]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/process.c
powerpc: tm: Enable transactional memory (TM) lazily for userspace
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66
67 /* Transactional Memory debug */
68 #ifdef TM_DEBUG_SW
69 #define TM_DEBUG(x...) printk(KERN_INFO x)
70 #else
71 #define TM_DEBUG(x...) do { } while(0)
72 #endif
73
74 extern unsigned long _get_SP(void);
75
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 static void check_if_tm_restore_required(struct task_struct *tsk)
78 {
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
90 }
91 }
92
93 static inline bool msr_tm_active(unsigned long msr)
94 {
95 return MSR_TM_ACTIVE(msr);
96 }
97 #else
98 static inline bool msr_tm_active(unsigned long msr) { return false; }
99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101
102 bool strict_msr_control;
103 EXPORT_SYMBOL(strict_msr_control);
104
105 static int __init enable_strict_msr_control(char *str)
106 {
107 strict_msr_control = true;
108 pr_info("Enabling strict facility control\n");
109
110 return 0;
111 }
112 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113
114 unsigned long msr_check_and_set(unsigned long bits)
115 {
116 unsigned long oldmsr = mfmsr();
117 unsigned long newmsr;
118
119 newmsr = oldmsr | bits;
120
121 #ifdef CONFIG_VSX
122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 newmsr |= MSR_VSX;
124 #endif
125
126 if (oldmsr != newmsr)
127 mtmsr_isync(newmsr);
128
129 return newmsr;
130 }
131
132 void __msr_check_and_clear(unsigned long bits)
133 {
134 unsigned long oldmsr = mfmsr();
135 unsigned long newmsr;
136
137 newmsr = oldmsr & ~bits;
138
139 #ifdef CONFIG_VSX
140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 newmsr &= ~MSR_VSX;
142 #endif
143
144 if (oldmsr != newmsr)
145 mtmsr_isync(newmsr);
146 }
147 EXPORT_SYMBOL(__msr_check_and_clear);
148
149 #ifdef CONFIG_PPC_FPU
150 void __giveup_fpu(struct task_struct *tsk)
151 {
152 unsigned long msr;
153
154 save_fpu(tsk);
155 msr = tsk->thread.regs->msr;
156 msr &= ~MSR_FP;
157 #ifdef CONFIG_VSX
158 if (cpu_has_feature(CPU_FTR_VSX))
159 msr &= ~MSR_VSX;
160 #endif
161 tsk->thread.regs->msr = msr;
162 }
163
164 void giveup_fpu(struct task_struct *tsk)
165 {
166 check_if_tm_restore_required(tsk);
167
168 msr_check_and_set(MSR_FP);
169 __giveup_fpu(tsk);
170 msr_check_and_clear(MSR_FP);
171 }
172 EXPORT_SYMBOL(giveup_fpu);
173
174 /*
175 * Make sure the floating-point register state in the
176 * the thread_struct is up to date for task tsk.
177 */
178 void flush_fp_to_thread(struct task_struct *tsk)
179 {
180 if (tsk->thread.regs) {
181 /*
182 * We need to disable preemption here because if we didn't,
183 * another process could get scheduled after the regs->msr
184 * test but before we have finished saving the FP registers
185 * to the thread_struct. That process could take over the
186 * FPU, and then when we get scheduled again we would store
187 * bogus values for the remaining FP registers.
188 */
189 preempt_disable();
190 if (tsk->thread.regs->msr & MSR_FP) {
191 /*
192 * This should only ever be called for current or
193 * for a stopped child process. Since we save away
194 * the FP register state on context switch,
195 * there is something wrong if a stopped child appears
196 * to still have its FP state in the CPU registers.
197 */
198 BUG_ON(tsk != current);
199 giveup_fpu(tsk);
200 }
201 preempt_enable();
202 }
203 }
204 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205
206 void enable_kernel_fp(void)
207 {
208 unsigned long cpumsr;
209
210 WARN_ON(preemptible());
211
212 cpumsr = msr_check_and_set(MSR_FP);
213
214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 check_if_tm_restore_required(current);
216 /*
217 * If a thread has already been reclaimed then the
218 * checkpointed registers are on the CPU but have definitely
219 * been saved by the reclaim code. Don't need to and *cannot*
220 * giveup as this would save to the 'live' structure not the
221 * checkpointed structure.
222 */
223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 return;
225 __giveup_fpu(current);
226 }
227 }
228 EXPORT_SYMBOL(enable_kernel_fp);
229
230 static int restore_fp(struct task_struct *tsk) {
231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232 load_fp_state(&current->thread.fp_state);
233 current->thread.load_fp++;
234 return 1;
235 }
236 return 0;
237 }
238 #else
239 static int restore_fp(struct task_struct *tsk) { return 0; }
240 #endif /* CONFIG_PPC_FPU */
241
242 #ifdef CONFIG_ALTIVEC
243 #define loadvec(thr) ((thr).load_vec)
244
245 static void __giveup_altivec(struct task_struct *tsk)
246 {
247 unsigned long msr;
248
249 save_altivec(tsk);
250 msr = tsk->thread.regs->msr;
251 msr &= ~MSR_VEC;
252 #ifdef CONFIG_VSX
253 if (cpu_has_feature(CPU_FTR_VSX))
254 msr &= ~MSR_VSX;
255 #endif
256 tsk->thread.regs->msr = msr;
257 }
258
259 void giveup_altivec(struct task_struct *tsk)
260 {
261 check_if_tm_restore_required(tsk);
262
263 msr_check_and_set(MSR_VEC);
264 __giveup_altivec(tsk);
265 msr_check_and_clear(MSR_VEC);
266 }
267 EXPORT_SYMBOL(giveup_altivec);
268
269 void enable_kernel_altivec(void)
270 {
271 unsigned long cpumsr;
272
273 WARN_ON(preemptible());
274
275 cpumsr = msr_check_and_set(MSR_VEC);
276
277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 check_if_tm_restore_required(current);
279 /*
280 * If a thread has already been reclaimed then the
281 * checkpointed registers are on the CPU but have definitely
282 * been saved by the reclaim code. Don't need to and *cannot*
283 * giveup as this would save to the 'live' structure not the
284 * checkpointed structure.
285 */
286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 return;
288 __giveup_altivec(current);
289 }
290 }
291 EXPORT_SYMBOL(enable_kernel_altivec);
292
293 /*
294 * Make sure the VMX/Altivec register state in the
295 * the thread_struct is up to date for task tsk.
296 */
297 void flush_altivec_to_thread(struct task_struct *tsk)
298 {
299 if (tsk->thread.regs) {
300 preempt_disable();
301 if (tsk->thread.regs->msr & MSR_VEC) {
302 BUG_ON(tsk != current);
303 giveup_altivec(tsk);
304 }
305 preempt_enable();
306 }
307 }
308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309
310 static int restore_altivec(struct task_struct *tsk)
311 {
312 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314 load_vr_state(&tsk->thread.vr_state);
315 tsk->thread.used_vr = 1;
316 tsk->thread.load_vec++;
317
318 return 1;
319 }
320 return 0;
321 }
322 #else
323 #define loadvec(thr) 0
324 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325 #endif /* CONFIG_ALTIVEC */
326
327 #ifdef CONFIG_VSX
328 static void __giveup_vsx(struct task_struct *tsk)
329 {
330 if (tsk->thread.regs->msr & MSR_FP)
331 __giveup_fpu(tsk);
332 if (tsk->thread.regs->msr & MSR_VEC)
333 __giveup_altivec(tsk);
334 tsk->thread.regs->msr &= ~MSR_VSX;
335 }
336
337 static void giveup_vsx(struct task_struct *tsk)
338 {
339 check_if_tm_restore_required(tsk);
340
341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 __giveup_vsx(tsk);
343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344 }
345
346 static void save_vsx(struct task_struct *tsk)
347 {
348 if (tsk->thread.regs->msr & MSR_FP)
349 save_fpu(tsk);
350 if (tsk->thread.regs->msr & MSR_VEC)
351 save_altivec(tsk);
352 }
353
354 void enable_kernel_vsx(void)
355 {
356 unsigned long cpumsr;
357
358 WARN_ON(preemptible());
359
360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361
362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
363 check_if_tm_restore_required(current);
364 /*
365 * If a thread has already been reclaimed then the
366 * checkpointed registers are on the CPU but have definitely
367 * been saved by the reclaim code. Don't need to and *cannot*
368 * giveup as this would save to the 'live' structure not the
369 * checkpointed structure.
370 */
371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
372 return;
373 if (current->thread.regs->msr & MSR_FP)
374 __giveup_fpu(current);
375 if (current->thread.regs->msr & MSR_VEC)
376 __giveup_altivec(current);
377 __giveup_vsx(current);
378 }
379 }
380 EXPORT_SYMBOL(enable_kernel_vsx);
381
382 void flush_vsx_to_thread(struct task_struct *tsk)
383 {
384 if (tsk->thread.regs) {
385 preempt_disable();
386 if (tsk->thread.regs->msr & MSR_VSX) {
387 BUG_ON(tsk != current);
388 giveup_vsx(tsk);
389 }
390 preempt_enable();
391 }
392 }
393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394
395 static int restore_vsx(struct task_struct *tsk)
396 {
397 if (cpu_has_feature(CPU_FTR_VSX)) {
398 tsk->thread.used_vsr = 1;
399 return 1;
400 }
401
402 return 0;
403 }
404 #else
405 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406 static inline void save_vsx(struct task_struct *tsk) { }
407 #endif /* CONFIG_VSX */
408
409 #ifdef CONFIG_SPE
410 void giveup_spe(struct task_struct *tsk)
411 {
412 check_if_tm_restore_required(tsk);
413
414 msr_check_and_set(MSR_SPE);
415 __giveup_spe(tsk);
416 msr_check_and_clear(MSR_SPE);
417 }
418 EXPORT_SYMBOL(giveup_spe);
419
420 void enable_kernel_spe(void)
421 {
422 WARN_ON(preemptible());
423
424 msr_check_and_set(MSR_SPE);
425
426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 check_if_tm_restore_required(current);
428 __giveup_spe(current);
429 }
430 }
431 EXPORT_SYMBOL(enable_kernel_spe);
432
433 void flush_spe_to_thread(struct task_struct *tsk)
434 {
435 if (tsk->thread.regs) {
436 preempt_disable();
437 if (tsk->thread.regs->msr & MSR_SPE) {
438 BUG_ON(tsk != current);
439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440 giveup_spe(tsk);
441 }
442 preempt_enable();
443 }
444 }
445 #endif /* CONFIG_SPE */
446
447 static unsigned long msr_all_available;
448
449 static int __init init_msr_all_available(void)
450 {
451 #ifdef CONFIG_PPC_FPU
452 msr_all_available |= MSR_FP;
453 #endif
454 #ifdef CONFIG_ALTIVEC
455 if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 msr_all_available |= MSR_VEC;
457 #endif
458 #ifdef CONFIG_VSX
459 if (cpu_has_feature(CPU_FTR_VSX))
460 msr_all_available |= MSR_VSX;
461 #endif
462 #ifdef CONFIG_SPE
463 if (cpu_has_feature(CPU_FTR_SPE))
464 msr_all_available |= MSR_SPE;
465 #endif
466
467 return 0;
468 }
469 early_initcall(init_msr_all_available);
470
471 void giveup_all(struct task_struct *tsk)
472 {
473 unsigned long usermsr;
474
475 if (!tsk->thread.regs)
476 return;
477
478 usermsr = tsk->thread.regs->msr;
479
480 if ((usermsr & msr_all_available) == 0)
481 return;
482
483 msr_check_and_set(msr_all_available);
484 check_if_tm_restore_required(tsk);
485
486 #ifdef CONFIG_PPC_FPU
487 if (usermsr & MSR_FP)
488 __giveup_fpu(tsk);
489 #endif
490 #ifdef CONFIG_ALTIVEC
491 if (usermsr & MSR_VEC)
492 __giveup_altivec(tsk);
493 #endif
494 #ifdef CONFIG_VSX
495 if (usermsr & MSR_VSX)
496 __giveup_vsx(tsk);
497 #endif
498 #ifdef CONFIG_SPE
499 if (usermsr & MSR_SPE)
500 __giveup_spe(tsk);
501 #endif
502
503 msr_check_and_clear(msr_all_available);
504 }
505 EXPORT_SYMBOL(giveup_all);
506
507 void restore_math(struct pt_regs *regs)
508 {
509 unsigned long msr;
510
511 if (!msr_tm_active(regs->msr) &&
512 !current->thread.load_fp && !loadvec(current->thread))
513 return;
514
515 msr = regs->msr;
516 msr_check_and_set(msr_all_available);
517
518 /*
519 * Only reload if the bit is not set in the user MSR, the bit BEING set
520 * indicates that the registers are hot
521 */
522 if ((!(msr & MSR_FP)) && restore_fp(current))
523 msr |= MSR_FP | current->thread.fpexc_mode;
524
525 if ((!(msr & MSR_VEC)) && restore_altivec(current))
526 msr |= MSR_VEC;
527
528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
529 restore_vsx(current)) {
530 msr |= MSR_VSX;
531 }
532
533 msr_check_and_clear(msr_all_available);
534
535 regs->msr = msr;
536 }
537
538 void save_all(struct task_struct *tsk)
539 {
540 unsigned long usermsr;
541
542 if (!tsk->thread.regs)
543 return;
544
545 usermsr = tsk->thread.regs->msr;
546
547 if ((usermsr & msr_all_available) == 0)
548 return;
549
550 msr_check_and_set(msr_all_available);
551
552 /*
553 * Saving the way the register space is in hardware, save_vsx boils
554 * down to a save_fpu() and save_altivec()
555 */
556 if (usermsr & MSR_VSX) {
557 save_vsx(tsk);
558 } else {
559 if (usermsr & MSR_FP)
560 save_fpu(tsk);
561
562 if (usermsr & MSR_VEC)
563 save_altivec(tsk);
564 }
565
566 if (usermsr & MSR_SPE)
567 __giveup_spe(tsk);
568
569 msr_check_and_clear(msr_all_available);
570 }
571
572 void flush_all_to_thread(struct task_struct *tsk)
573 {
574 if (tsk->thread.regs) {
575 preempt_disable();
576 BUG_ON(tsk != current);
577 save_all(tsk);
578
579 #ifdef CONFIG_SPE
580 if (tsk->thread.regs->msr & MSR_SPE)
581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
582 #endif
583
584 preempt_enable();
585 }
586 }
587 EXPORT_SYMBOL(flush_all_to_thread);
588
589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
590 void do_send_trap(struct pt_regs *regs, unsigned long address,
591 unsigned long error_code, int signal_code, int breakpt)
592 {
593 siginfo_t info;
594
595 current->thread.trap_nr = signal_code;
596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
597 11, SIGSEGV) == NOTIFY_STOP)
598 return;
599
600 /* Deliver the signal to userspace */
601 info.si_signo = SIGTRAP;
602 info.si_errno = breakpt; /* breakpoint or watchpoint id */
603 info.si_code = signal_code;
604 info.si_addr = (void __user *)address;
605 force_sig_info(SIGTRAP, &info, current);
606 }
607 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
608 void do_break (struct pt_regs *regs, unsigned long address,
609 unsigned long error_code)
610 {
611 siginfo_t info;
612
613 current->thread.trap_nr = TRAP_HWBKPT;
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
618 if (debugger_break_match(regs))
619 return;
620
621 /* Clear the breakpoint */
622 hw_breakpoint_disable();
623
624 /* Deliver the signal to userspace */
625 info.si_signo = SIGTRAP;
626 info.si_errno = 0;
627 info.si_code = TRAP_HWBKPT;
628 info.si_addr = (void __user *)address;
629 force_sig_info(SIGTRAP, &info, current);
630 }
631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
632
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
636 /*
637 * Set the debug registers back to their default "safe" values.
638 */
639 static void set_debug_reg_defaults(struct thread_struct *thread)
640 {
641 thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645 thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649 thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
651 /*
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653 */
654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 DBCR1_IAC3US | DBCR1_IAC4US;
656 /*
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659 */
660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662 thread->debug.dbcr1 = 0;
663 #endif
664 }
665
666 static void prime_debug_regs(struct debug_reg *debug)
667 {
668 /*
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
672 */
673 mtmsr(mfmsr() & ~MSR_DE);
674
675 mtspr(SPRN_IAC1, debug->iac1);
676 mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 mtspr(SPRN_IAC3, debug->iac3);
679 mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681 mtspr(SPRN_DAC1, debug->dac1);
682 mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 mtspr(SPRN_DVC1, debug->dvc1);
685 mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687 mtspr(SPRN_DBCR0, debug->dbcr0);
688 mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690 mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
692 }
693 /*
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
697 */
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
699 {
700 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 || (new_debug->dbcr0 & DBCR0_IDM))
702 prime_debug_regs(new_debug);
703 }
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_debug_reg_defaults(struct thread_struct *thread)
708 {
709 thread->hw_brk.address = 0;
710 thread->hw_brk.type = 0;
711 set_breakpoint(&thread->hw_brk);
712 }
713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
714 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
715
716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
718 {
719 mtspr(SPRN_DAC1, dabr);
720 #ifdef CONFIG_PPC_47x
721 isync();
722 #endif
723 return 0;
724 }
725 #elif defined(CONFIG_PPC_BOOK3S)
726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727 {
728 mtspr(SPRN_DABR, dabr);
729 if (cpu_has_feature(CPU_FTR_DABRX))
730 mtspr(SPRN_DABRX, dabrx);
731 return 0;
732 }
733 #else
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736 return -EINVAL;
737 }
738 #endif
739
740 static inline int set_dabr(struct arch_hw_breakpoint *brk)
741 {
742 unsigned long dabr, dabrx;
743
744 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
745 dabrx = ((brk->type >> 3) & 0x7);
746
747 if (ppc_md.set_dabr)
748 return ppc_md.set_dabr(dabr, dabrx);
749
750 return __set_dabr(dabr, dabrx);
751 }
752
753 static inline int set_dawr(struct arch_hw_breakpoint *brk)
754 {
755 unsigned long dawr, dawrx, mrd;
756
757 dawr = brk->address;
758
759 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
760 << (63 - 58); //* read/write bits */
761 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
762 << (63 - 59); //* translate */
763 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
764 >> 3; //* PRIM bits */
765 /* dawr length is stored in field MDR bits 48:53. Matches range in
766 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
767 0b111111=64DW.
768 brk->len is in bytes.
769 This aligns up to double word size, shifts and does the bias.
770 */
771 mrd = ((brk->len + 7) >> 3) - 1;
772 dawrx |= (mrd & 0x3f) << (63 - 53);
773
774 if (ppc_md.set_dawr)
775 return ppc_md.set_dawr(dawr, dawrx);
776 mtspr(SPRN_DAWR, dawr);
777 mtspr(SPRN_DAWRX, dawrx);
778 return 0;
779 }
780
781 void __set_breakpoint(struct arch_hw_breakpoint *brk)
782 {
783 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
784
785 if (cpu_has_feature(CPU_FTR_DAWR))
786 set_dawr(brk);
787 else
788 set_dabr(brk);
789 }
790
791 void set_breakpoint(struct arch_hw_breakpoint *brk)
792 {
793 preempt_disable();
794 __set_breakpoint(brk);
795 preempt_enable();
796 }
797
798 #ifdef CONFIG_PPC64
799 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
800 #endif
801
802 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
803 struct arch_hw_breakpoint *b)
804 {
805 if (a->address != b->address)
806 return false;
807 if (a->type != b->type)
808 return false;
809 if (a->len != b->len)
810 return false;
811 return true;
812 }
813
814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
815
816 static inline bool tm_enabled(struct task_struct *tsk)
817 {
818 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
819 }
820
821 static void tm_reclaim_thread(struct thread_struct *thr,
822 struct thread_info *ti, uint8_t cause)
823 {
824 /*
825 * Use the current MSR TM suspended bit to track if we have
826 * checkpointed state outstanding.
827 * On signal delivery, we'd normally reclaim the checkpointed
828 * state to obtain stack pointer (see:get_tm_stackpointer()).
829 * This will then directly return to userspace without going
830 * through __switch_to(). However, if the stack frame is bad,
831 * we need to exit this thread which calls __switch_to() which
832 * will again attempt to reclaim the already saved tm state.
833 * Hence we need to check that we've not already reclaimed
834 * this state.
835 * We do this using the current MSR, rather tracking it in
836 * some specific thread_struct bit, as it has the additional
837 * benefit of checking for a potential TM bad thing exception.
838 */
839 if (!MSR_TM_SUSPENDED(mfmsr()))
840 return;
841
842 giveup_all(container_of(thr, struct task_struct, thread));
843
844 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
845 }
846
847 void tm_reclaim_current(uint8_t cause)
848 {
849 tm_enable();
850 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
851 }
852
853 static inline void tm_reclaim_task(struct task_struct *tsk)
854 {
855 /* We have to work out if we're switching from/to a task that's in the
856 * middle of a transaction.
857 *
858 * In switching we need to maintain a 2nd register state as
859 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
860 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
861 * ckvr_state
862 *
863 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
864 */
865 struct thread_struct *thr = &tsk->thread;
866
867 if (!thr->regs)
868 return;
869
870 if (!MSR_TM_ACTIVE(thr->regs->msr))
871 goto out_and_saveregs;
872
873 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
874 "ccr=%lx, msr=%lx, trap=%lx)\n",
875 tsk->pid, thr->regs->nip,
876 thr->regs->ccr, thr->regs->msr,
877 thr->regs->trap);
878
879 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
880
881 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
882 tsk->pid);
883
884 out_and_saveregs:
885 /* Always save the regs here, even if a transaction's not active.
886 * This context-switches a thread's TM info SPRs. We do it here to
887 * be consistent with the restore path (in recheckpoint) which
888 * cannot happen later in _switch().
889 */
890 tm_save_sprs(thr);
891 }
892
893 extern void __tm_recheckpoint(struct thread_struct *thread,
894 unsigned long orig_msr);
895
896 void tm_recheckpoint(struct thread_struct *thread,
897 unsigned long orig_msr)
898 {
899 unsigned long flags;
900
901 if (!(thread->regs->msr & MSR_TM))
902 return;
903
904 /* We really can't be interrupted here as the TEXASR registers can't
905 * change and later in the trecheckpoint code, we have a userspace R1.
906 * So let's hard disable over this region.
907 */
908 local_irq_save(flags);
909 hard_irq_disable();
910
911 /* The TM SPRs are restored here, so that TEXASR.FS can be set
912 * before the trecheckpoint and no explosion occurs.
913 */
914 tm_restore_sprs(thread);
915
916 __tm_recheckpoint(thread, orig_msr);
917
918 local_irq_restore(flags);
919 }
920
921 static inline void tm_recheckpoint_new_task(struct task_struct *new)
922 {
923 unsigned long msr;
924
925 if (!cpu_has_feature(CPU_FTR_TM))
926 return;
927
928 /* Recheckpoint the registers of the thread we're about to switch to.
929 *
930 * If the task was using FP, we non-lazily reload both the original and
931 * the speculative FP register states. This is because the kernel
932 * doesn't see if/when a TM rollback occurs, so if we take an FP
933 * unavailable later, we are unable to determine which set of FP regs
934 * need to be restored.
935 */
936 if (!tm_enabled(new))
937 return;
938
939 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
940 tm_restore_sprs(&new->thread);
941 return;
942 }
943 msr = new->thread.ckpt_regs.msr;
944 /* Recheckpoint to restore original checkpointed register state. */
945 TM_DEBUG("*** tm_recheckpoint of pid %d "
946 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
947 new->pid, new->thread.regs->msr, msr);
948
949 tm_recheckpoint(&new->thread, msr);
950
951 /*
952 * The checkpointed state has been restored but the live state has
953 * not, ensure all the math functionality is turned off to trigger
954 * restore_math() to reload.
955 */
956 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
957
958 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
959 "(kernel msr 0x%lx)\n",
960 new->pid, mfmsr());
961 }
962
963 static inline void __switch_to_tm(struct task_struct *prev,
964 struct task_struct *new)
965 {
966 if (cpu_has_feature(CPU_FTR_TM)) {
967 if (tm_enabled(prev) || tm_enabled(new))
968 tm_enable();
969
970 if (tm_enabled(prev)) {
971 prev->thread.load_tm++;
972 tm_reclaim_task(prev);
973 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
974 prev->thread.regs->msr &= ~MSR_TM;
975 }
976
977 tm_recheckpoint_new_task(new);
978 }
979 }
980
981 /*
982 * This is called if we are on the way out to userspace and the
983 * TIF_RESTORE_TM flag is set. It checks if we need to reload
984 * FP and/or vector state and does so if necessary.
985 * If userspace is inside a transaction (whether active or
986 * suspended) and FP/VMX/VSX instructions have ever been enabled
987 * inside that transaction, then we have to keep them enabled
988 * and keep the FP/VMX/VSX state loaded while ever the transaction
989 * continues. The reason is that if we didn't, and subsequently
990 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
991 * we don't know whether it's the same transaction, and thus we
992 * don't know which of the checkpointed state and the transactional
993 * state to use.
994 */
995 void restore_tm_state(struct pt_regs *regs)
996 {
997 unsigned long msr_diff;
998
999 /*
1000 * This is the only moment we should clear TIF_RESTORE_TM as
1001 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1002 * again, anything else could lead to an incorrect ckpt_msr being
1003 * saved and therefore incorrect signal contexts.
1004 */
1005 clear_thread_flag(TIF_RESTORE_TM);
1006 if (!MSR_TM_ACTIVE(regs->msr))
1007 return;
1008
1009 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1010 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1011
1012 /* Ensure that restore_math() will restore */
1013 if (msr_diff & MSR_FP)
1014 current->thread.load_fp = 1;
1015 #ifdef CONFIG_ALIVEC
1016 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1017 current->thread.load_vec = 1;
1018 #endif
1019 restore_math(regs);
1020
1021 regs->msr |= msr_diff;
1022 }
1023
1024 #else
1025 #define tm_recheckpoint_new_task(new)
1026 #define __switch_to_tm(prev, new)
1027 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1028
1029 static inline void save_sprs(struct thread_struct *t)
1030 {
1031 #ifdef CONFIG_ALTIVEC
1032 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1033 t->vrsave = mfspr(SPRN_VRSAVE);
1034 #endif
1035 #ifdef CONFIG_PPC_BOOK3S_64
1036 if (cpu_has_feature(CPU_FTR_DSCR))
1037 t->dscr = mfspr(SPRN_DSCR);
1038
1039 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1040 t->bescr = mfspr(SPRN_BESCR);
1041 t->ebbhr = mfspr(SPRN_EBBHR);
1042 t->ebbrr = mfspr(SPRN_EBBRR);
1043
1044 t->fscr = mfspr(SPRN_FSCR);
1045
1046 /*
1047 * Note that the TAR is not available for use in the kernel.
1048 * (To provide this, the TAR should be backed up/restored on
1049 * exception entry/exit instead, and be in pt_regs. FIXME,
1050 * this should be in pt_regs anyway (for debug).)
1051 */
1052 t->tar = mfspr(SPRN_TAR);
1053 }
1054
1055 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1056 /* Conditionally save Load Monitor registers, if enabled */
1057 if (t->fscr & FSCR_LM) {
1058 t->lmrr = mfspr(SPRN_LMRR);
1059 t->lmser = mfspr(SPRN_LMSER);
1060 }
1061 }
1062 #endif
1063 }
1064
1065 static inline void restore_sprs(struct thread_struct *old_thread,
1066 struct thread_struct *new_thread)
1067 {
1068 #ifdef CONFIG_ALTIVEC
1069 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1070 old_thread->vrsave != new_thread->vrsave)
1071 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1072 #endif
1073 #ifdef CONFIG_PPC_BOOK3S_64
1074 if (cpu_has_feature(CPU_FTR_DSCR)) {
1075 u64 dscr = get_paca()->dscr_default;
1076 if (new_thread->dscr_inherit)
1077 dscr = new_thread->dscr;
1078
1079 if (old_thread->dscr != dscr)
1080 mtspr(SPRN_DSCR, dscr);
1081 }
1082
1083 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1084 if (old_thread->bescr != new_thread->bescr)
1085 mtspr(SPRN_BESCR, new_thread->bescr);
1086 if (old_thread->ebbhr != new_thread->ebbhr)
1087 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1088 if (old_thread->ebbrr != new_thread->ebbrr)
1089 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1090
1091 if (old_thread->fscr != new_thread->fscr)
1092 mtspr(SPRN_FSCR, new_thread->fscr);
1093
1094 if (old_thread->tar != new_thread->tar)
1095 mtspr(SPRN_TAR, new_thread->tar);
1096 }
1097
1098 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1099 /* Conditionally restore Load Monitor registers, if enabled */
1100 if (new_thread->fscr & FSCR_LM) {
1101 if (old_thread->lmrr != new_thread->lmrr)
1102 mtspr(SPRN_LMRR, new_thread->lmrr);
1103 if (old_thread->lmser != new_thread->lmser)
1104 mtspr(SPRN_LMSER, new_thread->lmser);
1105 }
1106 }
1107 #endif
1108 }
1109
1110 struct task_struct *__switch_to(struct task_struct *prev,
1111 struct task_struct *new)
1112 {
1113 struct thread_struct *new_thread, *old_thread;
1114 struct task_struct *last;
1115 #ifdef CONFIG_PPC_BOOK3S_64
1116 struct ppc64_tlb_batch *batch;
1117 #endif
1118
1119 new_thread = &new->thread;
1120 old_thread = &current->thread;
1121
1122 WARN_ON(!irqs_disabled());
1123
1124 #ifdef CONFIG_PPC64
1125 /*
1126 * Collect processor utilization data per process
1127 */
1128 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1129 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1130 long unsigned start_tb, current_tb;
1131 start_tb = old_thread->start_tb;
1132 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1133 old_thread->accum_tb += (current_tb - start_tb);
1134 new_thread->start_tb = current_tb;
1135 }
1136 #endif /* CONFIG_PPC64 */
1137
1138 #ifdef CONFIG_PPC_STD_MMU_64
1139 batch = this_cpu_ptr(&ppc64_tlb_batch);
1140 if (batch->active) {
1141 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1142 if (batch->index)
1143 __flush_tlb_pending(batch);
1144 batch->active = 0;
1145 }
1146 #endif /* CONFIG_PPC_STD_MMU_64 */
1147
1148 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1149 switch_booke_debug_regs(&new->thread.debug);
1150 #else
1151 /*
1152 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1153 * schedule DABR
1154 */
1155 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1156 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1157 __set_breakpoint(&new->thread.hw_brk);
1158 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1159 #endif
1160
1161 /*
1162 * We need to save SPRs before treclaim/trecheckpoint as these will
1163 * change a number of them.
1164 */
1165 save_sprs(&prev->thread);
1166
1167 /* Save FPU, Altivec, VSX and SPE state */
1168 giveup_all(prev);
1169
1170 __switch_to_tm(prev, new);
1171
1172 /*
1173 * We can't take a PMU exception inside _switch() since there is a
1174 * window where the kernel stack SLB and the kernel stack are out
1175 * of sync. Hard disable here.
1176 */
1177 hard_irq_disable();
1178
1179 /*
1180 * Call restore_sprs() before calling _switch(). If we move it after
1181 * _switch() then we miss out on calling it for new tasks. The reason
1182 * for this is we manually create a stack frame for new tasks that
1183 * directly returns through ret_from_fork() or
1184 * ret_from_kernel_thread(). See copy_thread() for details.
1185 */
1186 restore_sprs(old_thread, new_thread);
1187
1188 last = _switch(old_thread, new_thread);
1189
1190 #ifdef CONFIG_PPC_STD_MMU_64
1191 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1192 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1193 batch = this_cpu_ptr(&ppc64_tlb_batch);
1194 batch->active = 1;
1195 }
1196
1197 if (current_thread_info()->task->thread.regs)
1198 restore_math(current_thread_info()->task->thread.regs);
1199 #endif /* CONFIG_PPC_STD_MMU_64 */
1200
1201 return last;
1202 }
1203
1204 static int instructions_to_print = 16;
1205
1206 static void show_instructions(struct pt_regs *regs)
1207 {
1208 int i;
1209 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1210 sizeof(int));
1211
1212 printk("Instruction dump:");
1213
1214 for (i = 0; i < instructions_to_print; i++) {
1215 int instr;
1216
1217 if (!(i % 8))
1218 printk("\n");
1219
1220 #if !defined(CONFIG_BOOKE)
1221 /* If executing with the IMMU off, adjust pc rather
1222 * than print XXXXXXXX.
1223 */
1224 if (!(regs->msr & MSR_IR))
1225 pc = (unsigned long)phys_to_virt(pc);
1226 #endif
1227
1228 if (!__kernel_text_address(pc) ||
1229 probe_kernel_address((unsigned int __user *)pc, instr)) {
1230 printk(KERN_CONT "XXXXXXXX ");
1231 } else {
1232 if (regs->nip == pc)
1233 printk(KERN_CONT "<%08x> ", instr);
1234 else
1235 printk(KERN_CONT "%08x ", instr);
1236 }
1237
1238 pc += sizeof(int);
1239 }
1240
1241 printk("\n");
1242 }
1243
1244 struct regbit {
1245 unsigned long bit;
1246 const char *name;
1247 };
1248
1249 static struct regbit msr_bits[] = {
1250 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1251 {MSR_SF, "SF"},
1252 {MSR_HV, "HV"},
1253 #endif
1254 {MSR_VEC, "VEC"},
1255 {MSR_VSX, "VSX"},
1256 #ifdef CONFIG_BOOKE
1257 {MSR_CE, "CE"},
1258 #endif
1259 {MSR_EE, "EE"},
1260 {MSR_PR, "PR"},
1261 {MSR_FP, "FP"},
1262 {MSR_ME, "ME"},
1263 #ifdef CONFIG_BOOKE
1264 {MSR_DE, "DE"},
1265 #else
1266 {MSR_SE, "SE"},
1267 {MSR_BE, "BE"},
1268 #endif
1269 {MSR_IR, "IR"},
1270 {MSR_DR, "DR"},
1271 {MSR_PMM, "PMM"},
1272 #ifndef CONFIG_BOOKE
1273 {MSR_RI, "RI"},
1274 {MSR_LE, "LE"},
1275 #endif
1276 {0, NULL}
1277 };
1278
1279 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1280 {
1281 const char *s = "";
1282
1283 for (; bits->bit; ++bits)
1284 if (val & bits->bit) {
1285 printk("%s%s", s, bits->name);
1286 s = sep;
1287 }
1288 }
1289
1290 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1291 static struct regbit msr_tm_bits[] = {
1292 {MSR_TS_T, "T"},
1293 {MSR_TS_S, "S"},
1294 {MSR_TM, "E"},
1295 {0, NULL}
1296 };
1297
1298 static void print_tm_bits(unsigned long val)
1299 {
1300 /*
1301 * This only prints something if at least one of the TM bit is set.
1302 * Inside the TM[], the output means:
1303 * E: Enabled (bit 32)
1304 * S: Suspended (bit 33)
1305 * T: Transactional (bit 34)
1306 */
1307 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1308 printk(",TM[");
1309 print_bits(val, msr_tm_bits, "");
1310 printk("]");
1311 }
1312 }
1313 #else
1314 static void print_tm_bits(unsigned long val) {}
1315 #endif
1316
1317 static void print_msr_bits(unsigned long val)
1318 {
1319 printk("<");
1320 print_bits(val, msr_bits, ",");
1321 print_tm_bits(val);
1322 printk(">");
1323 }
1324
1325 #ifdef CONFIG_PPC64
1326 #define REG "%016lx"
1327 #define REGS_PER_LINE 4
1328 #define LAST_VOLATILE 13
1329 #else
1330 #define REG "%08lx"
1331 #define REGS_PER_LINE 8
1332 #define LAST_VOLATILE 12
1333 #endif
1334
1335 void show_regs(struct pt_regs * regs)
1336 {
1337 int i, trap;
1338
1339 show_regs_print_info(KERN_DEFAULT);
1340
1341 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1342 regs->nip, regs->link, regs->ctr);
1343 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1344 regs, regs->trap, print_tainted(), init_utsname()->release);
1345 printk("MSR: "REG" ", regs->msr);
1346 print_msr_bits(regs->msr);
1347 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1348 trap = TRAP(regs);
1349 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1350 printk("CFAR: "REG" ", regs->orig_gpr3);
1351 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1352 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1353 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1354 #else
1355 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1356 #endif
1357 #ifdef CONFIG_PPC64
1358 printk("SOFTE: %ld ", regs->softe);
1359 #endif
1360 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1361 if (MSR_TM_ACTIVE(regs->msr))
1362 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1363 #endif
1364
1365 for (i = 0; i < 32; i++) {
1366 if ((i % REGS_PER_LINE) == 0)
1367 printk("\nGPR%02d: ", i);
1368 printk(REG " ", regs->gpr[i]);
1369 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1370 break;
1371 }
1372 printk("\n");
1373 #ifdef CONFIG_KALLSYMS
1374 /*
1375 * Lookup NIP late so we have the best change of getting the
1376 * above info out without failing
1377 */
1378 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1379 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1380 #endif
1381 show_stack(current, (unsigned long *) regs->gpr[1]);
1382 if (!user_mode(regs))
1383 show_instructions(regs);
1384 }
1385
1386 void flush_thread(void)
1387 {
1388 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1389 flush_ptrace_hw_breakpoint(current);
1390 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1391 set_debug_reg_defaults(&current->thread);
1392 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1393 }
1394
1395 void
1396 release_thread(struct task_struct *t)
1397 {
1398 }
1399
1400 /*
1401 * this gets called so that we can store coprocessor state into memory and
1402 * copy the current task into the new thread.
1403 */
1404 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1405 {
1406 flush_all_to_thread(src);
1407 /*
1408 * Flush TM state out so we can copy it. __switch_to_tm() does this
1409 * flush but it removes the checkpointed state from the current CPU and
1410 * transitions the CPU out of TM mode. Hence we need to call
1411 * tm_recheckpoint_new_task() (on the same task) to restore the
1412 * checkpointed state back and the TM mode.
1413 *
1414 * Can't pass dst because it isn't ready. Doesn't matter, passing
1415 * dst is only important for __switch_to()
1416 */
1417 __switch_to_tm(src, src);
1418
1419 *dst = *src;
1420
1421 clear_task_ebb(dst);
1422
1423 return 0;
1424 }
1425
1426 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1427 {
1428 #ifdef CONFIG_PPC_STD_MMU_64
1429 unsigned long sp_vsid;
1430 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1431
1432 if (radix_enabled())
1433 return;
1434
1435 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1436 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1437 << SLB_VSID_SHIFT_1T;
1438 else
1439 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1440 << SLB_VSID_SHIFT;
1441 sp_vsid |= SLB_VSID_KERNEL | llp;
1442 p->thread.ksp_vsid = sp_vsid;
1443 #endif
1444 }
1445
1446 /*
1447 * Copy a thread..
1448 */
1449
1450 /*
1451 * Copy architecture-specific thread state
1452 */
1453 int copy_thread(unsigned long clone_flags, unsigned long usp,
1454 unsigned long kthread_arg, struct task_struct *p)
1455 {
1456 struct pt_regs *childregs, *kregs;
1457 extern void ret_from_fork(void);
1458 extern void ret_from_kernel_thread(void);
1459 void (*f)(void);
1460 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1461 struct thread_info *ti = task_thread_info(p);
1462
1463 klp_init_thread_info(ti);
1464
1465 /* Copy registers */
1466 sp -= sizeof(struct pt_regs);
1467 childregs = (struct pt_regs *) sp;
1468 if (unlikely(p->flags & PF_KTHREAD)) {
1469 /* kernel thread */
1470 memset(childregs, 0, sizeof(struct pt_regs));
1471 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1472 /* function */
1473 if (usp)
1474 childregs->gpr[14] = ppc_function_entry((void *)usp);
1475 #ifdef CONFIG_PPC64
1476 clear_tsk_thread_flag(p, TIF_32BIT);
1477 childregs->softe = 1;
1478 #endif
1479 childregs->gpr[15] = kthread_arg;
1480 p->thread.regs = NULL; /* no user register state */
1481 ti->flags |= _TIF_RESTOREALL;
1482 f = ret_from_kernel_thread;
1483 } else {
1484 /* user thread */
1485 struct pt_regs *regs = current_pt_regs();
1486 CHECK_FULL_REGS(regs);
1487 *childregs = *regs;
1488 if (usp)
1489 childregs->gpr[1] = usp;
1490 p->thread.regs = childregs;
1491 childregs->gpr[3] = 0; /* Result from fork() */
1492 if (clone_flags & CLONE_SETTLS) {
1493 #ifdef CONFIG_PPC64
1494 if (!is_32bit_task())
1495 childregs->gpr[13] = childregs->gpr[6];
1496 else
1497 #endif
1498 childregs->gpr[2] = childregs->gpr[6];
1499 }
1500
1501 f = ret_from_fork;
1502 }
1503 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1504 sp -= STACK_FRAME_OVERHEAD;
1505
1506 /*
1507 * The way this works is that at some point in the future
1508 * some task will call _switch to switch to the new task.
1509 * That will pop off the stack frame created below and start
1510 * the new task running at ret_from_fork. The new task will
1511 * do some house keeping and then return from the fork or clone
1512 * system call, using the stack frame created above.
1513 */
1514 ((unsigned long *)sp)[0] = 0;
1515 sp -= sizeof(struct pt_regs);
1516 kregs = (struct pt_regs *) sp;
1517 sp -= STACK_FRAME_OVERHEAD;
1518 p->thread.ksp = sp;
1519 #ifdef CONFIG_PPC32
1520 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1521 _ALIGN_UP(sizeof(struct thread_info), 16);
1522 #endif
1523 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1524 p->thread.ptrace_bps[0] = NULL;
1525 #endif
1526
1527 p->thread.fp_save_area = NULL;
1528 #ifdef CONFIG_ALTIVEC
1529 p->thread.vr_save_area = NULL;
1530 #endif
1531
1532 setup_ksp_vsid(p, sp);
1533
1534 #ifdef CONFIG_PPC64
1535 if (cpu_has_feature(CPU_FTR_DSCR)) {
1536 p->thread.dscr_inherit = current->thread.dscr_inherit;
1537 p->thread.dscr = mfspr(SPRN_DSCR);
1538 }
1539 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1540 p->thread.ppr = INIT_PPR;
1541 #endif
1542 kregs->nip = ppc_function_entry(f);
1543 return 0;
1544 }
1545
1546 /*
1547 * Set up a thread for executing a new program
1548 */
1549 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1550 {
1551 #ifdef CONFIG_PPC64
1552 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1553 #endif
1554
1555 /*
1556 * If we exec out of a kernel thread then thread.regs will not be
1557 * set. Do it now.
1558 */
1559 if (!current->thread.regs) {
1560 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1561 current->thread.regs = regs - 1;
1562 }
1563
1564 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1565 /*
1566 * Clear any transactional state, we're exec()ing. The cause is
1567 * not important as there will never be a recheckpoint so it's not
1568 * user visible.
1569 */
1570 if (MSR_TM_SUSPENDED(mfmsr()))
1571 tm_reclaim_current(0);
1572 #endif
1573
1574 memset(regs->gpr, 0, sizeof(regs->gpr));
1575 regs->ctr = 0;
1576 regs->link = 0;
1577 regs->xer = 0;
1578 regs->ccr = 0;
1579 regs->gpr[1] = sp;
1580
1581 /*
1582 * We have just cleared all the nonvolatile GPRs, so make
1583 * FULL_REGS(regs) return true. This is necessary to allow
1584 * ptrace to examine the thread immediately after exec.
1585 */
1586 regs->trap &= ~1UL;
1587
1588 #ifdef CONFIG_PPC32
1589 regs->mq = 0;
1590 regs->nip = start;
1591 regs->msr = MSR_USER;
1592 #else
1593 if (!is_32bit_task()) {
1594 unsigned long entry;
1595
1596 if (is_elf2_task()) {
1597 /* Look ma, no function descriptors! */
1598 entry = start;
1599
1600 /*
1601 * Ulrich says:
1602 * The latest iteration of the ABI requires that when
1603 * calling a function (at its global entry point),
1604 * the caller must ensure r12 holds the entry point
1605 * address (so that the function can quickly
1606 * establish addressability).
1607 */
1608 regs->gpr[12] = start;
1609 /* Make sure that's restored on entry to userspace. */
1610 set_thread_flag(TIF_RESTOREALL);
1611 } else {
1612 unsigned long toc;
1613
1614 /* start is a relocated pointer to the function
1615 * descriptor for the elf _start routine. The first
1616 * entry in the function descriptor is the entry
1617 * address of _start and the second entry is the TOC
1618 * value we need to use.
1619 */
1620 __get_user(entry, (unsigned long __user *)start);
1621 __get_user(toc, (unsigned long __user *)start+1);
1622
1623 /* Check whether the e_entry function descriptor entries
1624 * need to be relocated before we can use them.
1625 */
1626 if (load_addr != 0) {
1627 entry += load_addr;
1628 toc += load_addr;
1629 }
1630 regs->gpr[2] = toc;
1631 }
1632 regs->nip = entry;
1633 regs->msr = MSR_USER64;
1634 } else {
1635 regs->nip = start;
1636 regs->gpr[2] = 0;
1637 regs->msr = MSR_USER32;
1638 }
1639 #endif
1640 #ifdef CONFIG_VSX
1641 current->thread.used_vsr = 0;
1642 #endif
1643 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1644 current->thread.fp_save_area = NULL;
1645 #ifdef CONFIG_ALTIVEC
1646 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1647 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1648 current->thread.vr_save_area = NULL;
1649 current->thread.vrsave = 0;
1650 current->thread.used_vr = 0;
1651 #endif /* CONFIG_ALTIVEC */
1652 #ifdef CONFIG_SPE
1653 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1654 current->thread.acc = 0;
1655 current->thread.spefscr = 0;
1656 current->thread.used_spe = 0;
1657 #endif /* CONFIG_SPE */
1658 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1659 current->thread.tm_tfhar = 0;
1660 current->thread.tm_texasr = 0;
1661 current->thread.tm_tfiar = 0;
1662 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1663 }
1664 EXPORT_SYMBOL(start_thread);
1665
1666 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1667 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1668
1669 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1670 {
1671 struct pt_regs *regs = tsk->thread.regs;
1672
1673 /* This is a bit hairy. If we are an SPE enabled processor
1674 * (have embedded fp) we store the IEEE exception enable flags in
1675 * fpexc_mode. fpexc_mode is also used for setting FP exception
1676 * mode (asyn, precise, disabled) for 'Classic' FP. */
1677 if (val & PR_FP_EXC_SW_ENABLE) {
1678 #ifdef CONFIG_SPE
1679 if (cpu_has_feature(CPU_FTR_SPE)) {
1680 /*
1681 * When the sticky exception bits are set
1682 * directly by userspace, it must call prctl
1683 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1684 * in the existing prctl settings) or
1685 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1686 * the bits being set). <fenv.h> functions
1687 * saving and restoring the whole
1688 * floating-point environment need to do so
1689 * anyway to restore the prctl settings from
1690 * the saved environment.
1691 */
1692 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1693 tsk->thread.fpexc_mode = val &
1694 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1695 return 0;
1696 } else {
1697 return -EINVAL;
1698 }
1699 #else
1700 return -EINVAL;
1701 #endif
1702 }
1703
1704 /* on a CONFIG_SPE this does not hurt us. The bits that
1705 * __pack_fe01 use do not overlap with bits used for
1706 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1707 * on CONFIG_SPE implementations are reserved so writing to
1708 * them does not change anything */
1709 if (val > PR_FP_EXC_PRECISE)
1710 return -EINVAL;
1711 tsk->thread.fpexc_mode = __pack_fe01(val);
1712 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1713 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1714 | tsk->thread.fpexc_mode;
1715 return 0;
1716 }
1717
1718 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1719 {
1720 unsigned int val;
1721
1722 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1723 #ifdef CONFIG_SPE
1724 if (cpu_has_feature(CPU_FTR_SPE)) {
1725 /*
1726 * When the sticky exception bits are set
1727 * directly by userspace, it must call prctl
1728 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1729 * in the existing prctl settings) or
1730 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1731 * the bits being set). <fenv.h> functions
1732 * saving and restoring the whole
1733 * floating-point environment need to do so
1734 * anyway to restore the prctl settings from
1735 * the saved environment.
1736 */
1737 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1738 val = tsk->thread.fpexc_mode;
1739 } else
1740 return -EINVAL;
1741 #else
1742 return -EINVAL;
1743 #endif
1744 else
1745 val = __unpack_fe01(tsk->thread.fpexc_mode);
1746 return put_user(val, (unsigned int __user *) adr);
1747 }
1748
1749 int set_endian(struct task_struct *tsk, unsigned int val)
1750 {
1751 struct pt_regs *regs = tsk->thread.regs;
1752
1753 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1754 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1755 return -EINVAL;
1756
1757 if (regs == NULL)
1758 return -EINVAL;
1759
1760 if (val == PR_ENDIAN_BIG)
1761 regs->msr &= ~MSR_LE;
1762 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1763 regs->msr |= MSR_LE;
1764 else
1765 return -EINVAL;
1766
1767 return 0;
1768 }
1769
1770 int get_endian(struct task_struct *tsk, unsigned long adr)
1771 {
1772 struct pt_regs *regs = tsk->thread.regs;
1773 unsigned int val;
1774
1775 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1776 !cpu_has_feature(CPU_FTR_REAL_LE))
1777 return -EINVAL;
1778
1779 if (regs == NULL)
1780 return -EINVAL;
1781
1782 if (regs->msr & MSR_LE) {
1783 if (cpu_has_feature(CPU_FTR_REAL_LE))
1784 val = PR_ENDIAN_LITTLE;
1785 else
1786 val = PR_ENDIAN_PPC_LITTLE;
1787 } else
1788 val = PR_ENDIAN_BIG;
1789
1790 return put_user(val, (unsigned int __user *)adr);
1791 }
1792
1793 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1794 {
1795 tsk->thread.align_ctl = val;
1796 return 0;
1797 }
1798
1799 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1800 {
1801 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1802 }
1803
1804 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1805 unsigned long nbytes)
1806 {
1807 unsigned long stack_page;
1808 unsigned long cpu = task_cpu(p);
1809
1810 /*
1811 * Avoid crashing if the stack has overflowed and corrupted
1812 * task_cpu(p), which is in the thread_info struct.
1813 */
1814 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1815 stack_page = (unsigned long) hardirq_ctx[cpu];
1816 if (sp >= stack_page + sizeof(struct thread_struct)
1817 && sp <= stack_page + THREAD_SIZE - nbytes)
1818 return 1;
1819
1820 stack_page = (unsigned long) softirq_ctx[cpu];
1821 if (sp >= stack_page + sizeof(struct thread_struct)
1822 && sp <= stack_page + THREAD_SIZE - nbytes)
1823 return 1;
1824 }
1825 return 0;
1826 }
1827
1828 int validate_sp(unsigned long sp, struct task_struct *p,
1829 unsigned long nbytes)
1830 {
1831 unsigned long stack_page = (unsigned long)task_stack_page(p);
1832
1833 if (sp >= stack_page + sizeof(struct thread_struct)
1834 && sp <= stack_page + THREAD_SIZE - nbytes)
1835 return 1;
1836
1837 return valid_irq_stack(sp, p, nbytes);
1838 }
1839
1840 EXPORT_SYMBOL(validate_sp);
1841
1842 unsigned long get_wchan(struct task_struct *p)
1843 {
1844 unsigned long ip, sp;
1845 int count = 0;
1846
1847 if (!p || p == current || p->state == TASK_RUNNING)
1848 return 0;
1849
1850 sp = p->thread.ksp;
1851 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1852 return 0;
1853
1854 do {
1855 sp = *(unsigned long *)sp;
1856 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1857 return 0;
1858 if (count > 0) {
1859 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1860 if (!in_sched_functions(ip))
1861 return ip;
1862 }
1863 } while (count++ < 16);
1864 return 0;
1865 }
1866
1867 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1868
1869 void show_stack(struct task_struct *tsk, unsigned long *stack)
1870 {
1871 unsigned long sp, ip, lr, newsp;
1872 int count = 0;
1873 int firstframe = 1;
1874 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1875 int curr_frame = current->curr_ret_stack;
1876 extern void return_to_handler(void);
1877 unsigned long rth = (unsigned long)return_to_handler;
1878 #endif
1879
1880 sp = (unsigned long) stack;
1881 if (tsk == NULL)
1882 tsk = current;
1883 if (sp == 0) {
1884 if (tsk == current)
1885 sp = current_stack_pointer();
1886 else
1887 sp = tsk->thread.ksp;
1888 }
1889
1890 lr = 0;
1891 printk("Call Trace:\n");
1892 do {
1893 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1894 return;
1895
1896 stack = (unsigned long *) sp;
1897 newsp = stack[0];
1898 ip = stack[STACK_FRAME_LR_SAVE];
1899 if (!firstframe || ip != lr) {
1900 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1901 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1902 if ((ip == rth) && curr_frame >= 0) {
1903 printk(" (%pS)",
1904 (void *)current->ret_stack[curr_frame].ret);
1905 curr_frame--;
1906 }
1907 #endif
1908 if (firstframe)
1909 printk(" (unreliable)");
1910 printk("\n");
1911 }
1912 firstframe = 0;
1913
1914 /*
1915 * See if this is an exception frame.
1916 * We look for the "regshere" marker in the current frame.
1917 */
1918 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1919 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1920 struct pt_regs *regs = (struct pt_regs *)
1921 (sp + STACK_FRAME_OVERHEAD);
1922 lr = regs->link;
1923 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1924 regs->trap, (void *)regs->nip, (void *)lr);
1925 firstframe = 1;
1926 }
1927
1928 sp = newsp;
1929 } while (count++ < kstack_depth_to_print);
1930 }
1931
1932 #ifdef CONFIG_PPC64
1933 /* Called with hard IRQs off */
1934 void notrace __ppc64_runlatch_on(void)
1935 {
1936 struct thread_info *ti = current_thread_info();
1937 unsigned long ctrl;
1938
1939 ctrl = mfspr(SPRN_CTRLF);
1940 ctrl |= CTRL_RUNLATCH;
1941 mtspr(SPRN_CTRLT, ctrl);
1942
1943 ti->local_flags |= _TLF_RUNLATCH;
1944 }
1945
1946 /* Called with hard IRQs off */
1947 void notrace __ppc64_runlatch_off(void)
1948 {
1949 struct thread_info *ti = current_thread_info();
1950 unsigned long ctrl;
1951
1952 ti->local_flags &= ~_TLF_RUNLATCH;
1953
1954 ctrl = mfspr(SPRN_CTRLF);
1955 ctrl &= ~CTRL_RUNLATCH;
1956 mtspr(SPRN_CTRLT, ctrl);
1957 }
1958 #endif /* CONFIG_PPC64 */
1959
1960 unsigned long arch_align_stack(unsigned long sp)
1961 {
1962 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1963 sp -= get_random_int() & ~PAGE_MASK;
1964 return sp & ~0xf;
1965 }
1966
1967 static inline unsigned long brk_rnd(void)
1968 {
1969 unsigned long rnd = 0;
1970
1971 /* 8MB for 32bit, 1GB for 64bit */
1972 if (is_32bit_task())
1973 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1974 else
1975 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1976
1977 return rnd << PAGE_SHIFT;
1978 }
1979
1980 unsigned long arch_randomize_brk(struct mm_struct *mm)
1981 {
1982 unsigned long base = mm->brk;
1983 unsigned long ret;
1984
1985 #ifdef CONFIG_PPC_STD_MMU_64
1986 /*
1987 * If we are using 1TB segments and we are allowed to randomise
1988 * the heap, we can put it above 1TB so it is backed by a 1TB
1989 * segment. Otherwise the heap will be in the bottom 1TB
1990 * which always uses 256MB segments and this may result in a
1991 * performance penalty. We don't need to worry about radix. For
1992 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1993 */
1994 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1995 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1996 #endif
1997
1998 ret = PAGE_ALIGN(base + brk_rnd());
1999
2000 if (ret < mm->brk)
2001 return mm->brk;
2002
2003 return ret;
2004 }
2005