]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: Advance fast path pointer for first block only
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 90
ab32ea5d
BH
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
1da177e4 93
1da177e4
LT
94#define FLAG_DATA 0x01 /* Incoming frame contained data. */
95#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99#define FLAG_DATA_SACKED 0x20 /* New SACK. */
100#define FLAG_ECE 0x40 /* ECE in this ACK */
101#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103
104#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112
113#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114
115/* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
117 */
40efc6fa
SH
118static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
1da177e4 120{
463c84b9
ACM
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
1da177e4 124
463c84b9 125 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
126
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
129 */
ff9b5e0f 130 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
136 *
137 * "len" is invariant segment length, including TCP header.
138 */
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
145 */
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
151 */
463c84b9
ACM
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
1da177e4 154 if (len == lss) {
463c84b9 155 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
156 return;
157 }
158 }
1ef9696c
AK
159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
162 }
163}
164
463c84b9 165static void tcp_incr_quickack(struct sock *sk)
1da177e4 166{
463c84b9
ACM
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
169
170 if (quickacks==0)
171 quickacks=2;
463c84b9
ACM
172 if (quickacks > icsk->icsk_ack.quick)
173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
174}
175
463c84b9 176void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 177{
463c84b9
ACM
178 struct inet_connection_sock *icsk = inet_csk(sk);
179 tcp_incr_quickack(sk);
180 icsk->icsk_ack.pingpong = 0;
181 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
182}
183
184/* Send ACKs quickly, if "quick" count is not exhausted
185 * and the session is not interactive.
186 */
187
463c84b9 188static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 189{
463c84b9
ACM
190 const struct inet_connection_sock *icsk = inet_csk(sk);
191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
192}
193
194/* Buffer size and advertised window tuning.
195 *
196 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 */
198
199static void tcp_fixup_sndbuf(struct sock *sk)
200{
201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 sizeof(struct sk_buff);
203
204 if (sk->sk_sndbuf < 3 * sndmem)
205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206}
207
208/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209 *
210 * All tcp_full_space() is split to two parts: "network" buffer, allocated
211 * forward and advertised in receiver window (tp->rcv_wnd) and
212 * "application buffer", required to isolate scheduling/application
213 * latencies from network.
214 * window_clamp is maximal advertised window. It can be less than
215 * tcp_full_space(), in this case tcp_full_space() - window_clamp
216 * is reserved for "application" buffer. The less window_clamp is
217 * the smoother our behaviour from viewpoint of network, but the lower
218 * throughput and the higher sensitivity of the connection to losses. 8)
219 *
220 * rcv_ssthresh is more strict window_clamp used at "slow start"
221 * phase to predict further behaviour of this connection.
222 * It is used for two goals:
223 * - to enforce header prediction at sender, even when application
224 * requires some significant "application buffer". It is check #1.
225 * - to prevent pruning of receive queue because of misprediction
226 * of receiver window. Check #2.
227 *
228 * The scheme does not work when sender sends good segments opening
caa20d9a 229 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
230 * in common situations. Otherwise, we have to rely on queue collapsing.
231 */
232
233/* Slow part of check#2. */
463c84b9
ACM
234static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 const struct sk_buff *skb)
1da177e4
LT
236{
237 /* Optimize this! */
238 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
240
241 while (tp->rcv_ssthresh <= window) {
242 if (truesize <= skb->len)
463c84b9 243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
244
245 truesize >>= 1;
246 window >>= 1;
247 }
248 return 0;
249}
250
40efc6fa
SH
251static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 struct sk_buff *skb)
1da177e4
LT
253{
254 /* Check #1 */
255 if (tp->rcv_ssthresh < tp->window_clamp &&
256 (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 !tcp_memory_pressure) {
258 int incr;
259
260 /* Check #2. Increase window, if skb with such overhead
261 * will fit to rcvbuf in future.
262 */
263 if (tcp_win_from_space(skb->truesize) <= skb->len)
264 incr = 2*tp->advmss;
265 else
266 incr = __tcp_grow_window(sk, tp, skb);
267
268 if (incr) {
269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 270 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
271 }
272 }
273}
274
275/* 3. Tuning rcvbuf, when connection enters established state. */
276
277static void tcp_fixup_rcvbuf(struct sock *sk)
278{
279 struct tcp_sock *tp = tcp_sk(sk);
280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281
282 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 283 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
284 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 */
286 while (tcp_win_from_space(rcvmem) < tp->advmss)
287 rcvmem += 128;
288 if (sk->sk_rcvbuf < 4 * rcvmem)
289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290}
291
caa20d9a 292/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
293 * established state.
294 */
295static void tcp_init_buffer_space(struct sock *sk)
296{
297 struct tcp_sock *tp = tcp_sk(sk);
298 int maxwin;
299
300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 tcp_fixup_rcvbuf(sk);
302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 tcp_fixup_sndbuf(sk);
304
305 tp->rcvq_space.space = tp->rcv_wnd;
306
307 maxwin = tcp_full_space(sk);
308
309 if (tp->window_clamp >= maxwin) {
310 tp->window_clamp = maxwin;
311
312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 tp->window_clamp = max(maxwin -
314 (maxwin >> sysctl_tcp_app_win),
315 4 * tp->advmss);
316 }
317
318 /* Force reservation of one segment. */
319 if (sysctl_tcp_app_win &&
320 tp->window_clamp > 2 * tp->advmss &&
321 tp->window_clamp + tp->advmss > maxwin)
322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 tp->snd_cwnd_stamp = tcp_time_stamp;
326}
327
1da177e4
LT
328/* 5. Recalculate window clamp after socket hit its memory bounds. */
329static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330{
6687e988 331 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 332
6687e988 333 icsk->icsk_ack.quick = 0;
1da177e4 334
326f36e9
JH
335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 !tcp_memory_pressure &&
338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 sysctl_tcp_rmem[2]);
1da177e4 341 }
326f36e9 342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
344}
345
40efc6fa
SH
346
347/* Initialize RCV_MSS value.
348 * RCV_MSS is an our guess about MSS used by the peer.
349 * We haven't any direct information about the MSS.
350 * It's better to underestimate the RCV_MSS rather than overestimate.
351 * Overestimations make us ACKing less frequently than needed.
352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353 */
354void tcp_initialize_rcv_mss(struct sock *sk)
355{
356 struct tcp_sock *tp = tcp_sk(sk);
357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358
359 hint = min(hint, tp->rcv_wnd/2);
360 hint = min(hint, TCP_MIN_RCVMSS);
361 hint = max(hint, TCP_MIN_MSS);
362
363 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364}
365
1da177e4
LT
366/* Receiver "autotuning" code.
367 *
368 * The algorithm for RTT estimation w/o timestamps is based on
369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371 *
372 * More detail on this code can be found at
373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374 * though this reference is out of date. A new paper
375 * is pending.
376 */
377static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378{
379 u32 new_sample = tp->rcv_rtt_est.rtt;
380 long m = sample;
381
382 if (m == 0)
383 m = 1;
384
385 if (new_sample != 0) {
386 /* If we sample in larger samples in the non-timestamp
387 * case, we could grossly overestimate the RTT especially
388 * with chatty applications or bulk transfer apps which
389 * are stalled on filesystem I/O.
390 *
391 * Also, since we are only going for a minimum in the
31f34269 392 * non-timestamp case, we do not smooth things out
caa20d9a 393 * else with timestamps disabled convergence takes too
1da177e4
LT
394 * long.
395 */
396 if (!win_dep) {
397 m -= (new_sample >> 3);
398 new_sample += m;
399 } else if (m < new_sample)
400 new_sample = m << 3;
401 } else {
caa20d9a 402 /* No previous measure. */
1da177e4
LT
403 new_sample = m << 3;
404 }
405
406 if (tp->rcv_rtt_est.rtt != new_sample)
407 tp->rcv_rtt_est.rtt = new_sample;
408}
409
410static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411{
412 if (tp->rcv_rtt_est.time == 0)
413 goto new_measure;
414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 return;
416 tcp_rcv_rtt_update(tp,
417 jiffies - tp->rcv_rtt_est.time,
418 1);
419
420new_measure:
421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 tp->rcv_rtt_est.time = tcp_time_stamp;
423}
424
463c84b9 425static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 426{
463c84b9 427 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
428 if (tp->rx_opt.rcv_tsecr &&
429 (TCP_SKB_CB(skb)->end_seq -
463c84b9 430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432}
433
434/*
435 * This function should be called every time data is copied to user space.
436 * It calculates the appropriate TCP receive buffer space.
437 */
438void tcp_rcv_space_adjust(struct sock *sk)
439{
440 struct tcp_sock *tp = tcp_sk(sk);
441 int time;
442 int space;
443
444 if (tp->rcvq_space.time == 0)
445 goto new_measure;
446
447 time = tcp_time_stamp - tp->rcvq_space.time;
448 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 tp->rcv_rtt_est.rtt == 0)
450 return;
451
452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453
454 space = max(tp->rcvq_space.space, space);
455
456 if (tp->rcvq_space.space != space) {
457 int rcvmem;
458
459 tp->rcvq_space.space = space;
460
6fcf9412
JH
461 if (sysctl_tcp_moderate_rcvbuf &&
462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
463 int new_clamp = space;
464
465 /* Receive space grows, normalize in order to
466 * take into account packet headers and sk_buff
467 * structure overhead.
468 */
469 space /= tp->advmss;
470 if (!space)
471 space = 1;
472 rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 16 + sizeof(struct sk_buff));
474 while (tcp_win_from_space(rcvmem) < tp->advmss)
475 rcvmem += 128;
476 space *= rcvmem;
477 space = min(space, sysctl_tcp_rmem[2]);
478 if (space > sk->sk_rcvbuf) {
479 sk->sk_rcvbuf = space;
480
481 /* Make the window clamp follow along. */
482 tp->window_clamp = new_clamp;
483 }
484 }
485 }
486
487new_measure:
488 tp->rcvq_space.seq = tp->copied_seq;
489 tp->rcvq_space.time = tcp_time_stamp;
490}
491
492/* There is something which you must keep in mind when you analyze the
493 * behavior of the tp->ato delayed ack timeout interval. When a
494 * connection starts up, we want to ack as quickly as possible. The
495 * problem is that "good" TCP's do slow start at the beginning of data
496 * transmission. The means that until we send the first few ACK's the
497 * sender will sit on his end and only queue most of his data, because
498 * he can only send snd_cwnd unacked packets at any given time. For
499 * each ACK we send, he increments snd_cwnd and transmits more of his
500 * queue. -DaveM
501 */
502static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503{
463c84b9 504 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
505 u32 now;
506
463c84b9 507 inet_csk_schedule_ack(sk);
1da177e4 508
463c84b9 509 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
510
511 tcp_rcv_rtt_measure(tp);
512
513 now = tcp_time_stamp;
514
463c84b9 515 if (!icsk->icsk_ack.ato) {
1da177e4
LT
516 /* The _first_ data packet received, initialize
517 * delayed ACK engine.
518 */
463c84b9
ACM
519 tcp_incr_quickack(sk);
520 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 521 } else {
463c84b9 522 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
523
524 if (m <= TCP_ATO_MIN/2) {
525 /* The fastest case is the first. */
463c84b9
ACM
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 } else if (m < icsk->icsk_ack.ato) {
528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 icsk->icsk_ack.ato = icsk->icsk_rto;
531 } else if (m > icsk->icsk_rto) {
caa20d9a 532 /* Too long gap. Apparently sender failed to
1da177e4
LT
533 * restart window, so that we send ACKs quickly.
534 */
463c84b9 535 tcp_incr_quickack(sk);
1da177e4
LT
536 sk_stream_mem_reclaim(sk);
537 }
538 }
463c84b9 539 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
540
541 TCP_ECN_check_ce(tp, skb);
542
543 if (skb->len >= 128)
544 tcp_grow_window(sk, tp, skb);
545}
546
1da177e4
LT
547/* Called to compute a smoothed rtt estimate. The data fed to this
548 * routine either comes from timestamps, or from segments that were
549 * known _not_ to have been retransmitted [see Karn/Partridge
550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551 * piece by Van Jacobson.
552 * NOTE: the next three routines used to be one big routine.
553 * To save cycles in the RFC 1323 implementation it was better to break
554 * it up into three procedures. -- erics
555 */
2d2abbab 556static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 557{
6687e988 558 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
559 long m = mrtt; /* RTT */
560
1da177e4
LT
561 /* The following amusing code comes from Jacobson's
562 * article in SIGCOMM '88. Note that rtt and mdev
563 * are scaled versions of rtt and mean deviation.
564 * This is designed to be as fast as possible
565 * m stands for "measurement".
566 *
567 * On a 1990 paper the rto value is changed to:
568 * RTO = rtt + 4 * mdev
569 *
570 * Funny. This algorithm seems to be very broken.
571 * These formulae increase RTO, when it should be decreased, increase
31f34269 572 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 * does not matter how to _calculate_ it. Seems, it was trap
575 * that VJ failed to avoid. 8)
576 */
577 if(m == 0)
578 m = 1;
579 if (tp->srtt != 0) {
580 m -= (tp->srtt >> 3); /* m is now error in rtt est */
581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
582 if (m < 0) {
583 m = -m; /* m is now abs(error) */
584 m -= (tp->mdev >> 2); /* similar update on mdev */
585 /* This is similar to one of Eifel findings.
586 * Eifel blocks mdev updates when rtt decreases.
587 * This solution is a bit different: we use finer gain
588 * for mdev in this case (alpha*beta).
589 * Like Eifel it also prevents growth of rto,
590 * but also it limits too fast rto decreases,
591 * happening in pure Eifel.
592 */
593 if (m > 0)
594 m >>= 3;
595 } else {
596 m -= (tp->mdev >> 2); /* similar update on mdev */
597 }
598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
599 if (tp->mdev > tp->mdev_max) {
600 tp->mdev_max = tp->mdev;
601 if (tp->mdev_max > tp->rttvar)
602 tp->rttvar = tp->mdev_max;
603 }
604 if (after(tp->snd_una, tp->rtt_seq)) {
605 if (tp->mdev_max < tp->rttvar)
606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 tp->rtt_seq = tp->snd_nxt;
608 tp->mdev_max = TCP_RTO_MIN;
609 }
610 } else {
611 /* no previous measure. */
612 tp->srtt = m<<3; /* take the measured time to be rtt */
613 tp->mdev = m<<1; /* make sure rto = 3*rtt */
614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 tp->rtt_seq = tp->snd_nxt;
616 }
1da177e4
LT
617}
618
619/* Calculate rto without backoff. This is the second half of Van Jacobson's
620 * routine referred to above.
621 */
463c84b9 622static inline void tcp_set_rto(struct sock *sk)
1da177e4 623{
463c84b9 624 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
625 /* Old crap is replaced with new one. 8)
626 *
627 * More seriously:
628 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 * It cannot be less due to utterly erratic ACK generation made
630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 * to do with delayed acks, because at cwnd>2 true delack timeout
632 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 633 * ACKs in some circumstances.
1da177e4 634 */
463c84b9 635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
636
637 /* 2. Fixups made earlier cannot be right.
638 * If we do not estimate RTO correctly without them,
639 * all the algo is pure shit and should be replaced
caa20d9a 640 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
641 */
642}
643
644/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645 * guarantees that rto is higher.
646 */
463c84b9 647static inline void tcp_bound_rto(struct sock *sk)
1da177e4 648{
463c84b9
ACM
649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
651}
652
653/* Save metrics learned by this TCP session.
654 This function is called only, when TCP finishes successfully
655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656 */
657void tcp_update_metrics(struct sock *sk)
658{
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct dst_entry *dst = __sk_dst_get(sk);
661
662 if (sysctl_tcp_nometrics_save)
663 return;
664
665 dst_confirm(dst);
666
667 if (dst && (dst->flags&DST_HOST)) {
6687e988 668 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
669 int m;
670
6687e988 671 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
672 /* This session failed to estimate rtt. Why?
673 * Probably, no packets returned in time.
674 * Reset our results.
675 */
676 if (!(dst_metric_locked(dst, RTAX_RTT)))
677 dst->metrics[RTAX_RTT-1] = 0;
678 return;
679 }
680
681 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682
683 /* If newly calculated rtt larger than stored one,
684 * store new one. Otherwise, use EWMA. Remember,
685 * rtt overestimation is always better than underestimation.
686 */
687 if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 if (m <= 0)
689 dst->metrics[RTAX_RTT-1] = tp->srtt;
690 else
691 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 }
693
694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 if (m < 0)
696 m = -m;
697
698 /* Scale deviation to rttvar fixed point */
699 m >>= 1;
700 if (m < tp->mdev)
701 m = tp->mdev;
702
703 if (m >= dst_metric(dst, RTAX_RTTVAR))
704 dst->metrics[RTAX_RTTVAR-1] = m;
705 else
706 dst->metrics[RTAX_RTTVAR-1] -=
707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 }
709
710 if (tp->snd_ssthresh >= 0xFFFF) {
711 /* Slow start still did not finish. */
712 if (dst_metric(dst, RTAX_SSTHRESH) &&
713 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 if (!dst_metric_locked(dst, RTAX_CWND) &&
717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 720 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
721 /* Cong. avoidance phase, cwnd is reliable. */
722 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] =
724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 if (!dst_metric_locked(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 } else {
728 /* Else slow start did not finish, cwnd is non-sense,
729 ssthresh may be also invalid.
730 */
731 if (!dst_metric_locked(dst, RTAX_CWND))
732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 if (dst->metrics[RTAX_SSTHRESH-1] &&
734 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 }
738
739 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 tp->reordering != sysctl_tcp_reordering)
742 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 }
744 }
745}
746
747/* Numbers are taken from RFC2414. */
748__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749{
750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751
752 if (!cwnd) {
c1b4a7e6 753 if (tp->mss_cache > 1460)
1da177e4
LT
754 cwnd = 2;
755 else
c1b4a7e6 756 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
757 }
758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759}
760
40efc6fa
SH
761/* Set slow start threshold and cwnd not falling to slow start */
762void tcp_enter_cwr(struct sock *sk)
763{
764 struct tcp_sock *tp = tcp_sk(sk);
765
766 tp->prior_ssthresh = 0;
767 tp->bytes_acked = 0;
768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 tp->undo_marker = 0;
770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 tp->snd_cwnd = min(tp->snd_cwnd,
772 tcp_packets_in_flight(tp) + 1U);
773 tp->snd_cwnd_cnt = 0;
774 tp->high_seq = tp->snd_nxt;
775 tp->snd_cwnd_stamp = tcp_time_stamp;
776 TCP_ECN_queue_cwr(tp);
777
778 tcp_set_ca_state(sk, TCP_CA_CWR);
779 }
780}
781
1da177e4
LT
782/* Initialize metrics on socket. */
783
784static void tcp_init_metrics(struct sock *sk)
785{
786 struct tcp_sock *tp = tcp_sk(sk);
787 struct dst_entry *dst = __sk_dst_get(sk);
788
789 if (dst == NULL)
790 goto reset;
791
792 dst_confirm(dst);
793
794 if (dst_metric_locked(dst, RTAX_CWND))
795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 if (dst_metric(dst, RTAX_SSTHRESH)) {
797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 }
801 if (dst_metric(dst, RTAX_REORDERING) &&
802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 tp->rx_opt.sack_ok &= ~2;
804 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 }
806
807 if (dst_metric(dst, RTAX_RTT) == 0)
808 goto reset;
809
810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 goto reset;
812
813 /* Initial rtt is determined from SYN,SYN-ACK.
814 * The segment is small and rtt may appear much
815 * less than real one. Use per-dst memory
816 * to make it more realistic.
817 *
818 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 819 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
820 * packets force peer to delay ACKs and calculation is correct too.
821 * The algorithm is adaptive and, provided we follow specs, it
822 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 * tricks sort of "quick acks" for time long enough to decrease RTT
824 * to low value, and then abruptly stops to do it and starts to delay
825 * ACKs, wait for troubles.
826 */
827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 tp->srtt = dst_metric(dst, RTAX_RTT);
829 tp->rtt_seq = tp->snd_nxt;
830 }
831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 }
463c84b9
ACM
835 tcp_set_rto(sk);
836 tcp_bound_rto(sk);
837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
838 goto reset;
839 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 return;
842
843reset:
844 /* Play conservative. If timestamps are not
845 * supported, TCP will fail to recalculate correct
846 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 */
848 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 tp->srtt = 0;
850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
852 }
853}
854
6687e988
ACM
855static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
1da177e4 857{
6687e988 858 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
859 if (metric > tp->reordering) {
860 tp->reordering = min(TCP_MAX_REORDERING, metric);
861
862 /* This exciting event is worth to be remembered. 8) */
863 if (ts)
864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 else if (IsReno(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 else if (IsFack(tp))
868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 else
870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871#if FASTRETRANS_DEBUG > 1
872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878#endif
879 /* Disable FACK yet. */
880 tp->rx_opt.sack_ok &= ~2;
881 }
882}
883
884/* This procedure tags the retransmission queue when SACKs arrive.
885 *
886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887 * Packets in queue with these bits set are counted in variables
888 * sacked_out, retrans_out and lost_out, correspondingly.
889 *
890 * Valid combinations are:
891 * Tag InFlight Description
892 * 0 1 - orig segment is in flight.
893 * S 0 - nothing flies, orig reached receiver.
894 * L 0 - nothing flies, orig lost by net.
895 * R 2 - both orig and retransmit are in flight.
896 * L|R 1 - orig is lost, retransmit is in flight.
897 * S|R 1 - orig reached receiver, retrans is still in flight.
898 * (L|S|R is logically valid, it could occur when L|R is sacked,
899 * but it is equivalent to plain S and code short-curcuits it to S.
900 * L|S is logically invalid, it would mean -1 packet in flight 8))
901 *
902 * These 6 states form finite state machine, controlled by the following events:
903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905 * 3. Loss detection event of one of three flavors:
906 * A. Scoreboard estimator decided the packet is lost.
907 * A'. Reno "three dupacks" marks head of queue lost.
908 * A''. Its FACK modfication, head until snd.fack is lost.
909 * B. SACK arrives sacking data transmitted after never retransmitted
910 * hole was sent out.
911 * C. SACK arrives sacking SND.NXT at the moment, when the
912 * segment was retransmitted.
913 * 4. D-SACK added new rule: D-SACK changes any tag to S.
914 *
915 * It is pleasant to note, that state diagram turns out to be commutative,
916 * so that we are allowed not to be bothered by order of our actions,
917 * when multiple events arrive simultaneously. (see the function below).
918 *
919 * Reordering detection.
920 * --------------------
921 * Reordering metric is maximal distance, which a packet can be displaced
922 * in packet stream. With SACKs we can estimate it:
923 *
924 * 1. SACK fills old hole and the corresponding segment was not
925 * ever retransmitted -> reordering. Alas, we cannot use it
926 * when segment was retransmitted.
927 * 2. The last flaw is solved with D-SACK. D-SACK arrives
928 * for retransmitted and already SACKed segment -> reordering..
929 * Both of these heuristics are not used in Loss state, when we cannot
930 * account for retransmits accurately.
931 */
932static int
933tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934{
6687e988 935 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
936 struct tcp_sock *tp = tcp_sk(sk);
937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
269bd27e 938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 939 struct sk_buff *cached_skb;
1da177e4
LT
940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 int reord = tp->packets_out;
942 int prior_fackets;
943 u32 lost_retrans = 0;
944 int flag = 0;
6a438bbe 945 int dup_sack = 0;
fda03fbb 946 int cached_fack_count;
1da177e4 947 int i;
fda03fbb 948 int first_sack_index;
1da177e4 949
1da177e4
LT
950 if (!tp->sacked_out)
951 tp->fackets_out = 0;
952 prior_fackets = tp->fackets_out;
953
6a438bbe
SH
954 /* SACK fastpath:
955 * if the only SACK change is the increase of the end_seq of
956 * the first block then only apply that SACK block
957 * and use retrans queue hinting otherwise slowpath */
958 flag = 1;
959 for (i = 0; i< num_sacks; i++) {
960 __u32 start_seq = ntohl(sp[i].start_seq);
961 __u32 end_seq = ntohl(sp[i].end_seq);
962
963 if (i == 0){
964 if (tp->recv_sack_cache[i].start_seq != start_seq)
965 flag = 0;
966 } else {
967 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
968 (tp->recv_sack_cache[i].end_seq != end_seq))
969 flag = 0;
970 }
971 tp->recv_sack_cache[i].start_seq = start_seq;
972 tp->recv_sack_cache[i].end_seq = end_seq;
1da177e4
LT
973
974 /* Check for D-SACK. */
975 if (i == 0) {
976 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
977
978 if (before(start_seq, ack)) {
979 dup_sack = 1;
980 tp->rx_opt.sack_ok |= 4;
981 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
982 } else if (num_sacks > 1 &&
983 !after(end_seq, ntohl(sp[1].end_seq)) &&
984 !before(start_seq, ntohl(sp[1].start_seq))) {
985 dup_sack = 1;
986 tp->rx_opt.sack_ok |= 4;
987 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
988 }
989
990 /* D-SACK for already forgotten data...
991 * Do dumb counting. */
992 if (dup_sack &&
993 !after(end_seq, prior_snd_una) &&
994 after(end_seq, tp->undo_marker))
995 tp->undo_retrans--;
996
997 /* Eliminate too old ACKs, but take into
998 * account more or less fresh ones, they can
999 * contain valid SACK info.
1000 */
1001 if (before(ack, prior_snd_una - tp->max_window))
1002 return 0;
1003 }
6a438bbe
SH
1004 }
1005
fda03fbb 1006 first_sack_index = 0;
6a438bbe
SH
1007 if (flag)
1008 num_sacks = 1;
1009 else {
1010 int j;
1011 tp->fastpath_skb_hint = NULL;
1012
1013 /* order SACK blocks to allow in order walk of the retrans queue */
1014 for (i = num_sacks-1; i > 0; i--) {
1015 for (j = 0; j < i; j++){
1016 if (after(ntohl(sp[j].start_seq),
1017 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1018 struct tcp_sack_block_wire tmp;
1019
1020 tmp = sp[j];
1021 sp[j] = sp[j+1];
1022 sp[j+1] = tmp;
fda03fbb
BE
1023
1024 /* Track where the first SACK block goes to */
1025 if (j == first_sack_index)
1026 first_sack_index = j+1;
6a438bbe
SH
1027 }
1028
1029 }
1030 }
1031 }
1032
1033 /* clear flag as used for different purpose in following code */
1034 flag = 0;
1035
fda03fbb
BE
1036 /* Use SACK fastpath hint if valid */
1037 cached_skb = tp->fastpath_skb_hint;
1038 cached_fack_count = tp->fastpath_cnt_hint;
1039 if (!cached_skb) {
1040 cached_skb = sk->sk_write_queue.next;
1041 cached_fack_count = 0;
1042 }
1043
6a438bbe
SH
1044 for (i=0; i<num_sacks; i++, sp++) {
1045 struct sk_buff *skb;
1046 __u32 start_seq = ntohl(sp->start_seq);
1047 __u32 end_seq = ntohl(sp->end_seq);
1048 int fack_count;
1049
fda03fbb
BE
1050 skb = cached_skb;
1051 fack_count = cached_fack_count;
1da177e4
LT
1052
1053 /* Event "B" in the comment above. */
1054 if (after(end_seq, tp->high_seq))
1055 flag |= FLAG_DATA_LOST;
1056
6a438bbe 1057 sk_stream_for_retrans_queue_from(skb, sk) {
6475be16
DM
1058 int in_sack, pcount;
1059 u8 sacked;
1da177e4 1060
fda03fbb
BE
1061 cached_skb = skb;
1062 cached_fack_count = fack_count;
1063 if (i == first_sack_index) {
1064 tp->fastpath_skb_hint = skb;
1065 tp->fastpath_cnt_hint = fack_count;
1066 }
6a438bbe 1067
1da177e4
LT
1068 /* The retransmission queue is always in order, so
1069 * we can short-circuit the walk early.
1070 */
6475be16 1071 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1072 break;
1073
3c05d92e
HX
1074 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1075 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1076
6475be16
DM
1077 pcount = tcp_skb_pcount(skb);
1078
3c05d92e
HX
1079 if (pcount > 1 && !in_sack &&
1080 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1081 unsigned int pkt_len;
1082
3c05d92e
HX
1083 in_sack = !after(start_seq,
1084 TCP_SKB_CB(skb)->seq);
1085
1086 if (!in_sack)
6475be16
DM
1087 pkt_len = (start_seq -
1088 TCP_SKB_CB(skb)->seq);
1089 else
1090 pkt_len = (end_seq -
1091 TCP_SKB_CB(skb)->seq);
7967168c 1092 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1093 break;
1094 pcount = tcp_skb_pcount(skb);
1095 }
1096
1097 fack_count += pcount;
1da177e4 1098
6475be16
DM
1099 sacked = TCP_SKB_CB(skb)->sacked;
1100
1da177e4
LT
1101 /* Account D-SACK for retransmitted packet. */
1102 if ((dup_sack && in_sack) &&
1103 (sacked & TCPCB_RETRANS) &&
1104 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1105 tp->undo_retrans--;
1106
1107 /* The frame is ACKed. */
1108 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1109 if (sacked&TCPCB_RETRANS) {
1110 if ((dup_sack && in_sack) &&
1111 (sacked&TCPCB_SACKED_ACKED))
1112 reord = min(fack_count, reord);
1113 } else {
1114 /* If it was in a hole, we detected reordering. */
1115 if (fack_count < prior_fackets &&
1116 !(sacked&TCPCB_SACKED_ACKED))
1117 reord = min(fack_count, reord);
1118 }
1119
1120 /* Nothing to do; acked frame is about to be dropped. */
1121 continue;
1122 }
1123
1124 if ((sacked&TCPCB_SACKED_RETRANS) &&
1125 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1126 (!lost_retrans || after(end_seq, lost_retrans)))
1127 lost_retrans = end_seq;
1128
1129 if (!in_sack)
1130 continue;
1131
1132 if (!(sacked&TCPCB_SACKED_ACKED)) {
1133 if (sacked & TCPCB_SACKED_RETRANS) {
1134 /* If the segment is not tagged as lost,
1135 * we do not clear RETRANS, believing
1136 * that retransmission is still in flight.
1137 */
1138 if (sacked & TCPCB_LOST) {
1139 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1140 tp->lost_out -= tcp_skb_pcount(skb);
1141 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1142
1143 /* clear lost hint */
1144 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1145 }
1146 } else {
1147 /* New sack for not retransmitted frame,
1148 * which was in hole. It is reordering.
1149 */
1150 if (!(sacked & TCPCB_RETRANS) &&
1151 fack_count < prior_fackets)
1152 reord = min(fack_count, reord);
1153
1154 if (sacked & TCPCB_LOST) {
1155 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1156 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1157
1158 /* clear lost hint */
1159 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1160 }
1161 }
1162
1163 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1164 flag |= FLAG_DATA_SACKED;
1165 tp->sacked_out += tcp_skb_pcount(skb);
1166
1167 if (fack_count > tp->fackets_out)
1168 tp->fackets_out = fack_count;
1169 } else {
1170 if (dup_sack && (sacked&TCPCB_RETRANS))
1171 reord = min(fack_count, reord);
1172 }
1173
1174 /* D-SACK. We can detect redundant retransmission
1175 * in S|R and plain R frames and clear it.
1176 * undo_retrans is decreased above, L|R frames
1177 * are accounted above as well.
1178 */
1179 if (dup_sack &&
1180 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1181 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1182 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1183 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1184 }
1185 }
1186 }
1187
1188 /* Check for lost retransmit. This superb idea is
1189 * borrowed from "ratehalving". Event "C".
1190 * Later note: FACK people cheated me again 8),
1191 * we have to account for reordering! Ugly,
1192 * but should help.
1193 */
6687e988 1194 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1195 struct sk_buff *skb;
1196
1197 sk_stream_for_retrans_queue(skb, sk) {
1198 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1199 break;
1200 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1201 continue;
1202 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1203 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1204 (IsFack(tp) ||
1205 !before(lost_retrans,
1206 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1207 tp->mss_cache))) {
1da177e4
LT
1208 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1209 tp->retrans_out -= tcp_skb_pcount(skb);
1210
6a438bbe
SH
1211 /* clear lost hint */
1212 tp->retransmit_skb_hint = NULL;
1213
1da177e4
LT
1214 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1215 tp->lost_out += tcp_skb_pcount(skb);
1216 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1217 flag |= FLAG_DATA_SACKED;
1218 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1219 }
1220 }
1221 }
1222 }
1223
1224 tp->left_out = tp->sacked_out + tp->lost_out;
1225
6687e988
ACM
1226 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1227 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1228
1229#if FASTRETRANS_DEBUG > 0
1230 BUG_TRAP((int)tp->sacked_out >= 0);
1231 BUG_TRAP((int)tp->lost_out >= 0);
1232 BUG_TRAP((int)tp->retrans_out >= 0);
1233 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1234#endif
1235 return flag;
1236}
1237
1238/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1239 * segments to see from the next ACKs whether any data was really missing.
1240 * If the RTO was spurious, new ACKs should arrive.
1241 */
1242void tcp_enter_frto(struct sock *sk)
1243{
6687e988 1244 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1245 struct tcp_sock *tp = tcp_sk(sk);
1246 struct sk_buff *skb;
1247
1248 tp->frto_counter = 1;
1249
6687e988 1250 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1da177e4 1251 tp->snd_una == tp->high_seq ||
6687e988
ACM
1252 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1253 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1254 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1255 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1256 }
1257
1258 /* Have to clear retransmission markers here to keep the bookkeeping
1259 * in shape, even though we are not yet in Loss state.
1260 * If something was really lost, it is eventually caught up
1261 * in tcp_enter_frto_loss.
1262 */
1263 tp->retrans_out = 0;
1264 tp->undo_marker = tp->snd_una;
1265 tp->undo_retrans = 0;
1266
1267 sk_stream_for_retrans_queue(skb, sk) {
1268 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1269 }
1270 tcp_sync_left_out(tp);
1271
6687e988 1272 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1273 tp->frto_highmark = tp->snd_nxt;
1274}
1275
1276/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1277 * which indicates that we should follow the traditional RTO recovery,
1278 * i.e. mark everything lost and do go-back-N retransmission.
1279 */
1280static void tcp_enter_frto_loss(struct sock *sk)
1281{
1282 struct tcp_sock *tp = tcp_sk(sk);
1283 struct sk_buff *skb;
1284 int cnt = 0;
1285
1286 tp->sacked_out = 0;
1287 tp->lost_out = 0;
1288 tp->fackets_out = 0;
1289
1290 sk_stream_for_retrans_queue(skb, sk) {
1291 cnt += tcp_skb_pcount(skb);
1292 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1293 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1294
1295 /* Do not mark those segments lost that were
1296 * forward transmitted after RTO
1297 */
1298 if (!after(TCP_SKB_CB(skb)->end_seq,
1299 tp->frto_highmark)) {
1300 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1301 tp->lost_out += tcp_skb_pcount(skb);
1302 }
1303 } else {
1304 tp->sacked_out += tcp_skb_pcount(skb);
1305 tp->fackets_out = cnt;
1306 }
1307 }
1308 tcp_sync_left_out(tp);
1309
1310 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1311 tp->snd_cwnd_cnt = 0;
1312 tp->snd_cwnd_stamp = tcp_time_stamp;
1313 tp->undo_marker = 0;
1314 tp->frto_counter = 0;
1315
1316 tp->reordering = min_t(unsigned int, tp->reordering,
1317 sysctl_tcp_reordering);
6687e988 1318 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1319 tp->high_seq = tp->frto_highmark;
1320 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1321
1322 clear_all_retrans_hints(tp);
1da177e4
LT
1323}
1324
1325void tcp_clear_retrans(struct tcp_sock *tp)
1326{
1327 tp->left_out = 0;
1328 tp->retrans_out = 0;
1329
1330 tp->fackets_out = 0;
1331 tp->sacked_out = 0;
1332 tp->lost_out = 0;
1333
1334 tp->undo_marker = 0;
1335 tp->undo_retrans = 0;
1336}
1337
1338/* Enter Loss state. If "how" is not zero, forget all SACK information
1339 * and reset tags completely, otherwise preserve SACKs. If receiver
1340 * dropped its ofo queue, we will know this due to reneging detection.
1341 */
1342void tcp_enter_loss(struct sock *sk, int how)
1343{
6687e988 1344 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1345 struct tcp_sock *tp = tcp_sk(sk);
1346 struct sk_buff *skb;
1347 int cnt = 0;
1348
1349 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1350 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1351 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1352 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1353 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1354 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1355 }
1356 tp->snd_cwnd = 1;
1357 tp->snd_cwnd_cnt = 0;
1358 tp->snd_cwnd_stamp = tcp_time_stamp;
1359
9772efb9 1360 tp->bytes_acked = 0;
1da177e4
LT
1361 tcp_clear_retrans(tp);
1362
1363 /* Push undo marker, if it was plain RTO and nothing
1364 * was retransmitted. */
1365 if (!how)
1366 tp->undo_marker = tp->snd_una;
1367
1368 sk_stream_for_retrans_queue(skb, sk) {
1369 cnt += tcp_skb_pcount(skb);
1370 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1371 tp->undo_marker = 0;
1372 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1373 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1374 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1375 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1376 tp->lost_out += tcp_skb_pcount(skb);
1377 } else {
1378 tp->sacked_out += tcp_skb_pcount(skb);
1379 tp->fackets_out = cnt;
1380 }
1381 }
1382 tcp_sync_left_out(tp);
1383
1384 tp->reordering = min_t(unsigned int, tp->reordering,
1385 sysctl_tcp_reordering);
6687e988 1386 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1387 tp->high_seq = tp->snd_nxt;
1388 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1389
1390 clear_all_retrans_hints(tp);
1da177e4
LT
1391}
1392
463c84b9 1393static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1394{
1395 struct sk_buff *skb;
1396
1397 /* If ACK arrived pointing to a remembered SACK,
1398 * it means that our remembered SACKs do not reflect
1399 * real state of receiver i.e.
1400 * receiver _host_ is heavily congested (or buggy).
1401 * Do processing similar to RTO timeout.
1402 */
1403 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1404 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1405 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1406 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1407
1408 tcp_enter_loss(sk, 1);
6687e988 1409 icsk->icsk_retransmits++;
1da177e4 1410 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
463c84b9 1411 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1412 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1413 return 1;
1414 }
1415 return 0;
1416}
1417
1418static inline int tcp_fackets_out(struct tcp_sock *tp)
1419{
1420 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1421}
1422
463c84b9 1423static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1424{
463c84b9 1425 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1426}
1427
1428static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1429{
1430 return tp->packets_out &&
463c84b9 1431 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1da177e4
LT
1432}
1433
1434/* Linux NewReno/SACK/FACK/ECN state machine.
1435 * --------------------------------------
1436 *
1437 * "Open" Normal state, no dubious events, fast path.
1438 * "Disorder" In all the respects it is "Open",
1439 * but requires a bit more attention. It is entered when
1440 * we see some SACKs or dupacks. It is split of "Open"
1441 * mainly to move some processing from fast path to slow one.
1442 * "CWR" CWND was reduced due to some Congestion Notification event.
1443 * It can be ECN, ICMP source quench, local device congestion.
1444 * "Recovery" CWND was reduced, we are fast-retransmitting.
1445 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1446 *
1447 * tcp_fastretrans_alert() is entered:
1448 * - each incoming ACK, if state is not "Open"
1449 * - when arrived ACK is unusual, namely:
1450 * * SACK
1451 * * Duplicate ACK.
1452 * * ECN ECE.
1453 *
1454 * Counting packets in flight is pretty simple.
1455 *
1456 * in_flight = packets_out - left_out + retrans_out
1457 *
1458 * packets_out is SND.NXT-SND.UNA counted in packets.
1459 *
1460 * retrans_out is number of retransmitted segments.
1461 *
1462 * left_out is number of segments left network, but not ACKed yet.
1463 *
1464 * left_out = sacked_out + lost_out
1465 *
1466 * sacked_out: Packets, which arrived to receiver out of order
1467 * and hence not ACKed. With SACKs this number is simply
1468 * amount of SACKed data. Even without SACKs
1469 * it is easy to give pretty reliable estimate of this number,
1470 * counting duplicate ACKs.
1471 *
1472 * lost_out: Packets lost by network. TCP has no explicit
1473 * "loss notification" feedback from network (for now).
1474 * It means that this number can be only _guessed_.
1475 * Actually, it is the heuristics to predict lossage that
1476 * distinguishes different algorithms.
1477 *
1478 * F.e. after RTO, when all the queue is considered as lost,
1479 * lost_out = packets_out and in_flight = retrans_out.
1480 *
1481 * Essentially, we have now two algorithms counting
1482 * lost packets.
1483 *
1484 * FACK: It is the simplest heuristics. As soon as we decided
1485 * that something is lost, we decide that _all_ not SACKed
1486 * packets until the most forward SACK are lost. I.e.
1487 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1488 * It is absolutely correct estimate, if network does not reorder
1489 * packets. And it loses any connection to reality when reordering
1490 * takes place. We use FACK by default until reordering
1491 * is suspected on the path to this destination.
1492 *
1493 * NewReno: when Recovery is entered, we assume that one segment
1494 * is lost (classic Reno). While we are in Recovery and
1495 * a partial ACK arrives, we assume that one more packet
1496 * is lost (NewReno). This heuristics are the same in NewReno
1497 * and SACK.
1498 *
1499 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1500 * deflation etc. CWND is real congestion window, never inflated, changes
1501 * only according to classic VJ rules.
1502 *
1503 * Really tricky (and requiring careful tuning) part of algorithm
1504 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1505 * The first determines the moment _when_ we should reduce CWND and,
1506 * hence, slow down forward transmission. In fact, it determines the moment
1507 * when we decide that hole is caused by loss, rather than by a reorder.
1508 *
1509 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1510 * holes, caused by lost packets.
1511 *
1512 * And the most logically complicated part of algorithm is undo
1513 * heuristics. We detect false retransmits due to both too early
1514 * fast retransmit (reordering) and underestimated RTO, analyzing
1515 * timestamps and D-SACKs. When we detect that some segments were
1516 * retransmitted by mistake and CWND reduction was wrong, we undo
1517 * window reduction and abort recovery phase. This logic is hidden
1518 * inside several functions named tcp_try_undo_<something>.
1519 */
1520
1521/* This function decides, when we should leave Disordered state
1522 * and enter Recovery phase, reducing congestion window.
1523 *
1524 * Main question: may we further continue forward transmission
1525 * with the same cwnd?
1526 */
1527static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1528{
1529 __u32 packets_out;
1530
1531 /* Trick#1: The loss is proven. */
1532 if (tp->lost_out)
1533 return 1;
1534
1535 /* Not-A-Trick#2 : Classic rule... */
1536 if (tcp_fackets_out(tp) > tp->reordering)
1537 return 1;
1538
1539 /* Trick#3 : when we use RFC2988 timer restart, fast
1540 * retransmit can be triggered by timeout of queue head.
1541 */
1542 if (tcp_head_timedout(sk, tp))
1543 return 1;
1544
1545 /* Trick#4: It is still not OK... But will it be useful to delay
1546 * recovery more?
1547 */
1548 packets_out = tp->packets_out;
1549 if (packets_out <= tp->reordering &&
1550 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1551 !tcp_may_send_now(sk, tp)) {
1552 /* We have nothing to send. This connection is limited
1553 * either by receiver window or by application.
1554 */
1555 return 1;
1556 }
1557
1558 return 0;
1559}
1560
1561/* If we receive more dupacks than we expected counting segments
1562 * in assumption of absent reordering, interpret this as reordering.
1563 * The only another reason could be bug in receiver TCP.
1564 */
6687e988 1565static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1566{
6687e988 1567 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1568 u32 holes;
1569
1570 holes = max(tp->lost_out, 1U);
1571 holes = min(holes, tp->packets_out);
1572
1573 if ((tp->sacked_out + holes) > tp->packets_out) {
1574 tp->sacked_out = tp->packets_out - holes;
6687e988 1575 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1576 }
1577}
1578
1579/* Emulate SACKs for SACKless connection: account for a new dupack. */
1580
6687e988 1581static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1582{
6687e988 1583 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1584 tp->sacked_out++;
6687e988 1585 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1586 tcp_sync_left_out(tp);
1587}
1588
1589/* Account for ACK, ACKing some data in Reno Recovery phase. */
1590
1591static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1592{
1593 if (acked > 0) {
1594 /* One ACK acked hole. The rest eat duplicate ACKs. */
1595 if (acked-1 >= tp->sacked_out)
1596 tp->sacked_out = 0;
1597 else
1598 tp->sacked_out -= acked-1;
1599 }
6687e988 1600 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1601 tcp_sync_left_out(tp);
1602}
1603
1604static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1605{
1606 tp->sacked_out = 0;
1607 tp->left_out = tp->lost_out;
1608}
1609
1610/* Mark head of queue up as lost. */
1611static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1612 int packets, u32 high_seq)
1613{
1614 struct sk_buff *skb;
6a438bbe 1615 int cnt;
1da177e4 1616
6a438bbe
SH
1617 BUG_TRAP(packets <= tp->packets_out);
1618 if (tp->lost_skb_hint) {
1619 skb = tp->lost_skb_hint;
1620 cnt = tp->lost_cnt_hint;
1621 } else {
1622 skb = sk->sk_write_queue.next;
1623 cnt = 0;
1624 }
1da177e4 1625
6a438bbe
SH
1626 sk_stream_for_retrans_queue_from(skb, sk) {
1627 /* TODO: do this better */
1628 /* this is not the most efficient way to do this... */
1629 tp->lost_skb_hint = skb;
1630 tp->lost_cnt_hint = cnt;
1631 cnt += tcp_skb_pcount(skb);
1632 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1633 break;
1634 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1635 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1636 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1637
1638 /* clear xmit_retransmit_queue hints
1639 * if this is beyond hint */
1640 if(tp->retransmit_skb_hint != NULL &&
1641 before(TCP_SKB_CB(skb)->seq,
1642 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1643
1644 tp->retransmit_skb_hint = NULL;
1645 }
1da177e4
LT
1646 }
1647 }
1648 tcp_sync_left_out(tp);
1649}
1650
1651/* Account newly detected lost packet(s) */
1652
1653static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1654{
1655 if (IsFack(tp)) {
1656 int lost = tp->fackets_out - tp->reordering;
1657 if (lost <= 0)
1658 lost = 1;
1659 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1660 } else {
1661 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1662 }
1663
1664 /* New heuristics: it is possible only after we switched
1665 * to restart timer each time when something is ACKed.
1666 * Hence, we can detect timed out packets during fast
1667 * retransmit without falling to slow start.
1668 */
79320d7e 1669 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1da177e4
LT
1670 struct sk_buff *skb;
1671
6a438bbe
SH
1672 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1673 : sk->sk_write_queue.next;
1674
1675 sk_stream_for_retrans_queue_from(skb, sk) {
1676 if (!tcp_skb_timedout(sk, skb))
1677 break;
1678
1679 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1680 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1681 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1682
1683 /* clear xmit_retrans hint */
1684 if (tp->retransmit_skb_hint &&
1685 before(TCP_SKB_CB(skb)->seq,
1686 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1687
1688 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1689 }
1690 }
6a438bbe
SH
1691
1692 tp->scoreboard_skb_hint = skb;
1693
1da177e4
LT
1694 tcp_sync_left_out(tp);
1695 }
1696}
1697
1698/* CWND moderation, preventing bursts due to too big ACKs
1699 * in dubious situations.
1700 */
1701static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1702{
1703 tp->snd_cwnd = min(tp->snd_cwnd,
1704 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1705 tp->snd_cwnd_stamp = tcp_time_stamp;
1706}
1707
72dc5b92
SH
1708/* Lower bound on congestion window is slow start threshold
1709 * unless congestion avoidance choice decides to overide it.
1710 */
1711static inline u32 tcp_cwnd_min(const struct sock *sk)
1712{
1713 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1714
1715 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1716}
1717
1da177e4 1718/* Decrease cwnd each second ack. */
6687e988 1719static void tcp_cwnd_down(struct sock *sk)
1da177e4 1720{
6687e988 1721 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1722 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1723
1724 tp->snd_cwnd_cnt = decr&1;
1725 decr >>= 1;
1726
72dc5b92 1727 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1da177e4
LT
1728 tp->snd_cwnd -= decr;
1729
1730 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1731 tp->snd_cwnd_stamp = tcp_time_stamp;
1732}
1733
1734/* Nothing was retransmitted or returned timestamp is less
1735 * than timestamp of the first retransmission.
1736 */
1737static inline int tcp_packet_delayed(struct tcp_sock *tp)
1738{
1739 return !tp->retrans_stamp ||
1740 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1741 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1742}
1743
1744/* Undo procedures. */
1745
1746#if FASTRETRANS_DEBUG > 1
1747static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1748{
1749 struct inet_sock *inet = inet_sk(sk);
1750 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1751 msg,
1752 NIPQUAD(inet->daddr), ntohs(inet->dport),
1753 tp->snd_cwnd, tp->left_out,
1754 tp->snd_ssthresh, tp->prior_ssthresh,
1755 tp->packets_out);
1756}
1757#else
1758#define DBGUNDO(x...) do { } while (0)
1759#endif
1760
6687e988 1761static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1762{
6687e988
ACM
1763 struct tcp_sock *tp = tcp_sk(sk);
1764
1da177e4 1765 if (tp->prior_ssthresh) {
6687e988
ACM
1766 const struct inet_connection_sock *icsk = inet_csk(sk);
1767
1768 if (icsk->icsk_ca_ops->undo_cwnd)
1769 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1770 else
1771 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1772
1773 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1774 tp->snd_ssthresh = tp->prior_ssthresh;
1775 TCP_ECN_withdraw_cwr(tp);
1776 }
1777 } else {
1778 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1779 }
1780 tcp_moderate_cwnd(tp);
1781 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1782
1783 /* There is something screwy going on with the retrans hints after
1784 an undo */
1785 clear_all_retrans_hints(tp);
1da177e4
LT
1786}
1787
1788static inline int tcp_may_undo(struct tcp_sock *tp)
1789{
1790 return tp->undo_marker &&
1791 (!tp->undo_retrans || tcp_packet_delayed(tp));
1792}
1793
1794/* People celebrate: "We love our President!" */
1795static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1796{
1797 if (tcp_may_undo(tp)) {
1798 /* Happy end! We did not retransmit anything
1799 * or our original transmission succeeded.
1800 */
6687e988
ACM
1801 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1802 tcp_undo_cwr(sk, 1);
1803 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1804 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1805 else
1806 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1807 tp->undo_marker = 0;
1808 }
1809 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1810 /* Hold old state until something *above* high_seq
1811 * is ACKed. For Reno it is MUST to prevent false
1812 * fast retransmits (RFC2582). SACK TCP is safe. */
1813 tcp_moderate_cwnd(tp);
1814 return 1;
1815 }
6687e988 1816 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1817 return 0;
1818}
1819
1820/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1821static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1822{
1823 if (tp->undo_marker && !tp->undo_retrans) {
1824 DBGUNDO(sk, tp, "D-SACK");
6687e988 1825 tcp_undo_cwr(sk, 1);
1da177e4
LT
1826 tp->undo_marker = 0;
1827 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1828 }
1829}
1830
1831/* Undo during fast recovery after partial ACK. */
1832
1833static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1834 int acked)
1835{
1836 /* Partial ACK arrived. Force Hoe's retransmit. */
1837 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1838
1839 if (tcp_may_undo(tp)) {
1840 /* Plain luck! Hole if filled with delayed
1841 * packet, rather than with a retransmit.
1842 */
1843 if (tp->retrans_out == 0)
1844 tp->retrans_stamp = 0;
1845
6687e988 1846 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4
LT
1847
1848 DBGUNDO(sk, tp, "Hoe");
6687e988 1849 tcp_undo_cwr(sk, 0);
1da177e4
LT
1850 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1851
1852 /* So... Do not make Hoe's retransmit yet.
1853 * If the first packet was delayed, the rest
1854 * ones are most probably delayed as well.
1855 */
1856 failed = 0;
1857 }
1858 return failed;
1859}
1860
1861/* Undo during loss recovery after partial ACK. */
1862static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1863{
1864 if (tcp_may_undo(tp)) {
1865 struct sk_buff *skb;
1866 sk_stream_for_retrans_queue(skb, sk) {
1867 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1868 }
6a438bbe
SH
1869
1870 clear_all_retrans_hints(tp);
1871
1da177e4
LT
1872 DBGUNDO(sk, tp, "partial loss");
1873 tp->lost_out = 0;
1874 tp->left_out = tp->sacked_out;
6687e988 1875 tcp_undo_cwr(sk, 1);
1da177e4 1876 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 1877 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1878 tp->undo_marker = 0;
1879 if (!IsReno(tp))
6687e988 1880 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1881 return 1;
1882 }
1883 return 0;
1884}
1885
6687e988 1886static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 1887{
6687e988 1888 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 1889 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 1890 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 1891 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
1892}
1893
1894static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1895{
1896 tp->left_out = tp->sacked_out;
1897
1898 if (tp->retrans_out == 0)
1899 tp->retrans_stamp = 0;
1900
1901 if (flag&FLAG_ECE)
6687e988 1902 tcp_enter_cwr(sk);
1da177e4 1903
6687e988 1904 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
1905 int state = TCP_CA_Open;
1906
1907 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1908 state = TCP_CA_Disorder;
1909
6687e988
ACM
1910 if (inet_csk(sk)->icsk_ca_state != state) {
1911 tcp_set_ca_state(sk, state);
1da177e4
LT
1912 tp->high_seq = tp->snd_nxt;
1913 }
1914 tcp_moderate_cwnd(tp);
1915 } else {
6687e988 1916 tcp_cwnd_down(sk);
1da177e4
LT
1917 }
1918}
1919
5d424d5a
JH
1920static void tcp_mtup_probe_failed(struct sock *sk)
1921{
1922 struct inet_connection_sock *icsk = inet_csk(sk);
1923
1924 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1925 icsk->icsk_mtup.probe_size = 0;
1926}
1927
1928static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1929{
1930 struct tcp_sock *tp = tcp_sk(sk);
1931 struct inet_connection_sock *icsk = inet_csk(sk);
1932
1933 /* FIXME: breaks with very large cwnd */
1934 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1935 tp->snd_cwnd = tp->snd_cwnd *
1936 tcp_mss_to_mtu(sk, tp->mss_cache) /
1937 icsk->icsk_mtup.probe_size;
1938 tp->snd_cwnd_cnt = 0;
1939 tp->snd_cwnd_stamp = tcp_time_stamp;
1940 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1941
1942 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1943 icsk->icsk_mtup.probe_size = 0;
1944 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1945}
1946
1947
1da177e4
LT
1948/* Process an event, which can update packets-in-flight not trivially.
1949 * Main goal of this function is to calculate new estimate for left_out,
1950 * taking into account both packets sitting in receiver's buffer and
1951 * packets lost by network.
1952 *
1953 * Besides that it does CWND reduction, when packet loss is detected
1954 * and changes state of machine.
1955 *
1956 * It does _not_ decide what to send, it is made in function
1957 * tcp_xmit_retransmit_queue().
1958 */
1959static void
1960tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1961 int prior_packets, int flag)
1962{
6687e988 1963 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1966
1967 /* Some technical things:
1968 * 1. Reno does not count dupacks (sacked_out) automatically. */
1969 if (!tp->packets_out)
1970 tp->sacked_out = 0;
1971 /* 2. SACK counts snd_fack in packets inaccurately. */
1972 if (tp->sacked_out == 0)
1973 tp->fackets_out = 0;
1974
1975 /* Now state machine starts.
1976 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1977 if (flag&FLAG_ECE)
1978 tp->prior_ssthresh = 0;
1979
1980 /* B. In all the states check for reneging SACKs. */
463c84b9 1981 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
1982 return;
1983
1984 /* C. Process data loss notification, provided it is valid. */
1985 if ((flag&FLAG_DATA_LOST) &&
1986 before(tp->snd_una, tp->high_seq) &&
6687e988 1987 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4
LT
1988 tp->fackets_out > tp->reordering) {
1989 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1990 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1991 }
1992
1993 /* D. Synchronize left_out to current state. */
1994 tcp_sync_left_out(tp);
1995
1996 /* E. Check state exit conditions. State can be terminated
1997 * when high_seq is ACKed. */
6687e988 1998 if (icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
1999 if (!sysctl_tcp_frto)
2000 BUG_TRAP(tp->retrans_out == 0);
2001 tp->retrans_stamp = 0;
2002 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2003 switch (icsk->icsk_ca_state) {
1da177e4 2004 case TCP_CA_Loss:
6687e988 2005 icsk->icsk_retransmits = 0;
1da177e4
LT
2006 if (tcp_try_undo_recovery(sk, tp))
2007 return;
2008 break;
2009
2010 case TCP_CA_CWR:
2011 /* CWR is to be held something *above* high_seq
2012 * is ACKed for CWR bit to reach receiver. */
2013 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2014 tcp_complete_cwr(sk);
2015 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2016 }
2017 break;
2018
2019 case TCP_CA_Disorder:
2020 tcp_try_undo_dsack(sk, tp);
2021 if (!tp->undo_marker ||
2022 /* For SACK case do not Open to allow to undo
2023 * catching for all duplicate ACKs. */
2024 IsReno(tp) || tp->snd_una != tp->high_seq) {
2025 tp->undo_marker = 0;
6687e988 2026 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2027 }
2028 break;
2029
2030 case TCP_CA_Recovery:
2031 if (IsReno(tp))
2032 tcp_reset_reno_sack(tp);
2033 if (tcp_try_undo_recovery(sk, tp))
2034 return;
6687e988 2035 tcp_complete_cwr(sk);
1da177e4
LT
2036 break;
2037 }
2038 }
2039
2040 /* F. Process state. */
6687e988 2041 switch (icsk->icsk_ca_state) {
1da177e4
LT
2042 case TCP_CA_Recovery:
2043 if (prior_snd_una == tp->snd_una) {
2044 if (IsReno(tp) && is_dupack)
6687e988 2045 tcp_add_reno_sack(sk);
1da177e4
LT
2046 } else {
2047 int acked = prior_packets - tp->packets_out;
2048 if (IsReno(tp))
2049 tcp_remove_reno_sacks(sk, tp, acked);
2050 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2051 }
2052 break;
2053 case TCP_CA_Loss:
2054 if (flag&FLAG_DATA_ACKED)
6687e988 2055 icsk->icsk_retransmits = 0;
1da177e4
LT
2056 if (!tcp_try_undo_loss(sk, tp)) {
2057 tcp_moderate_cwnd(tp);
2058 tcp_xmit_retransmit_queue(sk);
2059 return;
2060 }
6687e988 2061 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2062 return;
2063 /* Loss is undone; fall through to processing in Open state. */
2064 default:
2065 if (IsReno(tp)) {
2066 if (tp->snd_una != prior_snd_una)
2067 tcp_reset_reno_sack(tp);
2068 if (is_dupack)
6687e988 2069 tcp_add_reno_sack(sk);
1da177e4
LT
2070 }
2071
6687e988 2072 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1da177e4
LT
2073 tcp_try_undo_dsack(sk, tp);
2074
2075 if (!tcp_time_to_recover(sk, tp)) {
2076 tcp_try_to_open(sk, tp, flag);
2077 return;
2078 }
2079
5d424d5a
JH
2080 /* MTU probe failure: don't reduce cwnd */
2081 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2082 icsk->icsk_mtup.probe_size &&
0e7b1368 2083 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2084 tcp_mtup_probe_failed(sk);
2085 /* Restores the reduction we did in tcp_mtup_probe() */
2086 tp->snd_cwnd++;
2087 tcp_simple_retransmit(sk);
2088 return;
2089 }
2090
1da177e4
LT
2091 /* Otherwise enter Recovery state */
2092
2093 if (IsReno(tp))
2094 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2095 else
2096 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2097
2098 tp->high_seq = tp->snd_nxt;
2099 tp->prior_ssthresh = 0;
2100 tp->undo_marker = tp->snd_una;
2101 tp->undo_retrans = tp->retrans_out;
2102
6687e988 2103 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2104 if (!(flag&FLAG_ECE))
6687e988
ACM
2105 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2106 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2107 TCP_ECN_queue_cwr(tp);
2108 }
2109
9772efb9 2110 tp->bytes_acked = 0;
1da177e4 2111 tp->snd_cwnd_cnt = 0;
6687e988 2112 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2113 }
2114
2115 if (is_dupack || tcp_head_timedout(sk, tp))
2116 tcp_update_scoreboard(sk, tp);
6687e988 2117 tcp_cwnd_down(sk);
1da177e4
LT
2118 tcp_xmit_retransmit_queue(sk);
2119}
2120
2121/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2122 * with this code. (Supersedes RFC1323)
1da177e4 2123 */
2d2abbab 2124static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2125{
1da177e4
LT
2126 /* RTTM Rule: A TSecr value received in a segment is used to
2127 * update the averaged RTT measurement only if the segment
2128 * acknowledges some new data, i.e., only if it advances the
2129 * left edge of the send window.
2130 *
2131 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2132 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2133 *
2134 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2135 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2136 * samples are accepted even from very old segments: f.e., when rtt=1
2137 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2138 * answer arrives rto becomes 120 seconds! If at least one of segments
2139 * in window is lost... Voila. --ANK (010210)
2140 */
463c84b9
ACM
2141 struct tcp_sock *tp = tcp_sk(sk);
2142 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2143 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2144 tcp_set_rto(sk);
2145 inet_csk(sk)->icsk_backoff = 0;
2146 tcp_bound_rto(sk);
1da177e4
LT
2147}
2148
2d2abbab 2149static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2150{
2151 /* We don't have a timestamp. Can only use
2152 * packets that are not retransmitted to determine
2153 * rtt estimates. Also, we must not reset the
2154 * backoff for rto until we get a non-retransmitted
2155 * packet. This allows us to deal with a situation
2156 * where the network delay has increased suddenly.
2157 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2158 */
2159
2160 if (flag & FLAG_RETRANS_DATA_ACKED)
2161 return;
2162
2d2abbab 2163 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2164 tcp_set_rto(sk);
2165 inet_csk(sk)->icsk_backoff = 0;
2166 tcp_bound_rto(sk);
1da177e4
LT
2167}
2168
463c84b9 2169static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2170 const s32 seq_rtt)
1da177e4 2171{
463c84b9 2172 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2173 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2174 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2175 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2176 else if (seq_rtt >= 0)
2d2abbab 2177 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2178}
2179
40efc6fa
SH
2180static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2181 u32 in_flight, int good)
1da177e4 2182{
6687e988
ACM
2183 const struct inet_connection_sock *icsk = inet_csk(sk);
2184 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2185 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2186}
2187
1da177e4
LT
2188/* Restart timer after forward progress on connection.
2189 * RFC2988 recommends to restart timer to now+rto.
2190 */
2191
40efc6fa 2192static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1da177e4
LT
2193{
2194 if (!tp->packets_out) {
463c84b9 2195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2196 } else {
3f421baa 2197 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2198 }
2199}
2200
1da177e4
LT
2201static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2202 __u32 now, __s32 *seq_rtt)
2203{
2204 struct tcp_sock *tp = tcp_sk(sk);
2205 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2206 __u32 seq = tp->snd_una;
2207 __u32 packets_acked;
2208 int acked = 0;
2209
2210 /* If we get here, the whole TSO packet has not been
2211 * acked.
2212 */
2213 BUG_ON(!after(scb->end_seq, seq));
2214
2215 packets_acked = tcp_skb_pcount(skb);
2216 if (tcp_trim_head(sk, skb, seq - scb->seq))
2217 return 0;
2218 packets_acked -= tcp_skb_pcount(skb);
2219
2220 if (packets_acked) {
2221 __u8 sacked = scb->sacked;
2222
2223 acked |= FLAG_DATA_ACKED;
2224 if (sacked) {
2225 if (sacked & TCPCB_RETRANS) {
2226 if (sacked & TCPCB_SACKED_RETRANS)
2227 tp->retrans_out -= packets_acked;
2228 acked |= FLAG_RETRANS_DATA_ACKED;
2229 *seq_rtt = -1;
2230 } else if (*seq_rtt < 0)
2231 *seq_rtt = now - scb->when;
2232 if (sacked & TCPCB_SACKED_ACKED)
2233 tp->sacked_out -= packets_acked;
2234 if (sacked & TCPCB_LOST)
2235 tp->lost_out -= packets_acked;
2236 if (sacked & TCPCB_URG) {
2237 if (tp->urg_mode &&
2238 !before(seq, tp->snd_up))
2239 tp->urg_mode = 0;
2240 }
2241 } else if (*seq_rtt < 0)
2242 *seq_rtt = now - scb->when;
2243
2244 if (tp->fackets_out) {
2245 __u32 dval = min(tp->fackets_out, packets_acked);
2246 tp->fackets_out -= dval;
2247 }
2248 tp->packets_out -= packets_acked;
2249
2250 BUG_ON(tcp_skb_pcount(skb) == 0);
2251 BUG_ON(!before(scb->seq, scb->end_seq));
2252 }
2253
2254 return acked;
2255}
2256
8ea333eb 2257static u32 tcp_usrtt(struct timeval *tv)
2d2abbab 2258{
8ea333eb 2259 struct timeval now;
2d2abbab
SH
2260
2261 do_gettimeofday(&now);
8ea333eb 2262 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2d2abbab 2263}
1da177e4
LT
2264
2265/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2266static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2267{
2268 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2269 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2270 struct sk_buff *skb;
2271 __u32 now = tcp_time_stamp;
2272 int acked = 0;
2273 __s32 seq_rtt = -1;
317a76f9 2274 u32 pkts_acked = 0;
2d2abbab
SH
2275 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2276 = icsk->icsk_ca_ops->rtt_sample;
80246ab3 2277 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
1da177e4
LT
2278
2279 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2280 skb != sk->sk_send_head) {
2281 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2282 __u8 sacked = scb->sacked;
2283
2284 /* If our packet is before the ack sequence we can
2285 * discard it as it's confirmed to have arrived at
2286 * the other end.
2287 */
2288 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2289 if (tcp_skb_pcount(skb) > 1 &&
2290 after(tp->snd_una, scb->seq))
1da177e4
LT
2291 acked |= tcp_tso_acked(sk, skb,
2292 now, &seq_rtt);
2293 break;
2294 }
2295
2296 /* Initial outgoing SYN's get put onto the write_queue
2297 * just like anything else we transmit. It is not
2298 * true data, and if we misinform our callers that
2299 * this ACK acks real data, we will erroneously exit
2300 * connection startup slow start one packet too
2301 * quickly. This is severely frowned upon behavior.
2302 */
2303 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2304 acked |= FLAG_DATA_ACKED;
317a76f9 2305 ++pkts_acked;
1da177e4
LT
2306 } else {
2307 acked |= FLAG_SYN_ACKED;
2308 tp->retrans_stamp = 0;
2309 }
2310
5d424d5a
JH
2311 /* MTU probing checks */
2312 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2313 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2314 tcp_mtup_probe_success(sk, skb);
2315 }
2316 }
2317
1da177e4
LT
2318 if (sacked) {
2319 if (sacked & TCPCB_RETRANS) {
2320 if(sacked & TCPCB_SACKED_RETRANS)
2321 tp->retrans_out -= tcp_skb_pcount(skb);
2322 acked |= FLAG_RETRANS_DATA_ACKED;
2323 seq_rtt = -1;
2d2abbab 2324 } else if (seq_rtt < 0) {
1da177e4 2325 seq_rtt = now - scb->when;
8ea333eb 2326 skb_get_timestamp(skb, &tv);
a61bbcf2 2327 }
1da177e4
LT
2328 if (sacked & TCPCB_SACKED_ACKED)
2329 tp->sacked_out -= tcp_skb_pcount(skb);
2330 if (sacked & TCPCB_LOST)
2331 tp->lost_out -= tcp_skb_pcount(skb);
2332 if (sacked & TCPCB_URG) {
2333 if (tp->urg_mode &&
2334 !before(scb->end_seq, tp->snd_up))
2335 tp->urg_mode = 0;
2336 }
2d2abbab 2337 } else if (seq_rtt < 0) {
1da177e4 2338 seq_rtt = now - scb->when;
8ea333eb 2339 skb_get_timestamp(skb, &tv);
2d2abbab 2340 }
1da177e4
LT
2341 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2342 tcp_packets_out_dec(tp, skb);
8728b834 2343 __skb_unlink(skb, &sk->sk_write_queue);
1da177e4 2344 sk_stream_free_skb(sk, skb);
6a438bbe 2345 clear_all_retrans_hints(tp);
1da177e4
LT
2346 }
2347
2348 if (acked&FLAG_ACKED) {
2d2abbab 2349 tcp_ack_update_rtt(sk, acked, seq_rtt);
1da177e4 2350 tcp_ack_packets_out(sk, tp);
8ea333eb
JH
2351 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2352 (*rtt_sample)(sk, tcp_usrtt(&tv));
317a76f9 2353
6687e988
ACM
2354 if (icsk->icsk_ca_ops->pkts_acked)
2355 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
1da177e4
LT
2356 }
2357
2358#if FASTRETRANS_DEBUG > 0
2359 BUG_TRAP((int)tp->sacked_out >= 0);
2360 BUG_TRAP((int)tp->lost_out >= 0);
2361 BUG_TRAP((int)tp->retrans_out >= 0);
2362 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2363 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2364 if (tp->lost_out) {
2365 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2366 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2367 tp->lost_out = 0;
2368 }
2369 if (tp->sacked_out) {
2370 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2371 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2372 tp->sacked_out = 0;
2373 }
2374 if (tp->retrans_out) {
2375 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2376 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2377 tp->retrans_out = 0;
2378 }
2379 }
2380#endif
2381 *seq_rtt_p = seq_rtt;
2382 return acked;
2383}
2384
2385static void tcp_ack_probe(struct sock *sk)
2386{
463c84b9
ACM
2387 const struct tcp_sock *tp = tcp_sk(sk);
2388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2389
2390 /* Was it a usable window open? */
2391
2392 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2393 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2394 icsk->icsk_backoff = 0;
2395 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2396 /* Socket must be waked up by subsequent tcp_data_snd_check().
2397 * This function is not for random using!
2398 */
2399 } else {
463c84b9 2400 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2401 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2402 TCP_RTO_MAX);
1da177e4
LT
2403 }
2404}
2405
6687e988 2406static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2407{
2408 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2409 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2410}
2411
6687e988 2412static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2413{
6687e988 2414 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2415 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2416 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2417}
2418
2419/* Check that window update is acceptable.
2420 * The function assumes that snd_una<=ack<=snd_next.
2421 */
463c84b9
ACM
2422static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2423 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2424{
2425 return (after(ack, tp->snd_una) ||
2426 after(ack_seq, tp->snd_wl1) ||
2427 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2428}
2429
2430/* Update our send window.
2431 *
2432 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2433 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2434 */
2435static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2436 struct sk_buff *skb, u32 ack, u32 ack_seq)
2437{
2438 int flag = 0;
2439 u32 nwin = ntohs(skb->h.th->window);
2440
2441 if (likely(!skb->h.th->syn))
2442 nwin <<= tp->rx_opt.snd_wscale;
2443
2444 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2445 flag |= FLAG_WIN_UPDATE;
2446 tcp_update_wl(tp, ack, ack_seq);
2447
2448 if (tp->snd_wnd != nwin) {
2449 tp->snd_wnd = nwin;
2450
2451 /* Note, it is the only place, where
2452 * fast path is recovered for sending TCP.
2453 */
2ad41065 2454 tp->pred_flags = 0;
1da177e4
LT
2455 tcp_fast_path_check(sk, tp);
2456
2457 if (nwin > tp->max_window) {
2458 tp->max_window = nwin;
d83d8461 2459 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2460 }
2461 }
2462 }
2463
2464 tp->snd_una = ack;
2465
2466 return flag;
2467}
2468
2469static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2470{
2471 struct tcp_sock *tp = tcp_sk(sk);
2472
2473 tcp_sync_left_out(tp);
2474
2475 if (tp->snd_una == prior_snd_una ||
2476 !before(tp->snd_una, tp->frto_highmark)) {
2477 /* RTO was caused by loss, start retransmitting in
2478 * go-back-N slow start
2479 */
2480 tcp_enter_frto_loss(sk);
2481 return;
2482 }
2483
2484 if (tp->frto_counter == 1) {
2485 /* First ACK after RTO advances the window: allow two new
2486 * segments out.
2487 */
2488 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2489 } else {
2490 /* Also the second ACK after RTO advances the window.
2491 * The RTO was likely spurious. Reduce cwnd and continue
2492 * in congestion avoidance
2493 */
2494 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2495 tcp_moderate_cwnd(tp);
2496 }
2497
2498 /* F-RTO affects on two new ACKs following RTO.
caa20d9a 2499 * At latest on third ACK the TCP behavior is back to normal.
1da177e4
LT
2500 */
2501 tp->frto_counter = (tp->frto_counter + 1) % 3;
2502}
2503
1da177e4
LT
2504/* This routine deals with incoming acks, but not outgoing ones. */
2505static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2506{
6687e988 2507 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2508 struct tcp_sock *tp = tcp_sk(sk);
2509 u32 prior_snd_una = tp->snd_una;
2510 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2511 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2512 u32 prior_in_flight;
2513 s32 seq_rtt;
2514 int prior_packets;
2515
2516 /* If the ack is newer than sent or older than previous acks
2517 * then we can probably ignore it.
2518 */
2519 if (after(ack, tp->snd_nxt))
2520 goto uninteresting_ack;
2521
2522 if (before(ack, prior_snd_una))
2523 goto old_ack;
2524
3fdf3f0c
DO
2525 if (sysctl_tcp_abc) {
2526 if (icsk->icsk_ca_state < TCP_CA_CWR)
2527 tp->bytes_acked += ack - prior_snd_una;
2528 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2529 /* we assume just one segment left network */
2530 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2531 }
9772efb9 2532
1da177e4
LT
2533 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2534 /* Window is constant, pure forward advance.
2535 * No more checks are required.
2536 * Note, we use the fact that SND.UNA>=SND.WL2.
2537 */
2538 tcp_update_wl(tp, ack, ack_seq);
2539 tp->snd_una = ack;
1da177e4
LT
2540 flag |= FLAG_WIN_UPDATE;
2541
6687e988 2542 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2543
1da177e4
LT
2544 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2545 } else {
2546 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2547 flag |= FLAG_DATA;
2548 else
2549 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2550
2551 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2552
2553 if (TCP_SKB_CB(skb)->sacked)
2554 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2555
2556 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2557 flag |= FLAG_ECE;
2558
6687e988 2559 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2560 }
2561
2562 /* We passed data and got it acked, remove any soft error
2563 * log. Something worked...
2564 */
2565 sk->sk_err_soft = 0;
2566 tp->rcv_tstamp = tcp_time_stamp;
2567 prior_packets = tp->packets_out;
2568 if (!prior_packets)
2569 goto no_queue;
2570
2571 prior_in_flight = tcp_packets_in_flight(tp);
2572
2573 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2574 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2575
2576 if (tp->frto_counter)
2577 tcp_process_frto(sk, prior_snd_una);
2578
6687e988 2579 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2580 /* Advance CWND, if state allows this. */
6687e988
ACM
2581 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2582 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
1da177e4
LT
2583 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2584 } else {
317a76f9 2585 if ((flag & FLAG_DATA_ACKED))
6687e988 2586 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
1da177e4
LT
2587 }
2588
2589 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2590 dst_confirm(sk->sk_dst_cache);
2591
2592 return 1;
2593
2594no_queue:
6687e988 2595 icsk->icsk_probes_out = 0;
1da177e4
LT
2596
2597 /* If this ack opens up a zero window, clear backoff. It was
2598 * being used to time the probes, and is probably far higher than
2599 * it needs to be for normal retransmission.
2600 */
2601 if (sk->sk_send_head)
2602 tcp_ack_probe(sk);
2603 return 1;
2604
2605old_ack:
2606 if (TCP_SKB_CB(skb)->sacked)
2607 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2608
2609uninteresting_ack:
2610 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2611 return 0;
2612}
2613
2614
2615/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2616 * But, this can also be called on packets in the established flow when
2617 * the fast version below fails.
2618 */
2619void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2620{
2621 unsigned char *ptr;
2622 struct tcphdr *th = skb->h.th;
2623 int length=(th->doff*4)-sizeof(struct tcphdr);
2624
2625 ptr = (unsigned char *)(th + 1);
2626 opt_rx->saw_tstamp = 0;
2627
2628 while(length>0) {
2629 int opcode=*ptr++;
2630 int opsize;
2631
2632 switch (opcode) {
2633 case TCPOPT_EOL:
2634 return;
2635 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2636 length--;
2637 continue;
2638 default:
2639 opsize=*ptr++;
2640 if (opsize < 2) /* "silly options" */
2641 return;
2642 if (opsize > length)
2643 return; /* don't parse partial options */
2644 switch(opcode) {
2645 case TCPOPT_MSS:
2646 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2647 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2648 if (in_mss) {
2649 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2650 in_mss = opt_rx->user_mss;
2651 opt_rx->mss_clamp = in_mss;
2652 }
2653 }
2654 break;
2655 case TCPOPT_WINDOW:
2656 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2657 if (sysctl_tcp_window_scaling) {
2658 __u8 snd_wscale = *(__u8 *) ptr;
2659 opt_rx->wscale_ok = 1;
2660 if (snd_wscale > 14) {
2661 if(net_ratelimit())
2662 printk(KERN_INFO "tcp_parse_options: Illegal window "
2663 "scaling value %d >14 received.\n",
2664 snd_wscale);
2665 snd_wscale = 14;
2666 }
2667 opt_rx->snd_wscale = snd_wscale;
2668 }
2669 break;
2670 case TCPOPT_TIMESTAMP:
2671 if(opsize==TCPOLEN_TIMESTAMP) {
2672 if ((estab && opt_rx->tstamp_ok) ||
2673 (!estab && sysctl_tcp_timestamps)) {
2674 opt_rx->saw_tstamp = 1;
4f3608b7
AV
2675 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2676 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
2677 }
2678 }
2679 break;
2680 case TCPOPT_SACK_PERM:
2681 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2682 if (sysctl_tcp_sack) {
2683 opt_rx->sack_ok = 1;
2684 tcp_sack_reset(opt_rx);
2685 }
2686 }
2687 break;
2688
2689 case TCPOPT_SACK:
2690 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2691 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2692 opt_rx->sack_ok) {
2693 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2694 }
cfb6eeb4
YH
2695#ifdef CONFIG_TCP_MD5SIG
2696 case TCPOPT_MD5SIG:
2697 /*
2698 * The MD5 Hash has already been
2699 * checked (see tcp_v{4,6}_do_rcv()).
2700 */
2701 break;
2702#endif
1da177e4
LT
2703 };
2704 ptr+=opsize-2;
2705 length-=opsize;
2706 };
2707 }
2708}
2709
2710/* Fast parse options. This hopes to only see timestamps.
2711 * If it is wrong it falls back on tcp_parse_options().
2712 */
40efc6fa
SH
2713static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2714 struct tcp_sock *tp)
1da177e4
LT
2715{
2716 if (th->doff == sizeof(struct tcphdr)>>2) {
2717 tp->rx_opt.saw_tstamp = 0;
2718 return 0;
2719 } else if (tp->rx_opt.tstamp_ok &&
2720 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
2721 __be32 *ptr = (__be32 *)(th + 1);
2722 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
2723 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2724 tp->rx_opt.saw_tstamp = 1;
2725 ++ptr;
2726 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2727 ++ptr;
2728 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2729 return 1;
2730 }
2731 }
2732 tcp_parse_options(skb, &tp->rx_opt, 1);
2733 return 1;
2734}
2735
2736static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2737{
2738 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2739 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2740}
2741
2742static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2743{
2744 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2745 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2746 * extra check below makes sure this can only happen
2747 * for pure ACK frames. -DaveM
2748 *
2749 * Not only, also it occurs for expired timestamps.
2750 */
2751
2752 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2753 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2754 tcp_store_ts_recent(tp);
2755 }
2756}
2757
2758/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2759 *
2760 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2761 * it can pass through stack. So, the following predicate verifies that
2762 * this segment is not used for anything but congestion avoidance or
2763 * fast retransmit. Moreover, we even are able to eliminate most of such
2764 * second order effects, if we apply some small "replay" window (~RTO)
2765 * to timestamp space.
2766 *
2767 * All these measures still do not guarantee that we reject wrapped ACKs
2768 * on networks with high bandwidth, when sequence space is recycled fastly,
2769 * but it guarantees that such events will be very rare and do not affect
2770 * connection seriously. This doesn't look nice, but alas, PAWS is really
2771 * buggy extension.
2772 *
2773 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2774 * states that events when retransmit arrives after original data are rare.
2775 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2776 * the biggest problem on large power networks even with minor reordering.
2777 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2778 * up to bandwidth of 18Gigabit/sec. 8) ]
2779 */
2780
463c84b9 2781static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2782{
463c84b9 2783 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2784 struct tcphdr *th = skb->h.th;
2785 u32 seq = TCP_SKB_CB(skb)->seq;
2786 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2787
2788 return (/* 1. Pure ACK with correct sequence number. */
2789 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2790
2791 /* 2. ... and duplicate ACK. */
2792 ack == tp->snd_una &&
2793
2794 /* 3. ... and does not update window. */
2795 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2796
2797 /* 4. ... and sits in replay window. */
463c84b9 2798 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
2799}
2800
463c84b9 2801static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2802{
463c84b9 2803 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2804 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2805 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 2806 !tcp_disordered_ack(sk, skb));
1da177e4
LT
2807}
2808
2809/* Check segment sequence number for validity.
2810 *
2811 * Segment controls are considered valid, if the segment
2812 * fits to the window after truncation to the window. Acceptability
2813 * of data (and SYN, FIN, of course) is checked separately.
2814 * See tcp_data_queue(), for example.
2815 *
2816 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2817 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2818 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2819 * (borrowed from freebsd)
2820 */
2821
2822static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2823{
2824 return !before(end_seq, tp->rcv_wup) &&
2825 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2826}
2827
2828/* When we get a reset we do this. */
2829static void tcp_reset(struct sock *sk)
2830{
2831 /* We want the right error as BSD sees it (and indeed as we do). */
2832 switch (sk->sk_state) {
2833 case TCP_SYN_SENT:
2834 sk->sk_err = ECONNREFUSED;
2835 break;
2836 case TCP_CLOSE_WAIT:
2837 sk->sk_err = EPIPE;
2838 break;
2839 case TCP_CLOSE:
2840 return;
2841 default:
2842 sk->sk_err = ECONNRESET;
2843 }
2844
2845 if (!sock_flag(sk, SOCK_DEAD))
2846 sk->sk_error_report(sk);
2847
2848 tcp_done(sk);
2849}
2850
2851/*
2852 * Process the FIN bit. This now behaves as it is supposed to work
2853 * and the FIN takes effect when it is validly part of sequence
2854 * space. Not before when we get holes.
2855 *
2856 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2857 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2858 * TIME-WAIT)
2859 *
2860 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2861 * close and we go into CLOSING (and later onto TIME-WAIT)
2862 *
2863 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2864 */
2865static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2866{
2867 struct tcp_sock *tp = tcp_sk(sk);
2868
463c84b9 2869 inet_csk_schedule_ack(sk);
1da177e4
LT
2870
2871 sk->sk_shutdown |= RCV_SHUTDOWN;
2872 sock_set_flag(sk, SOCK_DONE);
2873
2874 switch (sk->sk_state) {
2875 case TCP_SYN_RECV:
2876 case TCP_ESTABLISHED:
2877 /* Move to CLOSE_WAIT */
2878 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 2879 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
2880 break;
2881
2882 case TCP_CLOSE_WAIT:
2883 case TCP_CLOSING:
2884 /* Received a retransmission of the FIN, do
2885 * nothing.
2886 */
2887 break;
2888 case TCP_LAST_ACK:
2889 /* RFC793: Remain in the LAST-ACK state. */
2890 break;
2891
2892 case TCP_FIN_WAIT1:
2893 /* This case occurs when a simultaneous close
2894 * happens, we must ack the received FIN and
2895 * enter the CLOSING state.
2896 */
2897 tcp_send_ack(sk);
2898 tcp_set_state(sk, TCP_CLOSING);
2899 break;
2900 case TCP_FIN_WAIT2:
2901 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2902 tcp_send_ack(sk);
2903 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2904 break;
2905 default:
2906 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2907 * cases we should never reach this piece of code.
2908 */
2909 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2910 __FUNCTION__, sk->sk_state);
2911 break;
2912 };
2913
2914 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2915 * Probably, we should reset in this case. For now drop them.
2916 */
2917 __skb_queue_purge(&tp->out_of_order_queue);
2918 if (tp->rx_opt.sack_ok)
2919 tcp_sack_reset(&tp->rx_opt);
2920 sk_stream_mem_reclaim(sk);
2921
2922 if (!sock_flag(sk, SOCK_DEAD)) {
2923 sk->sk_state_change(sk);
2924
2925 /* Do not send POLL_HUP for half duplex close. */
2926 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2927 sk->sk_state == TCP_CLOSE)
2928 sk_wake_async(sk, 1, POLL_HUP);
2929 else
2930 sk_wake_async(sk, 1, POLL_IN);
2931 }
2932}
2933
40efc6fa 2934static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
2935{
2936 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2937 if (before(seq, sp->start_seq))
2938 sp->start_seq = seq;
2939 if (after(end_seq, sp->end_seq))
2940 sp->end_seq = end_seq;
2941 return 1;
2942 }
2943 return 0;
2944}
2945
40efc6fa 2946static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
2947{
2948 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2949 if (before(seq, tp->rcv_nxt))
2950 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2951 else
2952 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2953
2954 tp->rx_opt.dsack = 1;
2955 tp->duplicate_sack[0].start_seq = seq;
2956 tp->duplicate_sack[0].end_seq = end_seq;
2957 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2958 }
2959}
2960
40efc6fa 2961static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
2962{
2963 if (!tp->rx_opt.dsack)
2964 tcp_dsack_set(tp, seq, end_seq);
2965 else
2966 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2967}
2968
2969static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2970{
2971 struct tcp_sock *tp = tcp_sk(sk);
2972
2973 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2974 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2975 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 2976 tcp_enter_quickack_mode(sk);
1da177e4
LT
2977
2978 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2979 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2980
2981 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2982 end_seq = tp->rcv_nxt;
2983 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2984 }
2985 }
2986
2987 tcp_send_ack(sk);
2988}
2989
2990/* These routines update the SACK block as out-of-order packets arrive or
2991 * in-order packets close up the sequence space.
2992 */
2993static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2994{
2995 int this_sack;
2996 struct tcp_sack_block *sp = &tp->selective_acks[0];
2997 struct tcp_sack_block *swalk = sp+1;
2998
2999 /* See if the recent change to the first SACK eats into
3000 * or hits the sequence space of other SACK blocks, if so coalesce.
3001 */
3002 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3003 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3004 int i;
3005
3006 /* Zap SWALK, by moving every further SACK up by one slot.
3007 * Decrease num_sacks.
3008 */
3009 tp->rx_opt.num_sacks--;
3010 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3011 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3012 sp[i] = sp[i+1];
3013 continue;
3014 }
3015 this_sack++, swalk++;
3016 }
3017}
3018
40efc6fa 3019static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3020{
3021 __u32 tmp;
3022
3023 tmp = sack1->start_seq;
3024 sack1->start_seq = sack2->start_seq;
3025 sack2->start_seq = tmp;
3026
3027 tmp = sack1->end_seq;
3028 sack1->end_seq = sack2->end_seq;
3029 sack2->end_seq = tmp;
3030}
3031
3032static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3033{
3034 struct tcp_sock *tp = tcp_sk(sk);
3035 struct tcp_sack_block *sp = &tp->selective_acks[0];
3036 int cur_sacks = tp->rx_opt.num_sacks;
3037 int this_sack;
3038
3039 if (!cur_sacks)
3040 goto new_sack;
3041
3042 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3043 if (tcp_sack_extend(sp, seq, end_seq)) {
3044 /* Rotate this_sack to the first one. */
3045 for (; this_sack>0; this_sack--, sp--)
3046 tcp_sack_swap(sp, sp-1);
3047 if (cur_sacks > 1)
3048 tcp_sack_maybe_coalesce(tp);
3049 return;
3050 }
3051 }
3052
3053 /* Could not find an adjacent existing SACK, build a new one,
3054 * put it at the front, and shift everyone else down. We
3055 * always know there is at least one SACK present already here.
3056 *
3057 * If the sack array is full, forget about the last one.
3058 */
3059 if (this_sack >= 4) {
3060 this_sack--;
3061 tp->rx_opt.num_sacks--;
3062 sp--;
3063 }
3064 for(; this_sack > 0; this_sack--, sp--)
3065 *sp = *(sp-1);
3066
3067new_sack:
3068 /* Build the new head SACK, and we're done. */
3069 sp->start_seq = seq;
3070 sp->end_seq = end_seq;
3071 tp->rx_opt.num_sacks++;
3072 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3073}
3074
3075/* RCV.NXT advances, some SACKs should be eaten. */
3076
3077static void tcp_sack_remove(struct tcp_sock *tp)
3078{
3079 struct tcp_sack_block *sp = &tp->selective_acks[0];
3080 int num_sacks = tp->rx_opt.num_sacks;
3081 int this_sack;
3082
3083 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3084 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3085 tp->rx_opt.num_sacks = 0;
3086 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3087 return;
3088 }
3089
3090 for(this_sack = 0; this_sack < num_sacks; ) {
3091 /* Check if the start of the sack is covered by RCV.NXT. */
3092 if (!before(tp->rcv_nxt, sp->start_seq)) {
3093 int i;
3094
3095 /* RCV.NXT must cover all the block! */
3096 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3097
3098 /* Zap this SACK, by moving forward any other SACKS. */
3099 for (i=this_sack+1; i < num_sacks; i++)
3100 tp->selective_acks[i-1] = tp->selective_acks[i];
3101 num_sacks--;
3102 continue;
3103 }
3104 this_sack++;
3105 sp++;
3106 }
3107 if (num_sacks != tp->rx_opt.num_sacks) {
3108 tp->rx_opt.num_sacks = num_sacks;
3109 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3110 }
3111}
3112
3113/* This one checks to see if we can put data from the
3114 * out_of_order queue into the receive_queue.
3115 */
3116static void tcp_ofo_queue(struct sock *sk)
3117{
3118 struct tcp_sock *tp = tcp_sk(sk);
3119 __u32 dsack_high = tp->rcv_nxt;
3120 struct sk_buff *skb;
3121
3122 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3123 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3124 break;
3125
3126 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3127 __u32 dsack = dsack_high;
3128 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3129 dsack_high = TCP_SKB_CB(skb)->end_seq;
3130 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3131 }
3132
3133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3134 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3135 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3136 __kfree_skb(skb);
3137 continue;
3138 }
3139 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3140 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3141 TCP_SKB_CB(skb)->end_seq);
3142
8728b834 3143 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3144 __skb_queue_tail(&sk->sk_receive_queue, skb);
3145 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3146 if(skb->h.th->fin)
3147 tcp_fin(skb, sk, skb->h.th);
3148 }
3149}
3150
3151static int tcp_prune_queue(struct sock *sk);
3152
3153static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3154{
3155 struct tcphdr *th = skb->h.th;
3156 struct tcp_sock *tp = tcp_sk(sk);
3157 int eaten = -1;
3158
3159 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3160 goto drop;
3161
1da177e4
LT
3162 __skb_pull(skb, th->doff*4);
3163
3164 TCP_ECN_accept_cwr(tp, skb);
3165
3166 if (tp->rx_opt.dsack) {
3167 tp->rx_opt.dsack = 0;
3168 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3169 4 - tp->rx_opt.tstamp_ok);
3170 }
3171
3172 /* Queue data for delivery to the user.
3173 * Packets in sequence go to the receive queue.
3174 * Out of sequence packets to the out_of_order_queue.
3175 */
3176 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3177 if (tcp_receive_window(tp) == 0)
3178 goto out_of_window;
3179
3180 /* Ok. In sequence. In window. */
3181 if (tp->ucopy.task == current &&
3182 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3183 sock_owned_by_user(sk) && !tp->urg_data) {
3184 int chunk = min_t(unsigned int, skb->len,
3185 tp->ucopy.len);
3186
3187 __set_current_state(TASK_RUNNING);
3188
3189 local_bh_enable();
3190 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3191 tp->ucopy.len -= chunk;
3192 tp->copied_seq += chunk;
3193 eaten = (chunk == skb->len && !th->fin);
3194 tcp_rcv_space_adjust(sk);
3195 }
3196 local_bh_disable();
3197 }
3198
3199 if (eaten <= 0) {
3200queue_and_out:
3201 if (eaten < 0 &&
3202 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3203 !sk_stream_rmem_schedule(sk, skb))) {
3204 if (tcp_prune_queue(sk) < 0 ||
3205 !sk_stream_rmem_schedule(sk, skb))
3206 goto drop;
3207 }
3208 sk_stream_set_owner_r(skb, sk);
3209 __skb_queue_tail(&sk->sk_receive_queue, skb);
3210 }
3211 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3212 if(skb->len)
3213 tcp_event_data_recv(sk, tp, skb);
3214 if(th->fin)
3215 tcp_fin(skb, sk, th);
3216
b03efcfb 3217 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3218 tcp_ofo_queue(sk);
3219
3220 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3221 * gap in queue is filled.
3222 */
b03efcfb 3223 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3224 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3225 }
3226
3227 if (tp->rx_opt.num_sacks)
3228 tcp_sack_remove(tp);
3229
3230 tcp_fast_path_check(sk, tp);
3231
3232 if (eaten > 0)
3233 __kfree_skb(skb);
3234 else if (!sock_flag(sk, SOCK_DEAD))
3235 sk->sk_data_ready(sk, 0);
3236 return;
3237 }
3238
3239 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3240 /* A retransmit, 2nd most common case. Force an immediate ack. */
3241 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3242 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3243
3244out_of_window:
463c84b9
ACM
3245 tcp_enter_quickack_mode(sk);
3246 inet_csk_schedule_ack(sk);
1da177e4
LT
3247drop:
3248 __kfree_skb(skb);
3249 return;
3250 }
3251
3252 /* Out of window. F.e. zero window probe. */
3253 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3254 goto out_of_window;
3255
463c84b9 3256 tcp_enter_quickack_mode(sk);
1da177e4
LT
3257
3258 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3259 /* Partial packet, seq < rcv_next < end_seq */
3260 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3261 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3262 TCP_SKB_CB(skb)->end_seq);
3263
3264 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3265
3266 /* If window is closed, drop tail of packet. But after
3267 * remembering D-SACK for its head made in previous line.
3268 */
3269 if (!tcp_receive_window(tp))
3270 goto out_of_window;
3271 goto queue_and_out;
3272 }
3273
3274 TCP_ECN_check_ce(tp, skb);
3275
3276 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3277 !sk_stream_rmem_schedule(sk, skb)) {
3278 if (tcp_prune_queue(sk) < 0 ||
3279 !sk_stream_rmem_schedule(sk, skb))
3280 goto drop;
3281 }
3282
3283 /* Disable header prediction. */
3284 tp->pred_flags = 0;
463c84b9 3285 inet_csk_schedule_ack(sk);
1da177e4
LT
3286
3287 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3288 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3289
3290 sk_stream_set_owner_r(skb, sk);
3291
3292 if (!skb_peek(&tp->out_of_order_queue)) {
3293 /* Initial out of order segment, build 1 SACK. */
3294 if (tp->rx_opt.sack_ok) {
3295 tp->rx_opt.num_sacks = 1;
3296 tp->rx_opt.dsack = 0;
3297 tp->rx_opt.eff_sacks = 1;
3298 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3299 tp->selective_acks[0].end_seq =
3300 TCP_SKB_CB(skb)->end_seq;
3301 }
3302 __skb_queue_head(&tp->out_of_order_queue,skb);
3303 } else {
3304 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3305 u32 seq = TCP_SKB_CB(skb)->seq;
3306 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3307
3308 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3309 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3310
3311 if (!tp->rx_opt.num_sacks ||
3312 tp->selective_acks[0].end_seq != seq)
3313 goto add_sack;
3314
3315 /* Common case: data arrive in order after hole. */
3316 tp->selective_acks[0].end_seq = end_seq;
3317 return;
3318 }
3319
3320 /* Find place to insert this segment. */
3321 do {
3322 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3323 break;
3324 } while ((skb1 = skb1->prev) !=
3325 (struct sk_buff*)&tp->out_of_order_queue);
3326
3327 /* Do skb overlap to previous one? */
3328 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3329 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3330 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3331 /* All the bits are present. Drop. */
3332 __kfree_skb(skb);
3333 tcp_dsack_set(tp, seq, end_seq);
3334 goto add_sack;
3335 }
3336 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3337 /* Partial overlap. */
3338 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3339 } else {
3340 skb1 = skb1->prev;
3341 }
3342 }
3343 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3344
3345 /* And clean segments covered by new one as whole. */
3346 while ((skb1 = skb->next) !=
3347 (struct sk_buff*)&tp->out_of_order_queue &&
3348 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3349 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3350 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3351 break;
3352 }
8728b834 3353 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3354 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3355 __kfree_skb(skb1);
3356 }
3357
3358add_sack:
3359 if (tp->rx_opt.sack_ok)
3360 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3361 }
3362}
3363
3364/* Collapse contiguous sequence of skbs head..tail with
3365 * sequence numbers start..end.
3366 * Segments with FIN/SYN are not collapsed (only because this
3367 * simplifies code)
3368 */
3369static void
8728b834
DM
3370tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3371 struct sk_buff *head, struct sk_buff *tail,
3372 u32 start, u32 end)
1da177e4
LT
3373{
3374 struct sk_buff *skb;
3375
caa20d9a 3376 /* First, check that queue is collapsible and find
1da177e4
LT
3377 * the point where collapsing can be useful. */
3378 for (skb = head; skb != tail; ) {
3379 /* No new bits? It is possible on ofo queue. */
3380 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3381 struct sk_buff *next = skb->next;
8728b834 3382 __skb_unlink(skb, list);
1da177e4
LT
3383 __kfree_skb(skb);
3384 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3385 skb = next;
3386 continue;
3387 }
3388
3389 /* The first skb to collapse is:
3390 * - not SYN/FIN and
3391 * - bloated or contains data before "start" or
3392 * overlaps to the next one.
3393 */
3394 if (!skb->h.th->syn && !skb->h.th->fin &&
3395 (tcp_win_from_space(skb->truesize) > skb->len ||
3396 before(TCP_SKB_CB(skb)->seq, start) ||
3397 (skb->next != tail &&
3398 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3399 break;
3400
3401 /* Decided to skip this, advance start seq. */
3402 start = TCP_SKB_CB(skb)->end_seq;
3403 skb = skb->next;
3404 }
3405 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3406 return;
3407
3408 while (before(start, end)) {
3409 struct sk_buff *nskb;
3410 int header = skb_headroom(skb);
3411 int copy = SKB_MAX_ORDER(header, 0);
3412
3413 /* Too big header? This can happen with IPv6. */
3414 if (copy < 0)
3415 return;
3416 if (end-start < copy)
3417 copy = end-start;
3418 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3419 if (!nskb)
3420 return;
3421 skb_reserve(nskb, header);
3422 memcpy(nskb->head, skb->head, header);
3423 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3424 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3425 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3426 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3427 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3428 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3429 sk_stream_set_owner_r(nskb, sk);
3430
3431 /* Copy data, releasing collapsed skbs. */
3432 while (copy > 0) {
3433 int offset = start - TCP_SKB_CB(skb)->seq;
3434 int size = TCP_SKB_CB(skb)->end_seq - start;
3435
09a62660 3436 BUG_ON(offset < 0);
1da177e4
LT
3437 if (size > 0) {
3438 size = min(copy, size);
3439 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3440 BUG();
3441 TCP_SKB_CB(nskb)->end_seq += size;
3442 copy -= size;
3443 start += size;
3444 }
3445 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3446 struct sk_buff *next = skb->next;
8728b834 3447 __skb_unlink(skb, list);
1da177e4
LT
3448 __kfree_skb(skb);
3449 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3450 skb = next;
3451 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3452 return;
3453 }
3454 }
3455 }
3456}
3457
3458/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3459 * and tcp_collapse() them until all the queue is collapsed.
3460 */
3461static void tcp_collapse_ofo_queue(struct sock *sk)
3462{
3463 struct tcp_sock *tp = tcp_sk(sk);
3464 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3465 struct sk_buff *head;
3466 u32 start, end;
3467
3468 if (skb == NULL)
3469 return;
3470
3471 start = TCP_SKB_CB(skb)->seq;
3472 end = TCP_SKB_CB(skb)->end_seq;
3473 head = skb;
3474
3475 for (;;) {
3476 skb = skb->next;
3477
3478 /* Segment is terminated when we see gap or when
3479 * we are at the end of all the queue. */
3480 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3481 after(TCP_SKB_CB(skb)->seq, end) ||
3482 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3483 tcp_collapse(sk, &tp->out_of_order_queue,
3484 head, skb, start, end);
1da177e4
LT
3485 head = skb;
3486 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3487 break;
3488 /* Start new segment */
3489 start = TCP_SKB_CB(skb)->seq;
3490 end = TCP_SKB_CB(skb)->end_seq;
3491 } else {
3492 if (before(TCP_SKB_CB(skb)->seq, start))
3493 start = TCP_SKB_CB(skb)->seq;
3494 if (after(TCP_SKB_CB(skb)->end_seq, end))
3495 end = TCP_SKB_CB(skb)->end_seq;
3496 }
3497 }
3498}
3499
3500/* Reduce allocated memory if we can, trying to get
3501 * the socket within its memory limits again.
3502 *
3503 * Return less than zero if we should start dropping frames
3504 * until the socket owning process reads some of the data
3505 * to stabilize the situation.
3506 */
3507static int tcp_prune_queue(struct sock *sk)
3508{
3509 struct tcp_sock *tp = tcp_sk(sk);
3510
3511 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3512
3513 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3514
3515 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3516 tcp_clamp_window(sk, tp);
3517 else if (tcp_memory_pressure)
3518 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3519
3520 tcp_collapse_ofo_queue(sk);
8728b834
DM
3521 tcp_collapse(sk, &sk->sk_receive_queue,
3522 sk->sk_receive_queue.next,
1da177e4
LT
3523 (struct sk_buff*)&sk->sk_receive_queue,
3524 tp->copied_seq, tp->rcv_nxt);
3525 sk_stream_mem_reclaim(sk);
3526
3527 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3528 return 0;
3529
3530 /* Collapsing did not help, destructive actions follow.
3531 * This must not ever occur. */
3532
3533 /* First, purge the out_of_order queue. */
b03efcfb
DM
3534 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3535 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3536 __skb_queue_purge(&tp->out_of_order_queue);
3537
3538 /* Reset SACK state. A conforming SACK implementation will
3539 * do the same at a timeout based retransmit. When a connection
3540 * is in a sad state like this, we care only about integrity
3541 * of the connection not performance.
3542 */
3543 if (tp->rx_opt.sack_ok)
3544 tcp_sack_reset(&tp->rx_opt);
3545 sk_stream_mem_reclaim(sk);
3546 }
3547
3548 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3549 return 0;
3550
3551 /* If we are really being abused, tell the caller to silently
3552 * drop receive data on the floor. It will get retransmitted
3553 * and hopefully then we'll have sufficient space.
3554 */
3555 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3556
3557 /* Massive buffer overcommit. */
3558 tp->pred_flags = 0;
3559 return -1;
3560}
3561
3562
3563/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3564 * As additional protections, we do not touch cwnd in retransmission phases,
3565 * and if application hit its sndbuf limit recently.
3566 */
3567void tcp_cwnd_application_limited(struct sock *sk)
3568{
3569 struct tcp_sock *tp = tcp_sk(sk);
3570
6687e988 3571 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3572 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3573 /* Limited by application or receiver window. */
d254bcdb
IJ
3574 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3575 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3576 if (win_used < tp->snd_cwnd) {
6687e988 3577 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3578 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3579 }
3580 tp->snd_cwnd_used = 0;
3581 }
3582 tp->snd_cwnd_stamp = tcp_time_stamp;
3583}
3584
40efc6fa 3585static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
0d9901df
DM
3586{
3587 /* If the user specified a specific send buffer setting, do
3588 * not modify it.
3589 */
3590 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3591 return 0;
3592
3593 /* If we are under global TCP memory pressure, do not expand. */
3594 if (tcp_memory_pressure)
3595 return 0;
3596
3597 /* If we are under soft global TCP memory pressure, do not expand. */
3598 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3599 return 0;
3600
3601 /* If we filled the congestion window, do not expand. */
3602 if (tp->packets_out >= tp->snd_cwnd)
3603 return 0;
3604
3605 return 1;
3606}
1da177e4
LT
3607
3608/* When incoming ACK allowed to free some skb from write_queue,
3609 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3610 * on the exit from tcp input handler.
3611 *
3612 * PROBLEM: sndbuf expansion does not work well with largesend.
3613 */
3614static void tcp_new_space(struct sock *sk)
3615{
3616 struct tcp_sock *tp = tcp_sk(sk);
3617
0d9901df 3618 if (tcp_should_expand_sndbuf(sk, tp)) {
c1b4a7e6 3619 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3620 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3621 demanded = max_t(unsigned int, tp->snd_cwnd,
3622 tp->reordering + 1);
3623 sndmem *= 2*demanded;
3624 if (sndmem > sk->sk_sndbuf)
3625 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3626 tp->snd_cwnd_stamp = tcp_time_stamp;
3627 }
3628
3629 sk->sk_write_space(sk);
3630}
3631
40efc6fa 3632static void tcp_check_space(struct sock *sk)
1da177e4
LT
3633{
3634 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3635 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3636 if (sk->sk_socket &&
3637 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3638 tcp_new_space(sk);
3639 }
3640}
3641
40efc6fa 3642static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
1da177e4 3643{
55c97f3e 3644 tcp_push_pending_frames(sk, tp);
1da177e4
LT
3645 tcp_check_space(sk);
3646}
3647
3648/*
3649 * Check if sending an ack is needed.
3650 */
3651static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3652{
3653 struct tcp_sock *tp = tcp_sk(sk);
3654
3655 /* More than one full frame received... */
463c84b9 3656 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3657 /* ... and right edge of window advances far enough.
3658 * (tcp_recvmsg() will send ACK otherwise). Or...
3659 */
3660 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3661 /* We ACK each frame or... */
463c84b9 3662 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3663 /* We have out of order data. */
3664 (ofo_possible &&
3665 skb_peek(&tp->out_of_order_queue))) {
3666 /* Then ack it now */
3667 tcp_send_ack(sk);
3668 } else {
3669 /* Else, send delayed ack. */
3670 tcp_send_delayed_ack(sk);
3671 }
3672}
3673
40efc6fa 3674static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3675{
463c84b9 3676 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3677 /* We sent a data segment already. */
3678 return;
3679 }
3680 __tcp_ack_snd_check(sk, 1);
3681}
3682
3683/*
3684 * This routine is only called when we have urgent data
caa20d9a 3685 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3686 * moved inline now as tcp_urg is only called from one
3687 * place. We handle URGent data wrong. We have to - as
3688 * BSD still doesn't use the correction from RFC961.
3689 * For 1003.1g we should support a new option TCP_STDURG to permit
3690 * either form (or just set the sysctl tcp_stdurg).
3691 */
3692
3693static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3694{
3695 struct tcp_sock *tp = tcp_sk(sk);
3696 u32 ptr = ntohs(th->urg_ptr);
3697
3698 if (ptr && !sysctl_tcp_stdurg)
3699 ptr--;
3700 ptr += ntohl(th->seq);
3701
3702 /* Ignore urgent data that we've already seen and read. */
3703 if (after(tp->copied_seq, ptr))
3704 return;
3705
3706 /* Do not replay urg ptr.
3707 *
3708 * NOTE: interesting situation not covered by specs.
3709 * Misbehaving sender may send urg ptr, pointing to segment,
3710 * which we already have in ofo queue. We are not able to fetch
3711 * such data and will stay in TCP_URG_NOTYET until will be eaten
3712 * by recvmsg(). Seems, we are not obliged to handle such wicked
3713 * situations. But it is worth to think about possibility of some
3714 * DoSes using some hypothetical application level deadlock.
3715 */
3716 if (before(ptr, tp->rcv_nxt))
3717 return;
3718
3719 /* Do we already have a newer (or duplicate) urgent pointer? */
3720 if (tp->urg_data && !after(ptr, tp->urg_seq))
3721 return;
3722
3723 /* Tell the world about our new urgent pointer. */
3724 sk_send_sigurg(sk);
3725
3726 /* We may be adding urgent data when the last byte read was
3727 * urgent. To do this requires some care. We cannot just ignore
3728 * tp->copied_seq since we would read the last urgent byte again
3729 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 3730 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
3731 *
3732 * NOTE. Double Dutch. Rendering to plain English: author of comment
3733 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3734 * and expect that both A and B disappear from stream. This is _wrong_.
3735 * Though this happens in BSD with high probability, this is occasional.
3736 * Any application relying on this is buggy. Note also, that fix "works"
3737 * only in this artificial test. Insert some normal data between A and B and we will
3738 * decline of BSD again. Verdict: it is better to remove to trap
3739 * buggy users.
3740 */
3741 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3742 !sock_flag(sk, SOCK_URGINLINE) &&
3743 tp->copied_seq != tp->rcv_nxt) {
3744 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3745 tp->copied_seq++;
3746 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 3747 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
3748 __kfree_skb(skb);
3749 }
3750 }
3751
3752 tp->urg_data = TCP_URG_NOTYET;
3753 tp->urg_seq = ptr;
3754
3755 /* Disable header prediction. */
3756 tp->pred_flags = 0;
3757}
3758
3759/* This is the 'fast' part of urgent handling. */
3760static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3761{
3762 struct tcp_sock *tp = tcp_sk(sk);
3763
3764 /* Check if we get a new urgent pointer - normally not. */
3765 if (th->urg)
3766 tcp_check_urg(sk,th);
3767
3768 /* Do we wait for any urgent data? - normally not... */
3769 if (tp->urg_data == TCP_URG_NOTYET) {
3770 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3771 th->syn;
3772
3773 /* Is the urgent pointer pointing into this packet? */
3774 if (ptr < skb->len) {
3775 u8 tmp;
3776 if (skb_copy_bits(skb, ptr, &tmp, 1))
3777 BUG();
3778 tp->urg_data = TCP_URG_VALID | tmp;
3779 if (!sock_flag(sk, SOCK_DEAD))
3780 sk->sk_data_ready(sk, 0);
3781 }
3782 }
3783}
3784
3785static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3786{
3787 struct tcp_sock *tp = tcp_sk(sk);
3788 int chunk = skb->len - hlen;
3789 int err;
3790
3791 local_bh_enable();
3792 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3793 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3794 else
3795 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3796 tp->ucopy.iov);
3797
3798 if (!err) {
3799 tp->ucopy.len -= chunk;
3800 tp->copied_seq += chunk;
3801 tcp_rcv_space_adjust(sk);
3802 }
3803
3804 local_bh_disable();
3805 return err;
3806}
3807
b51655b9 3808static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 3809{
b51655b9 3810 __sum16 result;
1da177e4
LT
3811
3812 if (sock_owned_by_user(sk)) {
3813 local_bh_enable();
3814 result = __tcp_checksum_complete(skb);
3815 local_bh_disable();
3816 } else {
3817 result = __tcp_checksum_complete(skb);
3818 }
3819 return result;
3820}
3821
40efc6fa 3822static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
3823{
3824 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3825 __tcp_checksum_complete_user(sk, skb);
3826}
3827
1a2449a8
CL
3828#ifdef CONFIG_NET_DMA
3829static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3830{
3831 struct tcp_sock *tp = tcp_sk(sk);
3832 int chunk = skb->len - hlen;
3833 int dma_cookie;
3834 int copied_early = 0;
3835
3836 if (tp->ucopy.wakeup)
3837 return 0;
3838
3839 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3840 tp->ucopy.dma_chan = get_softnet_dma();
3841
3842 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3843
3844 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3845 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3846
3847 if (dma_cookie < 0)
3848 goto out;
3849
3850 tp->ucopy.dma_cookie = dma_cookie;
3851 copied_early = 1;
3852
3853 tp->ucopy.len -= chunk;
3854 tp->copied_seq += chunk;
3855 tcp_rcv_space_adjust(sk);
3856
3857 if ((tp->ucopy.len == 0) ||
3858 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3859 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3860 tp->ucopy.wakeup = 1;
3861 sk->sk_data_ready(sk, 0);
3862 }
3863 } else if (chunk > 0) {
3864 tp->ucopy.wakeup = 1;
3865 sk->sk_data_ready(sk, 0);
3866 }
3867out:
3868 return copied_early;
3869}
3870#endif /* CONFIG_NET_DMA */
3871
1da177e4
LT
3872/*
3873 * TCP receive function for the ESTABLISHED state.
3874 *
3875 * It is split into a fast path and a slow path. The fast path is
3876 * disabled when:
3877 * - A zero window was announced from us - zero window probing
3878 * is only handled properly in the slow path.
3879 * - Out of order segments arrived.
3880 * - Urgent data is expected.
3881 * - There is no buffer space left
3882 * - Unexpected TCP flags/window values/header lengths are received
3883 * (detected by checking the TCP header against pred_flags)
3884 * - Data is sent in both directions. Fast path only supports pure senders
3885 * or pure receivers (this means either the sequence number or the ack
3886 * value must stay constant)
3887 * - Unexpected TCP option.
3888 *
3889 * When these conditions are not satisfied it drops into a standard
3890 * receive procedure patterned after RFC793 to handle all cases.
3891 * The first three cases are guaranteed by proper pred_flags setting,
3892 * the rest is checked inline. Fast processing is turned on in
3893 * tcp_data_queue when everything is OK.
3894 */
3895int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3896 struct tcphdr *th, unsigned len)
3897{
3898 struct tcp_sock *tp = tcp_sk(sk);
3899
3900 /*
3901 * Header prediction.
3902 * The code loosely follows the one in the famous
3903 * "30 instruction TCP receive" Van Jacobson mail.
3904 *
3905 * Van's trick is to deposit buffers into socket queue
3906 * on a device interrupt, to call tcp_recv function
3907 * on the receive process context and checksum and copy
3908 * the buffer to user space. smart...
3909 *
3910 * Our current scheme is not silly either but we take the
3911 * extra cost of the net_bh soft interrupt processing...
3912 * We do checksum and copy also but from device to kernel.
3913 */
3914
3915 tp->rx_opt.saw_tstamp = 0;
3916
3917 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 3918 * if header_prediction is to be made
1da177e4
LT
3919 * 'S' will always be tp->tcp_header_len >> 2
3920 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3921 * turn it off (when there are holes in the receive
3922 * space for instance)
3923 * PSH flag is ignored.
3924 */
3925
3926 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3927 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3928 int tcp_header_len = tp->tcp_header_len;
3929
3930 /* Timestamp header prediction: tcp_header_len
3931 * is automatically equal to th->doff*4 due to pred_flags
3932 * match.
3933 */
3934
3935 /* Check timestamp */
3936 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 3937 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
3938
3939 /* No? Slow path! */
4f3608b7 3940 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3941 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3942 goto slow_path;
3943
3944 tp->rx_opt.saw_tstamp = 1;
3945 ++ptr;
3946 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3947 ++ptr;
3948 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3949
3950 /* If PAWS failed, check it more carefully in slow path */
3951 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3952 goto slow_path;
3953
3954 /* DO NOT update ts_recent here, if checksum fails
3955 * and timestamp was corrupted part, it will result
3956 * in a hung connection since we will drop all
3957 * future packets due to the PAWS test.
3958 */
3959 }
3960
3961 if (len <= tcp_header_len) {
3962 /* Bulk data transfer: sender */
3963 if (len == tcp_header_len) {
3964 /* Predicted packet is in window by definition.
3965 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3966 * Hence, check seq<=rcv_wup reduces to:
3967 */
3968 if (tcp_header_len ==
3969 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3970 tp->rcv_nxt == tp->rcv_wup)
3971 tcp_store_ts_recent(tp);
3972
1da177e4
LT
3973 /* We know that such packets are checksummed
3974 * on entry.
3975 */
3976 tcp_ack(sk, skb, 0);
3977 __kfree_skb(skb);
55c97f3e 3978 tcp_data_snd_check(sk, tp);
1da177e4
LT
3979 return 0;
3980 } else { /* Header too small */
3981 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3982 goto discard;
3983 }
3984 } else {
3985 int eaten = 0;
1a2449a8 3986 int copied_early = 0;
1da177e4 3987
1a2449a8
CL
3988 if (tp->copied_seq == tp->rcv_nxt &&
3989 len - tcp_header_len <= tp->ucopy.len) {
3990#ifdef CONFIG_NET_DMA
3991 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3992 copied_early = 1;
3993 eaten = 1;
3994 }
3995#endif
3996 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3997 __set_current_state(TASK_RUNNING);
1da177e4 3998
1a2449a8
CL
3999 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4000 eaten = 1;
4001 }
4002 if (eaten) {
1da177e4
LT
4003 /* Predicted packet is in window by definition.
4004 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4005 * Hence, check seq<=rcv_wup reduces to:
4006 */
4007 if (tcp_header_len ==
4008 (sizeof(struct tcphdr) +
4009 TCPOLEN_TSTAMP_ALIGNED) &&
4010 tp->rcv_nxt == tp->rcv_wup)
4011 tcp_store_ts_recent(tp);
4012
463c84b9 4013 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4014
4015 __skb_pull(skb, tcp_header_len);
4016 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4017 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4018 }
1a2449a8
CL
4019 if (copied_early)
4020 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4021 }
4022 if (!eaten) {
4023 if (tcp_checksum_complete_user(sk, skb))
4024 goto csum_error;
4025
4026 /* Predicted packet is in window by definition.
4027 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4028 * Hence, check seq<=rcv_wup reduces to:
4029 */
4030 if (tcp_header_len ==
4031 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4032 tp->rcv_nxt == tp->rcv_wup)
4033 tcp_store_ts_recent(tp);
4034
463c84b9 4035 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4036
4037 if ((int)skb->truesize > sk->sk_forward_alloc)
4038 goto step5;
4039
4040 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4041
4042 /* Bulk data transfer: receiver */
4043 __skb_pull(skb,tcp_header_len);
4044 __skb_queue_tail(&sk->sk_receive_queue, skb);
4045 sk_stream_set_owner_r(skb, sk);
4046 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4047 }
4048
4049 tcp_event_data_recv(sk, tp, skb);
4050
4051 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4052 /* Well, only one small jumplet in fast path... */
4053 tcp_ack(sk, skb, FLAG_DATA);
55c97f3e 4054 tcp_data_snd_check(sk, tp);
463c84b9 4055 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4056 goto no_ack;
4057 }
4058
31432412 4059 __tcp_ack_snd_check(sk, 0);
1da177e4 4060no_ack:
1a2449a8
CL
4061#ifdef CONFIG_NET_DMA
4062 if (copied_early)
4063 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4064 else
4065#endif
1da177e4
LT
4066 if (eaten)
4067 __kfree_skb(skb);
4068 else
4069 sk->sk_data_ready(sk, 0);
4070 return 0;
4071 }
4072 }
4073
4074slow_path:
4075 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4076 goto csum_error;
4077
4078 /*
4079 * RFC1323: H1. Apply PAWS check first.
4080 */
4081 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4082 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4083 if (!th->rst) {
4084 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4085 tcp_send_dupack(sk, skb);
4086 goto discard;
4087 }
4088 /* Resets are accepted even if PAWS failed.
4089
4090 ts_recent update must be made after we are sure
4091 that the packet is in window.
4092 */
4093 }
4094
4095 /*
4096 * Standard slow path.
4097 */
4098
4099 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4100 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4101 * (RST) segments are validated by checking their SEQ-fields."
4102 * And page 69: "If an incoming segment is not acceptable,
4103 * an acknowledgment should be sent in reply (unless the RST bit
4104 * is set, if so drop the segment and return)".
4105 */
4106 if (!th->rst)
4107 tcp_send_dupack(sk, skb);
4108 goto discard;
4109 }
4110
4111 if(th->rst) {
4112 tcp_reset(sk);
4113 goto discard;
4114 }
4115
4116 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4117
4118 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4119 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4120 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4121 tcp_reset(sk);
4122 return 1;
4123 }
4124
4125step5:
4126 if(th->ack)
4127 tcp_ack(sk, skb, FLAG_SLOWPATH);
4128
463c84b9 4129 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4130
4131 /* Process urgent data. */
4132 tcp_urg(sk, skb, th);
4133
4134 /* step 7: process the segment text */
4135 tcp_data_queue(sk, skb);
4136
55c97f3e 4137 tcp_data_snd_check(sk, tp);
1da177e4
LT
4138 tcp_ack_snd_check(sk);
4139 return 0;
4140
4141csum_error:
4142 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4143
4144discard:
4145 __kfree_skb(skb);
4146 return 0;
4147}
4148
4149static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4150 struct tcphdr *th, unsigned len)
4151{
4152 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4153 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4154 int saved_clamp = tp->rx_opt.mss_clamp;
4155
4156 tcp_parse_options(skb, &tp->rx_opt, 0);
4157
4158 if (th->ack) {
4159 /* rfc793:
4160 * "If the state is SYN-SENT then
4161 * first check the ACK bit
4162 * If the ACK bit is set
4163 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4164 * a reset (unless the RST bit is set, if so drop
4165 * the segment and return)"
4166 *
4167 * We do not send data with SYN, so that RFC-correct
4168 * test reduces to:
4169 */
4170 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4171 goto reset_and_undo;
4172
4173 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4174 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4175 tcp_time_stamp)) {
4176 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4177 goto reset_and_undo;
4178 }
4179
4180 /* Now ACK is acceptable.
4181 *
4182 * "If the RST bit is set
4183 * If the ACK was acceptable then signal the user "error:
4184 * connection reset", drop the segment, enter CLOSED state,
4185 * delete TCB, and return."
4186 */
4187
4188 if (th->rst) {
4189 tcp_reset(sk);
4190 goto discard;
4191 }
4192
4193 /* rfc793:
4194 * "fifth, if neither of the SYN or RST bits is set then
4195 * drop the segment and return."
4196 *
4197 * See note below!
4198 * --ANK(990513)
4199 */
4200 if (!th->syn)
4201 goto discard_and_undo;
4202
4203 /* rfc793:
4204 * "If the SYN bit is on ...
4205 * are acceptable then ...
4206 * (our SYN has been ACKed), change the connection
4207 * state to ESTABLISHED..."
4208 */
4209
4210 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4211
4212 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4213 tcp_ack(sk, skb, FLAG_SLOWPATH);
4214
4215 /* Ok.. it's good. Set up sequence numbers and
4216 * move to established.
4217 */
4218 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4219 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4220
4221 /* RFC1323: The window in SYN & SYN/ACK segments is
4222 * never scaled.
4223 */
4224 tp->snd_wnd = ntohs(th->window);
4225 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4226
4227 if (!tp->rx_opt.wscale_ok) {
4228 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4229 tp->window_clamp = min(tp->window_clamp, 65535U);
4230 }
4231
4232 if (tp->rx_opt.saw_tstamp) {
4233 tp->rx_opt.tstamp_ok = 1;
4234 tp->tcp_header_len =
4235 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4236 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4237 tcp_store_ts_recent(tp);
4238 } else {
4239 tp->tcp_header_len = sizeof(struct tcphdr);
4240 }
4241
4242 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4243 tp->rx_opt.sack_ok |= 2;
4244
5d424d5a 4245 tcp_mtup_init(sk);
d83d8461 4246 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4247 tcp_initialize_rcv_mss(sk);
4248
4249 /* Remember, tcp_poll() does not lock socket!
4250 * Change state from SYN-SENT only after copied_seq
4251 * is initialized. */
4252 tp->copied_seq = tp->rcv_nxt;
e16aa207 4253 smp_mb();
1da177e4
LT
4254 tcp_set_state(sk, TCP_ESTABLISHED);
4255
6b877699
VY
4256 security_inet_conn_established(sk, skb);
4257
1da177e4 4258 /* Make sure socket is routed, for correct metrics. */
8292a17a 4259 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4260
4261 tcp_init_metrics(sk);
4262
6687e988 4263 tcp_init_congestion_control(sk);
317a76f9 4264
1da177e4
LT
4265 /* Prevent spurious tcp_cwnd_restart() on first data
4266 * packet.
4267 */
4268 tp->lsndtime = tcp_time_stamp;
4269
4270 tcp_init_buffer_space(sk);
4271
4272 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4273 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4274
4275 if (!tp->rx_opt.snd_wscale)
4276 __tcp_fast_path_on(tp, tp->snd_wnd);
4277 else
4278 tp->pred_flags = 0;
4279
4280 if (!sock_flag(sk, SOCK_DEAD)) {
4281 sk->sk_state_change(sk);
4282 sk_wake_async(sk, 0, POLL_OUT);
4283 }
4284
295f7324
ACM
4285 if (sk->sk_write_pending ||
4286 icsk->icsk_accept_queue.rskq_defer_accept ||
4287 icsk->icsk_ack.pingpong) {
1da177e4
LT
4288 /* Save one ACK. Data will be ready after
4289 * several ticks, if write_pending is set.
4290 *
4291 * It may be deleted, but with this feature tcpdumps
4292 * look so _wonderfully_ clever, that I was not able
4293 * to stand against the temptation 8) --ANK
4294 */
463c84b9 4295 inet_csk_schedule_ack(sk);
295f7324
ACM
4296 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4297 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4298 tcp_incr_quickack(sk);
4299 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4300 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4301 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4302
4303discard:
4304 __kfree_skb(skb);
4305 return 0;
4306 } else {
4307 tcp_send_ack(sk);
4308 }
4309 return -1;
4310 }
4311
4312 /* No ACK in the segment */
4313
4314 if (th->rst) {
4315 /* rfc793:
4316 * "If the RST bit is set
4317 *
4318 * Otherwise (no ACK) drop the segment and return."
4319 */
4320
4321 goto discard_and_undo;
4322 }
4323
4324 /* PAWS check. */
4325 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4326 goto discard_and_undo;
4327
4328 if (th->syn) {
4329 /* We see SYN without ACK. It is attempt of
4330 * simultaneous connect with crossed SYNs.
4331 * Particularly, it can be connect to self.
4332 */
4333 tcp_set_state(sk, TCP_SYN_RECV);
4334
4335 if (tp->rx_opt.saw_tstamp) {
4336 tp->rx_opt.tstamp_ok = 1;
4337 tcp_store_ts_recent(tp);
4338 tp->tcp_header_len =
4339 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4340 } else {
4341 tp->tcp_header_len = sizeof(struct tcphdr);
4342 }
4343
4344 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4345 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4346
4347 /* RFC1323: The window in SYN & SYN/ACK segments is
4348 * never scaled.
4349 */
4350 tp->snd_wnd = ntohs(th->window);
4351 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4352 tp->max_window = tp->snd_wnd;
4353
4354 TCP_ECN_rcv_syn(tp, th);
1da177e4 4355
5d424d5a 4356 tcp_mtup_init(sk);
d83d8461 4357 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4358 tcp_initialize_rcv_mss(sk);
4359
4360
4361 tcp_send_synack(sk);
4362#if 0
4363 /* Note, we could accept data and URG from this segment.
4364 * There are no obstacles to make this.
4365 *
4366 * However, if we ignore data in ACKless segments sometimes,
4367 * we have no reasons to accept it sometimes.
4368 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4369 * is not flawless. So, discard packet for sanity.
4370 * Uncomment this return to process the data.
4371 */
4372 return -1;
4373#else
4374 goto discard;
4375#endif
4376 }
4377 /* "fifth, if neither of the SYN or RST bits is set then
4378 * drop the segment and return."
4379 */
4380
4381discard_and_undo:
4382 tcp_clear_options(&tp->rx_opt);
4383 tp->rx_opt.mss_clamp = saved_clamp;
4384 goto discard;
4385
4386reset_and_undo:
4387 tcp_clear_options(&tp->rx_opt);
4388 tp->rx_opt.mss_clamp = saved_clamp;
4389 return 1;
4390}
4391
4392
4393/*
4394 * This function implements the receiving procedure of RFC 793 for
4395 * all states except ESTABLISHED and TIME_WAIT.
4396 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4397 * address independent.
4398 */
4399
4400int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4401 struct tcphdr *th, unsigned len)
4402{
4403 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4404 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4405 int queued = 0;
4406
4407 tp->rx_opt.saw_tstamp = 0;
4408
4409 switch (sk->sk_state) {
4410 case TCP_CLOSE:
4411 goto discard;
4412
4413 case TCP_LISTEN:
4414 if(th->ack)
4415 return 1;
4416
4417 if(th->rst)
4418 goto discard;
4419
4420 if(th->syn) {
8292a17a 4421 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4422 return 1;
4423
1da177e4
LT
4424 /* Now we have several options: In theory there is
4425 * nothing else in the frame. KA9Q has an option to
4426 * send data with the syn, BSD accepts data with the
4427 * syn up to the [to be] advertised window and
4428 * Solaris 2.1 gives you a protocol error. For now
4429 * we just ignore it, that fits the spec precisely
4430 * and avoids incompatibilities. It would be nice in
4431 * future to drop through and process the data.
4432 *
4433 * Now that TTCP is starting to be used we ought to
4434 * queue this data.
4435 * But, this leaves one open to an easy denial of
4436 * service attack, and SYN cookies can't defend
4437 * against this problem. So, we drop the data
fb7e2399
MN
4438 * in the interest of security over speed unless
4439 * it's still in use.
1da177e4 4440 */
fb7e2399
MN
4441 kfree_skb(skb);
4442 return 0;
1da177e4
LT
4443 }
4444 goto discard;
4445
4446 case TCP_SYN_SENT:
1da177e4
LT
4447 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4448 if (queued >= 0)
4449 return queued;
4450
4451 /* Do step6 onward by hand. */
4452 tcp_urg(sk, skb, th);
4453 __kfree_skb(skb);
55c97f3e 4454 tcp_data_snd_check(sk, tp);
1da177e4
LT
4455 return 0;
4456 }
4457
4458 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4459 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4460 if (!th->rst) {
4461 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4462 tcp_send_dupack(sk, skb);
4463 goto discard;
4464 }
4465 /* Reset is accepted even if it did not pass PAWS. */
4466 }
4467
4468 /* step 1: check sequence number */
4469 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4470 if (!th->rst)
4471 tcp_send_dupack(sk, skb);
4472 goto discard;
4473 }
4474
4475 /* step 2: check RST bit */
4476 if(th->rst) {
4477 tcp_reset(sk);
4478 goto discard;
4479 }
4480
4481 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4482
4483 /* step 3: check security and precedence [ignored] */
4484
4485 /* step 4:
4486 *
4487 * Check for a SYN in window.
4488 */
4489 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4490 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4491 tcp_reset(sk);
4492 return 1;
4493 }
4494
4495 /* step 5: check the ACK field */
4496 if (th->ack) {
4497 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4498
4499 switch(sk->sk_state) {
4500 case TCP_SYN_RECV:
4501 if (acceptable) {
4502 tp->copied_seq = tp->rcv_nxt;
e16aa207 4503 smp_mb();
1da177e4
LT
4504 tcp_set_state(sk, TCP_ESTABLISHED);
4505 sk->sk_state_change(sk);
4506
4507 /* Note, that this wakeup is only for marginal
4508 * crossed SYN case. Passively open sockets
4509 * are not waked up, because sk->sk_sleep ==
4510 * NULL and sk->sk_socket == NULL.
4511 */
4512 if (sk->sk_socket) {
4513 sk_wake_async(sk,0,POLL_OUT);
4514 }
4515
4516 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4517 tp->snd_wnd = ntohs(th->window) <<
4518 tp->rx_opt.snd_wscale;
4519 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4520 TCP_SKB_CB(skb)->seq);
4521
4522 /* tcp_ack considers this ACK as duplicate
4523 * and does not calculate rtt.
4524 * Fix it at least with timestamps.
4525 */
4526 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4527 !tp->srtt)
2d2abbab 4528 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4529
4530 if (tp->rx_opt.tstamp_ok)
4531 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4532
4533 /* Make sure socket is routed, for
4534 * correct metrics.
4535 */
8292a17a 4536 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4537
4538 tcp_init_metrics(sk);
4539
6687e988 4540 tcp_init_congestion_control(sk);
317a76f9 4541
1da177e4
LT
4542 /* Prevent spurious tcp_cwnd_restart() on
4543 * first data packet.
4544 */
4545 tp->lsndtime = tcp_time_stamp;
4546
5d424d5a 4547 tcp_mtup_init(sk);
1da177e4
LT
4548 tcp_initialize_rcv_mss(sk);
4549 tcp_init_buffer_space(sk);
4550 tcp_fast_path_on(tp);
4551 } else {
4552 return 1;
4553 }
4554 break;
4555
4556 case TCP_FIN_WAIT1:
4557 if (tp->snd_una == tp->write_seq) {
4558 tcp_set_state(sk, TCP_FIN_WAIT2);
4559 sk->sk_shutdown |= SEND_SHUTDOWN;
4560 dst_confirm(sk->sk_dst_cache);
4561
4562 if (!sock_flag(sk, SOCK_DEAD))
4563 /* Wake up lingering close() */
4564 sk->sk_state_change(sk);
4565 else {
4566 int tmo;
4567
4568 if (tp->linger2 < 0 ||
4569 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4570 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4571 tcp_done(sk);
4572 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4573 return 1;
4574 }
4575
463c84b9 4576 tmo = tcp_fin_time(sk);
1da177e4 4577 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4578 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4579 } else if (th->fin || sock_owned_by_user(sk)) {
4580 /* Bad case. We could lose such FIN otherwise.
4581 * It is not a big problem, but it looks confusing
4582 * and not so rare event. We still can lose it now,
4583 * if it spins in bh_lock_sock(), but it is really
4584 * marginal case.
4585 */
463c84b9 4586 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4587 } else {
4588 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4589 goto discard;
4590 }
4591 }
4592 }
4593 break;
4594
4595 case TCP_CLOSING:
4596 if (tp->snd_una == tp->write_seq) {
4597 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4598 goto discard;
4599 }
4600 break;
4601
4602 case TCP_LAST_ACK:
4603 if (tp->snd_una == tp->write_seq) {
4604 tcp_update_metrics(sk);
4605 tcp_done(sk);
4606 goto discard;
4607 }
4608 break;
4609 }
4610 } else
4611 goto discard;
4612
4613 /* step 6: check the URG bit */
4614 tcp_urg(sk, skb, th);
4615
4616 /* step 7: process the segment text */
4617 switch (sk->sk_state) {
4618 case TCP_CLOSE_WAIT:
4619 case TCP_CLOSING:
4620 case TCP_LAST_ACK:
4621 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4622 break;
4623 case TCP_FIN_WAIT1:
4624 case TCP_FIN_WAIT2:
4625 /* RFC 793 says to queue data in these states,
4626 * RFC 1122 says we MUST send a reset.
4627 * BSD 4.4 also does reset.
4628 */
4629 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4630 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4631 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4632 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4633 tcp_reset(sk);
4634 return 1;
4635 }
4636 }
4637 /* Fall through */
4638 case TCP_ESTABLISHED:
4639 tcp_data_queue(sk, skb);
4640 queued = 1;
4641 break;
4642 }
4643
4644 /* tcp_data could move socket to TIME-WAIT */
4645 if (sk->sk_state != TCP_CLOSE) {
55c97f3e 4646 tcp_data_snd_check(sk, tp);
1da177e4
LT
4647 tcp_ack_snd_check(sk);
4648 }
4649
4650 if (!queued) {
4651discard:
4652 __kfree_skb(skb);
4653 }
4654 return 0;
4655}
4656
4657EXPORT_SYMBOL(sysctl_tcp_ecn);
4658EXPORT_SYMBOL(sysctl_tcp_reordering);
4659EXPORT_SYMBOL(tcp_parse_options);
4660EXPORT_SYMBOL(tcp_rcv_established);
4661EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4662EXPORT_SYMBOL(tcp_initialize_rcv_mss);