERNEL);
4164 if (!memcg)
4165 return NULL;
4166
4167 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4168 1, MEM_CGROUP_ID_MAX,
4169 GFP_KERNEL);
4170 if (memcg->id.id < 0)
4171 goto fail;
4172
4173 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4174 if (!memcg->stat)
4175 goto fail;
4176
4177 for_each_node(node)
4178 if (alloc_mem_cgroup_per_node_info(memcg, node))
4179 goto fail;
4180
4181 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4182 goto fail;
4183
4184 INIT_WORK(&memcg->high_work, high_work_func);
4185 memcg->last_scanned_node = MAX_NUMNODES;
4186 INIT_LIST_HEAD(&memcg->oom_notify);
4187 mutex_init(&memcg->thresholds_lock);
4188 spin_lock_init(&memcg->move_lock);
4189 vmpressure_init(&memcg->vmpressure);
4190 INIT_LIST_HEAD(&memcg->event_list);
4191 spin_lock_init(&memcg->event_list_lock);
4192 memcg->socket_pressure = jiffies;
4193 #ifndef CONFIG_SLOB
4194 memcg->kmemcg_id = -1;
4195 #endif
4196 #ifdef CONFIG_CGROUP_WRITEBACK
4197 INIT_LIST_HEAD(&memcg->cgwb_list);
4198 #endif
4199 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4200 return memcg;
4201 fail:
4202 if (memcg->id.id > 0)
4203 idr_remove(&mem_cgroup_idr, memcg->id.id);
4204 __mem_cgroup_free(memcg);
4205 return NULL;
4206 }
4207
4208 static struct cgroup_subsys_state * __ref
4209 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4210 {
4211 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4212 struct mem_cgroup *memcg;
4213 long error = -ENOMEM;
4214
4215 memcg = mem_cgroup_alloc();
4216 if (!memcg)
4217 return ERR_PTR(error);
4218
4219 memcg->high = PAGE_COUNTER_MAX;
4220 memcg->soft_limit = PAGE_COUNTER_MAX;
4221 if (parent) {
4222 memcg->swappiness = mem_cgroup_swappiness(parent);
4223 memcg->oom_kill_disable = parent->oom_kill_disable;
4224 }
4225 if (parent && parent->use_hierarchy) {
4226 memcg->use_hierarchy = true;
4227 page_counter_init(&memcg->memory, &parent->memory);
4228 page_counter_init(&memcg->swap, &parent->swap);
4229 page_counter_init(&memcg->memsw, &parent->memsw);
4230 page_counter_init(&memcg->kmem, &parent->kmem);
4231 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4232 } else {
4233 page_counter_init(&memcg->memory, NULL);
4234 page_counter_init(&memcg->swap, NULL);
4235 page_counter_init(&memcg->memsw, NULL);
4236 page_counter_init(&memcg->kmem, NULL);
4237 page_counter_init(&memcg->tcpmem, NULL);
4238 /*
4239 * Deeper hierachy with use_hierarchy == false doesn't make
4240 * much sense so let cgroup subsystem know about this
4241 * unfortunate state in our controller.
4242 */
4243 if (parent != root_mem_cgroup)
4244 memory_cgrp_subsys.broken_hierarchy = true;
4245 }
4246
4247 /* The following stuff does not apply to the root */
4248 if (!parent) {
4249 root_mem_cgroup = memcg;
4250 return &memcg->css;
4251 }
4252
4253 error = memcg_online_kmem(memcg);
4254 if (error)
4255 goto fail;
4256
4257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4258 static_branch_inc(&memcg_sockets_enabled_key);
4259
4260 return &memcg->css;
4261 fail:
4262 mem_cgroup_free(memcg);
4263 return ERR_PTR(-ENOMEM);
4264 }
4265
4266 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4267 {
4268 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4269
4270 /* Online state pins memcg ID, memcg ID pins CSS */
4271 atomic_set(&memcg->id.ref, 1);
4272 css_get(css);
4273 return 0;
4274 }
4275
4276 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4277 {
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279 struct mem_cgroup_event *event, *tmp;
4280
4281 /*
4282 * Unregister events and notify userspace.
4283 * Notify userspace about cgroup removing only after rmdir of cgroup
4284 * directory to avoid race between userspace and kernelspace.
4285 */
4286 spin_lock(&memcg->event_list_lock);
4287 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4288 list_del_init(&event->list);
4289 schedule_work(&event->remove);
4290 }
4291 spin_unlock(&memcg->event_list_lock);
4292
4293 memcg_offline_kmem(memcg);
4294 wb_memcg_offline(memcg);
4295
4296 mem_cgroup_id_put(memcg);
4297 }
4298
4299 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4300 {
4301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4302
4303 invalidate_reclaim_iterators(memcg);
4304 }
4305
4306 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4307 {
4308 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4309
4310 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4311 static_branch_dec(&memcg_sockets_enabled_key);
4312
4313 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4314 static_branch_dec(&memcg_sockets_enabled_key);
4315
4316 vmpressure_cleanup(&memcg->vmpressure);
4317 cancel_work_sync(&memcg->high_work);
4318 mem_cgroup_remove_from_trees(memcg);
4319 memcg_free_kmem(memcg);
4320 mem_cgroup_free(memcg);
4321 }
4322
4323 /**
4324 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4325 * @css: the target css
4326 *
4327 * Reset the states of the mem_cgroup associated with @css. This is
4328 * invoked when the userland requests disabling on the default hierarchy
4329 * but the memcg is pinned through dependency. The memcg should stop
4330 * applying policies and should revert to the vanilla state as it may be
4331 * made visible again.
4332 *
4333 * The current implementation only resets the essential configurations.
4334 * This needs to be expanded to cover all the visible parts.
4335 */
4336 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4337 {
4338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4339
4340 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4341 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4343 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4344 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4345 memcg->low = 0;
4346 memcg->high = PAGE_COUNTER_MAX;
4347 memcg->soft_limit = PAGE_COUNTER_MAX;
4348 memcg_wb_domain_size_changed(memcg);
4349 }
4350
4351 #ifdef CONFIG_MMU
4352 /* Handlers for move charge at task migration. */
4353 static int mem_cgroup_do_precharge(unsigned long count)
4354 {
4355 int ret;
4356
4357 /* Try a single bulk charge without reclaim first, kswapd may wake */
4358 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4359 if (!ret) {
4360 mc.precharge += count;
4361 return ret;
4362 }
4363
4364 /* Try charges one by one with reclaim, but do not retry */
4365 while (count--) {
4366 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4367 if (ret)
4368 return ret;
4369 mc.precharge++;
4370 cond_resched();
4371 }
4372 return 0;
4373 }
4374
4375 union mc_target {
4376 struct page *page;
4377 swp_entry_t ent;
4378 };
4379
4380 enum mc_target_type {
4381 MC_TARGET_NONE = 0,
4382 MC_TARGET_PAGE,
4383 MC_TARGET_SWAP,
4384 };
4385
4386 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4387 unsigned long addr, pte_t ptent)
4388 {
4389 struct page *page = vm_normal_page(vma, addr, ptent);
4390
4391 if (!page || !page_mapped(page))
4392 return NULL;
4393 if (PageAnon(page)) {
4394 if (!(mc.flags & MOVE_ANON))
4395 return NULL;
4396 } else {
4397 if (!(mc.flags & MOVE_FILE))
4398 return NULL;
4399 }
4400 if (!get_page_unless_zero(page))
4401 return NULL;
4402
4403 return page;
4404 }
4405
4406 #ifdef CONFIG_SWAP
4407 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4408 pte_t ptent, swp_entry_t *entry)
4409 {
4410 struct page *page = NULL;
4411 swp_entry_t ent = pte_to_swp_entry(ptent);
4412
4413 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4414 return NULL;
4415 /*
4416 * Because lookup_swap_cache() updates some statistics counter,
4417 * we call find_get_page() with swapper_space directly.
4418 */
4419 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4420 if (do_memsw_account())
4421 entry->val = ent.val;
4422
4423 return page;
4424 }
4425 #else
4426 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4427 pte_t ptent, swp_entry_t *entry)
4428 {
4429 return NULL;
4430 }
4431 #endif
4432
4433 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4434 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4435 {
4436 struct page *page = NULL;
4437 struct address_space *mapping;
4438 pgoff_t pgoff;
4439
4440 if (!vma->vm_file) /* anonymous vma */
4441 return NULL;
4442 if (!(mc.flags & MOVE_FILE))
4443 return NULL;
4444
4445 mapping = vma->vm_file->f_mapping;
4446 pgoff = linear_page_index(vma, addr);
4447
4448 /* page is moved even if it's not RSS of this task(page-faulted). */
4449 #ifdef CONFIG_SWAP
4450 /* shmem/tmpfs may report page out on swap: account for that too. */
4451 if (shmem_mapping(mapping)) {
4452 page = find_get_entry(mapping, pgoff);
4453 if (radix_tree_exceptional_entry(page)) {
4454 swp_entry_t swp = radix_to_swp_entry(page);
4455 if (do_memsw_account())
4456 *entry = swp;
4457 page = find_get_page(swap_address_space(swp),
4458 swp_offset(swp));
4459 }
4460 } else
4461 page = find_get_page(mapping, pgoff);
4462 #else
4463 page = find_get_page(mapping, pgoff);
4464 #endif
4465 return page;
4466 }
4467
4468 /**
4469 * mem_cgroup_move_account - move account of the page
4470 * @page: the page
4471 * @compound: charge the page as compound or small page
4472 * @from: mem_cgroup which the page is moved from.
4473 * @to: mem_cgroup which the page is moved to. @from != @to.
4474 *
4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4476 *
4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4478 * from old cgroup.
4479 */
4480 static int mem_cgroup_move_account(struct page *page,
4481 bool compound,
4482 struct mem_cgroup *from,
4483 struct mem_cgroup *to)
4484 {
4485 unsigned long flags;
4486 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4487 int ret;
4488 bool anon;
4489
4490 VM_BUG_ON(from == to);
4491 VM_BUG_ON_PAGE(PageLRU(page), page);
4492 VM_BUG_ON(compound && !PageTransHuge(page));
4493
4494 /*
4495 * Prevent mem_cgroup_migrate() from looking at
4496 * page->mem_cgroup of its source page while we change it.
4497 */
4498 ret = -EBUSY;
4499 if (!trylock_page(page))
4500 goto out;
4501
4502 ret = -EINVAL;
4503 if (page->mem_cgroup != from)
4504 goto out_unlock;
4505
4506 anon = PageAnon(page);
4507
4508 spin_lock_irqsave(&from->move_lock, flags);
4509
4510 if (!anon && page_mapped(page)) {
4511 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 nr_pages);
4513 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4514 nr_pages);
4515 }
4516
4517 /*
4518 * move_lock grabbed above and caller set from->moving_account, so
4519 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4520 * So mapping should be stable for dirty pages.
4521 */
4522 if (!anon && PageDirty(page)) {
4523 struct address_space *mapping = page_mapping(page);
4524
4525 if (mapping_cap_account_dirty(mapping)) {
4526 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 nr_pages);
4528 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4529 nr_pages);
4530 }
4531 }
4532
4533 if (PageWriteback(page)) {
4534 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 nr_pages);
4536 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4537 nr_pages);
4538 }
4539
4540 /*
4541 * It is safe to change page->mem_cgroup here because the page
4542 * is referenced, charged, and isolated - we can't race with
4543 * uncharging, charging, migration, or LRU putback.
4544 */
4545
4546 /* caller should have done css_get */
4547 page->mem_cgroup = to;
4548 spin_unlock_irqrestore(&from->move_lock, flags);
4549
4550 ret = 0;
4551
4552 local_irq_disable();
4553 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4554 memcg_check_events(to, page);
4555 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4556 memcg_check_events(from, page);
4557 local_irq_enable();
4558 out_unlock:
4559 unlock_page(page);
4560 out:
4561 return ret;
4562 }
4563
4564 /**
4565 * get_mctgt_type - get target type of moving charge
4566 * @vma: the vma the pte to be checked belongs
4567 * @addr: the address corresponding to the pte to be checked
4568 * @ptent: the pte to be checked
4569 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4570 *
4571 * Returns
4572 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4573 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4574 * move charge. if @target is not NULL, the page is stored in target->page
4575 * with extra refcnt got(Callers should handle it).
4576 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4577 * target for charge migration. if @target is not NULL, the entry is stored
4578 * in target->ent.
4579 *
4580 * Called with pte lock held.
4581 */
4582
4583 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4584 unsigned long addr, pte_t ptent, union mc_target *target)
4585 {
4586 struct page *page = NULL;
4587 enum mc_target_type ret = MC_TARGET_NONE;
4588 swp_entry_t ent = { .val = 0 };
4589
4590 if (pte_present(ptent))
4591 page = mc_handle_present_pte(vma, addr, ptent);
4592 else if (is_swap_pte(ptent))
4593 page = mc_handle_swap_pte(vma, ptent, &ent);
4594 else if (pte_none(ptent))
4595 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4596
4597 if (!page && !ent.val)
4598 return ret;
4599 if (page) {
4600 /*
4601 * Do only loose check w/o serialization.
4602 * mem_cgroup_move_account() checks the page is valid or
4603 * not under LRU exclusion.
4604 */
4605 if (page->mem_cgroup == mc.from) {
4606 ret = MC_TARGET_PAGE;
4607 if (target)
4608 target->page = page;
4609 }
4610 if (!ret || !target)
4611 put_page(page);
4612 }
4613 /* There is a swap entry and a page doesn't exist or isn't charged */
4614 if (ent.val && !ret &&
4615 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4616 ret = MC_TARGET_SWAP;
4617 if (target)
4618 target->ent = ent;
4619 }
4620 return ret;
4621 }
4622
4623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4624 /*
4625 * We don't consider swapping or file mapped pages because THP does not
4626 * support them for now.
4627 * Caller should make sure that pmd_trans_huge(pmd) is true.
4628 */
4629 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4630 unsigned long addr, pmd_t pmd, union mc_target *target)
4631 {
4632 struct page *page = NULL;
4633 enum mc_target_type ret = MC_TARGET_NONE;
4634
4635 page = pmd_page(pmd);
4636 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4637 if (!(mc.flags & MOVE_ANON))
4638 return ret;
4639 if (page->mem_cgroup == mc.from) {
4640 ret = MC_TARGET_PAGE;
4641 if (target) {
4642 get_page(page);
4643 target->page = page;
4644 }
4645 }
4646 return ret;
4647 }
4648 #else
4649 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4650 unsigned long addr, pmd_t pmd, union mc_target *target)
4651 {
4652 return MC_TARGET_NONE;
4653 }
4654 #endif
4655
4656 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4657 unsigned long addr, unsigned long end,
4658 struct mm_walk *walk)
4659 {
4660 struct vm_area_struct *vma = walk->vma;
4661 pte_t *pte;
4662 spinlock_t *ptl;
4663
4664 ptl = pmd_trans_huge_lock(pmd, vma);
4665 if (ptl) {
4666 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4667 mc.precharge += HPAGE_PMD_NR;
4668 spin_unlock(ptl);
4669 return 0;
4670 }
4671
4672 if (pmd_trans_unstable(pmd))
4673 return 0;
4674 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4675 for (; addr != end; pte++, addr += PAGE_SIZE)
4676 if (get_mctgt_type(vma, addr, *pte, NULL))
4677 mc.precharge++; /* increment precharge temporarily */
4678 pte_unmap_unlock(pte - 1, ptl);
4679 cond_resched();
4680
4681 return 0;
4682 }
4683
4684 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4685 {
4686 unsigned long precharge;
4687
4688 struct mm_walk mem_cgroup_count_precharge_walk = {
4689 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4690 .mm = mm,
4691 };
4692 down_read(&mm->mmap_sem);
4693 walk_page_range(0, mm->highest_vm_end,
4694 &mem_cgroup_count_precharge_walk);
4695 up_read(&mm->mmap_sem);
4696
4697 precharge = mc.precharge;
4698 mc.precharge = 0;
4699
4700 return precharge;
4701 }
4702
4703 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4704 {
4705 unsigned long precharge = mem_cgroup_count_precharge(mm);
4706
4707 VM_BUG_ON(mc.moving_task);
4708 mc.moving_task = current;
4709 return mem_cgroup_do_precharge(precharge);
4710 }
4711
4712 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4713 static void __mem_cgroup_clear_mc(void)
4714 {
4715 struct mem_cgroup *from = mc.from;
4716 struct mem_cgroup *to = mc.to;
4717
4718 /* we must uncharge all the leftover precharges from mc.to */
4719 if (mc.precharge) {
4720 cancel_charge(mc.to, mc.precharge);
4721 mc.precharge = 0;
4722 }
4723 /*
4724 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4725 * we must uncharge here.
4726 */
4727 if (mc.moved_charge) {
4728 cancel_charge(mc.from, mc.moved_charge);
4729 mc.moved_charge = 0;
4730 }
4731 /* we must fixup refcnts and charges */
4732 if (mc.moved_swap) {
4733 /* uncharge swap account from the old cgroup */
4734 if (!mem_cgroup_is_root(mc.from))
4735 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4736
4737 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4738
4739 /*
4740 * we charged both to->memory and to->memsw, so we
4741 * should uncharge to->memory.
4742 */
4743 if (!mem_cgroup_is_root(mc.to))
4744 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4745
4746 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4747 css_put_many(&mc.to->css, mc.moved_swap);
4748
4749 mc.moved_swap = 0;
4750 }
4751 memcg_oom_recover(from);
4752 memcg_oom_recover(to);
4753 wake_up_all(&mc.waitq);
4754 }
4755
4756 static void mem_cgroup_clear_mc(void)
4757 {
4758 struct mm_struct *mm = mc.mm;
4759
4760 /*
4761 * we must clear moving_task before waking up waiters at the end of
4762 * task migration.
4763 */
4764 mc.moving_task = NULL;
4765 __mem_cgroup_clear_mc();
4766 spin_lock(&mc.lock);
4767 mc.from = NULL;
4768 mc.to = NULL;
4769 mc.mm = NULL;
4770 spin_unlock(&mc.lock);
4771
4772 mmput(mm);
4773 }
4774
4775 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4776 {
4777 struct cgroup_subsys_state *css;
4778 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4779 struct mem_cgroup *from;
4780 struct task_struct *leader, *p;
4781 struct mm_struct *mm;
4782 unsigned long move_flags;
4783 int ret = 0;
4784
4785 /* charge immigration isn't supported on the default hierarchy */
4786 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4787 return 0;
4788
4789 /*
4790 * Multi-process migrations only happen on the default hierarchy
4791 * where charge immigration is not used. Perform charge
4792 * immigration if @tset contains a leader and whine if there are
4793 * multiple.
4794 */
4795 p = NULL;
4796 cgroup_taskset_for_each_leader(leader, css, tset) {
4797 WARN_ON_ONCE(p);
4798 p = leader;
4799 memcg = mem_cgroup_from_css(css);
4800 }
4801 if (!p)
4802 return 0;
4803
4804 /*
4805 * We are now commited to this value whatever it is. Changes in this
4806 * tunable will only affect upcoming migrations, not the current one.
4807 * So we need to save it, and keep it going.
4808 */
4809 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4810 if (!move_flags)
4811 return 0;
4812
4813 from = mem_cgroup_from_task(p);
4814
4815 VM_BUG_ON(from == memcg);
4816
4817 mm = get_task_mm(p);
4818 if (!mm)
4819 return 0;
4820 /* We move charges only when we move a owner of the mm */
4821 if (mm->owner == p) {
4822 VM_BUG_ON(mc.from);
4823 VM_BUG_ON(mc.to);
4824 VM_BUG_ON(mc.precharge);
4825 VM_BUG_ON(mc.moved_charge);
4826 VM_BUG_ON(mc.moved_swap);
4827
4828 spin_lock(&mc.lock);
4829 mc.mm = mm;
4830 mc.from = from;
4831 mc.to = memcg;
4832 mc.flags = move_flags;
4833 spin_unlock(&mc.lock);
4834 /* We set mc.moving_task later */
4835
4836 ret = mem_cgroup_precharge_mc(mm);
4837 if (ret)
4838 mem_cgroup_clear_mc();
4839 } else {
4840 mmput(mm);
4841 }
4842 return ret;
4843 }
4844
4845 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4846 {
4847 if (mc.to)
4848 mem_cgroup_clear_mc();
4849 }
4850
4851 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4852 unsigned long addr, unsigned long end,
4853 struct mm_walk *walk)
4854 {
4855 int ret = 0;
4856 struct vm_area_struct *vma = walk->vma;
4857 pte_t *pte;
4858 spinlock_t *ptl;
4859 enum mc_target_type target_type;
4860 union mc_target target;
4861 struct page *page;
4862
4863 ptl = pmd_trans_huge_lock(pmd, vma);
4864 if (ptl) {
4865 if (mc.precharge < HPAGE_PMD_NR) {
4866 spin_unlock(ptl);
4867 return 0;
4868 }
4869 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4870 if (target_type == MC_TARGET_PAGE) {
4871 page = target.page;
4872 if (!isolate_lru_page(page)) {
4873 if (!mem_cgroup_move_account(page, true,
4874 mc.from, mc.to)) {
4875 mc.precharge -= HPAGE_PMD_NR;
4876 mc.moved_charge += HPAGE_PMD_NR;
4877 }
4878 putback_lru_page(page);
4879 }
4880 put_page(page);
4881 }
4882 spin_unlock(ptl);
4883 return 0;
4884 }
4885
4886 if (pmd_trans_unstable(pmd))
4887 return 0;
4888 retry:
4889 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4890 for (; addr != end; addr += PAGE_SIZE) {
4891 pte_t ptent = *(pte++);
4892 swp_entry_t ent;
4893
4894 if (!mc.precharge)
4895 break;
4896
4897 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4898 case MC_TARGET_PAGE:
4899 page = target.page;
4900 /*
4901 * We can have a part of the split pmd here. Moving it
4902 * can be done but it would be too convoluted so simply
4903 * ignore such a partial THP and keep it in original
4904 * memcg. There should be somebody mapping the head.
4905 */
4906 if (PageTransCompound(page))
4907 goto put;
4908 if (isolate_lru_page(page))
4909 goto put;
4910 if (!mem_cgroup_move_account(page, false,
4911 mc.from, mc.to)) {
4912 mc.precharge--;
4913 /* we uncharge from mc.from later. */
4914 mc.moved_charge++;
4915 }
4916 putback_lru_page(page);
4917 put: /* get_mctgt_type() gets the page */
4918 put_page(page);
4919 break;
4920 case MC_TARGET_SWAP:
4921 ent = target.ent;
4922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4923 mc.precharge--;
4924 /* we fixup refcnts and charges later. */
4925 mc.moved_swap++;
4926 }
4927 break;
4928 default:
4929 break;
4930 }
4931 }
4932 pte_unmap_unlock(pte - 1, ptl);
4933 cond_resched();
4934
4935 if (addr != end) {
4936 /*
4937 * We have consumed all precharges we got in can_attach().
4938 * We try charge one by one, but don't do any additional
4939 * charges to mc.to if we have failed in charge once in attach()
4940 * phase.
4941 */
4942 ret = mem_cgroup_do_precharge(1);
4943 if (!ret)
4944 goto retry;
4945 }
4946
4947 return ret;
4948 }
4949
4950 static void mem_cgroup_move_charge(void)
4951 {
4952 struct mm_walk mem_cgroup_move_charge_walk = {
4953 .pmd_entry = mem_cgroup_move_charge_pte_range,
4954 .mm = mc.mm,
4955 };
4956
4957 lru_add_drain_all();
4958 /*
4959 * Signal lock_page_memcg() to take the memcg's move_lock
4960 * while we're moving its pages to another memcg. Then wait
4961 * for already started RCU-only updates to finish.
4962 */
4963 atomic_inc(&mc.from->moving_account);
4964 synchronize_rcu();
4965 retry:
4966 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4967 /*
4968 * Someone who are holding the mmap_sem might be waiting in
4969 * waitq. So we cancel all extra charges, wake up all waiters,
4970 * and retry. Because we cancel precharges, we might not be able
4971 * to move enough charges, but moving charge is a best-effort
4972 * feature anyway, so it wouldn't be a big problem.
4973 */
4974 __mem_cgroup_clear_mc();
4975 cond_resched();
4976 goto retry;
4977 }
4978 /*
4979 * When we have consumed all precharges and failed in doing
4980 * additional charge, the page walk just aborts.
4981 */
4982 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4983
4984 up_read(&mc.mm->mmap_sem);
4985 atomic_dec(&mc.from->moving_account);
4986 }
4987
4988 static void mem_cgroup_move_task(void)
4989 {
4990 if (mc.to) {
4991 mem_cgroup_move_charge();
4992 mem_cgroup_clear_mc();
4993 }
4994 }
4995 #else /* !CONFIG_MMU */
4996 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4997 {
4998 return 0;
4999 }
5000 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5001 {
5002 }
5003 static void mem_cgroup_move_task(void)
5004 {
5005 }
5006 #endif
5007
5008 /*
5009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5010 * to verify whether we're attached to the default hierarchy on each mount
5011 * attempt.
5012 */
5013 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5014 {
5015 /*
5016 * use_hierarchy is forced on the default hierarchy. cgroup core
5017 * guarantees that @root doesn't have any children, so turning it
5018 * on for the root memcg is enough.
5019 */
5020 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5021 root_mem_cgroup->use_hierarchy = true;
5022 else
5023 root_mem_cgroup->use_hierarchy = false;
5024 }
5025
5026 static u64 memory_current_read(struct cgroup_subsys_state *css,
5027 struct cftype *cft)
5028 {
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5030
5031 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5032 }
5033
5034 static int memory_low_show(struct seq_file *m, void *v)
5035 {
5036 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5037 unsigned long low = READ_ONCE(memcg->low);
5038
5039 if (low == PAGE_COUNTER_MAX)
5040 seq_puts(m, "max\n");
5041 else
5042 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5043
5044 return 0;
5045 }
5046
5047 static ssize_t memory_low_write(struct kernfs_open_file *of,
5048 char *buf, size_t nbytes, loff_t off)
5049 {
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5051 unsigned long low;
5052 int err;
5053
5054 buf = strstrip(buf);
5055 err = page_counter_memparse(buf, "max", &low);
5056 if (err)
5057 return err;
5058
5059 memcg->low = low;
5060
5061 return nbytes;
5062 }
5063
5064 static int memory_high_show(struct seq_file *m, void *v)
5065 {
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067 unsigned long high = READ_ONCE(memcg->high);
5068
5069 if (high == PAGE_COUNTER_MAX)
5070 seq_puts(m, "max\n");
5071 else
5072 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5073
5074 return 0;
5075 }
5076
5077 static ssize_t memory_high_write(struct kernfs_open_file *of,
5078 char *buf, size_t nbytes, loff_t off)
5079 {
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081 unsigned long nr_pages;
5082 unsigned long high;
5083 int err;
5084
5085 buf = strstrip(buf);
5086 err = page_counter_memparse(buf, "max", &high);
5087 if (err)
5088 return err;
5089
5090 memcg->high = high;
5091
5092 nr_pages = page_counter_read(&memcg->memory);
5093 if (nr_pages > high)
5094 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5095 GFP_KERNEL, true);
5096
5097 memcg_wb_domain_size_changed(memcg);
5098 return nbytes;
5099 }
5100
5101 static int memory_max_show(struct seq_file *m, void *v)
5102 {
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104 unsigned long max = READ_ONCE(memcg->memory.limit);
5105
5106 if (max == PAGE_COUNTER_MAX)
5107 seq_puts(m, "max\n");
5108 else
5109 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5110
5111 return 0;
5112 }
5113
5114 static ssize_t memory_max_write(struct kernfs_open_file *of,
5115 char *buf, size_t nbytes, loff_t off)
5116 {
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5119 bool drained = false;
5120 unsigned long max;
5121 int err;
5122
5123 buf = strstrip(buf);
5124 err = page_counter_memparse(buf, "max", &max);
5125 if (err)
5126 return err;
5127
5128 xchg(&memcg->memory.limit, max);
5129
5130 for (;;) {
5131 unsigned long nr_pages = page_counter_read(&memcg->memory);
5132
5133 if (nr_pages <= max)
5134 break;
5135
5136 if (signal_pending(current)) {
5137 err = -EINTR;
5138 break;
5139 }
5140
5141 if (!drained) {
5142 drain_all_stock(memcg);
5143 drained = true;
5144 continue;
5145 }
5146
5147 if (nr_reclaims) {
5148 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5149 GFP_KERNEL, true))
5150 nr_reclaims--;
5151 continue;
5152 }
5153
5154 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5155 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5156 break;
5157 }
5158
5159 memcg_wb_domain_size_changed(memcg);
5160 return nbytes;
5161 }
5162
5163 static int memory_events_show(struct seq_file *m, void *v)
5164 {
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5166
5167 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5168 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5169 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5170 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5171
5172 return 0;
5173 }
5174
5175 static int memory_stat_show(struct seq_file *m, void *v)
5176 {
5177 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5178 unsigned long stat[MEMCG_NR_STAT];
5179 unsigned long events[MEMCG_NR_EVENTS];
5180 int i;
5181
5182 /*
5183 * Provide statistics on the state of the memory subsystem as
5184 * well as cumulative event counters that show past behavior.
5185 *
5186 * This list is ordered following a combination of these gradients:
5187 * 1) generic big picture -> specifics and details
5188 * 2) reflecting userspace activity -> reflecting kernel heuristics
5189 *
5190 * Current memory state:
5191 */
5192
5193 tree_stat(memcg, stat);
5194 tree_events(memcg, events);
5195
5196 seq_printf(m, "anon %llu\n",
5197 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5198 seq_printf(m, "file %llu\n",
5199 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5200 seq_printf(m, "kernel_stack %llu\n",
5201 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5202 seq_printf(m, "slab %llu\n",
5203 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5204 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5205 seq_printf(m, "sock %llu\n",
5206 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5207
5208 seq_printf(m, "file_mapped %llu\n",
5209 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5210 seq_printf(m, "file_dirty %llu\n",
5211 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5212 seq_printf(m, "file_writeback %llu\n",
5213 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5214
5215 for (i = 0; i < NR_LRU_LISTS; i++) {
5216 struct mem_cgroup *mi;
5217 unsigned long val = 0;
5218
5219 for_each_mem_cgroup_tree(mi, memcg)
5220 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5221 seq_printf(m, "%s %llu\n",
5222 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5223 }
5224
5225 seq_printf(m, "slab_reclaimable %llu\n",
5226 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5227 seq_printf(m, "slab_unreclaimable %llu\n",
5228 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5229
5230 /* Accumulated memory events */
5231
5232 seq_printf(m, "pgfault %lu\n",
5233 events[MEM_CGROUP_EVENTS_PGFAULT]);
5234 seq_printf(m, "pgmajfault %lu\n",
5235 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5236
5237 return 0;
5238 }
5239
5240 static struct cftype memory_files[] = {
5241 {
5242 .name = "current",
5243 .flags = CFTYPE_NOT_ON_ROOT,
5244 .read_u64 = memory_current_read,
5245 },
5246 {
5247 .name = "low",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_low_show,
5250 .write = memory_low_write,
5251 },
5252 {
5253 .name = "high",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_high_show,
5256 .write = memory_high_write,
5257 },
5258 {
5259 .name = "max",
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .seq_show = memory_max_show,
5262 .write = memory_max_write,
5263 },
5264 {
5265 .name = "events",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .file_offset = offsetof(struct mem_cgroup, events_file),
5268 .seq_show = memory_events_show,
5269 },
5270 {
5271 .name = "stat",
5272 .flags = CFTYPE_NOT_ON_ROOT,
5273 .seq_show = memory_stat_show,
5274 },
5275 { } /* terminate */
5276 };
5277
5278 struct cgroup_subsys memory_cgrp_subsys = {
5279 .css_alloc = mem_cgroup_css_alloc,
5280 .css_online = mem_cgroup_css_online,
5281 .css_offline = mem_cgroup_css_offline,
5282 .css_released = mem_cgroup_css_released,
5283 .css_free = mem_cgroup_css_free,
5284 .css_reset = mem_cgroup_css_reset,
5285 .can_attach = mem_cgroup_can_attach,
5286 .cancel_attach = mem_cgroup_cancel_attach,
5287 .post_attach = mem_cgroup_move_task,
5288 .bind = mem_cgroup_bind,
5289 .dfl_cftypes = memory_files,
5290 .legacy_cftypes = mem_cgroup_legacy_files,
5291 .early_init = 0,
5292 };
5293
5294 /**
5295 * mem_cgroup_low - check if memory consumption is below the normal range
5296 * @root: the highest ancestor to consider
5297 * @memcg: the memory cgroup to check
5298 *
5299 * Returns %true if memory consumption of @memcg, and that of all
5300 * configurable ancestors up to @root, is below the normal range.
5301 */
5302 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5303 {
5304 if (mem_cgroup_disabled())
5305 return false;
5306
5307 /*
5308 * The toplevel group doesn't have a configurable range, so
5309 * it's never low when looked at directly, and it is not
5310 * considered an ancestor when assessing the hierarchy.
5311 */
5312
5313 if (memcg == root_mem_cgroup)
5314 return false;
5315
5316 if (page_counter_read(&memcg->memory) >= memcg->low)
5317 return false;
5318
5319 while (memcg != root) {
5320 memcg = parent_mem_cgroup(memcg);
5321
5322 if (memcg == root_mem_cgroup)
5323 break;
5324
5325 if (page_counter_read(&memcg->memory) >= memcg->low)
5326 return false;
5327 }
5328 return true;
5329 }
5330
5331 /**
5332 * mem_cgroup_try_charge - try charging a page
5333 * @page: page to charge
5334 * @mm: mm context of the victim
5335 * @gfp_mask: reclaim mode
5336 * @memcgp: charged memcg return
5337 * @compound: charge the page as compound or small page
5338 *
5339 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5340 * pages according to @gfp_mask if necessary.
5341 *
5342 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5343 * Otherwise, an error code is returned.
5344 *
5345 * After page->mapping has been set up, the caller must finalize the
5346 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5347 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5348 */
5349 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5350 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5351 bool compound)
5352 {
5353 struct mem_cgroup *memcg = NULL;
5354 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5355 int ret = 0;
5356
5357 if (mem_cgroup_disabled())
5358 goto out;
5359
5360 if (PageSwapCache(page)) {
5361 /*
5362 * Every swap fault against a single page tries to charge the
5363 * page, bail as early as possible. shmem_unuse() encounters
5364 * already charged pages, too. The USED bit is protected by
5365 * the page lock, which serializes swap cache removal, which
5366 * in turn serializes uncharging.
5367 */
5368 VM_BUG_ON_PAGE(!PageLocked(page), page);
5369 if (page->mem_cgroup)
5370 goto out;
5371
5372 if (do_swap_account) {
5373 swp_entry_t ent = { .val = page_private(page), };
5374 unsigned short id = lookup_swap_cgroup_id(ent);
5375
5376 rcu_read_lock();
5377 memcg = mem_cgroup_from_id(id);
5378 if (memcg && !css_tryget_online(&memcg->css))
5379 memcg = NULL;
5380 rcu_read_unlock();
5381 }
5382 }
5383
5384 if (!memcg)
5385 memcg = get_mem_cgroup_from_mm(mm);
5386
5387 ret = try_charge(memcg, gfp_mask, nr_pages);
5388
5389 css_put(&memcg->css);
5390 out:
5391 *memcgp = memcg;
5392 return ret;
5393 }
5394
5395 /**
5396 * mem_cgroup_commit_charge - commit a page charge
5397 * @page: page to charge
5398 * @memcg: memcg to charge the page to
5399 * @lrucare: page might be on LRU already
5400 * @compound: charge the page as compound or small page
5401 *
5402 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5403 * after page->mapping has been set up. This must happen atomically
5404 * as part of the page instantiation, i.e. under the page table lock
5405 * for anonymous pages, under the page lock for page and swap cache.
5406 *
5407 * In addition, the page must not be on the LRU during the commit, to
5408 * prevent racing with task migration. If it might be, use @lrucare.
5409 *
5410 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5411 */
5412 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5413 bool lrucare, bool compound)
5414 {
5415 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5416
5417 VM_BUG_ON_PAGE(!page->mapping, page);
5418 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5419
5420 if (mem_cgroup_disabled())
5421 return;
5422 /*
5423 * Swap faults will attempt to charge the same page multiple
5424 * times. But reuse_swap_page() might have removed the page
5425 * from swapcache already, so we can't check PageSwapCache().
5426 */
5427 if (!memcg)
5428 return;
5429
5430 commit_charge(page, memcg, lrucare);
5431
5432 local_irq_disable();
5433 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5434 memcg_check_events(memcg, page);
5435 local_irq_enable();
5436
5437 if (do_memsw_account() && PageSwapCache(page)) {
5438 swp_entry_t entry = { .val = page_private(page) };
5439 /*
5440 * The swap entry might not get freed for a long time,
5441 * let's not wait for it. The page already received a
5442 * memory+swap charge, drop the swap entry duplicate.
5443 */
5444 mem_cgroup_uncharge_swap(entry);
5445 }
5446 }
5447
5448 /**
5449 * mem_cgroup_cancel_charge - cancel a page charge
5450 * @page: page to charge
5451 * @memcg: memcg to charge the page to
5452 * @compound: charge the page as compound or small page
5453 *
5454 * Cancel a charge transaction started by mem_cgroup_try_charge().
5455 */
5456 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5457 bool compound)
5458 {
5459 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5460
5461 if (mem_cgroup_disabled())
5462 return;
5463 /*
5464 * Swap faults will attempt to charge the same page multiple
5465 * times. But reuse_swap_page() might have removed the page
5466 * from swapcache already, so we can't check PageSwapCache().
5467 */
5468 if (!memcg)
5469 return;
5470
5471 cancel_charge(memcg, nr_pages);
5472 }
5473
5474 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5475 unsigned long nr_anon, unsigned long nr_file,
5476 unsigned long nr_huge, unsigned long nr_kmem,
5477 struct page *dummy_page)
5478 {
5479 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5480 unsigned long flags;
5481
5482 if (!mem_cgroup_is_root(memcg)) {
5483 page_counter_uncharge(&memcg->memory, nr_pages);
5484 if (do_memsw_account())
5485 page_counter_uncharge(&memcg->memsw, nr_pages);
5486 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5487 page_counter_uncharge(&memcg->kmem, nr_kmem);
5488 memcg_oom_recover(memcg);
5489 }
5490
5491 local_irq_save(flags);
5492 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5493 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5494 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5495 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5496 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5497 memcg_check_events(memcg, dummy_page);
5498 local_irq_restore(flags);
5499
5500 if (!mem_cgroup_is_root(memcg))
5501 css_put_many(&memcg->css, nr_pages);
5502 }
5503
5504 static void uncharge_list(struct list_head *page_list)
5505 {
5506 struct mem_cgroup *memcg = NULL;
5507 unsigned long nr_anon = 0;
5508 unsigned long nr_file = 0;
5509 unsigned long nr_huge = 0;
5510 unsigned long nr_kmem = 0;
5511 unsigned long pgpgout = 0;
5512 struct list_head *next;
5513 struct page *page;
5514
5515 /*
5516 * Note that the list can be a single page->lru; hence the
5517 * do-while loop instead of a simple list_for_each_entry().
5518 */
5519 next = page_list->next;
5520 do {
5521 page = list_entry(next, struct page, lru);
5522 next = page->lru.next;
5523
5524 VM_BUG_ON_PAGE(PageLRU(page), page);
5525 VM_BUG_ON_PAGE(page_count(page), page);
5526
5527 if (!page->mem_cgroup)
5528 continue;
5529
5530 /*
5531 * Nobody should be changing or seriously looking at
5532 * page->mem_cgroup at this point, we have fully
5533 * exclusive access to the page.
5534 */
5535
5536 if (memcg != page->mem_cgroup) {
5537 if (memcg) {
5538 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5539 nr_huge, nr_kmem, page);
5540 pgpgout = nr_anon = nr_file =
5541 nr_huge = nr_kmem = 0;
5542 }
5543 memcg = page->mem_cgroup;
5544 }
5545
5546 if (!PageKmemcg(page)) {
5547 unsigned int nr_pages = 1;
5548
5549 if (PageTransHuge(page)) {
5550 nr_pages <<= compound_order(page);
5551 nr_huge += nr_pages;
5552 }
5553 if (PageAnon(page))
5554 nr_anon += nr_pages;
5555 else
5556 nr_file += nr_pages;
5557 pgpgout++;
5558 } else {
5559 nr_kmem += 1 << compound_order(page);
5560 __ClearPageKmemcg(page);
5561 }
5562
5563 page->mem_cgroup = NULL;
5564 } while (next != page_list);
5565
5566 if (memcg)
5567 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5568 nr_huge, nr_kmem, page);
5569 }
5570
5571 /**
5572 * mem_cgroup_uncharge - uncharge a page
5573 * @page: page to uncharge
5574 *
5575 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5576 * mem_cgroup_commit_charge().
5577 */
5578 void mem_cgroup_uncharge(struct page *page)
5579 {
5580 if (mem_cgroup_disabled())
5581 return;
5582
5583 /* Don't touch page->lru of any random page, pre-check: */
5584 if (!page->mem_cgroup)
5585 return;
5586
5587 INIT_LIST_HEAD(&page->lru);
5588 uncharge_list(&page->lru);
5589 }
5590
5591 /**
5592 * mem_cgroup_uncharge_list - uncharge a list of page
5593 * @page_list: list of pages to uncharge
5594 *
5595 * Uncharge a list of pages previously charged with
5596 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5597 */
5598 void mem_cgroup_uncharge_list(struct list_head *page_list)
5599 {
5600 if (mem_cgroup_disabled())
5601 return;
5602
5603 if (!list_empty(page_list))
5604 uncharge_list(page_list);
5605 }
5606
5607 /**
5608 * mem_cgroup_migrate - charge a page's replacement
5609 * @oldpage: currently circulating page
5610 * @newpage: replacement page
5611 *
5612 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5613 * be uncharged upon free.
5614 *
5615 * Both pages must be locked, @newpage->mapping must be set up.
5616 */
5617 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5618 {
5619 struct mem_cgroup *memcg;
5620 unsigned int nr_pages;
5621 bool compound;
5622 unsigned long flags;
5623
5624 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5625 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5626 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5627 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5628 newpage);
5629
5630 if (mem_cgroup_disabled())
5631 return;
5632
5633 /* Page cache replacement: new page already charged? */
5634 if (newpage->mem_cgroup)
5635 return;
5636
5637 /* Swapcache readahead pages can get replaced before being charged */
5638 memcg = oldpage->mem_cgroup;
5639 if (!memcg)
5640 return;
5641
5642 /* Force-charge the new page. The old one will be freed soon */
5643 compound = PageTransHuge(newpage);
5644 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5645
5646 page_counter_charge(&memcg->memory, nr_pages);
5647 if (do_memsw_account())
5648 page_counter_charge(&memcg->memsw, nr_pages);
5649 css_get_many(&memcg->css, nr_pages);
5650
5651 commit_charge(newpage, memcg, false);
5652
5653 local_irq_save(flags);
5654 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5655 memcg_check_events(memcg, newpage);
5656 local_irq_restore(flags);
5657 }
5658
5659 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5660 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5661
5662 void mem_cgroup_sk_alloc(struct sock *sk)
5663 {
5664 struct mem_cgroup *memcg;
5665
5666 if (!mem_cgroup_sockets_enabled)
5667 return;
5668
5669 /*
5670 * Socket cloning can throw us here with sk_memcg already
5671 * filled. It won't however, necessarily happen from
5672 * process context. So the test for root memcg given
5673 * the current task's memcg won't help us in this case.
5674 *
5675 * Respecting the original socket's memcg is a better
5676 * decision in this case.
5677 */
5678 if (sk->sk_memcg) {
5679 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5680 css_get(&sk->sk_memcg->css);
5681 return;
5682 }
5683
5684 rcu_read_lock();
5685 memcg = mem_cgroup_from_task(current);
5686 if (memcg == root_mem_cgroup)
5687 goto out;
5688 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5689 goto out;
5690 if (css_tryget_online(&memcg->css))
5691 sk->sk_memcg = memcg;
5692 out:
5693 rcu_read_unlock();
5694 }
5695
5696 void mem_cgroup_sk_free(struct sock *sk)
5697 {
5698 if (sk->sk_memcg)
5699 css_put(&sk->sk_memcg->css);
5700 }
5701
5702 /**
5703 * mem_cgroup_charge_skmem - charge socket memory
5704 * @memcg: memcg to charge
5705 * @nr_pages: number of pages to charge
5706 *
5707 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5708 * @memcg's configured limit, %false if the charge had to be forced.
5709 */
5710 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5711 {
5712 gfp_t gfp_mask = GFP_KERNEL;
5713
5714 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5715 struct page_counter *fail;
5716
5717 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5718 memcg->tcpmem_pressure = 0;
5719 return true;
5720 }
5721 page_counter_charge(&memcg->tcpmem, nr_pages);
5722 memcg->tcpmem_pressure = 1;
5723 return false;
5724 }
5725
5726 /* Don't block in the packet receive path */
5727 if (in_softirq())
5728 gfp_mask = GFP_NOWAIT;
5729
5730 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5731
5732 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5733 return true;
5734
5735 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5736 return false;
5737 }
5738
5739 /**
5740 * mem_cgroup_uncharge_skmem - uncharge socket memory
5741 * @memcg - memcg to uncharge
5742 * @nr_pages - number of pages to uncharge
5743 */
5744 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5745 {
5746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5747 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5748 return;
5749 }
5750
5751 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5752
5753 page_counter_uncharge(&memcg->memory, nr_pages);
5754 css_put_many(&memcg->css, nr_pages);
5755 }
5756
5757 static int __init cgroup_memory(char *s)
5758 {
5759 char *token;
5760
5761 while ((token = strsep(&s, ",")) != NULL) {
5762 if (!*token)
5763 continue;
5764 if (!strcmp(token, "nosocket"))
5765 cgroup_memory_nosocket = true;
5766 if (!strcmp(token, "nokmem"))
5767 cgroup_memory_nokmem = true;
5768 }
5769 return 0;
5770 }
5771 __setup("cgroup.memory=", cgroup_memory);
5772
5773 /*
5774 * subsys_initcall() for memory controller.
5775 *
5776 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5777 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5778 * basically everything that doesn't depend on a specific mem_cgroup structure
5779 * should be initialized from here.
5780 */
5781 static int __init mem_cgroup_init(void)
5782 {
5783 int cpu, node;
5784
5785 #ifndef CONFIG_SLOB
5786 /*
5787 * Kmem cache creation is mostly done with the slab_mutex held,
5788 * so use a special workqueue to avoid stalling all worker
5789 * threads in case lots of cgroups are created simultaneously.
5790 */
5791 memcg_kmem_cache_create_wq =
5792 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5793 BUG_ON(!memcg_kmem_cache_create_wq);
5794 #endif
5795
5796 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5797 memcg_hotplug_cpu_dead);
5798
5799 for_each_possible_cpu(cpu)
5800 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5801 drain_local_stock);
5802
5803 for_each_node(node) {
5804 struct mem_cgroup_tree_per_node *rtpn;
5805
5806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5807 node_online(node) ? node : NUMA_NO_NODE);
5808
5809 rtpn->rb_root = RB_ROOT;
5810 spin_lock_init(&rtpn->lock);
5811 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5812 }
5813
5814 return 0;
5815 }
5816 subsys_initcall(mem_cgroup_init);
5817
5818 #ifdef CONFIG_MEMCG_SWAP
5819 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5820 {
5821 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5822 /*
5823 * The root cgroup cannot be destroyed, so it's refcount must
5824 * always be >= 1.
5825 */
5826 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5827 VM_BUG_ON(1);
5828 break;
5829 }
5830 memcg = parent_mem_cgroup(memcg);
5831 if (!memcg)
5832 memcg = root_mem_cgroup;
5833 }
5834 return memcg;
5835 }
5836
5837 /**
5838 * mem_cgroup_swapout - transfer a memsw charge to swap
5839 * @page: page whose memsw charge to transfer
5840 * @entry: swap entry to move the charge to
5841 *
5842 * Transfer the memsw charge of @page to @entry.
5843 */
5844 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5845 {
5846 struct mem_cgroup *memcg, *swap_memcg;
5847 unsigned short oldid;
5848
5849 VM_BUG_ON_PAGE(PageLRU(page), page);
5850 VM_BUG_ON_PAGE(page_count(page), page);
5851
5852 if (!do_memsw_account())
5853 return;
5854
5855 memcg = page->mem_cgroup;
5856
5857 /* Readahead page, never charged */
5858 if (!memcg)
5859 return;
5860
5861 /*
5862 * In case the memcg owning these pages has been offlined and doesn't
5863 * have an ID allocated to it anymore, charge the closest online
5864 * ancestor for the swap instead and transfer the memory+swap charge.
5865 */
5866 swap_memcg = mem_cgroup_id_get_online(memcg);
5867 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5868 VM_BUG_ON_PAGE(oldid, page);
5869 mem_cgroup_swap_statistics(swap_memcg, true);
5870
5871 page->mem_cgroup = NULL;
5872
5873 if (!mem_cgroup_is_root(memcg))
5874 page_counter_uncharge(&memcg->memory, 1);
5875
5876 if (memcg != swap_memcg) {
5877 if (!mem_cgroup_is_root(swap_memcg))
5878 page_counter_charge(&swap_memcg->memsw, 1);
5879 page_counter_uncharge(&memcg->memsw, 1);
5880 }
5881
5882 /*
5883 * Interrupts should be disabled here because the caller holds the
5884 * mapping->tree_lock lock which is taken with interrupts-off. It is
5885 * important here to have the interrupts disabled because it is the
5886 * only synchronisation we have for udpating the per-CPU variables.
5887 */
5888 VM_BUG_ON(!irqs_disabled());
5889 mem_cgroup_charge_statistics(memcg, page, false, -1);
5890 memcg_check_events(memcg, page);
5891
5892 if (!mem_cgroup_is_root(memcg))
5893 css_put(&memcg->css);
5894 }
5895
5896 /*
5897 * mem_cgroup_try_charge_swap - try charging a swap entry
5898 * @page: page being added to swap
5899 * @entry: swap entry to charge
5900 *
5901 * Try to charge @entry to the memcg that @page belongs to.
5902 *
5903 * Returns 0 on success, -ENOMEM on failure.
5904 */
5905 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5906 {
5907 struct mem_cgroup *memcg;
5908 struct page_counter *counter;
5909 unsigned short oldid;
5910
5911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5912 return 0;
5913
5914 memcg = page->mem_cgroup;
5915
5916 /* Readahead page, never charged */
5917 if (!memcg)
5918 return 0;
5919
5920 memcg = mem_cgroup_id_get_online(memcg);
5921
5922 if (!mem_cgroup_is_root(memcg) &&
5923 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5924 mem_cgroup_id_put(memcg);
5925 return -ENOMEM;
5926 }
5927
5928 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5929 VM_BUG_ON_PAGE(oldid, page);
5930 mem_cgroup_swap_statistics(memcg, true);
5931
5932 return 0;
5933 }
5934
5935 /**
5936 * mem_cgroup_uncharge_swap - uncharge a swap entry
5937 * @entry: swap entry to uncharge
5938 *
5939 * Drop the swap charge associated with @entry.
5940 */
5941 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5942 {
5943 struct mem_cgroup *memcg;
5944 unsigned short id;
5945
5946 if (!do_swap_account)
5947 return;
5948
5949 id = swap_cgroup_record(entry, 0);
5950 rcu_read_lock();
5951 memcg = mem_cgroup_from_id(id);
5952 if (memcg) {
5953 if (!mem_cgroup_is_root(memcg)) {
5954 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 page_counter_uncharge(&memcg->swap, 1);
5956 else
5957 page_counter_uncharge(&memcg->memsw, 1);
5958 }
5959 mem_cgroup_swap_statistics(memcg, false);
5960 mem_cgroup_id_put(memcg);
5961 }
5962 rcu_read_unlock();
5963 }
5964
5965 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5966 {
5967 long nr_swap_pages = get_nr_swap_pages();
5968
5969 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 return nr_swap_pages;
5971 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5972 nr_swap_pages = min_t(long, nr_swap_pages,
5973 READ_ONCE(memcg->swap.limit) -
5974 page_counter_read(&memcg->swap));
5975 return nr_swap_pages;
5976 }
5977
5978 bool mem_cgroup_swap_full(struct page *page)
5979 {
5980 struct mem_cgroup *memcg;
5981
5982 VM_BUG_ON_PAGE(!PageLocked(page), page);
5983
5984 if (vm_swap_full())
5985 return true;
5986 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5987 return false;
5988
5989 memcg = page->mem_cgroup;
5990 if (!memcg)
5991 return false;
5992
5993 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5994 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5995 return true;
5996
5997 return false;
5998 }
5999
6000 /* for remember boot option*/
6001 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6002 static int really_do_swap_account __initdata = 1;
6003 #else
6004 static int really_do_swap_account __initdata;
6005 #endif
6006
6007 static int __init enable_swap_account(char *s)
6008 {
6009 if (!strcmp(s, "1"))
6010 really_do_swap_account = 1;
6011 else if (!strcmp(s, "0"))
6012 really_do_swap_account = 0;
6013 return 1;
6014 }
6015 __setup("swapaccount=", enable_swap_account);
6016
6017 static u64 swap_current_read(struct cgroup_subsys_state *css,
6018 struct cftype *cft)
6019 {
6020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6021
6022 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6023 }
6024
6025 static int swap_max_show(struct seq_file *m, void *v)
6026 {
6027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6028 unsigned long max = READ_ONCE(memcg->swap.limit);
6029
6030 if (max == PAGE_COUNTER_MAX)
6031 seq_puts(m, "max\n");
6032 else
6033 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6034
6035 return 0;
6036 }
6037
6038 static ssize_t swap_max_write(struct kernfs_open_file *of,
6039 char *buf, size_t nbytes, loff_t off)
6040 {
6041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6042 unsigned long max;
6043 int err;
6044
6045 buf = strstrip(buf);
6046 err = page_counter_memparse(buf, "max", &max);
6047 if (err)
6048 return err;
6049
6050 mutex_lock(&memcg_limit_mutex);
6051 err = page_counter_limit(&memcg->swap, max);
6052 mutex_unlock(&memcg_limit_mutex);
6053 if (err)
6054 return err;
6055
6056 return nbytes;
6057 }
6058
6059 static struct cftype swap_files[] = {
6060 {
6061 .name = "swap.current",
6062 .flags = CFTYPE_NOT_ON_ROOT,
6063 .read_u64 = swap_current_read,
6064 },
6065 {
6066 .name = "swap.max",
6067 .flags = CFTYPE_NOT_ON_ROOT,
6068 .seq_show = swap_max_show,
6069 .write = swap_max_write,
6070 },
6071 { } /* terminate */
6072 };
6073
6074 static struct cftype memsw_cgroup_files[] = {
6075 {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .write = mem_cgroup_reset,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write = mem_cgroup_write,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 {
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .write = mem_cgroup_reset,
6096 .read_u64 = mem_cgroup_read_u64,
6097 },
6098 { }, /* terminate */
6099 };
6100
6101 static int __init mem_cgroup_swap_init(void)
6102 {
6103 if (!mem_cgroup_disabled() && really_do_swap_account) {
6104 do_swap_account = 1;
6105 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6106 swap_files));
6107 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6108 memsw_cgroup_files));
6109 }
6110 return 0;
6111 }
6112 subsys_initcall(mem_cgroup_swap_init);
6113
6114 #endif /* CONFIG_MEMCG_SWAP */