]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/numa.c
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24
25 static int numa_enabled = 1;
26
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40
41 /*
42 * We need somewhere to store start/end/node for each region until we have
43 * allocated the real node_data structures.
44 */
45 #define MAX_REGIONS (MAX_LMB_REGIONS*2)
46 static struct {
47 unsigned long start_pfn;
48 unsigned long end_pfn;
49 int nid;
50 } init_node_data[MAX_REGIONS] __initdata;
51
52 int __init early_pfn_to_nid(unsigned long pfn)
53 {
54 unsigned int i;
55
56 for (i = 0; init_node_data[i].end_pfn; i++) {
57 unsigned long start_pfn = init_node_data[i].start_pfn;
58 unsigned long end_pfn = init_node_data[i].end_pfn;
59
60 if ((start_pfn <= pfn) && (pfn < end_pfn))
61 return init_node_data[i].nid;
62 }
63
64 return -1;
65 }
66
67 void __init add_region(unsigned int nid, unsigned long start_pfn,
68 unsigned long pages)
69 {
70 unsigned int i;
71
72 dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
73 nid, start_pfn, pages);
74
75 for (i = 0; init_node_data[i].end_pfn; i++) {
76 if (init_node_data[i].nid != nid)
77 continue;
78 if (init_node_data[i].end_pfn == start_pfn) {
79 init_node_data[i].end_pfn += pages;
80 return;
81 }
82 if (init_node_data[i].start_pfn == (start_pfn + pages)) {
83 init_node_data[i].start_pfn -= pages;
84 return;
85 }
86 }
87
88 /*
89 * Leave last entry NULL so we dont iterate off the end (we use
90 * entry.end_pfn to terminate the walk).
91 */
92 if (i >= (MAX_REGIONS - 1)) {
93 printk(KERN_ERR "WARNING: too many memory regions in "
94 "numa code, truncating\n");
95 return;
96 }
97
98 init_node_data[i].start_pfn = start_pfn;
99 init_node_data[i].end_pfn = start_pfn + pages;
100 init_node_data[i].nid = nid;
101 }
102
103 /* We assume init_node_data has no overlapping regions */
104 void __init get_region(unsigned int nid, unsigned long *start_pfn,
105 unsigned long *end_pfn, unsigned long *pages_present)
106 {
107 unsigned int i;
108
109 *start_pfn = -1UL;
110 *end_pfn = *pages_present = 0;
111
112 for (i = 0; init_node_data[i].end_pfn; i++) {
113 if (init_node_data[i].nid != nid)
114 continue;
115
116 *pages_present += init_node_data[i].end_pfn -
117 init_node_data[i].start_pfn;
118
119 if (init_node_data[i].start_pfn < *start_pfn)
120 *start_pfn = init_node_data[i].start_pfn;
121
122 if (init_node_data[i].end_pfn > *end_pfn)
123 *end_pfn = init_node_data[i].end_pfn;
124 }
125
126 /* We didnt find a matching region, return start/end as 0 */
127 if (*start_pfn == -1UL)
128 *start_pfn = 0;
129 }
130
131 static inline void map_cpu_to_node(int cpu, int node)
132 {
133 numa_cpu_lookup_table[cpu] = node;
134
135 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
136 cpu_set(cpu, numa_cpumask_lookup_table[node]);
137 }
138
139 #ifdef CONFIG_HOTPLUG_CPU
140 static void unmap_cpu_from_node(unsigned long cpu)
141 {
142 int node = numa_cpu_lookup_table[cpu];
143
144 dbg("removing cpu %lu from node %d\n", cpu, node);
145
146 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
147 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
148 } else {
149 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
150 cpu, node);
151 }
152 }
153 #endif /* CONFIG_HOTPLUG_CPU */
154
155 static struct device_node *find_cpu_node(unsigned int cpu)
156 {
157 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
158 struct device_node *cpu_node = NULL;
159 unsigned int *interrupt_server, *reg;
160 int len;
161
162 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
163 /* Try interrupt server first */
164 interrupt_server = (unsigned int *)get_property(cpu_node,
165 "ibm,ppc-interrupt-server#s", &len);
166
167 len = len / sizeof(u32);
168
169 if (interrupt_server && (len > 0)) {
170 while (len--) {
171 if (interrupt_server[len] == hw_cpuid)
172 return cpu_node;
173 }
174 } else {
175 reg = (unsigned int *)get_property(cpu_node,
176 "reg", &len);
177 if (reg && (len > 0) && (reg[0] == hw_cpuid))
178 return cpu_node;
179 }
180 }
181
182 return NULL;
183 }
184
185 /* must hold reference to node during call */
186 static int *of_get_associativity(struct device_node *dev)
187 {
188 return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
189 }
190
191 static int of_node_numa_domain(struct device_node *device)
192 {
193 int numa_domain;
194 unsigned int *tmp;
195
196 if (min_common_depth == -1)
197 return 0;
198
199 tmp = of_get_associativity(device);
200 if (tmp && (tmp[0] >= min_common_depth)) {
201 numa_domain = tmp[min_common_depth];
202 } else {
203 dbg("WARNING: no NUMA information for %s\n",
204 device->full_name);
205 numa_domain = 0;
206 }
207 return numa_domain;
208 }
209
210 /*
211 * In theory, the "ibm,associativity" property may contain multiple
212 * associativity lists because a resource may be multiply connected
213 * into the machine. This resource then has different associativity
214 * characteristics relative to its multiple connections. We ignore
215 * this for now. We also assume that all cpu and memory sets have
216 * their distances represented at a common level. This won't be
217 * true for heirarchical NUMA.
218 *
219 * In any case the ibm,associativity-reference-points should give
220 * the correct depth for a normal NUMA system.
221 *
222 * - Dave Hansen <haveblue@us.ibm.com>
223 */
224 static int __init find_min_common_depth(void)
225 {
226 int depth;
227 unsigned int *ref_points;
228 struct device_node *rtas_root;
229 unsigned int len;
230
231 rtas_root = of_find_node_by_path("/rtas");
232
233 if (!rtas_root)
234 return -1;
235
236 /*
237 * this property is 2 32-bit integers, each representing a level of
238 * depth in the associativity nodes. The first is for an SMP
239 * configuration (should be all 0's) and the second is for a normal
240 * NUMA configuration.
241 */
242 ref_points = (unsigned int *)get_property(rtas_root,
243 "ibm,associativity-reference-points", &len);
244
245 if ((len >= 1) && ref_points) {
246 depth = ref_points[1];
247 } else {
248 dbg("WARNING: could not find NUMA "
249 "associativity reference point\n");
250 depth = -1;
251 }
252 of_node_put(rtas_root);
253
254 return depth;
255 }
256
257 static int __init get_mem_addr_cells(void)
258 {
259 struct device_node *memory = NULL;
260 int rc;
261
262 memory = of_find_node_by_type(memory, "memory");
263 if (!memory)
264 return 0; /* it won't matter */
265
266 rc = prom_n_addr_cells(memory);
267 return rc;
268 }
269
270 static int __init get_mem_size_cells(void)
271 {
272 struct device_node *memory = NULL;
273 int rc;
274
275 memory = of_find_node_by_type(memory, "memory");
276 if (!memory)
277 return 0; /* it won't matter */
278 rc = prom_n_size_cells(memory);
279 return rc;
280 }
281
282 static unsigned long __init read_n_cells(int n, unsigned int **buf)
283 {
284 unsigned long result = 0;
285
286 while (n--) {
287 result = (result << 32) | **buf;
288 (*buf)++;
289 }
290 return result;
291 }
292
293 /*
294 * Figure out to which domain a cpu belongs and stick it there.
295 * Return the id of the domain used.
296 */
297 static int numa_setup_cpu(unsigned long lcpu)
298 {
299 int numa_domain = 0;
300 struct device_node *cpu = find_cpu_node(lcpu);
301
302 if (!cpu) {
303 WARN_ON(1);
304 goto out;
305 }
306
307 numa_domain = of_node_numa_domain(cpu);
308
309 if (numa_domain >= num_online_nodes()) {
310 /*
311 * POWER4 LPAR uses 0xffff as invalid node,
312 * dont warn in this case.
313 */
314 if (numa_domain != 0xffff)
315 printk(KERN_ERR "WARNING: cpu %ld "
316 "maps to invalid NUMA node %d\n",
317 lcpu, numa_domain);
318 numa_domain = 0;
319 }
320 out:
321 node_set_online(numa_domain);
322
323 map_cpu_to_node(lcpu, numa_domain);
324
325 of_node_put(cpu);
326
327 return numa_domain;
328 }
329
330 static int cpu_numa_callback(struct notifier_block *nfb,
331 unsigned long action,
332 void *hcpu)
333 {
334 unsigned long lcpu = (unsigned long)hcpu;
335 int ret = NOTIFY_DONE;
336
337 switch (action) {
338 case CPU_UP_PREPARE:
339 if (min_common_depth == -1 || !numa_enabled)
340 map_cpu_to_node(lcpu, 0);
341 else
342 numa_setup_cpu(lcpu);
343 ret = NOTIFY_OK;
344 break;
345 #ifdef CONFIG_HOTPLUG_CPU
346 case CPU_DEAD:
347 case CPU_UP_CANCELED:
348 unmap_cpu_from_node(lcpu);
349 break;
350 ret = NOTIFY_OK;
351 #endif
352 }
353 return ret;
354 }
355
356 /*
357 * Check and possibly modify a memory region to enforce the memory limit.
358 *
359 * Returns the size the region should have to enforce the memory limit.
360 * This will either be the original value of size, a truncated value,
361 * or zero. If the returned value of size is 0 the region should be
362 * discarded as it lies wholy above the memory limit.
363 */
364 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
365 unsigned long size)
366 {
367 /*
368 * We use lmb_end_of_DRAM() in here instead of memory_limit because
369 * we've already adjusted it for the limit and it takes care of
370 * having memory holes below the limit.
371 */
372
373 if (! memory_limit)
374 return size;
375
376 if (start + size <= lmb_end_of_DRAM())
377 return size;
378
379 if (start >= lmb_end_of_DRAM())
380 return 0;
381
382 return lmb_end_of_DRAM() - start;
383 }
384
385 static int __init parse_numa_properties(void)
386 {
387 struct device_node *cpu = NULL;
388 struct device_node *memory = NULL;
389 int addr_cells, size_cells;
390 int max_domain;
391 unsigned long i;
392
393 if (numa_enabled == 0) {
394 printk(KERN_WARNING "NUMA disabled by user\n");
395 return -1;
396 }
397
398 min_common_depth = find_min_common_depth();
399
400 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
401 if (min_common_depth < 0)
402 return min_common_depth;
403
404 max_domain = numa_setup_cpu(boot_cpuid);
405
406 /*
407 * Even though we connect cpus to numa domains later in SMP init,
408 * we need to know the maximum node id now. This is because each
409 * node id must have NODE_DATA etc backing it.
410 * As a result of hotplug we could still have cpus appear later on
411 * with larger node ids. In that case we force the cpu into node 0.
412 */
413 for_each_cpu(i) {
414 int numa_domain;
415
416 cpu = find_cpu_node(i);
417
418 if (cpu) {
419 numa_domain = of_node_numa_domain(cpu);
420 of_node_put(cpu);
421
422 if (numa_domain < MAX_NUMNODES &&
423 max_domain < numa_domain)
424 max_domain = numa_domain;
425 }
426 }
427
428 addr_cells = get_mem_addr_cells();
429 size_cells = get_mem_size_cells();
430 memory = NULL;
431 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
432 unsigned long start;
433 unsigned long size;
434 int numa_domain;
435 int ranges;
436 unsigned int *memcell_buf;
437 unsigned int len;
438
439 memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
440 if (!memcell_buf || len <= 0)
441 continue;
442
443 ranges = memory->n_addrs;
444 new_range:
445 /* these are order-sensitive, and modify the buffer pointer */
446 start = read_n_cells(addr_cells, &memcell_buf);
447 size = read_n_cells(size_cells, &memcell_buf);
448
449 numa_domain = of_node_numa_domain(memory);
450
451 if (numa_domain >= MAX_NUMNODES) {
452 if (numa_domain != 0xffff)
453 printk(KERN_ERR "WARNING: memory at %lx maps "
454 "to invalid NUMA node %d\n", start,
455 numa_domain);
456 numa_domain = 0;
457 }
458
459 if (max_domain < numa_domain)
460 max_domain = numa_domain;
461
462 if (!(size = numa_enforce_memory_limit(start, size))) {
463 if (--ranges)
464 goto new_range;
465 else
466 continue;
467 }
468
469 add_region(numa_domain, start >> PAGE_SHIFT,
470 size >> PAGE_SHIFT);
471
472 if (--ranges)
473 goto new_range;
474 }
475
476 for (i = 0; i <= max_domain; i++)
477 node_set_online(i);
478
479 return 0;
480 }
481
482 static void __init setup_nonnuma(void)
483 {
484 unsigned long top_of_ram = lmb_end_of_DRAM();
485 unsigned long total_ram = lmb_phys_mem_size();
486 unsigned int i;
487
488 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
489 top_of_ram, total_ram);
490 printk(KERN_INFO "Memory hole size: %ldMB\n",
491 (top_of_ram - total_ram) >> 20);
492
493 map_cpu_to_node(boot_cpuid, 0);
494 for (i = 0; i < lmb.memory.cnt; ++i)
495 add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
496 lmb_size_pages(&lmb.memory, i));
497 node_set_online(0);
498 }
499
500 static void __init dump_numa_topology(void)
501 {
502 unsigned int node;
503 unsigned int count;
504
505 if (min_common_depth == -1 || !numa_enabled)
506 return;
507
508 for_each_online_node(node) {
509 unsigned long i;
510
511 printk(KERN_INFO "Node %d Memory:", node);
512
513 count = 0;
514
515 for (i = 0; i < lmb_end_of_DRAM();
516 i += (1 << SECTION_SIZE_BITS)) {
517 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
518 if (count == 0)
519 printk(" 0x%lx", i);
520 ++count;
521 } else {
522 if (count > 0)
523 printk("-0x%lx", i);
524 count = 0;
525 }
526 }
527
528 if (count > 0)
529 printk("-0x%lx", i);
530 printk("\n");
531 }
532 return;
533 }
534
535 /*
536 * Allocate some memory, satisfying the lmb or bootmem allocator where
537 * required. nid is the preferred node and end is the physical address of
538 * the highest address in the node.
539 *
540 * Returns the physical address of the memory.
541 */
542 static void __init *careful_allocation(int nid, unsigned long size,
543 unsigned long align,
544 unsigned long end_pfn)
545 {
546 int new_nid;
547 unsigned long ret = lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
548
549 /* retry over all memory */
550 if (!ret)
551 ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
552
553 if (!ret)
554 panic("numa.c: cannot allocate %lu bytes on node %d",
555 size, nid);
556
557 /*
558 * If the memory came from a previously allocated node, we must
559 * retry with the bootmem allocator.
560 */
561 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
562 if (new_nid < nid) {
563 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
564 size, align, 0);
565
566 if (!ret)
567 panic("numa.c: cannot allocate %lu bytes on node %d",
568 size, new_nid);
569
570 ret = __pa(ret);
571
572 dbg("alloc_bootmem %lx %lx\n", ret, size);
573 }
574
575 return (void *)ret;
576 }
577
578 void __init do_init_bootmem(void)
579 {
580 int nid;
581 unsigned int i;
582 static struct notifier_block ppc64_numa_nb = {
583 .notifier_call = cpu_numa_callback,
584 .priority = 1 /* Must run before sched domains notifier. */
585 };
586
587 min_low_pfn = 0;
588 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
589 max_pfn = max_low_pfn;
590
591 if (parse_numa_properties())
592 setup_nonnuma();
593 else
594 dump_numa_topology();
595
596 register_cpu_notifier(&ppc64_numa_nb);
597
598 for_each_online_node(nid) {
599 unsigned long start_pfn, end_pfn, pages_present;
600 unsigned long bootmem_paddr;
601 unsigned long bootmap_pages;
602
603 get_region(nid, &start_pfn, &end_pfn, &pages_present);
604
605 /* Allocate the node structure node local if possible */
606 NODE_DATA(nid) = careful_allocation(nid,
607 sizeof(struct pglist_data),
608 SMP_CACHE_BYTES, end_pfn);
609 NODE_DATA(nid) = __va(NODE_DATA(nid));
610 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
611
612 dbg("node %d\n", nid);
613 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
614
615 NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
616 NODE_DATA(nid)->node_start_pfn = start_pfn;
617 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
618
619 if (NODE_DATA(nid)->node_spanned_pages == 0)
620 continue;
621
622 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
623 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
624
625 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
626 bootmem_paddr = (unsigned long)careful_allocation(nid,
627 bootmap_pages << PAGE_SHIFT,
628 PAGE_SIZE, end_pfn);
629 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
630
631 dbg("bootmap_paddr = %lx\n", bootmem_paddr);
632
633 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
634 start_pfn, end_pfn);
635
636 /* Add free regions on this node */
637 for (i = 0; init_node_data[i].end_pfn; i++) {
638 unsigned long start, end;
639
640 if (init_node_data[i].nid != nid)
641 continue;
642
643 start = init_node_data[i].start_pfn << PAGE_SHIFT;
644 end = init_node_data[i].end_pfn << PAGE_SHIFT;
645
646 dbg("free_bootmem %lx %lx\n", start, end - start);
647 free_bootmem_node(NODE_DATA(nid), start, end - start);
648 }
649
650 /* Mark reserved regions on this node */
651 for (i = 0; i < lmb.reserved.cnt; i++) {
652 unsigned long physbase = lmb.reserved.region[i].base;
653 unsigned long size = lmb.reserved.region[i].size;
654 unsigned long start_paddr = start_pfn << PAGE_SHIFT;
655 unsigned long end_paddr = end_pfn << PAGE_SHIFT;
656
657 if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
658 early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
659 continue;
660
661 if (physbase < end_paddr &&
662 (physbase+size) > start_paddr) {
663 /* overlaps */
664 if (physbase < start_paddr) {
665 size -= start_paddr - physbase;
666 physbase = start_paddr;
667 }
668
669 if (size > end_paddr - physbase)
670 size = end_paddr - physbase;
671
672 dbg("reserve_bootmem %lx %lx\n", physbase,
673 size);
674 reserve_bootmem_node(NODE_DATA(nid), physbase,
675 size);
676 }
677 }
678
679 /* Add regions into sparsemem */
680 for (i = 0; init_node_data[i].end_pfn; i++) {
681 unsigned long start, end;
682
683 if (init_node_data[i].nid != nid)
684 continue;
685
686 start = init_node_data[i].start_pfn;
687 end = init_node_data[i].end_pfn;
688
689 memory_present(nid, start, end);
690 }
691 }
692 }
693
694 void __init paging_init(void)
695 {
696 unsigned long zones_size[MAX_NR_ZONES];
697 unsigned long zholes_size[MAX_NR_ZONES];
698 int nid;
699
700 memset(zones_size, 0, sizeof(zones_size));
701 memset(zholes_size, 0, sizeof(zholes_size));
702
703 for_each_online_node(nid) {
704 unsigned long start_pfn, end_pfn, pages_present;
705
706 get_region(nid, &start_pfn, &end_pfn, &pages_present);
707
708 zones_size[ZONE_DMA] = end_pfn - start_pfn;
709 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
710
711 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
712 zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
713
714 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
715 zholes_size);
716 }
717 }
718
719 static int __init early_numa(char *p)
720 {
721 if (!p)
722 return 0;
723
724 if (strstr(p, "off"))
725 numa_enabled = 0;
726
727 if (strstr(p, "debug"))
728 numa_debug = 1;
729
730 return 0;
731 }
732 early_param("numa", early_numa);